
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Seamless Modeling of an Automation Example
Using the SPES Methodology

Sebastian Eder, Andreas Vogelsang, Martin Feilkas

ABCDEFGHIJKLMNO
TUM-I11
Mai 11

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-05-I11-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c©2011

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen

Contents

1 Acknowledgment 3

2 Introduction 3

3 The system to develop 4

4 Functional View 5
4.1 General Methodology . 5
4.2 Application to the Case Study . 5

4.2.1 Transport . 7
4.2.2 Interaction . 7
4.2.3 Control . 7
4.2.4 Alert . 7
4.2.5 Mode dependencies . 7

5 Logical View 8
5.1 General Methodology . 8
5.2 Application to the Case Study . 9

5.2.1 Overview . 9
5.2.2 System level . 9
5.2.3 User interaction . 9
5.2.4 IOAdapter . 10
5.2.5 TransportationController . 11
5.2.6 Band transportation . 12
5.2.7 Unimplemented functions . 12

6 Technical View 12
6.1 General Methodology . 12
6.2 Application to the Case Study . 13

6.2.1 Overview . 13
6.2.2 System level . 13

7 Conclusion 14

A Syntactic interfaces and behavior specifications for the functional architecture 16
A.1 Syntactic interfaces . 16
A.2 Table specifications . 16
A.3 System inputs and outputs . 17

A.3.1 Sensors . 17
A.3.2 User inputs . 17
A.3.3 Outputs . 18

A.4 Interaction . 19
A.4.1 Switch On/Off . 20
A.4.2 Switch Automatic/Manual . 20
A.4.3 User Steering . 20

1

A.5 Transport . 22
A.5.1 In . 22
A.5.2 Out . 23

A.6 Control . 23
A.6.1 Crane1 . 23
A.6.2 Crane2 . 24

A.7 Alert . 25
A.7.1 Alert Collision . 25
A.7.2 Automatic Mode Alert . 26

B Behavior specifications for the logical architecture 28
B.1 Switches . 28
B.2 Bands . 28
B.3 Cranes . 29

2

1 Acknowledgment

This work was funded by the German Federal Ministry of Education and Research (BMBF),
grant “SPES2020, 01IS08045A”.

2 Introduction

Similar to other domains, software within systems of the automation domain is getting more
complex and crucial to the success of such systems. Modeling approaches—like the SPES
modeling approach—that try to facilitate the engineering of automation systems have to cope
with a variety of challenges:

Tracing of dependencies. The complexity that arises from current automation systems can
be mastered by different views onto the system that hide information that is not necessary in
a certain development step or for a certain aspect. However, design decisions and entities of
different views onto a system may depend on each other. This results in the necessity to ensure
the consistency of the data of the different views. This is especially challenging if changes in
a certain view also affect other views.

Integration of different engineering disciplines. A variety of engineering disciplines are in-
volved in the realization of an automation system. Engineers from the fields of software,
electronics, material sciences, and others all have their own models and methods that are spe-
cialized for a certain purpose. However, there are design decisions and information that affect
more than one engineering discipline. A modeling approach has to offer discipline independent
system models as well as views onto these models that support the different disciplines.

Scalability. Complexity not only arises from several dependencies between the objects within
an automation system but also from their number. Current automation systems consists of a
great number of functions and devices. Models and especially tools that support a modeling
approach have to be aware of this number and must support the developers to stay on top of
things.

Process integration. The development process of automation systems in practice currently
consists of different steps. Engineering relevant steps are, beneath others, the Bid Prepara-
tion, the Basic Engineering, the Detailed Engineering, and the Commissioning. Each step has
different requirements that a modeling approach has to fulfill with respect to the given devel-
opment phase. The Bid Preparation for example is a rather short iteration at the beginning
of a project with the aim to launch a bid depending on a rough estimation of the major cost
items (e.g., Equipment, Engineering, and Project Management). This estimation is already
crucial, since on the one hand the resulting bid is binding but on the other hand competitors
might get the project due to an inappropriate bid.

This case study shows the SPES modeling approach using the cylinder head production exam-
ple by Siemens. From the requirements, which are not modeled here, we develop a functional,
logical and technical architecture. We focus on the modeling approach, not on the concrete
behavior of the system. Furthermore, we trace functions from the functional architecture over

3

components of the logical architecture to control units of the technical architecture. This case
study might provide a basis for a discussion of the SPES modeling approach with respect to
the given challenges from the automation domain.

In this work, functions are denoted as #function name, components as 2component name,
control units as 3control unit name, and channels (internal and external) as →channel name.

3 The system to develop

The main goal of the complete system is to produce cylinder heads. This means raw material
is fed into the production cell that is illustrated in Figure 1 and finished cylinder heads are
delivered by the production cell. In order to produce cylinder heads, the material has to
pass several stations: From the supply band that transports raw material into the cell, the
workpieces have to be placed consecutively at the milling station, grinding station, measuring
station and assembly station, before they are put onto the delivery band that transports
finished workpieces out of the cell.

Supply Band

Assembly Grinding

Milling Measuring

Delivery Band
Crane

1
Crane

2

Guide Rail 1

Gantry1 Gantry2

Manufacturing Cell

Y

Z

Guide Rail 2

Inductive sensor (For security)

Tactile sensor (For detection/security)

Optical sensor (For detection)

Actuator

Legend:

X

Figure 1: Geometrical view on the cylinder head production cell [Den07]

The requirements documents do not mention how the production itself has to be realized.
This is why the system that will be developed in this work realizes the transport of the work-
pieces between the stations and the bands. Therefore, the system boundary is not defined
by the boundaries of the physical production cell, which would mean, that the input of the
system is raw material and the output are cylinder heads. In fact, the system boundary of the
system under development is defined by the sensors and actuators of the production cell that

4

control the transportation of the material. That means the system receives sensor data from
the production cell and sends data to the actuators.

A detailed list of all sensors of the system can be found in Section A.3.1.

4 Functional View

4.1 General Methodology

The functional architecture structures functionality that is observable by the environment of
the system. This is why this artifact is the connecting link between the requirements documents
and the system design. The system’s functionality is therefore broken down into sub-functions
that are responsible for a subset of output values and rely only on a subset of input values
of the system. Thus, a sub-function’s behaviour can be considered as projection of the entire
system behaviour. Additionally, dependencies between those functions are illustrated.

Dependencies arise, if a function’s output does not just depend on the specific function
input values from the environment of the system but also on additional input values that are
processed by another function. For example, a function that realizes a certain crane job by
mapping sensor data to crane actions might also be dependent on inputs that indicate whether
the system is switched on or off. In case these inputs are processed by another function there
is a dependency between the two functions. In this approach, these dependencies between
functions are abstracted by so called modes, which influence a function’s behaviour. Functions
are assumed to be able to enter different modes similar to state machines. A function that
alters a mode can propagate the value of the mode over so called mode channels to other
functions that depend on the mode. This way, functional specifications can be written down
independently, allowing a modular development, while dependencies between functions are
made explicit by the mode channels.

To gain a functional architecture, the high level functionality of the system is decomposed
into functions of finer granularity. Functions that are more concrete can then be specified
formally. These specifications can be used for verification, testing or validation. Functions
at a lower level of granularity are projections of the behavior of the high-level function and
the main goal of the decomposition is to gain a modular architecture of the complete system.
The decomposition stops, if the leaf nodes of the decomposition tree are simple enough to be
specified.

The behavior of functions can be specified partially. That means, that not every input se-
quence to the system has to be mapped to an output sequence. For example, a specification
could cover only the good cases of system inputs. Concrete behavior can be specified with the
help of several techniques: Message sequence charts, state machines, activity diagrams, tabular
specifications or declarative techniques are viable alternatives. In this example, we used a tab-
ular specification technique that is explained in detail in Appendix A. The specified behavior
is useful for verification and validation of the functionality a system offers. Furthermore, the
presence of all functional requirements can be ensured, since functional features are modeled
comprehensively in this view.

4.2 Application to the Case Study

In this example, the high level functionality is the control of the transport of workpieces between
several stations in a cylinder head production cell. So, this functionality is decomposed, as

5

Figure 2 shows. Solid lines represent sub-function relationships, whereas dashed lines represent
mode channels indicating dependent functions. The result is just one possible decomposition.
In this section, we explain how and why we developed this tree.

CHT

Interaction

Control

Transport

Switch
Automatic/

Manual

Switch
On/Off

UserSteering

Crane1

Crane2

In

Out

SAutoManual

SAutoManual

SteerCrane
1

SteerCrane
2

Alert

Automatic
Mode Alert

Alert
Collision

Alert Crane
1

Alert Crane
2

SAutoManual

SOnOff

SOnOff

JobC2 JobC1

JobC2

JobC1

SOnOff

Figure 2: Functional architecture of the cylinder head transportation system

According to the requirements documents [Köh06], the main functions of the system are:

#Transport: Transport of workpieces to and from the production cell

#Interaction: User interaction

#Control: Automatic control of the transport of workpieces between stations

#Alert: Alerting system

6

These functions are decomposed further as shown in the next sections according to [Den07].
For a detailed overview of the syntactic interfaces of the functions and behavior specifications,
see Appendix A.

4.2.1 Transport

Transporting the workpieces to and from the cylinder head production cell consists of two
functions: Transporting the workpiece into the cell (#In) and transporting the workpieces
from the cell (#Out). Those functions are not decomposed any further, because they already
are quite simple. But not decomposing #Transport any further would lead to a function that
had to realize the supply and delivery band. But those jobs have very different concerns and
thus #Transport is decomposed.

4.2.2 Interaction

The user interaction consists of three functions: #Switch On/Off for switching the system on
and off, #Switch Automatic/Manual for switching between automatic and manual transporta-
tion and production mode, and #User Steering for manually steering the transport system
between stations according to the requirements [Köh06]. The last function can be decomposed
even further with the knowledge of having two cranes [Den07]. Therefore, the user can steer
the first crane by using #Steer Crane 1 and the second crane by using #Steer Crane 2.

4.2.3 Control

The automatic control of the system can also be decomposed further with the knowledge about
having two cranes. So the automatic control of the first crane is specified by #Crane1 and the
automatic control of the second crane is specified by #Crane2. This decision is made in the
requirements document [Den07], because there, different (disjoint) transport areas are assigned
to both cranes (the first crane moves workpieces from the supply band to the measuring station,
then the second crane takes over). Thus, the cranes realize different functionality.

4.2.4 Alert

The alerting system notifies the user in case of errors. As some errors only arise in auto-
matic mode, the #Alert is decomposed into #Alert Collision, which signals a collision, and
#Automatic Mode Alert, which signals errors in case of spontaneous appearing or disappearing
workpieces. Again, this function is decomposed into two functions: one for every crane (#Alert
Crane1 and #Alert Crane2), because of the different stations the cranes travel to. An error
that relates to the first crane can be an error that does not influence crane 2.

4.2.5 Mode dependencies

Every function depends on the system to be switched on. This is why every function but
#Switch On/Off itself and #Switch Automatic/Manual depend on it. This is similar for the
automatic and manual mode. To capture these dependencies, the mode channels →SOnOff
and →SAutoManual are included in the functional architecture. #Switch Automatic/Manual
does not depend on #Switch On/Off, because the user should be able to switch between the
modes even if the system is turned off.

7

#Automatic Mode Alert only signals an alarm, if the system is in automatic mode. Further-
more, the automatic control of the transportation within the production cell (#Control) is only
active, if the system is in automatic mode. In this case, #User Steering is inactive. This is
why these functions depend on #Switch Automatic/Manual. #Transport does not depend on
#Switch Automatic/Manual, because these bands always transport workpieces automatically.

In order to realize the automatic control for the transport within the production cell and to
avoid collisions, each crane has to know what the other crane intends to do. Therefore, each
crane depends on the current job of the other crane (mode channels →Job1 and →Job2). The
alerting system also has to be aware of the job, each crane is assigned to in order to detect
failures in the procedure (that arise because of (dis)appearing workpieces).

5 Logical View

5.1 General Methodology

The logical architecture is the connecting link between the functional architecture, which re-
sides in the problem domain to the solution domain. In contrast to the functional architecture,
the system is treated as a white box. The logical architecture refines the functional architecture
by introducing logical components that realize certain functions, and communication channels
between the logical components. The behavior of components is specified totally, that means
that every possible input sequence to the system has to be considered by the logical view. This
view also decouples functional and logical aspects from the technical implementation of the
system under development.

A function can be realized by just one component or by many. One component can implement
more than one function. Thus, there is an m:n-mapping between functions and components.
Like in the functional architecture, behavior can also be specified for the logical architecture.
State machines for every component can be found in Section B.

The concrete structure of a logical perspective is motivated by functional as well as non
functional requirements. Especially non functional requirements slip into the architecture,
because here the basis for features like maintainability, extensibility or adaptability, just to
name a few, is formed. This is also the reason why design patterns emerge in this view.

Verification, simulation, testing, and the generation of test cases and code are supported by
the logical architecture, because the behavior of components is totally and formally specified .

Alternatives for specifying logical architectures are SysML (Internal Block Diagrams), UML
(Composite Structure Diagrams), Heterogeneous Rich Components or AutoFocus3 (Structure
Diagrams). This work’s figures illustrating components originate from the tool AutoFocus3.
In these figures, three different colors are used: Red, blue and yellow. Red components are
decomposed further into components of finer granularity. Blue and yellow components are not
decomposed any further but a behavior specification is assigned to them. The behavior of blue
components is strongly causal and the behavior of yellow components is weakly causal. For a
detailed description of strong and weak causality see [BS01].

Concrete behavior can be specified with the help of state machines, tabular specifications,
SysML state charts or UML state charts. In this work, we used state charts in the tool
AutoFocus3 in order to get a prototype that we could simulate in the tool and to generate
code.

8

5.2 Application to the Case Study

5.2.1 Overview

Figure 3 shows the hierarchical decomposition of the logical components of the cylinderhead
transportation system. These components and the corresponding communication channels
form the logical architecture.

System

IOAdapter

Transportation
Controller

UserInteraction

Crane1IO Crane2IO DeliveryBandIOSupplyBandIO SensorIO

Band
Transportation

Crane1 Crane2JobDecision

Mode
Controller

Operation
Controller

SystemOutput

DeliveryBand SupplyBand

Figure 3: Hierarchical decomposition of the logical components

5.2.2 System level

The system consists of three top-level components as illustrated in Figure 4: 2IOAdapter,
2TransportationController and 2UserInteraction. 2IOAdapter is the interface between the
control system and the production cell. It transforms data into a readable format for the
2TransportationController and the production cell. The channel →Sensor contains all sensor
data. The different sensors could be modeled with a channel each. But this would only
complicate the model. The →Crane-channels are used to send signals to cranes and the →Band-
channels are used to send signals to the bands. The subdivision in those components is chosen
to gain separation of interaction, control and signal conversion. This is similar to the MVC
pattern.

5.2.3 User interaction

The component 2UserInteraction realizes the function #Interaction partially. Its only input
channel is →UserInput that is used by the user to send data into the system. The channel
→SystemOutput is used to send feedback to the user. →OperationOn and →AutoMode signals
the user inputs to the 2TransportationController.

2UserInteraction contains two components for interaction as illustrated in Figure 5: The
component 2OperationController for switching the system on and off (realizing the function
#Switch On/Off) and 2ModeController for switching between manual and automatic produc-
tion mode (realizing the function #Switch Automatic/Manual). This rather canonical partition

9

Figure 4: Logical system overview

of concerns follows the subdivision in the functional architecture. The outputs of these compo-
nents are led into 2SystemOutput, where the outputs of the switching components are merged
onto one channel that is used to give feedback to the user. The switching component send
their signals to the component 2TransportationController.

Figure 5: User interaction component

5.2.4 IOAdapter

This component translates signals from a representation that is understood by logical compo-
nents into a representation that is suitable for the physical production cell. Thus, 2IOAdapter
realizes a part of all functions that are sending signals to the production cell. Figure 6 shows
the decomposition of 2IOAdapter.

Since 2IOAdapter simply realizes some signal conversions the behavior is specified by weakly
causal functional specifications. For each channel that is used to send signals from the log-
ical component 2TransportationController to the production cell, there is a component that
translates the corresponding signals.

10

Figure 6: IOAdapter component

5.2.5 TransportationController

The functions #Transport and #Control are realized by both 2TransportationController and
2IOAdapter. This is why 2TransportationController is decomposed into four components as
illustrated in Figure 7. The three components 2JobDecision, 2Crane1 and 2Crane2 partially
realize the two functions #Crane1 and #Crane2 (the other part is realized by 2IOAdapter).
Transportation to and from the production cell is realized by 2BandTransportation (and
2IOAdapter, of course). According to the received data it sends control signals to the supply
or delivery band.

Figure 7: 2TransportationController

In the functional architecture, both cranes send the action they intend to perform to the
other crane in order to avoid collisions. So, each crane decides by itself which job should
be done next. The difficulty to implement this behavior becomes apparent in the functional

11

behavior specification of #Crane1 and #Crane2 in Section A.6. In the logical architecture,
this decision is not made distributed by the cranes, but by the component 2JobDecision. This
component decides which job to do next and sends it to the corresponding crane. The decision
is based on the sensor data received from the production cell and on the current state of both
of the cranes (whether they are ready or busy). But, in order to avoid deadlocks, 2Crane1
must be able to send 2Crane2 to the delivery band. Therefore, the channel →ReqDelPos is
introduced. In order to execute the desired jobs, 2Crane1 and 2Crane2 are explicitly modeled.
They receive jobs and send the according sequence of control signals to the production cell.

5.2.6 Band transportation

Figure 8: Band transportation component (2BandTransportation)

2BandTransportation is decomposed into a component for every band as shown in Figure 8.
Those components realize the functions #In and #Out. Based on sensor values and on whether
the system is switched on, 2SupplyBand and 2DeliveryBand turn the corresponding band on
or off.

5.2.7 Unimplemented functions

The function #Alert is not realized by the introduced logical architecture because of the pro-
totypical character of this work. Furthermore, #User Steering is not implemented.

6 Technical View

6.1 General Methodology

The technical architecture models the platform used to execute the system. The main entities
are therefore ECUs (Electronic Control Units), bus systems as well as actuators and sensors.
This network represents the hardware topology the logical components can be allocated to.
The technical view is furthermore concerned with mapping logical components to tasks. These
model can then be used for analyses to verify if real-time requirements are fulfilled by a given
scheduling, message catalogs etc.

12

6.2 Application to the Case Study

6.2.1 Overview

Figure 9 shows the hierarchical decomposition of the technical control units of the cylinder-
head transportation system. These control units and the corresponding bus system form the
technical architecture.

System

PLCPCStation
Manufacturing

Cell

Figure 9: Hierarchical decomposition of the technical components

6.2.2 System level

The components of the logical architecture are deployed onto the three control units shown in
Figure 10. In this example, the control units communicate using a bus system. The technical
choice which bus system is modeled is arbitrary in this case.

Figure 10: Technical architecture

The deployment of the different components onto the control units is shown in Table 1.
With this final allocation of logical components to control units we gain a traceability of

requirements over functions, logical components to technical control units and bus messages.
The deployment of component 2UserInterface on the 3PC-Station for example allows to trace
the function #Interaction to this control unit, meaning this function is entirely realized by
one control unit. In contrast, the function #Crane1 is realized by the logical components

13

Component Control unit
2UserInteraction → 3PC-Station

2TransportationController → 3PLC
2IOAdapter → 3Manufacturing Cell

Table 1: Deployment assignments

2JobDecision, 2Crane1 and 2IOAdapter, which themselves are deployed onto control units
3PLC and 3ManufacturingCell connected by a bus.

7 Conclusion

In this work, the cylinder head transportation control was modeled. A functional, logical,
and technical architecture was discussed. A tracing of functions to technical components was
possible.

Furthermore, this model serves as basis for a common understanding of the presented con-
cepts in the automation domain within the SPES project. Especially the content and aim of
the functional and the logical perspective are clarified and comprehensively modeled.

Still some open questions remain open according to the integration of the approach into ex-
isting processes of the automation domain as well as to the applicability of large scale projects.

Process Integration. Since the presented modeling methods do not prescribe a certain process
it is still not obvious how the introduced artifacts can be integrated according to the process
that was introduced in Section 2. Especially in the bid preparation phase the models must
provide a first estimation of major cost items within a short period of time. Therefore, a pure
top-down approach may not be appropriate. The functional, logical and technical architecture
should rather be developed in parallel. This way, major cost items concerning technical devices,
software complexity and also organizational issues are considered. As a next step a detailed
study on the integration of the introduced models and artifacts into a given development
process should be carried out.

Application to large scale projects. Although the presented example is a realistic system
that covers a variety of characteristical problems of the automation domain it is still a rather
small example. Large automation systems nowadays consists of hundreds of sensors, actuators,
and computing units and often realize a variety of functions. This constitutes challenges for
the organization and the visualization of the presented models. It also entails the need for an
appropriate tool support that has to be customized to cope with large scale projects and large
sets of data.

14

References

[Bro10] Manfred Broy. Multifunctional software systems: Structured modeling and specifica-
tion of functional requirements. Science of Computer Programming, 2010.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[Den07] Kristian Dencovski. Dokumentation zum CT SE 5 - Anlagendemonstrator. Technical
report, Siemens AG, 2007.

[Köh06] Adrian Köhnlein. Lastenheft – Fischertechnik-Modell. Technical report, Siemens AG,
2006.

[Vog11] Andreas Vogelsang. Cylinder Head Transportation AutoFocus 3 Model. cylinder-
head transportation.af3, 2011.

15

A Syntactic interfaces and behavior specifications for the functional
architecture

In the functional architecture, functions of the system will be described by their syntactic
interface and their behavior specification In this work, we use table specifications [Bro10] to
specify the interface behavior. Syntactic interfaces and table specifications are explained in the
next sections. Note: There are several different techniques for specifying interface behavior.
With the help of table specifications or state machines, operational behavior is defined. But
also declarative specifications like interface assertions are possible for specifying the interface
behavior of a function.

A.1 Syntactic interfaces

Syntactic interfaces are used to describe a function’s input and output channels with their data
types. An example can be found in Figure 11. There, the syntactic interface of a function
#AAnd with five input and two output channels is illustrated. All channels are of the type
B. The channels printed in italics denote internal mode channels. This does not change the
semantics of the input or output on that channel, it just helps to understand what the function
does. A syntactic interface does not specify behavior in any way.

AAnd

PI1: B
PI2: B
I1: B
I2: B
I3: B

O1: B

O2: B

Figure 11: Syntactic interface of #AAnd

A more detailed and formal description of syntactic interfaces can be found in [Bro10].

A.2 Table specifications

This specification technique allows to specify possibly partial behavior in a simple and clear
way. Table specifications will be explained with the following example:

The function #AAnd has five input channels: PI1, PI2, I1, I2, and I3. The output channels
are O1 and O2. The behavior is only specified for PI1 = true and PI2 = false. Thus, the second
and third line of the table specification can be seen as a precondition for the specification. If
those preconditions are not valid, no behavior is specified, which means arbitrary behavior.
In case the preconditions are valid, the function sends the value, it received on channel I1
on the channel O1. Furthermore, it writes I2 ∧ I3 to O2, if I1 = true. If I1 = false, the
output on O2 is not restricted. In order to keep table specifications short, we introduce the
Else-operator. It expands to all possibly combinations in the columns it spans, that are not
mentioned in other lines that match the other columns of the line. In this case, it expands to
(true,false), (false,true), and (false,false) always with true in column I1, true in O1 and false

16

in O2. Another operator is the question mark (?). It does not restrict the input or output on
the channels it spans. In the last line of the table, the only information that is needed, is just
the false on I1, because then, false is sent over O1 and the output on O2 is not restricted in
this case.

Expressed more formally, the function will execute the following calculation (with input i1
coming from →I1 and so on) and write the first element of the resulting pair to →O1 and the
second part to →O2.

AAnd(p1, p2, i1, i2, i3) =

(i1, i2 ∧ i3), if p1 ∧ p2 ∧ i1

(i1, ?), if p1 ∧ p2 ∧ ¬i1
(?, ?), else

The following table specification is equivalent to the equation above. The primed channel
names in the table specification are output channels. O1’ means, that the values in this column
are written to →O1.

AAnd

PI1 = true
PI2 = false

I1 I2 I3 O1’ O2’

true true true true true

true Else true false

false ? false ?

A.3 System inputs and outputs

A.3.1 Sensors

Sensor data is the main input into the system. Table 2 shows the sensors with their names and
location, as well as the type. A light sensor signals true, if and only if it detects a workpiece.
A touch sensor sends true, if and only if something touches it and the inductive sensors send
true, if and only if something gets close to it.

A.3.2 User inputs

In order to receive inputs from the user (over a PC), there have to be some channels a user
can utilize to send data to the system. At first, the data that can be send has to be defined:

Data types

OnOff = {On,Off } The users sends On, to turn the system on and Off to turn it off.

AutoManual = {Auto,Manual} The user sends Auto, to switch to the automatic production
mode and Manual to manually produce cylinder heads.

SC = {+X,−X,+Y,−Y,+Z,−Z,Grab,Drop} The user alters the position of a crane by send-
ing +X,−X, The user sends Grab to make a crane grab and Drop to make a crane
drop.

17

Channel Description Type

LS1In Light sensor at beginning of supply band B
LS2In Light sensor at end of supply band B
LSMi Light sensor at milling station B
LSGr Light sensor at grinding station B
LSMe Light sensor at measuring station B
LSAs Light sensor at assembly station B

LS1Out Light sensor at beginning of delivery band B
ISC1 Inductive sensor at crane 1 B
ISC2 Inductive sensor at crane 2 B

TSC1 Touch sensor at crane 1 B
TSC2 Touch sensor at crane 2 B

TSGR2S Touch sensor guide rail 2 (at supply) B
TSGR2D Touch sensor guide rail 2 (at delivery) B

Table 2: Overview over sensor inputs, their names and types

Channels The channels for the user consist of two switches, UOnOff and UAutoManual. With
those, the user can switch the system on and off as well as between automatic and manual
production mode. Furthermore, the user can steer both cranes. Therefore, there are two
channels USC1 and USC2, the user sends steering commands over.

Channel Description Type

UOnOff Switch (On/Off) OnOff
UAutoManual Switch (Automatic/Manual) AutoManual

USC1 Steering commands for crane 1 SC
USC2 Steering commands for crane 2 SC

A.3.3 Outputs

The system’s output channels are not only data channels that are linked back to the user’s
terminal, but also channels for control signals for the production cell. In this section, the
output channels of the leaf functions of the decomposition tree are explained.

Bands The supply and the delivery band have to be started and stopped. The system sends
true, if a band has to start and false if the band has to stop. Therefore, the functions that
control the supply and delivery band have channels attached (→MovingIn and →MovingOut)
that are used to send the signals to the bands.

Alert The function #Alert just sends true, if an error occurs.

Cranes For enabling a user to steer a crane, there need to be several actions that can be
performed by the crane. CraneUserAction contains the actions the system can send to a
crane:

18

CraneUserAction = { Move + X ,Move −X ,
Move + Y ,Move −Y ,
Move + Z ,Move − Z ,
Drop,Grab }

Action Description

MoveD Signals the crane to move to direction D.
Grab Signals the crane to grab. If there is a workpiece at the current

position, the crane grabs this workpiece.
Drop Signals the crane to drop. If the crane has a workpiece, the

workpiece will be dropped at the current position.

The outputs to control cranes in the automatic mode are kept very abstract. The function
just sends the job a crane has to do. The possible jobs are contained in the set CraneJobAction:

CraneJobAction = {H1, 12, 23, 34, G4, 0}

Action Description

H1 Grab a workpiece at the end of the supply band and drop it at
the milling station.

12 Grab a workpiece at the milling station and drop it at the grind-
ing station.

23 Grab a workpiece at the grinding station and drop it at the
measuring station and move back to milling or grinding. (To
avoid collisions)

34 Grab a workpiece at the measuring station and drop it at the
assembly station and move back to delivery band. (To avoid
collisions)

4G Grab a workpiece at the assembly station and drop it at the
beginning of the delivery band.

0 Do nothing.

There are two output channels for each crane controlling function: →ActionCn and →JobCn,
where n ∈ {1, 2}. The function sends the action its crane has to do over those channels. The
actions can be either from the set CraneUserAction or CraneJobAction. Therefore, the type
of the channels is

CraneAction = CraneUserAction ∪ CraneJobAction

A.4 Interaction

This section describes all interfaces that allow user interaction. First, the syntactic interfaces
are illustrated. Afterwards the behavior is specified by a table.

19

Switch On/Off
UOnOff: OnOff SOnOff: OnOff

Figure 12: Syntactic interface of #Switch On/Off

A.4.1 Switch On/Off

#Interaction allows the user to switch the system on or off. The state of the function changes
to On, if the user inputs On. If the input is Off , the state switches to Off . The syntactic
interface is shown in Figure 12. The channel →UOnOff is used to receive data from the user.
The corresponding mode is propagated over the mode channel →SOnOff. The following table
states, that if On is received by #Switch On/Off over the channel →UOnOff, then the output
on the (mode) channel →SOnOff is also On. Analog for Off .

Switch On/Off

UOnOff SOnOff’

On On

Off Off

A.4.2 Switch Automatic/Manual

Switch Automatic/Manual
UAutoManual: AutoManual SAutoManual: AutoManual

Figure 13: Syntactic interface of #Switch Automatic/Manual

#Switch Automatic/Manual offers the possibility to switch between automatic and manual
production. The switch works like the interface for switching the system on or off. This is why
the syntactic interface is very similar. Figure 13 shows the channel the user utilizes to signal
the system whether it should run in automatic or manual mode: →UAutoManual. The system
propagates the input over the mode channel →SAutoManual.

Switch Automatic/Manual

UAutoManual SAutoManual’

Auto Auto

Manual Manual

A.4.3 User Steering

The following functions describe the ability of the user to steer both cranes manually.

20

Steer Crane1

USC1: SC

SAutoManual: AutoManual

SOnOff: OnOff

ActionC1: CraneUserAction

JobC1: CraneAction

Figure 14: Syntactic interface of #Steer Crane1

Steer Crane1 #Steer Crane1 is the user interface for steering crane 1. The user has several
possibilities to control a crane. If the user enters +X , the crane changes its x-coordinate
by one unit. The crane behaves similarly for the other user inputs. Figure 14 shows the
syntactic interface for the function. It depends on the modes →SOnOff and →SAutoManual.
Furthermore, the user inputs are received from channel →USC1. There are two output channels.
The mode channel →JobC1 is used to send the current job to #Alert and #Crane2. The channel
→ActionC1 is used to send actions to the production cell.

The line containing SOnOff = On in the tabular expression expands to a column with the
head SOnOff and in every cell of this column stands On. This can be seen as a precondition
for the function. If the precondition does not hold, no behavior is specified. That means that
it is not defined what happens in that case. Here, we did not specify what #Steer Crane 1
does, if the system is turned off.

The question mark is another important notation in this table. It means that there is no
restriction on the value of a cell with a question in it. In this case, that means: If the system
mode is automatic, there is no restriction to the input and on the output. If there is another
function (in this case #Crane1), that restricts the output, the more restrictive output will be
taken.

Steer Crane1

SOnOff = On

SAutoManual USC1 ActionC1’ JobC1’

Manual +X Move + X Move + X

Manual −X Move −X Move −X

Manual +Y Move + Y Move + Y

Manual −Y Move −Y Move −Y

Manual +Z Move + Z Move + Z

Manual −Z Move − Z Move − Z

Manual Drop Drop Drop

Manual Grab Grab Grab

Auto ? ? ?

Steer Crane2 This function interface for steering crane 2. It works exactly like steering crane
1.

21

Steer Crane2

USC2: SC

SAutoManual: AutoManual

SOnOff: OnOff

ActionC2: CraneAction

JobC2: CraneAction

Figure 15: Syntactic interface of #Steer Crane2

Steer Crane2

SOnOff = On

SAutoManual USC2 ActionC2’ JobC2’

Manual +X Move + X Move + X

Manual −X Move −X Move −X

Manual +Y Move + Y Move + Y

Manual −Y Move −Y Move −Y

Manual +Z Move + Z Move + Z

Manual −Z Move − Z Move − Z

Manual Drop Drop Drop

Manual Grab Grab Grab

Auto ? ? ?

A.5 Transport

For the supply and delivery band, we can assume another system taking over. So, we are
modeling these bands very simple. The channels →MovingIn of type B and →MovingOut of
the same type just signal whether the bands start or stop moving.

A.5.1 In

In

LS1In: B
LS2In: B

SOnOff: OnOff

MovingIn: B

Figure 16: Syntactic interface of #In

The control of the supply band. If →LS1In is trueand →LS2In is false, the band starts to
move. If →LS2In is true, the band stops. This data is sent over the channel →MovingIn. The
inputs for this function, as shown in Figure 16, are the mode →SOnOff to determine whether
the system is switched on and the light sensors at the supply band: →LS1In and →LS2In.

22

In

SOnOff = On

LS1In LS2In MovingIn’

true false true

? true false

A.5.2 Out

Out

LS1Out: B
LS2Out: B

SOnOff: OnOff

MovingOut: B

Figure 17: Syntactic interface of #Out

The delivery band’s control. It works just like the supply band. The difference is just that
the input channels are fed by the light sensors at the delivery band, →LS1Out and →LS2Out.

Out

SOnOff = On

LS1Out LS2Out MovingOut’

true false true

? true false

A.6 Control

#Control represents the control for automatic production. This model is focused on trans-
porting workpieces. This is why the stations are not modeled. This would be an easy task:
The stations’ input is the corresponding light sensor. The station is turned on, if there is
a workpiece detected and turned off if there is no workpiece or after the station finished a
workpiece.

A.6.1 Crane1

This function steers crane 1. Because of some priorities of jobs, the availability of a job depends
not only on the stations it moves to, but also on other stations that correspond to jobs with a
higher priority. For example: H1 has less priority than 23. That means, if the sensors tell the
system, that 23 is available, the system will not execute H1 but 23. In order to avoid collisions
with the second crane, the system executes 23 only, if the second crane is not executing 34.

The syntactic interface is illustrated in Figure 18. The input channels are sensors, both of
the switches and →JobC2. The last one is needed to avoid collisions.

23

Crane1

LS2In: B

LSMi: B

LSGr: B

LSMe: B

LSAs: B

JobC2: CraneAction

SOnOff: OnOff

SAutoManual: AutoManual

ActionC1: CraneAction

JobC1: CraneAction

Figure 18: Syntactic interface of #Crane1

This specification has one peculiarity: The Else-operator. Else expands to all combinations of
the columns it spans that are not covered by any line yet. The difference to a line containing
only question marks is, that with the Else-operator, all cases that are already covered, are
excluded. If a question mark spans several columns, this means for all the columns it spans,
that there is no restriction.

The notation ¬Action stands for every action, but not the action Action. In this case, this
shortens the tabular specification.

Crane1

SOnOff = On

SAutoManual LS2In LSMi LSGr LSMe JobC2 ActionC1’ JobC1’

Auto true false false ? ? H1 H1

Auto true false ? true ? H1 H1

Auto ? true false ? ? 12 12

Auto ? ? true false ¬34 23 23

Auto Else ? 0 0

Manual ? ? ?

A.6.2 Crane2

This function works like #Crane1, except it corresponds to different jobs. Again, to avoid
collisions, this crane does the jobs 34 and 4G only, if the other crane does not execute 23 at
the moment. The syntactic interface (Figure 19) is similar, except the different sensor inputs.
The differences are caused by the different stations, crane 1 handles.

24

Crane2

LSMe: B

LSAs: B

LS1Out: B

JobC1: CraneAction

SOnOff: OnOff

SAutoManual: AutoManual

ActionC2: CraneAction

JobC2: CraneAction

Figure 19: Syntactic interface of #Crane2

Crane2

SOnOff = On

SAutoManual LSMe LSAs LS1Out JobC1 ActionC2’ JobC2’

Auto true false ? ¬23 34 34

Auto ? true false ¬23 4G 4G

Auto Else ? 0 0

Manual ? ? ?

Freedom from deadlocks and collisions has to be verified. The system works, because the
cranes move back from the critical position at the measuring and assembly stations once they
have done their work there. A formal proof is yet to be done.

A.7 Alert

The user has to be alerted in many cases. At this level of abstraction, not all of the required
alerts can be modeled, because of insufficient information. Most of the required information
will be coded into the logical or the technical perspective of the system.

A.7.1 Alert Collision

Alert Collision

ISC1: B
ISC2: B

TSGR2S: B
TSGR2D: B

SOnOff: OnOff

AlertCollision: B

Figure 20: Syntactic interface of #Alert Collision

25

In order to alert the user in case of an impending collision, #Alert Collision is introduced.
Errors defined in [Den07] should be handled here. With just the sensor data, the system can
decide if a collision of the cranes is imminent. The function #Alert Collision decides, whether
a crane collided with the ends of the guide rail or the cranes crashed.

The syntactic interface is illustrated in Figure 20. This function has to work in automatic
and in manual mode, therefore it does not depend on the mode →SOnOff. To detect collisions,
the input channels are the sensors →ISC1, →ISC2, →TSGR2S, and →TSGR2D. The only
output channel of this function is →AlertCollision. This channel is used to notify the user of
a collision.

Alert Collision

SOnOff = On

ISC1 ISC2 TSGR2S TSGR2D AlertCollision’

true ? ? ? true

? true ? ? true

? ? true ? true

? ? ? true true

Else false

A.7.2 Automatic Mode Alert

In Automatic mode, the production can be disturbed by some events. Mainly by arbitrarily
placing workpieces into the manufacturing cell.

Alert Crane1

LS2In: B

LSMi: B

LSGr: B

LSMe: B

TSC1: B

JobC1: CraneAction

SAutoManual: AutoManual

SOnOff: OnOff

AlertC1: B

Figure 21: Syntactic interface of #Alert Crane1

Alert Crane1 #Alert Crane1 gives an alert, if during executing a job, the configuration of
workpieces becomes illegal. For example, if another workpiece appeared on the milling station
during transporting a workpiece from the supply band to the milling station. The syntactic

26

interface is described in Figure 21. The input channels are mainly sensors, but also the current
job, the crane has to do. The output channel →AlertC1 is used to notify the user of an error.

Alert Crane1

SOnOff = On
SAutoManual = Auto

LS2In LSMi LSGr LSMe TSC1 JobC1 AlertC1’

false ? ? ? false H1 true

? true ? ? true H1 true

? false ? ? false 12 true

? ? true ? true 12 true

? ? false ? false 23 true

? ? ? true true 23 true

Else false

Alert Crane2

LSMe: B

LSAs: B

LS1Out: B

TSC2: B

JobC2: CraneAction

SAutoManual: AutoManual

SOnOff: OnOff

AlertC2: B

Figure 22: Syntactic interface of #Alert Crane2

Alert Crane2 #Alert Crane2 works just like #AlertCrane1. Also, the syntactic interface
follows the same system.

Alert Crane2

SOnOff = On
SAutoManual = Auto

LSMe LSAs LS1Out TSC2 JobC2 AlertC2’

false ? ? false 34 true

? true ? true 34 true

? false ? false 4G true

? ? true true 4G true

Else false

27

B Behavior specifications for the logical architecture

The state machines introduced in this section are implementations of the components in Section
5. Because of the limited possibilities of illustrations, annotations of transitions are kept very
simple. In [Vog11], all details are contained.

B.1 Switches

Figures 23 and 24 show how the corresponding components handle user inputs. If the user
sends a signal that does not correspond to the current state, the state is changed. Otherwise,
the system remains in the current state.

Figure 23: Automaton for switching the system on and off (Component 2OperationController)

Figure 24: Automaton for switching the system into automatic and manual mode (Component
2ModeController)

B.2 Bands

Like the switches, also the state machines for the supply band (Figure 25) and the delivery band
(Figure 26) are simple. State transitions are made according to the sensor data, the system
receives. If the light sensor at the beginning of a band signals an object and the sensor at the
end does not signal an object, the band is turned on (if the system is turned on, otherwise the
bands are off).

Figure 25: Automaton for switching the supply band on and off (Component 2SupplyBand)

28

Figure 26: Automaton for switching the delivery band on and off (Component 2DeliveryBand)

B.3 Cranes

Figure 27 shows the state machine for the component 2JobDecision. According to sensor data
and the state of each crane, it decides which job to do next for each crane. After reading the
sensor inputs, the decision is made for the second crane, because its jobs have higher priority.
Then, the next job for the first crane is determined. After this, the jobs are sent to the cranes.

Figure 27: Automaton for 2JobDecision

Each job is executed by the same sequence of actions: First, the crane moves to the position
where a workpiece has to be picked up. Then it picks it up and moves to the destination of
the workpiece. Then, the workpiece is dropped onto the station. Depending on the job that
has to be done, the stations vary. Figures 28 and 29 illustrate the behavior.

29

Figure 28: Automaton for 2Crane1

Figure 29: Automaton for 2Crane2

30

