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Mimeti Finite Di�erene Methods for Ellipti Equationson Unstrutured Triangular GridVitor Ganzha1, Rihard Liska2, Mikhail Shashkov3, Christoph Zenger11Department of InformatisTehnial University of MunihArisstrasse 21, 80333 Munih, Germanyganzha�in.tum.de, zenger�in.tum.de2Faulty of Nulear Sienes and Physial EngineeringCzeh Tehnial University in PragueB�rehov�a 7, 115 19 Prague 1, Czeh Republiliska�siduri.fjfi.vut.zhttp://www-troja.fjfi.vut.z/~liska3Group T-7, Los Alamos National LaboratoryLos Alamos, NM 87544, USAmisha�t7.lanl.govJanuary 8, 2002AbstratA �nite di�erene algorithm for solution of generalized Laplae equation on unstruturedtriangular grid is onstruted by a support operator method. The support operator method�rst onstruts disrete divergene operator from the divergene theorem and then onstrutsdisrete gradient operator as the adjoint operator of the divergene. The adjointness of theoperators is based on the ontiuum Green formulas whih remain valid also for disrete op-erators. Developed method is exat for linear solution and has seond order onvergenerate. It is working well for disontinuous di�usion oeÆient and very rough or very dis-torted grids whih appear quite often e.g. in Lagrangian simulations. Being formulated onthe unstrutured grid the method an be used on the region of arbitrary geometry shape.Numerial results on�rm these properties of the developed method.1 IntrodutionDevelopment of high-quality �nite-di�erene methods (FDMs) for generalized Laplae equationis a part of a bigger e�ort to reate a disrete analog of vetor and tensor alulus [1℄, [2℄, [3℄,[4℄ that an be used to aurately approximate ontinuum models for a wide range of physialproesses. These FDMs preserve fundamental properties of the original ontinuum di�erentialoperators and allow the disrete approximations of partial di�erential equations (PDEs) to mimi1



ritial properties inluding onservation laws and symmetries in the solution of the underlyingphysial problem. The disrete analogs of di�erential operators satisfy the identities and theoremsof vetor and tensor alulus and provide new reliable algorithms for a wide lass of PDEs. Thisapproah has been used to onstrut high-quality mimeti FDMs approximating the di�usionequation [5℄, [6℄, [7℄, [8℄, [3℄, [9℄ gas dynamis equations [10℄, equations of ontinuum mehanis[4℄, Maxwell's �rst-order url equations [11℄, and the equations of magneti di�usion.The goal of this paper is to apply our ideas to onstrution of mimeti FDMs for solutionof generalized Laplae problems in strongly heterogeneous materials on unstrutured triangularomputational grids in 2D. The paper is arranged as follows. The next setion presents basiproperties of ontinuum di�erential operators whih we want to preserve also in the disrete ase.The setion 3 introdues all the data strutures desribing unstrutured triangular grid whih arelater used during the disretization. The setion 4 dealing with disretization starts by desribingthe type of disretization of salar and vetor funtions on unstrutured triangular grid, ontinuesby introduing natural and formal salar produts of grid funtions and ends with derivationof disrete approximation of ontinuum di�erential operators. The last setion 5 then presentsnumerial examples justifying properties of the developed numerial method.2 Continuum problemWe are treating generalized Laplae equation with Dirihlet or Neumann boundary onditions�divK grad u = f on V (1)u =  or (2)(K grad u;n) =  on �V (3)on the arbitrary 2D region V with the border �V . K is the matrix of di�usion oeÆients, n is theouter normal to the boundary, f and  are given funtions. The problem is solved for unknownfuntion u. In general we have to assume that the di�usion matrix K is invertible with the inverseK�1, while in partiular here in the disrete ase we onsider only diagonal matrix of di�usionoeÆients K = kI.Beause our disretizations will be based on using disrete analogs of �rst order oordinateinvariant operators it is natural to write Laplae equation (1) as a system of �rst order equationsand then the problem (1)-(3) an be rewritten asdivw = f on Vw = �K grad u on V (4)u =  or � (w;n) =  on �V;where �rst equation is mass balane equation (onservation law), w is ux, whih has lear physialmeaning, and seond equation is de�nition of the ux (Dary law). This formulation also suggestthat we have to use disrete analogs of both u and w as a primary variables in our FDMs. For amoment we will not onsider boundary onditions. We introdue the operator G as a generalizedgradient Gu = �K grad u (5)and the operator D as an operator of the extended divergeneDw = ( divw on V�(w;n) on �V : (6)2



The operatorG operates from the spae H of the smooth salar funtions on the region V into thespae H of smooth vetor funtions on the region V and the operator D operates the other wayfrom the spae H into the spae H. To show an important property onneting these operatorswe onsider these spaes as Hilbert spaes and de�ne on them inner produts. On the spae Hwe de�ne the inner produt (u; v)H = ZV u v d V + I�V u v d S (7)and on the spae H we de�ne the inner produt(A;B)H = ZV (K�1A;B)d V: (8)Now our operators are ating between the spaes H and H as:G : H ! H;D : H! H;Our operator D is the operator of extended divergene. Its basi property is given by thedivergene Green formula ZV divw d V � I�V (w;n) d S = 0 (9)whih is valid for any region V and later we will use it to de�ne �nite di�erene approximationto the operator D. This property an be expressed in terms of our salar produt as(D w; 1)H = 0: (10)The Gauss theorem for any funtions u 2 H;w 2 H an be written asZV u divw d V � I u(w;n) d S + ZV (w; K�1Kgrad u)d V = 0; (11)where we an identify our operators D and G, and gives us the relation between the operators ofextended divergene and gradient. Using the operators D (6) and G (5) and inner produts (7),(8) on the spaes H;H the Gauss theorem (11) an be rewritten as(Dw; u)H = (w;Gu)H (12)so that G = D� (13)where � denotes the adjoint operator. This means that gradient is minus (note (5)) adjoint ofextended divergene whih is a very important property of these operators whih we want topreserve also in the disrete ase below.Now we return to boundary onditions and onsider the ase of Neumann boundary ondition(3). We de�ne the extended right hand side of the Laplae equation (1) with Neumann boundaryondition (3) as F = ( f on V on �V : (14)Now the ux form of our problem (4) with Neumann boundary ondition an be written asDw = Fw = Gu3



on the whole region V . Eliminating the ux w from these equation we obtainPu = DGu = F (15)where we have de�ned the global operator P = DG. From (13) we getP = DD�: (16)Now it is easy to show important properties of the global operator P. The �rst one is that theoperator P is positive de�nite:(Pu; u)H = (DD�u; u)H = (D�u;D�u)H > 0 (17)The seond one is that the operator P is self-adjoint:(Pu; u)H = (DD�u; u)H = (D�u;D�u)H = (u;D��D�)H = (u;DD�u)H (18)as D = D��: (Dw; u)H = (w;D�u)H = (D�u;w)H = (u;D��w)H : (19)So we have shown that the global operator P of our problem with Neumann boundary onditionsis self-adjoint and positive de�nite P = P� > 0: (20)By a similar proedure presented in [12℄ we an also show that the global operator in the aseof Dirihlet boundary onditions is also self-adjoint and positive de�nite.These properties of the global operator extend also to the disrete ase and are ruial for thehoie of the numerial method for the solution of the system of linear equations obtained fromthe �nite di�erene method. We have used onjugate gradient method for whih the matrix ofthe linear system has to be symmetri and positive de�nite.3 Unstrutured triangular gridTo desribe our method we need substantial data strutures desribing the unstrutured triangulargrid. To simplify the notation of di�erent data strutures whih are related to di�erent objets(triangles, verties, edges) we introdue some uniform index notation to be used in this paper,namely:� i denotes the index of a triangle� j denotes the index of a vertex� k denotes the index of an edge� mi denotes the median of the triangle i� lk denotes the enter of the edge kNote that we use bold fae to denote vetor quantities so that e.g. j denotes two oordinates ofvertex j.All three basi objets of the unstrutured triangular grid, i.e. triangles, verties and edges,are ordered in an abritrary hosen manner (exept edges - �rst are boundary edges):4



� triangles are numbered by 1; : : : ; Nt� verties are numbered by 1; : : : ; Nv� boundary edges are numbered by 1; : : : ; Neb� interior edges are numbered by Neb + 1; : : : ; Newhere� Nt is the total number of triangles� Nv is the total number of verties� Ne is the total number of edges� Neb is the total number of boundary edgesTo distinguish the boundary we use the index zero as a speial ase, i.e. triangle 0, vertex 0 andedge 0 all do not belong to our region V . In fat as we are not omputing out of the region V wedo not need to distinguish whih partiular objet it is, we just use the index 0 as ag telling usthat we are on the boundary.For eah objet of the grid we use several data strutures:for eah vertex j� j = (xj; yj) oordinates of the vertex j� list Lj of triangles to whih the vertex j belongs; for boundary verties 0 2 Ljfor eah triangle i (see Fig. 1)� indies of three verties j1i ; j2i ; j3i of the triangle i ordered in the ounter-lokwisediretion� indies of three edges k1i ; k2i ; k3i making the triangle i; the edge kJi has end vertiesjJi ; jJ+1i (with yli extension, i.e. j4i = j1i )� median mi = (j1i + j2i + j3i )=3 of the triangle i� the area V Ci of the triangle i� the weights V kJ+1ikJi assoiated with two edges of the triangle (or one vertex) whih sumup to the area V Ci of the triangle iV Ci = 3XJ=1V kJ+1ikJi (21)for triangle out of boundaries we de�ne V 0k = V k0 = 0 for any k; we use the weightsV kJ+1ikJi = V Ci=3for eah edge k (see Fig. 2)� two indies of edge verties j1k ; j2k so that j1k < j2k5
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Figure 1: Triangle i and quantities related to it.� vetor de�ned by the edge k = j2k � j1k� length of the edge Sk = jkj� middle point of the edge lk = (j1k + j2k)=2� two indies of triangles i1k; i2k neighboring the edge k so that when we look at the edgein vertial position with vertex j1k down and j2k up as in Fig. 2 then the triangle i1k ison left and the triangle i2k is on right from the edge; for boundary edges either i1k ori2k is zero; note that fi1k; i2kg = Lj1k \ Lj2k with exeption of inner edge oneting twoboundary verties when the intersetion ontains also zero� two indies of verties j3k ; j4k whih are the third verties of two triangles joining at theedge k, so that j3k is the third vertex of the triangle i1k (i.e. on left) and j4k is the thirdvertex of the triangle i2k (i.e. on right when edge vetor k is pointing up); again forboundary edge one of these indies is zero� four indies of edges kIJk ; I = 1; 2; J = 1; 2 whih are remaining edges of the trianglesiIk; I = 1; 2 where the index I denotes the triangle and the index J = 1 denotes loweredge and J = 2 upper edge of given triangle when the edge vetor k is pointing up asin Fig. 2; again for boundary edge two of these indies are zero� four angles �kIJkk ; I = 1; 2; J = 1; 2 whih are the angles between oriented edges k and�kIJk de�ned by (k;kIJk ) = �jkjjkIJk j os�kIJkk (22)6



note that depending on the orientation of the edges kIJk either �kIJkk = 'kIJkk , i.e. they arethe angles of the neighboring triangles with ' angles shown in Fig. 2, or �kIJkk = ��'kIJkk
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Figure 2: Edge k and quantities related to it.4 DisretizationOur goal is to onstrut the disretization sheme for the generalized Laplae equation problem insuh a way that the disrete operators approximating divergene and gradient will also posses theproperties of the ontinuum operators D and G whih we have derived in the setion 2. Namelywe want to mimi in the disrete ase the Green formula (10) and Gauss theorem (11) stated in theform of inner produts (12). So we need to de�ne the disrete approximation of inner produts ofsalar funtions (7) and of vetor funtions (8) whih we all natural inner produts. For derivingthe adjoint operator (13) we also need to de�ne so alled formal inner produts whih are just aplain sum of produts of values over all the disretization points. For appliations usually loalonservation is important and natural hoie for disretization of salar funtion u is so-alledell-entered disretization (we all it HC, C stands for ells), where we have one value of disretefuntion u in the ell. One an think about this value as integral average of the funtion over theell, for this reason it is assigned to entire ell and not to partiular point in this ell. It suggeststhat in disrete ase foring funtion f also has to be de�ned in ells, as well as range of values ofdisrete analog of divergene is spae HC.We mention that only normal omponent of ux is ontinous on interfae between di�erentmaterials. This suggests to use these normal omponents to desribe ux vetor in disrete ase7



and also to de�ne them on the faes of the ells. That is, on the eah fae of the ell we will haveonly one unknown whih meaning will be dot produt of ux with normal to this fae. This isnot only onsistent from physial point of view, but also e�etively enfores ontinuity of normalomponent of uxes beause it is the same on both sides of interfae. We will all suh spae ofdisrete vetor funtions as HL. For this disretization of vetor funtions onstrution of disretedivergene is trivial. In fat, if we will hoose volume of the ell as V in formula (9) then inright-hand side we will have summation of produts of areas of faes and our normal omponentsof vetors.Suh de�nition of disrete divergene (whih we will denote by D) also perfetly �ts moregeneral onsideration of our disrete vetor analysis [1℄. By onstrution D : HL! HC : Beausedisrete ux operator (we will all it G) will be adjoint to divergene we have G : HC ! HL : Nowwhen disrete analogs of divergene and ux operator are onstruted they are used to onstrutour �nite di�erene method for Laplae equation in form (4) by substituting di�erential operatorsby disrete ones.4.1 Salar and vetor funtions on triangular gridOf ourse we have to start with disretization of funtions on the unstrutured triangular grid.Salar funtion u is on the triangular grid represented by its value Ui inside the triangle i forall triangles of the grid. Further it is represented on the boundaries, for eah boundary edgek; k = 1; � � � ; Neb it is represened by the value Uk in the middle of the edge.Vetor funtion w is represented at the middle point of the edge k by the projetion Wk of thevetor w on the normal to the edge (see Fig. 3). The diretion of the normal to the edge is givenby the left hand rule, i.e. when edge k points up, vertex j1k is down and j2k is up (j1k < j2k), thenthe normal is pointing right (see Fig. 2).The di�usion oeÆient matrix K is assumed to be a multiple of unit matrix K = kI and thedi�usion oeÆient ki is onstant inside eah triangle i. The funtion f on the right hand sideof the Laplae equation (1) is disretized inside eah triangle by fi. The funtion  on the righthand side of the boundary onditions (2), (3) is disretized at the enter of boundary edges by k. The outer normal vetor n is needed also in the enters of boundary edges and is de�ned bythe salar nk = �1 aording to the diretion of the normal to the edge de�ned above. When theedge points up, i.e. vertex j1k is down and j2k is up (j1k < j2k as on Fig. 2) then if the inner triangleis on the left (i.e. i2k = 0) then nk = 1 and if the inner triangle is on the right (i.e. i1k = 0) thennk = �1. In both ases the other triangle does not exist (i.e. iJk = 0) and that area is out of ouromputational region.4.2 Natural inner produtsNatural disrete inner produts are approximation to the ontinuum inner produts (7), (8). Onthe spae HC of salar grid funtions U disretized inside the triangles by Ui and in the enter ofboundary edges by Uk we approximate the ontinuum inner produt (7) by(U; V )HC = NtXi=1Ui Vi V Ci + NebXk=1Uk Vk Sk: (23)The situation for the spae HL of vetor grid funtions A disretized in the enters of thetriangles edges by the salar omponent Ak orthogonal to the edge is more ompliated. We8
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Figure 3: Vetor funtion w is represented by the projetion of the vetor on the edge normals atenters of the edges.annot approximate the inner produt at the enter of the edge beause we have there only oneomponent of the vetor. We �rst try to approximate the inner produt in one vertex jJi of apartiular triangle i. Note that also other triangles having this vertex will ontribute to the innerprodut. Having one vetor grid funtionW we �rst move its disrete omponentsWkJi andWkJ�1ifrom the entres of the edges kJi and kJ�1i into the vertex jJi as is done at Fig. 4. We do thismovement for both vetor grid funtions A and B for whih we are omputing the inner produt.Now we have both vetors at the same point, vertex jJi and we an express their salar produtat this point. One an derive that this salar produt in terms of omponents orthogonal to theedges is (A;B)jJi = AkJi BkJi + AkJ�1i BkJ�1i + (AkJi BkJ�1i + AkJ�1i BkJi ) os�kJ�1ikJisin2 �kJ�1ikJi (24)whih is the ontribution from the vertex jJi to the inner produt at the triangle i. The approxi-mation of the inner produt (8) at the triangle i is then de�ned as(A;B)i = 1V Ci 3XJ=1(A;B)jJi V kJ�1ikJi (25)where V kJ�1ikJi are the weights (21) in the triangle i assoiated with the vertex jJi . Now we de�nethe natural inner produt on the spae HL of vetor grid funtions as(A;B)HL = NtXi=1(A;B)iV CiKi : (26)9



J-1
ik

k i
J

k i
J

J-1
ikϕ

jJ
i

W
k i

j
i
J-1

l i

W
i
J-1k

W
k i
J

l i

j
i
J+1

WW
i
J-1k

J

J

J-1
W

W
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The formal inner produt on the spae HL of vetor grid funtions A disretized in the entersof the triangles edges by the salar omponent Ak orthogonal to the edge is given by[A;B℄HL = NeXk=1AkBk (30)Again it is usefull to de�ne the operator L onneting natural and formal inner produts onthe spae HL of vetor grid funtions(A;B)HL = [LA;B℄HL: (31)To get the expliit for of the operator L is not so easy as in the previous ase. The formal innerprodut on the right hand side of (31) is by de�nition[LA;B℄HL = NeXk=1(LA)kBk (32)The natural inner produt on the left hand side (31) is by de�nition(A;B)HL = NtXi=1 3XJ=1 AkJi BkJi + AkJ�1i BkJ�1i + (AkJi BkJ�1i + AkJ�1i BkJi ) os�kJ�1ikJiKi sin2 �kJ�1ikJi V kJ�1ikJi : (33)When we hange the summation over all triangles into the summation over all edges we get(A;B)HL = NeXk=1Bk[Ak + Ak11k os�k11kksin2 �k11kk Ki1k V k11kk +Ak + Ak12k os �k12kksin2 �k12kk Ki1k V k11kk + Ak + Ak21k os�k21kksin2 �k21kk Ki2k V k21kk +Ak + Ak22k os �k22kksin2 �k22kk Ki2k V k22kk ℄where for boundary edges either �rst two terms or seond two terms are zero as the weight V 0k iszero outside the region V . Comparing this with (32) we get the expliit form of the operator L(LA)k = 2Xl=1 1Kilk 2Xm=1 Ak + Aklmk os�klmkksin2 �klmkk V klmkk : (34)The operator L is a loal operator at the edge k with the stenil inluding also four other edgesk11k ; k12k ; k21k ; k22k of the two triangles joining at the edge k (see Fig. 2 for edge numbering). Thestenil of the operator L is shown at Fig. 5.4.4 Disrete approximations of ontinuum operatorsIn the support operator method we hoose the prime operator, disretize it and then onstrutthe other derived operator from approximation of integral identities (here from Gauss theorem(11)). Here we hoose as the prime operator the extended divergene operator (6).11



k

Figure 5: The stenil of the operator L on the edge k.When we apply the divergene theorem (Green formula)ZV divwd V = I (w;n)d S (35)to the triangle i we obtain (DW )iV Ci = 3XJ=1WkJi sign(jJ+1i � jJi )SkJi ; (36)where D is the disrete operator appoximating ontinuum operator D. The sign is omming fromthe �xed orientation of normal on the edge (by the left hand rule). From this we an expressoperator D at the triangle i(DW )i = 1V Ci 3XJ=1WkJi SkJi sign(jJ+1i � jJi ): (37)On the boundary edge k we approximate the ontinuum operator D by the disrete operator D(DW )k = �Wknk: (38)The disrete operator D works from the spae HL of vetor grid funtions into the spae HC ofsalar grid funtions.For ontinuum operators (5) and (6) we have shown that G = D� (13), i.e. that the gradientis the adjoint of the extended divergene, and we want this identity to hold also in the disretease with disrete operators and natural inner produts. G will be the diskrete approximation ofthe ontinuum operator G and will be onstruted fromG = D� (39)where the adjoint is ment in the sene of disrete natural inner produts (23) and (26). Thedisrete operator G works from the spae HC of salar grid funtions into the spae HL of vetorgrid funtions.The de�nition of the adjoint operator is(DW; U)HC = (W; D�U)HL (40)12



and an be hanged into formal inner produts (27) and (30) by using previously introduedoperators M (28) and L (31) [DW;MU ℄HC = [W; LD�℄HL (41)Using the formal adjoint operator D
 of the operator D on the left hand side we get[W; D
MU ℄HL = [W; LD�U ℄HL (42)and as this has to be valid for all W and U we see thatLD� = D
M (43)Now we try to derive formal adjoint operator D
. First just from the de�nition of formaladjoint and de�nition of formal salar produt we have[DW;U ℄HC = [W;D
U ℄ = NeXk=1Wk(D
U)k: (44)Now we express [DW;U ℄HC from the expliit form of the operator D (37), (38)[DW;U ℄HC = NtXi=1 3XJ=1WkJi SkJi sign(jJ+1i � jJi ) UiV Ci � NebXk=1WknkUk: (45)We rearrange the summation over all triangles and all boundary edges into the summation overall edges [DW;U ℄HC = NebXk=1Wk 24�Uknk + sign(i1k)Sk Ui1kV Ci1k � sign(i2k)Sk Ui2kV Ci2k 35 (46)+ NeXk=Neb+1WkSk 0� Ui1kV Ci1k � Ui2kV Ci2k1A ; (47)where the sign just distinguishes whih side of the boundary edge is inside our region V and whihis outside. From this we an easily get the expliit form of the formal adjoint operator D
(D
U)k = �Uknk + sign(i1k)Sk Ui1kV Ci1k � sign(i2k)Sk Ui2kV Ci2k (48)for boundary edges ; k = 1; � � � ; Neb(D
U)k = Sk 0� Ui1kV Ci1k � Ui2kV Ci2k1A (49)for internal edges ; k = Neb + 1; � � � ; Newhere the �rst ase is for the boundary edges k = 1; � � � ; Neb and the seond ase is for the internaledges k = Neb + 1; � � � ; Ne.Having the formal adjoint operator D
 we an from (43) write the natural adjoint operator asD� = L�1D
M: (50)We have the expliit form of operators M (29), L (34) and D
 (48) however the expliit formof the operator inverse to L annot be onstruted, thus when we need to apply the operator of13



minus gradient G = D� to a salar grid funtion U from HC to obtain the vetor grid funtionW = GU from HL we have to solve the system of linear equationsLW = D
MU (51)for unknown vetor grid funtionW. The system (51) the system of Nb linear algebrai equationsfor Nb salar omponents Wk of W at the enters of all edges of our triangulation. The matrix ofthis system is given by the expliit form of the operator L (34).4.5 Treating boundary onditionsOn the boundary edges we have to distinguish if there is either Dirihlet or Neumann boundaryondition on eah edge. When Neumann boundary ondition is on the boundary boundary edgek then we already know the value of the ux Wk through this edge and we do not inlude theequation for this ux Wk in the system (51) and in the �nal form of the disrete equation(DW )i = fi (52)for the triangle i whih inludes this boundary edge k (there is only one suh triangle) we movethe known term WkSk=V Ci from (37) with appropriate sign into the right hand side fi.On the other hand for the boundary edge k with Dirihlet boundary ondition we have toinlude the equation for the ux Wk in the system (51) and this equation inludes the given valueUk =  k through formal adjoint on the boundary (48).For numerial solution of the system of linear equations (51) (after exluding from it equationsfor uxes on boundary edges with Neumann boundary onditions) we use Gauss-Seidel iterativemethod. The global disrete operator P = DG is symmetri and positive de�nite and for solvingthe global system (PU)i = fi; i = 1; � � � ; Nt we use the onjugate gradient iterative method.5 Numerial examplesIn this setion we provide several numerial examples whih demonstrate the properties of thedeveloped numerial method. First we evaluate the onvergene rate of our support operatormethod and show that it is exat for linear solutions even with disontinous di�usion oeÆients.Then we show that our method works reasonably well also on rather bad quality triangulationinluding triangles with very small angles and learly is superior to a standard linear �nite elementmethod. In the last part of this setion we present several examples of stationary heat ow throughheat onduting retangle having either areas of heat isulating material or holes. For triangulargrid onstrution we have been using Bank's ode [13℄.5.1 Convergene examples with known solutionAll examples here solve the generalized Laplae equation div k grad u = f on the unit square(x; y) 2 (0; 1)� (0; 1). When not noted otherwise we use di�usion oeÆient k = 1. For a hosenexat solution ue we analytially derive the right hand side f = div k grad ue and after numerialysolving the Laplae equation with this right hand side we an easily get the error of the numerialsolution. 14



The developed support operator method disretization is exat for linear solutions and seondorder [14℄ for others and we verify here this onvergene rate. The asymptoti error Eh estimateon a trianglular grid is given by kEhk = Chq +O(hq+1); (53)where h is the maximal length of edge in the grid, q de�nes the order of the trunation error, theonvergene-rate onstant C is a positive onstant independent of h, and k � k is some norm. Toestimate the order q we evaluate the error on a sequene of re�ned grids. Using the error estimateon two grids with the parameters h and h=2 the order of the trunation error is approximatellyq � log2 kEhk=kEh=2k:In our onvergene study we use the maximum normEmax = kU � phuekmax = maxi=1;���;Nt jUi � (phue)ij; (54)where Ui is the numerial solution of the �nite-di�erene sheme and ue is the exat solution of thegiven problem. Operator ph is the point projetion for salar funtion given by (phue)i = u(mi),where mi is the median of the triangle i, and we take maximum over all triangles.In order to �nd the order of onvergene numerially and to show that the onstant C in (53)does not depend on the parameter h, we have to be sure that while re�ning the grid the ratio ofthe maximum value of the triangle area Vmax to the minimum value Vmin remains onstant [14℄.To ahieve this we use the uniform re�nement whih in one re�nement step puts new vertex intothe enter of eah edge and divides eah triangle into four similar triangles so that the sequene ofgrid parameters h is given by h=2n. Suh re�nement keeps the ratio Vmax=Vmin onstant. Table 1presents values of h, number of triangles Nt, areas Vmax, Vmin and the ratio Vmax=Vmin for partiularsequene of re�ned grids whih we use in the onvergene analysis in this subsetion.h Nt Vmax Vmin Vmax=Vmin0.4 34 0.0472 0.0157 3.00.2 136 0.0118 0.0039 3.00.1 544 0.0029 0.00097 3.00.05 2176 0.0007 0.00024 3.00.025 8704 0.000184 0.000061 3.0Table 1: Grid parameters for used sequene of re�ned grids: maximum edge length h, number oftriangles Nt, maximum and minimum of triangle area Vmax and Vmin and their ratio.5.1.1 Smooth solutionsOur method is exat on onstant and linear solutions whih has been on�rmed numerially onseveral examples like u = 1, u = x and u = x + y. Next we try three nonlinear solutions u = x2,u = x(1 � x)y(1 � y) and u = sin(�x) sin(�y). First we numerialy solve the Laplae equationwith these exat solutions with Dirihlet boundary onditions everywhere. The errors and ordersof onvergene on our sequane of re�ned grids is presented in Table 2. The errors and orders ofonvergene of the same problems, now however with Dirihlet boundary onditions only at theright side of the solution square and with Neumann boundary onditions on the remaining threesides, is shown in Table 3. Both tables on�rm the seond order onvergene rate of our method.15



h u = x2 u = x(1� x)y(1� y) u = sin(�x) sin(�y)Emax q Emax q Emax q0.4 0.0064 1.96 0.0055 1.89 0.087 1.960.2 0.0016 2.0 0.0015 1.93 0.022 1.960.1 0.00042 1.96 0.00039 1.96 0.0057 1.960.05 0.00011 1.96 0.0001 2.0 0.0014 2.00.025 0.000027 0.000025 0.00036Table 2: Maximum error and order of onvergene for nonlinear solutions with Dirihlet boundaryonditions on re�ned grids.h u = x2 u = x(1� x)y(1� y) u = sin(�x) sin(�y)Emax q Emax q Emax q0.4 0.007 1.96 0.0039 1.96 0.143 2.00.2 0.0018 1.93 0.0011 1.96 0.035 1.960.1 0.00047 1.96 0.00028 1.96 0.009 1.960.05 0.00012 1.96 0.000072 1.96 0.0023 2.00.025 0.000031 0.000018 0.00057Table 3: Maximum error and order of onvergene for nonlinear solutions with Neumann andDirihlet boundary onditions on re�ned grids.5.1.2 Disontinuous oeÆient problemHere we present several examples with disontinuous pieewise onstant di�usion oeÆientk = ( k1; 0 < x < 0:5;k2; 0:5 < x < 1:whih have exat solution:Test DC1 { in this problem omming from [15℄, [6℄ the exat solution is a pieewise linear funtionu = 8<: k2x+2k1k20:5(k1+k2+4k1k2 0 < x < 0:5k1x+2k1k2+0:5(k2�k1)0:5(k1+k2)+4k1k2 0:5 < x < 1; :We solve this problem with Dirihlet boundary onditions for partiular values of di�usion oeÆ-ient k1 = 1; k2 = 2. Of ourse the triangulation is done suh a way that the whole disontinuityline x = 0:5 is overed by the edges and no triangle intersets it.Test DC2 { this test is the same as the preeding one with the value p1y being added to thesolution so that the exat solution isu = 8<: k2x+2k1k20:5(k1+k2+4k1k2 + p1y 0 < x < 0:5k1x+2k1k2+0:5(k2�k1)0:5(k1+k2)+4k1k2 + p1y 0:5 < x < 1We solve this problem with Dirihlet boundary onditions for partiular values of di�usion oeÆ-ient k1 = 1; k2 = 10 and parameter p1 = 0:1. 16



Test DC3 { in this problem omming from [16℄, [6℄ the exat solution is a pieewise quadratifuntion u = ( a1 x22 + b1x 0 � x � 0:5a2 x22 + b2x+ 2 0:5 � x � 1where ai = � 1ki ; b1 = 3a2 + a14 k2k1 + k2 ; b2 = k2k1 b1; 2 = ��b2 + a22 � :We solve this problem with Dirihlet boundary onditions for partiular values of di�usion oeÆ-ient k1 = 1; k2 = 2.The onvergene analysis for three examples with a disontinuous oeÆient is presented inTable 4 and on�rms that our method is exat for even for non-smooth pieewise linear solutionsand seond order for non-linear solutions even in ase of disontinuous di�usion oeÆients.h DC1 DC2 DC3Emax Emax Emax q0.4 2:2 � 10�11 8:2 � 10�12 0.011 1.890.2 1:0 � 10�11 2:8 � 10�12 0.0030 1.930.1 5:7 � 10�12 1:3 � 10�12 0.00082 1.960.05 3:1 � 10�12 7:3 � 10�12 0.00021 2.00.025 1:6 � 10�12 3:6 � 10�12 0.000053Table 4: Maximum error and order of onvergene for problems with disontinuous di�usionoeÆient with Dirihlet boundary onditions on re�ned grids.
5.2 Unisotropi triangulationHere we ompare our method with standard linear �nite element method (FEM) [17℄ on unisotropitriangulation inluding triangles with very big angles lose to 2�. It is known that suh triangula-tion auses troubles to FEM and we show that our method deals with this problems muh better.Naturally FEM should not be used with suh a triangulation, on the other hand in some problemssuh triangulation appears and we need a method working well also for suh triangulation (ofbad quality for FEM). An example of a problem where suh triangulation might easily appear isLagrangian hydrodynamis whih moves grid ells and verties with the uid ow and where weneed to treat paraboli part of the model equation.In this example we use the problem with exat solution u = x2=a2 with parameter a on theretangular region (x; y) 2 (�a; a) � (0; 1). The grids for parameters a = 1 and a = 5 are shownon Fig. 6. For the values of the parameter a other than a = 1 we use the same grid, only westreth x oordinates of all objets by multiplying them by a so that the grid overs the region(�a; a)�(0; 1). For a >> 1 all the tringles in the triangulation beome very long in the x diretionand thus have very small angles.For di�erent values of the parameter a we solve the Laplae equation div grad u = 2=a2 withDirihlet boundary onditions u = 1 on the left and right boundaries x = �a and zero Neumannboundary onditions (gradu;n) = 0 on the lower and upper boundaries y = 0; y = 1. Thisproblem has a unique solution u = x2=a2. In Table 5 we ompare results of our method withresults of standard FEM with linear elements as implemented in [13℄. The table presents for17
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(b)Figure 6: Grid used for strething the triangulation; (a) for parameter a = 1, i.e. x 2 (�1; 1), (b)for parameter a = 5, i.e. x 2 (�5; 5)several values of the parameter a the error in maximum norm of the omputed solution (in allases solution u 2 (0; 1)) and the minimal value of the omputed solution u.SOM FEMa Emax min(u) Emax min(u)1 0.0037 -0.0028 0.0018 -0.000810 0.0019 -0.0015 0.05 0.0225 0.0019 -0.0015 0.18 0.1550 0.0019 -0.0015 0.45 0.45100 0.0019 -0.0015 0.77 0.771000 0.0069 -0.0043 0.997 0.99710000 0.2016 -0.2012 1.0 1.0Table 5: Maximum error and minimum of numerial solution on unisotropi triangulation strethedby a by our SOM (support operator method) and linear FEM.From Table 5 we an see the di�erene between FEM and our method in this ase. As is wellknown FEM is not working well for very long triangles with very small angles whih appear inthe triangulation in the ase of big parameter a. The maximum error for FEM is already 5%for a = 10 and 18% for a = 25 getting muh worse, while our method is giving the same errorsup to a = 102 and still for a = 103 its error is less than 1%. If we inrease a further also ourmethod starts to give larger errors as 20% for a = 104. Apparently for our method the problemsare starting for muh higher a than for FEM, we are getting similar error for a = 104 as FEM isgetting for a = 25.The origin of the FEM troubles lies in fat that for big a there are no edges in the triangulationwhih are parallel to the axis y. For suh a grid and the exat solution with urvature in the sdiretion the linear interpolation on the edges (whih for big a are almost parallel to the axis x)introdues zig-zagging in the y diretion whih is eating too muh of the overall energy and the18



parabola in the x diretion is not resolved well. Basially for high a the minimum u = 0 of theparabola u = x2=a2 is getting higher until for biggest a > 103 the FEM solution is very lose toonstant solution u = 1.Table 6 presents onvergene results of our method for these problems for di�erent values of a.The grid has been re�ned by the same way as in the previous setion by introduing new vertiesin the middle of eah edge, so that eah triangle is divided into four smaller similar triangles.We see that our method has reasonable onvergene even on very strethed grids with very smallangles up to a = 100. For a = 1000 the onvergene is lost.a h = 0:18 h = 0:09 h = 0:045Emax q Emax q Emax q1 0.00372 1.92 0.00097 1.96 0.00025 ...10 0.00193 1.8 0.00057 1.8 0.00016 ...25 0.00193 1.8 0.00057 1.8 0.00016 ...50 0.00193 1.8 0.00057 1.8 0.00016 ...100 0.00193 1.8 0.00055 1.7 0.00017 ...1000 0.069 0.5 0.0048 ... 0.099 ...Table 6: Errors and onvergene rate for triangulation with triangles with small angles by oursupport operators method for di�erent values of a.
5.3 Examples of heat owIn this setion we present �ve examples of solving the Laplae equation (1)-(3) with zero souref = 0 on a retangle with regions of di�erent di�usion oeÆients k or retangle with holes.These examples present stationary heat ow through the retangle and di�usion oeÆient is theoeÆient of heat ondutivity. All these examples have Dirihlet boundary onditions on the leftu = 1 and the right u = 0 and zero Neumann boundary onditions on the bottom and top. Thismeans that we �x the temperature on the left and right and assume no heat ow through the topand bottom boundary of the retangle.For �rst three examples most of the retangle is the region with high ondutivity k = 1and inside the retangle there are some regions of heat insulator material with very low heatondutivity k = 10�6. The problems di�er in the geometry of insulator material regions:Cirle { problem is solved on the retangle (x; y) 2 (�2; 2)� (�2; 2) and the insulator region isthe irle with enter in the origin and radius one, see Fig. 7.Fingers { problem is solved on the retangle (x; y) 2 (0; 1)� (0; 1) and there are two retangularinsulator areas (0:2; 0:3)� (0; 0:8) and (0:6; 0:7)� (0:3; 1), �ngers from bottom and top, see Fig.8.Streak { problem is solved on the retangle (x; y) 2 (0; 1)� (0; 1) and insulator area is the urvedstreak between two ars with enter at (0:1;�0:4) and radiuses 1:1 and 1:2, see Fig. 9.Next two problems use only one heat ondutivity k = 1 however the retangle has severalholes without any material, so the solution domain is non-onvex. On the boundaries of the holeswe use zero Neumann boundary onditions. These two examples di�er in the position of threeirular holes:Three holes arranged vertially { problem is solved on the retangle (x; y) 2 (�1; 1)� (�1; 1)and insulator areas are three vertially arranged irles with the same radius 1=6 and entres at19



(0; 0); (0;�2=3), see Fig. 10.Three holes arranged randomly { problem is solved on the retangle (x; y) 2 (�1; 1)� (�1; 1)and insulator areas are three randomly arranged irles with the same radius 1=6 and entres at(0:6;�0:1); (�0:5; 0:7); (0:4;�0:5), see Fig. 11.For eah problem we present numerial results in four �gures:(a) triangular grid with material property, heat ondutivity oeÆient plotted by olor; whitehere means no material presented in examples with holes(b) olormap of temperature with triangular grid() arrow plot of heat ux; one an notie here the diretions of stationary heat ux alog internalboundaries(d) temperature ontours (isolines of onstant temperature) with triangular grid
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