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Abstract
We investigate the usability and performance of the UB-Tree (universal B-Tree) for
multidimensional data, as they arise in all relational databases and in particular in data-
warehousing and data-mining applications. The UB-Tree is balanced and has all the guaranteed
performance characteristics of B-Trees, i.e., it requires linear space for storage and logarithmic
time for the basic operations of insertion, retrieval and deletion. Therefore it can efficiently support
OLTP. In addition the UB-Tree preserves clustering of objects with respect to Cartesian distance.
Therefore, it shows its main strengths for multidimensional data. It has very high potential for
parallel processing. A single UB-Tree can replace a large number of secondary indexes and join
indexes including foreign column join indexes (FCJ). For updates this means that only one UB-
Tree must be managed instead of several secondary indexes. This reduces runtime and storage
requirements substantially. For retrieval the UB-Tree has multiplicative complexity with respect to
the relative size of the ranges for range queries, resulting in a dramatic performance improvement
over multiple secondary indexes which have additive range query complexity. Furthermore, using
the Tetris-Algorithm the UB-Tree enables reading data in any arbitrary sort order without the
necessity of external sorting. Thus data need to be read only once to perform most of the operations
of the relational algebra, such as ordering, grouping, aggregation, projection and joining.
Therefore, the UB-Tree can support OLAP very efficiently. It is useful for geometric databases,
data-warehousing and data-mining applications, but even more for databases in general, where
multiple secondary indexes on one relation or FCJ-indexes to join several relations are widespread,
which can all be replaced by a single UB-Tree index. Therefore, the difficult index selection
problem [GHRU97] largely disappears and the UB-Tree offers the potential to integrate OLAP
with OLTP in the same processing environment.

1 Introduction
In commercial relational DBMS a variety of indexing techniques are used today: classical B-
Trees on one or several primary key attributes [BM72], secondary B-Trees, bitmaps [OQ97],
Star Indexes [Red97] and FCJ indexes on foreign columns of pre-computed joins. [Inf97] is a
good and up to date survey on these methods. In this paper we investigate the usability and the
performance of the UB-Tree [Bay96, Bay97a] for complex applications (like datamining and
OLAP) requiring complex multidimensional range queries on relational data. In such data we
consider a tuple as a point in multidimensional space (in this paper we consider only point
objects. See [Bay96] for treating extended objects). The combination of multidimensional
range queries with more advanced operations (joins and aggregations) are presently being
investigated, the results will be reported in a forthcoming paper.

We created large databases above 1 GB to compare the performance of the UB-Tree with
those indexes that prevail in commercial databases, i.e. clustered B*-indexes over multiple
attribute primary keys (compound index) and several secondary B*-indexes, which require
non-clustered access to the data. [GHRU97] discusses the extremely difficult index selection
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problem, which becomes exponentially simpler using UB-Trees instead of classical indexes.
UB-Trees also facilitate range-max and range-sum queries as described in [HAMS97].

In order to obtain objective and comparable results we implemented UB-Trees as middleware
on top of the SQL interface of a commercial DBMS (TransBase) and compared the UB-Tree
against compound and secondary indexes (which are implemented in the kernel) of the same
underlying DBMS. Presently we are porting to ORACLE and DB2. First measurements on
ORACLE show that the performance results are qualitatively the same as those reported on
TransBase in this paper. By using the middleware approach we loose some performance of the
UB-Tree, which we estimate roughly as a factor around 2.

The present implementation of the UB-Tree uses Z-ordering in combination with an
underlying B*-Tree or Prefix-B-Tree. It integrates the structure of the B*-Tree carefully with a
relaxed Z-ordering (or any other space filling curve) tiling the data space down to the level
where one tile - technically called region - corresponds precisely to one leaf of the UB-Tree.
Concentrating on the region concept simplifies discovery (e.g. sorted reading from UB-Trees
[Bay97b], the Tetris method [MB98] for joining, aggregation and grouping), explanation and
understanding of algorithms considerably.

Splitting and merging leaves corresponds exactly to recursive splitting and merging of
regions. Z-addresses of tuples need to be computed only to a precision which suffices to
determine the proper region for a tuple. Also those regions (for storing data) are used directly
to construct the minimal cover for the query box to guide the search for range queries. This
guarantees that we have to retrieve from the disk exactly the minimal number of pages. A
number of multi-dimensional data structures have been proposed in the past, e.g. Grid-Files
[NHS84], R-Trees [Gut84], Z-ordering in combination with arbitrary search methods
[OM84], hB-Trees [LS90], see [GG97] for a survey.

It is not our goal to compare the theoretical properties of the UB-Tree and those data
structures, but to investigate the usability of the UB-Tree in combination with commercial
database systems and its application to OLAP and OLTP.

The overall performance of the UB-Tree is very encouraging and in most cases far superior
both to compound and to secondary indexes. In particular, a single UB-Tree can replace many
secondary indexes. This reduces the number and storage requirements of indexes substantially
and simplifies their management.

2 Concept of the UB-Tree

2.1 Addresses, Areas and Regions
We iteratively define an area A as a special subspace of a d-dimensional cube as follows:
Split the cube with respect to every dimension in the middle, resulting in 2d subcubes
numbered in some arbitrary but fixed order (for our implementation and this paper we used Z-
ordering) from 1 to 2d. An area A1 of level 1 consists of the first i1 closed subcubes. i1
determines A1 uniquely. We call i1 the address of A1 and write A1 = area(i1). The empty area
has the address ε.

To enlarge an area, we iteratively add an area with address i2 ∈ {0,1,...,2d-1} of the next
subcube with number i1+1. The address of this enlarged area A2 is i1.i2, which is
lexicographically larger than the address i1 of area A1. Next we may enlarge A2 by adding an
area of the brother subcube i2+1 of i2, etc. The left part of figure 1 shows four areas
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area(0.0.1), area(1.3.2), area(2.1) and area(3) of a two-dimensional universe. The shaded
subcubes of the two-dimensional universe belong to the corresponding area.

area(0.0.1)

area(3)

area(1.3.2)

area(2.1)

Regions

Point Data

1 3 2

  1

2
1 3

Figure 1: Areas and Regions

In the following we suppress trailing zeros of addresses and denote addresses by α ,β ,γ ,...

We call i j the j th step of address α  = i1.i2. ... .ik.. We call k the length of the address α .

Note that the volume of a subcube decreases exponentially with its step number. We therefore
obtain a fine partitioning of the multidimensional space with relatively short addresses.

Lemma: The lexicographic order of addresses (denoted by ) and set containment of areas in
space (denoted by ⊆ ) are isomorphic: area(α ) ⊆  area(β ) ⇔ α   β

Definition: A region is the difference between two areas: If α   β  then we define the
region between α  and β  as: [α :β ] := area(β ) \ area(α ), where "\" means "set
difference". Note that regions are disjoint and therefore partition – or tile - the universe.

The areas in figure 1 are used to create five regions: [ε : 0.0.1], [0.0.1 : 1.3.2], [1.3.2 : 2.1],
[2.1 : 3], [3 : 4]. Each region is shaded with a different gray.

Definition: A page is a fixed size byte container to store the objects or object identifiers in a
region between two successive areas. We write page([α : β ]) for the page corresponding to
the region[α : β ]. By count([α : β ]) we denote the number of objects located in
[α :β ].

Definition: A tuple (or pixel) is a smallest possible subcube at the limit of the resolution, but
the resolution may be chosen as fine as desired. The address of a tuple is identical to the
address of the area defined by including the tuple as the last and smallest subcube contained in
this area. In the following we use the terms attribute of a tuple, dimension and relation
column synonymously.

Lemma: A one-to-one map between Cartesian coordinates (x1,x2, ..., xd) of a d-dimensional
tuple and its address α  is implicitly defined by the above addressing scheme. We use the
following notations for these maps:

alpha (x1, x2, ..., xd) = α   and cart (α ) = (x1, x2, ..., xd)
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Since the two maps are inverses of each other we get:

cart(alpha(x1, x2, ..., xd)) = (x1, x2, ..., xd) and alpha(cart(α )) = α

If we have a set of areas we can order them according to their addresses. Since a region is the
difference between two successive areas in this ordered set this also implies an order on the
regions and therefore on the corresponding pages.

We assume that we have a universe U of values. For simplicity we assume that U has v = 2r

values per dimension which are numbered 0,1,2,..., 2r-1. In this paper arbitrarily shaped spaces
are simply considered as a subset of a suitable cube-shaped universe. It is also possible to drop
this assumption and tailor the UB-Tree to the universe. This approach is described in
[MB97b].

Since addresses are linearly ordered by , they can be treated as the keys of any variant of a
B-tree. New point- objects lie in a unique region. The identifiers of new objects are stored
(inserted) into the page of their region.

Definition: A UB-Tree is any variant of a B-Tree, in which the keys are addresses of regions
ordered by . The leaf pages hold objects in regions or their object identifiers.

The five regions in figure 1 build a UB-Tree for the point data displayed in the lower right
corner of figure 1. Although the regions differ in size (volume), each region stores about the
same number of points because of the storage utilization guarantees of UB-Trees. Both the
upper left corner and the lower right quarter of the universe contain five points, although the
size (volume) of the region covering the lower right quarter of the universe is 16 times larger.

For performance comparisons we also need the notion of compound indexes and multiple
secondary indexes: A compound index (also called concatenated index in the literature) is a
primary B-Tree index built over all index dimensions. The index key of a compound index is
the concatenation of the attributes in some order. By multiple secondary indexes (also called
inverted file in the literature) we mean that a secondary B-Tree (with Bitmap or RID
representation in the leaves) is built upon every dimension. The index key of the secondary
index for dimension i is the i th attribute of the relation.

2.2 Efficient Address Calculation via Bit-Interleaving
If each attribute xi of a d-dimensional tuple (x1, x2, ..., xd) consists of 2r values, it can be
considered as a sequence of bits xi,r ... xi,1. Bit-interleaving (see also [OM84]) creates an r-
dimensional tuple out of a d-dimensional tuple by re-arranging the bits of the tuple in the
following way:

interleaved,r(x1,r ... x1,1, x2,r ... x2,1, ..., xd,r ... xd,1) = (x1,r x2,r ... xd,r, x1,r-1 ... xd,r-1, x1,1 ... xd,1)

Thus interleave3,4(1110,1010,0111) = (110,101,111,001)

If the result of interleaved,r is considered to be a binary number instead of an r-dimensional
tuple, incrementing this number by 1 yields the UB-Address of a tuple. Thus:

alpha(x1, x2, ..., xd)= interleaved,r(x1, x2, ..., xd)+ 1

Therefore alpha(14,10,7) = alpha(1110, 1010, 0111) = interleave3,4(1110,1010,0111) + 1 =
(110,101,111,001) + 1 = (110,101,111,010) = 6.5.7.2

The inverse function to interleaved,r can be computed in the same efficient way. We call this
function inv-interleaved,r and define: cart(α ) = inv-interleaved,r(α  – 1)
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Only a slight modification of the interleave operation is necessary to support a universe where
the domain of each dimension does not consist of the same number of bits r. In this case the
number of bits is not identical for each step of an address. If di denotes the number of
dimensions with a domain that is expressed by i or more than i bits, then step i of that address
consists of di bits. The values di are identical for every point (and thus address) in one multi-
dimensional universe. Using bit-interleaving for non-uniformly distributed data is also
possible by a slight modification of the algorithm. For details see [MB97b].

The algorithm of bit-interleaving has the CPU-complexity of O(d*r), where r denotes the
length of each attribute in bits. The same holds for inv-interleave. Switching a tuple between
Cartesian representation and address representation can therefore be performed very
efficiently. Our current non-optimized implementation performs such a switching within
500µs for a 6-dimensional integer tuple on a SUN ULTRA SPARC Workstation with 167
MHz, where 2000 region addresses can be calculated in 1s of CPU time.

3 Update Operations

3.1 Insert Procedure

A point P to be inserted into the universe U is specified by its Cartesian coordinates (x1,x2, ...,
xd) with address ξ = alpha(x1,x2, ..., xd). P belongs to the unique region [α : γ ] satisfying
 α   ξ   γ . Note that ξ  must be computed only to a precision which is sufficient to
determine the proper region. P is inserted into the leaf-page corresponding to that region,
which is found by a point query. Since pages can store only a maximum number M of Ids or
objects, pages may overflow and are split like in B-trees. [α  : γ ] is split by introducing a
new area with address β  such that α     β    γ . The region [α  :γ ] is
partitioned by β  into [α : β ] and [β : γ ]. The objects in page([α :γ ]) are distributed
onto page([α : β ]) and page([β :γ ]) accordingly. β  is constructed by increasing
area(α ) as follows: Add to area α  subcubes from [α :γ ] in increasing order until the
number of the objects in [α : β ] is between ½ M - ε   and  ½ M + ε  . If the next subcube
in this process contains too many objects, it is recursively subdivided until the condition can
be met. The parameter ε  is used to get shorter split addresses, which are favorable for the
UB-Tree performance especially of the range query algorithm. Our measurements indicate
that an ε  of 5% is already very effective.
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ξ  = alpha(P)
find [ α : γ ] in the UB-Tree, so that α   ξ   γ
retrieve page([ α : γ ])
insert P into page([ α : γ ])
if count([ α : γ ]) ≥ M

choose β ∈ [ α : γ ], so that ½ M - ε   ≤ count([ α : β ]) ≤ ½
M + ε  

split page([ α : γ ]) into page([ α : β ]) and page([ β : γ ])
Algorithm 1: Insertion Algorithm for Point P

Lemma: If a cube has a resolution of pix pixels in each dimension, then addresses have a
length of at most  log2(pix)  steps. If we have a universe U with pix = 2r pixels in each of
the d dimensions, the number of bits necessary to store the address is r * d.

Example: Taking a square bounding a map of Bavaria with a side of 512 km, then addresses
of length 16 (=32 Bits) yield a resolution of 8 meters per pixel.

Our performance measurements indicate that the insert performance of a UB-Tree is similar to
that of a compound B-Tree. The additional overhead for the UB-Tree address calculation is
negligible. For a 6-dimensional integer tuple it uses less than 1% of the total insertion time.
The UB-Tree insert is about (h-1)/h * d times faster than multiple B-Trees, where h denotes
the height of the UB-Tree. The factor (h-1)/h in the above formula is due to the fact that for a
given database the UB-Tree in the average is one level higher than each of the secondary
indexes.

The deletion, merging and underflow methods of UB-Trees are similar to B-Trees [BM72].
For details see [Bay96].

4 Queries

4.1 Point-Queries
Point Queries are also called "exact match queries". They are specified by the Cartesian
coordinates (y1, y2, ..., yd) of the point P. In OLAP these co-ordinates are usually called
dimensions or dimension attributes. Usually additional information about P is of interest, e.g.
temperature, height, time  or monetary value. Such additional information (called measures in
OLAP) may be stored  as additional attributes with the point  P. It might also simply be added
to the index structure, thereby increasing the dimensionality of the space and allowing queries
on these additional attributes. This problem is usually solved by constructing a new secondary
index; with UB-trees it can be handled by increasing the dimensionality of the searchable
object space.

To find P we compute its address ξ   := alpha(y1, y2, ..., yd) with sufficient precision to find
the unique region [α :β ] with the property α  ξ   β and fetch page([α :β ]).This is
achieved by searching the UB-tree, using address ξ  as the search key. page([α :β ]) must
contain point P with the additional information or the identifier Id(P) which is used as a
reference to P.

P can be found in O(logk N) time, where N is the number of objects in our universe U and k =
½M, since UB-trees are balanced and searched exactly like the variant of B-tree used as the
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underlying data structure for the UB-tree. Thus the point query performance of a UB-Tree is
similar to that of a compound B-Tree index. The additional address calculation overhead is
negligible. With multiple secondary indexes finding a point may be more expensive, since
several or even all indexes need to be queried to find Id(P) for non-unique attributes.

4.2 The Range Query Algorithm
Range queries are a fundamental problem for all database systems. A range query is specified
by an interval for each dimension. No specification for a dimension formally means the
interval (-∞, +∞). The query is the Cartesian product of the intervals for all dimensions, called
the query box Q with the lower and upper bounds ql and qh. The answer to Q is the set of
point-objects in Q. In the following we will call this set of objects result set of Q.

To answer a range query, only those regions, which properly intersect the query box, must be
fetched from the database and thus from the disk. Initially the range query algorithm
calculates and retrieves the first region that is overlapped by the query-box. Then the next
intersecting region is calculated and retrieved. This is repeated until a minimal cover for the
query box has been constructed, i.e., the region that contains the ending point of the query box
has been retrieved.

ξ = alpha(ql); ω = alpha(qh)
repeat

find [ α : β ] in the UB-Tree, so that α   ξ   β
output all points x from [ α :β ] where x ∈  [[ql, qh]]
ξ = address of the first point intersecting the querybox
with ξ  β

until ξ  ω
Algorithm 2: Range Query Algorithm for a Query Box [[ql, qh]]

The algorithm for retrieving the next intersecting region merely requires one B-Tree search
and O(d*r) CPU operations. Therefore only n disk accesses to data pages need to be
performed to retrieve the data within a query box overlapped by n regions. [Bay96] gives an
algorithm exponential in the number of dimensions for calculating the address of the next
intersecting region. We have developed a linear version of this algorithm that is solely based
on UB-addresses and does not require any transformation into Cartesian co-ordinates. With
this algorithm the calculation of the next intersecting region takes 26 µs for 6 dimensions and
76 µs for 31 dimensions on a SUN ULTRA SPARC with 167 MHz, where 10000 to 40000
intersecting regions can be calculated in one second.

The number of regions intersecting a query box Q is related to the selectivity of Q, i.e. to the
number q of objects properly intersecting Q compared to the number of objects in the
universe. If Q covers a highly populated part of the universe, then it contains a large number
of objects and many regions are needed to store those objects. On the other hand, if Q covers a
sparsely populated part of U, then only few regions are needed to store all the objects in Q.
Therefore, the number of regions fetched from the disk is closely related to the number of
objects in Q. Except for cases, where the query box degenerates to a hyperplane of the
universe, the number of regions, which we must fetch from the database, is for sufficiently
large databases proportional to the volume of Q and therefore proportional to the size of the
answer to the range query.
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Figure 2 shows the retrieved regions of two query boxes in the same UB-Tree. Here the data is
distributed non-uniformly. The query box 2a has a result set of 617 points and overlaps 27
regions. Although query box 2b has the same volume as query box 2a, it only covers a
sparsely populated part of the universe and thus only 78 points in 3 regions are retrieved by
the range query.

(a)  dense (b)  sparse

Figure 2: Query Boxes in Sparse and Highly Populated Parts of the Universe

Answering a range query over a database, which is organized as a UB-tree, requires time
proportional to the size of the answer to the query. This is a rather surprising result and
atypical for query processing in databases, where processing time is often related to the
complexity of a query and the size of the database, but not to the size of the answer.

4.3 Performance of UB-Tree Range Queries
Currently the most widely used technique in commercial relational DBMS to handle
multidimensional data is the use of a secondary index for each dimension. Compared to that,
the UB-Tree has the following advantages:

•  Only one single index structure has to be managed and updated upon insertion and
deletion of objects in contrast to a total of d indexes.

•  Opposed to the additive behavior of multiple secondary indexes, the UB-Tree has
multiplicative behavior: Assume that the data universe contains N objects and pi% of the
values lie in the query interval of Q with respect to dimension i. Then a total of N * pi% of
the data must be fetched via the secondary index for dimension i. This adds up to fetching
from the disk Σd

i=1 N * pi% of the data or at least object identifiers and computing
intersections between these sets. With a UB-tree the amount of data to be fetched is pro-
portional to the size of the query box Q, i.e., N * Πd

i=1 pi%. A precise analysis of the
number of pages retrieved by a range query is given in [MB97a].

Thus the performance of multiple secondary indexes deteriorates with the number of dimen-
sions, whereas the performance of the UB-tree improves with the number of dimensions.

Alternatively, a single compound B-Tree index may be used for answering a range query. A
compound B-Tree can only use the restriction in the first dimension in order to reduce the
number of pages that need to be retrieved. Thus N * p1% of the data are retrieved. Since the
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compound index is a primary index, the data can be retrieved by reading large clusters. This
may result in an advantage over the random access of multiple secondary indexes if the result
set is large. In contrast to both UB-Trees and multiple secondary indexes, compound indexes
do not show symmetrical behavior with respect to the relative size of the restricted
dimensions, since the first dimension is extremely favored.

Both multiple secondary indexes and compound primary indexes differ very much from an
ideal index that would retrieve only the pages contributing to the result set without any
overhead. The UB-Tree gets very close to an ideal index since it retrieves only the pages for
regions intersecting the query box.

compound
 primary
B-Tree

multiple
secondary
B-Trees

UB-Tree ideal
case

Figure 3: Theoretical Range Query Behavior for the Striped Query Box

This is illustrated in figure 3, where the retrieved part of the universe is shaded.

Figure 4 and 5 show two performance measurements of multidimensional range queries
against a 6-dimensional test database consisting of 10 million tuples and about 250 000 pages
(= regions). The tests were performed using the commercial DBMS TransBase on a 167 MHz
SUN  ULTRA SPARC 2 on a hard disk with an average positioning time of 8ms. In order to
get comparable results, caching was eliminated. If caching were allowed between queries, the
UB-Tree would even gain a performance advantage.

0
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600000

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00% 70,00% 80,00% 90,00% 100,00%

restricted dimension in %

UB-Tree

compound B-Tree a1

compound B-Tree a2-a6

Scan

Figure 4: Linearly Growing Query Box Volume with a 35% Restriction in 5 Dimensions
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Figure 4 illustrates a measurement series for a query box with a selectivity of 35% in each of
five dimensions. The sixth dimension is varied from 1% to 100%. This causes a linearly
growing result set.

Since the compound primary B-Tree was built on the concatenation of the attributes
a1,a2,a3,a4,a5,a6 in this order, only varying a1 and a2 show different performance results. The
results obtained if a3, a4, a5 or a6 were varied would be identical to those for a2. The
compound B-Tree with varying a1 retrieves 1% to 100% of the database, while the compound
B-Tree with varying a2 constantly retrieves 35% of the database (corresponding to the 35%
restriction of a1), which consumes 35% of the time of the relation scan. The slight linear time
increase of the compound index in the latter case stems from result size increases with
growing a2. Because of that the necessary result set processing takes more CPU time, the same
effect is seen as a linear increase in the scan time.

The UB-Tree takes advantage of the restriction in every dimension and of the multi-
dimensional clustering of the index itself and of the data. Therefore it increases linearly on a
much smaller scale than a compound B-Tree.

Multiple B-Trees can not take advantage of any clustering and need to perform an expensive
intersection operation. Finally, the tuples of the result set must be fetched randomly from the
disk. Because of the size of the database, pages that have been retrieved once can not remain
in cache. Thus the disk pages have to be accessed several times, which results in a time
behavior that is more than ten times higher than that of the relation scan. For this reason
multiple secondary indexes are not included in figure 4. Looking at our figures, multiple
secondary B-Trees seem to be of little or even no use for multi-dimensional range queries.
Table 1 gives the exact times for a restriction of 20% and 40% in one attribute, while the
selectivity of all other attributes is restricted to 35%.

Restriction UB-Tree Compound
B-Tree a1

Compound
B-Tree a2

Multiple
 B-Trees

Relation
Scan

20% 3,9 s 124,2 s 194,2 s 1890,3 s 458,9 s
40% 6,6 s 228,1 s 200,4 s 2120,9 s 477,3 s

Table 1: Linearly Growing Query Box Volume with a 35% restriction in 5 Dimensions

Figure 5 shows a measurement series where the selectivity of the query box is the same for
every dimension. This selectivity is varied for every dimension from 1% to 100%. The result
set of this query grows polynomially with the 6th power. All indexes show the expected
polynomial behavior. The polynomial behavior caused by the increasing I/O times is
amplified by the polynomially growing result set size, since the tuples of the result set also
need to be transferred to the application program. This is also the reason for the polynomial
behavior of the relation scan. The multiple secondary indexes grow at a very high rate,
resulting in the worst performance of all indexes compared. They are already worse than the
relation scan at a 5% restriction in every dimension. The compound index increases at a much
smaller rate. However, it is worse than the UB-Tree. It only uses the restriction on the first
dimension, while the UB-Tree is able to use the restrictions in every dimension. The com-
pound index overtakes the UB-Tree at a point where the relation scan is already preferable to
both of the indexes. Table 2 gives the exact numbers for a restriction of 20% and 40% in all
attributes.
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Figure 5: Polynomially Growing Query Box Volume

Restriction
in each dimension

UB-
Tree

Compound
B-Tree

Multiple
 B-Trees

Relation
Scan

20% 0,9 s 120,7 s 1235,1 s 449,8 s
40% 17,5 s 228,2 s 2753,3 s 475,9 s

Table 2: Polynomially Growing Query Box Volume

Our measurements indicate that the range query performance of UB-Trees is more
symmetrical than that of a compound B-Tree. It also shows a better absolute performance than
multiple B-Trees when a sufficient number of attributes is specified. In our 6-dimensional test
database this is already true for 2 or 3 dimensions. The UB-Tree range query performance is
on the average several orders of magnitude faster than compound B-Trees and multiple
secondary B-Trees. We measured an increase in speed of several thousands compared to
secondary indexes and – depending on the restriction – between two and one-hundred
compared to a compound index. Performing an index scan over the whole relation with a UB-
Tree results in a performance similar to a scan over a clustered primary compound B-Tree.
Our study shows that the relative performance of the UB-Tree increases with growing
database sizes and thus results in a good scalability. This is illustrated in figure 6, where the
regions that are retrieved for the same range query are shaded for a UB-Tree with 1000 tuples
(=25 regions) and 50000 tuples (=2500 regions). The figure shows that the query box is
approximated more closely by the region partitioning as the database increases.
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(a) 1000 tuples (b) 50 000 tuples
Figure 6: Range Queries and Growing Database Sizes

5 Impacts on the relational Algebra – the Tetris Al gorithm
Tables organized by a UB-Tree can be read in any sort order in O(n) disk accesses where n is
the number of pages of the table or the minimal number of regions covering a query box
[Bay97a]. This is made possible by a modification of the range query algorithm and a caching
technique, the so called ”Tetris-Algorithm” [MB98]. This algorithm performs a sweep over a
query box of the UB-Tree with respect to the lexicographic order of the specified sorting
dimensions (in the spirit of the well known sweep line algorithms [PS85]). The Tetris-
Algorithm works similar to the range-query algorithm. The only difference is that the
calculation of the next intersecting region does not return the next region according to Z-
ordering, but according to the specified sort order: Initially the algorithm calculates the first
region that is overlapped by the query-box, retrieves it and caches it in main memory. Then it
continues to read and cache the next regions with respect to the sort order, until a complete
thinnest possible slice of the query box has been read. Then the cached tuples of this slice are
sorted in main memory, returned in sort order to the caller and removed from cache. The
algorithm proceeds reading the next slice, until all regions which intersect the query box have
been retrieved and output.

Figure 7 shows two vertical slices during a sorted reading in the horizontal dimension. For
simplicity, the query box in the figure is assumed to be the whole universe. The cached
regions are shaded, the slices are emphasized by white borders.
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Figure 7: Two slices of a UB-Tree during sorted reading with the Tetris-Algorithm

Therefore only n disk accesses to data pages need to be performed to sort a query box
overlapped by n regions according to any of the factorial(d) sort orders definable over d
attributes. Thus each page only needs to be accessed once in order to produce a sorted output
in any combination of dimensions.

Generally speaking, the Tetris-Algorithm allows joining, grouping, aggregation, projection
and any other operation where sorted reading a relation (or parts of it) is involved in O(n) disk
accesses. An additional selection may be used to reduce the necessary disk accesses, if the
restricted attributes are also part of the UB-Tree. A further advantage of the Tetris-Algorithm
is that it needs no disk space to perform the operation. Only a main memory cache is required
which in general is quite small compared to the main memory cache required for a good
performance of the standard merge sort algorithm. For details see [Bay97b] and [MB98].

We are currently doing performance measurements with the Tetris-Algorithm which will be
reported in a forthcoming paper.

6 Conclusions and Future Work
We have shown the usability of the UB-Tree for insertion, point-queries and range-queries.
The behavior of a UB-Tree primary index is superior to the classical indexing methods used in
present DBMS for both OLAP and OLTP applications. Additional secondary B-Trees are
useful to further speed up “hyperplane queries”, i.e., queries, where only one attribute is
restricted. In a data warehouse one UB-Tree may be used to replace several traditional star
indexes ([Inf97] and [Red97]), since it shows the desired symmetrical behavior for
multidimensional range queries. The response time of the UB-Tree for multidimensional
range queries does not depend on any order of the restricted dimensions, but only on the
number of dimensions which have been restricted. Instead of organizing the foreign keys of
the fact table in a star schema as factorial(d) compound indexes or bitmap indexes, a single
UB-Tree algorithm may be used to efficiently perform star joins using the Tetris-Algorithm.

We are currently doing performance measurements on ORACLE and are porting to DB2. We
further investigate data modeling with the presence of multidimensional indexes in order to
find out, when and how to use UB-Trees to support a database schema with a certain query
profile.
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We are also implementing the Tetris-Algorithm and will use it to efficiently support the
operations of the relational algebra such as selection, sorting, grouping with aggregation and
projecton. With that implementation we will investigate practical data warehousing scenarios
of our project partners.

Future work also includes the development of a cost based query-optimization technique
based on an already developed cost model for UB-Trees [MB97a] and the investigation of
variable UB-Trees to improve the support for attributes with non-uniform data distributions
[MB97b]. We will also investigate the application of our technique to high dimensional data
spaces as they occur for instance in the field of image processing, where images are described
by a list of features that may be considered to be a point in a high dimensional space.
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