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tWe study the 
omplexity of �nding a subgraph of a 
ertain size and a 
ertain density,where density is measured by the average degree. Let 
 : N ! Q+ be any density fun
tion,i.e., 
 is 
omputable in polynomial time and satis�es 
(k) � k � 1 for all k 2 N. Then
-Cluster is the problem of de
iding, given an undire
ted graph G and a natural numberk, whether there is a subgraph of G on k verti
es whi
h has average degree at least 
(k).For 
(k) = k� 1, this problem is the same as the well-known 
lique problem, and thus NP-
omplete. In 
ontrast to this, the problem is known to be solvable in polynomial time for
(k) = 2. We ask for the possible fun
tions 
 su
h that 
-Cluster remains NP-
ompleteor be
omes solvable in polynomial time. We show a rather sharp boundary: 
-Cluster isNP-
omplete if 
 = 2 + 
( 1k1�" ) for some " > 0 and has a polynomial-time algorithm for
 = 2 +O( 1k ).Keywords. Density-based 
lustering, 
omputational 
omplexity, graph algorithms, �xed-parameter problems.1 Introdu
tionDensity-based approa
hes are highly natural to network-
lustering issues. Web 
ommunities,for instan
e, both well-established and emerging have in 
ommon that they show a signi�
antlyhigh ratio of linkage among their members (see, e.g., [17, 16, 18℄). And, in VLSI layout design,
ollapsing subgraphs of density beyond a 
ertain threshold into one node provides the basis forhierar
hi
al graph-representation of large 
ir
uits to be de
omposed (see, e.g., [7, 15, 1℄).The fundamental task in density-based 
lustering is �nding a dense subgraph (
luster) of a
ertain size. Density of a graph might be de�ned in several di�erent ways. One 
an de�ne thedensity of an undire
ted graph on n verti
es to be the ratio of the number of edges in the graphand the maximum edge-number of an n-vertex graph. Thus, an n-vertex-
lique has density oneand n isolated verti
es have density zero. The de�nition is very intuitive and, in parti
ular,it enables to 
ompare graphs of di�erent sizes dire
tly, regarding their densities. On the otherhand, sin
e a number of edges quadrati
 in the number of verti
es is required for a graph to bedense, small graphs are biased. Therefore, density of undire
ted graphs is usually measured bythe average degree. A 
lique of size n 
learly has average degree n� 1.�Resear
h supported by DFG (Deuts
he Fors
hungsgemeins
haft), grant Ma 870/6-1 (SPP 1126 Algorithmikgro�er und komplexer Netzwerke); Resear
h of the third and of the fourth author supported by DFG, grantMa 870/5-1 (Leibnizpreis Ernst W. Mayr). 1



The problem of de
iding, given a graph G and natural numbers k and 
, if there exists ak-vertex subgraph of G having average degree at least 
, is easily seen to be NP-
omplete. In
ontrast to this variable 
luster-dete
tion problem, we fo
us in this paper on the �xed-parameter
luster-dete
tion problem, whi
h we 
all 
-Cluster. That is, we �x density-parameter 
 (whi
hgenerally may depend on an argument) and want to de
ide, given graph G and natural number k,if there exists a k-vertex subgraph of G with average degree at least 
 (or 
(k), more generally).We are interested in what 
hoi
es of 
 still admit polynomial-time algorithms, and for whi
h 
the problem be
omes NP-
omplete.Studying the 
omplexity of the �xed-parameter problem is motivated by at least two reasons.First, knowing the pre
ise boundary between polynomial-time and NP-
omplete 
ases is essen-tial to obtain eÆ
ient methods for the above-mentioned 
lustering issues in several settings, e.g.,Web graphs, where good 
hoi
es of 
 des
ribe reality suÆ
iently. Se
ond, if the polynomial-time
ases 
an be realized by a uniform algorithm (i.e., parameters t � 
 may be given to the in-put), then we 
an approximate the maximum average degree rea
hable on n verti
es in a graphwithin fa
tor n
 . The best algorithm known guarantees approximation within a fa
tor n 13�" forsome " > 0 [10℄. Thus, we would outperform this algorithm if we �nd a (uniform) polynomial-time algorithm for 
-Cluster up to little over n 23+". Unfortunately, the boundary with theNP-
omplete 
ases turns out to be mu
h lower.Previous WorkThe problem of �nding dense subgraphs has attra
ted a lot of attention in the 
ontext of 
om-binatorial optimization.Gallo, Grigoriadis, and Tarjan [12℄ showed, by using 
ow te
hniques, that there is a polynomial-time algorithm for the densest subgraph problem, in whi
h we are supposed to �nd a subgraph ofarbitrary size with highest average degree. Feige, Kortsarz, and Peleg [10℄ studied a restri
tedversion, whi
h they 
alled the dense k-subgraph problem, where we have to �nd a subgraphwith highest average degree among all subgraphs on k verti
es. They provide a polynomial-timealgorithm that approximates the maximum average degree of su
h k-vertex subgraphs withinfa
tor n 13�" for some " > 0. Several authors proved approximation results for the dense k-subgraph problem using di�erent te
hniques, mainly greedy algorithms [4, 6℄ and semide�niteprogramming [11, 20℄. For spe
ial graph 
lasses, they obtained partly better approximationresults. Arora, Karger, and Karpinski [2℄ showed that the dense k-subgraph problem on densegraphs (i.e., with quadrati
 number of edges) admits a polynomial-time approximation s
heme,whi
h has been improved by Czygrinow to a fully polynomial-time approximation s
heme [8℄. In
ontrast to this, it is not known whether the dense k-subgraph problem on general graphs is notapproximable within fa
tor (1+ ") for all " > 0 (unless P = NP or similar 
omplexity-theoreti

ollapses), although it is even 
onje
tured that the problem is hard to approximate within fa
torn" for some " > 0 [10℄.Fixed-parameter problems were also 
onsidered in our setting. Nehme and Yu [19℄ investi-gated the 
omplexity of the 
onstrained maximum value sub-hypergraph problem, whi
h 
on-tains the dense k-subgraph problem as a spe
ial 
ase. They obtained bounds on the number of(hyper-)edges a (hyper-)graph may have, su
h that the problem is still polynomial-time solv-able, namely, n � s + � logn, where n is the number of verti
es, s the number of 
onne
ted
omponents, and � any 
onstant. Similar �xed parameter-restri
tions to the input graphs werealso 
onsidered in [4, 3℄. Note that this s
enario has no 
onsequen
es for our problem sin
e theserestri
tions a�e
t the graph outside of possible dense subgraphs, and we are interested in the2



existen
e of dense subgraphs of �xed quality inside an arbitrary graph.Most re
ently, Asahiro, Hassin, and Iwama [3℄ studied the k-f(k) dense subgraph problem,(k; f(k))-DSP for short, whi
h asks whether there is a k-vertex subgraph of a given graph Gwhi
h has at least f(k) edges. This problem is almost the same problem as our 
-
luster problem,sin
e obviously, a k-f(k) subgraph has average degree at least 2f(k)k . The authors proved thatthe problem remains NP-
omplete for f(k) = �(k1+") for all 0 < " < 1 and is polynomial-timesolvable for f(k) = k. From this results we 
an 
on
lude that 
-Cluster is NP-
omplete for
 = �(k") for any 0 < " < 1, and is de
idable in polynomial time for 
 = 2. Feige and Seltser[11℄ even proved that (k; f(k))-DSP is NP-
omplete if f(k) = k + k" (whi
h, in our notation,is 
 = 2 + 2k"�1) for any 0 < " < 2. We will enhan
e those bounds to more general settings.This WorkIn this paper we show that 
-Cluster is polynomial-time solvable for 
 = 2 + O( 1k ) and that
-Cluster is NP-
omplete for 
 = 2+
( 1k1�" ) for 0 < " < 2. We thus establish a rather sharpboundary between polynomial time solvable and NP-
omplete 
ases. As a 
orollary we obtain,for the more intuitive 
ase of 
 
onstant, that dete
ting a k-vertex subgraph of average degreeat least two (whi
h is nearly the 
ase of any 
onne
ted graph) 
an be done in polynomial timewhereas �nding a k-vertex subgraph of slightly-higher average degree at least 2 + " is alreadyNP-
omplete. Thus, density-based 
lustering is inherently hard as a general methodology.In terms of the (k; f(k))-DSP our results mean that (k; f(k))-DSP remains NP-
ompleteif f(k) = k + 
(k") for any 0 < " < 2, whi
h, for " � 1, is more pre
ise than in [3, 11℄, and ispolynomial-time de
idable for f(k) = k + 
 for all (
onstant) integers 
.The proof of the polynomial-time 
ases is mainly based on dynami
 programming over 
ol-le
tions of minimal subgraphs having 
ertain properties. For instan
e, for the above-mentionedpolynomial-time result for (k; f(k))-DSP with f(k) = k [3℄, we simply need to �nd shortest
y
les in a graph, whi
h is easy. For fun
tions f(k) = k + 
 with 
 > 0, the sear
h for similarminimal subgraphs is not obvious to solve and is the main diÆ
ulty to over
ome in order toobtain polynomial-time algorithms. In the NP-hardness proofs we adapt te
hniques used by[3, 11℄, that are well suited for �-behavior of fun
tions but lead to di�erent redu
tions a

ordingto the di�erent growth 
lasses. Thus the main issue for getting results for 
-behavior is to unifyredu
tions by a non-trivial 
hoi
e of the parameters involved.12 De�nitions and Main ResultsThroughout this paper we 
onsider undire
ted graphs without loops. Let G be any graph. V (G)denotes the set of verti
es of G and E(G) denotes the set of edges of G. The size of a graphis jV (G)j, i.e., the 
ardinality of V (G). For any fun
tion 
 : N ! Q+ , graph G is said to be1Basi
ally, having Tur�an's theorem [21℄ in mind, one 
ould ask whether it is possible, at least in the 
ase of densegraphs, to dedu
e intra
tability results using inapproximability of Maximum Clique due to H�astad [14℄: thereis no polynomial-time algorithm �nding 
liques of size at least n 12+" (where n is the size of the maximum 
lique)unless P = NP. Assume we would have a polynomial-time algorithm for 
-Cluster with, e.g., 
(k) = ��k2� and0 < � < 1, are we now able to de
ide whether there is a 
lique of size k 12+"? Tur�an's theorem [21℄ says that thereis a 
lique of size k in a graph with n verti
es and m edges, if m > 12n2 k�1k�2 . Unfortunately this implies that we
an only assure that in a graph with n verti
es and at least ��n2� edges, there is a 
lique of size at most 3�2�1�� ,whi
h is 
onstant and makes the argument fail. 3



a 
-
luster if and only if d(G) � 
�jV (G)j� where d(G) denotes the average degree of G, i.e.,d(G) = 2jE(G)j=jV (G)j:We study the 
omplexity of the following problem. Let 
 : N ! Q+ be any fun
tion.Problem: 
-ClusterInput: A graph G and a natural number kQuestion: Does G 
ontain a 
-
luster of size k?Note that 0-Cluster is a trivial problem and that (k � 1)-Cluster = Clique. Moreover, itis easily seen that 
-Cluster is in NP whenever 
 is 
omputable in polynomial time. Thefollowing theorem expresses our main results on dete
ting �xed-density 
lusters.Theorem 1. Let 
 : N ! Q+ be 
omputable in polynomial time, 
(k) � k � 1.1. If 
 = 2 +O( 1k ), then 
-Cluster is solvable in polynomial time.2. If 
 = 2 + 
( 1k1�" ) for some " > 0, then 
-Cluster is NP-
omplete.In the remainder of the paper we prove Theorem 1. Se
tion 2 
ontains the polynomial-time
ases. Se
tion 3 establishes the NP-
ompleteness statements of Theorem 1.Computing (2+O(1k))-dense Subgraphs in Polynomial TimeIn this se
tion we show how to solve 
-Cluster for 
 = 2+O( 1k ) in polynomial time. In otherwords, we prove that sear
hing a k-vertex subgraph with at least k + 
 edges with 
 
onstant isa polynomial-time problem. We will formalize this issue in the problem Ex
ess-
 Subgraph.For a graph G, let the ex
ess of G, denoted by �(G), be de�ned as �(G) = jE(G)j � jV (G)j.A (sub)graph G with �(G) � 
 is said to be an ex
ess-
 (sub)graph.Problem: Ex
ess-
 SubgraphInput: A graph G and natural number kQuestion: Does G 
ontain an ex
ess-
 subgraph of size k?We will show how to �nd ex
ess-
 subgraphs in polynomial time. The general solution is basedon the 
ase of a 
onne
ted graph whi
h is handled by the following lemmas:Lemma 2. Let 
 � 0 be any integer. Given a 
onne
ted graph G on n verti
es, an ex
ess-
subgraph of minimum size 
an be 
omputed in time O(n2
+2).Proof. Let G be any 
onne
ted graph with �(G) � 
. Then there exists a subgraph G
 ofminimum size with ex
ess 
. For the degree-sum of G
 we obtainXv2V (G
) degG
(v) = 2jE(G
)j = 2(jV (G
)j+ 
):Sin
e G
 is minimal subje
t to the number of verti
es, there exists no vertex with degree lessthan two. Therefore the number of verti
es with degree greater than two in G
 is at mostXv2V (G
)(degG
(v)� 2) = 2(jV (G
)j+ 
)� 2jV (G
)j = 2
:4



Let S be the set of all verti
es with degree greater than two in G
. If there is a path 
onne
tingverti
es u; v 2 S using only verti
es from V (G
) n S (u and v are not ne
essarily distin
t),then there 
an be no shorter path 
onne
ting u and v 
ontaining verti
es from V (G) n V (G
).Otherwise G
 would not be minimal subje
t to the number of verti
es. In the following we willdes
ribe how to �nd su
h a subgraph G
 if it exists.We examine all sets S0 � V (G) of size at most 2
 su
h that S0 
ontains only verti
es withdegree greater than two in G, i.e., the elements of S0 are those verti
es where paths 
an 
ross.For su
h a set we 
an iteratively 
onstru
t a 
andidate H(S0) for G
. In ea
h step we in
lude apath whi
h has minimum length among all paths that 
onne
t any two verti
es in S0. We mayrestri
t ourselves to those paths that do not interse
t or join 
ommon edges, sin
e otherwiseH(S0) 
an be also obtained by one of the other possible 
hoi
es of a set S0. This pro
ess isdone until either ex
ess 
 is rea
hed or no further 
onne
ting path exists. In the latter 
asethe set S0 does not 
onstitute a valid 
andidate for G
. Otherwise H(S0) is kept as a possible
hoi
e for G
. After 
onsidering all possibilities for S0, the graph G
 
an be 
hosen as a vertex-minimal subgraph among all remaining 
andidates. Note that G
 is not unique with respe
t toex
hanging paths of the same length.Sin
e, jS0j � 2
, there are 2
Xi=1 �ni� = O(n2
)possible 
hoi
es for S0. For the veri�
ation of a 
hosen set S0 
onsisting of i verti
es we have to�nd iteratively i+ 
 shortest non-
rossing paths, e.g., by using i+ 
 � 3
 parallel breadth-�rst-sear
h runs, whi
h takes time O(3
jE(G)j) = O(n2).Finally, this implies that determining an ex
ess-
 subgraph of minimum size by testing allpossible 
hoi
es of S0 
an be done in total time O(n2
+2). Note that for 
 = 0 we only have to�nd a shortest 
y
le (e.g., by breadth-�rst sear
h) whi
h 
an be done in time O(n2). ❑Unfortunately the algorithm of Lemma 2 
annot dire
tly be used for the general 
ase of possiblynon-
onne
ted graphs. For those graphs verti
es from di�erent 
onne
ted 
omponents may be
hosen. Therefore our algorithm is based on solving the subproblem of maximizing the ex
essfor a given number of verti
es within a 
onne
ted graph.Lemma 3. Let 
 � 0 be any integer. Given a 
onne
ted graph G with n verti
es. Let �ibe the maximum ex
ess of an i-vertex subgraph of G. Cal
ulating minf�i; 
g for all values ofi 2 f0; 1; : : : ; ng 
an be done in time O(n2
+2).Proof. There are some basi
 observations. First of all, �0 = 0. Also, sin
e G is 
onne
ted,�i � �1 for all i 2 f1; 2; : : : ; ng. Furthermore, due to the 
onne
tivity of G the subgraph 
aniteratively be extended without de
reasing the ex
ess. Thus, if there exists a subgraph on iverti
es having ex
ess �i, the value �i is a lower bound for the maximum ex
ess of subgraphswith more verti
es. Therefore it is suÆ
ient to know the minimum number of verti
es ne
essaryto a
hieve ex
ess 
 (as done in Lemma 2).The maximum ex
ess we are interested in is bounded from above by 
. We get the minimumnumber of verti
es needed for all possible values of � 2 f0; 1; : : : ; ng by performing 
+1 iterationsof the algorithm of Lemma 2. Using these results we 
an easily 
al
ulate for ea
h i 2 f0; 1; : : : ; ngthe desired value minf�i; 
g. This takes total time O(n2
+2). ❑5



Before we pro
eed to the main theorem we have to dis
uss a further property. Let (G; k) bethe instan
e of the Ex
ess-
 Subgraph problem, i.e., we have to �nd a subgraph of G on kverti
es with at least k + 
 edges. In linear time we 
an (as a prepro
essing step) partitionG into its 
onne
ted 
omponents and 
al
ulate their ex
ess. Let C1; : : : ; Cr be the list of the
omponents, sorted non-in
reasingly by their ex
ess. Note that �(Cj) � �1 sin
e all 
omponentsare 
onne
ted. Let j0 denote the maximum index of the 
omponents with non-negative ex
essand k0 the total number of all verti
es of those 
omponents.Lemma 4. 1. If k > k0 then there is a maximum ex
ess subgraph 
omprising all verti
esfrom the non-negative ex
ess 
omponents C1; : : : ; Cj0 .2. If k � k0 then there always exists a subgraph of size k having maximum ex
ess within Gand 
onsisting only of verti
es from 
omponents with non-negative ex
ess.Proof. Let G0 be an indu
ed subgraph of G. Assume that G0 
ontains verti
es of a 
omponent Ciwith negative ex
ess while there exists a 
omponent Cj with positive ex
ess that is not 
ontainedentirely.If at least one vertex in Cj is sele
ted, there exists another so far not sele
ted vertex v in Cjthat is adja
ent to G0. Sin
e Ci must be a tree, there must exist a sele
ted vertex u 2 Ci thatis a leaf in the sele
tion, i.e., it is in
ident to at most one edge in G0. By ex
hanging u and v,no ex
ess is lost.Otherwise, no vertex in Cj is sele
ted. On
e again we ex
hange leaves from Ci with 
onne
tedverti
es from Cj . There are two possibilities. First, if Cj is sele
ted entirely, we 
annot loseex
ess be
ause �(Cj) � 0. Se
ond, if all verti
es of Ci were ex
hanged, on
e again we 
annotlose ex
ess sin
e �(Ci) = �1 and Cj is 
onne
ted (and thus has ex
ess at least �1).This pro
ess 
an be iterated until there are no verti
es sele
ted from 
omponents with neg-ative ex
ess or all 
omponents with positive ex
ess are 
ontained entirely. ❑With these results we are able to state the main theorem of this se
tion.Theorem 5. Let 
 be any integer. Ex
ess-
 Subgraph 
an be de
ided in time O(n2j
j+4).Proof. Let 
 be any �xed integer. Let (G; k) be a problem instan
e. The problem 
an be dividedinto two 
ases.In the �rst 
ase, where k � k0, the problem 
an be solved straightforward. Be
ause of Lemma4, there exists a maximum-ex
ess subgraph on k verti
es that 
ontains all 
omponents with non-negative ex
ess entirely. Therefore all remaining verti
es must be 
hosen from the 
omponentswith negative ex
ess. Those 
omponents are trees (ea
h having ex
ess �1 by de�nition) andthus the sele
ted verti
es within these 
omponents indu
e a forest. Sin
e we want to maximizethe ex
ess, we have to minimize the number of trees. Therefore, as long as possible, we 
hoose
omplete 
omponents ordered by non-in
reasing size (i.e., largest trees �rst). From the next
omponent we 
hoose a subtree of suÆ
ient size, to get exa
tly the desired number of verti
es.This pro
edure determines the minimum number of trees to 
hoose. Finally, the maximumex
ess of a subgraph of G on k verti
es 
an be evaluated by adding up the ex
ess of all used
omponents. Obviously, in this 
ase the time bound of the theorem holds.In the other 
ase, k < k0, we may restri
t our 
hoi
e to those 
omponents with non-negativeex
ess. We show that it is suÆ
ient to 
al
ulate separately for ea
h su
h 
omponent the minimumsize of subgraphs for all values of ex
ess within the �xed range f0; 1; : : : ; 
 + 1g. The original6



initialize the arrays X and Yfor all j 2 f1; : : : ; j0g dofor all i 2 f1; : : : ;min(jV (Cj)j; k)g dofor all l 2 f0; : : : ; k � ig doif Y [l + i℄ < X[l℄ +Aj[i℄ thenY [l + i℄ = X[l℄ +Aj [i℄
opy array Y to XFigure 1: Algorithm for ex
ess-aggregation of 
onne
ted 
omponents.problem 
an be de
ided by 
ombining these solutions. For ea
h 
omponent Cj we 
reate anarray Aj. At index i 2 f0; 1; : : : ; jV (Cj)jg we will store the maximum ex
ess for any (indu
ed)subgraph of 
omponent Cj on i verti
es. As we will see later values larger than 
+ 1 are of nointerest. In these 
ases the lower bound 
 + 1 will be used instead. Note that the maximumex
ess 
annot de
rease with larger indu
ed sub
omponents, be
ause we 
an simply add verti
esthat are 
onne
ted to the subgraph. Due to Lemma 3 array Aj 
an be 
al
ulated in timeDjV (Cj)j2(j
j+1)+2 for some D > 0. Hen
e, the total time to 
al
ulate the values for Aj for all
omponents is rXj=1DjV (Cj)j2(j
j+1)+2 � D rXj=1 jV (Cj)j!2j
j+4 = DjV j2j
j+4:Based on the results of the 
al
ulation we 
an distinguish two di�erent 
ases.� If there exists a 
omponent that 
ontains an ex
ess-(
 + 1) subgraph on k1 � k verti
es,we 
an 
hoose this subgraph and add a suÆ
ient number k � k1 of verti
es su
h that theex
ess de
reases by at most one. This 
an be a
hieved by appending remaining verti
es ofthe 
omponent, adding entire so far unused 
omponents (with ex
ess � � 0) and addingat most one in
omplete 
omponent (a 
onne
ted subgraph with ex
ess � � �1).� Otherwise, for the se
ond 
ase, all ex
ess-(
 + 1) subgraphs of any 
omponent have morethan k verti
es. Assuming that we already 
al
ulated the values of the arrays Aj , we 
an
ompute the maximum ex
ess of a k-vertex subgraph from G by 
onsidering suitable sub-sets of the 
omponents. Therefore we have to de
ide how many verti
es of ea
h 
omponenthave to be sele
ted.2From ea
h 
omponent Cj at most min(jV (Cj)j; k) verti
es 
an be sele
ted. Rememberthat the 
orresponding maximum ex
ess is stored in Aj . We iterate over all 
omponentsand within the 
omponents over all possible subgraph-sizes and store the 
urrently bestsub-result in array X. Thus after ea
h iteration X[i℄ 
ontains the maximum possible ex
essfor an i-vertex subgraph of the so far pro
essed 
omponents. Finally X[k℄ 
ontains thevalue of the maximum ex
ess for any subgraph on k verti
es. Thus, it 
an be de
idedwhether there exists an ex
ess-
 subgraph of size k. Figure 1 shows an algorithm for this
al
ulation in pseudo-
ode.2Note that this problem is a variant of Subset Sum, using a set of integer-intervals �f0; 1; : : : ; jV (Cj)jg �� 0 �j � j0	. Despite Subset Sum is NP-
omplete, this problem 
an be solved in polynomial time, be
ause of thepresent unary representation of n. 7



Sin
e the total size of all 
omponents is bounded by n (�rst and se
ond loop) and k � n(third loop) the total 
al
ulation 
ost is O(n2) . ❑So far we only 
onsidered the Ex
ess-
 Subgraph problem for 
onstant values 
. If we areinterested in a k-vertex subgraph with ex
ess f(k) = O(1), the same method 
an be applied.From f = O(1) we know that f(k) is bounded from above by a 
onstant 
0. Obviously thetime 
omplexity for our algorithm is O(n2
0+4), if f(k) 
an be 
omputed in the same time. Thisproblem 
orresponds to �nding a (k +O( 1k ))-dense subgraph. Applying some modi�
ations themethod 
an be used to �nd su
h a subgraph instead of only de
iding its existen
e.Corollary 6. For polynomial-time 
omputable 
 = 2 + O( 1k ), 
-Cluster is is solvable inpolynomial time and, moreover, �nding a 
-
luster is solvable in polynomial time.Similarly, the problem 
an be examined for f = O(log k) whi
h leads to a quasi-polynomialtime algorithm.Corollary 7. 1. For polynomial-time 
omputable 
 = 2 +O( log kk ), �nding 
-
lusters 
an bedone in time nO(logn).2. Let 
 = 2 +�( log kk ) be polynomial-time 
omputable. If 
-Cluster is NP-
omplete, thenNP � DTIME(nO(log n)).3 Finding (2+
( 1k1�" ))-dense Subgraphs is NP-
ompleteIn this se
tion we prove that all 
-Cluster problems are 
omplete for NP if 
 = 2 + 
( 1k1�" )for some " > 0. In doing so, we fo
us on the (k; f(k))-DSP, namely, we show that (k; f(k))-DSPis NP-
omplete whenever f = k +
(k").For this, we need the 
on
ept of a quasi-regular graph. A graph G is said to be quasi-regularif and only if the di�eren
e between the maximal and the minimal degree of the verti
es in G isat most one.Proposition 8. For every n � 0 and 0 � m � �n2� both given in unary (i.e., as inputs 1nand 1m), a quasi-regular graph having exa
tly n verti
es and m edges 
an be 
omputed in timepolynomial in the input length.Proof. De�ne d� =def d2mn e and d� =def b2mn 
. Then there are two distin
t 
ases: Either d� iseven or d� is even. First, let d� be even. Compute a d�-regular graph (by 
onsidering n verti
esto be 
ir
ularly ordered and 
onne
ting ea
h vertex with its d�=2 left and its d�=2 right neighborsin the 
ir
uit) and add a mat
hing of size m� (d�=2)n. This is possible sin
em� d�n2 � m��2mn � 1� n2 = n2 :If d� is even then 
ompute a d�-regular graph and remove an existing mat
hing of size (d�=2)n�m. Analogously to the other 
ase this is possible sin
ed�n2 �m � �2mn + 1� n2 �m = n2 :Clearly the graphs 
an be 
omputed in time polynomial in the values of the inputs, and hen
epolynomial in the length of the unary representations of n and m. ❑8



Theorem 9. Let f : N ! N be a polynomial-time 
omputable fun
tion su
h that f = k+
(k")for some " > 0 and f(k) � �k2�. Then, (k; f(k))-DSP is NP-
omplete.Proof. Let f be a polynomial-time 
omputable fun
tion with f = k + 
(k") for some rational" > 0 and f(k) � �k2�. Containment of (k; f(k))-DSP in NP is obvious. We prove the NP-hardness of (k; f(k))-DSP by redu
tion from a spe
ial version of Clique whi
h will be explainedbelow. Sin
e there are several 
ases to be handled we need di�erent 
onstru
tions. However, inea
h of this 
onstru
tions the following three operations (with parameters from N) on graphsare involved (exa
tly ordered as listed below).� Rs: Let G be any undire
ted graph. De�ne the following sequen
e of graphs: G0 =def Gand, for j > 0, Gj =def h(Gj�1) where h transforms a graph I by adding to I a new vertexwhi
h has an edge to ea
h vertex in I. De�ne Rs(G) =def Gs. Obviously, the followingproperty holds:G has a 
lique of size k () Rs(G) has a 
lique of size k + s. (1)The operator Rs 
an be used to de�ne a spe
ial NP-
omplete version of Clique (see,e.g., [3℄). De�ne Clique 12 to be the set of all instan
es (G; k) su
h that G has a 
liqueof size k and it holds jV (G)j � (1 + 12)k. It is easily seen that Clique 
an be redu
edto Clique 12 , namely by applying Rs to a graph G with parameter s = 2jV (G)j � 3kfor ea
h instan
e (G; k) with jV (G)j > (1 + 12)k. The transformed graph Gs now hasjV (G)j+ s = 12s+ (1 + 12)k+ s = (1+ 12)(k+ s) verti
es, and using (1) the new 
lique-sizeGs is asked for, is k + s.� St: Let G be any undire
ted graph. St transforms G to a graph Gt by repla
ing ea
h edgein G by a path of length t + 1 involving t new verti
es. The new verti
es are referred toas inner verti
es and the old verti
es are referred to as outer verti
es. Note that innerverti
es always have degree 2 and that an outer vertex has equal degrees in Gt and in G.It is easily seen that 
liques in G of size k � 3 are related to subgraphs of Gt as follows(for formal proofs, see, e.g., [9, 13, 11℄):G has a 
lique of size k () St(G) has a subgraph with k + t�k2� verti
es and(t+ 1)�k2� edges. (2)� T�r;N(r) (with � 2 f0; 1g): Let G be any undire
ted graph. T 0r;N(r) transforms G by thedisjoint union with a quasi-regular graph A(r;N(r)) with r verti
es and N(r) edges. Intransformations by T 1r;N(r), we additionally have edges between ea
h vertex in A(r;N(r))and ea
h vertex in G.Note that all these operations are monotoni
, i.e., if G is a subgraph of H, then the transformedgraph of G is a subgraph of H transformed by the same operations with same parameters.Let us �rst 
onsider an arbitrary fun
tion f : N ! N in order to explain the general outlineof the proof. Let (G; k) be any instan
e to Clique 12 with jV (G)j � 32k. We will 
onstru
t anew graph G0 su
h that G has a 
lique of size k if and only if G0 has a subgraph of size k0 withat least f(k0) edges. De�ne G0 =def (T�r;N(r) Æ St Æ Rs)(G)3 and let the parameters s; t; r; � be3Our usage of f Æ g is (f Æ g)(x) =def f(g(x)). 9



�xed. The parameter N(r) will be de�ned asN(r) =def f(k + s+ t�k + s2 �+ r)� (t+ 1)�k + s2 �� �r�k + s+ t�k + s2 �� :Suppose for the moment that N(r) � 0. We have to prove two 
ases.For the �rst 
ase, assume that G has a 
lique of size k. Let C be su
h a 
lique. We 
onsiderthe graph C 0 de�ned as C 0 =def (T�r;N(r) ÆSt ÆRs)(C). Thus, C 0 is a subgraph of G0 and we havejE(C 0)j = (t+ 1)�k + s2 �+N(r) + �r�k + s+ t�k + s2 �� :Hen
e, C 0 is a subgraph of G0 of size k+ s+ t�k+s2 �+ r with at least f(k+ s+ t�k+s2 �+ r) edges.For the se
ond 
ase, assume that G does not 
ontain a 
lique of size k. We must show that inthis 
ase ea
h subgraph of G with k+s+t�k+s2 �+r verti
es has less than f(k+s+t�k+s2 �+r) edges.To do so, we �rst determine a subgraph with maximum number of edges among all subgraphs ofG0 on k+s+t�k+s2 �+r verti
es. In parti
ular, we will guarantee that there exists su
h a subgraph
ontaining entirely the graph A(r;N(r)). Let H be the indu
ed subgraph of G0 
ontaining noverti
es of A(r;N(r)). Let l = k+ s+ t�k+s2 �. Let X be any indu
ed subgraph of G0 having l+ rverti
es. Thus there is a z with 0 � z � r (more pre
isely, z � minfr; jV ((St Æ Rs)(G))j � lg)su
h that l + z verti
es of X belong to H and r � z verti
es of X belong to A(r;N(r)). Let Ybe an indu
ed subgraph whi
h results from repla
ing, in a 
ertain way, z verti
es in X whi
hbelong to H by the remaining z verti
es of A(r;N(r)) whi
h are not in X. Note that, if t � 1,then the verti
es in H 
an be iteratively removed in su
h an order that always a vertex withdegree at most 2 is removed (simply by removing �rst all the inner verti
es around an outervertex and then the outer vertex whi
h now has degree 0). We are done if we 
an show thatjE(Y )j � jE(X)j sin
e, by using Properties (1) and (2), we 
an argue as follows. Let J be asubgraph of H of size l with maximum number of edges. Then the graph C 0 =def T�r;N(r)(J) hasthe maximum number of edges among all subgraphs of G0 on k0 verti
es. For the number ofedges of C 0 we easily obtainjE(C 0)j = jE(J)j +N(r) + �rl � (t+ 1)�k + s2 �� 1 +N(r) + �r�k + s+ t�k + s2 ��= f(k + s+ t�k + s2 �+ r)� 1:Hen
e, G0 does not 
ontain a subgraph with k + s+ t�k+s2 � + r verti
es and at least f(k + s+t�k+s2 �+ r) edges.In order to make these arguments work we have to 
hoose all the parameters su
h that thefollowing two 
onditions 
an be satis�ed:� Constru
tibility: We have to guarantee that the graph G0 
an be 
omputed in polynomialtime. Obviously the operations Rs and St are polynomial 
omputable if parameters sand t 
an be 
omputed in polynomial time. We further have to show that the graphA(r;N(r)) exists and 
an be 
omputed in polynomial time. The latter 
ondition is assuredby Proposition 8 sin
e r will depend polynomially on k whi
h is logarithmi
 in the size ofthe graph, thus a unary des
ription of r 
an be 
omputed in polynomial time. It remainsto show that N(r) � 0 and N(r) � �r2�. Usually, N(r) � 0 is easily seen and it is oftenproved together with the next 
ondition.10



� Ex
hangeability: This 
ondition refers to the 
laim jE(Y )j � jE(X)j used above. Notethat the 
laim is trivial for z = 0. For z � 1 we 
onsider the edge balan
e of transformingX into Y . In the 
ase of � = 0, whi
h is the majority of our 
ases, we will argue asfollows. On the one hand, we remove at most �z edges from H, for some �. On theother hand we add at least 12b2N(r)r 
z edges in A(r;N(r)) It is thus suÆ
ient to satisfythat 12b2N(r)r 
z � �z or, if 2� 2 N, equivalently, N(r)r � �. In the 
ases with � = 1 wewill employ more re�ned arguments.Sin
e f = k +
(k") for some rational " > 0, there exists a natural number D > 1 su
h thatfor some k0 2 N, k +D�1k" � f(k) for all k � k0. Obviously, we may suppose that " < 18 andD � 5. Sin
e we will have to respe
t several �ner growth-
lasses the fun
tion f might belongto, we 
hoose one argument k0 to distinguish between these di�erent 
lasses. De�nek0 =def l�D6k2� 1"m :Clearly, k0 is 
omputable in time polynomial in the length of k. Depending on the fun
tion valuef(k0) we 
hoose di�erent parameters s, t, r, and �, su
h that k0 = k + s+ t�k+s2 �+ r to obtainthe graph G0. We distinguish between �ve 
ases that represent a partitioning of the intervalbetween k0 +D�1k0" and �k02 �.Case I. Let k0+D�1k0" � f(k0) < k0+Dk0: We split this 
ase in several sub
ases. We 
onsider,depending on j with 0 � j < log 76 1" , the ranges k0 + D�1k0( 76 )j" � f(k0) � k0 + Dk0( 76 )j+1".Clearly, we 
an 
ombine those sub
ases to 
over the 
omplete range from k0+D�1k0" to k+Dk0as required for Case I. For ea
h value of j we apply Rs, St, and T�r;N(r) with the followingparameters: s = 0; t = (k0 � r � k)=�k2�; � = 0;r = l(4D4k2)( 76)jm+ h�k0 � l(4D4k2)( 76 )jm� k� mod �k2�iNote that t 2 N by the modular term in the de�nition of r. Trivially, we have k + s+ t�k+s2 �+r = k + t�k2� + r = k0. For k large enough (and thus k0 and r as well) 
onstru
tibility andex
hangeability 
an be satis�ed as 
an be seen by the following 
al
ulations.� Constru
tibility:N(r) � k0 +Dk0( 76)j+1" � (t+ 1)�k2� = r +Dk0( 76 )j+1" ��k2�+ k� r +D �2D6k2� 76( 76 )j � r + �3D8k3�( 76)j � �(2D4k2)( 76)j�2� �12r�2 � �r2�� Ex
hangeability: Sin
e t � 1 for k > 0, we 
an 
hoose � = 2 and we obtain the following:N(r) � k0 +D�1k0( 76)j" � (t+ 1)�k2� � r +D�1 �(D6k2) 1"�( 76)j" ��k2�+ k� r + (D5k2)( 76 )j � k2 � 2r11



Case II. Let k + Dk0 = (1 +D)k0 � f(k0) < (1 + D)k0 32 . Apply Rs, St, and T�r;N(r) with thefollowing parameters (" < 18 ):s = 0; t = 1; � = 0; r = k0 ��k2�� kClearly, we have k+ s+ t�k+s2 �+ r = �k+12 �+ r = k0. For k large enough (and thus k0; r as well),
onstru
tibility and ex
hangeability 
an be satis�ed as 
an be seen by the following 
al
ulations.� Constru
tibility:N(r) � f(k0) � (1 +D)�r +�k + 12 �� 32 � 32D(2r) 32 � 92Dr 32 � 14r2 � �r2�� Ex
hangeability: Sin
e t = 1 we 
an 
hoose � = 2 and we have the following:N(r) � (1 +D)�r + k +�k2��� 2�k2� � (1 +D)r + (D � 1)�k2� � 2r:Case III. Let (1 + D)k0 32 � f(k0) < �k02 � � k0 98 . Apply Rs, St, and T�r;N(r) with the followingparameters: s = 0; t = 0; � = 0; r = k0 � kObviously, k+ s+ t�k+s2 �+ r = k+ r = k0. Note that sin
e " < 18 we have k2 � k0 18 . For k largeenough (and thus k0; r as well), 
onstru
tibility and ex
hangeability 
an be satis�ed as 
an beseen by the following 
al
ulations.� Constru
tibility:N(r) � �k + r2 �� k0 98 ��k2� � �r2�+ k0(k � k0 18 ) � �r2�� Ex
hangeability: Sin
e G has at most 3k2 verti
es, we 
an set � = 3k2 � 1 (observe that2� 2 N) and we obtain the following:N(r) � (1 +D)(k + r) 32 ��k2� � r �(1 +D)(k + r) 12 � 1� � r(k 1" � 1) � 3k2 rCase IV. Let �k02 �� k0 98 � f(k0) < �k02 �� k03 . Apply Rs, St, and T�r;N(r) with parameters:s = �13k0 14�� k; t = 1; � = 1; r = k0 � k � s��k + s2 �:Clearly, s � 0 and we have k + s + t�k+s2 � + r = �k+s+12 � + r = k0. Moreover, it is easily seenthat r � k0 34 for k0 large enough, sin
e r = k0 � �k+s+12 � � k0 � 12(k + s+ 1)2 � k0 � 23k0 12 � k0 34 .Furthermore, for k large enough (and thus k0; r as well), 
onstru
tibility and ex
hangeability
an be satis�ed as 
an be seen by the following 
al
ulations.12



� Constru
tibility:N(r) � �k02�� k03 ��k + s+ 12 �r � 2�k + s2 �� �r2�+ 14(k + s+ 1)4 � k03 � �r2�+ 14 �23k0 14�4 � k03� �r2���13 � 481� k0 � �r2�� Ex
hangeability: Sin
e t = 1, we 
an iteratively remove verti
es in su
h an order that everyremoved vertex has maximum degree two when being removed. Thus, a vertex removedfrom H was in
ident with at most r� z+2 edges. Assume that every vertex in A(r;N(r))has degree at least (r � 1) � ��k+s+12 �� 2� within A(r;N(r)). Then a new vertex 
hosenfrom A(r;N(r)) is in
ident with at least (r�z)���k+s+12 ��2�+�k+s+12 � = r�z+2 edges inH. Therefore we 
an ex
hange verti
es 
onse
utively su
h that all verti
es from A(r;N(r))are 
hosen. The minimum degree of a vertex in A(r;N(r)) is b2N(r)r 
. Thus, we have toprove j2N(r)r k � (r�1)���k+s+12 ��2� what is equivalent to 2N(r) � 2�r2���k+s+12 �r+2rsin
e k, r and s are natural numbers. The inequality 
an be seen as follows:2N(r) � 2��k02�� k0 98�� 2�k + s+ 12 �r � 4�k + s2 �= 2�r2�+ 2��k+s+12 �2 �� 2k0 98 � 4�k + s2 �Finally, we obtain the desired statement by the following 
al
ulations:2��k+s+12 �2 �+�k + s+ 12 �r � 2r � 2k0 98 � 4�k + s2 �� 14(k + s)4 + (k + s)2�12r � 2�� 2r � 2k0 98 � 19k0 12 �12k0 34 � 2�� 4k0 98� 118k0 54 � 5k0 98 � 0Case V. Let �k02 �� k03 � f(k0) � �k02 �. Apply Rs, St, and T�r;N(r) with parameters:s = 0; t = 0; � = 1; r = k0 � k:Clearly, we have k + s + t�k+s2 � + r = k + r = k0. For k large enough (and thus k0; r as well),
onstru
tibility and ex
hangeability 
an be satis�ed as 
an be seen by the following arguments.� Constru
tibility: N(r) � �k + r2 �� kr ��k2� = �r2�� Ex
hangeability: Let B be the densest k-vertex subgraph of H. Assume that G has no
lique of size k (whi
h in fa
t, is the only interesting 
ase to 
onsider). Hen
e, B is not a
lique. Sin
e B is the densest subgraph, ea
h vertex of H whi
h does not belong to B is13



adja
ent to at most k � 1 verti
es of B. Thus, on the one hand, removing all verti
es inH n B yields a loss of at most z(r � z) + �z2�+ z(k � 1) edges. On the other hand, sin
eA(r;N(r)) misses at most k03 � r2 edges to be 
omplete, ea
h vertex of the quasi-regulargraph A(r;N(r)) is adja
ent to at least r � 2 verti
es, thus not 
onne
ted to at most onevertex other than itself. Consequently, 
hoosing all z not-yet-
hosen verti
es of A(r;N(r))adds at least (r� z)z + �z2�� z + zk = z(r� z) + �z2�+ z(k � 1) edges. Thus, an ex
hangeof verti
es is possible without loosing edges in number.
❑Now we are able to formulate the result of Theorem 9 in terms of 
-Cluster.Corollary 10. Let 
 = 2+
( 1k1�" ) for some " > 0 be polynomial-time 
omputable, 
(k) � k�1.Then 
-Cluster is NP-
omplete.4 Con
lusionIn this paper we have proved that density-based 
lustering in graphs is inherently hard. Themain result states that �nding a k-vertex subgraph with average degree at least 
(k) is NP-
omplete if 
 = 2 + 
( 1k1�" ) and solvable in polynomial time if 
 = 2 + O( 1k ). In parti
ular,for 
onstant average-degree that means that dete
ting whether there is a k-vertex subgraphwith average degree at least two is easy but with average degree at least 2 + " it is intra
table.Sin
e the NP-threshold is so tremendously low, it seems inevitable to explore how the problembehaves in relevant graph-
lasses, e.g., in sparse graphs or graphs with small diameter. Sparsity,however, is not expe
ted to lift the NP-threshold.Though dete
ting a subgraph of a 
ertain size and a 
ertain density is an important algorith-mi
 issue, the original problem intended to be solved is Maximum 
-Cluster: 
ompute thelargest subgraph with average degree over some 
-value. Of 
ourse, this problem is intimatelyrelated to 
-Cluster, and in fa
t, we have the same tra
table-intra
table threshold as for thede
ision problem. The main open question is: how good isMaximum 
-Cluster approximabledepending on 
? For instan
e, for 
(k) = k � 1 (i.e., Maximum Clique), it is known to beapproximable within O� n(log n)2 � [5℄ but not approximable within n 12�" unless P = NP [14℄. Howdo these results translate to intermediate densities?A
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