
A Formally Founded DescriptionTechnique for Business Processes�Veronika ThurnerDepartment of Computer Science, Technical University of MunichArcisstr. 21, 80290 Munich, Germanyemail: thurner@informatik.tu-muenchen.deDecember 19, 1997AbstractAs a means of modeling typical system behavior, we derive from data
ow nets a description techniquefor business processes and provide it with a formal semantics based on functions and their composition.Our description formalism features black box and glass box view on system processes, as well as a conceptof re�nement which supports behavior modeling across several levels of abstraction. Thus we provide amodeling mechanism that is both easy to understand intuitively and formally well founded, and thereforeequally adequate for the needs of application domain experts as well as system engineers in requirementsengineering.1 Introduction and motivationMany approaches to requirements engineering involve a detailed modeling of characteristic systemaspects such as structure, data or behavior. These models are a vital means of communicationbetween expert users and system analysts. Also, they are the basis for system design and im-plementation taking place in later stages of the system development process. Consequently, thequality of requirements speci�cations is a decisive factor for software quality and correction costs[Dav93].A basic idea of system modeling is the reduction of complexity by focussing on a single system viewand only a small set of system aspects at a time. In behavior modeling, a �rst step consists of theanalysis and documentation of typical system behavior in an exemplaric way. Thus, single systemruns or scenarios are examined.In many approaches to behavior modeling that deal with exemplaric system behavior, scenarios areemployed for documenting the interaction of objects, system components or organizational units(see, for example, message sequence charts [IT96], interaction diagrams of Booch [Boo94], sequencediagrams of UML [BJR97], or process object schemes [FS91]). Thus, scenarios are often arrangedaccording to structural system aspects, so that the behavior model is always intermingled with,and dominated by, the system architecture. Therefore, additional constraints are added to thebehavior model which restrict the order of process execution and consequently the possible amountof parallelism, although they represent constraints that are not due to any causal dependencies�This work was supported by the Bayerische Forschungsstiftung.1

originating from the behavioral model itself. Other techniques, such as activity diagrams in [BJR97]or the process notion of [Kah74], already include aspects of system state in their models. However,although this integrated modeling of several di�erent system aspects at a time might still work withsmall examples, it quickly turns to be di�cult and hard to handle as system complexity increases.In contrast to this, we apply a task oriented point of view in behavior modeling. Focussing onthe major tasks of the system under consideration, we develop a business process model that iscross functional to the underlying structural organization and which includes the relevant behavioralcontext of the system's environment. Methodically, we begin our behavior modeling by documentingsingle runs of exemplaric system behavior. As the application domain experts �nd it comparativelyeasy to relate their share of activities in system behavior when following a speci�c example process,this approach is extremely helpful for capturing and discussing the users' view point on systembehavior and the related requirements.To document our model of typical system behavior, we introduce a description technique thatsupports behavior modeling in a way that is independant from organizational or geographicalboundaries. This modeling technique documents causal dependencies between process and theirexecution that are due to the exchange of messages and events between processes. However, we donot introduce any additional arti�cial sequentialization or other constraints on the order of processexecution, thus allowing for a maximum of possible parallelism in process execution.Our modeling technique includes both a black box and a glass box view on business processes.Furthermore, we enhance our description formalism with a re�nement mechanism which supportsbehavior modeling across di�erent levels of abstraction. To reduce redundancy in our processmodel, we base our process documentation on the de�nition of process types.Finally, to allow unique and unambiguous modeling and to precisely relate our description techniqueto models of other system views, we provide a formal semantics to our description technique, basedon functions and their composition. This type of semantics is suitable for supporting our modelingintentions stated above, as it provides a
exible modeling and abstraction mechanism focusing ondata dependencies rather than on partially ordered sequences of events that are exchanged betweenobjects.2 Concrete syntax of a description technique for business pro-cessesWe use business processes for modeling system behavior in an exemplaric way, focussing on se-quences of the execution of process instances. As multiple instances of a single process may occurwithin the model of a system, we introduce process types for reducing redundancy. A process typede�nes the interface, internal behavior and re�nement structure, which are common to all instancesof a speci�c process type.Each of these three aspects corresponds to a certain view on a process type. In the black boxview, the interface describes the functionality of the process type. The internal behavior, i.e. themanipulation of data during the execution of a process is dealt with in the glass box view. Finally,the re�nement view de�nes the decomposition of a single process type into a network of processtypes, or, the other way round, the composition of processes types of a �ner granularity into anetwork which realizes a process type of a coarser level of granularity.Based on the set of de�ned process types, instances of these types can be composed into processnetworks which desribe sequences of system behavior in an exemplaric way. The identi�ers ofprocess instances are unique throughout the whole model of the system.We provide a notation that consists of graphical as well as of textual elements. For the graphicalaspects of our notation, we use a derivative of data
ow nets which were introduced in [DeM79].Moreover, we incorporate and enhance notation ideas taken from those parts of the modeling2

language GRAPES V3 [Sie95] that are relevant for business process modeling. Textual aspects ofour notation are provided in extended Backus-Naur form as introduced in [BFG+93]. The non-terminals hprocess-typei, hfunctioni and hpredicate-expressioni are not speci�ed any further withinthis work.2.1 Black Box ViewThe de�nition of the black box view speci�es the signature of a process type as evident and relevanton the current level of granularity. Here, a process type's name is determined as well as its bundlesof typed input and output ports. In the case that a process type is re�ned into a process networkwithin a subsequent step of development, the de�nition on the re�ned level may be supplementedby additional input and output ports. However, these additional ports do not have to be added tothe hierarchically higher levels of granularity.Optionally, a role may be associated with a process type. Roles are auxiliary concepts whichlink process types to physical actors carrying out instances of these process types. A role can bedesigned for realization by one or more human beings, a hardware/software system or a combinationthereof. Roles group processes according to di�erent, often pragmatic aspects such as quali�cation,or authorization for usage or decision taking that are necessary for process execution. Anotheraspect of grouping processes by roles is the encapsulation of data that are to be manipulated bythe di�erent processes that are associated with a role. Methodically, roles are usually introducedtowards the end of requirements engineering and during design, preparatory to distributing theexecution of process instances to the di�erent system components.Another optional feature states whether a process is executed within the system or by the system'senvironment. Respectively, processes are marked as internal or external. Often, this binding isimplicitly determined by the role that is associated with the process type. However, for methodicalreasons, it is helpful to allow an explicit declaration whether the execution of instances of a certainprocess type takes place internally or externally to the system under consideration. By default,process types are assumed to be internal.
inwm

1 :
wm
1 :out

money

withdraw_ money

amount

acccountinwm:2(a) process type withdraw money in1 :rp
1 :outrp

request_

pin

user_interface

card prompt(b) process type request pin with associ-ated role user interface
in1 :ep

1 :outep

pin

enter_

customer

prompt pin(c) process type enter pin with associatedrole customer and external binding money

wm1

withdraw_

wm
1

wm
2

in

in

= 100 US$

= 9436028

wm
1out(d) process instance wm1 of process typewithdraw money, and assigned inputvaluesFigure 1: Black box de�nitions of process types and a process instanceFigure 1(a) shows an example of the graphical representation of a process type.With regard to the distribution of processes to execution components later on in the developmentprocess, roles may be associated optionally with process types. The name of the role is designatedat the lower border of the process type symbol, as shown in Figure 1(b).External process types are executed outside of the system under consideration. As illustrated inFigure 1(c), we denote them by a dashed circumference of the process type symbol.In the graphical representation of the black box view of a process instance, the name of the processtype is preceded by the identi�er of the process instance in a separate section of the process symbol(confer Figure 1(d)). 3

Whereas the black box view merely speci�es the input/output behavior of a process type, the glassbox view describes the internal manipulation of data within a process.2.2 Glass Box ViewThe glass box view describes the internal manipulation of data during the execution of a process in-stance. The modeling of nondeterminism is supported. Furthermore, the glass box view documentspre- and postconditions of a process execution.Thus, the glass box view documents any information on the computation scheme that derives outputdata from input data, which is known at the current stage of the modeling process. Within a processtype's computation scheme, input and output data are parameterized by the corresponding portnames. If necessary, local variables may be introduced. Depending on the degree of knowledge thatis available in the computation method, the scheme may be described informally by structuredtextual comments, or more formally in mathematical notation.Moreover, pre- and postconditions of process execution are de�ned. An instance of a process typeis executed only if its precondition is ful�lled, with the precondition being a predicate over theprocess instance's input parameters. Correspondingly, when the execution of a process instanceis completed, the associated postcondition holds. The postcondition is given as a predicate overinput and output parameters of the process instance.When executing an instance of a process type, speci�c values are assigned to its input ports,respecting the port types which are de�ned in the corresponding black box view. Output valuesare determined by executing the computation scheme speci�ed in the glass box view, using thespeci�c values that are assigned to the input ports.In our notation, we do not introduce any graphical symbols for de�ning the glass box view onprocess types, as we do not expect an adequate gain in readability and understandability at thispoint. Thus, we use a textual notation, where the manipulation of data may be described eithermathematically by specifying a function, or as text which may be enhanced by mathematicalelements. Pre- and postconditions are speci�ed as predicate expressions.glass box process type hprocess-typei = ffcomputes htexti j hfunctionipre hpredicate-expressionipost hpredicate-expressioniggThe glass box view of our example process type withdraw money may be given as follows, wherewe employ a textual representation with some mathematical elements for de�ning the computationmethod.glass box process type withdraw money = ffcomputes outwm1 = fwm1 (inwm1 ; inwm2), withfwm1 (inwm1 ; inwm2) = 8>>>>>>>>><>>>>>>>>>:
requested money if requested amount smaller than 400requested money if requested amount greater than 400and account deposit greater thanor equal to requested amountno money if requested amount greater than 400and account deposit smaller thanrequested amountpre truepost truegg 4

2.3 Re�nement ViewThe re�nement view describes how a process type of coarse granularity is re�ned by a processnetwork [Bro93]. Such a process network is constructed from process types of �ner granularity.They are connected via interfaces which were de�ned in the black box view, by connecting anoutput port of one process to an input port of another process, thus building an internal channel.A channel is denoted by the pair of its ports according to (outport; inport). We restrict our modelto acyclic structures.Furthermore, the re�nement view speci�es how input and output ports of the process type onthe coarser level of granularity are mapped on the input and output ports of the re�ning processnetwork. In a correct re�nement, all the ports on the coarser level of granularity are redirected tocorresponding ports on the re�ning level. Consequently, the re�ning process network contains atleast the equivalents to the ports of the coarse grain process type.Figure 2 illustrates the re�nement of process type withdraw money from our example in Figure1(a).
amount

amount

account

1 :rc

1 :

:2

in

inbd

inbd

money

db_log1 :

1 :rc

out

out

bd

inwm
1 :

inwm:2

*
amount

account

wm
1 :out money

withdraw_money

retrieve_

cash

to_

book_

databaseFigure 2: Re�nement of process type withdraw moneyOperator � symbolizes the duplication of the message assigned to a port, and the redirection of thecopies to several subports on the re�nement level.Possibly, within a re�ning process network, a single process type may occur multiply. However,in our graphical representation these di�erent occurances may easily be distinguished by theirgeometrical position within the diagram. Thus as well, the structure of connecting channels maybe de�ned without ambiguities.When a new instance of a process type is created, it is assigned an identi�er which is not yet assignedto any other process instance within the model. Furthermore, if a re�ning process network is de�nedfor this process type, a corresponding re�ning network of process instances is created as well.3 SemanticsThe semantics of our description technique for business processes is based on functions and theircomposition. Compositionality is necessary for formalizing re�nement, or, if seen from anotherangle, the composition of single processes to a process network. This usage of function compositionis related to computation forms which are discussed e.g. in [Bro92].In the de�nition of semantics, we assign a function with adequate input/output signature to eachprocess type. This function formalizes the computation scheme associated with the process type.Some existing approaches to process modeling de�ne a semantics based on event traces (for example[Hoa85]). The technique of event traces may be applied e�ciently for modeling process networkswhere the execution of processes is partially ordered.In our notion of processes, however, we also allow modeling on a more abstract level which isespecially helpful at the beginning of the modeling process, when the modelers' understanding ofbusiness processes is still rather vague. We achieve this by focussing on process causality due to5

data dependencies. A data
ow from a process A to its successor process B indicates that at sometime during its processing, process B receives input from process A. However, we do not restrictprocess execution by specifying any relationship between the end of the execution of process A andthe beginning of process execution of B, thus allowing
exible re�nement possibilities of A and Bas well as their interaction at later stages in the modeling process.In the following, let� PT denote a set of identi�ers of process types,� PI denote a set of identi�ers of process instances,� P denote a set of identi�ers of ports,� F denote a set of function symbols, and� S denote a set of data sorts.3.1 Semantics of an isolated process typeThe black box de�nition of a process type speci�es the typed input/output functionality of a processtype. On the level of semantics, this aspect corresponds to the de�nition of the signature of thefunction that is associated with a process type. Thus, with a process type p 2 PT we associate afunction fp 2 F with functionalityfct fp : sinp1 � : : :� sinpip �! (soutp1 � : : :� soutpop);where, respectively, sinp1 ; : : : ; sinpip 2 S and soutp1 ; : : : ; soutpop 2 S denote the sorts associated withinput ports inp1; : : : ; inpip 2 P and output ports outp1; : : : ; outpop 2 P of process type p.The computation scheme that corresponds to process type p is speci�ed by the body of functionfp. The explicit documentation of the function body corresponds to the computation method thatis given by �eld computes in the glass box de�nition of a process type. Precondition pre of theprocess type is incorporated in the function body as well.With our example process type withdraw money from Figure 1(a), we associate a functionfwithdraw money whose functionalityfct fwithdraw money : amount� account �! (money)mirrors exactly the input/output situation of the corresponding process.On the level of semantics, process execution is equivalent to the evaluation of the associated functionon speci�c input values.So far, we assumed our processes to be deterministic. However, the semantics can easily be gener-alized to cover nondeterministic processes as well. We achieve this by associating with a processtype not a single function, but a set of functions. For every single execution of an instance ofthis process type, we nondeterministically choose one function of the associated set, which is thenexecuted to compute the result in a deterministic fashion.3.2 Semantics of a process networkVia the concept of re�nement, a process type is represented in more detail by a process network.Within this process network, process types of �ner granularity are linked by connecting some oftheir input and output ports.On the level of semantics, re�nement of a process type to a process network corresponds to rep-resenting a function by the composition of other functions. When the re�nement level containssupplementary input and output ports that were not relevant or not yet known on the coarser6

levels of re�nement, a restriction of the input/output functionality of the composition of re�ningfunctions is necessary as well.In Figure 2, our example process withdraw money from Figure 1(a) is re�ned into a process networkwhich is constructed from the process types retrieve cash and book to database. With the re�ningprocess network, we associate function f ref(withdraw money) with signaturefct f ref(withdraw money) : amount� account �! (money � db log):This signature of the re�ning function f ref(withdraw money) may be restricted to the signature of theoriginal function fwithdraw money as follows.fwithdraw money = f ref(withdraw money)j1;2!1Here, indices at the left of resctrction operator j:!: symbolize input restriction, whereas indices atthe right denote a restriction of output.In the re�ning process network, process types retrieve cash and book to database occur. Withthese, functions f retrieve cash and f book to database are associated, with the following signatures.fct f retrieve cash : amount �! (money)fct f book to database : amount� account �! (db log)Function f ref(withdraw money) may be expressed by composing its re�ning functions. The �rstcomponent of the result tuple of f ref(withdraw money) is determined by function f retrieve cash, thesecond component by function f book to database according tof ref(withdraw money)(inwm1 ; inwm2) = (f retrieve cash1 (inwm1); f book to database1 (inwm1 ; inwm2))for input parameters of sort amount assigned to port inwm1 and of sort account assigned to portinwm2 . Here, fpo (in1; : : : ; inip) denotes the oth component of the resulting output tuple (o1; : : : ; oop)of fp(in1; : : : ; inip), where 1 � o � op holds.Analogously to multiple re�nement of process types, the composition of functions across di�erentlevels of hierarchy may be executed several times.4 Syntactic enhancements: switchesFor modeling purely exemplaric system behavior by using business processes, decision statementswith di�erent possible outcomes within a process network are not necessary, since we model merelythat system behavior that was actually executed in a speci�c exemplaric system run. Possiblealternatives of the speci�c system run which were not actually executed are not modeled. Rather,the di�erent observed system runs are modeled as a set of exemplaric behavior.Process networks that di�er only within a few sections, but which otherwise coincide with respectto structure and content, we refer to as variants. For reducing redundancy within the modelof process networks obtained from exemplaric system runs, we carry out some abstraction andcomprise the set of variants within a single process network. Depending on the degree of similarity,alternative process networks may either be united to their superset, or combined by introducingdecision processes, which we call switches.Figure 3 illustrates process networks on the second re�nement level of our example processwithdraw money. Depending on the values of the input parameter of sort amount, di�erentvariants of process type check deposit and conditional retrieve cash are executed, which producedi�erent results or, respectively, consume di�erent input.Each variant is a process type. We symbolize the similarity of alternative process types by typenames that di�er merely in a raised index. The variants of process type check deposit in Figure 37

<(amount 400)

in amount1 :rc

db_log1 :sbdout

money1 :rcout

db_log1 :bdout

in amount1 :rc

db_log1 :sbdout

money1 :rcout

db_log1 :bdout

account

amount

:2

1 :in

in

*amount

account account

amountsbd
1) :
sbd
2) :

in

in

2 ,

,3

(out

(out
account

amount1 :

:2

bd

bd

in

in

amount1 :in

money1 :out

retrieve_cash

book_to_database

cd1

cd1

cd1

cd1

crc1

crc1

account

amount

:2

1 :in

in

*amount

account account

amount

ack1) :
sbd
1) :
sbd
2) :

in

in

in

,1

2 ,

,3

(out

(out

(out
account

amount1 :

:2

bd

bd

in

in

cd2

cd2

cd2

crc2

amount1 :in

money1 :out

crc2

crc2

retrieve_cash

book_to_database
cd2

cd2

(amount > 400)

2deposit

check_

deposit

check_

1

book_to_

retrieve_

book_to_

retrieve_

conditional_

cash 1

secure_

database

conditional_

cash 2

secure_

databaseFigure 3: Alternative process networkscorrespond to the following signatures.fct f check deposit1 : amount� account �! (amount� account)fct f check deposit2 : amount� account �! (ack � amount� account) (1)Process type conditional retrieve cash occurs in two variants with the following functionalities.fct f conditional retrieve cash1 : amount �! (money)fct f conditional retrieve cash2 : amount� ack �! (money) (2)4.1 Uniting alternative process networks to their supersetThe alternative process networks of our example di�er merely in omitting a single data
ow.Otherwise, they are of identical structure and meaning. Alternative process networks which aresimilar in this sense may be united to a single process network, as illustrated in Figure 4. We achievethis by combining alternative process types to a single new process type which unites the previousalternatives. Using these uniting process types, the uniting process network may be de�ned.
amount1 :crcinin amount1 :rc

db_log1 :sbdout

money1 :crcout money1 :rcout

db_log1 :bdout

account

amount

:cd
2

1 :cdin

in

*amount

account account

amount

ack1) :crc

sbd
1) :
sbd
2) :

in

in

in

cd ,1

cd
2 ,
cd ,3

(out

(out

(out
account

amount1 :

:2

bd

bd

in

in

check_

deposit

book_to_database

retrieve_cash

database

secure_

book_to_

conditional_

retrieve_

cash

Figure 4: Uniting alternative process networks to their supersetNote that uniting process variants into their superset does not add any new syntactic concepts.Thus, we can model this kind of process union without adding additional aspects to our descriptiontechnique introduced in section 2.Here, alternative process types are combined to form a single process type, whose input and outputis made up of the union of all inputs and outputs of the di�erent alternatives. In this union, thoseports of di�erent process types which correspond in their meaning are identi�ed and united to a8

single port in the new process. Thus, the activity of uniting ports is not carried out merely on thesyntactical level. Rather, it requires a systematic analysis of the meaning and usage of the separateports.The di�erent alternatives of process execution do not show in the graphical representation of theuniting process in Figure 4. However, in the computation scheme of the glass box view as well asin the associated functions on the level of semantics, these variants are re
ected as di�erent casesin decision statements.In the uniting process network, the di�erent alternatives are encapsulated within the process typesconditional retrieve cash and check deposit. The functions corresponding to these process typesare of the following signatures.fct f check deposit : amount� account �! (ack � amount� account)fct f conditional retrieve cash : amount� ack �! (money)In these functions, the di�erent alternatives are incorporated as decisions. For the uniting processtypes, the associated function may be expressed with respect to the functions of �ner granularity.f conditional retrieve cash(incrc1 ; incrc2) == 8<:f conditional retrieve cash1(incrc1) i� incrc1 � 400f conditional retrieve cash2(incrc1 ; incrc2) i� incrc1 > 400f check deposit(incd1 ; incd2) == 8>><>>:outcd2 = f check deposit11 (incd1 ; incd2) ^outcd3 = f check deposit12 (incd1 ; incd2) i� incd1 � 400f check deposit2(incd1 ; incd2) i� incd1 > 400For input parameters of sort amount assigned to port inwm1 and of sort account assigned to portinwm2 , the functions that are associated with the processes in our example are de�ned as follows.f ref(ref(withdraw money))1;1(inwm1 ; inwm2) = (f conditional retrieve cash11 (inwm1);f secure book to database1 (f check deposit12 (inwm1 ; inwm2);f check deposit13 (inwm1 ; inwm2)))f ref(ref(withdraw money))2;2(inwm1 ; inwm2) = (f conditional retrieve cash21 (inwm1 ; f check deposit21 (inwm1 ; inwm2));f secure book to database1 (f check deposit22 (inwm1 ; inwm2);f check deposit23 (inwm1 ; inwm2)))For the uniting superset (confer to Figure 4) of the similar process networks, we get the followingfunction.f ref(ref(withdraw money))(inwm1 ; inwm2) = (f conditional retrieve cash1 (inwm1 ; f check deposit1 (inwm1 ; inwm2));f secure book to database1 (f check deposit2 (inwm1 ; inwm2);f check deposit3 (inwm1 ; inwm2)))When the decision statements by which the alternative functions are united do not partition thepossible combinations of parameter values into disjunct sets, the uniting process type turns tobe nondeterministic. In this case, as previously pointed out in section 3.1, we associate a set offunctions with the uniting process type. Each of these functions covers all possible combinations ofparameter values, where in those cases of more than one possible behavior, each function restrictsitself to a single behavior possibility. On the other hand, each of the behavioral possibilities mustbe covered by at least one of the functions. For each instance of an execution of a nondeterministic9

process instance, one function of the corresponding set of functions is selected in a nondeterministicway, and then evaluated. Altogether, the set of associated function models exactly the behavior ofthe nondeterminstic process type.This decomposition of nondeterministic behavior into a set of functions is illustrated by the followingexample.Let fv, fAv and fBv be functions over a set v of typed variables. Furthermore, let B be the set ofpossible value combinations over this set of variables v. In addition, let A � B and B � B besubsets of the set of possible value combinations. Also, A [B = B and AB := A \ B 6= ; holds.Finally, let �(v) 2 B be one speci�c combination of values assigned to the set of variables v.The process behavior is modeled by fAv if �(v) 2 A holds, and by fBv if �(v) 2 B holds.As assumption A\B 6= ; holds, this behavior is nondeterministic. For resolving this nondetermin-ism, we describe this behavior in terms of a set of functions fv as follows.fv � ffA0v ; fB0v g; where fA0v = (fAv i� �(v) 2 AfBv i� �(v) 2 BnABfB0v = (fAv i� �(v) 2 AnABfBv i� �(v) 2 B4.2 Encapsulating alternative processes by switchesDi�erent process networks may be congruent in certain subparts, but may di�er to a higher extentin other areas. For example, process networks which start identically may continue di�erentlyregarding structure and content, in the case that depending on the evaluation of parameter valuesat a certain point, di�erent possible subsequent process subnetworks may be pursued. In ourexample in Figure 3, depending on the variable assignments, di�erent variants of check deposit areexecuted, each of which is succeeded by a di�erent process network.When alternative process networks di�er greatly in their input/output functionality in some areas,it is suitable to keep them as process variants rather than uniting them to their superset. Theseprocess variants may be encapsulated by input and/or output switches.4.2.1 Output SwitchProcess types which coincide in their meaning and their input functionality, but which di�er intheir output functionality, may be united into an output switch.
in1 :cd1

in :cd1
2

1 :outcd1

:outcd1
2

in1 :cd*

in :cd*
2 in1 :cd2

:outcd2
3

:outcd2
2

1 :outcd2

in :cd2
2 account

amount amount

accountaccount deposit 1

check_

*
amount

account

deposit 2

amount ack

amount

account

check_Figure 5: Similar process types with di�ering output functionalityAs an example, Figure 5 illustrates similar process types with identical input functionality butdi�ering output functionality, as described in equation 1. We unite these alternative process typesinto an output switch which is shown in Figure 6.Note that the syntax of the glass box description of switch process types is identical to that ofregular process types. 10

cdS:out4
:outcdS

5

:outcdS
3

in1 :cdS
1 :outcdS

:outcdS
2

amount

account

deposit

check
S

in1 :cdS

400

400

in1
cdS

in1
cdS

c2 amount

account

ack

amount c1

c1

c2

accountFigure 6: Uniting alternative process types to an output switchWhen the output switch is integrated within a process network, the process network splits intodi�erent process networks succeeding the output switch.The function associated with an output switch is of the same input functionality as each of thefunctions of the original alternative process types. However, its output functionality consists of thecartesian product of output functionalities of the orignial functions. Thusfct f check depositS : amount� account �! (amount� account� ack � amount� account)holds for our example.Then, function f check depositS may be expressed using the original alternative functions as follows.f check depositS(incdS1 ; incdS2) = 8>>>>>>><>>>>>>>:out1 = f check deposit11 (incdS1 ; incdS2) ^out2 = f check deposit12 (incdS1 ; incdS2) i� incdS1 � 400out3 = f check deposit21 (incdS1 ; incdS2) ^out4 = f check deposit22 (incdS1 ; incdS2) ^out5 = f check deposit23 (incdS1 ; incdS2) i� incdS1 > 400According to this de�nition, we assign the results of the corresponding subfunction to those outputports that correspond to the ful�lled decision case. Output ports of decision cases that do notevaluate to true have empty output as value, so that subsequent functions will not be triggered forexecution. Thus, when processes and functions are linked to form a network, only those branchesof the process network are executed which correspond to decision cases that evaluate to true.In our example, the decision statement provides for disjunct cases in evaluation of variable assign-ments. However, if cases should overlap, the resulting nondeterministic behavior is resolved bysplitting it into an equivalent set of functions, as described in section 4.1.In the following section, we introduce input switches as an analogon to the output switches we justpresented.4.2.2 Input SwitchProcess types that correspond in their meaning and in their output functionality, but which di�erin their input functionality may be united to form an input switch.
in1 :crc1

in1 :crc2

in :crc2
2 1 :outcrc2

1 :outcrcX

1 :outcrc1

conditional_

retrieve_

cash

conditional_

retrieve_

cash 1

2

xor

amount

amount

acc_id

money

money

money

Figure 7: Similar process types with di�ering input functionalityFigure 7 illustrates an example of similar process types which coincide in their output functionalitybut di�er in their input functionality, as described in equation 2.11

We introduce the supplementary function xor(:; : : : ; :) for uniting equally typed channels. If onlyone of the input channels of xor holds a de�ned value, this value is output on the outgoing channel.Whenever more than one input channel is assigned with a de�ned value, xor nondeterministicallyselects one channel whose value ist output as result.Function xor can easily be extended to tuples of input channels. Channel tuples with equal typetuples are united to a single output tuple of corresponding tuple type. The functions output consistsof the values of the input tuple that is assigned with de�ned values. If more than one input tupleis assigned with de�ned values, xor nondeterministically selects one of these channel tupels andoutputs the corresponding values.We unite our alternative process types of Figure 7 by introducing an input switch, as illustrated inFigure 8.
in1 :crcS

1 :outcrcS

in :crcS
3

in :crcS
2

am1

am2

400

400

d1

d2

d1

d2account

amount

amount money
conditional_

retrieve_

cash SFigure 8: Uniting alternative process types by an input switchNote that again, the syntax of the glass box description of switch process types is identical to thatof regular process types.An input switch that is integrated in a process network unites di�erent preceding process networksto a single succeeding process network.The function that is associated with the input switch is of the same output functionality as eachof the functions corresponding to the original process types. However, its input functionality is thecartesian product of input functionalities of the original functions. Thusfct f conditional retrieve cashS : amount� amount� account �! (money)holds.Function f conditional retrieve cashS may be expressed in terms of the original alternative functions asfollows. f conditional retrieve cash(incrc1 ; incrc2 ; incrc3) == (f conditional retrieve cash1(incrc1) i� incrc1 � 400 ^ incrc2 � 400f conditional retrieve cash2(incrc2 ; ak) i� incrc1 > 400 ^ incrc2 > 400When the di�erent functions do not de�ne disjunctive cases of parameter assignments, we split upthe resulting nondeterministic behavior of the input switch into an equivalent set of deterministicfunctions.
*

in :1
cd

in1 :crc

*

database

book_to_

secure_xor

xor

1 :outsbtd

in1 :crc

in :2
crc

in :crc
3

in1 :sbtd

in :sbtd
2

in :cd
1

incd
5

in :cd
2

in :cd
3

in :cd
4

1 :outcrc

in :2
cd accountaccount

depositS

check_

am1

am2

400

400

d1

d2

c1 am 400

400amc2

c2

amount

amount conditional_

retrieve_

cash S

d1

d2

account
db_log

amount

amount

ack

account

amountc1

account:

money

amount

amount
ack

amount

Figure 9: Process network with input and output switchFigure 9 shows the second re�nement level of our example process withdraw money using inputand output switches. On the level of semantics, this process network corresponds to the following12

function de�nition.f ref(ref(withdraw money))S (inwm1 ; inwm2) == (f conditional retrieve cashS1 (inwm1 ; inwm1 ; f check depositS3 (inwm1 ; inwm2));f secure book to database(xor(f check depositS1 (inwm1 ; inwm2); f check depositS4 (inwm1 ; inwm2));xor(f check depositS2 (inwm1 ; inwm2); f check depositS5 (inwm1 ; inwm2))))Process types with similar meaning but di�ering input and output functionality may be united intoan IO-switch which combines input and output switch into a single uniting process type.5 Conclusions and outlookWe presented a semantically well founded description technique for modeling typical system be-havior in a way that is independant from organizational or geographical boundaries. Furthermore,we provided a re�nement mechanism which supports behavior modeling across di�erent levels ofabstraction. Our modeling technique documents causal dependencies among process executionthat are due to the communication of messages and events between processes, without introducingany additional arti�cial sequentialization. Thus we allow for a maximum of parallelism in processexecution that conforms with the required causality of communication.So far, we have provided a formally founded description technique for exemplaric system behavior.In a next step, we will move from a set of single process runs towards processes instances thatare executed more than once within a single system run. Thus we need a notion of process stateor memory, and consequently adapt our semantics to stream processing functions that work onhistories of input and ouput messages (see, for example, [Kah74] and [Bro82]).Finally, when assigning certain aspects of system behavior to the respective system modules forexecution in later stages of the system development process, we leave the cross functional, exem-plaric view of business process modeling and turn to modeling the complete behavior of singlesystem components or objects. At this stage, we employ automata or state machines ([GKRB96]for modeling component behavior.The methodic and semantic integration of these approaches is subject of ongoing research.AcknowledgementsI thank Wolfgang Schwerin, Manfred Broy and Bernhard Rumpe for many fruitful discussions.

13

References[BFG+93] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hu�mann, D. Nazareth, F. Regensburger,O. Slotosch and K. Stolen. The requirement and design speci�cation language Spec-trum { An informal introduction, Part II. Technical Report TUM-I9312, TechnischeUniversit�at M�unchen, Institut f�ur Informatik, M�unchen, May 1993.[BJR97] G. Booch, I. Jacobson and J. Rumbaugh. Uni�ed Method Language { Notation Guide.Rational Software Corporation, Santa Clara, CA., 1.1 c edition, July 1997.[Boo94] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-mings, 1994.[Bro82] M. Broy. A Theory for Nondeterminism, Parallelism, Communication and Concur-rency. Technical report, Habilitationsschrift, Fakult�at f�ur Mathematik und Informatik,Technische Universit�a M�unchen, 1982.[Bro92] M. Broy. Informatik { Eine grundlegende Einf�uhrung, Teil 1: Problemnahe Program-mierung, volume 1. Springer-Verlag, Berlin, 1992.[Bro93] M. Broy. (Inter-)Action Re�nement: The Easy Way. In F.L. Bauer, M. Broy, E.W.Dijkstra, D. Gries and C.A.R Hoare, editors, Program Design Calculi, NATO ASI SeriesF: Computer and System Sciences, Vol. 118, pages 121{158. Springer-Verlag, 1993.[Dav93] A.M. Davis. Software Requirements { Objects, Functions, and States. Prentice-HallInternational, Inc., Englewood Cli�s, New Jersey, 1993.[DeM79] T. DeMarco. Structured Analysis and System Speci�cation. Prentice-Hall International,Inc., Englewood Cli�s, New Jersey, 1979.[FS91] O.K. Ferstl and E.J. Sinz. Ein Vorgehensmodell zur Objektmodellierung betrieblicherInformationssysteme im Semantischen Objektmodell (SOM). In Bamberger Beitr�agezur Wirtschaftsinformatik, Nr. 5. Universit�at Bamberg, July 1991.[GKRB96] R. Grosu, C. Klein, B. Rumpe and M. Broy. State Transition Diagrams. Technical Re-port TUM-I9630, Technische Universit�at M�unchen, Institut f�ur Informatik, M�unchen,June 1996.[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Series in Computer Science. Pren-tice Hall International, Inc., Englewood Cli�s, New Jersey, 1985.[IT96] ITU-T. Z.120 { Message Sequence Chart (MSC). ITU-T, Geneva, 1996.[Kah74] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In Informa-tion Processing, IFIP'74. North-Holland, 1974.[Sie95] Siemens Nixdorf Informationssysteme AG, M�unchen. GRAPES V3 { Sprachbeschrei-bung, March 1995.

14

