TUTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

PFSLib — A File System
for Parallel Programming
Environments

Stefan Lamberts, Thomas Ludwig, Christian Roder,
Arndt Bode

TUM-19619
SFB-Bericht Nr.342/10/96 A
Mai 1996

TUM-INFO-05-96-119-100/1.—F]I

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1996 SFB 342

Anforderungen an:

Druck:

Methoden und Werkzeuge fiir
die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SFB 342

Institut fiir Informatik
Technische Universitdt Miinchen
D-80290 Miinchen, Germany

Fakultat fiir Informatik der
Technischen Universitdt Miinchen

TUTI

Technische Universitat Minchen

Institut fur Informatik

Lehrstuhl fir Rechnertechnik und Rechnerorganisation
D-80290 Minchen

PES Lity

A File System for Parallel Programming
Environments

Stefan Lamberts ~ Thomas Ludwig Christian Roder
Arndt Bode

pfslib@informatik.tu-muenchen.de
Tel: +49-89-289-22382
Fax: +49-89-289-28232

May 9, 1996

Abstract

In 1994, LRR-TUM obtained aresearch grant from the Intel Foundation for design and im-
plementation of PFSLib, aparalel file system library which provides source code compatibility
with Intel’s parald file system PFS. Its primary purpose is to work together with NXLib as
an emulator of a Paragon supercomputer. Furthermore, PFSLib can be used as a stand-alone
software product together with other parallel programming environmentslikee.g. PVM. Finally,
PFSLib serves as aresearch platform to investigate issues of parallel file systemslike e.g. file
distribution or design of the user interface.

This document will at first give an introduction into the issues connected with parallel file
sytems. The second chapter will give an extended overview over the state of the art in the field
of parallel 1/0. The main aspect of this investigation will concentrate on the user interfaces
of current parallel file systems. Chapter 3 describes in detail concepts of the PFSLib’s design
and implementation. A presentation of essential data structures and the flow of control and
information throughout PFSLib callswill be given. Finally, chapter 4 putsthe project of PFSLib
in relation to current research in the group at LRR-TUM and shows issues for future research.

This report al'so comprises the PFSLib manual giving details on each PFSLib call.

PFSLib may be distributed freely under the GNU license agreements and can be obtained at
ftp://ftpbode.informatik.tu-muenchen.de/PFSlib/.

Contents

1 Motivation

2 Stateof the Art
Bridge Multiprocessor FileSystem Lo L
CaTech Concurrent /O System
Peter Crockett's Work .
nCubeParallel I/Osystem
IBM Vesta
251 SPMD LibraryforVesta.
IBM PIOFS

21
2.2
2.3
24
25

2.6
2.7
2.8
29

MPI-1O

ExtensibLe File System
2.10 David Kotz’'sWork . . .
2.11 Concluson

3 Conceptsof PFSLib
3.1 History and StartingPoint
Inte’sParallel FileSystemPFS

3.2

3.3

3.11
Design

321 DesignObjectives

322

Design Aspects

Implementation
ClientServer Model
Basic Communication Mechanism.
Courseof Operations
PFSLib Server DataStructures
PFSLib Client DataStructures
ThreePhase /O Operations

331
3.3.2
3.3.3
3.34
3.35
3.3.6
3.3.7

Synchronization

4 Future Work

18
18
18
22
22
23
24
24
26
27
28
31
33
37

39

CONTENTS

Acknowledgements 41

Bibliography 42

Manual
pfsd (LPFSLib) 1
pfsdexit (1PFSLib) 2
pfsdreset (LPFSLib) 3
pfsdstat (1PFSLib) 4
close() BPFSLib) 5
cread() (BPFSLib) 6
cwrite() (3PFSLib) 9
gopen() (B3PFSLIb) 12
iodone() (B3PFSLib) 14
iomode() (3PFSLib) 15
iowait() (BPFSLib) 16
iread() (BPFSLib) 17
iseof() (3PFSLib) 19
iwrite() (3PFSLib) 20
Iseek() (B3PFSLib) 22
Isize() (BPFSLib) 24
open() (BPFSLib) 26
pfdibiinit() (3PFSLib) 29
pfdib_perror() (3PFSLib) 31
setiomode() (3PFSLib) 32
iod (BPFSLIb) 34

List of Figures

21 Bridgefilestructure 6
2.2 Crockett’'ssequential accesspatterns. Lo 8
23 NCUBEmMappIiNgs 8
24 nCUBE bit permutationfunction. 9
25 Vestapartitions. L 10
2.6 PIOUSsegmentationandviews 13
27 MPI-IOtilingandoffsets 14
2.8 Orthogonality of MPI-IO accessfunctions 14
29 ELFSMRS 16
3.1 1/O node and message-passing network of Intel’sParagon 19
32 PFSLibClientServerModdl 25
3.3 Courseofanoperation 27
34 Filetableentry of PFSLibserver 29
3.5 Filetableentry of PFSLibclients 32
3.6 1/Oidentifier tableof PFSLibclients. 32
3.7 ThreePhasel/Ooperation 34
3.8 Process Graph of two AsynchronousOperations. 36
3.9 Process Graph of File Accessinl/OModeM_SYNC 37
3.10 Synchronizationof clients Lo 37

LIST OF FIGURES

1 Motivation

During the last decade the computational power of paralel computers increased dramatically.
Their performance alows to search for solutions of problems which were unsolvable in the
past. The main application field of these architecturesis still the area of intensive mathematical
calculations, usually called number crunching.

With the technical progress we now find main memory sizes of many dozens of megabyte
per computing node summing up to severa gigabyte for the machine as a whole. Typical
applications like problem solvers for computational fluid dynamics use only a small part of
the available main memory for the program code itself and try to fill the remainder with data.
Thus, the problem arises of how to handle huge amounts of result data. I1n addition, applications
exist which need an enormous amount of input data but do not generate much output data. E.g.
experiments at the research center CERN produce severa terrabyte of recorded data which will
later be processed with a parallel computer system.

For several years, manufacturers of paralel systems try to meet the users requirements
by developing and providing special paralle file systems. They are designed to overcome the
former bottleneck of having disks only at the front-end computer of the parallel system which
served as an entry point for all parallel programs. Most paralléel file systems do not only provide
distributed disks attached to the nodes of the parallel system; often they add dedicated nodes
which are specialized and restricted to handling I/O-requests. By means of such a parallél file
system it is possible to achieve a high bandwidth for disk 1/0. Thisis a prerequisite to writing
efficient parallel programs which read and write high amounts of data.

However, with parald file systems files exist mainly in a distributed version, e.g. being
divided into stripes located on different physical disks. The problems of how to archive or copy
these files are still under investigation. Much research is currently devoted to that problem
field and aso to the question, which user interface might be appropriate to efficiently express
a desired functionality of the I/0 system. The main stream of these investigations deals with
paralel computers, only few activities concentrate on clusters and networks of workstations
(COWSs, NOWSs). In addition, the latter activities are driven mainly by universities. They are
more research oriented and result in software prototypes released as public domain packages.

In fact, workstation environments exhibit two characteristics which strengthen the necessity
of such investigations. First, these environments become more and more important during
development phases and even for production phases of parallel software. Thus, paralle file
systemsare desirable. Second, these systems are often well fitted from the architectural point of
view: in contrast to parallel computers many nodes of aworkstation environment have already
alocal disk. Therefore, algorithmsfor writing data to parts of afile assigned to alocal disk can

1

1 MOTIVATION

easily be studied and improved. The PFSLib project which will be presented in thisreport takes
into consideration both aspects. Its goal is to provide the user with an emulation of the Intel
Paragon supercomputer parallel file system (PFS) and to provide a test-bed for studying access
and distribution algorithms as well as user interface characteristics.

The question arises for which purposes the user would like to have a parallel file system.
A partial answer is given by e.g. a study conducted by the Argonne National Laboratory in
December 1993[19]. Themaost obvious!/O situationistheinput of dataneeded for computation.
In that case we often find the access scheme that all nodes read the same input file either
completely or partially depending on the data set they have to compute. During the program run
there might be aneed for intermediate files to store data which can not be kept in main memory.
Aslong asdataisexclusively written and read by the same process thereis no need for aparallel
file system. As soon as accessing these files is also used for information passing between
processes we can profit from the single file image a parallel file system provides. Processes on
different nodes can now easily read data which was written from other processes before (e.g.
during a former iteration of a numerical program). Finaly, we would like to write result data
efficiently to disk. All processes write their data locally but the sum of all these pieces has to
be accessed like asingle file. We can see that even with these fundamental situations we need
severa different access modes for reading and writing to files of a parallel file system.

In addition to above listed categories we can identify further situations where a parallel file
system appears to be advantageous.

e Debugging

Unfortunately, debugging of parallel processesis still very much based on adding pr i nt
statements to the source code. We compare two different output protocols by e.g. using
the di f f command and try to find irregularities in the program run. When debugging
programs on a large number of nodes it will dramatically slow down the program to be
debugged if al control data is written to a single disk. Therefore, a paralld file system
offering asinglefileimageis quite helpful. Of course, we hope to have better debugging
toolsin the future, reducing the usage of pr i nt statementsto a minimum.

e Tracing

Many tool environments (e.g. with off-line debuggers) are based on tracing concepts.
Run-time data is written to a file and accessed after program completion for analysis
purposes. There is no need to write locally arising trace data to a single remote disk;
however, it would ease things up if all individual trace files could be accessed as asingle
one.

e Checkpointing

Long running programs might want to integrate principles of fault tolerance. Restarting
of applications is usually done by using checkpoint information, where the checkpoints
arewrittenin regular intervals(This can either betriggered by the user or by the operating
systemitself). Checkpointsreflect the current state of the program execution. The number
of processes after restart might vary from the number before system crash. Therefore,

fileswill bewritten and read by avarying number of processes. Again, asinglefileimage
will increase applicability and efficiency of fault tolerance mechanisms.

We can summarize that the most common situations where we would like to have a parallel
file system belong to the following two categories:

e Data appears on each individual node and is written to alocal disk. The organizational
structureisaglobal file such that all segmentson al disks can be accessed as onefile (e.g.
for data post-processing).

e Dataislocated in onefile and hasto be accessed by all nodes. Thefile might be distributed
over the local disks such that only local disk access is performed by the nodes (e.g. input
of data to a computation, data base applications).

Asthese categories can essentially befound in any parallel program aparallel programming
environment must take these necessities into consideration and provide efficient means for
parale 1/0.

In 1993 the parallel processing group at LRR-TUM designed and implemented an emulator
for the Intel Paragon supercomputer. Within the limited effort of that project we focused on the
programming library asit is defined by Intel’s NX (node executive) interface. This covered all
aspects necessary for process management, message passing, etc. (However, parallel filel/Ois
handled within Intel’s PFS interface). The Paragon supercomputer emulator NXLib is a stand-
alone software product which alows to run Paragon programs on a cluster of workstations.
Heterogeneity is not yet supported but the library runs in homogeneous environments on a
large set of different workstation architectures. Users report to use NXLib mainly for off-line
development of Paragon programs but aso for production runs of their parallel code.

Very quickly the request appeared to have a paralld file system in conjunction with NXLib
which is compatible to Intel’s PFS (parallel file system) interface. In afollow-up project we
designed and implemented PFSLib which together with NXLib provides ahigh degree of source
code compatibility to the Paragon. Programs using the NX and PFS interface only have to be
recompiled for the workstation architecture and then runin parallel ontop of NXLib and PFSLib.

In addition of being afile system emulator, PFSLib serves for several other purposes:

e First, PFSLib is independent of the message passing interface defined by NX. Thus,
PFSLib can be used in conjunction with any available cluster programming environment
suchas PVM, P4, MPI, and others. An additional initialization call, not existing with the
PFS interface, prepares PFSLib to work together with other environments. However, as
the semantics of the callsis fixed, not all features of other programming libraries can be
applied to PFSLib. E.g. with PVM we are restricted to a constant number of processes
participating in file access operations.

e Second, we will use PFSLib for research in the field of parale I/O. Three types of
investigationswill be conducted:

1 MOTIVATION

— What user interface is desirable? Which of the available functionality is fundamen-
tal? Which is superfluous or perhaps missing? What application specific access
modes and access functionality the user would like to see? (E.g. special matrix file
operations).

— How can the performance be improved? Wewill investigate strategiesof file striping
and and parallelization of server processes to increase locality of file access.

— How can we combine performance and user interface issues? The user should be
given accessto striping strategies either dynamically before opening filesor statically
before program compilation.

PFSLib is an integral part of THE TOOL-SET project. We will use it as an enhancement of
PVM for parallel programming. THE TooL-SET will provide interactive and automatic tools for
development and maintenance of parallel programs using PVM as a message passing library
and PFSLib asaparalld file system library (for details please refer to [28]).

The remainder of the document is structured as follows: Chapter 2 gives an extended
overview over the state of the art inthefield of parallel I/0O. The main aspect of thisinvestigation
will concentrate on the user interfaces of current parallel file systems. Chapter 3 describes in
detail concepts of the PFSLib’'s design and implementation. A presentation of essential data
structuresand theflow of control and information throughout PFSLib callswill begiven. Finally,
chapter 4 puts the project of PFSLib in relation to current research in the group at LRR-TUM
and shows issues for future research. This report also comprises the PFSLib manual giving
details on each PFSLib call.

2 Stateof the Art

Currently, many researchers work in the field of parallel 1/0. There are aready some com-
mercially available parallel file systems like Intel’s CFS and PFS, IBM’s PIOFS, and nCube’s
parale file system for the nCube 2.

Parallel file systems address manly two issues. Firstly, the access to disks is parallelized
in order to reduce access latency and to increase data transfer bandwidth. Thisis usually done
by distributing a file onto a set of disks using distribution strategies like striping. To achieve
scalability the disks are connected to a set of 1/0O-nodes, which include CPU and memory but
usually do not run any application program. Secondly, parallel file systems provide a special
user interface to facilitate file 1/0O for parallel applications.

In thischapter we will give an overview on existing parallel file systemsand their interfaces.
We will not describe the approaches of disk access paralelization and hardware aspects like
I/O node architectures and special disk subsystems like RAIDs. Since PFSLib emphasizes on
the user interface of Intel’s parallel file system PFS, we will give an overview on existing and
proposed interfaces for parale file I/O for parallel applications. We will not value or classify
the interfaces in this report but merely describe them and show their variety.

2.1 Bridge Multiprocessor File System

Dibble et al. implemented the Bridge Multiprocessor File System on a BBN Butterfly multi-
processor [14, 16, 15]. Here, afileis atwo-dimensional array of blocksin row major order as
shown in figure 2.1. Each column is stored in a separate storage device attached to a separate
processor and managed by a local file system. In order to access the distributed parts stored
in local file systems as one file, Bridge has three functional layers. The device driver layer
manages local disk access. The loca file system layer manages files and file meta data locally
on every processor. Finally the central Bridge server offers the interface for the user programs.
The Bridge server interface provides the following three different access modes.

e An ordinary sequentia file system access with open, read and wri t e calls follows
standard Unix semantics.

e An access mode for reading and writing of multiple blocks of afile in parallel can be
used to transfer data records from or to processes of a parallel application. A parallel
open operations groups severa processes together. The first process to open the file
becomesthe job controller. Every timethe job controller issuesaread or write operation,

5

2 STATE OF THE ART

Local File Systems
.1 2 3 4 5 6 7

N M N
[A

Figure 2.1: Bridge file structure

datais transferred to or from all processes. Hence, every 1/O operation synchronizes all
participating processes.

e Finaly, it is possible to access the Bridge server directly and access the file in a user
defined manner using information about the number of local file systems and block size.
Using this possibility, the user can implement many different access modes tailored for
an application. Since the datalayout on disksis very similar to the Vestafile system, this
also enables an implementation of the Vesta access modes (see section 2.5).

2.2 CalTech Concurrent |/0O System

At the California Institute of Technology Witkowski et al. designed a Concurrent 1/0O (CIO)
system for the Hypercube Multiprocessor build at the sameinstitute[37]. It offersthe possibility
to set up different hardware configurations depending on the needs of the application. The
architecture consists of a collection of clusters, each of which has hypercube topology. The
clusters are connected in away which suits best the requirements of the application. If acluster
is afile system cluster, each of the nodes is equipped with a CPU, small local memory, and a
VME buswhich is used to connect disks and additional memory.
Three different file access modes are available in the CIO system.

Single mode offers broadcast/reduce semantics. Thefirst process opening the file becomes the
owner of thefile. During the open call a set of participantsisinitiated which contains all
nodes accessing thefile. All participants haveto call the same operation beforeit actually
will be performed. In case of aread operation the data is read once by the owner of the
file and broadcasted to all processes. Only the write operation of the owner of thefile has
aeffect. Write operations of all other processes are simply discarded.

Multi mode offers ashared file pointer for all processes. In thismode atoken isused to specify
the current owner of thefile. Only the owner isallowed accessto thefile. The strategy for
forwarding the token is user definable. By default the token is forwarded to the compute
node with the next number in a round-robin manner. Since the forwarding isinitiated by
the current owner this mode is very restrictive. If processes want to access the file in an
arbitrary order, the programmer has to take care for correct token handling.

2.3 PETER CROCKETT S WORK

Independent mode supplies every process with its own file pointer. There is no coordination
of access if more than one process accesses the same file. This mode offers Unix-like
semantics.

2.3 Peter Crockett’s Work

Crockett proposed another conceptsfor parallel 1/0[9]. In order to distinguish between parallel
files and standard sequentia files, parallel file have an internal view in addition to a global
view. In the global view, the file appears as a standard sequential file. The internal view has
additional structure which can be used by parallel programsto operate on the file. Additionally,
he distinguishes between standard parallel files and specialized parallel files. The first outlive
the parallel application which uses a file. The files may later be used by another parallel or
sequential application. Hence, the files must have a meaningful global view. The latter are used
only by one parallel application and do not need to have a global view.

In order to specify access modes to the file a few terms need to be defined. A fileisa
collection of logically related dataitems. Files contain one or more data partitions called blocks.
Blocks are logical groupings of contiguous data rather than physical partitions on hardware
devices. Each block is composed of one ore more records. A record is the smallest unit of
access. Each record contains one or more dataitems. Each record is assumed to be of the same
size.

Crockett distinguishes between sequential parallel files and direct access parallel files. A
sequential parallel file looks like a standard sequentia file in the globa view. The internal
organization might differ. There are four different access patterns for sequential parallel files as
shown in figure 2.2.

Sequential: The file is accessed in sequential order by a single process. This mode does is
identical to standard sequential files.

Partitioned sequential: Thefileispartitioned into contiguousblocks per process. Each process
performsits own 1/O operations within its assigned block.

Interleaved sequential: Thefileis partitioned into non-contiguous blocks with constant stride.
Each process accesses its part of the file independently.

Self-scheduled sequential: Thefileis processed sequentially with each process performing its
own 1/O operations. Each access is guaranteed to access the next record in thefile.

With direct access parallel files every process has direct access to the parallel file. Thefile
does not have an inherent sequential structure and a process may access any record in thefilein
any way. There are the two following access pattern for direct access files:

Global direct access: Any process may access any block or record in the file in any order.
References may be random or follow some predictable pattern.

2 STATE OF THE ART

P1 P2
Pl 2 =
P3 P1
P1 P2 = =
P2 P2
s P3 PL
Sequential Partitioned Interleaved Self-scheduled

Figure 2.2: Crockett’s sequential access patterns

Partitioned direct access. Thefileis partitioned into blocks which are assigned to processes.
A process may access records in their blocks randomly.

2.4 nCube Parallel I/0 system

In order to improve the 1/O capabilities of the system software nCube developed a parallel
I/0 system and interface for applications running on their hypercube computer [12, 13, 10,
11]. It offers the possibility to map partitions of a file which represents a two-dimensional
matrix to different processing elements of an application. It supports four different mappings,
which are ROW, COLUMN, BLOCK, and SCATTER, as shown in figure 2.3.

COLUMN ROW BLOCK SCATTER
DX DX < DX DX
|
DY DY
t DY ¢
T W=z TW=2'
DX=2% Dy=2% TW=2" w=2" Towe2

Figure 2.3: nCUBE mappings

The mapping of afileis specified by the type of the mapping and by one to four parameters
(depending on the type). DX specifies the width or horizontal dimension of a data set. 1.e. in
COLUMN mapping the width of one column; in ROW mapping the width of arow; in BLOCK
and SCATTER mapping the width of one block. DY specifies the height or vertical dimension
of adataset. I.e. in ROW mapping the height of one row; in BLOCK and SCATTER mapping
the height of one block. TV specifies the number of blocks aong the template in the horizontal
dimension, i.e. the number of blocks in one template. 1V specifies the number of blocks along
the whole data set. Figure 2.3 shows the parameters and their interpretation.

8

2.5 |BM VESTA

Since the byte stream of the file is interpreted as an array which is linearized in row major
order, the width of arow Dim, must be known to distribute the data to different processing
elements. For COLUMN mappingsit dependson thenumber of processing el ements P accessing
thefileandis Dim, = P x DX. Itis Dim, = DX for ROW mappings, Dim, = DX x TW
for BLOCK mappings, and Dim, = DX x TW x W for SCATTER mappings.

The mapping uses a bit permutation function which assigns bytes of a byte stream to
processing elements as shown in figure 2.4. The input argument for the function is the position
of the byte in the stream in binary representation. The output of the function is the number of
the processing element the byte is mapped to and the position of the element in the buffer in
binary representation. Due to the nature of bit permutation the parameters DX, DY, T'W, and
W must be a power of two. In figure 2.4 dx, dy, tw, w, and p represent the number of bits
significant for the corresponding parameter. Hence, DX = 2% and so on?.

MSB - MSB

5 ' 5o

= p—twt‘x Ctw =5
. B - - o
a .S dy} TS~ jdy 8? 5
o — o
£ < wi T ™} dx =

5 t-%-t LSB ’ S

B twi T :tp—tw' 3}

S - — pPE O =

dx} T tw
S Lsg ™ R 52

Figure 2.4: nCUBE bit permutation function

When amapping function is used to assign a certain partition of amatrix to every processing
element, each of the processing elements has an independent local file pointer. In addition, the
nCube 1/0O system offers access to afile with acommon file pointer for al processing elements.

Themajor drawback of nCube’ smapping functionsistheir dependency onthebit permutation
function. Though it offers low overhead for the mapping of partitions of the file to processing
elements the parameters are limited since they have to be a power of two. Matrices having a
size which does not match this partitioning scheme will be distributed poorly.

2.5 |IBM Vesta

At the T.J. Watson Research Center IBM devel oped the Vesta file system for the Vulcan archi-
tecture[4, 3, 2, 17, 18, 25, 24].

A Vestafileisatwo-dimensiona array of dataunits, called basic striping unit, or BSU. The
horizontal dimension of this array is the number of cells® in the file. The size of each BSU
and the number of cells are known as file structure parameters. They are given when thefileis
initially created and do not change throughout the lifetime of the file. Cells can be thought of

1Since the nCube system is a hypercube P is always a power of two.
2In earlier papers cells are called physical partitions

2 STATE OF THE ART

as virtual 1/0 nodes or containers for data. The vertical dimension represents data in the cells
and is unbounded in principle. Each cell isalways contained in asingle 1/0 node. The number
of cells specifies the degree of explicit parallelism possible when accessing thefile. If there are
less 1/0 nodes than cells the cells are distributed in a round-robin manner to the I/O nodes. In
this case the degree of explicit parallelismis limited by the number of 1/0O nodes.

The file can be partitioned into subfiles or logical partitions, which are sub-arrays of the
two-dimensional Vesta file array. The type of the subfile is specified with the open() call. It
ispossibleto access afile viadifferent logical partitions simultaneously with separate open()
cals. Thelogical partitions is specified by five parameters, the first four of which specify the
partition scheme and the fifth defines which partition will be accessed.

To understand the partition schemes afile has to be seen as atwo—dimensional datastructure,
where the horizontal dimension represents the cells and the vertical dimension represents the
BSUs within a cell. The subfiles of a Vesta file is specified by the vertica and horizontal
interleave, V; and H;, and the vertical and horizontal group size, V,; and H,,,, which are shown
in figure 2.5. V,, is the number of contiguous BSU’s in one cell belonging to a subfile. H
is the number of contiguous cells belonging to a subfile. H; specifies the number of subfiles
interleaving in horizontal direction. V; specifies the number of subfiles interleaving in vertical
direction.

physical partitions or cells
0123456789101]
o][3][s] 9][12] 15 !
7 L EE
e [S S S [y S
S| L
inm(m mimlm)
0| [18][21][24 27][30]|33]
7| [29][2]|] 28] a1 34|
| 20123 26| 129)132(35 BSU
v :;s SRR
~—H logical
gs giC
o L0218 pavtitions

Figure 2.5: Vesta partitions

The number of recordsin alogical partition or subfile advances first within avertical group,
second within a horizontal group, third among horizontal interleaved groups, and fourth among
vertical interleaved groups.

The total number subfiles is H; x V;. They are numbered from O to H; x V; — 1 with
the partition numbers increasing first among horizontal interleaved groups and second among
vertical interleaved groups.

10

2.5 |BM VESTA

This partitioning scheme allows for row, column and block mappings as well as cyclic row
column and block mappings. It islimited by the fixed number of cells of afile. Two matrices
with different horizontal dimension can not be stored in one file favorably.

If afileispartitioned into separate subfiles every process has its own independent file pointer.
Accessto digoint parts of afile are independent and no consistency mechanism is needed.

In addition, files may be opened with an open_shar ed() call. In this case, thereis one
valid file pointer for all processes. If a process accesses afile it requests the current offset and
increments the file pointer by the number of bytesit writes or reads. Thus, other processes may
read and write concurrently. Vesta offers no separate seek call due to possible conflicts with
shared file pointers.

251 SPMD Library for Vesta

Corbett et al. proposed a SPMD library for Vesta [3]. The goa of the library is to speed up
operations by using collective operations and to guarantee independent file access by checking
the logical partitions opened by all processes of the application.

Thislibrary offers the following six different I/O modes.

Mode A: All processes open disoint logical partitions with the same view. The partitions are
specified with the scheme described above. File access it completely independent.

Mode B: Processes share access to logical partitions with independent offsets. Access to the
fileisindependent and uncoordinated. The user hasto take care for dataconsistency. This
mode is most appropriate for independent read sharing.

Mode C: Processes share access to logical partitions with shared offsets. Accessto thefileis
independent. Read and write operations will result in reading and writing of datain the
order the calls are issued.

Mode D: Processes share access to logical partitions. Access to the file synchronizes the
processes. All processes do the same operation. For read operations this results in a
single read followed by a broadcast. Write operations result in writing data of only one
process and discarding the others.

Mode E: Processes share access to logica partitions. Access to the file synchronizes the
processes. The operations are independent and in order of the process ids with the same
sizefor all operations.

Mode F: Processes share access to logical partitions. Access to the file synchronizes the
processes. The operations are independent and in order of the process ids with different
sizes for the operations.

11

2 STATE OF THE ART

2.6 |BM PIOFS

IBM implemented a parallel file system called PIOFS for the SP/2 parallel computer based on
Vesta [8]. Partitioning and the concept of local and shared file pointers are identical to Vesta.
Anvnode layer and someinternal changes were necessary to make Vesta compatibleto the AIX
kernel running on the SP/2. In addition, PIOFS comprises a library for SPMD like Programs
with the following modes.

Private: Each task in the calling group gets access to a disjoint subfile (logical partition), and
each task has its own file pointer. Subsequent accesses to the subfile are completely
asynchronous.

Coordinated: Assignment to subfiles is as in mode private. Accesses to subfiles are co-
ordinated, which means that synchronization of all tasks will be enforced before any
subsequent access to the subfile. The intention of this mode is to optimize performance
of the accesses by minimizing disk seeks.

Shared: All tasks within a group access the same subfile and share the same file pointer. All
subsequent accesses are made individually. Each access automatically updates the file
pointer. Read and write operations will result in reading and writing of datain the order
the calls are issued.

Collective: All tasks access the same subfile and share the file pointer. All accesses to the
file must be one of the following collective I/O-operations. The read_broadcast and
write_reduce calls offer global access to the same data. The read_scatter and write_gather
operations read and write data of the same size to processes according to the order of the
processes within the group accessing thefile.

2.7 PIOUS

Moyer implemented the Parallel Input/OUtput system PIOUS as an extension for PVM on
workstation clusters [30, 31]. In PIOUS afileis striped onto several disks attached to different
workstations. The separate parts of afile are called segmentsas showninfigure 2.6. The number
of segmentsis specified at file creation time and does not change throughout the lifetime of the
file.

PIOUS offers three different views of afile.

Segmented: The segmented structure of a paralel file is exposed. Each process accesses a
segment which is a linear sequence of data bytes viaalocal file pointer. If two or more
processes access the same segment the programmer has to take care for correct behavior.
PIOUS offers a transaction mechanism to guarantee consistency in this case.

Global: A file appears as alinear sequence of data bytes, which interleaves al segments with
a block size specified in the open() call. All processes in a group share a single file

12

28 MPI-IO

o [el2[3]al5]6]7][8ofiol11[12] |

1 lel2[3f4al5]el7l8]9ofiol11[12] |

2 [l2]3]al5]6]7[8ofrol11[12] |

Segments

0000

3 [el2(3]al5]e6]7[8]ofiof1112] |

[Blocksize specified in open()
File layout in INDEPENDENT and GLOBAL view
[1[2]3f1[2]s]afaf3fafafs]4[5]6] |

Figure 2.6: PIOUS segmentation and views

pointer. Datum access and file pointer update are atomic. Read and write operations will
result in reading and writing of datain the order the calls are issued.

Independent: A file appears as alinear sequence of data bytes, which interleaves all segments
with ablock size specifiedintheopen() call. Every processinagroup maintainsalocal
file pointer. Datum access is atomic.

Thefixed segment number limitsthe possibilitiesof independent non-overl appingfile access.
Only afixed number of processes may access independent segments. If a PIOUS file hasto be
accessed by adifferent number of processesthan it has segments, the user has to coordinate file
acCesses.

2.8 MPI-IO

The MPI-10 initiative was brought into life in order to propose a standard paralel 1/O interface
for message passing parallel applications [5, 7, 6]. MPI-1O is supposed to be seen as an
extension of the MPl message passing interface and uses many features of thisinterface. It is
targeted primarily to scientific applications and tries to offer common usage patterns for these
applications.

The basic idea of MPI-10 isthat file I/O can be modeled as message passing. Writing to a
fileislike sending a message. Reading from afile islike receiving a message.

Data partitioning can be expressed viaMPI derived datatypes. In MPI-10 the datalayout in
thefileis described via derived data types which are used to define the datalayout of a message
in the user buffer in MPI. Operations distinguish between so called buftype which described the
data layout in the buffer and the filetype which described the data layout in the file. They are
both based on an elementary data type called etype. The purpose of the elementary datatypeis
to ensure consistency of filetype and buftype and to enhance portability by basing them on data
types other than byte. Usually the elementary datatype will be byte.

13

2 STATE OF THE ART

The filetype data pattern is replicated throughout the file to tile the data file as shown in
figure 2.7. MPI derived data types consist of fields of data at specified offsets. This may leave
holes in the data layout. In the context of tiling a file using the derived data types the process
may only access data that matchesitemsin thefiletype. Datain “holes’ isinaccessible. Datain
“holes” may be read by other processes with complementary filetype.

[] etype

:l:ll file as seen by process A

filetype A relativeoffset 6 L7
, absolute offset 17 5 ¢ 19

] " absolute offset 184 -20
filetypeB reative offset r124
| 11 | [] | [T | .. fileasseen by processB

Figure 2.7: MPI-10 tiling and offsets

Offsetsin afile can be seen in two different ways. First, the absolute offset in thefile. This
Is the offset in the file considering every etype element in the file. This includes holes which
can not be seen by anindividual process dueto itsfiletype. On the other hand the relative offset
isthe offset considering only the etype elements which can be seen by the process according to
itsfiletype.

MPI-10 offers several procedures to facilitate the creation of filetypes. These include the
generation of patterns for broadcast, reduce, scatter, and vector scatter operations. In addition
HPF style matrix distribution patterns are available.

MPI-10 file access functions are orthogonal with respectiveto the position of thefile pointer,
the coordination of the access with respect to other processes, and the synchronism of the call
as shownin figure 2.8.

c —— 1
.% o I [[I
L X | B) i
° 8 =zZ _ L=z _ L=z _ /
RIS e e
%CE’ | [[|
= I R T U IS O VU IO) D
88§ L=z L=z L=z W
< _ - - e =
explicit offset independent shared col ed\\lecm onism
filepointer file pointer Syn
File Pointer Position

Figure 2.8: Orthogonality of MPI-10 access functions

File positionsin MPI-10 can be specified in three different ways. An explicit offset can be
used to access data at acertain position in file starting at the beginning of thefile. Individual file

14

2.9 EXTENSIBLE FILE SYSTEM

pointers can be used for independent access of every processin agroup. A shared file pointer
isvalid for al processesin agroup and will be updated atomically in every operation.

In contrast to independent operations, collective operations require that all processes in a
group issue the same operation. This may be used to take advantage of global accessto afile
and to provide the underlying implementation with information which may speed up access to
the data.

Non-blocking I/O operations are useful to overlap file access and computation and is not
limited to parallel applications.

MPI-10 offersavery flexible interface which allows many different views and access modes
for paralel files. Sinceit doesnot depend on acertain disk distribution technique many optimiza-
tionsare possible at thislevel. On the other hand the flexibility of the filetype/buftype mapping
makesit difficult to define a mapping appropriate for one’s application. Broadcast/reduce, scat-
ter/gather, and log file semantics can be implemented but the programmer has to take care for
correct mapping.

2.9 ExtensibLeFile System

Grimshaw and Prem take an object-oriented approach to parallel 1/0 for the ExtensibLe File
System (ELFS) [21, 20, 26]. The basic class unix_file offers the standard Unix file operations.
Based on this class other classes are implemented which inherit unix _file operations and provide
additional member functions based on the semantics and structure of their abstraction. In
cooperation with the Mentat programming environment [22, 23] ELFS supports asynchronous,
overlapping I/O operations. The following classes are proposed or implemented in ELFS.

Class 2D_matrix_file offers row and column access to files which contain two-dimensional
matrices. It does not offer decomposition into independent partitions of the matrix. Hence, itis
not an interface specially for parale 1/0 but an improved interface for matrix files. Due to the
known structure of thefileit is possible to achieve low-level 1/0 parall€ization by distributing
the file onto different disks. Unfortunately, the interfaceis not very flexible since the size of the
matrix has to be specified at file creation time. By implementing an additional class for row,
column, and block distribution the 2D_matrix_file class can be used for a parallel 1/0 interface.

The class for Multidimensional Range Searching (MRS) File Objects® offers access to n-
dimensional data spaces, where each dimension represents a key field present in the data. E.g.
a data set containing a set of time indexed two-dimensional images can be viewed as a three-
dimensional data space with x,y, and t as coordinates. Sub-volumes of the data space may be
specified by giving arange of values for each dimension as shown in figure 2.9.

As the previous class MRS objects do not decompose the file in digoint regions, it is the
user’s responsibility to care for correct behavior of concurrent 1/0O operations.

A Variable_consistency_files class offers an application specific consistency mechanism to
improveperformance. The programmer may specify aconsistency timewindow and consistency
semantics on afile-to-file basis and modify it during the course of the application.

3In[20] thisclassis called Parallel File Objects (pfo)

15

2 STATE OF THE ART

@ (b)
Sm 5
4 4
Y, m Y,
1 2 1 2
0 ot 0 ot

012 3 45 012 3 45

X X

t;2<x;1l<y<?2 t<1;1<x<2;3<y

Figure2.9: ELFSMRS

2.10 David Kotz'sWork

Kotz proposed afile system interface for parallel applicationsin [27]. It intends to address the
difficulties when using conventional Unix-like interfaces in parallel applications.

In order to alow for distributing a single file to multiple disks transparently the proposal
includes a directory structure with a single name for a distributed file. The user does not need
to specify alist of disks or local disk files in which a distributed file is stored. A parallel file
appears to be a Unix file for the user with the same naming scheme for sequential and parallel
applications.

Kotz introduces a multiopen call, which opens a file for the entire paralel application,
assuming away to group processesin aparallel application. The advantage of thiscall isamore
scalable way to open aparallel file without multiple seeksin adirectory. There are two waysto
open afile with multiopen. Thefirst provides an independent local file pointer for each process
while the other provides a global shared file pointer for all processes. With a global file pointer
data transfer and file pointer update are atomic. Since the process has no knowledge of the file
position where the operation took place, additional read and write operations return the original
file pointer position after completion.

File pointers do not point directly to an absolute position within thefile. A mapping function
for each file pointer with the pointer and an additional parameter as input will calculate the
positionin thefile. A global file pointer has one mapping function whilelocal file pointers each
have a separate mapping function. The mapping function is specified during the open call or
through a separate interface. Kotz proposes some built-in mapping functions, e.g. interleaved,
which uses the record size as parameter and defines a round-robin pattern of access to records.
This mechanism can be used to map separate portions of a sequential file to a certain process.

Kotz proposes|ogical records as the smallest unit of datatransfer. The advantages are better
support of atomic operations and the possibility to optimize the distribution of afile to multiple
disks by avoiding the distribution of a single record over different disks. Kotz distinguishes
between byte and record files. The position in a file are references to record numbers. If the
size of arecord isone byte it issimply a bytefile.

In order to combine the advantages of a single file with a single name for a data set and
the advantages of multiple files, which allow independent access to their data sets and separate

16

2.11 CONCLUSION

beginnings and ends of afile, the proposal contains multifiles. A multifileisafile which actually
consists of a number of subfiles which can be accessed independently with only one directory
entry for thefile. It offers the possibility of appending on each of the subfiles and an end-of-file
marker for each subfile. When opening an existing multifile, an optional mapping of subfiles
to processes may be specified. Usually there will be one subfile for every process of a parallel
application.

The file system offers four types of files derived from the combination of byte and record
specification and plain files and multifiles. Thus, there are byte plain files, record plain files,
byte mutifiles, and record multifiles. The type of thefile is specified at creating time and it will
be stored with this type in the file system. All type of files can be read as byte plain files. The
filesmay be opened for reading in any mode. Writing has to take place in the mode the file was
created.

2.11 Conclusion

The systemsand methodsfor parallel 1/0 described above show agreat variety of user interfaces.
This report does not intend to classify or value the different approaches. It is not clear which
method is most appropriate for parallel applications and their input and output needs.

For PFSLib we chose Intel’s PFS user interface which will be described in more detail in the
following chapter. Together with our implementation of Intel’s Paragon message passing calls
in NXLib, it is possible to achieve source code compatibility of a parallel application between
the Paragon supercomputer system and clusters of workstations. Additionaly, Intel’s interface
is flexible enough to allow the implementation other 1/0O modes and different file distribution
strategies. Hence, PFSLib can be used as research platform for both user interfaces for paralel
I/O and parallelization of disk access.

17

3 Conceptsof PFSLib

3.1 History and Starting Point

In 1993 the paralel processing group at LRR-TUM developed NXLib. NXLib was a project
funded by the Intel Foundation which aimed at providing a source code compatible emula-
tor for Intel’s Paragon supercomputer. By using NXLib program developers can run Paragon
supercomputer applications on a homogeneous network of workstations. Many different work-
station architectures are supported and the sources of NXLib are available under GNU license
conditions. NXLib is frequently used by many people for off-line development of Paragon
supercomputer software, especially during coding and testing phases. In addition, many users
also perform production runs with NXLib.

Although NXLib is afunctionally complete programming environment it does not emulate
all features of the NX environment of areal Paragon. Feedback from NXLib users unveiled that
especially the lack of afile system emulator is unsatisfying as it prevents application designers
who employ parallel file 1/0 to use NXLib. In principle, it would have been possible to attach
e.g. the freely available PIOUS environment to NXLib. However, it does not provide by itself
all access modes which are supported by Intel’s own paralléel file system. Thus, no source code
compatibility could have been attained.

In 1994, LRR-TUM obtained aresearch grant from the Intel Foundation for design and im-
plementation of PFSLib, aparallel file system library which provides source code compatibility
with Intel’s parallel file system PFS. Its primary purpose is to work together with NXLib as
an emulator of a Paragon supercomputer. Furthermore, PFSLib can be used as a stand-alone
software product together with other parallel programming environmentslikee.g. PVM. Finally,
PFSLib serves as a research platform to investigate issues of paralel file systems like e.g. file
distribution or design of the user interface.

3.1.1 Inte’sParallel File System PFS

Intel’s Paragon OSF/1 provides parallel 1/0O to files with the Parallel File System PFS which
offers high-speed access to a large amount of disk storage. The PFS file system is optimized
for simultaneous access by multiple nodes. Special 1/0 system calls with different modes for
I/O operations facilitate 1/0 from multiple nodes. In this section, we will first give a short
description of the architecture of the 1/0 subsystem of Intel’s Paragon System followed by a
closer description of the users’ interface, the I/0 modes, and the parale 1/0 system calls.

18

3.1 HISTORY AND STARTING POINT

PES /O Architecture

On Intel’s Paragon Supercomputer hard disks are connected to so-called 1/0 nodes. 1/0 nodes
are compute nodes with 1/0 capabilities provided by a node expansion as shown in figure 3.1.
I/O nodes are integrated in the message-passing network as standard compute nodes. It depends
on the system configuration whether application processes may or may not run on I/O nodes.
Hard disks or RAIDs are usually connected to the SCSI interface of an 1/0 node. A single I/O
node may control up to seven disk devices.

. Node - - —'— -[SCSI-2RAID I—Q
: Expansion ~ — — —'- ! 4@ @

P
|

|
Message HETTET] P! -I Ethernet |
Processor '

Performance | [other I/O |{ HIPPIb
Application Monitor VME bus
Processor l Network |
Interface
iMRC Node Node

Node7/l Node;[Node
Node;[Node;[Node

T T

VY

Figure 3.1: 1/0 node and message-passing network of Intel’s Paragon

Internally, Intel’s PFS file system consists of one ore more stripe directories. The stripe
directories are usualy mount points of separate Unix file systems located on disk devices
connected to one or more I/O nodes. PFS files are striped across the stripe directories with a
fixed configurable stripe unit. Hence, a PFS file system collects together several hard disksinto
one unit.

PFS1/0 Modes

A paraléel application on a Paragon system can access a PFS file in five different /O modes.
Depending on the 1/O mode, paralel file accesses

e are performed on first-come-first-served basis or in order of node number,

19

3 CONCEPTS OF PFSLIB

e useashared file pointer whichisvalid for all application processes or file pointers which
are owned by the application processes independently,

e may have variable length or must have identical length, and
e may be performed by a single process which distributes the result to the other processes.

The application can set the access modeinitially when opening afile or change the /O mode
of afilethat is aready open. The I/O mode is an attribute of the file pointer not the file itself.
Hence, it is possible to open one file more than once and access it with different 1/0 modes.

PFS supplies the following five I/O modes.

M_UNIX: In1/O mode M_UNIX each process has its own file pointer. File access requests
will be served on first-come-first-served basis. If two processes write to the same location of
thefile, the second access will overwrite the data written by the first process. All file accesses
are independent and may have variable length. However, PFS guarantees that all file accesses
are atomic. The datain thefile is unordered and may be accessed randomly by every process.

M_LOG: Inl/O mode M_LOG all processes share a single file pointer. File access requests
will be served on first-come-first-served basis. Every read or write operation modifies the
file pointer. Hence, data will be written to the file in order of the requests. Succeeding read
operationswill read succeeding datafrom thefile. Besidesthat, all file accesses are independent
and may have variable length. Closing afilein this mode is a synchronizing operation.

M_SYNC: Inl/OmodeM _SYNC all processes shareasinglefile pointer. File access requests
will synchronize the processes. All processes must perform the same operations in the same
order. However, the amount of data may be different. The file position for every process will
be calculated by adding the amount of data read or written by the processes with alower node
number to the current file pointer. After an operation the file pointer is increased by the total
amount of dataread or written. Hence, datain thefile appearsin order of node number. Closing
afilein this mode is a synchronizing operation.

M_RECORD: In1/O mode M_RECORD every processes hasits own file pointer. File access
requests will be served in first-come-first-served basis. All processes must perform the same
operation in the same order with identical amount of data. Nevertheless, the system will not
check this and operations will be carried out independently. After an operation the file pointer
will beincreased by the the amount of dataread or written multiplied with the number of nodes.
Hence, data in the the file appears in order of node number. Closing afile in this mode is a
synchronizing operation.

20

3.1 HISTORY AND STARTING POINT

M_GLOBAL: Inl/O mode M_GLOBAL al processes share asinglefile pointer. File access
requests will synchronize the processes. All processes must perform the same operationsin the
same order with identical amount of data. Only one process will actually perform the operation
and, in case of aread access, distributethe datato all other processes. Theresult of an operation
isidentical to one performed in 1/0 mode M _UNIX if al file pointers point to the same position.
However, performance can be improved due to fewer disk accesses. Closing afile in this mode
is a synchronizing operation.

PFSParallel 1/0 Calls

As with the standard Unix 1/O library calls, PFS paralel 1/0 cals can be subdivided in three
main categories. First, calls which enable and disable access to a file in the file system, i.e.
opening and closing of files. Second, callsto read datafrom afile and write datato afile. Third,
miscellaneous calls to administer the file access including setting of the file position, modifying
the size of thefile, setting the 1/O mode, and so on.

PFS differs from the standard Unix interface mainly in two aspects, which will be discussed
inthissection. First, PFS offersthe possibility of synchronousand asynchronousread and write
calls, and second, some calls are global calls which have to be performed by all processes and
synchronize all processes of the application.

Synchronous and Asynchronous I/0O Operations As with NX message passing calls, PFS
read and write calls may be performed synchronously or asynchronously. The synchronous
versionsof 1/0 operationscr ead() andcwri t e() block the calling process until the opera-
tionisfinished. Theasynchronouscallsi read() andi writ e() returnimmediately with an
identifier for the 1/O operation. The operation will be carried out concurrently by the operation
system while the calling process continues its execution. To check the state of an asynchronous
|/O operation PFS offersthei odone() cal which returns O (zero) if the operation is not yet
finished or 1 if the operation isfinished. Thei owai t () call blocks the calling process until
the 1/0O operation is finished. In the current implementation every process may have up to 20
outstanding asynchronous 1/O operations.

Global Operations SomePFScallsareglobal operationswhich must becalled by all processes
of an applicationwith matching parameters. Thesecallssynchronizeall processeswhichimplies
that all processes performed the call.

The global open operation gopen() opensafilefor al processes and offers the possibility
to set the I/O mode of a file a the same time. The main issue of this call is a performance
improvement since directory information has to be accessed only once.

The set i onode() cal which can be used to modify the 1/0 mode of afile needs to be
synchronizing since al processes must have the same 1/0 mode.

Thefollowing callsare synchronizing depending on the current 1/0O mode as described earlier.
Thecl ose() PFScall issynchronizingin all I/0O modes other than M_UNIX. Thel seek()
call which sets the file pointer position synchronizes the processes in I/0 mode M_RECORD

21

3 CONCEPTS OF PFSLIB

and M_SYNC since al processes have to have the same file position in this mode. Read and
write operations are synchronizing in I/O mode M_SYNC and M_GLOBAL. In M_SYNC the
datain file that will be accessed depends on the amount of data read or written by processes
with lower node number. In M_GLOBAL all processes have to perform the call with identical
parameters which can only be checked if the execution is delayed until all processes performed
the call.

3.2 Design

Our main goal with the PFSLib project was to offer Intel’s Paragon PFS interface and its
semantics on clusters of workstations. A programmer should have the possibility to develop
and run applications intended for Intel’s Paragon system on clusters of workstations. Since we
already offered the NX message passing on workstationswith NXLib, PFSLib wasthe next step
to a compl ete devel opment environment on workstations.

On the other hand, more and more people use clusters of workstations as an alternative
for supercomputers with parallel programming environments like PVM, MPI, and NXLib.
All of these programming environments lack sophisticated 1/O support for parallel applications.
Starting from Intel’ s PFSinterface we wanted to offer scalable parallel 1/0 for those applications.

Eventually, we wanted to have a research platform to investigate different file distribution
strategiesand I/O modes on workstations. Usually, workstationshave an I/0 subsystem and hard
disks connected to it. Thisoffersthe possibility to access these disksin parallel and increase the
I/O bandwidth for an application. To do that efficiently, the file should at best be distributed in a
waly that allows reading and writing of junks of consecutive bytes from and to disks connected
to different workstations. It should be possible to use PFSLib as a testbed for different file
distributions. In conjunction with the file distribution, 1/0 modes other than those offered by
Intel’s PFS can raise 1/O performance if they offer information on how the application accesses
file data. PFSLib should be flexible enough to allow an easy incorporation of other I/0O modes.
E.g. we plan amode that offers High Performance Fortran array distribution.

3.2.1 Design Objectives

Considering the goals of the project mentioned above three major objectives had to be pursued
during the design of PFSL.ib.

Portability should be easily achievable between different Unix platforms as also between
different parallel programming environments like PVM, MPI, NXLib, and others.

Scalability of 1/O operations shall be obtained by file distribution and concurrent access to
different disks. There should be no software bottleneck inherent in PFSLib, which
serializes disk access in any way.

Flexibility of the system should be achieved in two ways. It should be possible to incorporate
different file distribution strategies and the implementation of 1/0O modes other than those
of Intel’s PFS within PFSLib should be easy.

22

3.2 DESIGN

Finally thereisafourth objectivewhich should not be neglected in aUnix environment, especially
if thefile accessistheissue.

Security of file access in a multiuser environment must be assured. Authentication measures
must be a part of the parallel file system which assure, that no unauthorized user is able
to gain access to afile via PFSLib.

3.2.2 Design Aspects

Looking at Intel’s PFS, its 1/0O modes, the semantics of the file access, and the library cals
offered, the following aspects have to be considered in the design of PFSLib.

File Position

Depending on the 1/0 mode PFS 1/0 operations use a shared file pointer for all processes or a
private file pointer for each process.

If ashared file pointer isused, it needsto be updated for al processesduring an I/O operation.
If two or more processes perform an 1/0O operation the accesses have to be serialized so that the
file pointer for the second operation is at the position after the first operation. Nevertheless, the
actual file access may be performed concurrently. Since the number of byteto be transmitted is
known at the beginning of the operation the file pointer may be set to the new position before
the file access actually takes place.

If each process has its own file pointer the file pointer update depends only an operations
previously performed by the same process. Asynchronous I/O operations issued with previous
operations not being finished, may be performed concurrently with the previous operations if
the file pointer is updated at the beginning of the operation.

In this case, it has to be checked whether a read operation would read past the end of the
file. If this happens the file pointer has to be set to the end-of-file mark and the amount of data
for the read operation has to be reduced to the number of bytes remaining.

If the O.APPEND flag is set for afile, each write operation writes the data at the end of the
file and sets the file pointer to the end-of-file mark. To offer a meaningful semantics in 1/0
mode M _RECORD the end-of-file mark must not be the actual end of the file for all processes.
Since the write operations of different processes are independent one of the processes might
haveissued more write callsthan other processes. A write of another processto the actual end of
the file will not be at the position the record is meant to be. Hence, it would leave “holes” with
random data in the file. A separate end-of-file mark for each process pointing to the position
which isthe end-of-file for the process solves the problem.

Synchronization

Some of the PFS calls synchronize all processes. All processes have to call the same function
with matching parameters. It is not necessary that the function terminated for all processes
before a synchronizing operation returns.

23

3 CONCEPTS OF PFSLIB

In 1/0 operations in I/0 mode M_SYNC and M_RECORD the synchronization is required
to check the input parameters of al client processes and to be able to set the file position for the
operations. If the operation is asynchronous the synchronization does not need to synchronize
the client processes but the execution of the 1/O operation. |.e. the read or write operation has
to be delayed until the operation was called by all processes. The asynchronous I/O call may
return the I/O identifier immediately.

The seti onode() cal checks whether all processes request the same new 1/0 mode.
Hence, the new mode can not be set until all processes performed thecall. Thel seek() call
synchronizes the processesin I/0O mode M_SYNC, M_RECORD, and M_GLOBAL because all
processes must set the file pointer to the same position.

Asynchronous Operations

PFS offers asynchronous 1/0 operationsto hide latency and overlap file access and computation.
These operations return immediately with an identifier for the operation. The state of the
operation can be checked or the process can wait for the completion of an 1/0 operation using
the identifier. The I/O operation is carried out by the operating system while the process may
continue its execution. Since file access requires little CPU time the CPU may be used by the
application process. Two subsequent asynchronous I/O operation may overlap if the file pointer
Isupdated at the beginning of every operation as described earlier.

Standard Unix Calls

Someof callsoffered by Intel’s PFS have the same name as standard Unix calls. If an application
uses PFSLib, the programmer must have the possibility to access standard Unix files with these
cals.

3.3 Implementation

3.3.1 Client Server Modd

The implementation of PFSLib is based on a client server model as shown in figure 3.2. It is
based on three major components. The PFSLib server as global administration instance, the |/O
daemons which handle basic 1/0 operations, and the user’s application processes using PFSLib
library calls as clients.

The PFSLib server isthe global administration instance which manages and coordinates all
PFSLib file accesses. It administers the file information, file pointers, and takes care for the
process synchronization if necessary. By design, the PFSLib server does not belong to one
application but is capable to serve different applications, even different users. It isintended to
run in the background as other Unix daemon processes. Currently, we restricted the server to
serve only one user to facilitate installation and guarantee security. If aserver should be capable
to serve different usersit hasto run with root privileges.

24

3.3 IMPLEMENTATION

RPC

PFSLib Client

PFSLib Client

&=/ Unix /0

Figure 3.2: PFSLib Client Server Model

The 1/0 daemons handle basic I/O requests, i.e. reading and writing of data. They are
started by the PFSLib server. The PFSLib server sends requests for 1/0 operations to the 1/0
daemons containing an identifier for the request, a specification of the file, the file position, the
amount of data to transfer, and a specification of the client. The client gets the address of the
I/O daemon which handles the request and the identifier for the I/O operation from the PFSLib
server. It sends or receives the data to or from the 1/0 daemon with the corresponding request
identifier. 1/0O daemons basically have alist of requests coming from the PFSLib server and a
list of pending I/0 operationsfrom clients. If anew request arrivesat the 1/O daemon it searches
thelist of pending I/O operations for the matching operation. If it exists, the 1/O daemon reads
the dataform thefile and sendsit to the client or writesthe datareceived form aclient to thefile.
Otherwise, the request will be appended to the list of pending requests. If anew 1/0O operation
arrives, the I/0O daemon handles the operation if the matching request exists or appends the
operation to the list of pending 1/0O operations otherwise. The independent I/O daemons alow
a scalable and flexible handling of basic I/O operations. Since they hold no information on the
files but thefile position and the amount of datafor 1/0O operations, they can be started or del eted
on demand even on remote machines. Hence, afile distribution can easily be implemented by
assigning 1/0O operations to I/0O daemons on machines where the requested portion of thefileis
located.

The users application processes using PFSLib library calls are clients of a PFSLib server.
Before a client may call any PFSLib function it has to initialize the connection to a PFSLib
server and set up an internal data structure which holds the file descriptors for PFSLib files.
This is done with a special PFSLib library call. The client is stateless, meaning that it holds
no information on the file but a file handle which contains the identifier of the file used by
the PFSLib server. Thus, different file distributions and 1/0 modes can be implemented by
modifying the PFSLib server.

In case of asynchronous I/O operations the client forks a child processif the amount of data
to transfer is above a configurable threshold. The child process carries out the data transfer to
the I/0O daemon. We refrained to use threads since read and write operations usually block the
Unix process and not the thread which issued the call. Hence, a thread based implementation

25

3 CONCEPTS OF PFSLIB

of asynchronous operations would not allow concurrent execution of the 1/0 operation and the
user’s program. Besides on most systems the implementations of the communication facilities
needed for the communication between clients and server are not thread-save.

3.3.2 Basic Communication M echanism
Client Server Communication

A convenient and reliable mechanism for the communication in client/server applicationsin a
network of workstations is the remote procedure call (RPC) facility. The course of a RPC is
well known and isfully described in [33].

Communication within PFSLib is based on the ONC! RPC [35]. Since it is available on
all major platforms it improves the portability of the library. Besides, it works in conjunction
with parallel programming environments like PVM, NXLib, and others. Hence, PFSLib is
independent from the parallel programming environment and may be used even in application
which do not use any parallel programming environment. In order to use PFSLib no additional
software needs to be installed.

The ONC RPC transfers datain external data representation (XDR) [36] format. XDR isa
hardware independent description of data structures. Before the transmission of an argument
or a result of a RPC the data will be trandlated in its XDR format on the sender side based
on the type of the data. On the receiver side, the data is translated to the machine specific
representation. This mechanism supports RPCs between heterogeneous machines. XDR also
offers an opaque datatype. Opague datawill not be translated in a machine independent format
but will be transferred as is. PFSLib uses XDR for control messages and internal data. The
users data will not be translated in XDR format for transmission since file access calls do not
offer information on the type of data. If the user takes care for the data in the file PFSLib can
be used heterogeneously.

An additional feature of the RPC facility is embedded security. Three different mechanisms
areavailablewnhich offer different levelsof security. No security isprovided by the authentication
style AUTH_NONE. The authentication style AUTH.UNI X transmits the user’s Unix user id and
group id together with the RPC parameter. The highest degree of authentication is provided by
AUTH.DES. PFSLib currently uses the AUTH_UNI X authentication.

Client Child Process Communication

In asynchronous read operations, the data will be read by the client’s child process. Since two
Unix process have different address spaces the data has to be transfered from the child process
address spaceto the client’saddress space. PFSLib usesthe Unix System V |PC shared memory
facility [34]. The client allocates a shared memory segment with the size of the read operation
before it forks the child process. The child process reads the data from a I/O daemon into the
shared memory segment. After the termination of the child process the client copies the data
form the shared memory segment into the buffer supplied in the read call.

1Open Network Computing

26

3.3 IMPLEMENTATION

3.3.3 Courseof Operations

Client Server
Virtual file descriptor? Security check
[2] Cadll synchronizin ’;yes 6 |dentify request
o Y Ves Check virtual file descriptor
Unix call [Disable timeout Check parameters
nix Send request] Handle request
Modify data structures
Analyzeresponse < Return result

Figure 3.3: Course of an operation

After aninitial startup phase the PFSLib server handlesincoming requestsfrom PFSLib clients.
A PFSLibfunction call isperformed in several steps executed by the client and the server. Figure
3.3 shows the interaction of client and server and illustrates the following steps:

1

Check for virtual filedescriptor: Assomefunctioncallswithin PFSLib (suchascl ose()
or | seek()) are available for local and global file descriptors we have to distinguish
both cases. Thisis done by comparing the values of the file descriptors against a given
offset. The offset isequal to the maximum number of file descriptors which is limited by
the UNIX operating system. If the value of afile descriptor is below this number itisa
local file descriptor and the standard UNIX call will be performed. If it isaglobal file
descriptor arequest to the PFSLib server will be send.

Check for synchronizing call: If the current request is a synchronizing call the default
timeout of 25 seconds has to be disabled. For security reasons this timeout must be
restored when the call returns from the server. If it is no synchronizing call the courseis
continued with 4.

Disable timeout: For asingle client the default timeout for RPC callsis 25 seconds. The
time period during which all other clients perform the same request to the PFSLib server
depend on their runtime behaviour. Thus, areply to asingleclient could el apse the default
value of 25 seconds. In our implementation we choose an arbitrary value of 24 hours as
the synchronizing timeout.

Send request: The client sends its request to the server by performing the corresponding
RPC call. After having sent the argumentsthe client waits until aresponse from the server
arrives.

Check authentification: To use the services provided by the PFSLib server the user must
have access permission. Authentication is provided by RPC and our implementation uses
the AUTH.UNI X style.

Identify request: Thisis automatically done by the server when receiving the arguments.
The RPC compiler generates the appropriate dispatch function.

27

3 CONCEPTS OF PFSLIB

7. Check virtua file handle: The first argument of every request is the virtua file handle.
The server checks the file handle for validity and for the access permission of the client
to thefile.

8. Check parameters. The arguments passed with a request have to be evaluated. In case of
asynchronizing call the arguments are compared with arguments previously received by
other clients which invoked the same command. For example the I/0 modes passed with
the function set i onode() have to be equal for al clients. The arguments are stored
intermediately and the request will be delayed until the last call arrives.

9. Handle request: If all checks were performed successfully the server executes the re-
quested procedure.

10. Modify datastructures: Except when requesting information from the PFSLib server (e.g.
I onode()) theinterna data structures have to be updated after every request.

11. Returnresults: The results of the requested procedure are sent back to the clients. In case
of asynchronizing call the server sendsthe results back to al clients. If an error occurred
during the checks or if the procedure could not be executed due to wrong arguments the
server sets up an error response with more detailed error message.

12. Analyze response: When the client receives the results it first checks whether an error
occurred on the server side. In case of unrecoverable errors the client terminates. If no
error occurred the library function returns and the client continues its execution.

3.34 PFSLib Server Data Structures

As mentioned above all information on a PFSLib file is held by the server in order to keep the
clients stateless. The server has to keep all information on the file and the clients accessing it.
Figure 3.4 shows the major components of afile table entry of the PFSLib server, which will be
described in more detail.

An entry of the file table consists of the following elements:

Unix file descriptor: The file descriptor returned by the Unix operating system. The file is
opened during the first open() call from any client. Subsequent open calls for thisfile
from different clients ssimply return the result of the first call.

Filename: The full path name of the file is used to compare the arguments of subsequent
open() calls from different clients. If the user does not pass a full path name to a
PFSLib call opening a file, the current working directory of the client process will be
prepended to the supplied name.

/O mode: This entry represents the current I/O mode of the file as described above.

28

3.3 IMPLEMENTATION

C File table data)
Unix file descriptor ' Dataon Clients)
::/i(lje najge Client identifier ' Dataon I/O operations)

mose Transport handle State of 1/0 identifier '
Requested I/0 mode Private file pointer Type of operation
Shared file pointer Private end-of-file Error code
Shared end-of-file State of synchronizing operation Sequence number of 170 operation
Synchronizing operation Sequence number of I/0 operation| || ssued before last setiomode()
Number of clients 1[1/0 identifiers File position
g Clients Number of bytes
iowait() is pending
| 1/0 daemon identifier
¥ b 2

Figure 3.4: Filetable entry of PFSLib server

Requested I/0O mode: If the clients call theset i onbde() function to set a new I/O mode,
thisentry isused to verify that al clientsrequest the same new mode. The new mode will
not be set until al clients performed the call with the same parameters.

Shared file pointer: In [/O mode M_LOG, M_SYNC, and M_GLOBAL all processes share a
singlefile pointer. It contains the current positionin thefile valid for all client process.

Shared end-of-file pointer: This entry points to the end of the file as known by the PFSLib
server. If afileisopened the server sets this value to the current end-of-file. If a PFSLib
operation extendsthefile the value will be updated. In 1/0 modes other than M_RECORD
the shared end-of-file pointer is used for write operations if the O APPEND flag is set.
Besides, it isused to check if read operations read past the end-of-file mark.

Synchronizing operation: If aclient calls a PFSLib function that will synchronize the client
processes, the type of the operation will be stored in this entry when the first client calls
this operation. If other clients call a synchronizing function later, the PFSLib server
checks whether the client requests the same operation. If not the server will return an
error.

Number of clients: Since a PFSLib server is capable to administer files for more than one
application, the number of processes accessing a file may differ from file to file. The
number of clients will be initialized during an open() call. Hence, different groups
of processes within a single application may access different PFSLib files. PFSLib uses
default values specified during the initialization of PFSLib for compatibility with Intel’s
PFS.

Each entry of thefile table holds atable containing client specific data. This client table has
the following entries.

29

3 CONCEPTS OF PFSLIB

Client identifier: The client is identified by the PFSLib server by its machine name and the
RPC authentication credentials. Before the server performs any operation on the file it
checks the client’s authenticity.

Transport handle: The server stores the RPC transport handle for each client to send back the
result of a synchronizing operation after it is completed.

Privatefile pointer: In1/O modes M_UNIX and M_RECORD each client has its own private
file pointer. It contains the current position in thefile for each client.

Private end-of-file pointer: Asmentioned above, in1/0 mode M _RECORD theread and write
operations of different clients are independent. However, if the O APPENDflagissetitis
necessary that each process writes its portion of arecord not to the actual end of thefile,
but to the position in the file where the corresponding records are stored. Hence, each
client has its private end-of-file pointing to the position up to where the client accessed
thefile.

State of synchronizing operation: If the clients call a synchronizing operation the server has
to keep track which of the clients aready performed the operation, how far the operation
proceeded, and whether an error occured.

Sequence number of I/O operations. Inl/OmodesM_SYNCand M_GLOBAL read andwrite
operations may be performed only after all processes called this operation. On the other
hand, more than one asynchronous operation on the file may be pending, which might
have been called even in a different /O mode. The PFSLib server assigns a sequence
number to every read or write operation. The sequence number is reset to zero in every
seti onode() cal. Hence, the server is capable to group together read and write
operations in sequence of their occurrence.

Asynchronous 1/O operations return an /O identifier immediately which can be used to
check the state of the operation. The PFSLib server stores a table of pending asynchronous
I/O operations for each file and each client. The identifier of an operation is the index of the
operation in the table. Within the table the server stores the following information on an 1/0
operation.

State of 1/0O identifier: The server keeps track of the state of a pending 1/0 operation with this
entry. An identifier may be unused, the 1/0 operation may be pending, ready to be carried
out, or finished.

Type of operation: An I/O identifier may be assigned to read or write operation. In thisfield
the server stores information what kind of operation is associated with thisidentifier.

Error code: If anerror occursduring the execution of the operation the server storesinformation
on the error, which will be sent to the client when it checks the state of the operation.

30

3.3 IMPLEMENTATION

Sequence number of the operation: Asdescribed abovethe server assignsa sequence number
to every /O operation. It isused to find matching I/O operations of other client processes
in1/O modes M _SYNC and M_GLOBAL.

I ssued before last setiomode(): If the I/O operation identified by this I/O identifier was not
finished before the last set i onbde() call or the user did not wait for its termination,
this flag will be set for this operation during the set i onode() cal. If thisflagis set
the 1/0O operation will not be considered if the server looks for an operation with matching
sequence number in I/O mode M_SYNC and M_GLOBAL.

File position: The server sets the file position for this operation as soon as it is possible. In
I/0O mode M_SYNC it is set when all 1/0O operations with the same sequence number are
available. In other modes the file position can be set immediately. Hence, the private or
shared file pointer may be updated and used for the next I/O operation as if the operation
aready terminated.

Number of bytes. The number of bytes to transfer in the operation is used to check the input
parameter in 1/0 mode M_GLOBAL and to calculate the file positions of matching oper-
ations in 1/0 mode M_SYNC. Additionaly, it is used to inform 1/O daemons about the
number of bytesto transfer in the operation.

iowait() ispending: If aclient called thei owai t () function with this identifier before the
operation terminated the PFSLib server setsthisflag. The client will be informed as soon
as the operation has completed.

I/O daemon identifier: The server immediately assigns an I/O daemon to an 1/O operation. It
send the address of the 1/0O daemon with the 1/O identifier to the client. Thus, the client
or its child process can connect to the I/O daemon to carry out the operation. The I/O
daemon on the other hand will delay the operation until it receives a matching request as
described above. The I/O daemon identifier is used to send the request to the I/0O daemon.

3.35 PFSLib Client Data Structures

A PFSLib client holds very little information on a PFSLib file according to its statelessness. A
table of open PFSLib files as show in figure 3.5 contains only the file handle which is used to
identify afile at the PFSLib server. Thisfile handle will be passed to the server in every RPC.
A file handle consists of the index of the server’sfile table, the number of clients accessing the
file, and the ordinal number of this client.

In order to distinguish between ordinary Unix files and PFSLib files the file descriptor
returned by the open() cal isthe index of the file in the client’s file table increased by the
length of the Unix file table. Hence, the file descriptor for a PFSLib file is an integer value as
in Unix but can be distinguished form a Unix file descriptor. This is necessary for functions
likel seek() which have different semantics on PFSLib files compared to Unix files. Since a
constant valueis added to the file table index the PFSLib file handle can be found with constant
low overhead.

31

3 CONCEPTS OF PFSLIB

Client file table
“ Index of server’sfiletable'

Number of clients
Ordinal number of client

Figure 3.5: Filetable entry of PFSLib clients

In order to administer asynchronous 1/0O operations a PFSLib client maintains a table of
I/O identifiers shown in figure 3.6. Some of the entries in this table comprise the equivalent
in the corresponding 1/0 identifier table at the server side. Despite the desired statel essness of
the client the I/O identifier table is necessary to implement asynchronous and overlapping 1/0
operations. An element of the client’s 1/O identifier table contains the following entries.

4 1/O identifier table h

State of 1/O identifier
Server’sindex of 1/O identifier
File descriptor

Type of operation

Number of bytes

Buffer pointer

Shared memory id

Processid of child process

4| Exit status of child process

Figure 3.6: 1/0O identifier table of PFSLib clients

State of 1/O identifier: In case of an asynchronous operation, the client keeps track of the
progress of the child process by setting different states for an I/O identifier. An 1/O
operation is pending if the child process was created but did not terminate. If the child
process terminated the state of the I/O operation is set to “done” for the client side. If
the application calls the i owai t () or i odone() functions, the client checks first,
whether the client side terminated and then checks the PFSLib server. If an 1/O operation
terminated the state of the associated identifier is set back to “unused”.

Filedescriptor: The file descriptor returned by a PFSLib open operation identifies the file
whichisused in the I/O operation.

Server’s|/O identifier: Since client and server have different tables for 1/0 identifiers the
client stores the server’s I/O identifier in this field. Requests concerning the state of an
I/O operation sent to the server use this value.

32

3.3 IMPLEMENTATION

Type of operation: This entry specifies whether the operation reads or writes data. A child
process uses thisinformation to either send datato or receive datato from an I/O daemon.

Number of bytes: Thisfield specifies the number of bytesto be transfered in the operation.

Buffer pointer: The pointer to the user’s buffer supplied in the read or write call is stored in
thisfield.

Shared memory id: PFSLib uses Unix System V |PC shared memory to transfer datain asyn-
chronous read operations form the child process to the PFSLib client. The Unix system
call whichisused to allocated a shared memory segment returns an identifier. Subsequent
callsto access and administer the shared memory segment use thisidentifier.

Processid of the child process: A PFSLib client may have more than one pending asyn-
chronous 1/0 operation. The Unix process id is used to identify which 1/O operation
proceeded if achild process terminates.

Exit status of the child process: If an error occurs during the execution of the child processiit
exits with a status indicating the error.

3.3.6 ThreePhasel/O Operations

Asynchronous I/0O operationsin Intel’s PFS are divided in two phases. First, the asynchronous
I/O operationsi read() ori wite() themselvesreturn an identifier for the 1/0 operation.
Second, thecall i owai t () waitsfor the termination of an asynchronous 1/0O operation or the
call i odone() checks for termination of an asynchronous I/O operation. Both of the latter
calls free the identifier if the operation terminated so that it can be used again. In PFSLib the
iread() oriwite() operation itself consists of two phases. Hence, in PFSLib a single
asynchronous I/O operation is divided in three phases as shown in the condition—event—system
infigure 3.7.

Phasel: Initialization of an I/O operation

(1) After aprogram called an asynchronous I/O operation the PFSLib library

(2) dlocates a free 1/0 identifier described in 3.3.5. Then, it sends a remote procedure call to
the PFSLib server to request an /O identifier on the server side. The RPC contains the type of
the operation and the number of bytesto be transfered in the operation.

(3) The server assigns a sequence number to the I/O operation, allocates an 1/0O identifier
described in 3.3.4 and assigns an 1/0O daemon to the operation. If the I/0 mode of the file
is M_UNIX, M_LOG, or M_RECORD the server sets the file position for this operation and
increases the private or shared file pointer depending on the mode. Then, it sends a request
for an 1/O operation to the appropriate 1/0 daemon. If the I/O mode of the fileis M_SYNC or
M _GLOBAL the server cannot set the file position for the operation or increase the file pointer
until all processes issued the call. In M_SYNC the position depends on the the size of the
operation of matching operations of processes with lower number. In M_GLOBAL the server

33

3 CONCEPTSOF PFSLIB

Phasell Phase |

Phase 1l

iread(
iwrite()

user
program

2) 3et
1/0O identifier

get shared send request
memory to 1/0 daemon

et
1/0 igentifier

|update file pointer |

1/0 Daemon
Se
ead/write file

© Y’ perform
U

receive result of
1/0 operation

«
> receive repl
fromI/Odgeprr){on

receive
exit status

copy shared
memory

' free
1/O identifier

13
g free
1/O identifier

Figure 3.7: Three Phase I/O operation

3.3 IMPLEMENTATION

has to check whether all processes use the same size in the operation. The server searches for
I/O operations with the same sequence number issued after the last set i onode() call. If al
processes called the operation, the PFSLib server sets the file positions for each process and
sends requests for 1/O operations to the appropriate 1/0 daemons. In any case the RPC returns
immediately with the address of the I/O daemon and the servers |/O identifier for this operation.
(4) If the asynchronous operation is aread operation, the data has to be transfered from aforked
child process to the client. Hence, the client process requests a shared memory segment with
the size of the operation. Later, the child process reads the data into this segment and the client
can copy it to the buffer supplied in the read operation.

Phase|l: Data transfer

(5) The client process forks a child process which carries out the data transfer.

(6) Theiread() oriwite() cal returnsan I/O identifier for the operation and the user
program continues its execution while the child process concurrently transfers the data.

(7) The child process performs the 1/0 operation by sending a RPC to the 1/O daemon. In case
of awrite operation the datais an argument of the RPC.

(8) If the 1/O daemon already received the matching request for this operation from the PFSLib
server, it reads or writes the datafrom or to the file starting at the position supplied by the server
with the request. If the matching request is not available, the operation will be delayed until the
request arrives.

(9) The child process receives the result of the RPC. In case of aread call it contains the data
requested in the operation.

(10) Thel/O daemon sends areply for the /O operation to the PFSLib server indicating whether
the operation was successful or not.

Phaselll: Freel/O Identifier

(11) Asin Intel’s PFS the application program has to free the identifier for an 1/0 operation by
calingi owai t () ori odone().

(12) In case of ani owai t () call the client process waits for the child process to exit. If
i odone() iscalled the client returns immediately if the child process is still running. If the
call read datafrom afileit is now copied form the shared memory segment to the user’s buffer.
Then, the client sends a RPC request to the PFSLib server checking the global state of the 1/0
operation.

(13) The server delays the RPC in case of ani owai t () call until the I/O daemon sent the
reply for the operation. After the reply arrived and the client checked the state of the operation,
the server frees the I/O identifier and replies to the RPC.

(14) Findly the client process frees its own 1/O identifier and thei owai t () or i odone()

cal returns.

The decomposition of asynchronous 1/O operations in two major parts allows to decouple
initialization of an 1/0O operation, the file pointer update, and the data transfer. Hence, a process

35

3 CONCEPTS OF PFSLIB

may have more than one unfinished asynchronous I/O operation on the same or different files.
The process graph of the condition—event—system shown in figure 3.8 illustrates this behavior.
The processgraph considersonly theclient and its child processes and does not show the PFSLib
server and 1/O daemon.

-Bra-fi-e-a:2-0:

Figure 3.8: Process Graph of two Asynchronous Operations

Theclient processissuestwo subsequent asynchronous I/O operation. Each of the operations
leads to the creation of a child process which concurrently carries out the data transfer. The
reading and writing to thefile is serialized only by the PFSLib server. It will not take place until
the server sends a request for the operation to the appropriate 1/0 daemon. Since the PFSLib
server updates the current file position during the initialization of an I/O operation, the two
operations may overlap.

As mentioned above, in 1/0 modes M_SYNC and M_GLOBAL 1/O operations may not be
performed until all processes called the operation. The number of bytes read or written in the
operation by every process hasto be avail able before the file access can take place. In 1/0 mode
M_GLOBAL the PFSLib server has to make sure that all processes transfer the same amount
of data in the corresponding operations. In 1/O mode M _SYNC the position in the file for an
operation depends on the corresponding operations of processes with lower ordinal number.
Additionally, the server cannot calculate the new file pointer position until all operations with
the same sequence number are available. On the other hand, the PFSLib server is able to return
an |/O identifier for the operation immediately without waiting for all corresponding operations.
Thus, a client process may continue with the user’s program if a child process transfers the
data. Figure 3.9 shows the process graph of an asynchronous 1/O operation of two processes
in 1/0 mode M_SYNC including the PFSLib server and two I/O daemons and illustrates the
cooperation and concurrent execution of the different processes.

The PFSLib server updates the file pointer and sends the request for the I/O operation to the
I/0 daemons whileit handles the second RPC (3). Hence, the I/O daemon delays the execution
(8) of the I/O operation until the second client process issued the call. On the other hand, the
asynchronous 1/0 call of the first client process returns immediately. The client process forks
achild process (5) and continues the execution of the user’s program (6). If it calls additional
asynchronous I/O operations, the calls will be handled the same way. Hence, the client process
itself, will never be blocked in an asynchronous operation.

36

3.3 |IMPLEMENTATION

Figure 3.9: Process Graph of File Accessin I/0O Mode M_SYNC

3.3.7 Synchronization

As mentioned above several combinations of I/O modes and /O operations exist causing
the server to synchronize the clients. A function that always synchronizes the clients is
seti onode(). Thus the server must provide a mechanism which manages this operation.
The problem of synchronization in the special case of parallel 1/0 can be described as follows:
the server first needs the arguments sent with the requests by al clients to check whether they
arevalid. Afterwards, it can execute the procedure and send back the resultsto all clientsagain.
For example the clients must agree in the I/O mode which should be set at a certain positionin
thefile. If an error occurs within one request al other clients must be notified.

Handle request
All requests
e and calcul ate results

for al clients

Receive and Send results
store parameter to al clients

of al client request

Figure 3.10: Synchronization of clients

Figure 3.10 shows the synchronization of the clients. The following steps are executed:

37

3 CONCEPTS OF PFSLIB

1. The PFSLib server receives arequest by an arbitrary client which indicatesthat all clients
have to be synchronized. The arguments are stored within an internal data structure of the
server and first checks are performed. The requested procedure will not be executed and
the response to the client isdelayed. An internal synchronization counter isinitialized.

2. Thefollowing requests performed by the remaining PFSLib clients are handled the same
way. If necessary, the arguments are checked against the already existing arguments from
other clients. The counter isincreased with every receiving request.

3. The arrival of the last request is indicated by the synchronization counter. When this
happens and all checks were performed successfully the requested procedure is executed
oncefor all clients. Thefinal step of the server isto send the responses back to the clients.

To implement the synchronization operation severa steps have to be performed. First,
the server skeleton produced by rpcgen has to be patched to avoid the standard one-to-one
request/reply behavior. Thefunction call svc_sendr epl y() issubstituted by anew function
pf s_sendrepl y() which can switch between the original behavior for sending replies and
the case of synchronizing the clients. In case of asynchronizing call, the RPC procedure returns
without sending areply and the server waits for the next request. If all requests are present the
procedure repliesto al clients after handling the request.

Due to their lack of internal state PFSLib clients are not aware that the following request
might be a synchronizing one. Two conflicting issues arise in this situation. On the one hand,
a timeout value is necessary for checking a possible error on server side. Thus we take the
default timeout value of 25 seconds in case of anon-synchronizing call. On the other hand, the
timeout is increased when the server handles a synchronizing call because the period of time
within requestsof clientsarrive might exceed thisdefault value. Thismeansthat the clients must
first ask the server whether the following reguest is a synchronizing one and if so increase the
timeout. The major disadvantage of this approach is that every client request must be preceded
by another request, thus the runtime of a single service request is nearly doubled. Two avoid
this overhead every client keeps information of the actual 1/0 mode of each shared file.

38

4 Future Work

PFSLib will be integrated into other research projects of the parallel processing group at LRR-
TUM. Mostimportant, itisanintegral part of THE TOOLS-SET project which aimsat providing an
environment of interoperable toolsfor PVM running on networks of workstations[28]. PFSLib
provides the paralld file system being added to the PVM programming environment. As for
the tools this implies an extension of their functionalities in order to cope with the additional
facilities provided by PFSLib. However, it also alowsto investigate tool functionality which is
based on 1/0 activities.

Theuser interface of PFSLib includesfunction callswhich evoke an internal synchronization
of al processes of an application. Using these calls increases the danger of deadlock situations.
Therefore, a debugger must support this new situation. Already available functionality which
deals with messages and message passing could for example be adapted to files and file 1/0
operations: inspection of files, modification of files, breakpoints being triggered on conditions
like specific valuesin afile, on processes entering or exiting 1/0 calls provided by PFSLib.

The same holdsfor the program flow visualizer [1]. Currently, it showsinteractions between
active objects (PVM tasks) by means of communication (message passing, collective operations,
barrier synchronization). The same principles can be applied to file I/0O operations. The user
isinterested in observing how a PFSLib operation in a specific 1/0 mode influences the logical
behavior of the parallel application program with respect to serialization, deadlocks, degree of
parallelism and other aspects.

With parallel 1/0 being an integral part of parallel applications we have to deal with new
problems concerning program tuning. The performance analyzer of THE TOOL-SET environment
will be enhanced by 1/0 related functionality. We will measure I/O performance on three levels
of abstraction: the level of the virtual machine, of the individual node, and of the active
program object. On machine level the performance analyzer will offer functionality to evaluate
measures like the total number of accessed parallel files, number of bytes read and written,
total time spent in /O calls etc. At node level we will aready be able to distinguish between
node local disks and non-local disks (accessed via e.g. NFS). Functionality will be provided
to investigate which processes on a node access a specific file during what period of time.
Finally, the process level provides a detailed view on a single process’ /O activities. Already
existing functionality which allows an automatic focusing of active measurements onto nodes
with critical or interesting behavior will be extended to be triggered by 1/0 performance values.
Thus, the performance analyzer will be able to automatically show the user values of particular
interest.

39

4 FUTURE WORK

From the point of view of al these interactive development tools, files are just anew type of
objectswhich have to be observed. Technically thiswill be achieved by adapting the monitoring
system which providesthe set of toolswith means to observe and manipul ate the system. Asthe
latter isnow enhanced by aparallel 1/0 facility al so monitoring hasto be enhanced in accordance
to that.

THE TooL-seT will be based on an OMI S (open monitoring interface specification) compliant
monitoring system which currently is designed and implemented at LRR-TUM [29]. The
integration of PFSLib into the parallel programming environment will be the first test case for
exploiting extendibility mechanisms described in the OMIS document.

Besides anecessary integration of PFSLib into existing tool functionality it will also provide
THE TooL-SET with new capabilities. PFSLib can be used to implement a parallel trace man-
agement facility which will be attached as one specia tool to the monitoring system. Having
PFSLib eliminates further development of tracing tools for the monitors. It provides mecha-
nisms to write trace files from various points of our virtual machine and to read the same file
from e.g. the central point of control of atrace driven development tool.

Furthermore, PFSLib will be integrated with the checkpointing system CoCheck [32]. It
allows a more efficient management of global checkpoints which is a prerequisite for using
checkpointing for purposes of improved cyclic debugging or performance analysis. An efficient
handling of checkpointswill allow usto store several sets of checkpoints and to reset programs
to positions preceding suspicious Situations. Starting from these positions we can activate any
tool of THE TOOL-SET and investigate program behavior.

In order to optimally support our plans of integration it is inevitable to further improve the
performance and efficiency of PFSLib. Two major issues have to be covered both of which are
related to the lack of parallelism in the current implementation of PFSLib.

First of al, file distribution has to be integrated. For the moment being, all datais written
to asingle disk which islocated somewhere in the system. It is up to the user’s responsibility
to ensure efficient access to that disk by e.g. selecting a local disk of the node where the
PFSLib server resides. An increase in performance can mainly be achieved by increasing
locality in disk access. Every file must be separated into pieces where the pieces are located
on the local disks of those nodes which frequently access them. This so called file distribution
technique will be integrated into PFSLib. Appropriate algorithms will be taken from literature
and will be compared with respect to performance. Future research oriented work will combine
file distribution and load balancing strategies: single segments will be treated as migrate-able
objects and will be transferred to disks where a higher degree of locality can be achieved.
Migration decisions will be based on 1/0O performance metrics measured by the monitoring
system of THE TOOL-SET.

Finally, PFSLib will be used by the application programmers group at LRR-TUM. Not only
will we evaluate the adequance of the user interface of PFSLib but also will we investigate the
question which additional access modes might be of interest for particular application classes.
In the end, the user interface will be enhanced to meet specialized user requirements.

40

Acknowledgements

We would like to thank the Intel Foundation for their support of this project. The long lasting
cooperation with Intel and research grantsfrom the Intel Foundation madeit possible not only do
develop the parall€ file system PFSLib but a so the programminglibrary NXLib. Both packages
together provide the user with an Intel Paragon supercomputer emulator running on a network
of workstations.

Furthermore, we would like to thank Norman Thomson for his work within the framework

of this project, especially for implementation of improvements and for extensive testing of the
code.

41

Bibliography

[1] P. Braun and R. Wismuller. Visualization of parallel program execution. In A. Bode,
T. Ludwig, V. Sunderam, and R. Wismdlller, editors, Workshop on PVM, MPI, Tools, and
Applications, pages 33-43. Technische Universitat Minchen, November 1995.

[2] Peter F. Corbett and Dror G. Feitelson. The Vesta paralel file system. Technical Report RC
19998, IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY 10598,
USA, March 1995.

[3] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, and Sandra Johnson Baylor. Parallel
access to filesin the Vestafile system. In Robert Werner, editor, Supercomputing ' 93, pages
472-481, Portland, November 1993. IEEE Computer Society Press, Los Alamitos.

[4] Peter F. Corbett, Sandra Johnson Baylor, and Dror G. Feitelson. Overview of the Vesta
paralel file system. ACM SGARCH Computer Achitecture News, 21(5):7-14, December
1993.

[5] Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg,
Bill Nitzberg, Bernhard Traversat, and Parkson Wong. MPI-1O: A parallel 1/O interface for
MPI version 0.2. Technical Report RC 19841 (87784), IBM T.J. Watson Research Center,
Yorktown Heights, NY 10598, USA, November 1994.

[6] Peter Corbett, Dror Feitelson, Sam Fineberg, Yarsun Hsu, Bill Nitzberg, Prost Jean-Pierre,
Marc Snir, Bernard Traversat, and Parkson Wong. Overview of the MPI-IO parallel 1/0
interface. In Ravi Jain, John Werth, and J.C. Browne, editors, 3rd Annual Workshop on
Input/Output in Parallel and Distributed Systems at Sth International Parallel Processing
Symposium, pages 1-15, Santa Barbara, April 1995.

[7] Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill
Nitzberg, Bernhard Traversat, and Parkson Wong. MPI-10: A parallel 1/O interface for MPI
version 0.3. NAS Technical Report NAS-95-002, NASA Ames Research Center, Moffett
Field, CA 94035-1000, USA, January 1995.

[8] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S. Almasi, Sandra John-
son Baylor, Anthony S. Bolmarcich, Yarsun Hsu, Julian Satran, Marc Snir, Robert Colao,
Brian D. Herr, Joe Kavaky, Thomas R. Morgan, and Anthony Zlotek. Parallel file system for
the IBM SP computer. IBM Systems Journal, 34(2):222-248, 1995.

42

BIBLIOGRAPHY

[9] ThomasW. Crockett. Fileconceptsfor parallel 1/0. In Supercomputing’ 89, pages 574-579.
acm Press, New York, November 1989.

[10] Erik DeBenedictis and Juan Miguel del Rosario. nCUBE pardle 1/0 software. In 11th
Annual |EEE International Phoenix Conference on Computers and Communications, pages
0117-0124, Scottsdale, April 1992. IEEE Computer Society Press, New York.

[11] Erik P. DeBenedictis and Juan Miguel del Rosario. Modular scalable 1/0. Journal of
Parallel and Distributed Computing, 17:122-128, 1993.

[12] Juan Miguel del Rosario. A guide to striped files and paralel 1/0O in nCUBE system
software, release 3.1. Technical Report nCUBE-TR002-920615, nCUBE, 919 East Hillsdale
Boulevard, Foster City, CA 94404, June 1992.

[13] Juan Miguel del Rosario. High performance paralel 1/0O on the nCUBE 2. IEICE Trans-
action (English Edition), August 1992.

[14] Peter C. Dibble and Michael L. Scott. Beyond striping: The bridge multiprocessor file
system. Computer Architecture News, 17(5):32—-39, September 1989.

[15] Peter C. Dibble and Michael L. Scott. The parallel interleaved file system: A solution
to the multiprocessor 1/0 bottleneck. under Revision for |EEE Transactions on Parallel and
Distributed Systems, April 1990.

[16] Peter C. Dibble, Michael L. Scott, and Carla Schlatter Ellis. Bridge: A high-performance
file system for parallel processors. In 8th International Conference on Distributed Computer
Systems, pages 154-161, June 1988.

[17] Dror G. Feitelson, Peter F. Corbett, and Jaen-Pierre Prost. Performance of the Vesta
paralel file system. Technica Report RC 19760, IBM Research Division, T.J. Watson
Research Center, Yorktown Heights, NY 10598, USA, September 1994.

[18] Dror G. Feitelson, Peter F. Corbett, and Jean-Piere Prost. Performance of the Vestaparallel
file system. In 9th International Parallel Processing Symposium, pages 150-158, Santa
Barbara, April 1995. |IEEE Computer Society Press.

[19] N.Galbreath, W. Gropp, andD. Levine. Applications-driven parallel 1/0. In Robert Werner,
editor, Supercomputing '93, pages 462-471, Portland, November 1993. IEEE Computer
Society Press, Los Alamitos.

[20] Andrew S. Grimshaw and E. Loyot Jr. ELFS: Object—oriented extensible file systems.
Computer Science Report TR-91-14, University of Virginia, Charlottesville, VA 22903-2442,
USA, April 1991.

[21] Andrew S. Grimshaw and Jeff Prem. High performance parallel file objects. In 6th
Distributed Memory Computing Conference, pages 720—723. IEEE Computer Society Press,
April 1991.

43

BIBLIOGRAPHY

[22] A.S. Grimshaw. The Mentat run-time system: Support for medium grained parallel com-
putation. In 5th Distributed Memory Computing Conference, pages 1064—1073, Charleston,
April 1990.

[23] A. S. Grimshaw. An introduction to parallel object-oriented parallel programming with
Mentat. Computer Science Report TR-91-07, University of Virginia, 1991.

[24] Sandra Johnson Baylor and C. Eric Wu. Parallel 1/0 workload characteristics using Vesta
Research Report RC 19940, T.J. Watson Research Center, IBM Research Division, Yorktown
Heights, NY 10598, USA, February 1995.

[25] Sandra Johnson Baylor and C. Eric Wu. Parallel workload characteristics using Vesta. In
Ravi Jain, John Werth, and J. C. Browne, editors, 3rd Annual Workshop on Input/Output in
Parallel and Distributed Systems at Sth International Parallel Processing Symposium, pages
1629, Santa Barbara, April 1995.

[26] John F. Karpowich, Andrew S. Grimshaw, and James C. French. Extensible file systems
(ELFS): An object—oriented approach to high performance file 1/0. Computer Science Tech-
nical Report CS-94-28, University of Virginia, Department of Computer Science, Thornton
Hall, Charlottesville, VA 22903-2442, USA, July 1994.

[27] David Kotz. Multiprocessor file system interfaces. In 2nd International Conference on
Parallel and Distributed Information Systems, pages 194—201, 1993.

[28] T. Ludwig and R. Wismiller. THE TooL-SET environment. In A. Bode, T. Ludwig,
V. Sunderam, and R. Wismdlller, editors, Workshop on PVM, MPI, Tools, and Applications,
pages 28-32. Technische Universitat Minchen, November 1995.

[29] T.Ludwig, R. Wismilller, V. Sunderam, and A. Bode. OMIS — On-line Monitoring Inter-
face Specification. Technical Report TUM-19609, SFB-Bericht Nr. 342/05/96 A, Technische
Universitat Minchen, Munich, Germany, February 1996.

[30] StevenA.Moyer andV. S. Sunderam. PIOUS: Anarchitecturefor parallel 1/0indistributed
computing environments. ftp://ftp.scri.fsu.edu/pub/cluster-workshop.93/PIOUS.ps.Z, De-
cember 1993.

[31] Steven A. Moyer and V. S. Sunderam. PIOUS for PVM Version 1.2 User’s Guide and
Reference Manual. Department of Mathematics and Computer Science, Emory University,
Atlanta, GA 30322, USA, May 1995.

[32] Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceedings
of the International Parallel Processing Symposium, pages 526-531, Honolulu, HI, April
1996. IEEE Computer Society Press, 10662 Los Vaqueros Circle, PO. Box 3014, Los
Alamitos, CA 90720-1264.

[33] Richard W. Stevens. Unix Network Programming, chapter 18 Remote Procedure Calls,
pages 692—719. Prentice-Hall, 1990.

44

BIBLIOGRAPHY

[34] Richard W. Stevens. Unix Network Programming, chapter 3.8 System V IPC, pages
121-126. Prentice-Hall, 1990.

[35] Sun Microsystems. RPC: Remote Procedure Call, Protocol Specification, Version 2, June
1988. RFC 1057.

[36] Sun Microsystems. XDR: External Data Representation Sandard, June 1988. RFC 1014.

[37] Andrew Witkowski, Kumar Chandrakumar, and Greg Macchio. Concurrent 1/0O system
for the hypercube multiprocessor. In Geoffrey Fox, editor, 3rd Conference on Hypercube

Concurrent Computers and Applications, pages 1398-1407. acm Press, New York, January
1988.

45

BIBLIOGRAPHY

46

M anual

MANUAL

pfsd (1PFSLib) pfsd (LPFSLib)
Name

pfsd — PFSLib file access management server
Synopsis

pfsd [humber of 1/O daemons]

Paramters

number of I/O daemons pfsd starts the specified number of basic 1/0 daemons. If no
argument is specified pfsd starts 8 basic 1/0 daemons by default.

Description

pfsd is PFSLib’s file access management server. pfsd coordinates file access to files
using PFSLib. Additionally, it handles basic 1/0O operation with an amount of dataup to a
specified or default threshold. It startsbasic I/0O daemonsiod which handle 1/O operations
above the treshold. Application processes connect to pfsd using Sun’s RPC facility with
AUTH_UNIX authentication.

Environment

The PATH environment variable is used to located the iod binary.

See also
iod(8 PFSLib)

Bugs

Currently, the user id of the application processes must be identical to the user id of pfsd.
Hence, asingle pfsd cannot serve more than one user.

Since PFSLib uses the portmapper facility two or more pfsd processes cannot run on a
single machine.

MANUAL

pfsdexit (1PFSLib) pfsdexit (1PFSLib)
Name
pfsdexit — tell the PFSLib file access management server to exit
Synopsis
pfsdexit pfsd host
Paramters

pfsd host Host name the pfsd is running on.

Description
pfsdreset sends a RPC to a pfsd which causes the process to terminate all forked iod
process and itself.

See also
open(3 PFSLib), gopen(3PFSLib), pfsd(1 PFSLib), iod(8 PFSLib)

Bugs

The RPC call might return with an error if the pfsd exits before the pfsdexit program
received the RPC reply.

MANUAL

pfsdreset (LPFSLib) pfsdreset (LPFSLib)

Name
pfsdreset — reset the PFSLib file access management server

Synopsis
pfsdreset pfsd host [filename. . .]
Paramters
pfsd host Host name the pfsd is running on.
filename Name of filesto reset. The file name must be identical to the name used in the
open() or gopen() call.
Description
pfsdreset resets the internal data structures of apfsd for all files or specified files.

See also
open(3 PFSLib), gopen(3 PFSLib), pfsd(1 PFSLib)

MANUAL

pfsdstat (1PFSLib) pfsdstat (1PFSLib)
Name

pfsdstat — Tell the PFSLib file access management server to print status information
Synopsis

pfsdstat pfsd host [-f filename] [-i][-v]

Paramters
pfsd host Host name the pfsd is running on.

-f filename Makesthe pfsd and/or iod print statusinformation for the specified file name
only.

-i Tellsiod processesto print status information as well.
-V Verboseflag. Makespfsd print all itsinternal data structures no matter if they
are currently used or not.

Description
pfsdstat sends a RPC request to a pfsd located an the machine called pfsd host which
makes the pfsd print internal status information to st dout . By default the pfsd only
prints information on data structures which are in use. This command is intended for
debugging purposes.

Seealso
pfsd(1 PFSLib), iod(8 PFSLib)

Bugs

The status information will not be printed by the pfsdstat program but by the pfsd and
iod programs.

MANUAL

close() (3PFSLib) close() (3PFSLib)

Name
close() — Closesasingleaccessed or a shared file

Synopsis
#include <pfdib.h>

i nt pfdib_close (i nt FileDescriptor)

#define close pflsib_close

Paramters
FileDescriptor File descriptor of asingle accessed or shared file.

Description

The pfdlib_close() function disconnects the process from the shared file or from aregular
UNIX file. The pfdib_close() call in PFSLib behaves identically to the standard UNIX
close() call for files.

For compatibility reasonsto Intel’sPFS, closeisdefined inpf sl i b. h asaC preprocessor
macro to overlay the C-library call.

Return Values
On success close returns 0. On failureit returns -1 and sets errno to indicate the error.

Errors

If the pfslib_close function fails, errno may be set to one of the error code values set by
the standard Unix close() function of the following value.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincorrect.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes issued a
different synchronizing operation.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfdlib_perror() to
print the appropriate error message.
Seealso
close(2), open(3 PFSLib), gopen(3 PFSLIDb), pfslib_perror(3 PFSLib)

MANUAL

cread() (3PFSLib) cread() (3PFSLib)
Name
cread() — Readsfroma shared file and blocks the calling process until the read com-

pletes. (Synchronous read)

Synopsis
#include <pfdib.h>

voi d cread (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

| ong _cread (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

#include <uio.h>
#include <pfdib.h>

voi d creadv (i nt FileDescriptor,
struct iovec *iov,
i nt iovCount)

| ong _creadv (i nt FileDescriptor,
struct iovec *iov,
i nt iovCount)

Paramters

FileDescriptor File descriptor of a shared file.

Buffer Pointer to the buffer in which to store the data after it isread form thefile.

NBytes Number of bytesto read from thefile.

ov Pointer to an array of i ovec structures that identifies the buffers
into which the data read is placed. The iovec structure is defines in
sys/ ui o. h.

iovCount Number of i ovec structures pointed to by the iov parameter.

MANUAL

Description

Other than the return values and additional errors, the cread() and creadv() functions are
identical to the read() and readv() functions, respectively.

These are synchronous calls. The calling process waits (blocks) until the read compl etes.
Use the iread() and ireadv() functions to read from a file without blocking the calling
process.

Reading past the end of afile causes an error. You can do one of the following to prevent
end-of-file errors.

e Usetheiseof() function to detect end-of-file before calling the cread() function.
e Usethelseek() function to determine the length of afile before calling cread().

e Use the _cread() or _creadv() function to detect end-of-file or that the number of
bytes read is less than the number of bytes requested.

Return Values

Upon successful completion, the cread() and creadv() functions return control to the
calling process without returning a value. Otherwise cread() and creadv() print an error
message to standard error and cause the calling process to terminate.

On success _cread() and _creadv() return the number of bytes read. On failure cread()
and _creadv() return -1 and set errno to indicate the error. These functionsreturn O (zero)
if end-of-fileis reached.

Errors

If the _cread or _creadv functions fail, errno may be set to one of the error code values
set by the standard Unix close(), Iseek(), open(), and read() functions or to the following

values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not avalid PFSLib
file descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincor-
rect.

EPFSLBADID PFSLib: Bad 1/0id. Thel/O id sent to the server isincorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLIOLEN PFSLib: Too large 1/0 operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes

issued a different synchronizing operation.

MANUAL

EPFSLMREQUEST PFSLib: Too many outstanding request. Thereis no free I/O id

left.

EPFSLNBYTES PFSLib: Read or writtento few data. The call read |ess bytesthan
requested.

EPFSLNOIOD PFSLib: Couldn’t get an I/O daemon. The server could not find

aniod for thejob.
EPFSREMOTE PFSLib: Anerror occured on the server side. Use pfslib_perror()
to print the appropriate error message.
See also

cwrite(3PFSLib), iread(3 PFSLib), iseof (3 PFSLib), iwrite(3 PFSLib),
setiomode(3 PFSLib), Iseek(3 PFSLib), open(3 PFSLib), read(2)

MANUAL

cwrite() (3PFSLib) cwrite() (3PFSLib)
Name
cwrite) — Wkites to a shared file and blocks the calling process until the write com-

pletes. (Synchronouswrite)

Synopsis
#include <pfdib.h>

voi d cwrite (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

| ong _cwrite (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

#include <uio.h>
#include <pfdib.h>

voi d cwritev (i nt FileDescriptor,
struct iovec *iov,
I nt iovCount)

| ong _cwritev (i nt FileDescriptor,
struct iovec *iov,
i nt iovCount)

Paramters

FileDescriptor File descriptor of a shared file.

Buffer Pointer to the buffer containing the data to be written.

NBytes Number of bytesto write to thefile.

iov Pointer to an array of struct i ovec structures that identifies the
buffers containing the data to be written. The iovec structure is definesin
sys/ ui o. h.

iovCount Number of i ovec structures pointed to by the iov parameter.

MANUAL

Description

Other than return values and additiona error, the cwrite() and cwrite() functions are
identical to the write() and writev() functions, respectively.

Theseareasynchronouscalls. Thecalling processwaits (blocks) until thewrite completes.
Use the iwrite() and iwritev() functions to write to a file without blocking the calling
process.

Return Values

Upon successful completion, the cwrite() and cwritev() functions return control to the
calling process without returning avalue. Otherwise cwrite() and cwritev() print an error
message to standard error and cause the calling process to terminate.

On success _cwrite() and _cwritev() return the number of bytes written. On failure
cwrite() and _cwritev() return -1 and set errno to indicate the error.

Errors

10

If the _cwrite or _cwritev functionsfail, errno may be set to one of the error code values
set by the standard Unix close(), Iseek(), open(), and write() functions or to the following
values.

EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincor-
rect.

EPFSLBADID PFSLib: Bad 1/0id. Thel/O id sent to the server isincorrect.

EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLIOLEN PFSLib: Too large 1/0O operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

EPFSLMIXIO PFSLib: Mixed file operations. At least one of the processes

issued a different synchronizing operation.
EPFSLMREQUEST PFSLib: Too many outstanding request. Thereisno free I/O id

eft.

EPFSLNBYTES PFSLib: Read or written to few data. The call wrote less bytes
than requested.

EPFSLNOIOD PFSLib: Couldn’t get an 1/0O daemon. The sever could not find an
iod for the job.

EPFSLREMOTE PFSLib: Anerror occured on the server side. Use pfslib_perror()
to print the appropriate error message.

MANUAL

See also

cread(3 PFSLib), iread(3 PFSLib), iseof (3 PFSLib), iwrite(3 PFSLib),
setiomode(3 PFSLib), Iseek(3 PFSLib), open(3 PFSLib), write(2)

11

MANUAL

gopen() (3PFSLib) gopen() (3PFSLib)

Name

gopen() — Performsa global open of afile for reading or writing, setsthe 1/0 mode of
thefile, and performs a global synchronization.

Synopsis
#include <fcntl.h>

#include <sys/types.h>
#include <pfdib.h>

i nt gopen (char * FileName,
i nt OpenFlags,
i nt 1OMode,
node_t Mode)

I nt _gopen (char * FileName,
i nt OpenFlags,
i nt 1OMode,
node_t Mode)

Paramters
FileName Pointer to a pathname of thefile to be opened or created.

OpenFlags Specifies the type of access, specia open processing, the type of update, and
theinitial state of the open file. See open().

IOMode 1/0 mode to be assigned to the file. See setiomode().

Mode Specifies the permissions of the file to be created. If the file aready exists,
this parameter isignored. See open().

Description

The gopen() function performs a global open call which synchronizes the processes; all
processes opens the same file without issuing multiple 1/0 requests.

If the parameter FileName of ashared file does not beginwith’/’ (slash), the path name of
the current working directory as returned by getcwd is prepended to the file name which
Isused by the pfsd.

War ning!
Be aware that a shared file will be opened by the pfsd program on the machine
it is located on. If you use an absolute path name make sure it is accessible
on the pfsd’s machine. If you use a file name which does not begin with '/’
(slash), make sure the pathname returned by getcwd(), is accessible on the
psfd’s machine.

12

MANUAL

Return Values

On success gopen() and _gopen() return a file descriptor of the shared file. On failure
gopen() will print an error message to standard error and cause the calling process to
terminate; _gopen() returns-1 and sets error to indicate the error.

Errors

If the _gopen() function fails, errno may be set to one of the error code values set by
the standard Unix fstat(), getcwd(), Iseek(), malloc(), and open() functions or to the
following values.

ENAMETOOLONG Length of the file name string exceeds its maximum.
EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLNDELAY PFSLib: O_NDELAY is not supported. PFSLib does not support
non-blocking I/0O using the O_NDELAY flag. Use asynchronous
I/O operations (e.g. iread()).

EPFSLMFILE PFSLib: Too many open files. The sever has no more space left
initsfiletable.

EPFSREMOTE PFSLib: Anerror occured onthe server side. Use pfslib_perror ()
to print the appropriate error message.
Seealso
close(3 PFSLib), getcwd(3), open(2), open(3 PFSLiDb), setiomode(3 PFSLib)

Bugs

Asfile descriptors of shared files are inherited by aprocess created with the for k() system
call, file access might lead to errors since parent and child process use the same socket
connection to the PFSLib daemon process.

13

MANUAL

iodone() (3PFSLib) iodone() (3PFSLib)
Name

iodone() — Determines whether an asynchronousread or write operation is complete.
Synopsis

#include <pfdib.h>
| ong iodone (| ong IOIdentifier)
| ong _iodone (| ong IOIdentifier)

Paramters
[Oldentifier Non-negative 1/0 id returned by an asynchronous read or write library call
(e.g. iread() or iwrite()).
Description

The iodone() function determines whether the asynchronous read or write operation
associated with the the Ol dentifier parameter is complete.

Return Values

On success iodone and _iodone() return 1 if the read or write operation is complete. If
the operation is not yet complete they return O (zero). On failure iodone() prints an error
message to standard error causesthe calling processto terminate; _iodone() returns-1 and
sets errno to indicate the error.

Errors
EPFSLAUTH PFSLib: Incorrect authentication. You are not alowed to access
the pfsd.
EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad 1/Oid.
EPFSLCHLDEXIT PFSLib: Asynchronous I/O process terminated unsuccessfuly.
EPFSLCHLDSIG PFSLib: Asynchronous /O process terminated by signal.
EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib_perror()
to print the appropriate error message.
See also
iowait(3 PFSLib), iread(3 PFSLib), iwrite(3 PFSLib)

14

MANUAL

iomode() (3PFSLib) iomode() (3PFSLib)

Name
iomode() — getsthe /O mode of afile.

Synopsis
#include <pfdib.h>

| ong iomode (i nt FileDescriptor)
| ong _iomode (i nt FileDescriptor)

Paramters
FileDescriptor File descriptor of ashared file.

Description

The iomode() functions determines the current 1/0 mode of the file identified by the
FileDescriptor parameter.

Return Values

On success iomode() and _iomode() return the current 1/0 mode of the file identified by
the FileDescriptor parameter. On failure iomode() prints an error message to standard
error and causes the calling process to terminate; _iomode() returns -1 and sets errno to
indicate the error.

Errors
EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.
EPFSLBADF PFSLib: Bad file number. FileDescriptor is not avalid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincorrect.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib_perror() to
print the appropriate error message.

See also
gopen(3 PFSLib), setiomode(3 PFSLib)

15

MANUAL

iowait() (3PFSLib) iowait() (3PFSLib)
Name

iowait() — Waits (blocks) until an asynchronousread or write operation completes.
Synopsis

#include <pfdib.h>
voi d iowait (|1 ong IOIdentifier)
| ong _iowait (| ong IOldentifier)

Paramters
IOldentifier Non-negative 1/0 id returned by an asynchronous read or write library call
(e.g. iread() or iwrite()).
Description

Theiowait() function waits until an asynchronous read or write operation associated with
the the IOl dentifier parameter compl etes.

Return Values

Upon successful completion, the iowait() function returns control to the calling process
without returning a value. Otherwise iowait() prints an error message to standard error
and causes the calling process to terminate.

On success _iowait() returns 0. Onfailureit returns-1 and sets errno to indicate the error.

Errors
EPFSLAUTH PFSLib: Incorrect authentication. You are not alowed to access
the pfsd.
EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd is incor-
rect.

EPFSLBADID PFSLib: Bad 1/Oid.
EPFSLCHLDEXIT PFSLib: Asynchronous I/O process terminated unsuccessfuly.
EPFSLCHLDSIG PFSLib: Asynchronous /O process terminated by signal.
EPFSREMOTE PFSLib: An error occured on the server side. Use pfdlib_perror()
to print the appropriate error message.
Seealso
iodone(3PFSLib), iread(3 PFSLib), iwrite(3PFSLib)

16

MANUAL

iread() (3PFSLib) iread() (3PFSLib)

Name
iread() — Readsfroma shared file and returns immediately. (Asynchronous read)

Synopsis
#include <pfdib.h>

| ongiread (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

| ong _iread (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

#include <uio.h>
#include <pfdib.h>

| ongireadv (i nt FileDescriptor,
struct iovec *iov,
i nt iovCount)

| ong _ireadv (i nt FileDescriptor,
struct iovec *iov,
i nt iovCount)

Paramters
FileDescriptor File descriptor of ashared file.
Buffer Pointer to the buffer in which to store the data after it isread form thefile.
NBytes Number of bytesto read from thefile.
iov Pointer to an array of i ovec structures that identifies the buffers
into which the data read is placed. The iovec structure is defines in
sys/ ui o. h.
iovCount Number of i ovec structures pointed to by the iov parameter.
Description

Other than the return values, additional errors, and the asynchronous behavior theiread()
and ireadv() functions are identical to the read() and readv() functions, respectively.

These calls are asynchronous calls. They return to the calling process immediately; the
calling process continues its execution while the read is being done. Use iowait() or
iodoneg() to determine whether the read operation compl eted.

Use the iseof() function to detect end-of-file.

17

MANUAL

Warning!

The number of available 1/0 idsis limited to 20 per process. If there are more
than 20 outstanding operations, the call will return with an error. Useiowait()
ot iodong() to free I/O ids of completed 1/0 operations.

Return Values

Upon successful completion, theiread(), _iread(), ireadv(), and _ireadv() functionsreturn
and non-negative I/O id for useiniodone() and iowait(). On failure, iread() and ireadv()
print an error message to standard error and cause the calling processto terminate; iread()
and _ireadv() return -1 and set errno to indicate the error.

Errors

If the _iread or _ireadv functions fail, errno may be set to one of the error code values
set by the standard Unix close(), fork(), Iseek(), malloc(), open(), read(), and shmget()
functions or to the following values.

EPFSLAUTH

EPFSLBADF

EPFSLBADFH

EPFSLBADID
EPSFLINVAL
EPFSLIOLEN

EPFSLMIXIO

EPFSLMREQUEST

EPFSLNOIOD

EPFSREMOTE

See also

PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

PFSLib: Bad filehandle. The file handle sent to the pfsd isincor-
rect.

PFSLib: Bad 1/0id. Thel/O id sent to the server isincorrect.
PFSLib: Invalid argument. Invalid argument sent to the server.

PFSLib: Too large 1/0O operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

PFSLib: Mixed file operations. At least one of the processes
issued a different synchronizing operation.

PFSLib: Too many outstanding request. There is no free I/O id
eft.

PFSLib: Couldn’t get an 1/0 daemon. The sever could not find an
iod for the job.

PFSLib: Anerror occured on the server side. Use pfslib_perror()
to print the appropriate error message.

cread(3 PFSLib), cwrite(3 PFSLib), gopen(3 PFSLib), open(3 PFSLib),
iodone(3PFSLib), iowait(3PFSLib), iseof (3PFSLib), iwrite(3PFSLib),

setiomode(3 PFSLib)

18

MANUAL

iseof() (3PFSLib) iseof() (3PFSLib)
Name

iseof() — Determines whether the file pointer is at end-of-file.
Synopsis

#include <pfdib.h>
| ong iseof (i nt FileDescriptor)
| ong _iseof (i nt FileDescriptor)

Paramters
FileDescriptor File descriptor of ashared file.

Description

Usetheiseof() function to determinewhether thefile pointer isat end-of-file. Thisfunction
blocks until al asynchronous requests made by the process to the file are processed.

Return Values

Upon successful completion the iseof() and _iseof() function returns O (zero) if the file
pointer isnot at end-of-file or 1 if thefile pointer is at end-of-file. On failure iseof() prints
an error message to standard error and causes the calling process to terminate.; _iseof()
returns -1 and sets errno to indicate the error.

Errors
EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.
EPFSLBADF PFSLib: Bad file number. FileDescriptor is not avalid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincorrect.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfslib_perror () to
print the appropriate error message.

See also
cread(3 PFSLib), cwrite(3PFSLib), iread(3 PFSLib), iwrite(3 PFSLib), Iseek(3 PFSLib)

19

MANUAL

iwrite() (3PFSLib) iwrite() (3PFSLib)

Name

iwrite() — Writesto a shared file and returns immediately. (Asynchronouswrite)

Synopsis

#include <pfdib.h>

voi d iwrite (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

| ong _iwrite (i nt FileDescriptor,
char * Buffer,
unsi gned i nt NBytes)

#include <uio.h>
#include <pfdib.h>

voi d iwritev (i nt FileDescriptor,
struct iovec *iov,
i nt iovCount)

| ong _iwritev (i nt FileDescriptor,
struct iovec *iov,
I nt iovCount)

Paramters

FileDescriptor File descriptor of ashared file.

Buffer Pointer to the buffer containing the data to be written.
NBytes Number of bytesto writeto thefile.
iov Pointer toan array of i ovec structuresthat identifiesthe buffers contain-
ing the datato be written. Theiovec structureisdefinesinsys/ ui o. h.
iovCount Number of i ovec structures pointed to by the iov parameter.
Description

20

Other than the return values, additional errors, and the asynchronous behavior theiwrite()
and iwritev() functions are identical to the write() and writev() functions, respectively.

These calls are asynchronous calls. They return to the calling process immediately; the
calling process continues its execution while the write is being done. Use iowait() or
iodone() to determine whether the read operation completed.

MANUAL

War ning!

The number of available 1/0O idsis limited to 20 per process. If there are more
than 20 outstanding operations, the call will return with an error. Use iowait()
ot iodong() to free I/O ids of completed 1/0O operations.

Return Values

Upon successful completion, the iwrite(), _iwrite(), iwritev(), and _iwritev() functions
return and non-negative I/O id for use in iodone() and iowait(). On failure, iwrite() and
iwrite() print an error messageto standard error and cause the calling processto terminate;
_Ziwrite() and _iwritev() return -1 and set errno to indicate the error.

Errors

If the _iwrite or _iwritev functionsfail, errno may be set to one of the error code values
set by the standard Unix close(), fork(), Iseek(), malloc(), open(), and write() functions
or to the following values.

EPFSLAUTH

EPFSLBADF

EPFSLBADFH

EPFSLBADID
EPSFLINVAL
EPFSLIOLEN

EPFSLMIXIO

EPFSLMREQUEST

EPFSLNOIOD

EPFSLREMOTE

See also

PFSLib: Incorrect authentication. You are not allowed to access
the pfsd.

PFSLib: Bad file number. FileDescriptor is not a valid PFSLib
file descriptor.

PFSLib: Bad filehandle. The file handle sent to the pfsd isincor-
rect.

PFSLib: Bad 1/0id. Thel/O id sent to the server isincorrect.
PFSLib: Invalid argument. Invalid argument sent to the server.

PFSLib: Too large 1/0 operation. The number of bytes in the
operation is higher than PFSLib’s maximum value.

PFSLib: Mixed file operations. At least one of the processes
issued a different synchronizing operation.

PFSLib: Too many outstanding request. There is no free I/O id
left.

PFSLib: Couldn’t get an 1/0 daemon. The sever could not find an
iod for the job.

PFSLib: Anerror occured on the server side. Use pfdlib_perror()
to print the appropriate error message.

cread(3 PFSLib), cwrite(3 PFSLib), gopen(3 PFSLib), open(3 PFSLib),
iodone(3 PFSLib), iowait(3 PFSLib), iseof(3 PFSLib), iread(3 PFSLib),

setiomode(3 PFSLib)

21

MANUAL

Iseek() (3PFSLib) Iseek() (3PFSLib)

Name
Iseek() — Set thefile pointer to the requested position.

Synopsis
#include <sys/types.h>
#include <pfdib.h>

of f .t pfdib_lseek (i nt Filedescriptor,
of f .t Offset,
i nt Whence)

#define |seek pfdlib_lseek

Paramters
FileDescriptor File descriptor of asingle accessed or shared file.

Offset The value, in bytes, to be used together with the Whence parameter to set
the file pointer position.
Whence Specifies how Offset affects the file position. The values for the Whence

parameter are as follows:
SEEK _SET Setsthefile position to Offset.

SEEK _CUR Setsthefile position to the current position plus Offset.
SEEK _END Setsthefile position to end-of-file plus Offset.

Description

The pfslib_lseek() function sets the file position of a shared file or a regular Unix file.
Other than additional errors, it is identical to the standard Iseek() system call with the
following exceptions when accessing a shared file.

If the I/O mode of the shared file is M_GLOBAL, M_RECORD, or M_SYNC, pfs-
lib_Iseek() synchronizes the processes and the requested file position must be the same
for all processes.

For compatibility reasons to Intel’s PFS, Iseek is defined as a C preprocessor macro to
overlay the C-library call.
Return Values

Upon successful completion pfslib_leek() returns the new position of the file pointer as
measured in bytes from the beginning of thefile. Onfailureit returns-1 and sets errno to
indicate the error.

22

MANUAL

Errors
EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.
EPFSLBADF PFSLib: Bad file number. FileDescriptor is not avalid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincorrect.

EPFSLMIXIO PFSLib: Mixedfile operations. At least one of the processesissued a
different synchronizing operation.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfdlib_perror () to
print the appropriate error message.

See also
Iseek(2)

23

MANUAL

lsize() (3PFSLib)

Name

Isize() — Increasesthe size of afile
Synopsis

#include <sys/types.h>

#include <pfdib.h>

| ong Isize (i nt Filedescriptor,
of f .t Offset,
i nt Whence)

| ong _Isize (1 nt Filedescriptor,
of f .t Offset,
i nt Whence)

Paramters

FileDescriptor File descriptor of ashared file.

size() (3PFSLib)

Offset The value, in bytes, to be used together with the Whence parameter to

increase thefile size.

Whence Specifies how Offset affects the file size. The values for the Whence

parameter are defined in pfdlib.h as follows:

SIZE_SET Setsthefile sizeto the greater of the current size or Offset.
SIZE_CUR Sets the file size to the greater of the current size or the

current location plus Offset.

SIZE_END Sets the file size to the greater of the current size or the

current size plus Offset.

Description

The Isize() function increases the size of the file according to the Offset and Whence

parameters.

Thisfunctionsis merely included for compatibility with Intel’s PFS.

Return Values

On success, Isize() and _Isize() return the new size of the file. On failure, Isize prints an
error message to standard error causes the calling process to terminate; _Isize() returns -1

and sets errno to indicate the error.

24

MANUAL

Errors
If the _Isize function fails, errno may be set to one of the error code values set by the
standard Unix ftruncate() function or to the following values.
EPFSLAUTH PFSLib: Incorrect authentication. You are not alowed to access the
pfsd.

EPFSLBADF PFSLib: Bad file number. FileDescriptor is not avalid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincorrect.
EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.
EPFSREMOTE PFSLib: An error occured on the server side. Use pfdlib_perror () to
print the appropriate error message.
See also
Iseek (3 PFSLib)

25

MANUAL

open() (3PFSLib) open() (3PFSLib)

Name
open() — Opensor createsalocal or shared file for reading or writing

Synopsis
#include <fentl.h>

#include <sys/types.h>
#include <pfdib.h>

I nt pfdib_open (char * FileName,
I nt OpenFlags,
node_t Mode)

i nt _pfdib_open (char * FileName,
i nt OpenFlags,
node_t Mode,
i nt 1OMode,
i nt NumberOfClients,
i nt MyNumber,
i nt GlobalFlag)

#define open pfdib_open

Paramters
FileName Pointer to a pathname of the file to be opened or created.
OpenFlags Specifiesthetype of access, special open processing, thetypeof update,
and theinitial state of the open file. See open().
Mode Specifies the permissions of the file to be created. If the file already
exists, this parameter isignored. See open().
IOMode I/O mode to be assigned to the file. See setiomode().
Number OfClients Number of processes accessing the shared files.
Mynumber The calling process’ number within the accessing processes.
GlobalFlag Flag which specifies whether the call is synchronizing.
Description

The pfdib_open() isidentical to the standard open() function except for addition features.

If the pattern *### matches somewhere in the FileName parameter a local file for the
requesting processwill be opened. The pattern### will be substituted by the number (and
leading zeros) of the process within the parallel application as specified in pfdib_init().

26

MANUAL

For example opening "myfile####" will open "myfile.000" for process 0, "myfile.001" for
process 1, and so on. Subsequent file operations must be standard Unix calls.

If the pattern’ ### isnot within thefilenameand’ pfs isasubstring in FileName afilefor
paralel access will be opened. Subsequent file operations will be handled by PFSLib. If
'pfs isnot asubstring in FileName a standard Unix open will be called and all subsequent
file operations must be standard Unix calls. Use gopen() to open a shared file which does
not contain’pfs’ in FileName.

The _pfdlib_open() function allows opening shared files with other Number OfClients and
MyNumber parametersthan specifiedinpfdib_init. ThelOMode parameter only haseffect
if GlobalFlag isnot equal O (zero). If GlobalFlag is not equal O (zero) _pfslib_open() is
asynchronizing call. gopen and pfslib_open() are both based on _pfslib_open().

If the parameter FileName of a shared file does not beginwith’/’ (slash), the path name of
the current working directory as returned by getcwd is prepended to the file name which
isused by the pfsd.

War ning!
Be aware that a shared file will be opened by the pfsd program on the machine
it is located on. If you use an absolute path name make sure it is accessible
on the pfsd’s machine. If you use a file name which does not begin with ’/’
(slash), make sure the pathname returned by getcwd(), is accessible on the
psfd’s machine.

For compatibility reasons to Intel’s PFS, open is defined as a C preprocessor macro to
overlay the C-library call.
Return Values

On success pfslib_open() return afile descriptor of a shared or local file; _pfslib_open()
returns afile descriptor to a shared file.

On failure the functions return -1 and set errno to indicate the error.

Errors

If the pfdlib_open or _pfslib_open functionsfail, errno may be set to one of the error code
values set by the standard Unix fstat(), getcwd(), Iseek(), malloc(), and open() functions
or to the following values.

ENAMETOOLONG Length of the file name string exceeds its maximum.
EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLNDELAY PFSLib: O_NDELAY is not supported. PFSLib does not support
non-blocking I/0O using the O_NDELAY flag. Use asynchronous
I/O operations (e.g. iread()).

EPFSLMFILE PFSLib: Too many open files. The sever has no more space left
initsfiletable.

27

MANUAL

EPFSREMOTE PFSLib: Anerror occured onthe server side. Use pfdlib_perror()
to print the appropriate error message.
See also
pfdib_init(3 PFSLib), open(2), getcwd(3), gopen(3 PFSLib), setiomode(3 PFSLib)

Bugs

Asfile descriptors of shared filesare inherited by a process created with the for k() system
cal, file access might lead to errors since parent and child process use the same socket
connection to the PFSLib daemon process.

28

MANUAL

pfdib_init() (3PFSLib) pfdib_init() (3PFSLib)
Name

pfdib_init() — Initializing parallel file access
Synopsis

#include <pfdib.h>

voi d pfdib_init (char * PfsdHostName,
i nt NumberOfClients,
i nt MyNumber)

voi d _pfdib_init (char * PfsdHostName,
i nt NumberOfClients,
I nt MyNumber,
I nt SeverThreshold,
i nt ClientThreshold)

Paramters
PfsdHostName Name of the host the pfsd resides on.
Number OfClients Number of processes in the application accessing the shared files.
Mynumber The calling process’ number within the application.

ServerThreshold Number of bytes up to which the 1/O operation will be handled by the
pfsd. 1/0 operations with higher amount of datawill be handled by an
iod.

ClientThreshold Number of bytes up to which the 1/O operation will always be syn-

chronous on the client side. Asynchronous I/O operations with higher
amount of datawill be handled by aforked child process.

Description

With pfdlib_init() a process of an application using PFSLib initializes parallel file access
and connects itself as a client to pfsd. Due to the independence of any parallel pro-
gramming environment the process has to identify itself uniquely within the processes of
the application by the MyNumber parameter. 1t must be in the range of 0 to Number Of-

Clients—1.
War ning!
Every process has to call this function before any other PFSLib operation can
be executed.

29

MANUAL

With _pfdlib_init the user can specify other than the default server and client thresholds
for asynchronous operations.

Return Values

On success pfdlib_init, and _pfslib_init return control to the calling process, otherwisethe
calling process will be terminated.

See also
pfsd(1 PFSLib)

30

MANUAL

pfdib_perror() (3PFSLib) pfdib_perror() (3PFSLib)
Name

pfslib_perror() — Print an error message explaining an subroutine error.
Synopsis

#include <pfdlib.h> #include <pfdib_errno.h>
voi d pfslib_perror (char * String)

Paramters
Sring A string to be printed in the error message.

Description

Thepfdlib_perror () subroutinewritesamessage on the standard error output that describes
the last error encountered by a system call or library call. The error message includesthe
String parameter followed by a: (colon), ablank, the message, and a new-line character.
The error number is taken from the global variable errno. If the error code is within the
range of standard errors pfdlib_perror behaveslikeperror. If theerror codeiswithinthe
range of PFSLib errors, the description of the error will be printed. If an error occured
on the pfsd or iod side, this will be stated and a description of the remote error will be
printed. Due to the heterogeneity of PFSLib, the error number of the remote error is not
available since it may differ from system to system.

Seealso
perror(3)

31

MANUAL

setiomode() (3PFSLib)

Name
setiomode() — Setsthe I/O mode of a shared file.

Synopsis
#include <pfdib.h>

voi d setiomode (i nt FileDescriptor,
i nt IOMode)

voi d _setiomode (i nt FileDescriptor,
i nt IOMode)

Paramters
FileDescriptor File descriptor of ashared file.

setiomode() (3PFSLib)

IOMode [/O modeto be set. Values of IOMode are as follows:

M _UNIX Each process has its own file pointer, file operations are
performed in first-come, first-serve basis, and access is
unrestricted. Thismodeis set by default.

M_LOG All processes share asinglefile pointer, file operations are
performed in first-come, first-serve basis.

M_SYNC All processes share asinglefile pointer, file operations are
performed in order by node number. Records may have
variable length. File operations are synchronizing.

M_RECORD Each process has its own file pointer, file operations
are performed in first-come, first-serve basis. However,
records are stored in the file in order by node number.
Records must be of afixed length.

M_GLOBAL All processes share asingle file pointer and must perform
the same operations in the same order. Data of a write
operations will be written only once. In aread operation
all processes will read the same data. File operations are

synchronizing.

Description

The setiomode() function changes the I/O mode of a shared file. It must be performed by
all processes with the same parameters and synchronizes the processes.

See the Intel’s Paragon Manual for a detailed description.

32

MANUAL

Return Values

On success setiomode() returns control to the calling process. Otherwiseit printsan error
message to standard error and causes the calling process to terminate.

Upon successful completion _setiomode() behavesidentically to setiomode(). On failure
_setiomode() returns -1 and sets errno to indicate the error.

Errors
EPFSLAUTH PFSLib: Incorrect authentication. You are not allowed to access the
pfsd.
EPFSLBADF PFSLib: Bad file number. FileDescriptor is not avalid PFSLib file
descriptor.

EPFSLBADFH PFSLib: Bad filehandle. The file handle sent to the pfsd isincorrect.
EPSFLINVAL PFSLib: Invalid argument. Invalid argument sent to the server.

EPFSLMIXIO PFSLib: Mixedfile operations. At least one of the processesissued a
different synchronizing operation.

EPFSREMOTE PFSLib: An error occured on the server side. Use pfdlib_perror () to
print the appropriate error message.
Seealso

cread(3 PFSLib), cwrite(3PFSLib), iread(3 PFSLib), iwrite(3 PFSLib),
iomode(3 PFSLib)

33

MANUAL

iod (8PFSLib) iod (8PFSLib)

Name
iod — PFSLibbasic /O server

Synopsis
iod

Description

Theiod programm will be started by the pfsd program. It is not intended to be executed
by the user.

See also
pfsd(1 PFSLib)

34

SFB 342:

Methoden und Werkzeuge furr die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/1/90 A

342/2/90 A

342/3/90 A

342/4/90 A

342/5/90 A

342/6/90 A

342/7/90 A

342/8/90 A

342/9/90 A

342/10/90 A
342/11/90 A

342/12/90 A
342/13/90 A
342/14/90 A

Robert Gold, Walter Vogler: Quality Criteriafor Partial Order Semantics
of Place/Transition-Nets, Januar 1990

Reinhard Fol3meier: Die Rolle der Lastverteilung bei der numerischen
Parallel programmierung, Februar 1990

Klaus-Jorn Lange, Peter Rossmanith: Two Results on Unambi-

guous Circuits, Februar 1990

Michael Griebel: Zur Losung von Finite-Differenzen- und Finite-
Element-Gleichungen mittels der Hierarchischen Transformations-
Mehrgitter-Methode

Reinhold Letz, Johann Schumann, Stephan Bayerl, Wolfgang Bibel:
SETHEO: A High-Performance Theorem Prover

Johann Schumann, Reinhold Letzz PARTHEO: A High Performance
Parallel Theorem Prover

Johann Schumann, Norbert Trapp,
SETHEO/PARTHEO Users Manual
Christian Suttner, Wolfgang Ertel: Using Connectionist Networks for
Guiding the Search of a Theorem Prover

Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hubert Ertl, Olav
Hansen, Josef Haunerdinger, Paul Hofstetter, Jaroslav Kremenek,
Robert Lindhof, Thomas Ludwig, Peter Luksch, Thomas Treml: TOP-
SYS, Toolsfor Parallel Systems (Artikel sammlung)

Walter Vogler: Bisimulation and Action Refinement

Jorg Desel, Javier Esparza: Reachability in Reversible Free- Choice
Systems

Rob van Glabbeek, Ursula Goltz: Equivalences and Refinement

Rob van Glabbeek: The Linear Time - Branching Time Spectrum
Johannes Bauer, Thomas Bemmerl, Thomas Treml: Leistungsanayse
von verteilten Beobachtungs- und Bewertungswerkzeugen

Martin van der Koden:

Reihe A

342/15/90 A
342/16/90 A
342/17/90 A

342/18/90 A
342/19/90 A

342/20/90 A

342/21/90 A

342/22/90 A

342/23/90 A

342/24/90 A

342/25/90 A

342/26/90 A

342/27/90 A

342/28/90 A

342/29/90 A

342/30/90 A
342/31/90 A

342/32/90 A

342/33/90 A

342/1/91 A

Peter Rossmanith: The Owner Concept for PRAMSs

G. Bockle, S. Trosch: A Simulator for VLIW-Architectures

P. Slavkovsky, U. Rude: Schnellere Berechnung klassischer Matrix-
Multiplikationen

Christoph Zenger: SPARSE GRIDS

Michael Griebel, Michael Schneider, Christoph Zenger: A combination
technique for the solution of sparse grid problems

Michael Griebel: A Pardlelizable and Vectorizable Multi- Level-
Algorithm on Sparse Grids

V. Diekert, E. Ochmanski, K. Reinhardt: On confluent semi-
commutations-decidability and complexity results

Manfred Broy, Claus Dendorfer: Functional Modelling of Operating
System Structures by Timed Higher Order Stream Processing Functions
Rob van Glabbeek, UrsulaGoltz: A Deadlock-sensitive Congruence for
Action Refinement

Manfred Broy: On the Design and Verification of a Simple Distributed
Spanning Tree Algorithm

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Peter
Luksch, Roland Wismiller: TOPSYS - Tools for Paralel Systems
(User’'s Overview and User’'s Manuals)

Thomas Bemmerl, Arndt Bode, Thomas Ludwig, Stefan Tritscher:
MMK - Multiprocessor Multitasking Kernel (User’'s Guide and User’s
Reference Manual)

Wolfgang Ertel: Random Competition: A Simple, but Efficient Method
for Parallelizing Inference Systems

Rob van Glabbeek, Frits Vaandrager: Modular Specification of Process
Algebras

Rob van Glabbeek, Peter Weijland: Branching Time and Abstraction in
Bisimulation Semantics

Michael Griebel: Paralel Multigrid Methods on Sparse Grids

Rolf Niedermeier, Peter Rossmanith: Unambiguous Simulations of
Auxiliary Pushdown Automata and Circuits

Inga Niepel, Peter Rossmanith: Uniform Circuits and Exclusive Read
PRAMs

Dr. Hermann Hellwagner: A Survey of Virtually Shared Memory
Schemes
Walter Vogler:
Refinement?

Is Partial Order Semantics Necessary for Action

Reihe A

342/2/91 A

342/3/91 A

342/4/91 A

342/5/91 A
342/6/91 A

342/7/91 A

342/8/91 A
342/9/91 A

342/10/91 A

342/11/91 A

342/12/91 A

342/13/91 A

342/14/91 A

342/15/91 A

342/16/91 A

342/17/91 A
342/18/91 A

342/19/91 A

342/20/91 A

Manfred Broy, Frank Dederichs, Claus Dendorfer, Rainer Weber: Char-
acterizing the Behaviour of Reactive Systems by Trace Sets

Ulrich Furbach, Christian Suttner, Bertram Fronhofer: Massively Par-
alel Inference Systems

Rudolf Bayer: Non-deterministic Computing, Transactions and Recur-
sive Atomicity

Robert Gold: Dataflow semanticsfor Petri nets

A. Heise; C. Dimitrovici: Transformation und Komposition von P/T-
Netzen unter Erhaltung wesentlicher Eigenschaften

Walter Vogler: Asynchronous Communication of Petri Nets and the
Refinement of Transitions

Walter Vogler: Generalized OM-Bisimulation

Christoph Zenger, KlausHallatschek: Fouriertransformation auf dinnen
Gittern mit hierarchischen Basen

Erwin Loibl, Hans Obermaier, Markus Pawlowski: Towards Parallelism
in aRelational Database System

Michael Werner: Implementierung von Algorithmen zur Kompakti-
fizierung von Programmen fur VLIW-Architekturen

Reiner Miller: Implementierung von Algorithmen zur Optimierung von
Schleifen mit Hilfe von Software-Pipelining Techniken

Saly Baker, Hans-Jorg Beier, Thomas Bemmerl, Arndt Bode, Hu-
bert Ertl, Udo Graf, Olav Hansen, Josef Haunerdinger, Paul Hofstetter,
Rainer Knodlseder, Jaroslav Kremenek, Siegfried Langenbuch, Robert
Lindhof, Thomas Ludwig, Peter Luksch, Roy Milner, Bernhard Ries,
Thomas Treml: TOPSYS - Tools for Parallel Systems (Artikelsamm:-
lung); 2., erweiterte Auflage

Michael Griebel: Thecombination techniquefor the sparsegrid solution
of PDE’s on multiprocessor machines

Thomas F. Gritzner, Manfred Broy: A Link Between Process Algebras
and Abstract Relation Algebras?

Thomas Bemmerl, Arndt Bode, Peter Braun, Olav Hansen, Thomas
Treml, Roland Wismuller: The Design and Implementation of TOPSY S
Ulrich Furbach: Answersfor digunctivelogic programs

Ulrich Furbach: Splitting as a source of parallelism in digunctivelogic
programs

Gerhard W. Zumbusch: Adaptive paralele Multilevel-Methoden zur
Losung elliptischer Randwertprobleme

M. Jobmann, J. Schumann: Modelling and Performance Analysis of a
Parallel Theorem Prover

Reihe A

342/21/91 A

342/22/91 A

342/23/91 A

342/24/91 A

342/25/91 A
342/26/91 A

342/27/91 A

342/28/91 A

342/29/91 A

342/30/91 A

342/31/91 A

342/32/91 A

342/1/92 A

342/2/92 A

342/2-2/92 A

342/3/92 A

342/4192 A

342/5/92 A

Hans-Joachim Bungartz: An Adaptive Poisson Solver Using Hierarchi-
cal Bases and Sparse Grids

Wolfgang Ertel, Theodor Gemenis, Johann M. Ph. Schumann, Christian
B. Suttner, Rainer Weber, Zongyan Qiu: Formalismsand Languagesfor
Specifying Parallel Inference Systems

Astrid Kiehn: Local and Global Causes

Johann M.Ph. Schumann: Parall€lization of Inference Systemsby using
an Abstract Machine

Eike Jessen: Speedup Analysis by Hierarchical Load Decomposition
Thomas F. Gritzner: A Simple Toy Example of a Distributed System:
On the Design of a Connecting Switch

Thomas Schnekenburger, Andreas Weininger, Michael Friedrich: Intro-
ductionto the Parallel and Distributed Programming L anguage ParM od-
C

Claus Dendorfer: Funktionale Modellierung eines Postsystems
Michael Griebel: Multilevel algorithms considered as iterative methods
on indefinite systems

W. Reisig: Parallel Composition of Liveness

ThomasBemmerl, Christian Kasperbauer, Martin Mairandres, Bernhard
Ries. Programming Tools for Distributed Multiprocessor Computing
Environments

Frank Lef3ke: On constructive specifications of abstract datatypesusing
temporal logic

L. Kanal, C.B. Suttner (Editors): Informal Proceedings of the Workshop
on Parallel Processing for Al

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS

Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: The Design of Distributed Systems - An
Introduction to FOCUS - Revised Version (erschienen im Januar 1993)
Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas
F. Gritzner, Rainer Weber: Summary of Case Studies in FOCUS - a
Design Method for Distributed Systems

Claus Dendorfer, Rainer Weber: Development and I mplementation of a
Communication Protocol - An Exercisein FOCUS

Michael Friedrich: Sprachmittel und Werkzeuge zur Unterstit- zung
paraleler und verteilter Programmierung

Reihe A

342/6/92 A

342/7/92 A

342/8/92 A

342/9/92 A

342/10/92 A

342/11/92 A

342/12/92 A

342/13/92 A

342/14/92 A
342/15/92 A

342/16/92 A

342/17/92 A

342/18/92 A

342/19/92 A

342/20/92 A

342/21/92 A

342/22/92 A

342/23/92 A

342/24/92 A

Thomas F. Gritzner: The Action Graph Moddl as a Link between Ab-
stract Relation Algebras and Process-Algebraic Specifications

Sergel Gorlatch: Parallel Program Development for a Recursive Nu-
merical Algorithm: a Case Study

Henning Spruth, Georg Sigl, Frank Johannes: Parallel Algorithms for
Slicing Based Fina Placement

Herbert Bauer, Christian Sporrer, ThomasKrodel: On Distributed Logic
Simulation Using Time Warp

H. Bungartz, M. Griebel, U. Rude: Extrapolation, Combination and
Sparse Grid Techniques for Elliptic Boundary Value Problems

M. Griebel, W. Huber, U. Ride, T. Stortkuhl: The Combination Tech-
nique for Parallel Sparse-Grid-Preconditioning and -Solution of PDEs
on Multiprocessor Machines and Workstation Networks

Rolf Niedermeier, Peter Rossmanith: Optimal Parallel Algorithms for
Computing Recursively Defined Functions

Rainer Weber: EineMethodik fur dieformale Anforderungsspezifkation
vertellter Systeme

Michael Griebel: Grid—and point—oriented multilevel algorithms

M. Griebel, C. Zenger, S. Zimmer: Improved multilevel algorithms for
full and sparse grid problems

J. Desdl, D. Gomm, E. Kindler, B. Paech, R. Walter: Bausteine eines
kompositionalen Beweiskalkills fur netzmodellierte Systeme

Frank Dederichs. Transformation verteilter Systeme: Von applikativen
Zu prozeduralen Darstellungen

Andreas Listl, Markus Pawlowski: Parallel Cache Management of a
RDBMS

Erwin Loibl, Markus Pawlowski, Christian Roth: PART: A Parallel
Relational Toolbox as Basis for the Optimization and Interpretation of
Parallel Queries

Jorg Desdl, Wolfgang Reisig: The Synthesis Problem of Petri Nets
Robert Balder, Christoph Zenger: The d-dimensional Helmholtz equa-
tion on sparse Grids

Ilko Michler: Neuronale Netzwerk-Paradigmen zum Erlernen von
Heuristiken

Wolfgang Reisig: Elements of a Tempora Logic.
Concurrency

T. Stortkuhl, Chr. Zenger, S. Zimmer: An asymptotic solution for the
singularity at the angular point of thelid driven cavity

Coping with

Reihe A

342/25/92 A
342/26/92 A

342/1/93 A

342/2/93 A

342/3/93 A

342/4/93 A

342/5/93 A

342/6/93 A

342/7/193 A

342/8/93 A

342/9/93 A

342/10/93 A
342/11/93 A

342/12/93 A

342/13/93 A

342/14/93 A

342/15/93 A

342/16/93 A

342/17/93 A

Ekkart Kindler: Invariants, Compositionality and Substitution

Thomas Bonk, Ulrich Ride: Performance Analysis and Optimization
of Numerically Intensive Programs

M. Griebel, V. Thurner: The Efficient Solution of Fluid Dynamics
Problems by the Combination Technique

Ketil Stalen, Frank Dederichs, Rainer Weber: Assumption / Commit-
ment Rules for Networks of Asynchronously Communicating Agents
Thomas Schnekenburger: A Definition of Efficiency of Parallel Pro-
grams in Multi-Tasking Environments

Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, Christoph
Zenger: A Proof of Convergence for the Combination Techniquefor the
L aplace Equation Using Tools of Symbolic Computation

Manfred Kunde, Rolf Niedermeier, Peter Rossmanith: Faster Sorting
and Routing on Grids with Diagonals

Michael Griebel, Peter Oswald: Remarks on the Abstract Theory of
Additive and Multiplicative Schwarz Algorithms

Christian Sporrer, Herbert Bauer: Corolla Partitioning for Distributed
Logic Smulation of VLS| Circuits

Herbert Bauer, Christian Sporrer: Reducing Rollback Overhead in
Time-Warp Based Distributed Simulation with Optimized Incremental
State Saving

Peter Slavkovsky: The Visibility Problem for Single-Valued Surface (z
=f(x,y)): The Analysis and the Parallelization of Algorithms

Ulrich Ride: Multilevel, Extrapolation, and Sparse Grid Methods
Hans Regler, Ulrich Ride: Layout Optimization with Algebraic Multi-
grid Methods

Dieter Barnard, Angelika Mader: Model Checking for the Moda Mu-
Calculus using Gaul3 Elimination

Christoph Pflaum, Ulrich Riude: Gaul¥ Adaptive Relaxation for the
Multilevel Solution of Partial Differential Equations on Sparse Grids
Christoph Pflaum: Convergence of the Combination Technique for the
Finite Element Solution of Poisson’s Equation

Michael Luby, Wolfgang Ertel: Optimal Parallelization of Las Vegas
Algorithms

Hans-Joachim Bungartz, Michael Griebel, Dierk Roschke, Christoph
Zenger: Pointwise Convergence of the Combination Technique for
Laplace’'s Equation

Georg Stellner, Matthias Schumann, Stefan Lamberts, Thomas Ludwig,
Arndt Bode, Martin Kiehl und Rainer Mehlhorn: Developing Multi-
computer Applications on Networks of Workstations Using NXLib

Reihe A

342/18/93 A

342/19/93 A

342/20/93 A

342/01/94 A

342/02/94 A

342/03/94 A

342/04/94 A

342/05/94 A

342/06/94 A

342/07/94 A

342/08/94 A

342/09/94 A

342/10/94 A

342/11/94 A

342/12/94 A

342/13/94 A

342/14/94 A

342/15/94 A

Max Fuchs, Ketil Stelen: Development of a Distributed Min/Max
Component

Johann K. Obermaier: Recovery and Transaction Management in Write-
optimized Database Systems

Sergg Gorlatch: Deriving Efficient Parallel Programs by Systemating
Coarsing Specification Parallelism

Reiner Huttl, Michael Schneider: Parallel Adaptive Numerical
Simulation
Henning Spruth, Frank Johannes. Parallel Routing of VLSI Circuits

Based on Net Independency

Henning Spruth, Frank Johannes, Kurt Antreich: PHIroute: A Parallel
Hierarchical Sea-of-Gates Router

Martin Kiehl, Rainer Mehlhorn, Matthias Schumann: Parallel Multiple
Shooting for Optimal Control Problems Under NX/2

Christian Suttner, Christoph Goller, Peter Krauss, Klaus-Jorn Lange,
Ludwig Thomas, Thomas Schnekenburger: Heuristic Optimization of
Parallel Computations

AndreasListl: Using Subpagesfor Cache Coherency Control in Parallel
Database Systems

Manfred Broy, Ketil Stalen: Specification and Refinement of Finite
Dataflow Networks - a Relational Approach

Katharina Spies: Funktionale Spezifikation eines Kommunika-
tionsprotokolls

Peter A. Krauss: Applying aNew Search Space Partitioning Method to
Parallel Test Generation for Sequentia Circuits

Manfred Broy: A Functional Rephrasing of the Assumption/Com-
mitment Specification Style

Eckhardt Holz, Ketil Stalen: An Attempt to Embed aRestricted Version
of SDL as a Target Language in Focus

Christoph Pflaum: A Multi-Level-Algorithm for the Finite-Element-
Solution of General Second Order Elliptic Differential Equations on
Adaptive Sparse Grids

Manfred Broy, Max Fuchs, ThomasF. Gritzner, Bernhard Schétz, Katha-
rinaSpies, Ketil Stalen: Summary of Case Studiesin FOCUS - aDesign
Method for Distributed Systems

Maximilian Fuchs: Technol ogieabhangigkeit von Spezifikationen digi-
taler Hardware

M. Griebel, P. Oswald: Tensor Product Type Subspace Splittings And
Multilevel Iterative Methods For Anisotropic Problems

Reihe A

342/16/94 A
342/17/94 A

342/18/94 A

342/19/94 A

342/20/94 A

342/01/95 A

342/02/95 A

342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A

342/09/95 A

342/10/95 A

342/11/95 A
342/12/95 A

342/13/95 A

342/14/95 A

342/15/95 A

Gheorghe Stefanescu: Algebra of Flownomials

Ketil Stelen: A Refinement Relation Supporting the Transition from
Unbounded to Bounded Communication Buffers

Michael Griebel, Tilman Neuhoeffer: A Domain-Oriented Multilevel
Algorithm-Implementation and Parallelization

Michael Griebel, Walter Huber: Turbulence Simulation on Sparse Grids
Using the Combination Method

Johann Schumann: Using the Theorem Prover SETHEO for verifying
the development of a Communication Protocol in FOCUS - A Case
Study -

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse Grids
Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the Kro-
necker Product of Identical Serversto a Reduced Product Space
PierreFiorini, Lester R. Lipsky, Wen-Jung Hsin, Appievan de Liefvoort:
Auto-Correlation of Lag-k For Customers Departing From Semi-
Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schrodinger Problems

Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technol ogy

Alexander Pfaffinger: Paralel Communication on Workstation Net-
works with Complex Topologies

Ketil Stelen: Assumption/Commitment Rules for Data-flow Networks
- with an Emphasis on Completeness

Ketil Stalen, Max Fuchs: A Forma Method for Hardware/Software
Co-Design

Thomas Schnekenburger: The ALDY Load Distribution System

Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan's Unfolding Algorithm

Stephan Mel zer, Javier Esparza: Checking System Propertiesvialnteger
Programming

Radu Grosu, Ketil Staglen: A Denotational Model for Mobile Point-to-
Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomia Algorithm to Compute
the Concurrency Relation of Free-Choice Signal Transition Graphs

Reihe A

342/16/95 A

342/17/95 A
342/18/95 A

342/19/95 A

342/20/95 A

342/21/95 A

342/22/95 A

342/23/95 A

342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A

342/04/96 A
342/05/96 A

342/06/96 A
342/07/96 A
342/08/96 A
342/09/96 A

342/10/96 A

Bernhard Schéatz, Katharina Spies: Formale Syntax zur logischen Kern-
sprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations

Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismilller:
Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distributioninto ParM od-
C

Ketil Stalen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andress Listl, Giannis Bozas. Performance Gains Using Subpages for
Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr JanCar, Javier Esparza: Deciding Finiteness of Petri Nets up to
Bisimulation

M. Jung, U. Rude: Implicit Extrapolation Methods for Variable Coeffi-
cient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic Multi-
grid Methods for the Solution of the Navier-Stokes Equations in Com-
plicated Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix De-
pendent Geometric Coarsening and Algebraic-Multigrid Coarsening for
Second Order Elliptic PDES

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Digjoint Embed-
dings of Complete Binary Trees into Hypercubes

ThomasHuckle: Efficient Computation of Sparse ApproximateInverses
Thomas Ludwig, Roland Wismiller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri Net
Components

Richard Mayr: Some Results on Basic Parallel Processes

Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht

PP. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher, F. Weimer,
H.-M. Windisch: Sprachkonzepte zur Konstruktion verteilter Systeme
Stefan Lamberts, Thomas Ludwig, Christian Roder, Arndt Bode: PFS-
Lib— A File System for Parallel Programming Environments

SFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B

342/1/91 B
342/2/91 B

342/3/91 B

342/4/91 B
342/5/91 B

342/6/91 B
342/7/91 B
342/1/92 B
342/2/92 B

342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Deseal: Reduction and Design of Well-behaved Free-choice Systems
Franz Abstreiter, Michad Friedrich, Hans-Jurgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Programme
Barbara Paechl: Concurrency asaModality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox -
Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop Uber
Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Methods
Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually Shared
Memory Scheme: Formal Specification and Analysis

Dominik Gomm, Ekkart Kindler: Causality Based Specification and
Correctness Proof of aVirtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Paralel Algorithm for Set-of-
Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-Support
Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hardware,
Software, Anwendungen

Max Fuchs. Funktionale Spezifikation einer Geschwindigkeitsregelung
Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein Lit-
eraturuiberblick

Andreas Listl; Thomas Schnekenburger; Michagl Friedrich: Zum En-
twurf eines Prototypen fur MIDAS

