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Abstract

We investigate the usability and performance of to8-Tree (universal B-Tree) for
multidimensional data, as they arise in all relaio databases and in particular in data-
warehousing and data-mining applications. The UBeTis balanced and has all the guaranteed
performance characteristics of B-Trees, i.e., @uies linear space for storage and logarithmic
time for the basic operations of insertion, retaleand deletion. Therefore it can efficiently sugpo
OLTP. In addition the UB-Tree preserves clusteohgbjects with respect to Cartesian distance.
Therefore, it shows its main strengths for multiditeional data. It has very high potential for
parallel processing. A single UB-Tree can repladarge number of secondary indexes and join
indexes including foreign column join indexes (FU39r updates this means that only one UB-
Tree must be managed instead of several seconddexdas. This reduces runtime and storage
requirements substantially. For retrieval the URE hasnultiplicative complexity with respect to
the relative size of the ranges for range quer&sylting in a dramatic performance improvement
over multiple secondary indexes which hagklitive range query complexity. Furthermore, using
the Tetris-Algorithm the UB-Tree enables readingada any arbitrary sort order without the
necessity of external sorting. Thus data need teaeé only once to perform most of the operations
of the relational algebra, such as ordering, gnagipiaggregation, projection and joining.
Therefore, the UB-Tree can support OLAP very effitly. It is useful for geometric databases,
data-warehousing and data-mining applications, dw&n more for databases in general, where
multiple secondary indexes on one relation or F&xes to join several relations are widespread,
which can all be replaced by a single UB-Tree indEkerefore, the difficult index selection
problem [GHRU97] largely disappears and the UB-Toffers the potential to integrate OLAP
with OLTP in the same processing environment.

1 Introduction

In commercial relational DBMS a variety of indexing techniquesused today: classical B-
Trees on one or several primary key attributes [BM72], seconddmg®s, bitmaps [0Q97],
Star Indexes [Red97] and FCJ indexes on foreign columns of pre-computedIpfo7] is a
good and up to date survey on these methods. In this paper we investigate thyg asdlitie
performance of the UB-Tree [Bay96, Bay97a] for complex applicatidees datamining and
OLAP) requiring complex multidimensional range queries on relatidai@. In such data we
consider a tuple as a point in multidimensional space (in this pape&omsider only point
objects. See [Bay96] for treating extended objects). The combinatiomulbdimensional
range queries with more advanced operations (joins and aggregatienzesently being
investigated, the results will be reported in a forthcoming paper.

We created large databases above 1 GB to compare the perforoigheeUB-Tree with
those indexes that prevail in commercial databases, i.e. clug®&iedexes over multiple
attribute primary keys (compound index) and several secondary B*-indekesh require
non-clustered access to the data. [GHRU97] discusses the eytdiffiellt index selection
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problem, which becomes exponentially simpler using UB-Trees instiegldssical indexes.
UB-Trees also facilitate range-max and range-sum queries as descrjbéddMS97].

In order to obtain objective and comparable results we implementetré#3-as middleware
on top of the SQL interface of a commercial DBMS (TransBasd)compared the UB-Tree
against compound and secondary indexes (which are implemented in tHg detine same
underlying DBMS. Presently we are porting to ORACLE and DB2t Rrsasurements on
ORACLE show that the performance results are qualitativel\sdinge as those reported on
TransBase in this paper. By using the middleware approach we loose sonmagectoof the
UB-Tree, which we estimate roughly as a factor around 2.

The present implementation of the UB-Tree uses Z-ordering in cotinnaith an
underlying B*-Tree or Prefix-B-Tree. It integrates the structure of th&m# carefully with a
relaxed Z-ordering (or any other space filling curve) tiling da¢ga space down to the level
where one tile - technically calleggion - corresponds precisely to one leaf of the UB-Tree.
Concentrating on the region concept simplifies discovery (e.g. s@aelthg from UB-Trees
[Bay97b], the Tetris method [MB98] for joining, aggregation and group&g)lanation and
understanding of algorithms considerably.

Splitting and merging leaves corresponds exactly to recursivéirgpland merging of
regions. Z-addresses of tuples need to be computed only to a precisan suffices to
determine the proper region for a tuple. Also those regions (fongtdata) are used directly
to construct the minimal cover for the query box to guide the seardlarige queries. This
guarantees that we have to retrieve from the disk exactly thienat number of pages. A
number of multi-dimensional data structures have been proposed in the.gpa&rid-Files
[NHS84], R-Trees [Gut84], Z-ordering in combination with arbitranarsle methods
[OM84], hB-Trees [LS90], see [GG97] for a survey.

It is not our goal to compare the theoretical properties of theTtdB-and those data
structures, but to investigate the usability of the UB-Tree inbooation with commercial
database systems and its application to OLAP and OLTP.

The overall performance of the UB-Tree is very encouraging andst ocases far superior
both to compound and to secondary indexes. In particular, a single UBafreeplace many
secondary indexes. This reduces the number and storage requirenietéxed substantially
and simplifies their management.

2 Concept of the UB-Tree

2.1 Addresses, Areas and Regions

We iteratively define amrea A as a special subspace of a d-dimensional cube as follows:
Split the cube with respect to every dimension in the middle, neguiti 2' subcubes
numbered in some arbitrary but fixed order (for our implementationhésgaper we used Z-
ordering) from 1 to 2 An area A of level 1 consists of the firsi closed subcubes;
determines Al uniquely. We caflthe address of fand write A = ared(i;). The empty area
has the address

To enlarge an area, we iteratively add an area with addresfl,..., -1} of the next
subcube with numbei;+1. The address of this enlarged area i8 ii.i;, which is
lexicographically larger than the addréssf area A1. Next we may enlarge By adding an
area of the brother subculigrl of i, etc. The left part of figure 1 shows four areas



areg0.0.1), area1.3.2), area2.1) andarea3) of a two-dimensional universe. The shaded
subcubes of the two-dimensional universe belong to the corresponding area.

areg(0.0.1 areg(1.3.2 Region:

PointDate

aree(2.1)

Figure 1: Areas and Regions

In the following we suppress trailing zeros of addresses and denote addragses by ,...
We callj; thej" step of address = iL.i,. ... .i.. We callk the length of the address .

Note that the volume of a subcube decreases exponentially witbgtauember. We therefore
obtain a fine partitioning of the multidimensional space with relatively short sxilre

Lemma: The lexicographic order of addresses (denotes Yognd set containment of areas in
space (denoted hy) are isomorphicareaa ) Jared8 ) = a <

Definition: A region is the difference between two areasalf < [ then we define the
region betweerr andf as: | £ ] := area(B ) \ areal@ ), where \" means "set
difference”. Note that regions are disjoint and therefore partition — or tile - Wersmi

The areas in figure 1 are used to create five regiens0[0.1], [0.0.1 : 1.3.2], [1.3.2 : 2.1],
[2.1: 3], [3 : 4]. Each region is shaded with a different gray.

Definition: A page is a fixed size byte container to store the objects or olgeatifiers in a
region between two successive areas. We pwetE[a - [ ]) for the page corresponding to
the regionfr - B ]. By coun{[a - S ]) we denote the number of objects located in
[a B ]

Definition: A tuple (or pixel) is a smallest possible subcube at the limit of the resolution, but
the resolution may be chosen as fine as desired.adtiesss of a tuple is identical to the
address of the area defined by including the tuple as the last and smallest sobtaibed in

this area. In the following we use the teraifribute of a tuple, dimension andrelation
column synonymously.

Lemma: A one-to-one map between Cartesian coordingg®, ..., Xx) of a d-dimensional
tuple and its addresg is implicitly defined by the above addressing scheme. We use the
following notations for these maps:

alpha (%, %, ...,>y) = a andcart (a ) = (X1, %, ..., %)



Since the two maps are inverses of each other we get:

cart(alpha(x, %, ..., %)) = (X1, %, ..., %) andalpha(cart@ )) = a

If we have a set of areas we can order them according tatitrigsses. Since a region is the
difference between two successive areas in this ordered setghisnplies an order on the
regions and therefore on the corresponding pages.

We assume that we have a univesef values. For simplicity we assume thahasv = 2'
values per dimension which are numbebell2,..., 1. In this paper arbitrarily shaped spaces
are simply considered as a subset of a suitable cube-shaped universe. It is dikotpassp
this assumption and tailor the UB-Tree to the universe. This appresadescribed in
[MB97b].

Since addresses are linearly orderedhyhey can be treated as the keys of any variant of a
B-tree. New point- objects lie in a unique region. The identifierses¥ objects are stored
(inserted) into the page of their region.

Definition: A UB-Tree is any variant of a B-Tree, in which the keys are addressegiohs
ordered by<. The leaf pages hold objects in regions or their object identifiers.

The five regions in figure 1 build a UB-Tree for the point data disa in the lower right
corner of figure 1. Although the regions differ in size (volume), e#aglon stores about the
same number of points because of the storage utilization guarante&sTrees. Both the
upper left corner and the lower right quarter of the universe cornvairpdints, although the
size (volume) of the region covering the lower right quarter of the universe is 18anges

For performance comparisons we also need the notion of compound indexes apié mul
secondary indexes: gompound index (also callecconcatenated indeix the literature) is a
primary B-Tree index built over all index dimensions. The index key @dmpound index is
the concatenation of the attributes in some ordemBliple secondary indexes (also called
inverted file in the literature) we mean that a secondary B-Tree (witmd or RID
representation in the leaves) is built upon every dimension. The indexf kibg secondary
index for dimension is thei" attribute of the relation.

2.2 Efficient Address Calculation via Bit-Interleaving

If each attributex; of a d-dimensional tuplgxy, %, ..., %) consists of2' values, it can be
considered as a sequence of Bjts... % 1. Bit-interleaving (see also [OM84]) createsran
dimensional tuple out of d-dimensional tuple by re-arranging the bits of the tuple in the
following way:

interleavg'r(xl,r e X2y Xor oo 202y weey Hr oo X40) = (XLr Xoor vee Xdry Xrd oo Xr1y XL 1 eee X4,2)
Thusinterleavé%(1110,1010,0111) = (110,101,111,001)

If the result ofinterleavé€” is considered to be a binary number instead af-dimensional
tuple, incrementing this number hyyields the UB-Address of a tuple. Thus:

alpha(, %, ..., %)= interleavé"(xy, %, ..., %)+ 1

Thereforealpha14,10,7) =alpha1110, 1010, 0111) interleavé%(1110,1010,0111) + 1 =
(110,101,111,001) + 1 = (110,101,111,010) = 6.5.7.2

The inverse function titerleavé" can be computed in the same efficient way. We call this
functioninv-interleavd” and definecart(a ) = inv-interleavé’(a - 1)



Only a slight modification of the interleave operation is necggeasupport a universe where
the domain of each dimension does not consist of the same numberrofibitsis case the
number of bits is not identical for each step of an addresd. denotes the number of
dimensions with a domain that is expressed daymore than bits, then step of that address
consists ofd; bits. The valuesl; are identical for every point (and thus address) in one multi-
dimensional universe. Using bit-interleaving for non-uniformly distributieda is also
possible by a slight modification of the algorithm. For details see [MB97b].

The algorithm of bit-interleaving has the CPU-complexityGffi*r), wherer denotes the
length of each attribute in bits. The same holdsre+interleave Switching a tuple between
Cartesian representation and address representation can therefqrerftwened very
efficiently. Our current non-optimized implementation performs such a switchinginwit
50Qus for a 6-dimensional integer tuple on a SUN ULTRA SPARC Waikstavith 167
MHz, where 2000 region addresses can be calculated in 1s of CPU time.

3 Update Operations

3.1 Insert Procedure

A point P to be inserted into the univetdas specified by its Cartesian coordinagesx., ...,
Xg) with addres<, = alpha(x,%, ..., %). P belongs to the unique regiom [ y ] satisfying

a <& <y .Notethattf must be computed only to a precision which is sufficient to
determine the proper region. P is inserted into the leaf-pagesponding to that region,
which is found by a point query. Since pages can store only a maximubenMnof Ids or
objects, pages may overflow and are split like in B-tre@s. [: y ] is split by introducing a
new area with addres8 such thata < B < y.The region § :y]is
partitioned by into[a . B ]and [ : y ]. The objects irpagd[a :y ]) are distributed
onto pagd[a - [ ]) and pagd[B :y ]) accordingly. 8 is constructed by increasing
area(x ) as follows: Add to are@ subcubes fromd :y ] in increasing order until the
number of the objects im| - B ]is betweert2 M -¢ and Y2 M + ¢ . If the next subcube
in this process contains too many objects, it is recursively subdivittidhe condition can
be met. The parameter is used to get shorter split addresses, which are favorableefor t
UB-Tree performance especially of the range query algorithm.n@asurements indicate
thatane of 5% is already very effective.



¢ =alpha(P)

find[ a : y ]inthe UB-Tree, so that a < €& <y
retrieve page([ a:y))
insert P into page([ a:y)
if count([ a:y]) =M
choose B [ [a :y], sothat “BM-¢ <scount( a :fB] <%
M+ &

split page([ a @y ]) into page([ a:pandpage(l B:y])
Algorithm 1: Insertion Algorithm for Point P

Lemma: If a cube has a resolution pfx pixels in each dimension, then addresses have a
length of at most7log,(pix)7 steps. If we have a univerkewith pix = 2 pixels in each of
the d dimensions, the number of bits necessary to store the address is

Example: Taking a square bounding a map of Bavaria with a side of 512 km, theissafdre
of length 16 (=32 Bits) yield a resolution of 8 meters per pixel.

Our performance measurements indicate that the insert performantief e is similar to
that of a compound B-Tree. The additional overhead for the UB-Tree aduieslation is
negligible. For a 6-dimensional integer tuple it uses less thanflife total insertion time.
The UB-Tree insert is aboyih-1)/h * dtimes faster than multiple B-Trees, where h denotes
the height of the UB-Tree. The factgr1)/hin the above formula is due to the fact that for a
given database the UB-Tree in the average is one level higheré#th of the secondary
indexes.

The deletion, merging and underflow methods of UB-Trees are sitnilBrTrees [BM72].
For details see [Bay96].

4 Queries

4.1 Point-Queries

Point Queries are also called "exact match queries”. Thegpmefied by the Cartesian
coordinates(ys, y», ..., W) of the pointP. In OLAP these co-ordinates are usually called
dimensions or dimension attributes. Usually additional information @@ibf interest, e.g.
temperature, height, time or monetary value. Such additional infam@ialled measures in
OLAP) may be stored as additional attributes with the pBint might also simply be added
to the index structure, thereby increasing the dimensionality apiees and allowing queries
on these additional attributes. This problem is usually solved by camsgracnew secondary
index; with UB-trees it can be handled by increasing the dimengioiwélthe searchable
object space.

To find P we compute its addregs = alpha(y, V-, ..., W) with sufficient precision to find
the unique regiond :8 ] with the propertya < ¢ < B and fetchpagd[a :£ ]).This is
achieved by searching the UB-tree, using addtesss the search kepagd[a :5 ]) must
contain pointP with the additional information or the identifiéd(P) which is used as a
reference td.

P can be found i©(logc N) time, whereN is the number of objects in our univetseandk =
%M, since UB-trees are balanced and searched exactly like thatvair B-tree used as the



underlying data structure for the UB-tree. Thus the point query pexfmenof a UB-Tree is
similar to that of a compound B-Tree index. The additional addresslai@n overhead is
negligible. With multiple secondary indexes finding a point may beene@pensive, since
several or even all indexes need to be queried tddi{i®) for non-unique attributes.

4.2 The Range Query Algorithm

Range queries are a fundamental problem for all database systeamge query is specified
by an interval for each dimension. No specification for a dimensionaltyrmeans the

interval (<o, +0). The query is the Cartesian product of the intervals for allmsioas, called

the query box Q with the lower and upper bounds andgh. The answer t® is the set of

point-objects imM. In the following we will call this set of objeatssult set of Q.

To answer a range query, only those regions, which properly inténgegtiery box, must be
fetched from the database and thus from the disk. Initially the rgomgey algorithm
calculates and retrieves the first region that is overlappethébygwery-box. Then the next
intersecting region is calculated and retrieved. This is reghest® a minimal cover for the
query box has been constructed, i.e., the region that contains the ending geerguény box
has been retrieved.

& = alpha(ql); w = alpha(gh)

repeat
find[ a : B ]inthe UB-Tree, so that a < ¢ < B
output all points x from [ a [ ]where x 4 ql, gh]]
& = address of the first point intersecting the querybox
with ¢ > S

until & > w
Algorithm 2: Range Query Algorithm for a Query Box [[ql, gh]]

The algorithm for retrieving the next intersecting region nyeretjuires one B-Tree search
and O(d*r) CPU operations. Therefore only disk accesses to data pages need to be
performed to retrieve the data within a query box overlappeatregions. [Bay96] gives an
algorithm exponential in the number of dimensions for calculating ddeess of the next
intersecting region. We have developed a linear version of thisthigothat is solely based

on UB-addresses and does not require any transformation into Cadesiatinates. With

this algorithm the calculation of the next intersecting regikag@6us for 6 dimensions and

76 us for 31 dimensions on a SUN ULTRA SPARC with 167 MHz, where 10000 to 40000
intersecting regions can be calculated in one second.

The number of regions intersecting a query Qois related to theelectivity of Q, i.e. to the
number q of objects properly intersectin compared to the number of objects in the
universe. IfQ covers a highly populated part of the universe, then it containseariargber

of objects and many regions are needed to store those objects. On the othertheadeis a
sparsely populated part &f, then only few regions are needed to store all the objec®s in
Therefore, the number of regions fetched from the disk is closkltedeto the number of
objects inQ. Except for cases, where the query box degenerates to a hypevpltme
universe, the number of regions, which we must fetch from the datakdse sufficiently
large databases proportional to the volum&aind therefore proportional to the size of the
answer to the range query.



Figure 2 shows the retrieved regions of two query boxes in the same UB-TrethdHaata is
distributed non-uniformly. The query box 2a has a result set of 617 pointsvardps 27
regions. Although query box 2b has the same volume as query box 2a, itogelg @
sparsely populated part of the universe and thus only 78 points in 3 reggomedreved by
the range query.
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Figure 2: Query Boxes in Sparse and Highly Populated Parts of the Universe

Answering a range query over a database, which is organized as a UB-treegsetioie
proportional to the size of the answer to the qudryis is a rather surprising result and
atypical for query processing in databases, where processingstioigen related to the
complexity of a query and the size of the database, but not to the size of the answer.

4.3 Performance of UB-Tree Range Queries

Currently the most widely used technique in commercial relati@BMS to handle
multidimensional data is the use of a secondary index for each dime@®mpared to that,
the UB-Tree has the following advantages:

* Only one single index structure has to be managed and updated upon insedion
deletion of objects in contrast to a totaldahdexes.

* Opposed to theadditive behavior of multiple secondary indexes, the UB-Tree has
multiplicative behavior: Assume that the data universe contains N objects%raf the
values lie in the query interval §f with respect to dimensianThen a total oN * p;% of
the data must be fetched via the secondary index for dimeindibis adds up to fetching
from the disk=%; N * p% of the data or at least object identifiers and computing
intersections between these sets. With a UB-tree the amountacfodae fetched is pro-
portional to the size of the query box Q, iN.* M%; pi%. A precise analysis of the
number of pages retrieved by a range query is given in [MB97a].

Thus the performance of multiple secondary indexes deteriorates witturthiger of dimen-
sions, whereas the performance of the UB-tree improves with the number of dimensions.

Alternatively, a single compound B-Tree index may be used for aimgn@irange query. A
compound B-Tree can only use the restriction in the first dimensionder to reduce the
number of pages that need to be retrieved. Thag:% of the data are retrieved. Since the



compound index is a primary index, the data can be retrieved by rdadjegclusters. This
may result in an advantage over the random access of multiple seconigxes if the result
set is large. In contrast to both UB-Trees and multiple secomut#eyes, compound indexes
do not showsymmetrical behavior with respect to the relative size of the restricted
dimensions, since the first dimension is extremely favored.

Both multiple secondary indexes and compound primary indexes diffemuai from an
ideal index that would retrieve only the pages contributing to thdtrest without any
overhead. The UB-Tree gets very close to an ideal index sinegiéves only the pages for
regions intersecting the query box.

compound multiple UB-Tree ideal
primary secondary cast
B-Tree B-Tree:

Figure 3: Theoretical Range Query Behavior for the Striped Query Box

This is illustrated in figure 3, where the retrieved part of the universe is shaded.

Figure 4 and 5 show two performance measurements of multidimensaonge gueries
against a 6-dimensional test database consisting of 10 million &mpdesbout 250 000 pages
(= regions). The tests were performed using the commercial ®BinsBase on a 167 MHz
SUN ULTRA SPARC 2 on a hard disk with an average positioning ein@ms. In order to
get comparable results, caching was eliminated. If caching allesged between queries, the
UB-Tree would even gain a performance advantage.
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Figure 4: Linearly Growing Query Box Volume with a 35% Restriction in 5 Dimensions



Figure 4 illustrates a measurement series for a query bbxavgelectivity of 35% in each of
five dimensions. The sixth dimension is varied from 1% to 100%. This caud@mearly
growing result set.

Since the compound primary B-Tree was built on the concatenation oéttileutes
a1,ap,83,84,35,36 IN this order, only varyingy anda, show different performance results. The
results obtained i, a4, as or as were varied would be identical to those fr The
compound B-Tree with varying, retrieves 1% to 100% of the database, while the compound
B-Tree with varyinga, constantly retrieves 35% of the database (corresponding to the 35%
restriction of @), which consumes 35% of the time of the relation scan. The sliggarliime
increase of the compound index in the latter case stems from s&meillincreases with
growingay. Because of that the necessary result set processing takes more CPU sar@gethe
effect is seen as a linear increase in the scan time.

The UB-Tree takes advantage of the restriction in every dimereoh of the multi-
dimensional clustering of the index itself and of the data. Theré@farereases linearly on a
much smaller scale than a compound B-Tree.

Multiple B-Trees can not take advantage of any clustering and aqeetform an expensive
intersection operation. Finally, the tuples of the result set mutgtdeed randomly from the
disk. Because of the size of the database, pages that have hegrdeaince can not remain
in cache. Thus the disk pages have to be accessed several tineds reghits in a time
behavior that is more than ten times higher than that of theorelatian. For this reason
multiple secondary indexes are not included in figure 4. Looking at gureB, multiple
secondary B-Trees seem to be of little or even no use for moi&rdiional range queries.
Table 1 gives the exact times for a restriction of 20% and 40&tenattribute, while the
selectivity of all other attributes is restricted to 35%.

— UB-Tree| Compound | Compound Multiple | Relation
Restriction B-Treeaqy B-Treea, B-Trees Scan
20% 39s 1242 s 1942s | 1890,3s| 4589s
40% 6,6 s 228,1s 200,4 s 2120,9 § 477,3s

Table 1: Linearly Growing Query Box Volume with a 35% restriction in 5 Dimensions

Figure 5 shows a measurement series where the selectithg ofuery box is the same for
every dimension. This selectivity is varied for every dimension fiémto 100%. The result
set of this query grows polynomially with th&' @ower. All indexes show the expected
polynomial behavior. The polynomial behavior caused by the increasingirti€s tis
amplified by the polynomially growing result set size, sincettipdes of the result set also
need to be transferred to the application program. This is alsedlerr for the polynomial
behavior of the relation scan. The multiple secondary indexes gravvaty high rate,
resulting in the worst performance of all indexes compared. Tleglsrady worse than the
relation scan at a 5% restriction in every dimension. The compoundimzmeases at a much
smaller rate. However, it is worse than the UB-Tree. It ongs uke restriction on the first
dimension, while the UB-Tree is able to use the restrictionva@nyedimension. The com-
pound index overtakes the UB-Tree at a point where the relationssefready preferable to
both of the indexes. Table 2 gives the exact numbers for a restraft20% and 40% in all
attributes.
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Figure 5: Polynomially Growing Query Box Volume

Restriction UB- | Compound | Multiple | Relation

in each dimension | Tree B-Tree B-Trees Scan
20% 09s 120,7 s 1235,1s | 4498s
40% 175s 228,2s | 2753,3s | 4759s

Table 2: Polynomially Growing Query Box Volume

Our measurements indicate that the range query performance ofrddB-is more
symmetrical than that of a compound B-Tree. It also shows a bes@ute performance than
multiple B-Trees when a sufficient number of attributes is §péciln our 6-dimensional test
database this is already true for 2 or 3 dimensions. The UB-ange query performance is
on the average several orders of magnitude faster than compound sBaheemultiple
secondary B-Trees. We measured an increase in speed of sbeeisdnids compared to
secondary indexes and — depending on the restriction — between two and ond-hundre
compared to a compound index. Performing an index scan over the whoten reitlh a UB-
Tree results in a performance similar to a scan over a @dsprimary compound B-Tree.
Our study shows that the relative performance of the UB-Treeases with growing
database sizes and thus results in a good scalability. Thigsisated in figure 6, where the
regions that are retrieved for the same range query are sluadetdB-Tree with 1000 tuples
(=25 regions) and 50000 tuples (=2500 regions). The figure shows that thebguxery
approximated more closely by the region partitioning as the database increases.
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Figure 6: Range Queries and Growing Database Sizes

5 Impacts on the relational Algebra — the Tetris Al gorithm

Tables organized by a UB-Tree can be read in any sort or@¥njrdisk accesses whenreis
the number of pages of the table or the minimal number of regionsirap\aeiquery box
[Bay97a]. This is made possible by a modification of the range @lgoyithm and a caching
technique, the so called "Tetris-Algorithm” [MB98]. This algoritip@rforms a sweep over a
query box of the UB-Tree with respect to the lexicographic ordehefspecified sorting
dimensions (in the spirit of the well known sweep line algorithnS8f). The Tetris-
Algorithm works similar to the range-query algorithm. The only edéhce is that the
calculation of the next intersecting region does not return theregidn according to Z-
ordering, but according to the specified sort order: Initially tgerdhm calculates the first
region that is overlapped by the query-box, retrieves it and cacines\@in memory. Then it
continues to read and cache the next regions with respect to thedartuntil a complete
thinnest possible slice of the query box has been read. Then the agalksdf this slice are
sorted in main memory, returned in sort order to the caller and renfowa cache. The
algorithm proceeds reading the next slice, witifegions which intersect the query box have
been retrieved and output.

Figure 7 shows two vertical slices during a sorted reading imdheontal dimension. For
simplicity, the query box in the figure is assumed to be the wholers@. The cached
regions are shaded, the slices are emphasized by white borders.
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Figure 7: Two slices of a UB-Tree during sorted reading with the Tetris-Algorithm

Therefore onlyn disk accesses to data pages need to be performed to sort a query box
overlapped byn regions according to any of tHactorial(d) sort orders definable ovet
attributes. Thus each page only needs to be accessed once in orddute @r sorted output

in any combination of dimensions.

Generally speaking, the Tetris-Algorithm allows joining, groupingyregation, projection
and any other operation where sorted reading a relation (or pattssahivolved inO(n) disk
accesses. An additional selection may be used to reduce the nedéssaccesses, if the
restricted attributes are also part of the UB-Tree. A furdldeantage of the Tetris-Algorithm
is that it needs no disk space to perform the operation. Only a neanonmy cache is required
which in general is quite small compared to the main memory cachered for a good
performance of the standard merge sort algorithm. For details see [Bay97b] a@@][MB

We are currently doing performance measurements with the -Aégosithm which will be
reported in a forthcoming paper.

6 Conclusions and Future Work

We have shown the usability of the UB-Tree for insertion, point-quanesrange-queries.
The behavior of a UB-Tree primary index is superior to the classical indexihgadsaised in
present DBMS for both OLAP and OLTP applications. Additional seconHaryees are
useful to further speed up “hyperplane queries”, i.e., queries, where onlgttibeite is
restricted. In a data warehouse one UB-Tree may be used toeraphaeral traditional star
indexes ([Inf97] and [Red97]), since it shows the desired symmietbehavior for
multidimensional range queries. The response time of the UB-breeniltidimensional
range queries does not depend on any order of the restricted dimensioaslybon the
number of dimensions which have been restricted. Instead of organizifgye¢fgn keys of
the fact table in a star schemafastorial(d) compound indexes or bitmap indexes, a single
UB-Tree algorithm may be used to efficiently perform star joins using this-Pdgorithm.

We are currently doing performance measurements on ORACLE apdréireg to DB2. We
further investigate data modeling with the presence of multidimeakindexes in order to
find out, when and how to use UB-Trees to support a database schenaaositain query
profile.
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We are also implementing the Tetris-Algorithm and will useoitefficiently support the
operations of the relational algebra such as selection, sorting, mgowfh aggregation and
projecton. With that implementation we will investigate practdzath warehousing scenarios
of our project partners.

Future work also includes the development of a cost based query-ogomiathnique
based on an already developed cost model for UB-Trees [MB97a] anadvdstigation of
variable UB-Trees to improve the support for attributes with non-unifitata distributions
[MB97b]. We will also investigate the application of our technique ¢ iimensional data
spaces as they occur for instance in the field of image progesdiere images are described
by a list of features that may be considered to be a point in a high dimensional space.
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