TUM

INSTITUT FUR INFORMATIK

Focus on Processces

Maria Spichkova

TUM-I1115
Juli 11

TECHNISCHE UNIVERSITAT MUNCHEN

TUM-INFO-07-I1115-0/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©2011

Druck: Institut fur Informatik der
Technischen Universitat Minchen

Focus on Processes

Maria Spichkova

July 26, 2011

This paper presents an extension of the formal specification lan-
guage Focus [1] as well as of the methodology Focus on Isabelle [4]
by the process language and optimization of the Focus language to
specify some trivial cases implicitly, by the specification semantics.
As the starting point of the process language we take a structured,
formal model for specification and analysis of work flows [2].

Contents

1 Introduction 3
1.1 Background: Focus o o 3
2 Focus: Optimized Specification 5
3 Focus: Formal Model of Processes 7
4 Specification Of An Elementary Process 8
4.1 Representation of universal and special parts of a process 9
4.2 Representation of process by component 13
4.3 Example: Specification of an elementary process 14
5 Specification of Composed Processes P and () 17
5.1 Specification Of An Sequentially Composed Process P; @ 17
5.2 Specification Of An Alternatively Process P® Q 18
5.3 Specification Of A Simultaneously Composed Process P || @ . . 20
5.4 Specification Of An Repetitively Composed Process: Autonomous
Version e e e 21
5.5 Specification Of An Repetitively Composed Process: Non-Autonomous
Version e e e 23
5.6 Special Cases 25
6 Case Study: Pumping Station 26
6.1 Data Types and Constants 26
6.2 System Architecture L. 26
6.3 CloseValve Component 28
6.4 ActivatePump Component 32
6.5 OpenValve Component 33
6.6 HaltPump Component 34
7 Conclusions 35
References 35

1 Introduction

Specifying components and system in a formal language is helpful to have a
possibility to present also processes within the same language. For these reasons
we extend the formal language Focus [1] by the theory of processes.

Focus has an integrated notion of time and modeling techniques for un-
bounded networks, provides a number of specification techniques for distributed
systems and concepts of refinement. More precisely, we suggest to use one of the
versions of the Focus language, which was used within “FoOcus on Isabelle”.

We present in this paper also an optimization of the Focus language to
specify some trivial cases implicitly, by the specification semantics.

“Focus on Isabelle” [4] is a specification and proof methodology/ frame-
work, where one of the main points during specification phase is an alignment
on the future proofs to make them simpler and appropriate for application not
only in theory but also in practice. Considering this framework we can in-
fluence on the complexity of proofs already doing the specification of systems
and their properties, e.g. modifying (reformulating) specification to simplify the
proofs! for a translated Focus specification. Thus, the specification and veri-
fication/validation methodologies are treated as a single, joined, methodology
with the main focus on the specification part.

Hence, representing processes in FOCUS we can use the advantages of “Focus
on Isabelle” to prove whether some properties of these process hold.

1.1 Background: Focus

A system in FOCUS is represented by its components that are connected by com-
munication lines called channels, and are described in terms of its input/output
behavior. The components can interact and also work independently of each
other. A specification can be elementary or composite composite specifica-
tions are built hierarchically from the elementary ones.

The channels in this specification framework are asynchronous communi-
cation links without delays. They are directed and generally assumed to be
reliable, and order preserving. Via these channels components exchange infor-
mation in terms of messages of specified types.

In Focus any specification characterizes the relation between the commu-
nication histories for the external input and output channels. To denote that
the (lists of) input and output channel identifiers, I and O, build the syntac-
tic interface of the specification S the notation (Ig > Og) is used. The formal
meaning of a specification is exactly this external input/output relation.

The Focus specifications can be structured into a number of formulas each
characterizing a different kind of property, the most prominent classes of them
are safety and liveness properties. FOCUS supports a variety of specification
styles which describe system components by logical formulas or by diagrams
and tables representing logical formulas.

! As the verification system we have chosen Isabelle/HOL [3], an interactive semi-automatic
theorem prover for Higher-Order Logic.

The central concept in FoOcus are streams, that represent communication
histories of directed channels. For any set of messages M, M“ denotes the set
of all streams, M°° and M™* denote the sets of all infinite and all finite streams
respectively, M% denotes the set of all timed streams, M=% and M* denote the
sets of all infinite and all finite timed streams respectively. A timed stream is
represented by a sequence of messages and time ticks, the messages are also
listed in their order of transmission. The ticks model a discrete notion of time.

The most general style of a FOCus specification is an A/G style (Assump-
tion/Guarantee style, Assumption/Committment style) — a component is spec-
ified in terms of an assumption and a guarantee, what means whenever input
from the environment behaves in accordance with the assumption asm, the spec-
ified component is required to fulfill the guarantee gar.

Focus operators used in the paper:

An empty stream is represented in Focus by ().

(z) denotes the one element stream consisting of the element z, ft.l - the first
element of the untimed stream (list of elements) .

#s denotes the length of the stream s. ith time interval of the stream s is
represented by ti(s, 7).

msg,, (s) denotes a stream s that can have at most n messages at each time
interval, and ts(r) denotes a stream r that has exactly one message at each
time interval (so called time-synchronous stream).

See [1] and [4] for more background on Focus and its extensions.

2 Focus: Optimized Specification

Specifying a component we have often such a case where for some time inter-
vals both conditions hold: local variables still be unchanged and there is no
output. This can occur, e.g., if at this time interval the component gets no in-
put or if some preconditions (which are necessary to produce the corresponding
nonempty output) don’t hold.

In classical Focus (as well as in Isabelle/HOL) we need to specify such cases
explicitly, otherwise we get an underspecified component that has no informa-
tion how it must act if it gets no input or if some preconditions don’t hold.
We suggest to extend the classical FocuUs by possibility of adding a new label
optimized that extends the specification automatically by so-called else — case.
Thus, the underspecified cases in the component behavior will be automati-
cally understood as follows: local variables must be unchanged (this implies
that system stays in the same state), all output streams at the corresponding
time unit must be empty. This optimization doesn’t be applicable to compo-
nent with variables representing timer/countdown, because the variables of this
kind must be changed even the component gets no input or even some precon-
ditions, which are necessary to produce the corresponding nonempty output,
don’t hold.

Having such an optimization we get shorter specifications that are more read-
able and clear.

The idea of optimization for weak-causal components can be presented as
follows. Let SWeak be some component with n input channels (streams)
x,...,x, of types MIy,. .., MI, and with m output channels ¥, ..., y, of types
MOy, ..., MOy, as well as with k local variables ay, ..., a; of types Li,..., L
respectively, and let the specification looks like one presented below.

In real specifications the formula j 4+ 1 is mostly presented for by a number of
formulas, because the conjunct

—SomeCondition; (ti(x1, t),. .., ti(zp, t), a1,...,a5) A -+ A
~SomeCondition; (ti(z1, t), ... ti(z,, t), a1,. .., ax)

is too unreadable. These formulas can take in worst case ca. a haft of specifi-
cation place, and exactly these formulas we can eliminate using the optimized
semantics that (implicit) adds them automatically to the specification for all
the cases we need to argue about the specification, e.g. if we need to translate
it to Isabelle/HOL for verification of some properties.

The optimized specification of the component SWeak is also presented below.

For strong causal specification the optimization can be done analogously, but
taking into account output delays.

— SWeak() timed —
in x: ML, ..., x, : MI,
out y1:MO1,...,Ym : MOy,

local a; € Lq; ai € Ly

asm

SomeAssumptions

gar

1 SomeCondition (ti(z1,t), ... ti(2y, t),a1,...,a5) —

SomeCalculationy (ti(xy, t), ... ti(zn, 1), a1,. .., ap, ti(y1, 1), ... ti(ym, t), af,. .., ay)

j SomeCondition; (ti(z1,t), ... ti(z,, t), ar,...,ap) —

SomeCalculation; (ti(z1, t), ti(z,, 1), a1, ..., e, ti(y1,), ..o ti(Ym, 1), a1, ..., ay)
j+1 —=SomeCondition, (ti(zy, t), ..., ti(zn, t), a1y .y ap) A -+ A
—SomeCondition; (ti(z1,t),. .., ti(zy, 1), a1,...,a5) —

a=a A ... ANap=ap Ati(y,t) =0 A ..o A ti(ym. t) =)

— SWeakOptim() timed, optimized —
in x: ML, ..., x, : MI,
out wyy:MOy,...,Yn: MO,
local a; € Ly; ay € Ly
asm
SomeAssumptions
gar
1 SomeConditiony (ti(x1,t), ..., ti(zy, t), a1,...,a5) —
SomeCalculation, (ti(zy, 1), ..., ti(zn, 1), a1,. .., a, ti(y1, 1), ..., ti(ym.), al, ..., q,)
j SomeCondition; (ti(z1,t), ..., ti(zy,), a1,. .., a5) —
SomeCalculation; (ti(z1, t), ..., ti(zy, t), a1, ..., a5, ti(y1, £),. .., ti(Ym, 1), af, ..., a)

A number of concrete examples of this optimization is presented in Section 6.

Please note that this kind of optimization is the same for the FOCUS components
and the FOCUS processes.

3 Focus: Formal Model of Processes

This paper presents the formal representation in FOCUS of the process language
described in [2]. A process is understood there as “an observable activity exe-
cuted by one or several actors, which might be persons, componets, technical
systems, or combinations thereof”. Fach process has one entry (activation,
start) point and one ezit (end) point. An entry point is a special kind of input
signal/channel that activates the process, where an exit point is a special kind
of output signal/channel that is used to indicate that the process is finished.

According to [2], a process can be defined as an elementary or a composed
one, where the composition of any two processes P; and P2 can be sequential
Py ; P, or parallel Py || Ps, and for any process P we can define repetitively
composed process P Oppgpec, Where Ipspec denotes a loop specifier.

Any Focus process P (elementary or composed) can be represented by the
corresponding FOCUS component specification PComp, i.e.

[P]“"™ = PComp

We treat a process as a special kind of a FOCUS component that has addition-
ally two channels (one input and one output channel) of special kind. These
channels represents the entry and exit points of the process. We specify for any
process P its entry and exit points by Entry(P) and Ezit(P) respectively.

We suggest to use for a FOCUS process a notation similar to the notation for
a Focus component (see also [1, 5]). Specifying a process we need to argue
about its parameters. For these purposes we use an extended version of the
definition from [1] of the semantics of an elementary timed specification to one
of an elementary timed parameterized specification (see [4]).

Definition:
For any elementary timed parameterized specification S we define its semantics,
written [S], to be the formula:

igG[%/\pSEPS/\OSGO%/\BS (1)

where ig and og denote lists of input and output channel identifiers, Ig and
Og denote their corresponding types, ps denotes the list of parameters and Pg
denotes their types, Bg is a formula in predicate logic that describes the body

of the specification S. -

The formal correlation between the definition of FOCUS processes and Focus
components are presented below separately for elementary and composite
processes.

Composite specifications of processes (as well as of components) are built hier-
archically from elementary ones using constructors for composition and network
description and can be represented in the graphical, the constraint and operator
style.

To argue about a mode (active or inactive) of a process P at time interval ¢ we
introduce a new predicate ActiveProcess:

ActiveProcess : ProcessName X N — Bool

Thus, ActiveProcess(P,t) will denote, that the process P is active during the
time interval t.

4 Specification Of An Elementary Process

An elementary process corresponds to an elementary FOCUS specification that
has one special input channel of type Event (input point of the process that
corresponds to an activation signal) as well as one special output of the same
type (output point of the process that corresponds to a signal process is fin-
ished). Thus, we don’t need to specify the type of this two channels explicitly,
because it is given by the purposed syntax.

— process ProcessName(Parameters) FramelLabel —

entry StartChannel
exit StopChannel

InputOutputChannels

local Local_Declarations
orac Oracle_Declarations
univ Logical_Declarations

asm

gar
Guaranties

Any process specification can be represented by a FOCUS component using the
following translation:

e Each input channel (except the activation signals channel) ¢ has a corre-
sponding buffer (local variable) cBuffer of size one (one element buffer),
which value will be taking into account, when starting the process.

e The component gets a local variable active of type Bool to represent
whether the process is in active phase.

e If the process is inactive, there is no values on its output channels.

The initProcess process specification section differs from a standard FOCus spec-
ification section init in the following sense: everything that is defined within the
init section must be initialized only ones, in the beginning, but everything that is
defined within the initProcess section must be initialized every time the process
is (re)started, i.e. every time the value of the local variable active is triggered
fom false to true.

4.1 Representation of universal and special parts of a process

Let a process has n input channels zi,...,z, and m outputs yi,..., Ym, the
condition of its finishing is defined by the predicate FEndingCondition over
the received input values, i.e. over the values saved in the local variables
11 Buffer, ..., z, Buffer. By the predicate Calculations we represent here all
the calculations over the input values that are performed during the process.
In some cases we need to extend this predicate by calculations of some other
local variables of the process.

All inactive processes behave in a similar manner. An universal part of behavior
for a weakly-causal process can be represented as follows:

active = false A ti(ent, t) = () —
ti(ext, t) = () A active’ = active A ti(y1,t) =) A ... A ti(ym,t) = ()

active = false A ti(ent,t) # () —

tilext, t) = () A active’ =true A ti(yi,t) = A ... A ti(ym,t) = A
Initial_Values_Requirements_For_FEvery_Process_Restart

active = false A ti(z1,t) # () — x1Buffer’ = ft.ti(z, t)

active = false A ti(zn,t) # () — z,Buffer’ = ft.ti(z,, t)

active = false A ti(z1,t) = () — @1 Buffer’ = m Buffer

active = false A ti(z1,t) = () — =z, Buffer’ = z, Buffer

An universal part of behavior for a strongly-causal process is the same modulo
delay of one time unit (in special cases, of a number of time units):

ti(ext,0) = () A ti(y1,0) =) A ... A ti(ym,0) = () (Zero Time Unit)

active = false A ti(ent, t) = () —
ti(ezt,t +1) = () A active’ = active A ti(y1,t+1)=() A ... A ti(ym,t+1) =)

active = false A ti(ent,t) # () —
tilext, t +1) = () A active’ =true A ti(yi, t+1) =) A ... A ti(ym,t+1)={) A

Initial_Values_Requirements_For_FEvery_Process_Restart
active = false A ti(z1,t) # () — z Buffer’ = ft.ti(m, t)
'a'c'tive =false A ti(an,t) #() — xnBuffer’ = ft.ti(zy, t)
active = false A ti(z1,t) = () — @ Buffer’ = z1 Buffer

-a-c-tive =false A ti(z1,t) = () — z,Buffer’ = z, Buffer

According to purposed syntax the formulas presented above can be omitted
within a FOCUS process specification (except the formula we called Zero Time Unit
that belongs only to strongly-causal specifications), because they are specified
implicitly by using this kind of FOCUS specifications.

The Initial_Values_Requirements_For_Every_Process_Restart formula will be
moved to the corresponding specification section.

The next two formulas are also similar for every process:

active = true A EndingCondition(ti(z1,1t),...,ti(zn, t), z1 Buffer, ..., z, Buffer) —
CalculationsF (ti(x1, t),. .., ti(xn, t), z1 Buffer, . .., z, Buffer,

@1 Buffer’, ...z, Buffer’ ti(y1, t), ..., ti(ym, t)) A
ti(ext, t) = (event) A active’ = false

active = true A —EndingCondition(ti(z1,t), . .., ti(zn, t), 71 Buffer, ..., z, Buffer) —
Calculations(ti(z1, t), ..., ti(zn, t), 21 Buffer, . .., z, Buffer,
@1 Buffer’, ... z, Buffer’ ti(y1, t), ..., ti(ym, t)) A

ti(ext, t) = () A active’ = active

The predicate EndingCondition is uses to specify the ending condition of the
process — if its value is true, then the process is finished.

The predicate Calculations describes the calculations of the output values for
the current step (for the current time unit) and of the buffer values for the next
step (for the next time unit).

The predicate CalculationsF describes the calculations of the output and buffer
values for a special case when the FEndingCondition holds — for this case we of-
ten need some simpler kind of calculation than specified within Calculations or,
even, of some other kind, but sometimes we can use a single predicate for both

10

cases.

We purpose to represent these formulas within a FOCUS process specification
using a simplified syntax (omitting the conjunct active = true):

EndingCondition(ti(zi, t), ..., ti(zn, t), 21 Buffer, ..., z, Buffer) —
CalculationsF (ti(z1, t),. .., ti(x,, t), z1 Buffer, . . ., z, Buffer,
@1 Buffer’, ..., z, Buffer’ ti(y1, t), ..., ti(ym, t)) A

ti(ext, t) = (event) A active’ = false

—EndingCondition(ti(z1,t), ..., ti(zn, t), 21 Buffer, ..., x, Buffer) —
Calculations(ti(z1, t), ..., ti(zn, t), 21 Buffer, . .., z, Buffer,
@1 Buffer’, ... z, Buffer’ ti(y1, t), ..., ti(ym, t)) A

ti(ext, t) = () A active’ = active

Thus, a general FOCUS process specification Process looks like follows?:

— process P() timed —
entry start

exit stop

in x: ML, ..., x, : MI,
out 1 : MOy,...,Ym: MOy,

local active : Bool; x; Buffer € MIy; ...; xz,Buffer € MI,

init active = false;
x1 Buffer = BufferInitValuey; . ..; x, Buffer = BufferInitValue,

asm

gar
1 PEndingCondition(ti(x, t), ..., ti(z,, t), 71 Buffer, ..., z, Buffer) —
PCalculationsF (ti(zy, t), ..., ti(zy, t), 1 Buffer, . .., z, Buffer,
@y Buffer’, ...,z Buffer’ ti(y1, t), ..., ti(ym, t)) A
ti(ext, t) = (event) A active’ = false

2 - PEndingCondition(ti(z1,t), ..., ti(x,, t), 21 Buffer, ..., z, Buffer) —
PCalculations(ti(z1,t), . . ., ti(zy, t), 21 Buffer, ..., x, Buffer,
@1 Buffer’, ...z, Buffer’ ti(y1,t), ..., ti(ym,t)) A
ti(ext,t) = () A active’ = true

2We are focusing here on timed specifications. That implies that we always use a frame label
timed.

11

My, ..., MI, and MOy, ..., MO,, are here the data types of input and output
streams respectively, and
BufferInitValuey, ..., BufferInitValue, are the initial values of buffers for the
input channels 1, ..., z,.

A process specification can have in general a number of other local variables
as well as parameters, we omit this here to concentrate on the main idea of the
general representation.

On the place of SomeAssumptions all the assumption formulas that are needed
for the process specification must be defined.

The predicates PEndingCondition and PNecessaryCalculations must be defined
extra (P states here for the name of the process).

Please note, that we speak here about weakly-causal specifications. Specifying
a strongly-causal process we need to add to the specification the ZeroTimeUnit
part and take care about the delays by the output channels. A number of ex-
amples of strongly-causal specifications are given in Section 6 discussing a case
study Pumping Station.

Please also note: if a specification has some other local variables, they can also
be parameters of the EndingCondition and/or Calculations predicates. Con-
trariwise, these predicates not always need to have all of the parameters that are
presented here, e.g., the EndingCondition may have also as parameters merely
ti(zy,t), ..., ti(z,, t) or merely z; Buffer, ..., x, Buffer.

If a process P will be specified by TSTD (timed state transition diagram),
then the Local_Declarations field must contain a local (state) variable with the
corresponding name PSt.

In the case the process behavior assumes that the TSTD must be acti-
vated every time at some initial state Statey, than we need to add to the
Initial_ Values_Requirements_For_Fvery_Process_Restart the corresponding def-
inition: PSt = 5.

Doing the translation of the FOCUS process specification to the correspond-
ing FOCUs component specification, we remove the initProcess section with the
formula PSt = Sy and extend the formula

active = false A ti(ent,t) # () —
tilext, t) = () A active’ =true A ti(yi,)= A ... A ti(ym,t) =)

as follows (important: here we define the value of PSt not for the current time
unit, but for the next time unit that will be the first time unit after (re)start):

active = false A ti(ent, t) # () —
ti(ext, t) = () A active’ =true A ti(yi,t)={() A ... A ti(ym,t)=(A PSt' =5

12

4.2 Representation of process by component

This Focus process specification Process corresponds to the following Focus
component specification ProcessComp:

— ProcessComp() timed —
in start : Fvent; x1 : MLy, ..., x, : MI,

out stop: Event; y1 : MO1,...,ym : MO,

local active : Bool; x Buffer € MIy; ...; =, Buffer € MI,

init active = false;

x1 Buffer = BufferInitValuey; . ..; x, Buffer = BufferInitValue,

asm
SomeAssumptions
gar
1 active = false A ti(ent,t) = () —

ti(ext, t) = () A active’ = active A ti(y1,t) =) A ... A ti(ym,t) =)
2 active = false A ti(ent,t) # () —

tiext, t) = () A active’ =true A ti(y,t) = A ... A ti(ym,t) =)

3 active = false A ti(zy,t) # () — 1 Buffer’ = ft.ti(a, t)
3+n active = false A ti(x,,t) # () — z,Buffer’ = ft.ti(z,, t)

4+n active = false A ti(z1,t) = () — z1Buffer’ = 1 Buffer
4+2n active = false A ti(xy,t) =() — z,Buffer’ = z, Buffer

5+2n active =true A
PEndingCondition(ti(zy, t), ..., ti(z1, t), 21 Buffer, ..., x, Buffer) —
PCalculationsF (ti(z1,t), ... ti(x1, t), 7y Buffer, ..., z, Buffer,
xy Buffer’, ..., x, Buffer’ ti(yi, t),. .., ti(ym,t)) A
ti(ext, t) = (event) A active’ = false A

6+2n active = true A
= PEndingCondition(ti(z1,t),. .., ti(a1, t), 21 Buffer, ..., z, Buffer) —
PCalculations(ti(z1,t),. .., ti(z1, t), 21 Buffer, ..., z, Buffer,
x1 Buffer’, ... z, Buffer’ ti(y1, t), ..., ti(ym, t)) A
ti(ext,t) = () A active’ = true

13

4.3 Example: Specification of an elementary process

To give an example, let us discuss a trivial FOCUS specification of the process
NumProc that outputs via an output channel evens a sequence of even numbers,
which are smaller than the last natural number received by the process via an
input stream number. E.g., if the last received number was 9, then after the
activation entry-signal the process outputs the following sequence of numbers:
8, 6, 4, 2, 0 (and after that indicates by the exit-signal that the process is
finished).

The predicate NumEndingCondition is defined here by numberBuffer < 1
and its negation can be simply represented by numberBuffer > 1:

— NumEndingCondition
beN

b<1

The predicates NumCalculations and NumCalculationsF can be specified for
this example as follows?:

_ NumCalculations

x,xNext e N; y € N*

even(z) — zNext =2 —2 N y = (z)

—even(z) — zNext=2z—-3 N y={(x—1)

__NumCalculationsF

xz,xNext € N; y € N*

even(z) — zNext =0 A y = (z)

—even(z) — zNext =0 A y=(z—1)

Because the NumEndingCondition predicate is here very simple, we can simlify
the specification vs. the general representation: cf. the two versions below.

3I1f we use here the predicate NumCalculations also for the case the predicate
NumEndingCondition holds, we get the equalities like zNext = 0 — 2 and zNext =1 — 3
that is not fully correct for natural numbers in Focus.
If we presume for Focus also the Isabelle/HOL rule like 0 —z = 0, we can use the predicate
NumCalculations for both cases, but this solution is less intuitive and not very clean.

14

— process Num() timed —

entry ent
exit ext
in number : N

out evens: N

local active : Bool; numberBuffer : N

VteN:

1 active =true A NumEndingCondition(numberBuffer) —
NumCalculationsF (numberBuffer, numberBuffer’, ti(evens, t)) A
ti(ext, t) = (event) A active’ = false

2 active = true A = NumFEndingCondition(numberBuffer) —
NumCalculations(numberBuffer, numberBuffer’ ti(evens, t)) A
ti(ext,t) = () A active’ = active

— process Num() timed —

entry ent

exit ezt

in number : N

out evens: N

local numberBuffer : N; active : Bool

VteN:

1 active = true A numberBuffer <1 —
NumCalculationsF (numberBuffer, numberBuffer’ , ti(evens, t)) A
ti(ext, t) = (event) A active’ = false

2 active = true A numberBuffer >1 —
NumCalculations(numberBuffer, numberBuffer’ ti(evens, t)) A
ti(ext, t) = () A active’ = active

15

Please note that specifying this process we don’t need the initProcess section,
because we don’t need to set some variables to some standard values every time
the process is (re)started.

This process can be directly presented by the corresponding specification of
a Focus component NumComponet as follows.

— NumComponent () timed —
in ent : Event; number : N

out ext: Fvent; evens : N

local active : Bool; numberBuffer : N

VteN:
1 active = false A ti(ent, t) = () —
ti(ext, t) = () A active’ = active A ti(evens,t) = ()

2 active =false A ti(ent,t) # () —
ti(ext, t) = () A active’ =true A ti(evens,t) =)

3 active =false A ti(number,t) # () — numberBuffer’ = ft.ti(number, t)
4 active = false A ti(number,t) = () — numberBuffer’ = numberBuffer
5 active = true A numberBuffer <1 —
NumCalculationsF (numberBuffer, numberBuffer’, ti(evens, t)) A
ti(ext, t) = (event) A active’ = false
6 active = true A numberBuffer >1 —

NumCalculations(numberBuffer, numberBuffer’ ti(evens, t)) A
ti(ext, t) = () A active’ = active

The sixth formula of the specification above can be also simplified (vs. the
using of auxiliary predicates) into two formulas as follows:
active = true A numberBuffer > 1 A even(numberBuffer) —
numberBuffer’ = numberBuffer —2 A
ti(ext,t) = () A active’ =true A ti(evens,t) = (numberBuffer)

active = true A numberBuffer > 1 A —even(numberBuffer) —
numberBuffer’ = numberBuffer —3 A

ti(ext,t) = () A active’ = true A ti(evens, t) = (numberBuffer — 1)

16

5 Specification of Composed Processes P and ()

Let P and @ be any two processes. The sets of input and output channels are
defined for processes P and @ as well as for the the corresponding components
PComp and QComp, where PComp = [P]™ and QComp = [Q]"?, as
follows:

Entry(P) = entP Entry(Q) = entQ

Ezit(P) = extP Ezit(Q) = extQ
Ip:il,...,im IQZ.’L‘l,...,.’L‘k
Op =01,...,0p Og=9Y1,--19
I pjeomr = entP, iy, ..., iy, Ligyeomr = entQ, a1, . .., T,

Orpjeomr = extP, 01,..., 0y Ojgpeomr = extQ, y1, ..+, Yz

5.1 Specification Of An Sequentially Composed Process P; @

comp __

[P(i1y -y tms O1y--vy0n); Q(T1y ey @iy Yty- -+, Yz)]
PP (entP, iy, ..., im, extP, 01,..., 0n) ® QP (extP, xy,. .., x5, extQ, y1, ..., Yz)

> o f+———
- PSpec QSpec .
entP extP | extQ

Figure 1: Sequentially Composed Process P; @

Fig. 1 shows a graphical representation of sequential composition of two pro-
cesses P and) in general. Please note that we draw here in green all the
channels, which represent entry and exit points of a process, a well as auxil-
iary component to merge (in later examples also: to split) the streams over
these channels. We draw in blue all the auxiliary components to merge regu-
lar channels according to the process composition as well as the corresponding
channels.

The sets of input, output and local channels are defined for processes and
components as follows:

17

Entry(Q) = ent@ = extP = EzitP
Entry(P; Q) = entP

Ezit(P; Q) = extQ

Ip; @ = (Ip\ Lp; @) U (IQ \ Lp; @)
Op; @ = (Op\ Lp; @) U(Og \ Lp; @)
Lp.g=IpN0Og)U(0OpnNlgp)

Ips g = (Ipyoms \ Lips gpeon) U (Tigpeoms \ Lips o)
Orp; geome = (Oppyore \ Lip; greove) U (Olqreons \ Lip; i)
Lip; qrevr = (Iipyems 0 Orgpeome) U (Oppyeome O Iigeome)

5.2 Specification Of An Alternatively Process P & ()

[P(ila"wimaola'“aon)@Q(xla"'7xk7yla"‘7yz)]comp =
PsPec(entP, iy, . .., im, €XtP, 01,...,0,)®

Qspec(entQ’ Tyyeee s Thy B.TtQ, Y1y oy yz)®
GuardEvent(entPQ, entP, entQ)®

Merge(Event)(extP, extQ, extPQ)

— F———
PSpec
entP extP
entPQ | Guard Merge extPQ
Event g
entQ extQ

] QSpeC L .

Figure 2: Alternatively Composed Process P & @

Fig. 2 shows a graphical representation of alternative composition of two pro-
cesses P and () in general. The special components GuardEvent and Merge are
specified below.

18

The component GuardEvent can be also defined in another way, if the input
control flow is represented, e.g., by a stream of natural numbers or if this com-
ponent has not a single input control flow, but a number of them.

— GuardEvent() timed —

in 2 : Bool

out z,y: Fvent

() = () — i, 1) = O Aty 1) =)
ti(z,t) = (true) — ti(z,t) = (event) Ati(y,t) = ()
ti(z,t) = (false) — ti(z,t) = () Ati(y,t) = (event)

— Merge(type M) timed —

in x,y: M;
out z: M

The sets of input, output and local channels are defined for processes and
components as follows:
Entry(P & Q) = entPQ
Ezit(P @ Q) = extPQ
Irag = Ip U g
Opsg = Op U Og
Lreg =@

The sets of input, output and local channels are defined for processes and
components as follows:

Iipagiemr = ((Ijpyeome U Ligpeomr) \ {entP, entQ}) U {entPQ}
Opsqrm = ((Opym U Ojqpm) \ {eatP, eatQ}) U {eatPQ}
Lipggyemr = {entP,entQ, extP, extQ}

19

5.3 Specification Of A Simultaneously Composed Process P || @

[P(ila"'aimaolv"'aon) H Q(Ila"'awkayla"'7yz)}comp -

PP (entP, iy, . .., iy, €XtP, 01, ..., 0p)®
QP (entP,xy, . .., Tk, extQ, Y1, ..., Yz)Q
ConjParEvent(extP, extQ, extPQ)

] PSpec -
entP extP |
IR ConjParEvent - oPa,
extQ
] QSpec L .

Figure 3: Simultaneously Composed Process P || Q

Fig. 3 shows a graphical representation of parallel composition of two processes
P and @ in general. The special components ConjFvent is specified below. We
assume here, that the processes P and () can be activated next time iff both of
them are completed.

The sets of input, output and local channels are defined for processes and
components as follows:

Entry(P; Q) = entP

Ezit(P; Q) = extPQ

Ip; @ =P\ Lp; @)U g\ Lp; q)
Op; @ = (0p\ Lp; @)U (Og \ Lp; @)
Lp; g = (IpN O0q)U(0pNlIq)

fippqrere = (ipyore \ Lipyjgieme) U (Ligyeoms \ Lipygieoms)
Opiirers = (Oppyorms \ Lipjjgens) U (Orqpeoms \ Lipj gpome)
Lipgremr = (Iipyems N Opgpeome) U (Oppyeom O Iigeome)

20

— ConjParEvent() timed —

in x,y : Fvent

out z: Fvent

local second : Bool

init second = false

t!(y,t% = () A second — ti(z,1t)

= (event) A second’ = false
= () N -second — ti(z,t) =

() A second” = true

ti(z,t) = () A ti(y,t) = (event) A second — ti(z,t)
i A

= (event) A second’ = false
ti(y, t) = (event) A —second — ti(z,t) =

() A second’ = true

ti(z, t) = (event) A ti(y,t) = (event) — ti(z,t) = (event) A second’ = false

5.4 Specification Of An Repetitively Composed Process: Autonomous

Version

A
Ipspec
point Ezit(P Oﬁ,spec) are undefined for the black-box-view, because the process
is started by themselves and repeated after the specified time.

In the autonomous version the entry point Entry(P O) as well as the exit

. i A comp __
[P(Zla---azMaola"')On) Olpspec] o
PSPee(entP, iy, ..., iy, €xtP, 01, ..., 0,)®

LoopSpec(extP, entP)

Fig. 4 shows a graphical representation of this kind of loop composition. The
special component LoopSpec can be defined in many ways according to the
system needs. The important point is here that if the Focus process P (and
correspondingly the FOCUS component P*P°) is only weak causal, then the
component LoopSpec must be string causal, i.e. to have at least one time unit
delay.

We present here a simple example of a loop-componet LoopSpec7 that restarts
the process in 7 time units after it was complete.

21

PSpec
— >
entP extP
A
LoopSpec

Figure 4: Repetitively Composed Process: Autonomous Version

— LoopSpec7() timed —

in z . Event

out z: Fvent

local timer : N

init timer =0

ti(z,0) = (event)

VteN:
timer =0 A ti(z,t) = () — ti(z,t+1) =) Atimer’ =0

timer =0 A ti(z,t) = (event) — ti(z,t+1) = () Atimer’ =1
timer =7 — ti(z,t+ 1) = (event) A timer’ =0

timer >0 A timer <7 — ti(z,t+1) = () A timer’ = timer + 1

The sets of input, output and local channels are defined for process and

component as follows:

Entry(P Opspec) = @
EiL'Zt(P Olpspec) =y
ey, = 1P

0 =0
PO pee P
LPOA =g

Ipspec

22

lLipsp, = dippm \ {entP}
O[Pol?)spcc] = O[p]mmp \ {e:vtP}
Lipss = {entP,extP}

Ipspec

5.5 Specification Of An Repetitively Composed Process:
Non-Autonomous Version

A
Ipspec

exit point Fwit(P Of;spec) are defined for the black-box-view and are merged

with the loop values:

In the non-autonomous version the entry point Entry(P O) as well as the

[P(ity - -y imy 01y 0n) Opspec |7 =

PP (entP, iy, . .., iy, €xtP, 01,.. ., 0p)®
LoopSpec(extP, entPL)®
MergeEntryEvents(entPS, entPL, extP, entP)

—_— —»
PSpec
Y
entP extP‘
LoopSpec .
entPL
entPS :

—— 1 MergeEntryEvents

Figure 5: Repetitively Composed Process: Non-Autonomous Version

Fig. 5 shows a graphical representation of this kind of loop composition. The
special component LoopSpec is defined in the similar way to the autonomous
version.

The special component MergeEntryFEvents can be defined in different ways
to merge the start signals from outside and the start signals from the loop.
The important point is here whether the process can be restarted before it was
complete we add to this component the input channel extP to check this.
An example of a FOCUs specification for the component MergeEntryEvents is
presented below.

The sets of input, output and local channels are defined for process and
component as follows:

23

Entry(P Opspec) = entP
Ezit(P Opspec) = extP
Ip,ye = Ip

Orcyy. = Op

Lpoyy. =9

Tipesy,] = (Ipjeomse U {entPS}) \ {entP}
O[Polpwcc] = O[P]“Ump
Lipoy,pe) = {entP, extP, entPL, entPS}

— MergeEntryEvents() timed —
in xS, zLoop, y : Fvent

out z: Event

local ready : Bool

init ready = false

asm
ts(zS) A ts(zLoop) A ts(y)

gar
VteN:
ti(zLoop, t) = (event) — ti(z,t) = (event) A ready’ = false

ti(zLoop, t) = () A ready = false A ti(zLoop, t) = () —
ti(z, t) = () A ready’ = false

ti(zLoop, t) = () A ready = false A ti(zLoop, t) = (event) —
ti(z, t) = () A ready’ = true

ti(zLoop, t) = () A ready = true A ti(zS,t) = () —
ti(z,t) = () A ready’ = true

ti(zLoop, t) = () A ready = true A ti(zS,t) = (event) —
ti(z, t) = (event) A ready’ = true

24

5.6 Special Cases

In Sections 5.1 5.3 it doesn’t matter whether the set Ip N Ig is empty or not,
because we can simply split the input streams to many components. But for
all composed specifications presented above we need to assume that the set
Op N Og is empty, because we cannot simply join the output streams, we need
to merge them using a special component, e.g. the component Merge specified
in Section 5.2.

Thus, for the case (Op N Og) # @ we need to redefine the composition
equality.

Assume that (Op N Og) = {o01,...,0;} for some [, s.t. 1 <l <mnand! <z,
iie. Op = 01,...,01,0141,...,0n and Og = 01,...,0., Yi41,-.-,Yn (the data
types of 01,..., 01 are My, ..., M, respectively). Then

comp

[P(ila-"aimaola-"aon); Q(Ila"'axkayla"'ayZ)] =
PsPec(entP, iy, ..., im, €XtP, 01,. .., 0,)®
QP (extP, a1,y . .., Tp, €2EQ, Y1y o, Yz)®
Merge(My) (o1, y1, 0y1) ® - - ® Merge(M;) (o1, y1, oyr)

[P(ila"'aimaolv"'aon)@Q(Z‘I;”'axkayla"'ayz)]comp =

PP (entP, iy, . .., im, €xtP, 01,...,0p)®

QP (extP, a1, ..., 2k, extQ, Y1, ..., Ys)Q
GuardEvent(entPQ, entP, entQ)®
Merge(Event)(extP, extQ, extPQ)®

Merge(Mi)(o1, y1, 0y1) ® - - - © Merge(My) (o1, yi, oy1)

comp

[P(ity .-y tm, O1ye-vy0n) || Q(21y. oy Try Y1y e vy Uz)] =
PsPee(entP, iy, ..., im, €XtP, 01,. .., 0,)®
QP (entP, a1, ..., 1k, €xtQ, Y1, - .., Yz)®
ConjParEvent(extP, extQ, extPQ)®
Merge(Mi)(o1, y1, 0y1) ® - - - ® Merge(My) (o1, yi, oyr)

25

6 Case Study: Pumping Station

In this section a case study to the approach is presented: we specify in Focus
the main processes of a pumping station. Using such kind of specification we
can verify properties of pumping station in a formal way, e.g. by translating the
Focus specifications to Isabelle/HOL and using the Isabelle tool to make the
proofs.

6.1 Data Types and Constants

The following user-defined data types and constants will be used within the
case study:

type CloseValveStates = { Open, Closing, Closed }
type HaltPumpStates = { On, Halting, Off }

type ActivatePumpStates = {On, Off }

type Open ValveStates = { Wait, Opening, Open, On}
const ValveClosed € N; ValveClosed = 100

const ValveOpen € N; ValveClosed = 0

const OpenValveDelay € N; ValveClosed = 10

6.2 System Architecture

— PumpingStation() glass-box —
ent
—————— MergeEvents extStop
entStart
u_i .
u_2 y QOpen
Start
BTN Il > . QCloseStart
FBLON | | | N Pump
FB_POS | | | | . | . QONStart
extStart
QONStop
. . . A
L Merge |4 GON
StopPump
QCloseStop Merge QClose

26

The system process PumpingStation consists of two subprocesses, StartPump
and StopPump, building an activation loop as shown above. Each of these
two subprocesses is non-elementary, i.e. sequentially composed of a number of
elementary processes.

— StartPump() glass-box —

entStart l T QCloseStart T QONStart T QOpenStart

U1

. FB_ON

u2 | Close |exti| Activate |ext2| Open
srn | Valve Pump Valve | extStatt

FB_POS T T

— StopPump() glass-box —

extStart l T QCloseStop T QONStop

NN 3 FB_ON
ex

—Y2.1 Close Halt

BTN Valve Pump extStop

FB_POS

Specifications of elementary processes CloseValse, ActivatePump, Open Valve,
and HaltPump as well as the corresponding FOCUS specification are discussed
in the following subsections. All these processes are strong causal with delay of
one time unit.

Please note that we don’t need here any buffers (according to the behavior of
the process) for input channels for any of the elementary processes. Please also
note that all these processes are strongly-causal.

27

6.3 CloseValve Component

— process CloseValve() timed —

entry start

exit ext

in Ui, Uz, Pos : N; Btn : Bool
out Close : Bool

local active : Bool; CloseValveSt € CloseValveStates

asm

0 ti(ext,0) = () A ti(Close,0) = ()

1 CloseValveSt = Closing A ti(Pos,t) = (ValveClosed) —
CloseValveSt' = Closed A ti(Close,t+1) = () A
tiext,t + 1) = (event) A active’ = false

2 CloseValveSt = Open A
ti(U1,t) = (z) A x> TankLevelMin A ti(Us,t) = (y) N y < TankLevelMaz A
ti(Btn, t) = (true) —
CloseValveSt' = Closing A ti(Close, t + 1) = (true) A
ti(ezt,t +1) = () A active’ = true

3 CloseValveSt = Open A
=(ti(U, t) = {(z) A x> TankLevelMin A ti(Us,t) = (y) N y < TankLevelMaz A
ti(Btn, t) = (true)) —
CloseValveSt" = Open A ti(Close,t +1) = () A
tiext,t +1) = () A active’ = true

4 CloseValveSt = Closing N ti(Pos,t) # (ValveClosed) —
CloseValveSt' = Closing A ti(Close,t+1) = () A
ti(ext,t +1) = () A active’ = true

We can prove that this specification implies that if the process is active, it
can’t be in state Closed:

active = true — CloseValveSt # Closed (%)

According to the FOCUS extension presented in Section 2 the optimized version

28

Close ValveOptim of the specification will have in the guarantee part two for-
mulas less then in the non-optimized version (the 3rd and the 4th formula will
be covered by the semantics given by the specification label optimized):

— process CloseValveOptim() timed, optimized —

entry start

exit ezt

in Uy, Us, Pos : N; Btn : Bool
out Close : Bool

local active : Bool; CloseValveSt € Close ValveStates

asm

0 ti(ext,0) = () A ti(Close,0) = ()

1 CloseValveSt = Closing A ti(Pos,t) = (ValveClosed) —
CloseValveSt' = Closed A ti(Close,t+1) = () A
ti(ext, t + 1) = (event) A active’ = false

2 CloseValveSt = Open A
ti(Uy, t) = (z) A x> TankLevelMin A ti(Us,t) = (y) N y < TankLevelMaz A
ti(Btn, t) = (true) —
CloseValveSt' = Closing A ti(Close, t + 1) = (true) A
tiezt,t +1) = () A active’ = true

A specification Close ValvePredicates of the same process Close Valve done using
predicates Close ValveEndingCondition and Calculations is presented below.

_CloseValveEndingCondition

CvState € CloseValveStates; p € N*

CvState = Closing A p = (ValveClosed)

29

__CloseValveCalculations

a, b, btn, pos € N*; CvState, CvStateNext € CloseValveStates; cl € Bool *

CuvState = Open A

a=(z) N x> TankLevelMin N b= (y) A y < TankLevelMax A btn = (true)
— CwStateNext = Closing N cl = (true)

A\

CvState = Open A

=(a =(z) N x> TankLevelMin A b= (y) N y < TankLevelMaxz A btn = (true))
— CwStateNext = Open A cl = ()

A\

CvState = Closing N pos # (ValveClosed) — CvStateNext = Closing N cl = ()

— process CloseValvePredicates() timed —
entry start

exit ezt

in Uy, Us, Pos : N; Btn : Bool
out Close : Bool

local active : Bool; CloseValveSt € Close ValveStates

init active = false; Close ValveSt = Open

asm

0 ti(ext,0) = () A ti(Close,0) = ()

1 CloseValveEndingCondition(Close ValveSt, ti(Pos, t)) —
Close ValveCalculationsF (Close ValveSt’, ti(Close, t + 1)) A
ti(ext,t + 1) = (event) A active’ = false

2 —CloseValveEndingCondition(Close ValveSt, ti(Pos, t)) —
Close ValveCalculations(ti(Uy, t), ti(Ua, t), ti(Btn, t), ti(Pos, t),
Close ValveSt, Close ValveSt', ti(Close, t + 1)) A
ti(ext,t +1) = () A active’ = true

The constant ValveClosed € N is defined in Section 6.1.

30

From this definition follows also

—Close Valve EndingCondition(Close ValveSt, ti(Pos, t)) =
(CloseValveSt # Closing V ti(Pos,t) # (ValveClosed))

__ CloseValveCalculationsF

CvStateNext € CloseValveStates; cl € Bool *

CvStateNext = Closed N cl = ()

The specifications Close ValvePredicates an Close Valve are (sematically) equiv-
alent: it is easy to see that the interface and assumption parts of these specifi-
cations are exactly the same, the only difference is in the guarantee part, but
this difference is only syntactical.

The first formulas of both specification are equivalent according to the defini-
tions of the predicates Close Valve EndingCondition and Close Valve CalculationsF .

The second formula of Close ValvePredicates is equivalent to the conjunction
of the second, the third and the fourth formulas of Close Valve:

—Close ValveEndingCondition(Close ValveSt, ti(Pos, t)) —
CloseValveCalculations(ti(Ui, t), ti(Uz, t), ti(Btn, t), ti(Pos, t),
CloseValveSt, Close ValveSt', ti(Close, t + 1)) A
tiext,t) = () A active’ = true
—(CloseValveSt = Closing A ti(Pos,t) = (ValveClosed)) —
(CloseValveSt = Open A ti(Ui,t) = (z) A z > TankLevelMin A
ti(Uz, t) = (y) A y < TankLevelMax A ti(Btn,t) = (true) —
CloseValveSt’ = Closing A ti(Close,t + 1) = (true)
A
CloseValveSt = Open A —(ti(Ur,t) = (z) A x > TankLevelMin A
ti(U2,t) = (y) A y < TankLevelMazx A ti(Btn,t) = (true)) —
CloseValveSt' = Open A ti(Close, t + 1) = ()
N
CloseValveSt = Closing A ti(Pos,t) # (ValveClosed) —
CloseValveSt' = Closing A ti(Close,t +1) = {)) A
ti(ext,t) = () A active’ = true

31

CloseValveSt = Open A ti(Ui,t) = (z) A ti(Ust) =(Y) A ti(Btn,t) = (true) —
CloseValveSt' = Closing A ti(Close,t +1) = (true) A ti(ext,t) = () A active’ = true
A
CloseValveSt = Open A —(ti(Ui,t) = (z) A ti(Uz,t) = (Y) A ti(Bin,t) = (true)) —
CloseValveSt' = Open A ti(Close,t+1)= () A ti(ext,t) = () A active’ = true
A
CloseValveSt = Closing A ti(Pos,t) # (ValveClosed) —
CloseValveSt' = Closing A ti(Close,t +1)= () A ti(ext,t) = () A active’ = true

Please note that by definition the guarantee part the process specification de-
scribes the situation for the case active = true. According to () this means that
CloseValveSt # Closed, i.e. CloseValveSt = Open V Close ValveSt = Closing.

6.4 ActivatePump Component

— process ActivatePump() timed —

entry start

exit stop

out @On : Bool

local active : Bool; ActivatePumpSt € ActivatePumpStates

1 ActivatePumpSt = Off —
ActivatePumpSt' = On A ti(QOn,t + 1) = (false) A
ti(stop, t + 1) = (event) A active’ = false

32

6.5 OpenValve Component

— process OpenValve() timed —
entry start

exit ezt

in FBoy, : Bool; FBp,s : N
out @QOpen : Bool

local active : Bool; OpenValveSt € OpenValveStates; timer : N

init active = false; OpenValveSt = Wait; timer =0

0 ti(ext,0) = () A ti(QOpen,0) = ()

1 OpenValveSt = Wait A timer < OpenValveDelay —
OpenValveSt' = Wait A timer’ = timer +1 A ti(QOpen,t+1) = () A
tiext,t +1) = () A active’ = true

2 OpenValveSt = Wait A timer = OpenValveDelay —
OpenValveSt' = Opening A timer’ =0 A ti(QOpen,t+ 1) = (true) A
ti(ezt,t +1) = () A active’ = true

3 OpenValveSt = Opening N
ti(FBpos, t) = (ValveOpen) —
OpenValveSt' = Open A ti(QOpen,t+1) = () A
ti(ext,t +1) = () A active’ = true

4 OpenValveSt = Open A
ti(FBon, t) = (true) —
OpenValveSt' = On A ti(QOpen,t +1) = () A
ti(ext,t + 1) = (event) A active’ = false

5 OpenValveSt = Opening A
ti(FBpos, t) # (ValveOpen) —
OpenValveSt' = Opening A ti(QOpen,t+1) =) A
ti(ezt,t +1) = () A active’ = true

33

According to the FOCUS extension presented in Section 2 the optimized version
Open ValveOptim of the specification will have in the guarantee part one formula,
less then in the non-optimized version (the 5th formula will be covered by the
semantics given by the specification label optimized).

We can prove that this specification implies that if the process is active, it can’t

be in state Off:
active = true — OpenValveSt # On

We can specify the process Open Valve also using predicates Open Valve Calcula-
tions and OpenValveEndingCondition.

6.6 HaltPump Component

— process HaltPump timed —

entry start

exit stop

in FBo, : Bool
out @On : Bool

local active : Bool; HaltPumpSt € HaltPumpStates

init active = false; HaltPumpSt = On

1 HaltPumpSt = On —
HaltPumpSt' = Halting A ti(QOn,t + 1) = (true)

2 HaltPumpSt = Halting N
ti(FBon, t) = (false) —
HaltPumpSt' = Off A ti(QOn,t+ 1) = ()

3 HaltPumpSt = Halting A
ti(FBon, t) # (false) —
HaltPumpSt' = Halting A ti(QOn,t+ 1) = ()

34

According to the FOCUS extension presented in Section 2 the optimized version
HaltPumpOptim of the specification will have in the guarantee part one formula
less then in the non-optimized version (the 3rd formula will be covered by the
semantics given by the specification label optimized).

We can prove that this specification implies that if the process is active, it can’t
be in state Off:

active = true — HaltPumpSt # Off

We can specify the process HaltPump also using predicates HaltPumpCalcula-
tions and HaltPumpEndingCondition.

7 Conclusions

Specifying components and system in a formal language is helpful ho have a
possibility to present within the language also such a concept as process. This
paper presents the corresponding extension of the formal specification language
Focus [1] as well as of the methodology Focus on Isabelle [4] by the process
language: how an elementary and a composed process can be specified with the
Focus language, which properties have different kinds of composition operators
and how a FOCUS process can be represented by a FOCUS component.

As the starting point of the process language a formal model for specification
and analysis of work flows [2] was taken.

Another topic covered in this paper is optimization of the FOCUS language
to specify some trivial cases implicitly, by the specification semantics.

Acknowledgments

I would like to thank C. Leuxner for numerous discussions on the subject of
this paper.

References

[1] M. Broy and K. Stelen. Specification and Development of Interactive Sys-
tems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[2] C. Leuxner, W. Sitou, and B. Spanfelner. A formal model for work flows.
In Software Engineering and Formal Methods (SEFM), 2010 8th IEEE In-
ternational Conference on, pages 135-144. IEEE, 2010.

35

[3] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[4] M. Spichkova. Specification and Seamless Verification of Embedded Real-
Time Systems: FOCUS on Isabelle. PhD thesis, TU Miinchen, 2007.

[5] M. Spichkova. User Guide for the FOCUS representation in IATEX. Technical
Report TUM, TU Miinchen, 2011.

36

