
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

On-Line Scheduling of Parallel Jobswith Runtime RestrictionsStefan Bischof, Ernst W. Mayr

TUM-I9810SFB-Bericht Nr. 342/04/98 AApril 98

TUM{INFO{04-I9810-130/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc
1998 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

On-Line Scheduling of Parallel Jobs withRuntime RestrictionsStefan Bischof Ernst W. MayrInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, Germany{bischof|mayr}@informatik.tu-muenchen.dehttp://wwwmayr.informatik.tu-muenchen.de/April 3, 1998AbstractConsider the execution of a parallel application that dynamicallygenerates parallel jobs with speci�ed resource requirements during itsexecution. Generally, there is not su�cient knowledge about the run-ning times and the number of jobs generated in order to precompute aschedule for such applications. Rather, the scheduling decisions haveto be made on-line during runtime based on incomplete information.We present several on-line scheduling algorithms for a variety of in-terconnection topologies that use some a priori information about thejob running times or guarantee a good competitive ratio that dependson the runtime ratio of all generated jobs. All algorithms presentedhave optimal competitive ratio up to small additive constants, and areeasy to implement.
1 IntroductionThe e�cient operation of parallel computing systems requires the best possi-ble use of the resources that a system provides. In order to achieve an e�ectiveutilization of a parallel machine a smart coordination of the resource demandsof all currently operating applications is necessary. Consequently, the taskof a scheduler is a clever assignment of the resources, most prominently theprocessors, to the jobs being processed. For the case of sequential jobs, i.e.,

jobs that require exactly one processor for execution, the involved schedul-ing problems have been studied intensively for decades [BEP+96]. But inmany situations the problem arises to �nd a schedule for a set of paralleljobs [FR95, FR96, BEP+96]. Such a set could, for example, be a parallelquery execution plan generated by the query optimizer of a parallel databasemanagement system [Rah96, GI97].The model studied in this paper assumes that each parallel job demandsa �xed number of processors or a speci�ed sub-system of a certain size andtopology (depending on the underlying structure of the parallel machine con-sidered) for its execution. It is not possible to run a parallel job on fewerprocessors than requested, and additional processors will not decrease therunning time. This re
ects the common practice that the decision on thenumber of processors is made before a job is passed to the scheduler basedon other resource requirements like memory, disk-space, or communicationintensity. The processors must be allocated exclusively to a job throughoutits execution, and a job cannot be preempted or restarted later. This is areasonable assumption because of the large overhead for these activities inparallel machines. Furthermore, there may be precedence constraints be-tween the jobs. A job can only be executed if all of its predecessors havealready completed execution. Most frequently, precedence constraints arisefrom data dependencies such that a job needs the complete input producedby other jobs before it can start computation.We are concerned with on-line scheduling throughout this paper to cap-ture the fact that complete a priori information about a job system is rarelyavailable. However, it has been shown [FKST93, Sga94] that the worst-case performance of any deterministic or randomized on-line algorithm forscheduling parallel job systems with precedence constraints and arbitraryrunning times of the jobs is rather dismal, even if the precedence constraintsbetween the jobs are known in advance. Therefore, we study the case thatthere is some a priori knowledge about the execution times of the individualjobs but the dependencies are unknown to the scheduler.We study three di�erent gradations for this additional knowledge. The�rst model of runtime restrictions requires that all job running times areequal and that this fact is known to the on-line scheduler. We give a level-oriented on-line algorithm for this problem that repeatedly schedules a setof available jobs using bin packing and collects all jobs that arrive duringa phase for execution in the next phase. We show that this algorithm is2:7-competitive if the First Fit heuristic is used. Due to a lower bound of2:691 for every deterministic on-line scheduler, our algorithm is almost opti-mal. Our algorithm can be used for parallel systems that support arbitraryallocation of processors to jobs and 1-dimensional arrays. For hypercube2

connected machines, we present a very similar, optimal on-line schedulingalgorithm with competitive ratio 2.We then explore the entire bandwidth between unit and arbitrary exe-cution times and capture the variation of the individual job running times bya characteristic parameter that we call runtime ratio (the quotient of thelongest and shortest running time). Our second model postulates that theruntime ratio of a job system is reasonably small and that the on-line sched-uler knows the shortest execution time (but not the runtime ratio itself).We give a family of job systems with runtime ratio TR � 2 that bounds thecompetitive ratio of any deterministic on-line scheduler by (TR + 1)=2 frombelow. We note that the structure of the dependency graph is an out-forest inall of our lower bound proofs. Our bounds remain valid even if the schedulerknows the actual runtime ratio in advance. An on-line scheduler designatedRRR (Restricted Runtime Ratio) for parallel systems supporting arbitraryallocations is described, and we demonstrate a competitive ratio of TR=2 + 4for this algorithm for any job system with runtime ratio � TR. Therefore,the RRR algorithm is nearly optimal up to a small additive constant. Theassumption that the shortest execution time is known to the on-line schedulercan be dropped without much loss of competitive performance. We presenta modi�ed algorithm called RRR Adaptive for this third model, and showit to be TR=2 + 5:5 competitive.The remainder of this paper is organized as follows. In Section 2 weintroduce our scheduling model, some notation and de�nitions, as well as ba-sic techniques for analyzing on-line scheduling algorithms. We then discussprevious and related work on on-line scheduling of parallel jobs in Section 3.Section 4 presents nearly optimal on-line schedulers for jobs with unit execu-tion time, whereas in Section 5 we study job systems where the ratio of therunning times of the longest and shortest job is bounded. Again, we describeand analyze on-line scheduling algorithms that are optimal up to small ad-ditive constants. We conclude giving some directions for future research inSection 6.

3

2 PreliminariesLet N denote the number of processors of the parallel computer-system athand. A (parallel) job system is a non-empty set of jobs J = fJ1; J2; : : : ; Jmgwhere each job speci�es the type and size of the sub-system that is necessaryfor its execution together with precedence-constraints among the jobs in Jgiven as a partial order � on J . If Ja � Jb then Jb cannot be scheduled forexecution before Ja is completed. A task is a job that requires one processorfor execution, and a job system that only contains tasks is a sequential jobsystem.A schedule for a job system (J ;�) is an assignment of the jobs toprocessors and start-times such that:� each job is executed on a sub-system of appropriate type and size,� all precedence-constraints are obeyed,� each processor executes at most one job at any time,� jobs are executed non-preemptively and without restarts.The interconnection topology of the parallel computer-system may imposeserious restrictions on the job types that can be executed e�ciently on a par-ticular machine. On a hypercube, for example, it is reasonable to executejobs only on subcubes of a certain dimension rather than on an arbitrarysubset of the processors. On the other hand, a number of interconnectionnetworks do not restrict the allocation of processors to parallel jobs. Forexample, the Clos-network of the very popular IBM RS/6000 SP system,which uses an oblivious bu�ered wormhole routing strategy, justi�es the as-sumption that the running time of a job only weakly depends on a speci�cprocessor allocation-pattern (see [AG94, p. 512] for a short description ofthis system and [SSA+94] for in-depth information on its interconnectionnetwork). Therefore, we treat the various types of interconnection networksseparately.The complete model assumes that a job Ja requests na processors (1 �na � N) for execution and any subset of processors of size na may be al-located. The terminology has been chosen in analogy to a complete graphon N nodes. The r-dimensional hypercube (see Figure 1) consists of N = 2rprocessors, labeled from 0 to N � 1, and has r2r�1 point-to-point communi-cation links. Two processors are connected i� the binary representations oftheir labels (an r-bit string) di�er in exactly one bit. As a consequence, eachprocessor is directly connected to r = log2N other processors (see [Lei92]for properties of hypercubes). A job Ja can only request a da-dimensionalsubcube (0 � da � r) for its execution.4

Figure 1: 4-dimensional hypercubeAnother topology frequently used for parallel computing is the r-dimensional array with side-lengths (N1; N2; : : : ; Nr), Ni � 2 for i =1; 2; : : : ; r (also called r-dimensional grid or mesh). The label of a pro-cessor is an r-dimensional vector x = (x1; x2; : : : ; xr) with 0 � xi < Ni fori = 1; 2; : : : ; r. Two processors x and y are connected i� kx� yk = 1. Notethat hypercubes form the subclass of arrays with side-length 2 in every dimen-sion. Eligible job types are sub-arrays with side-lengths (N 01; N 02; : : : ; N 0r),1 � N 0i � Ni. The dimension of a job can be less than r if one or more ofthe N 0i are equal to 1.It is always possible to transform a job system (J ;�) into a directedacyclic graph D = (J ; E) with (Ja; Jb) 2 E , Ja � Jb. Removing alltransitive edges from D we obtain the dependency graph induced by (J ;�)(see Figure 3 on page 13 for an example). We call two jobs Ja and Jbdependent if Ja � Jb or Jb � Ja, and independent otherwise. We shalluse the terms dependency and precedence-constraint interchangeably in thispaper. The length of a path in the dependency graph induced by (J ;�) isde�ned as the sum of the running times of the jobs along this path. A pathis called critical if its length is maximum among all paths in the dependencygraph induced by (J ;�). A job is available if all predecessors of this jobhave completed execution. An on-line scheduling algorithm is only awareof available jobs and has no knowledge about their successors. We assumethat the on-line scheduler receives knowledge about a job as soon as the jobbecomes available. This event, however, may depend on earlier schedulingdecisions. 5

Table 1: Frequently used notationsTopt Length of an optimal o�-line schedule for (J ;�)TAlg Length of a schedule for (J ;�) generated by Algorithm AlgTmax Maximal length of any path in the dependency graph induced by(J ;�)tmin Minimal running time of any job in Jtmax Maximal running time of any job in JjSj Length of a schedule ST<� Total time of a schedule for (J ;�) when the e�ciency is less then�, 0 � � � 1The work of a job is de�ned as the number of requested processors,multiplied by its running time. A schedule preserves the work of a job if theprocessor-time product for this job is equal to its work. The e�ciency of aschedule at any time t is the number of busy processors at time t dividedby N . In general, the running time of a job is also unknown to the on-linescheduler and can only be determined by executing a job and measuring thetime until its completion. In Section 4, though, we study the case of unitexecution times and therefore restrict the on-line model there to the case ofunknown precedence-constraints.Throughout the paper we use the notations in Table 1 (cf. [Sga94,FKST93]) for a given job system (J ;�). To simplify our presentation, we donot attach the job system or schedule as arguments to the notations in Ta-ble 1. The relationships should always be clear from the context. Furthernotation is introduced when needed.Our goal is to generate schedules with minimum makespan, i.e. to min-imize the completion time of the job �nishing last. We evaluate the perfor-mance of our on-line scheduling algorithms by means of competitive analy-sis [ST85]. A deterministic on-line algorithm Alg is called c-competitive ifTAlg � cTopt for all job systems and arbitrary N . The in�mum of the val-ues c 2 [1;1] for which this inequality holds is called the competitive ratio ofAlg. The competitive ratio clearly is a worst-case measure. It is intended tocompare the performance of di�erent on-line algorithms that solve the sameproblem, since it is in general impossible to compute an optimal solutionwithout complete knowledge of the problem instance. An optimal on-linealgorithm is one with a best possible competitive ratio.The following two lemmata provide useful tools for the competitive anal-ysis of our scheduling algorithms.Lemma 2.1 Let S be a schedule for a job system (J ;�) such that the workof each job is preserved. Let 0 � �1 � �2 � 1 and � � 0. Suppose that the6

e�ciency of S is at least �1 at all times and T<�2 � �Topt. ThenjSj � �� + 1� �1��2 �Topt:See [Sga94] for a proof of this lemma.Lemma 2.2 Consider a schedule for a job system (J ;�). Then there existsa path of jobs in the dependency graph induced by (J ;�) such that wheneverthere is no job available to be scheduled, some job of that path is running.This lemma is due to Graham [Gra66, Gra69]. The proof given there stillholds for parallel jobs since it uses only the structure of the dependencygraph.3 Previous and Related WorkExtensive work on non-preemptive on-line scheduling of parallel jobs with orwithout precedence-constraints was done by Feldmann, Kao, Sgall andTeng [FKST93, Sga94, FST94]. However, these results for general paralleljob systems are bad news for users of parallel computers since they showthat no deterministic on-line scheduler for N processors can have compet-itive ratio better than N . That is, the competitive ratio is asymptoticallyunbounded, and even randomization cannot improve this unsatisfactory sit-uation substantially.One possibility to improve the performance is to restrict the maximumjob size to �N processors, 0 < � < 1. Given this restriction it has been shownthat the GREEDY algorithm is optimal with competitive ratio 1 + 11�� . Set-ting � = 1=2, for example, yields a 3-competitive algorithm. This resultholds for any type of parallel machine. Another alternative is the use of vir-tualization. This means that a parallel job Ja which requests na processors isexecuted on a smaller number of processors n0a by the use of simulation tech-niques with a predetermined increase in running time. Under the assumptionof proportional slowdown (the running time of a job is enlarged by the factorna=n0a) it can be shown that there is an optimal on-line scheduler for the com-plete model with competitive ratio 2+�, where � = (p5�1)=2 is the goldenratio. This improves a previous o�-line result of Wang and Cheng [WC92]with asymptotic performance guarantee 3. For the hypercube, an algorithmwith competitive ratio O(logN= log logN) has been given, and similar re-sults hold for arrays. The two approaches just described can be combinedto yield an optimal on-line scheduler with competitive ratio 2 + p4�2+1�12� forthe complete model. 7

Both approaches, though, have a severe drawback that arises due to thememory requirements of parallel jobs. Restricting the maximum size of ajob to �N processors can thus severely restrict the problem size that canbe solved on a particular machine. This is often unacceptable in practicebecause solving large problems is the main reason for the use of parallelcomputers besides solving problems fast. Virtualization may be impossibleor prohibitively expensive if such memory limitations exist.The job systems used in the lower bound proofs in [FKST93, Sga94] forthe general case reveal an unbounded ratio of the running times of the longestand shortest job. Therefore, we think it necessary to study the in
uence ofthe individual running times on the competitive ratio of on-line schedulersfor our scheduling problem. To gain insight into this relationship it is onlynatural to start with unit execution times as is done in Section 4. It turnsout that the problem becomes manageable with small constant competitiveratio even if nothing is known about the precedence constraints.To �ll the gap between these two extremes | totally unrelated runningtimes versus unit execution times | we identify the runtime ratio (the ratioof the running time of the longest and shortest job) as the distinctive pa-rameter of a job system for the achievable competitive ratio. Our results forthe proposed on-line schedulers in Section 5 demonstrate a smooth, lineartransition of the competitive ratio from the case of unit execution times tounrelated execution times that is governed by the runtime ratio. The impor-tance of this parameter has also been demonstrated recently in [CM96] foro�-line scheduling of jobs with multiple resource demands, both malleable(allow for virtualization with proportional slowdown) and non-malleable.Although we are interested in on-line scheduling, it might be appropri-ate to brie
y mention some complexity results for the corresponding o�-lineproblems. Not surprisingly, almost any variant of these scheduling prob-lems is NP-hard. B la_zewicz, Drabowski, and We�glarz [BDW86] haveproved that it is strongly NP-hard to compute optimal schedules for paralleljob systems with unit execution times and no dependencies if N is part ofthe problem instance. For any �xed N they showed that the problem canbe solved in polynomial time. Furthermore, it is known [GJTY83] that theproblem is NP-hard for sequential job systems with precedence constraintsthat are the disjoint union of an in-forest and and an out-forest. The schedul-ing problem for parallel job systems with arbitrary job running times andwithout dependencies is strongly NP-hard for every �xed N � 5 [DL89]. Ifprecedence constraints consisting of a set of chains are involved, the problemof computing an optimal 2-processor schedule for a parallel job system is alsostrongly NP-hard [DL89]. 8

4 Jobs with Unit Execution TimeIn this section, we restrict our model to the case where all jobs have the sameexecution time. When the dependency graph is known to the scheduler thisproblem has been intensively studied by Garey, Graham, Johnson andYao [GGJY76]. We show that similar results hold in an on-line environment,where a job is available only if all its predecessors have completed execution.4.1 Complete ModelThe Level algorithm collects all jobs that are available from the beginning.Since available jobs are independent we can easily transform the problem ofscheduling these jobs to the Bin Packing problem: the size of a job dividedby N is just the size of an item to be packed, and the time-steps of the sched-ule correspond to the bins (see [CGJ96] for a survey on Bin Packing). LetPack be an arbitrary Bin Packing heuristic. We parameterize the Levelalgorithm with Pack to express the fact that a schedule for a set of indepen-dent jobs is generated according to Pack. Thereafter, the available jobs areexecuted as given by this schedule. Any jobs that become available duringthis execution phase are collected by the algorithm. After the termination ofall jobs of the �rst level a new schedule for all available jobs is computed andexecuted. This process repeats until there are no more jobs to be scheduled.
Algorithm Level(Pack) :while not all jobs are �nisheddoA := fJ 2 J jJ is availableg;schedule all jobs in A according to Pack;wait until all scheduled jobs are �nished;od

First, we use the Next-Fit (NF) bin-packing heuristic for scheduling oneach level. NF packs the items in given order into a so-called active bin. Ifan item does not �t into the active bin, the active bin is closed and neverused again. A previously empty bin is opened and becomes the next activebin.Theorem 4.1 Level(NF) is 3-competitive.9

Proof: The number of iterations of the while-loop is exactly the length of acritical path in the dependency graph. There are two possibilities for eachlevel:1. The partial schedule for this level has length 1. Let T1 denote thenumber of levels of this type.2. The partial schedule for this level has length � 2. By the packing ruleof NF it is clear that the average e�ciency of 2 consecutive time-stepsin such a partial schedule is > 1=2. From this we conclude that theaverage e�ciency of all time-steps but maybe the last one is > 1=2.Let T2 denote the number of �nal time-steps with e�ciency < 1=2 inpartial schedules for levels of this type.Since T1 + T2 � Tmax � Topt we can apply Lemma 2.1 with �1 = 1=N ,�2 = 1=2, � = 1, yielding:TLevel(NF) � �3� 2N�Topt: �Since NF can be implemented to run in linear time (in the number of items tobe packed) the scheduling overhead is very low when NF is used to computepartial schedules. Now we use the First-Fit (FF) bin-packing heuristic in-stead of NF to achieve a better competitive ratio with only a modest increaseof the scheduling overhead. FF in contrast to NF considers all partially �lledbins as possible destinations for the item to be packed. An item is placedinto the �rst (lowest indexed) bin into which it will �t. If no such bin exists,a previously empty bin is opened and the item is placed into this bin. It hasbeen shown [Joh74] that FF has time-complexity �(n logn) for a list of nitems.Theorem 4.2 Level(FF) is 2:7-competitive.The proof of this theorem uses the weighting function from [GGJY76]. LetW : [0; 1] ! [0; 8=5] be de�ned as follows:W (�) = 8>>><>>>:65� for 0 � � � 16 ;95�� 110 for 16 < � � 13 ;65� + 110 for 13 < � � 12 ;65� + 410 for 12 < � � 1:Figure 2 depicts the graph of W .We need the following results from [GGJY76]:10

�

W (�)

16 13 12 11512
7101
85

Figure 2: Weighting function for the analysis of Bin PackingLemma 4.3 Let B denote a set of items with total size � 1. ThenXb2B W (size(b)) � 1710 :If all sizes are � 1=2, then Xb2B W (size(b)) � 32 :Theorem 4.4 If L is a list of items with sizes � 1, thenFF (L) <Xx2LW (size(x)) + 1:Together with the above lemma this theorem provides the best known upperbound for the number of bins used by �rst-�t. If L� is the number of binsused in an optimal packing of L, then �rst-�t uses at most d(17=10)L�e bins.Now we are ready to prove Theorem 4.2:Proof: Let J be a job system with unit execution time and arbitraryprecedence-constraints. We de�neW (J) =Xj2J W (size(j)):11

Thus W (J) is the total weight of all job sizes. Let l be the number of levelsof the job system. For 1 � i � l let Ui be the set of jobs of each level. ByTheorem 4.4 we can upper bound the length of the partial schedule for eachlevel i, 1 � i � l, generated by Level(FF):TLevel(FF)(Ui) < W (Ui) + 1:We can think of an optimal packing of J with the dependencies removedas a partition of J into J � sets each of which has total size � 1. ApplyingLemma 4.3 yields W (J) � 1710J �. Together with the fact that the length ofthe optimal schedule for J without dependencies cannot be longer than thelength of the optimal schedule for J we conclude:TLevel(FF) = lXi=1 TLevel(FF)(Ui) < lXi=1 (W (Ui) + 1) = W (J) + l � 1:7Topt + l:Since l = Tmax � Topt, the result follows. �The competitive ratio 2:7 of Level(FF) is nearly optimal. To showthis, we give an asymptotic lower bound of 2:691 for the competitive ratioof each deterministic on-line scheduling algorithm. For the sake of clarity,we �rst prove a slightly weaker lower bound of 2:69Topt � 4 for the lengthof a schedule generated by a deterministic on-line scheduler. Using Salzernumbers we re�ne this construction to derive the asymptotic lower bound.Fix N 2 N, N � 7 � 1806, and letA := �N2 �+ 1; B := �N3 �+ 1;C := �N7 �+ 1; D := N � A�B � C � 1:The job system (see Figure 3) consists of l � 4 levels with one chain of l� 4tasks and l jobs of size A, l� 1 jobs of size B, l� 2 jobs of size C, l� 3 jobsof size D.Additional dependencies are assigned dynamically by an adversary de-pending on which parallel job of each level is scheduled last by the on-linealgorithm. This is possible because the on-line scheduler cannot distinguishbetween the parallel jobs on the same level. The optimal schedule has lengthl and is shown in Figure 4. Here, the parallel job with successors is scheduled�rst on each level. Contrary to the optimal solution, the on-line scheduler isforced to schedule and execute all jobs on one level to make the jobs on thenext level available. The schedule generated by Level(FF) is thus the bestpossible on-line schedule (see Figure 5) and has lengthl + � l � 12 �+ � l � 26 �+ � l � 342 �+ (l � 4) > 2:69 l � 4;12

if 2 - (l� 1), 6 - (l� 2), and 42 - (l� 3). It is easy to see that any l 2 N with42 j l ful�lls the above conditions.

1
1
1

A A Al�1 Jobs
B B Bl�2 Jobs

C C C
D D D

Jobs scheduled last bythe on-line scheduler Level1
2
3
4
5

l�1
lFigure 3: Job system used in lower bound proofThe following sequence (ti)i2N was investigated by Salzer [Sal47]:t1 = 2;ti+1 = ti(ti � 1) + 1; for i � 1:13

The �rst �ve numbers of this sequence are 2; 3; 7; 43; 1807. Closely related isthe following series: h1 = 1Xi=1 1ti � 1 > 1:69103: (1)There are two basic relations for the Salzer numbers that can be derivedinductively from their de�nition:kXi=1 1ti + 1tk+1 � 1 = 1;kYi=1 ti = tk+1 � 1:Let Ai = bN=tic + 1, 1 � i � k, be the sizes of the parallel jobs on the �rstk levels. Setting Ak+1 = N �Pki=1Ai � 1, we can conclude thatAk+1 < Ntk+1 � 1 � 1;Ak+1 � Ntk+1 � 1 � (k + 1):It is easy to see that tk+1� 1 jobs of size Ak+1 can be scheduled in one time-step on N � 1 processors. To ensure that no more than tk+1 � 1 jobs of sizeAk+1 can be co-scheduled on N processors we choose N > (k + 1)(tk+2 � 1).The job system again consists of l � k+ 1 levels with one chain of l� (k+ 1)tasks and l� (i�1) jobs of size Ai, 1 � i � k+1. Dependencies are assigneddynamically as above. The length of the optimal schedule is l, whereas everyschedule generated by a deterministic on-line scheduler has length at leastk+1Xi=1 � l � (i� 1)ti � 1 � + l � (k + 1):From this and (1) we see that the competitive ratio can be brought arbitrarilyclose to 1 + h1 for k!1, l = !(k).The competitive ratio of Level(FF) can be improved if the maximumsize of a job is restricted to bN=2c.Theorem 4.5 Level(FF) is 2:5-competitive, if no job requests more thanhalf of the total number of processors.14

Time1

N
Processors

0 l 2 l
A
BC
D

Figure 4: Optimal schedule

Time1

N
Processors

0 l 2 l 2:69 l
A B

B
C

C
D

Figure 5: On-line schedule generated by Level(FF)15

Proof: Analogous to the proof of Theorem 4.2 using the second inequalityof Lemma 4.3. �Similarly to the unrestricted case, an asymptotic lower bound > 2:4 for thecompetitive ratio of any deterministic on-line scheduler for this problem canbe derived. Further restrictions of the maximum job size might yield some-what better competitive ratios for the Level algorithm, but this situation isalready handled well by the GENERIC algorithm in [FKST93, Sga94] whichachieves competitive ratio 1 + 1=(1 � �), if no job requests more than �N ,0 < � < 1, processors. For example, � = 1=2 yields competitive ratio 3 forthe GENERIC algorithm that is valid for job systems with arbitrary execu-tion times.We also remark that the results of this subsection remain valid if we as-sume a 1-dimensional array of length N as interconnection topology insteadof using the complete model, since the Bin Packing algorithms assign con-secutive processors to the jobs and the assignments in di�erent time-stepsare independent from each other.4.2 HypercubeIn this subsection we study the problem of on-line scheduling parallel jobsystems with arbitrary precedence-constraints and unit execution times forhypercube connected parallel computers.It is not di�cult to schedule a set of independent parallel jobs each ofwhich requests a subcube of a certain dimension. First, we sort the jobs bysize in non-increasing order. To avoid fragmentation, we use only normalsubcubes for job execution:Definition 4.6 A k-dimensional subcube is called normal, if the labels ofall its processors di�er only in the last k positions.For each time-step of our schedule we allocate jobs from the head of thesorted list to normal subcubes while there are unscheduled jobs left and thehypercube is not completely �lled. If the time step is full we have to add anew time-step to our schedule (if there are any unscheduled jobs left).It is easy to see that the e�ciency of this schedule for independent jobsis 1 in all time-steps except possibly the last. We refer to this strategy asPack hc. The algorithm for job systems with arbitrary dependencies is justthe Level algorithm using Pack hc instead of a Bin Packing heuristic.Theorem 4.7 Level hc is an optimal deterministic on-line scheduler withcompetitive ratio 2. 16

Proof: The number of iterations of the while-loop is exactly the length of acritical path in the dependency graph. Thus T<1 � Tmax � Topt. Since thee�ciency of the schedule is at least 1=N all the time, we have for �xed N byLemma 2.1: TLevel hc � �1 + 1� 1=N1 �Topt = �2� 1N�Topt:It remains to show that no deterministic on-line scheduler can achieve abetter competitive ratio. To this behalf, we use a job system similar to thepreceding subsection. It uses N � 1 levels with N + 1 tasks on each level.Again, the dependencies are assigned dynamically by an adversary accordingto the decisions of the deterministic on-line scheduler. The job from level i,1 � i � N � 2, scheduled last by the on-line scheduler is designated to bepredecessor of all jobs on level i + 1. Therefore any on-line scheduler Algneeds at least 2 time-steps to schedule all jobs of one level. In an optimalschedule, the job with dependencies is scheduled �rst together with N � 1other jobs from the same level. The N � 1 remaining jobs are scheduled intime-step N . This gives the desired lower bound for the competitive ratio:TAlgTopt � 2(N � 1)N = 2� 1N : �Algorithm Level hc :while not all jobs are �nisheddoA := fJ 2 J jJ is availableg;schedule all jobs in A according to Pack hc;wait until all scheduled jobs are �nished;odThe job system in the proof of Theorem 4.7 contains no parallel jobs and thehypercube structure isn't used at all. Therefore the derived lower bound isvalid for any interconnection topology and sequential job systems as well asparallel job systems. Note that the structure of the dependency graph is anout-forest.Corollary 4.8 No deterministic on-line algorithm for scheduling job sys-tems with unit execution times and dependencies can have a competitiveratio better than 2.Interestingly, this lower bound is identical to the lower bound proved byShmoys, Wein, and Williamson [SWW95] for sequential job systems witharbitrary running times but without precedence-constraints.17

5 Parallel Job Systems with Restricted Run-time RatioWe have shown in the preceding section that on-line scheduling of paralleljobs with unit execution time and precedence-constraints is possible withsmall constant competitive ratio. On the other hand, if execution timesare arbitrary, there exists no on-line scheduler with acceptable worst-caseperformance. It is only natural to explore the case that job runtimes arerestricted by some criterion other than unit execution time in order to achievea respectable competitive ratio.For a set of jobs J we therefore de�ne the runtime ratio RR = RR(J) :=tmax=tmin. In this section we study the problem of on-line scheduling paralleljob systems with dependencies where the runtime ratio is restricted by aparameter TR � 1 which is not known to the on-line scheduler. This problemoften arises in practice when upper and lower bounds for the running timeof a job are known in advance but the actual running time is unknown.This situation also makes clear that the parameter TR cannot be used asadditional information for scheduling decisions by the on-line scheduler andis therefore not part of the problem instance. Indeed, our results show thatthis knowledge is not necessary for the on-line scheduler to achieve a nearoptimal competitive ratio that depends only on TR.In this paper, we study this problem for the complete model. First,we give a lower bound of max f(TR + 1) =2; h1 + 1g for the asymptotic com-petitive ratio of any deterministic on-line scheduler for this problem. Forsimplicity we normalize the time of the shortest job to 1. The job systemused in this lower bound argument is very simple (see Figure 6) and consistsof N layers with two tasks and one parallel job of size N on each layer. Theparallel job depends on one of the tasks on the same layer and is predecessorof both tasks of the following layer. The task scheduled �rst by the on-linescheduler is assigned running time TR and the remaining task runs for 1 unitof time and is predecessor of the parallel job. Clearly, the makespan of anyschedule generated by an on-line scheduler is at least N(TR + 1). If TR issu�ciently large (e.g., TR � 2), the optimal solution �rst schedules the criti-cal path which has length 2N followed by the tasks of length TR in parallel.The competitive ratio of any deterministic on-line scheduler is thus lowerbounded by N(TR + 1)2N + TR ���!N!1 TR + 12 :For small TR, this bound is quite weak. But in this case, we can use thejob system from the lower bound construction in subsection 4.1. Since the18

(1; TR)(1; 1) (N; 1)

Layer 1 Layer 2 Layer NJobs are given by:(#proc,Time)

Figure 6: Di�cult job system for RRR-schedulingruntime ratio of this job system is 1 this yields an asymptotic lower boundof h1 + 1 for the competitve ratio.We now describe an algorithm designated RRR that achieves competi-tive ratio TR=2+4. A key feature of this algorithm is the distinction betweenbig jobs that request more than half of the total number of processors andsmall jobs with size � bN=2c. Let � := �(t) denote the e�ciency at time t.The RRR algorithm tries to keep the e�ciency at least 1=2 whenever possi-ble. There are two reasons that hinder the RRR algorithm from achievingthis goal. First, there might be no job available and second, there might benot enough processors available to schedule a big job. The second case ismuch more severe than the �rst one which can be handled by the Grahamargument (cf. Lemma 2.2) without much loss of performance. Therefore, theRRR algorithm must prevent big jobs from being delayed too long in orderto bound the fraction of the total schedule length with low e�ciency. This isdone by occasionally stopping to schedule small jobs, if all big jobs requestmore processors than currently available and the e�ciency is below 1=2.We present two versions of the RRR algorithm. The �rst one assumesthat tmin is a known quantity. Again, we normalize the running time of theshortest job to 1 and a unit of time refers to this normalized time quantum.In the second version we remove this assumption and employ an adaptivewaiting-strategy to maintain a comparable competitive ratio. The RRR algo-rithm maintains two sets, L1 and L2, containing the available big respectivelysmall jobs. We assume that any job that becomes available is immediately19

inserted into the appropriate set, and we will not state this activity explicitlyin the pseudo-code description of our algorithms.
Algorithm RRRwhile L1 not emptydoschedule a big job exclusively;odwhile not all jobs are �nisheddowhile L2 not emptydoschedule small jobs greedily;odif L1 not emptythen if a big job can be scheduledthen do it;else if � � 12then wait for a scheduled job to �nish;else co start of a delay phase occollect small jobs that become availableduring the next 2 units of time;schedule those jobs greedily andthen wait for all scheduled jobs to �nish;while L1 not emptydoschedule a big job exclusively;od��else wait for next available job;�od
Theorem 5.1 The RRR algorithm is (TR=2 + 4)-competitive for any jobsystem (J ;�) and RR(J) � TR.Proof: We partition the schedule generated by the RRR algorithm into 3di�erent kinds of phases: 20

1. E�ciency is at least 1=2.2. E�ciency is below 1=2 and there is no job available.3. E�ciency is below 1=2 and the algorithm waits for the termination of alljobs.We refer to the third type as a delay phase and denote the total time of eachkind by T�1=2 , Tnojob , and Tdelay respectively. The total time of the RRRschedule that is spent in phases of type 1 and 2 can easily be bounded by3Topt , because we have T�1=2 � 2Topt by a straightforward area-argumentand Tnojob � Tmax � Topt by Lemma 2.2.It remains to show that Tdelay � (TR=2 + 1)Topt. We de�ne a delayedjob as a big job that was available at the beginning of a delay phase. Let tidenote the start time of delay phase i. First, we bound the length of a delayphase by TR + 2. If no small jobs become available during the �rst two unitsof time after the beginning of a delay phase, no more jobs are scheduled untilall currently running jobs terminate. Since the running time of any job is nomore than TR , such a delay phase lasts at most time TR. On the other hand,if small jobs become available during the �rst two units of time, then theseare collected and scheduled greedily at time tsi = ti + 2 (resp. tsi < ti + 2 ifall jobs running at time ti terminate before two units of time have elapsed)in addition to those jobs still running at time tsi . If the total size of thesesmall jobs is no more than the number of idle processors at time tsi , they canbe scheduled immediately. Clearly, the length of a delay phase is boundedby TR + 2 in this case. Should the total size of the small jobs exceed thenumber of idle processors at time tsi we can schedule enough small jobs toraise the e�ciency above 1=2 as long as small jobs that were collected duringthe interval [ti; tsi] are available. The time-span while the e�ciency is at least1=2 is, of course, a phase of type 1 and not part of the delay phase. Clearly,the length of the second part of a delay phase is bounded by TR and thereforethe length of a delay phase is always bounded by TR + 2.Let d denote the number of delay phases in a schedule generated by theRRR algorithm. We distinguish two cases:1. d = 1: We have to show that the optimal solution needs at least time2. This follows immediately from the fact that each delayed job musthave a predecessor in the job system because otherwise it would havebeen scheduled earlier.2. d > 1: This case will be proven by constructing a chain of jobs in thedependency graph with total execution time at least 2d. From that wehave Topt � 2d and together with Tdelay � d(TR + 2) the claim follows.The construction of this chain proceeds as follows: Starting with an arbi-trary delayed job that is scheduled after delay phase d we observe that there21

must be a small job that is ancestor of this delayed job and is scheduledimmediately after the delayed jobs of delay phase d�1 (i.e. without having asmall job as direct predecessor that is itself scheduled after the delayed jobsof delay phase d � 1) because otherwise this delayed job would have beenscheduled earlier. We add such a small job at the front of the chain.To augment the chain, we state the possibilities for the direct predecessorof a small job that is scheduled by the RRR algorithm immediately after thedelayed jobs of delay phase i:Type 1: Delayed job of delay phase i or big job that is successor of a delayedjob of delay phase i,Type 2: Small job collected during delay phase i,Type 3: Small job running from the beginning of delay phase i.This is due to the fact that the RRR algorithm schedules all small jobs thatare available by time tsi before the delayed jobs of delay phase i.We continue the construction inductively according to these three pos-sibilities. If there is a direct predecessor of Type 1 of the small job that iscurrently head of the list, we can repeat the initial construction step of thechain and add a delayed job and its small ancestor at the front of the chain.When there is no direct predecessor of Type 1 but a direct predecessor ofType 2, we add 2 more jobs at the front of the chain: the Type 2 job and adirect predecessor of this job that was running at the beginning of the delayphase during which this Type 2 job was collected. Finally, if there is only adirect predecessor of Type 3, we add this job at the front of the chain. Theinductive construction stops as soon as the head of the chain is a small jobthat is scheduled before the delayed jobs of the �rst delay phase.To complete the proof, we show that the total execution time of thejobs along this chain is at least 2d. The construction of the chain starts with2 jobs, a delayed job and its small ancestor. Since the minimum runningtime of any job is 1, these 2 jobs need at least 2 units of time for executionin any schedule. If the construction proceeds by adding a Type 1 job, thesame argument applies. Continuing with a Type 2 job means that again 2more jobs with were added to the chain. If a Type 3 job is encountered, weknow that this job must have execution time at least 2 because it is directpredecessor of a small job that is scheduled immediately after the delayedjobs of the delay phase the Type 3 job belongs to. Thus, for each delay phasein the schedule generated by the RRR algorithm, the above constructionadds jobs with total execution time at least 2 to the chain. �
22

Algorithm RRR Adaptivei := 0; co i counts the number of delay phases ocwhile L1 not emptydoschedule a big job exclusively;odwhile not all jobs are �nisheddowhile L2 not emptydoschedule small jobs greedily;odif L1 not emptythen if a big job can be scheduledthen do it;else if � � 12then wait for a scheduled job to �nish;else co start of a delay phase ocif i > 0then i := i+ 1;timin := current minimum execution time;collect small jobs that become availablefor time � 2 timin;schedule those jobs greedily andthen wait for all scheduled jobs to �nish;else i := i+ 1;wait for all scheduled jobs to �nish;�while L1 not emptydoschedule a big job exclusively;od��else wait for next available job;�odThe assumption that tmin is known to the RRR algorithm can be droppedby employing an adaptive waiting strategy without much loss in competitive23

performance. We describe this adaptive version separately in order to keepour presentation modular. The modi�cations of the RRR algorithm are asfollows: Since tmin is now unknown the RRR Adaptive algorithm doesn'tcollect small jobs during the �rst delay phase. In all following delay phases(if any), the algorithm calculates timin, the minimum execution time of any�nished job up to the start of delay phase i. The duration during which smalljobs are collected is now limited by 2 timin (and, of course, by tmax).Theorem 5.2 The RRR Adaptive algorithm is (TR=2 + 5:5)-competitivefor any job system (J ;�) and RR(J) � TR.Proof: With the notation of the proof of Theorem 5.1 we conclude analo-gously that the above theorem holds for d = 1. If d > 1, we haveTdelay � dtmax + 2 dXi=2 timin:First, we show that 2Pdi=2 timin � 2Topt�2 tmin. To see this, we observe thatafter delay phase i, 1 � i � d, at least one delayed job has to be scheduled.Let td+1min := tmin. The running time of such a delayed job is at least ti+1min,since this job is executed before the start of delay phase i + 1 (if i < d).Even in an optimal schedule all delayed jobs must be scheduled sequentiallybecause they require more than half of the available processors for execution.Therefore: 2Topt � 2 d+1Xi=2 timin = 2 dXi=2 timin + 2 tmin: (2)As in the proof of Theorem 5.1 we can construct a chain of jobs in thedependency graph with total execution time at least (2d� 1)tmin. The onlydi�erence in the construction is that there is no collection of small jobs duringthe �rst delay phase and therefore a Type 3 job might only run for time tmin inthis delay phase. This yields another lower bound for the optimum schedulelength: Topt � (2d� 1)tmin: (3)From (2) and (3) we conclude:Tdelay � dtmax + 2 dXi=2 timin� dtmax + 2Topt � 2 tmin� (d� 1=2)TR2d� 1 Topt + (TR=2� 2)tmin + 2Topt� �TR2 + 52 � 2TR�Topt:24

If the number of delay phases of a schedule generated by the RRR Adaptivealgorithm is less than (TR + 1)=2 , we can derive a better upper bound:Tdelay � �d+ 2� 2TR�Topt:However, this bound is useful for a posteriori analysis only, since the numberof delay phases can be arbitrarily large. Since the total schedule time thatis spent in phases of type 1 and 2 (cf. proof of Theorem 5.1) is bounded by3Topt , the proof is complete. �Clearly, both algorithms can easily compute the runtime ratio RR(J) for anyscheduled job system J . From this, we can bound the actual performancefor the generated schedules:TRRR � (RR(J)=2 + 4)Topt;TRRR Adaptive � (RR(J)=2 + 5:5)Topt:For practical purposes it is desirable to have tools that allow to control theperformance of a scheduler in addition to worst-case guarantees such as thecompetitive ratio. Let Tbig be the sum of the execution times of all big jobsin J , and let Wtotal denote the total work of all jobs. Then we have thefollowing lower bound for the length of an optimal schedule:Topt � max fWtotal=N; Tmax; Tbigg :Again, our on-line algorithms can compute Wtotal and Tbig during the schedul-ing process. Assuming that the on-line scheduler has knowledge of the pre-decessor/successor relationships (which usually will be the case after all jobshave been scheduled), Tmax can be computed by searching a longest path inthe dependency graph. The quotient of the length of the on-line scheduleand the above lower bound is then an upper bound for the performance ofour on-line schedulers.6 Conclusion and Open ProblemsWe have presented and analyzed several on-line scheduling algorithms forparallel job systems. It has become evident that runtime restrictions improvethe competitive performance achievable by on-line schedulers. Therefore, ifenough a priori knowledge on job running times is available to bound theruntime ratio of a job system our schedulers can guarantee a reasonableutilization of the parallel system. But even without any such knowledge theRRR Adaptive algorithm produces schedules that are almost best possiblefrom a worst-case point of view. All on-line algorithms considered in thispaper are computationally simple, and thus the scheduling overhead involved25

can safely be neglected, provided that the system has suitable means todeliver the necessary load information.It still remains to study the described scheduling problems for a num-ber of other popular interconnection topologies. In the unit execution timemodel, we have preliminary results for 2- and 3-dimensional arrays with com-petitive ratio � 10 but in general it appears that the competitive ratio mightgrow exponentially with the dimension of the array.References[AG94] George S. Almasi and Allan Gottlieb. Highly Parallel Computing.The Benjamin/Cummings Publishing Company, Inc., RedwoodCity, CA, second revised edition, 1994.[BDW86] J. B lazewicz, M. Drabowski, and J. W�eglarz. Scheduling Multi-processor Tasks to Minimize Schedule Length. IEEE Transactionson Computers, C-35(5):389{393, 1986.[BEP+96] J. B la_zewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. W�eglarz.Scheduling Computer and Manufacturing Processes. Springer-Verlag, Berlin, 1996.[CGJ96] E.G. Co�man, Jr., M.R. Garey, and D.S. Johnson. ApproximationAlgorithms for Bin Packing: A Survey. In Dorit S. Hochbaum, ed-itor, Approximation Algorithms for NP-Hard Problems, chapter 2,pages 46{93. PWS Publishing Company, Boston, 1996.[CM96] Soumen Chakrabarti and S. Muthukrishnan. Resource Schedulingfor parallel database and scienti�c applications. In Proceedingsof the 8th Annual ACM Symposium on Parallel Algorithms andArchitectures, SPAA '96 (Padua, Italy, June 24{26, 1996), pages329{335, New York, 1996. ACM SIGACT, ACM SIGARCH, ACMPress.[DL89] Jianzhong Du and Joseph Y.-T. Leung. Complexity of SchedulingParallel Task Systems. SIAM J. Disc. Math., 2:473{487, 1989.[FKST93] Anja Feldmann, Ming-Yang Kao, Ji�r�� Sgall, and Shang-Hua Teng.Optimal Online Scheduling of Parallel Jobs with Dependencies.In Proceedings of the 25th Annual ACM Symposium on Theoryof Computing (San Diego, California, May 16{18, 1993), pages642{651, New York, 1993. ACM SIGACT, ACM Press.26

[FR95] Dror G. Feitelson and Larry Rudolph. Parallel Job Scheduling:Issues and Approaches. In Dror G. Feitelson and Larry Rudolph,editors, Job Scheduling Strategies for Parallel Processing (IPPS'95 Workshop, Santa Barbara, CA), LNCS 949, pages 1{18, Berlin,1995. Springer-Verlag.[FR96] Dror G. Feitelson and Larry Rudolph. Toward Convergence inJob Schedulers for Parallel Supercomputers. In Dror G. Feitelsonand Larry Rudolph, editors, Job Scheduling Strategies for Paral-lel Processing (IPPS' 96 Workshop, Honolulu, HI), LNCS 1162,pages 1{26, Berlin, 1996. Springer.[FST94] Anja Feldmann, Ji�r�� Sgall, and Shang-Hua Teng. Dynamicscheduling on parallel machines. Theoretical Computer Science,Special Issue on Dynamic and On-line Algorithms, 130(1):49{72,1994.[GGJY76] M.R. Garey, R.L. Graham, D.S. Johnson, and A.C.-C. Yao. Re-source Constrained Scheduling as Generalized Bin Packing. J.Comb. Theory Series A, 21:257{298, 1976.[GI97] Minos N. Garofalakis and Yannis E. Ioannidis. Parallel QueryScheduling and Optimization with Time- and Space-Shared Re-sources. In Matthias Jarke, Michael J. Carey, Klaus R. Dittrich,Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A.Jeusfeld, editors, Proceedings of the 23rd International Conferenceon Very Large Data Bases VLDB '97 (Athens, Greece, August 25{29), pages 296{305, San Francisco, CA, 1997. Morgan KaufmannPublishers, Inc.[GJTY83] M.R. Garey, D.S. Johnson, R.E. Tarjan, and M. Yannakakis.Scheduling Opposing Forests. SIAM J. Algebraic Discrete Meth-ods, 4(1):72{93, March 1983.[Gra66] R.L. Graham. Bounds for Certain Multiprocessing Anomalies.The Bell System Technical Journal, pages 1563{1581, 1966.[Gra69] R.L. Graham. Bounds on Multiprocessing Timing Anomalies.SIAM J. Appl. Math., 17(2):416{429, March 1969.[Joh74] David S. Johnson. Fast Algorithms for Bin Packing. J. Com-put. Syst. Sci., 8:272{314, 1974.[Lei92] F. Thomson Leighton. Introduction to Parallel Algorithms andArchitectures: Arrays � Trees � Hypercubes. Morgan KaufmannPublishers, Inc., San Mateo, CA, 1992.27

[Rah96] Erhard Rahm. Dynamic Load Balancing in Parallel DatabaseSystems. In Luc Boug�e, Pierre Fraigniaud, Anne Mignotte, andYves Robert, editors, Proceedings of the Second InternationalEURO-PAR Conference on Parallel Processing, EURO-PAR'96(Lyon, France, August 26{29), Volume 1, LNCS 1123, pages 37{52, Berlin, 1996. Springer-Verlag.[Sal47] H.E. Salzer. The Approximation of Numbers as Sums of Recipro-cals. American Mathematical Monthly, 54:135{142, 1947.[Sga94] Ji�r�� Sgall. On-Line Scheduling on Parallel Machines. PhD thesis,School of Computer Science, Carnegie Mellon University, Pitts-burgh, PA 15213, 1994.[SSA+94] Craig B. Stunkel, Dennis G. Shea, B�ulent Abali, Mark Atkins,Carl A. Bender, Don G. Grice, Peter H. Hochschild, Douglas J.Joseph, Ben J. Nathanson, Richard A. Swetz, Robert F. Stucke,Michael Tsao, and Philip R. Varker. The SP2 CommunicationSubsystem. Research Report RC 19914, IBM Research Division,T.J. Watson Research, 1994.[ST85] Daniel D. Sleator and Robert E. Tarjan. Amortized E�ciencyof List Update and Paging Rules. Communications of the ACM,28(2):202{208, 1985.[SWW95] David B. Shmoys, Joel Wein, and David P. Williamson. Schedul-ing Parallel Machines On-Line. SIAM J. Comput., 24(6):1313{1331, 1995.[WC92] Qingzhou Wang and Kam Hoi Cheng. A Heuristic of SchedulingParallel Tasks and its Analysis. SIAM J. Comput., 21(2):281{294,April 1992.

28

SFB 342: Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenbisher erschienen :Reihe A Liste aller erschienenen Berichte von 1990-1994auf besondere Anforderung342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on SparseGrids342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance ofParallel Computers: Order Statistics and Amdahl's Law342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of theKronecker Product of Identical Servers to a Reduced Product Space342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van deLiefvoort: Auto-Correlation of Lag-k For Customers DepartingFrom Semi-Markov Processes342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:Applications to Multi-dimensional Schr�odinger Problems342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-crosystem Technology342/08/95 A Alexander Pfa�nger: Parallel Communication on Workstation Net-works with Complex Topologies342/09/95 A Ketil St�len: Assumption/Commitment Rules for Data-
ow Net-works - with an Emphasis on Completeness342/10/95 A Ketil St�len, Max Fuchs: A Formal Method for Hardware/SoftwareCo-Design342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System342/12/95 A Javier Esparza, Stefan R�omer, Walter Vogler: An Improvement ofMcMillan's Unfolding Algorithm342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties viaInteger Programming342/14/95 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Point-to-Point Data
ow Networks342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-pute the Concurrency Relation of Free-Choice Signal TransitionGraphs342/16/95 A Bernhard Sch�atz, Katharina Spies: Formale Syntax zur logischenKernsprache der Focus-Entwicklungsmethodik

Reihe A342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wism�uller:Workshop on PVM, MPI, Tools and Applications342/19/95 A Thomas Schnekenburger: Integration of Load Distribution intoParMod-C342/20/95 A Ketil St�len: Re�nement Principles Supporting the Transition fromAsynchronous to Synchronous Communication342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpagesfor Cache Coherency Control342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with BoundedTreewidth into Optimal Hypercubes342/23/95 A Petr Jan�car, Javier Esparza: Deciding Finiteness of Petri Nets upto Bisimulation342/24/95 A M. Jung, U. R�ude: Implicit Extrapolation Methods for VariableCoe�cient Problems342/01/96 A Michael Griebel, Tilman Neunhoe�er, Hans Regler: AlgebraicMultigrid Methods for the Solution of the Navier-Stokes Equationsin Complicated Geometries342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: AdditiveMultilevel-Preconditioners based on Bilinear Interpolation, MatrixDependent Geometric Coarsening and Algebraic-Multigrid Coars-ening for Second Order Elliptic PDEs342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Em-beddings of Complete Binary Trees into Hypercubes342/04/96 A Thomas Huckle: E�cient Computation of Sparse ApproximateInverses342/05/96 A Thomas Ludwig, Roland Wism�uller, Vaidy Sunderam, Arndt Bode:OMIS | On-line Monitoring Interface Speci�cation342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for PetriNet Components342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher,F. Weimer, H.-M. Windisch: Sprachkonzepte zur Konstruktionverteilter Systeme342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian R�oder, Arndt Bode:PFSLib { A File System for Parallel Programming Environments342/11/96 A Manfred Broy, Gheorghe S�tef�anescu: The Algebra of Stream Pro-cessing Functions342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice PetriNets is NP-complete342/13/96 A Radu Grosu, Ketil St�len: A Denotational Model for Mobile Many-to-Many Data-
ow Networks

Reihe A342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, BernhardMitschang, Angelika Reiser, Stephan Zimmermann: On Transform-ing a Sequential SQL-DBMS into a Parallel One: First Results andExperiences of the MIDAS Project342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Netswith a Fragment of the Linear Time � -Calculus342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezi�kation vonmobilen, dynamischen Focus-Netzen342/17/96 A Richard Mayr: Model Checking PA-Processes342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your ModelChecker on Diet: Veri�cation on Local States342/01/97 A Tobias M�uller, Stefan Lamberts, Ursula Maier, Georg Stellner:Evaluierung der Leistungsf"ahigkeit eines ATM-Netzes mit paral-lelen Programmierbibliotheken342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Re-cent Developments for Elliptic Partial Di�erential Equations342/03/97 A Bernhard Mitschang: Technologie f"ur Parallele Datenbanken -Bericht zum Workshop342/04/97 A nicht erschienen342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchis-che Basen zur e�zienten Kopplung substrukturierter Probleme derStrukturmechanik342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Ne-unhoe�er, Stefan Schulte: Fluid Structure Interaction: 3D Numer-ical Simulation and Visualization of a Micropump342/07/97 A Javier Esparza, Stephan Melzer: Model Checking LTL using Con-straint Programming342/08/97 A Niels Reimer: Untersuchung von Strategien f�ur verteiltes Last- undRessourcenmanagement342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-Compiler gic342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Sch�atz, KatharinaSpies: The Steamboiler Speci�cation - A Case Study in Focus342/11/97 A Christine R�ockl: How to Make Substitution Preserve StrongBisimilarity342/12/97 A Christian B. Czech: Architektur und Konzept des Dycos-Kerns342/13/97 A Jan Philipps, Alexander Schmidt: Tra�c Flow by Data Flow342/14/97 A Norbert Fr�ohlich, Rolf Schlagenhaft, Josef Fleischmann: Partition-ing VLSI-Circuits for Parallel Simulation on Transistor Level342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausf�uhrungund zur Visualisierung von INSEL-Programmen342/16/97 A Niels Reimer, J�urgen Rudolph, Katharina Spies: Von FOCUS nachINSEL - Eine Aufzugssteuerung

Reihe A342/17/97 A Radu Grosu, Ketil St�len, Manfred Broy: A Denotational Model forMobile Point-to-Point Data-
ow Networks with Channel Sharing342/18/97 A Christian R�oder, Georg Stellner: Design of Load Management forParallel Applications in Networks of Heterogenous Workstations342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischenTheorembeweisers in einer taktikgesteuerten Beweisumgebung zurL�osung eines Beispiels aus der Hardware-Veri�kation { Fallstudie {342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated The-orem Proving342/22/97 A T. Ludwig, R. Wism�uller, V. Sunderam, A. Bode: OMIS - On-lineMonitoring Interface Speci�cation (Version 2.0)342/23/97 A Stephan Merkel: Veri�cation of Fault Tolerant Algorithms UsingPEP342/24/97 A Manfred Broy, Max Breitling, Bernhard Sch�atz, Katharina Spies:Summary of Case Studies in Focus - Part II342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Framework for ParallelProcessing of Aggregat and Scalar Functions in Object-RelationalDBMS342/26/97 A Marc Fuchs: Similarity-Based Lemma Generation with Lemma-Delaying Tableau Enumeration342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase Frame-Work for the Evaluation and Maintenance of Automated TheoremProver Data (incl. Documentation)342/29/97 A Radu Grosu, Ketil St�len: Compositional Speci�cation of MobileSystems342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schie-mann, T. Schnekenburger (Herausgeber): "`AnwendungsbezogeneLastverteilung"', ALV'98342/02/98 A Ursula Hinkel: Home Shopping - Die Spezi�kation einer Kommu-nikationsanwendung in Focus342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung vonBetriebssystemkonzepten342/04/98 A Stefan Bischof, Ernst W. Mayr: On-Line Scheduling of ParallelJobs with Runtime Restrictions

SFB 342 : Methoden und Werkzeuge f�ur die Nutzung parallelerRechnerarchitekturenReihe B342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Speci�cations342/2/90 B J�org Desel: On Abstraction of Nets342/3/90 B J�org Desel: Reduction and Design of Well-behaved Free-choiceSystems342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-J�urgen Plewan: DasWerkzeug runtime zur Beobachtung verteilter und parallelerProgramme342/1/91 B Barbara Paech1: Concurrency as a Modality342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox-Anwenderbeschreibung342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop�uber Parallelisierung von Datenbanksystemen342/4/91 B Werner Pohlmann: A Limitation of Distributed SimulationMethods342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent VirtuallyShared Memory Scheme: Formal Speci�cation and Analysis342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Speci�cationand Correctness Proof of a Virtually Shared Memory Scheme342/7/91 B W. Reisig: Concurrent Temporal Logic342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-of-SupportChristian B. Suttner: Parallel Computation of Multiple Sets-of-Support342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-ware, Software, Anwendungen342/1/93 B Max Fuchs: Funktionale Spezi�kation einer Geschwindigkeits-regelung342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: EinLiteratur�uberblick342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: ZumEntwurf eines Prototypen f�ur MIDAS

