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tA �nite di�eren
e algorithm for solution of generalized Lapla
e equation on unstru
turedtriangular grid is 
onstru
ted by a support operator method. The support operator method�rst 
onstru
ts dis
rete divergen
e operator from the divergen
e theorem and then 
onstru
tsdis
rete gradient operator as the adjoint operator of the divergen
e. The adjointness of theoperators is based on the 
ontiuum Green formulas whi
h remain valid also for dis
rete op-erators. Developed method is exa
t for linear solution and has se
ond order 
onvergen
erate. It is working well for dis
ontinuous di�usion 
oeÆ
ient and very rough or very dis-torted grids whi
h appear quite often e.g. in Lagrangian simulations. Being formulated onthe unstru
tured grid the method 
an be used on the region of arbitrary geometry shape.Numeri
al results 
on�rm these properties of the developed method.1 Introdu
tionDevelopment of high-quality �nite-di�eren
e methods (FDMs) for generalized Lapla
e equationis a part of a bigger e�ort to 
reate a dis
rete analog of ve
tor and tensor 
al
ulus [1℄, [2℄, [3℄,[4℄ that 
an be used to a

urately approximate 
ontinuum models for a wide range of physi
alpro
esses. These FDMs preserve fundamental properties of the original 
ontinuum di�erentialoperators and allow the dis
rete approximations of partial di�erential equations (PDEs) to mimi
1




riti
al properties in
luding 
onservation laws and symmetries in the solution of the underlyingphysi
al problem. The dis
rete analogs of di�erential operators satisfy the identities and theoremsof ve
tor and tensor 
al
ulus and provide new reliable algorithms for a wide 
lass of PDEs. Thisapproa
h has been used to 
onstru
t high-quality mimeti
 FDMs approximating the di�usionequation [5℄, [6℄, [7℄, [8℄, [3℄, [9℄ gas dynami
s equations [10℄, equations of 
ontinuum me
hani
s[4℄, Maxwell's �rst-order 
url equations [11℄, and the equations of magneti
 di�usion.The goal of this paper is to apply our ideas to 
onstru
tion of mimeti
 FDMs for solutionof generalized Lapla
e problems in strongly heterogeneous materials on unstru
tured triangular
omputational grids in 2D. The paper is arranged as follows. The next se
tion presents basi
properties of 
ontinuum di�erential operators whi
h we want to preserve also in the dis
rete 
ase.The se
tion 3 introdu
es all the data stru
tures des
ribing unstru
tured triangular grid whi
h arelater used during the dis
retization. The se
tion 4 dealing with dis
retization starts by des
ribingthe type of dis
retization of s
alar and ve
tor fun
tions on unstru
tured triangular grid, 
ontinuesby introdu
ing natural and formal s
alar produ
ts of grid fun
tions and ends with derivationof dis
rete approximation of 
ontinuum di�erential operators. The last se
tion 5 then presentsnumeri
al examples justifying properties of the developed numeri
al method.2 Continuum problemWe are treating generalized Lapla
e equation with Diri
hlet or Neumann boundary 
onditions�divK grad u = f on V (1)u =  or (2)(K grad u;n) =  on �V (3)on the arbitrary 2D region V with the border �V . K is the matrix of di�usion 
oeÆ
ients, n is theouter normal to the boundary, f and  are given fun
tions. The problem is solved for unknownfun
tion u. In general we have to assume that the di�usion matrix K is invertible with the inverseK�1, while in parti
ular here in the dis
rete 
ase we 
onsider only diagonal matrix of di�usion
oeÆ
ients K = kI.Be
ause our dis
retizations will be based on using dis
rete analogs of �rst order 
oordinateinvariant operators it is natural to write Lapla
e equation (1) as a system of �rst order equationsand then the problem (1)-(3) 
an be rewritten asdivw = f on Vw = �K grad u on V (4)u =  or � (w;n) =  on �V;where �rst equation is mass balan
e equation (
onservation law), w is 
ux, whi
h has 
lear physi
almeaning, and se
ond equation is de�nition of the 
ux (Dar
y law). This formulation also suggestthat we have to use dis
rete analogs of both u and w as a primary variables in our FDMs. For amoment we will not 
onsider boundary 
onditions. We introdu
e the operator G as a generalizedgradient Gu = �K grad u (5)and the operator D as an operator of the extended divergen
eDw = ( divw on V�(w;n) on �V : (6)2



The operatorG operates from the spa
e H of the smooth s
alar fun
tions on the region V into thespa
e H of smooth ve
tor fun
tions on the region V and the operator D operates the other wayfrom the spa
e H into the spa
e H. To show an important property 
onne
ting these operatorswe 
onsider these spa
es as Hilbert spa
es and de�ne on them inner produ
ts. On the spa
e Hwe de�ne the inner produ
t (u; v)H = ZV u v d V + I�V u v d S (7)and on the spa
e H we de�ne the inner produ
t(A;B)H = ZV (K�1A;B)d V: (8)Now our operators are a
ting between the spa
es H and H as:G : H ! H;D : H! H;Our operator D is the operator of extended divergen
e. Its basi
 property is given by thedivergen
e Green formula ZV divw d V � I�V (w;n) d S = 0 (9)whi
h is valid for any region V and later we will use it to de�ne �nite di�eren
e approximationto the operator D. This property 
an be expressed in terms of our s
alar produ
t as(D w; 1)H = 0: (10)The Gauss theorem for any fun
tions u 2 H;w 2 H 
an be written asZV u divw d V � I u(w;n) d S + ZV (w; K�1Kgrad u)d V = 0; (11)where we 
an identify our operators D and G, and gives us the relation between the operators ofextended divergen
e and gradient. Using the operators D (6) and G (5) and inner produ
ts (7),(8) on the spa
es H;H the Gauss theorem (11) 
an be rewritten as(Dw; u)H = (w;Gu)H (12)so that G = D� (13)where � denotes the adjoint operator. This means that gradient is minus (note (5)) adjoint ofextended divergen
e whi
h is a very important property of these operators whi
h we want topreserve also in the dis
rete 
ase below.Now we return to boundary 
onditions and 
onsider the 
ase of Neumann boundary 
ondition(3). We de�ne the extended right hand side of the Lapla
e equation (1) with Neumann boundary
ondition (3) as F = ( f on V on �V : (14)Now the 
ux form of our problem (4) with Neumann boundary 
ondition 
an be written asDw = Fw = Gu3



on the whole region V . Eliminating the 
ux w from these equation we obtainPu = DGu = F (15)where we have de�ned the global operator P = DG. From (13) we getP = DD�: (16)Now it is easy to show important properties of the global operator P. The �rst one is that theoperator P is positive de�nite:(Pu; u)H = (DD�u; u)H = (D�u;D�u)H > 0 (17)The se
ond one is that the operator P is self-adjoint:(Pu; u)H = (DD�u; u)H = (D�u;D�u)H = (u;D��D�)H = (u;DD�u)H (18)as D = D��: (Dw; u)H = (w;D�u)H = (D�u;w)H = (u;D��w)H : (19)So we have shown that the global operator P of our problem with Neumann boundary 
onditionsis self-adjoint and positive de�nite P = P� > 0: (20)By a similar pro
edure presented in [12℄ we 
an also show that the global operator in the 
aseof Diri
hlet boundary 
onditions is also self-adjoint and positive de�nite.These properties of the global operator extend also to the dis
rete 
ase and are 
ru
ial for the
hoi
e of the numeri
al method for the solution of the system of linear equations obtained fromthe �nite di�eren
e method. We have used 
onjugate gradient method for whi
h the matrix ofthe linear system has to be symmetri
 and positive de�nite.3 Unstru
tured triangular gridTo des
ribe our method we need substantial data stru
tures des
ribing the unstru
tured triangulargrid. To simplify the notation of di�erent data stru
tures whi
h are related to di�erent obje
ts(triangles, verti
es, edges) we introdu
e some uniform index notation to be used in this paper,namely:� i denotes the index of a triangle� j denotes the index of a vertex� k denotes the index of an edge� mi denotes the median of the triangle i� lk denotes the 
enter of the edge kNote that we use bold fa
e to denote ve
tor quantities so that e.g. j denotes two 
oordinates ofvertex j.All three basi
 obje
ts of the unstru
tured triangular grid, i.e. triangles, verti
es and edges,are ordered in an abritrary 
hosen manner (ex
ept edges - �rst are boundary edges):4



� triangles are numbered by 1; : : : ; Nt� verti
es are numbered by 1; : : : ; Nv� boundary edges are numbered by 1; : : : ; Neb� interior edges are numbered by Neb + 1; : : : ; Newhere� Nt is the total number of triangles� Nv is the total number of verti
es� Ne is the total number of edges� Neb is the total number of boundary edgesTo distinguish the boundary we use the index zero as a spe
ial 
ase, i.e. triangle 0, vertex 0 andedge 0 all do not belong to our region V . In fa
t as we are not 
omputing out of the region V wedo not need to distinguish whi
h parti
ular obje
t it is, we just use the index 0 as 
ag telling usthat we are on the boundary.For ea
h obje
t of the grid we use several data stru
tures:for ea
h vertex j� j = (xj; yj) 
oordinates of the vertex j� list Lj of triangles to whi
h the vertex j belongs; for boundary verti
es 0 2 Ljfor ea
h triangle i (see Fig. 1)� indi
es of three verti
es j1i ; j2i ; j3i of the triangle i ordered in the 
ounter-
lo
kwisedire
tion� indi
es of three edges k1i ; k2i ; k3i making the triangle i; the edge kJi has end verti
esjJi ; jJ+1i (with 
y
li
 extension, i.e. j4i = j1i )� median mi = (j1i + j2i + j3i )=3 of the triangle i� the area V Ci of the triangle i� the weights V kJ+1ikJi asso
iated with two edges of the triangle (or one vertex) whi
h sumup to the area V Ci of the triangle iV Ci = 3XJ=1V kJ+1ikJi (21)for triangle out of boundaries we de�ne V 0k = V k0 = 0 for any k; we use the weightsV kJ+1ikJi = V Ci=3for ea
h edge k (see Fig. 2)� two indi
es of edge verti
es j1k ; j2k so that j1k < j2k5
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Figure 1: Triangle i and quantities related to it.� ve
tor de�ned by the edge k = j2k � j1k� length of the edge Sk = jkj� middle point of the edge lk = (j1k + j2k)=2� two indi
es of triangles i1k; i2k neighboring the edge k so that when we look at the edgein verti
al position with vertex j1k down and j2k up as in Fig. 2 then the triangle i1k ison left and the triangle i2k is on right from the edge; for boundary edges either i1k ori2k is zero; note that fi1k; i2kg = Lj1k \ Lj2k with ex
eption of inner edge 
one
ting twoboundary verti
es when the interse
tion 
ontains also zero� two indi
es of verti
es j3k ; j4k whi
h are the third verti
es of two triangles joining at theedge k, so that j3k is the third vertex of the triangle i1k (i.e. on left) and j4k is the thirdvertex of the triangle i2k (i.e. on right when edge ve
tor k is pointing up); again forboundary edge one of these indi
es is zero� four indi
es of edges kIJk ; I = 1; 2; J = 1; 2 whi
h are remaining edges of the trianglesiIk; I = 1; 2 where the index I denotes the triangle and the index J = 1 denotes loweredge and J = 2 upper edge of given triangle when the edge ve
tor k is pointing up asin Fig. 2; again for boundary edge two of these indi
es are zero� four angles �kIJkk ; I = 1; 2; J = 1; 2 whi
h are the angles between oriented edges k and�kIJk de�ned by (k;kIJk ) = �jkjjkIJk j 
os�kIJkk (22)6



note that depending on the orientation of the edges kIJk either �kIJkk = 'kIJkk , i.e. they arethe angles of the neighboring triangles with ' angles shown in Fig. 2, or �kIJkk = ��'kIJkk
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Figure 2: Edge k and quantities related to it.4 Dis
retizationOur goal is to 
onstru
t the dis
retization s
heme for the generalized Lapla
e equation problem insu
h a way that the dis
rete operators approximating divergen
e and gradient will also posses theproperties of the 
ontinuum operators D and G whi
h we have derived in the se
tion 2. Namelywe want to mimi
 in the dis
rete 
ase the Green formula (10) and Gauss theorem (11) stated in theform of inner produ
ts (12). So we need to de�ne the dis
rete approximation of inner produ
ts ofs
alar fun
tions (7) and of ve
tor fun
tions (8) whi
h we 
all natural inner produ
ts. For derivingthe adjoint operator (13) we also need to de�ne so 
alled formal inner produ
ts whi
h are just aplain sum of produ
ts of values over all the dis
retization points. For appli
ations usually lo
al
onservation is important and natural 
hoi
e for dis
retization of s
alar fun
tion u is so-
alled
ell-
entered dis
retization (we 
all it HC, C stands for 
ells), where we have one value of dis
retefun
tion u in the 
ell. One 
an think about this value as integral average of the fun
tion over the
ell, for this reason it is assigned to entire 
ell and not to parti
ular point in this 
ell. It suggeststhat in dis
rete 
ase for
ing fun
tion f also has to be de�ned in 
ells, as well as range of values ofdis
rete analog of divergen
e is spa
e HC.We mention that only normal 
omponent of 
ux is 
ontinous on interfa
e between di�erentmaterials. This suggests to use these normal 
omponents to des
ribe 
ux ve
tor in dis
rete 
ase7



and also to de�ne them on the fa
es of the 
ells. That is, on the ea
h fa
e of the 
ell we will haveonly one unknown whi
h meaning will be dot produ
t of 
ux with normal to this fa
e. This isnot only 
onsistent from physi
al point of view, but also e�e
tively enfor
es 
ontinuity of normal
omponent of 
uxes be
ause it is the same on both sides of interfa
e. We will 
all su
h spa
e ofdis
rete ve
tor fun
tions as HL. For this dis
retization of ve
tor fun
tions 
onstru
tion of dis
retedivergen
e is trivial. In fa
t, if we will 
hoose volume of the 
ell as V in formula (9) then inright-hand side we will have summation of produ
ts of areas of fa
es and our normal 
omponentsof ve
tors.Su
h de�nition of dis
rete divergen
e (whi
h we will denote by D) also perfe
tly �ts moregeneral 
onsideration of our dis
rete ve
tor analysis [1℄. By 
onstru
tion D : HL! HC : Be
ausedis
rete 
ux operator (we will 
all it G) will be adjoint to divergen
e we have G : HC ! HL : Nowwhen dis
rete analogs of divergen
e and 
ux operator are 
onstru
ted they are used to 
onstru
tour �nite di�eren
e method for Lapla
e equation in form (4) by substituting di�erential operatorsby dis
rete ones.4.1 S
alar and ve
tor fun
tions on triangular gridOf 
ourse we have to start with dis
retization of fun
tions on the unstru
tured triangular grid.S
alar fun
tion u is on the triangular grid represented by its value Ui inside the triangle i forall triangles of the grid. Further it is represented on the boundaries, for ea
h boundary edgek; k = 1; � � � ; Neb it is represened by the value Uk in the middle of the edge.Ve
tor fun
tion w is represented at the middle point of the edge k by the proje
tion Wk of theve
tor w on the normal to the edge (see Fig. 3). The dire
tion of the normal to the edge is givenby the left hand rule, i.e. when edge k points up, vertex j1k is down and j2k is up (j1k < j2k), thenthe normal is pointing right (see Fig. 2).The di�usion 
oeÆ
ient matrix K is assumed to be a multiple of unit matrix K = kI and thedi�usion 
oeÆ
ient ki is 
onstant inside ea
h triangle i. The fun
tion f on the right hand sideof the Lapla
e equation (1) is dis
retized inside ea
h triangle by fi. The fun
tion  on the righthand side of the boundary 
onditions (2), (3) is dis
retized at the 
enter of boundary edges by k. The outer normal ve
tor n is needed also in the 
enters of boundary edges and is de�ned bythe s
alar nk = �1 a

ording to the dire
tion of the normal to the edge de�ned above. When theedge points up, i.e. vertex j1k is down and j2k is up (j1k < j2k as on Fig. 2) then if the inner triangleis on the left (i.e. i2k = 0) then nk = 1 and if the inner triangle is on the right (i.e. i1k = 0) thennk = �1. In both 
ases the other triangle does not exist (i.e. iJk = 0) and that area is out of our
omputational region.4.2 Natural inner produ
tsNatural dis
rete inner produ
ts are approximation to the 
ontinuum inner produ
ts (7), (8). Onthe spa
e HC of s
alar grid fun
tions U dis
retized inside the triangles by Ui and in the 
enter ofboundary edges by Uk we approximate the 
ontinuum inner produ
t (7) by(U; V )HC = NtXi=1Ui Vi V Ci + NebXk=1Uk Vk Sk: (23)The situation for the spa
e HL of ve
tor grid fun
tions A dis
retized in the 
enters of thetriangles edges by the s
alar 
omponent Ak orthogonal to the edge is more 
ompli
ated. We8
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Figure 3: Ve
tor fun
tion w is represented by the proje
tion of the ve
tor on the edge normals at
enters of the edges.
annot approximate the inner produ
t at the 
enter of the edge be
ause we have there only one
omponent of the ve
tor. We �rst try to approximate the inner produ
t in one vertex jJi of aparti
ular triangle i. Note that also other triangles having this vertex will 
ontribute to the innerprodu
t. Having one ve
tor grid fun
tionW we �rst move its dis
rete 
omponentsWkJi andWkJ�1ifrom the 
entres of the edges kJi and kJ�1i into the vertex jJi as is done at Fig. 4. We do thismovement for both ve
tor grid fun
tions A and B for whi
h we are 
omputing the inner produ
t.Now we have both ve
tors at the same point, vertex jJi and we 
an express their s
alar produ
tat this point. One 
an derive that this s
alar produ
t in terms of 
omponents orthogonal to theedges is (A;B)jJi = AkJi BkJi + AkJ�1i BkJ�1i + (AkJi BkJ�1i + AkJ�1i BkJi ) 
os�kJ�1ikJisin2 �kJ�1ikJi (24)whi
h is the 
ontribution from the vertex jJi to the inner produ
t at the triangle i. The approxi-mation of the inner produ
t (8) at the triangle i is then de�ned as(A;B)i = 1V Ci 3XJ=1(A;B)jJi V kJ�1ikJi (25)where V kJ�1ikJi are the weights (21) in the triangle i asso
iated with the vertex jJi . Now we de�nethe natural inner produ
t on the spa
e HL of ve
tor grid fun
tions as(A;B)HL = NtXi=1(A;B)iV CiKi : (26)9
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Figure 4: Proje
tions of the ve
tor W on two edge normals is moved into the join vertex of thesetwo edges for 
omputing the inner produ
t (A;B)jJi in triangle i with respe
t to the vertex jJi .4.3 Formal inner produ
tsBelow we will need to derive dis
rete gradient as an adjoint operator to the operator of dis
reteextended divergen
e, so we will need to use dis
rete approximation to the 
ontinuum identity(12) using the dis
rete inner produ
ts (23) and (26). To make the transition between the dis
reteinner produ
ts (23) and (26) easier to des
ribe it is usefull to intordu
e the formal inner produ
tswhi
h in fa
t are just sums of produ
ts of values at all the points where the dis
rete fun
tions arede�ned. To distinguish the formal inner produ
ts from natural ones denoted by (�; �) we denotethe formal produ
ts by [�; �℄.The formal inner produ
t on on the spa
e HC of s
alar grid fun
tions U dis
retized inside thetriangles by Ui and in the 
enter of boundary edges by Uk is de�ned as[U; V ℄HC = NtXi=1 UiVi + NebXk=1UkVk: (27)It is usefull to introdu
e the operator M 
onne
ting natural and formal inner produ
ts on thespa
e HC so that (U; V )HC = [MU; V ℄HC : (28)From this de�nition and from (23) and (27) follows the expli
it form of the operator M(MU)i = UiV Ci; for all triangles i (29)(MU)k = UkSk; for all boundary edges k10



The formal inner produ
t on the spa
e HL of ve
tor grid fun
tions A dis
retized in the 
entersof the triangles edges by the s
alar 
omponent Ak orthogonal to the edge is given by[A;B℄HL = NeXk=1AkBk (30)Again it is usefull to de�ne the operator L 
onne
ting natural and formal inner produ
ts onthe spa
e HL of ve
tor grid fun
tions(A;B)HL = [LA;B℄HL: (31)To get the expli
it for of the operator L is not so easy as in the previous 
ase. The formal innerprodu
t on the right hand side of (31) is by de�nition[LA;B℄HL = NeXk=1(LA)kBk (32)The natural inner produ
t on the left hand side (31) is by de�nition(A;B)HL = NtXi=1 3XJ=1 AkJi BkJi + AkJ�1i BkJ�1i + (AkJi BkJ�1i + AkJ�1i BkJi ) 
os�kJ�1ikJiKi sin2 �kJ�1ikJi V kJ�1ikJi : (33)When we 
hange the summation over all triangles into the summation over all edges we get(A;B)HL = NeXk=1Bk[Ak + Ak11k 
os�k11kksin2 �k11kk Ki1k V k11kk +Ak + Ak12k 
os �k12kksin2 �k12kk Ki1k V k11kk + Ak + Ak21k 
os�k21kksin2 �k21kk Ki2k V k21kk +Ak + Ak22k 
os �k22kksin2 �k22kk Ki2k V k22kk ℄where for boundary edges either �rst two terms or se
ond two terms are zero as the weight V 0k iszero outside the region V . Comparing this with (32) we get the expli
it form of the operator L(LA)k = 2Xl=1 1Kilk 2Xm=1 Ak + Aklmk 
os�klmkksin2 �klmkk V klmkk : (34)The operator L is a lo
al operator at the edge k with the sten
il in
luding also four other edgesk11k ; k12k ; k21k ; k22k of the two triangles joining at the edge k (see Fig. 2 for edge numbering). Thesten
il of the operator L is shown at Fig. 5.4.4 Dis
rete approximations of 
ontinuum operatorsIn the support operator method we 
hoose the prime operator, dis
retize it and then 
onstru
tthe other derived operator from approximation of integral identities (here from Gauss theorem(11)). Here we 
hoose as the prime operator the extended divergen
e operator (6).11



k

Figure 5: The sten
il of the operator L on the edge k.When we apply the divergen
e theorem (Green formula)ZV divwd V = I (w;n)d S (35)to the triangle i we obtain (DW )iV Ci = 3XJ=1WkJi sign(jJ+1i � jJi )SkJi ; (36)where D is the dis
rete operator appoximating 
ontinuum operator D. The sign is 
omming fromthe �xed orientation of normal on the edge (by the left hand rule). From this we 
an expressoperator D at the triangle i(DW )i = 1V Ci 3XJ=1WkJi SkJi sign(jJ+1i � jJi ): (37)On the boundary edge k we approximate the 
ontinuum operator D by the dis
rete operator D(DW )k = �Wknk: (38)The dis
rete operator D works from the spa
e HL of ve
tor grid fun
tions into the spa
e HC ofs
alar grid fun
tions.For 
ontinuum operators (5) and (6) we have shown that G = D� (13), i.e. that the gradientis the adjoint of the extended divergen
e, and we want this identity to hold also in the dis
rete
ase with dis
rete operators and natural inner produ
ts. G will be the diskrete approximation ofthe 
ontinuum operator G and will be 
onstru
ted fromG = D� (39)where the adjoint is ment in the sen
e of dis
rete natural inner produ
ts (23) and (26). Thedis
rete operator G works from the spa
e HC of s
alar grid fun
tions into the spa
e HL of ve
torgrid fun
tions.The de�nition of the adjoint operator is(DW; U)HC = (W; D�U)HL (40)12



and 
an be 
hanged into formal inner produ
ts (27) and (30) by using previously introdu
edoperators M (28) and L (31) [DW;MU ℄HC = [W; LD�℄HL (41)Using the formal adjoint operator D
 of the operator D on the left hand side we get[W; D
MU ℄HL = [W; LD�U ℄HL (42)and as this has to be valid for all W and U we see thatLD� = D
M (43)Now we try to derive formal adjoint operator D
. First just from the de�nition of formaladjoint and de�nition of formal s
alar produ
t we have[DW;U ℄HC = [W;D
U ℄ = NeXk=1Wk(D
U)k: (44)Now we express [DW;U ℄HC from the expli
it form of the operator D (37), (38)[DW;U ℄HC = NtXi=1 3XJ=1WkJi SkJi sign(jJ+1i � jJi ) UiV Ci � NebXk=1WknkUk: (45)We rearrange the summation over all triangles and all boundary edges into the summation overall edges [DW;U ℄HC = NebXk=1Wk 24�Uknk + sign(i1k)Sk Ui1kV Ci1k � sign(i2k)Sk Ui2kV Ci2k 35 (46)+ NeXk=Neb+1WkSk 0� Ui1kV Ci1k � Ui2kV Ci2k1A ; (47)where the sign just distinguishes whi
h side of the boundary edge is inside our region V and whi
his outside. From this we 
an easily get the expli
it form of the formal adjoint operator D
(D
U)k = �Uknk + sign(i1k)Sk Ui1kV Ci1k � sign(i2k)Sk Ui2kV Ci2k (48)for boundary edges ; k = 1; � � � ; Neb(D
U)k = Sk 0� Ui1kV Ci1k � Ui2kV Ci2k1A (49)for internal edges ; k = Neb + 1; � � � ; Newhere the �rst 
ase is for the boundary edges k = 1; � � � ; Neb and the se
ond 
ase is for the internaledges k = Neb + 1; � � � ; Ne.Having the formal adjoint operator D
 we 
an from (43) write the natural adjoint operator asD� = L�1D
M: (50)We have the expli
it form of operators M (29), L (34) and D
 (48) however the expli
it formof the operator inverse to L 
annot be 
onstru
ted, thus when we need to apply the operator of13



minus gradient G = D� to a s
alar grid fun
tion U from HC to obtain the ve
tor grid fun
tionW = GU from HL we have to solve the system of linear equationsLW = D
MU (51)for unknown ve
tor grid fun
tionW. The system (51) the system of Nb linear algebrai
 equationsfor Nb s
alar 
omponents Wk of W at the 
enters of all edges of our triangulation. The matrix ofthis system is given by the expli
it form of the operator L (34).4.5 Treating boundary 
onditionsOn the boundary edges we have to distinguish if there is either Diri
hlet or Neumann boundary
ondition on ea
h edge. When Neumann boundary 
ondition is on the boundary boundary edgek then we already know the value of the 
ux Wk through this edge and we do not in
lude theequation for this 
ux Wk in the system (51) and in the �nal form of the dis
rete equation(DW )i = fi (52)for the triangle i whi
h in
ludes this boundary edge k (there is only one su
h triangle) we movethe known term WkSk=V Ci from (37) with appropriate sign into the right hand side fi.On the other hand for the boundary edge k with Diri
hlet boundary 
ondition we have toin
lude the equation for the 
ux Wk in the system (51) and this equation in
ludes the given valueUk =  k through formal adjoint on the boundary (48).For numeri
al solution of the system of linear equations (51) (after ex
luding from it equationsfor 
uxes on boundary edges with Neumann boundary 
onditions) we use Gauss-Seidel iterativemethod. The global dis
rete operator P = DG is symmetri
 and positive de�nite and for solvingthe global system (PU)i = fi; i = 1; � � � ; Nt we use the 
onjugate gradient iterative method.5 Numeri
al examplesIn this se
tion we provide several numeri
al examples whi
h demonstrate the properties of thedeveloped numeri
al method. First we evaluate the 
onvergen
e rate of our support operatormethod and show that it is exa
t for linear solutions even with dis
ontinous di�usion 
oeÆ
ients.Then we show that our method works reasonably well also on rather bad quality triangulationin
luding triangles with very small angles and 
learly is superior to a standard linear �nite elementmethod. In the last part of this se
tion we present several examples of stationary heat 
ow throughheat 
ondu
ting re
tangle having either areas of heat isulating material or holes. For triangulargrid 
onstru
tion we have been using Bank's 
ode [13℄.5.1 Convergen
e examples with known solutionAll examples here solve the generalized Lapla
e equation div k grad u = f on the unit square(x; y) 2 (0; 1)� (0; 1). When not noted otherwise we use di�usion 
oeÆ
ient k = 1. For a 
hosenexa
t solution ue we analyti
ally derive the right hand side f = div k grad ue and after numeri
alysolving the Lapla
e equation with this right hand side we 
an easily get the error of the numeri
alsolution. 14



The developed support operator method dis
retization is exa
t for linear solutions and se
ondorder [14℄ for others and we verify here this 
onvergen
e rate. The asymptoti
 error Eh estimateon a trianglular grid is given by kEhk = Chq +O(hq+1); (53)where h is the maximal length of edge in the grid, q de�nes the order of the trun
ation error, the
onvergen
e-rate 
onstant C is a positive 
onstant independent of h, and k � k is some norm. Toestimate the order q we evaluate the error on a sequen
e of re�ned grids. Using the error estimateon two grids with the parameters h and h=2 the order of the trun
ation error is approximatellyq � log2 kEhk=kEh=2k:In our 
onvergen
e study we use the maximum normEmax = kU � phuekmax = maxi=1;���;Nt jUi � (phue)ij; (54)where Ui is the numeri
al solution of the �nite-di�eren
e s
heme and ue is the exa
t solution of thegiven problem. Operator ph is the point proje
tion for s
alar fun
tion given by (phue)i = u(mi),where mi is the median of the triangle i, and we take maximum over all triangles.In order to �nd the order of 
onvergen
e numeri
ally and to show that the 
onstant C in (53)does not depend on the parameter h, we have to be sure that while re�ning the grid the ratio ofthe maximum value of the triangle area Vmax to the minimum value Vmin remains 
onstant [14℄.To a
hieve this we use the uniform re�nement whi
h in one re�nement step puts new vertex intothe 
enter of ea
h edge and divides ea
h triangle into four similar triangles so that the sequen
e ofgrid parameters h is given by h=2n. Su
h re�nement keeps the ratio Vmax=Vmin 
onstant. Table 1presents values of h, number of triangles Nt, areas Vmax, Vmin and the ratio Vmax=Vmin for parti
ularsequen
e of re�ned grids whi
h we use in the 
onvergen
e analysis in this subse
tion.h Nt Vmax Vmin Vmax=Vmin0.4 34 0.0472 0.0157 3.00.2 136 0.0118 0.0039 3.00.1 544 0.0029 0.00097 3.00.05 2176 0.0007 0.00024 3.00.025 8704 0.000184 0.000061 3.0Table 1: Grid parameters for used sequen
e of re�ned grids: maximum edge length h, number oftriangles Nt, maximum and minimum of triangle area Vmax and Vmin and their ratio.5.1.1 Smooth solutionsOur method is exa
t on 
onstant and linear solutions whi
h has been 
on�rmed numeri
ally onseveral examples like u = 1, u = x and u = x + y. Next we try three nonlinear solutions u = x2,u = x(1 � x)y(1 � y) and u = sin(�x) sin(�y). First we numeri
aly solve the Lapla
e equationwith these exa
t solutions with Diri
hlet boundary 
onditions everywhere. The errors and ordersof 
onvergen
e on our sequan
e of re�ned grids is presented in Table 2. The errors and orders of
onvergen
e of the same problems, now however with Diri
hlet boundary 
onditions only at theright side of the solution square and with Neumann boundary 
onditions on the remaining threesides, is shown in Table 3. Both tables 
on�rm the se
ond order 
onvergen
e rate of our method.15



h u = x2 u = x(1� x)y(1� y) u = sin(�x) sin(�y)Emax q Emax q Emax q0.4 0.0064 1.96 0.0055 1.89 0.087 1.960.2 0.0016 2.0 0.0015 1.93 0.022 1.960.1 0.00042 1.96 0.00039 1.96 0.0057 1.960.05 0.00011 1.96 0.0001 2.0 0.0014 2.00.025 0.000027 0.000025 0.00036Table 2: Maximum error and order of 
onvergen
e for nonlinear solutions with Diri
hlet boundary
onditions on re�ned grids.h u = x2 u = x(1� x)y(1� y) u = sin(�x) sin(�y)Emax q Emax q Emax q0.4 0.007 1.96 0.0039 1.96 0.143 2.00.2 0.0018 1.93 0.0011 1.96 0.035 1.960.1 0.00047 1.96 0.00028 1.96 0.009 1.960.05 0.00012 1.96 0.000072 1.96 0.0023 2.00.025 0.000031 0.000018 0.00057Table 3: Maximum error and order of 
onvergen
e for nonlinear solutions with Neumann andDiri
hlet boundary 
onditions on re�ned grids.5.1.2 Dis
ontinuous 
oeÆ
ient problemHere we present several examples with dis
ontinuous pie
ewise 
onstant di�usion 
oeÆ
ientk = ( k1; 0 < x < 0:5;k2; 0:5 < x < 1:whi
h have exa
t solution:Test DC1 { in this problem 
omming from [15℄, [6℄ the exa
t solution is a pie
ewise linear fun
tionu = 8<: k2x+2k1k20:5(k1+k2+4k1k2 0 < x < 0:5k1x+2k1k2+0:5(k2�k1)0:5(k1+k2)+4k1k2 0:5 < x < 1; :We solve this problem with Diri
hlet boundary 
onditions for parti
ular values of di�usion 
oeÆ-
ient k1 = 1; k2 = 2. Of 
ourse the triangulation is done su
h a way that the whole dis
ontinuityline x = 0:5 is 
overed by the edges and no triangle interse
ts it.Test DC2 { this test is the same as the pre
eding one with the value p1y being added to thesolution so that the exa
t solution isu = 8<: k2x+2k1k20:5(k1+k2+4k1k2 + p1y 0 < x < 0:5k1x+2k1k2+0:5(k2�k1)0:5(k1+k2)+4k1k2 + p1y 0:5 < x < 1We solve this problem with Diri
hlet boundary 
onditions for parti
ular values of di�usion 
oeÆ-
ient k1 = 1; k2 = 10 and parameter p1 = 0:1. 16



Test DC3 { in this problem 
omming from [16℄, [6℄ the exa
t solution is a pie
ewise quadrati
fun
tion u = ( a1 x22 + b1x 0 � x � 0:5a2 x22 + b2x+ 
2 0:5 � x � 1where ai = � 1ki ; b1 = 3a2 + a14 k2k1 + k2 ; b2 = k2k1 b1; 
2 = ��b2 + a22 � :We solve this problem with Diri
hlet boundary 
onditions for parti
ular values of di�usion 
oeÆ-
ient k1 = 1; k2 = 2.The 
onvergen
e analysis for three examples with a dis
ontinuous 
oeÆ
ient is presented inTable 4 and 
on�rms that our method is exa
t for even for non-smooth pie
ewise linear solutionsand se
ond order for non-linear solutions even in 
ase of dis
ontinuous di�usion 
oeÆ
ients.h DC1 DC2 DC3Emax Emax Emax q0.4 2:2 � 10�11 8:2 � 10�12 0.011 1.890.2 1:0 � 10�11 2:8 � 10�12 0.0030 1.930.1 5:7 � 10�12 1:3 � 10�12 0.00082 1.960.05 3:1 � 10�12 7:3 � 10�12 0.00021 2.00.025 1:6 � 10�12 3:6 � 10�12 0.000053Table 4: Maximum error and order of 
onvergen
e for problems with dis
ontinuous di�usion
oeÆ
ient with Diri
hlet boundary 
onditions on re�ned grids.
5.2 Unisotropi
 triangulationHere we 
ompare our method with standard linear �nite element method (FEM) [17℄ on unisotropi
triangulation in
luding triangles with very big angles 
lose to 2�. It is known that su
h triangula-tion 
auses troubles to FEM and we show that our method deals with this problems mu
h better.Naturally FEM should not be used with su
h a triangulation, on the other hand in some problemssu
h triangulation appears and we need a method working well also for su
h triangulation (ofbad quality for FEM). An example of a problem where su
h triangulation might easily appear isLagrangian hydrodynami
s whi
h moves grid 
ells and verti
es with the 
uid 
ow and where weneed to treat paraboli
 part of the model equation.In this example we use the problem with exa
t solution u = x2=a2 with parameter a on there
tangular region (x; y) 2 (�a; a) � (0; 1). The grids for parameters a = 1 and a = 5 are shownon Fig. 6. For the values of the parameter a other than a = 1 we use the same grid, only westret
h x 
oordinates of all obje
ts by multiplying them by a so that the grid 
overs the region(�a; a)�(0; 1). For a >> 1 all the tringles in the triangulation be
ome very long in the x dire
tionand thus have very small angles.For di�erent values of the parameter a we solve the Lapla
e equation div grad u = 2=a2 withDiri
hlet boundary 
onditions u = 1 on the left and right boundaries x = �a and zero Neumannboundary 
onditions (gradu;n) = 0 on the lower and upper boundaries y = 0; y = 1. Thisproblem has a unique solution u = x2=a2. In Table 5 we 
ompare results of our method withresults of standard FEM with linear elements as implemented in [13℄. The table presents for17
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(b)Figure 6: Grid used for stret
hing the triangulation; (a) for parameter a = 1, i.e. x 2 (�1; 1), (b)for parameter a = 5, i.e. x 2 (�5; 5)several values of the parameter a the error in maximum norm of the 
omputed solution (in all
ases solution u 2 (0; 1)) and the minimal value of the 
omputed solution u.SOM FEMa Emax min(u) Emax min(u)1 0.0037 -0.0028 0.0018 -0.000810 0.0019 -0.0015 0.05 0.0225 0.0019 -0.0015 0.18 0.1550 0.0019 -0.0015 0.45 0.45100 0.0019 -0.0015 0.77 0.771000 0.0069 -0.0043 0.997 0.99710000 0.2016 -0.2012 1.0 1.0Table 5: Maximum error and minimum of numeri
al solution on unisotropi
 triangulation stret
hedby a by our SOM (support operator method) and linear FEM.From Table 5 we 
an see the di�eren
e between FEM and our method in this 
ase. As is wellknown FEM is not working well for very long triangles with very small angles whi
h appear inthe triangulation in the 
ase of big parameter a. The maximum error for FEM is already 5%for a = 10 and 18% for a = 25 getting mu
h worse, while our method is giving the same errorsup to a = 102 and still for a = 103 its error is less than 1%. If we in
rease a further also ourmethod starts to give larger errors as 20% for a = 104. Apparently for our method the problemsare starting for mu
h higher a than for FEM, we are getting similar error for a = 104 as FEM isgetting for a = 25.The origin of the FEM troubles lies in fa
t that for big a there are no edges in the triangulationwhi
h are parallel to the axis y. For su
h a grid and the exa
t solution with 
urvature in the sdire
tion the linear interpolation on the edges (whi
h for big a are almost parallel to the axis x)introdu
es zig-zagging in the y dire
tion whi
h is eating too mu
h of the overall energy and the18



parabola in the x dire
tion is not resolved well. Basi
ally for high a the minimum u = 0 of theparabola u = x2=a2 is getting higher until for biggest a > 103 the FEM solution is very 
lose to
onstant solution u = 1.Table 6 presents 
onvergen
e results of our method for these problems for di�erent values of a.The grid has been re�ned by the same way as in the previous se
tion by introdu
ing new verti
esin the middle of ea
h edge, so that ea
h triangle is divided into four smaller similar triangles.We see that our method has reasonable 
onvergen
e even on very stret
hed grids with very smallangles up to a = 100. For a = 1000 the 
onvergen
e is lost.a h = 0:18 h = 0:09 h = 0:045Emax q Emax q Emax q1 0.00372 1.92 0.00097 1.96 0.00025 ...10 0.00193 1.8 0.00057 1.8 0.00016 ...25 0.00193 1.8 0.00057 1.8 0.00016 ...50 0.00193 1.8 0.00057 1.8 0.00016 ...100 0.00193 1.8 0.00055 1.7 0.00017 ...1000 0.069 0.5 0.0048 ... 0.099 ...Table 6: Errors and 
onvergen
e rate for triangulation with triangles with small angles by oursupport operators method for di�erent values of a.
5.3 Examples of heat 
owIn this se
tion we present �ve examples of solving the Lapla
e equation (1)-(3) with zero sour
ef = 0 on a re
tangle with regions of di�erent di�usion 
oeÆ
ients k or re
tangle with holes.These examples present stationary heat 
ow through the re
tangle and di�usion 
oeÆ
ient is the
oeÆ
ient of heat 
ondu
tivity. All these examples have Diri
hlet boundary 
onditions on the leftu = 1 and the right u = 0 and zero Neumann boundary 
onditions on the bottom and top. Thismeans that we �x the temperature on the left and right and assume no heat 
ow through the topand bottom boundary of the re
tangle.For �rst three examples most of the re
tangle is the region with high 
ondu
tivity k = 1and inside the re
tangle there are some regions of heat insulator material with very low heat
ondu
tivity k = 10�6. The problems di�er in the geometry of insulator material regions:Ci
rle { problem is solved on the re
tangle (x; y) 2 (�2; 2)� (�2; 2) and the insulator region isthe 
ir
le with 
enter in the origin and radius one, see Fig. 7.Fingers { problem is solved on the re
tangle (x; y) 2 (0; 1)� (0; 1) and there are two re
tangularinsulator areas (0:2; 0:3)� (0; 0:8) and (0:6; 0:7)� (0:3; 1), �ngers from bottom and top, see Fig.8.Streak { problem is solved on the re
tangle (x; y) 2 (0; 1)� (0; 1) and insulator area is the 
urvedstreak between two ar
s with 
enter at (0:1;�0:4) and radiuses 1:1 and 1:2, see Fig. 9.Next two problems use only one heat 
ondu
tivity k = 1 however the re
tangle has severalholes without any material, so the solution domain is non-
onvex. On the boundaries of the holeswe use zero Neumann boundary 
onditions. These two examples di�er in the position of three
ir
ular holes:Three holes arranged verti
ally { problem is solved on the re
tangle (x; y) 2 (�1; 1)� (�1; 1)and insulator areas are three verti
ally arranged 
ir
les with the same radius 1=6 and 
entres at19



(0; 0); (0;�2=3), see Fig. 10.Three holes arranged randomly { problem is solved on the re
tangle (x; y) 2 (�1; 1)� (�1; 1)and insulator areas are three randomly arranged 
ir
les with the same radius 1=6 and 
entres at(0:6;�0:1); (�0:5; 0:7); (0:4;�0:5), see Fig. 11.For ea
h problem we present numeri
al results in four �gures:(a) triangular grid with material property, heat 
ondu
tivity 
oeÆ
ient plotted by 
olor; whitehere means no material presented in examples with holes(b) 
olormap of temperature with triangular grid(
) arrow plot of heat 
ux; one 
an noti
e here the dire
tions of stationary heat 
ux alog internalboundaries(d) temperature 
ontours (isolines of 
onstant temperature) with triangular grid
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le problem: (a) grid with material properties, (b) temperature distribution, (
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(
) (d)Figure 8: Fingers problem: (a) grid with material properties, (b) temperature distribution, (
)heat 
ux distribution, (d) temperature 
ontour isolines6 Con
lusionWe have developed support operator dis
retization method for generalized Lapla
e equation onunstru
tured triangular grid with Diri
hlet and Neumann boundary 
onditions. The methodworks very well for dis
ontinuous di�usion 
oeÆ
ients. It is exa
t for linear solution and se
ondorder for nonlinear solution. It works remarkably well also for bad quality triangulations havingtriangles with very small angles. Presented sample numeri
al results 
on�rm these properties ofthe developed numeri
al method.
21
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) (d)Figure 9: Streak problem: (a) grid with material properties, (b) temperature distribution, (
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ux distribution, (d) temperature 
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