TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

On-Line Scheduling of Parallel Jobs
with Runtime Restrictions

Stefan Bischof, Ernst W. Mayr

TUM-19810
SFB-Bericht Nr. 342/04/98 A
April 98

TUM-INFO-04-19810-130/1.—FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1998 SFB 342 Methoden und Werkzeuge fiir

Anforderungen an:

Druck:

die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SFB 342

Institut fiir Informatik
Technische Universitdt Miinchen
D-80290 Miinchen, Germany

Fakultat fir Informatik der
Technischen Universitat Miinchen

On-Line Scheduling of Parallel Jobs with

Runtime Restrictions

Stefan Bischof Ernst W. Mayr
Institut fur Informatik
Technische Universitat Minchen
D-80290 Minchen, Germany

{bischof |mayr}@informatik.tu-muenchen.de

http://wwwmayr.informatik.tu-muenchen.de/

April 3, 1998

Abstract

Consider the execution of a parallel application that dynamically
generates parallel jobs with specified resource requirements during its
execution. Generally, there is not sufficient knowledge about the run-
ning times and the number of jobs generated in order to precompute a
schedule for such applications. Rather, the scheduling decisions have
to be made on-line during runtime based on incomplete information.
We present several on-line scheduling algorithms for a variety of in-
terconnection topologies that use some a priori information about the
job running times or guarantee a good competitive ratio that depends
on the runtime ratio of all generated jobs. All algorithms presented
have optimal competitive ratio up to small additive constants, and are
easy to implement.

1 Introduction

The efficient operation of parallel computing systems requires the best possi-
ble use of the resources that a system provides. In order to achieve an effective
utilization of a parallel machine a smart coordination of the resource demands
of all currently operating applications is necessary. Consequently, the task
of a scheduler is a clever assignment of the resources, most prominently the
processors, to the jobs being processed. For the case of sequential jobs, i.e.,

jobs that require exactly one processor for execution, the involved schedul-
ing problems have been studied intensively for decades [BEP796]. But in
many situations the problem arises to find a schedule for a set of parallel
jobs [FR95, FR96, BEP196]. Such a set could, for example, be a parallel
query execution plan generated by the query optimizer of a parallel database
management system [Rah96, GI97].

The model studied in this paper assumes that each parallel job demands
a fixed number of processors or a specified sub-system of a certain size and
topology (depending on the underlying structure of the parallel machine con-
sidered) for its execution. It is not possible to run a parallel job on fewer
processors than requested, and additional processors will not decrease the
running time. This reflects the common practice that the decision on the
number of processors is made before a job is passed to the scheduler based
on other resource requirements like memory, disk-space, or communication
intensity. The processors must be allocated exclusively to a job throughout
its execution, and a job cannot be preempted or restarted later. This is a
reasonable assumption because of the large overhead for these activities in
parallel machines. Furthermore, there may be precedence constraints be-
tween the jobs. A job can only be executed if all of its predecessors have
already completed execution. Most frequently, precedence constraints arise
from data dependencies such that a job needs the complete input produced
by other jobs before it can start computation.

We are concerned with on-line scheduling throughout this paper to cap-
ture the fact that complete a priori information about a job system is rarely
available. However, it has been shown [FKST93, Sga94| that the worst-
case performance of any deterministic or randomized on-line algorithm for
scheduling parallel job systems with precedence constraints and arbitrary
running times of the jobs is rather dismal, even if the precedence constraints
between the jobs are known in advance. Therefore, we study the case that
there is some a priori knowledge about the execution times of the individual
jobs but the dependencies are unknown to the scheduler.

We study three different gradations for this additional knowledge. The
first model of runtime restrictions requires that all job running times are
equal and that this fact is known to the on-line scheduler. We give a level-
oriented on-line algorithm for this problem that repeatedly schedules a set
of available jobs using bin packing and collects all jobs that arrive during
a phase for execution in the next phase. We show that this algorithm is
2.7-competitive if the FIRST FIT heuristic is used. Due to a lower bound of
2.691 for every deterministic on-line scheduler, our algorithm is almost opti-
mal. Our algorithm can be used for parallel systems that support arbitrary
allocation of processors to jobs and 1-dimensional arrays. For hypercube

connected machines, we present a very similar, optimal on-line scheduling
algorithm with competitive ratio 2.

We then explore the entire bandwidth between unit and arbitrary exe-
cution times and capture the variation of the individual job running times by
a characteristic parameter that we call runtime ratio (the quotient of the
longest and shortest running time). Our second model postulates that the
runtime ratio of a job system is reasonably small and that the on-line sched-
uler knows the shortest execution time (but not the runtime ratio itself).
We give a family of job systems with runtime ratio 7z > 2 that bounds the
competitive ratio of any deterministic on-line scheduler by (7% + 1)/2 from
below. We note that the structure of the dependency graph is an out-forest in
all of our lower bound proofs. Our bounds remain valid even if the scheduler
knows the actual runtime ratio in advance. An on-line scheduler designated
RRR (Restricted Runtime Ratio) for parallel systems supporting arbitrary
allocations is described, and we demonstrate a competitive ratio of Tr/2 + 4
for this algorithm for any job system with runtime ratio < Tx. Therefore,
the RRR algorithm is nearly optimal up to a small additive constant. The
assumption that the shortest execution time is known to the on-line scheduler
can be dropped without much loss of competitive performance. We present
a modified algorithm called RRR_ADAPTIVE for this third model, and show
it to be Tr/2 + 5.5 competitive.

The remainder of this paper is organized as follows. In Section 2 we
introduce our scheduling model, some notation and definitions, as well as ba-
sic techniques for analyzing on-line scheduling algorithms. We then discuss
previous and related work on on-line scheduling of parallel jobs in Section 3.
Section 4 presents nearly optimal on-line schedulers for jobs with unit execu-
tion time, whereas in Section 5 we study job systems where the ratio of the
running times of the longest and shortest job is bounded. Again, we describe
and analyze on-line scheduling algorithms that are optimal up to small ad-
ditive constants. We conclude giving some directions for future research in
Section 6.

2 Preliminaries

Let N denote the number of processors of the parallel computer-system at
hand. A (parallel) job system is a non-empty set of jobs J = {Jy, Jo, ... , Ju }
where each job specifies the type and size of the sub-system that is necessary
for its execution together with precedence-constraints among the jobs in J
given as a partial order < on J. If J, < J, then J, cannot be scheduled for
execution before .J, is completed. A task is a job that requires one processor
for execution, and a job system that only contains tasks is a sequential job
system.

A schedule for a job system (J,<) is an assignment of the jobs to
processors and start-times such that:

e cach job is executed on a sub-system of appropriate type and size,
e all precedence-constraints are obeyed,
e cach processor executes at most one job at any time,

e jobs are executed non-preemptively and without restarts.

The interconnection topology of the parallel computer-system may impose
serious restrictions on the job types that can be executed efficiently on a par-
ticular machine. On a hypercube, for example, it is reasonable to execute
jobs only on subcubes of a certain dimension rather than on an arbitrary
subset of the processors. On the other hand, a number of interconnection
networks do not restrict the allocation of processors to parallel jobs. For
example, the CrLos-network of the very popular IBM RS/6000 SP system,
which uses an oblivious buffered wormhole routing strategy, justifies the as-
sumption that the running time of a job only weakly depends on a specific
processor allocation-pattern (see [AG94, p. 512] for a short description of
this system and [SSA*94] for in-depth information on its interconnection
network). Therefore, we treat the various types of interconnection networks
separately.

The complete model assumes that a job J, requests n, processors (1 <
n, < N) for execution and any subset of processors of size n, may be al-
located. The terminology has been chosen in analogy to a complete graph
on N nodes. The r-dimensional hypercube (see Figure 1) consists of N = 27
processors, labeled from 0 to N — 1, and has 72" ! point-to-point communi-
cation links. Two processors are connected iff the binary representations of
their labels (an r-bit string) differ in exactly one bit. As a consequence, each
processor is directly connected to r = log, N other processors (see [Lei92]
for properties of hypercubes). A job J, can only request a d,-dimensional
subcube (0 < d, < r) for its execution.

4

z
7 e

A

Figure 1: 4-dimensional hypercube

Another topology frequently used for parallel computing is the r-
dimensional array with side-lengths (Ny,Ny,... ,N,), N; > 2 for i =
1,2,...,r (also called r-dimensional grid or mesh). The label of a pro-
cessor is an r-dimensional vector x = (1, x9,... ,x,) with 0 < z; < N; for
i=1,2,...,r. Two processors = and y are connected iff ||z — y|| = 1. Note
that hypercubes form the subclass of arrays with side-length 2 in every dimen-
sion. Eligible job types are sub-arrays with side-lengths (N7, Nj, ..., N/),
1 < N/ < N;. The dimension of a job can be less than r if one or more of
the N/ are equal to 1.

It is always possible to transform a job system (J, <) into a directed
acyclic graph D = (J,E) with (J,,y) € E < J, < J,. Removing all
transitive edges from D we obtain the dependency graph induced by (J, <)
(see Figure 3 on page 13 for an example). We call two jobs J, and .J,
dependent if J, < J, or J, < J,, and independent otherwise. We shall
use the terms dependency and precedence-constraint interchangeably in this
paper. The length of a path in the dependency graph induced by (J, <) is
defined as the sum of the running times of the jobs along this path. A path
is called critical if its length is maximum among all paths in the dependency
graph induced by (J,<). A job is available if all predecessors of this job
have completed execution. An on-line scheduling algorithm is only aware
of available jobs and has no knowledge about their successors. We assume
that the on-line scheduler receives knowledge about a job as soon as the job
becomes available. This event, however, may depend on earlier scheduling
decisions.

Table 1: Frequently used notations
Topt | Length of an optimal off-line schedule for (7, <)
Tare | Length of a schedule for (7, <) generated by Algorithm ALc
Thax | Maximal length of any path in the dependency graph induced by
(J,=)
tmin | Minimal running time of any job in J
tmax | Maximal running time of any job in J
|S| | Length of a schedule S
T.o | Total time of a schedule for (J, <) when the efficiency is less then
a,0<a<l

The work of a job is defined as the number of requested processors,
multiplied by its running time. A schedule preserves the work of a job if the
processor-time product for this job is equal to its work. The efficiency of a
schedule at any time ¢ is the number of busy processors at time ¢ divided
by N. In general, the running time of a job is also unknown to the on-line
scheduler and can only be determined by executing a job and measuring the
time until its completion. In Section 4, though, we study the case of unit
execution times and therefore restrict the on-line model there to the case of
unknown precedence-constraints.

Throughout the paper we use the notations in Table 1 (cf. [Sga94,
FKST93]) for a given job system (7, <). To simplify our presentation, we do
not attach the job system or schedule as arguments to the notations in Ta-
ble 1. The relationships should always be clear from the context. Further
notation is introduced when needed.

Our goal is to generate schedules with minimum makespan, i.e. to min-
imize the completion time of the job finishing last. We evaluate the perfor-
mance of our on-line scheduling algorithms by means of competitive analy-
sis [ST85]. A deterministic on-line algorithm ALG is called c-competitive if
Tare < Iy for all job systems and arbitrary N. The infimum of the val-
ues ¢ € [1, 00| for which this inequality holds is called the competitive ratio of
ALG. The competitive ratio clearly is a worst-case measure. It is intended to
compare the performance of different on-line algorithms that solve the same
problem, since it is in general impossible to compute an optimal solution
without complete knowledge of the problem instance. An optimal on-line
algorithm is one with a best possible competitive ratio.

The following two lemmata provide useful tools for the competitive anal-
ysis of our scheduling algorithms.

LEMMA 2.1 Let S be a schedule for a job system (J, <) such that the work
of each job is preserved. Let 0 < a; < ap <1 and # > 0. Suppose that the

efficiency of S is at least oy at all times and T, < 87,,:. Then

9] < (ﬁ L= O‘lﬂ) Ty

Q2
See [Sga94] for a proof of this lemma.

LEMMA 2.2 Consider a schedule for a job system (J,<). Then there exists
a path of jobs in the dependency graph induced by (7, <) such that whenever
there is no job available to be scheduled, some job of that path is running.

This lemma is due to GRAHAM [Gra66, Gra69]. The proof given there still
holds for parallel jobs since it uses only the structure of the dependency
graph.

3 Previous and Related Work

Extensive work on non-preemptive on-line scheduling of parallel jobs with or
without precedence-constraints was done by FELDMANN, KAO, SGALL and
TENG [FKST93, Sga94, FST94]. However, these results for general parallel
job systems are bad news for users of parallel computers since they show
that no deterministic on-line scheduler for N processors can have compet-
itive ratio better than N. That is, the competitive ratio is asymptotically
unbounded, and even randomization cannot improve this unsatisfactory sit-
uation substantially.

One possibility to improve the performance is to restrict the maximum
job size to AN processors, 0 < A < 1. Given this restriction it has been shown
that the GREEDY algorithm is optimal with competitive ratio 1 + ﬁ Set-
ting A = 1/2, for example, yields a 3-competitive algorithm. This result
holds for any type of parallel machine. Another alternative is the use of vir-
tualization. This means that a parallel job J, which requests n, processors is
executed on a smaller number of processors n), by the use of simulation tech-
niques with a predetermined increase in running time. Under the assumption
of proportional slowdown (the running time of a job is enlarged by the factor
ne/n’) it can be shown that there is an optimal on-line scheduler for the com-
plete model with competitive ratio 2+®, where ® = (v/5—1)/2 is the golden
ratio. This improves a previous off-line result of WANG and CHENG [WC92]
with asymptotic performance guarantee 3. For the hypercube, an algorithm
with competitive ratio O(log N/loglog N) has been given, and similar re-
sults hold for arrays. The two approaches just described can be combined
to yield an optimal on-line scheduler with competitive ratio 2 + 7“9‘;;“1’1 for
the complete model.

Both approaches, though, have a severe drawback that arises due to the
memory requirements of parallel jobs. Restricting the maximum size of a
job to AN processors can thus severely restrict the problem size that can
be solved on a particular machine. This is often unacceptable in practice
because solving large problems is the main reason for the use of parallel
computers besides solving problems fast. Virtualization may be impossible
or prohibitively expensive if such memory limitations exist.

The job systems used in the lower bound proofs in [FKST93, Sga94] for
the general case reveal an unbounded ratio of the running times of the longest
and shortest job. Therefore, we think it necessary to study the influence of
the individual running times on the competitive ratio of on-line schedulers
for our scheduling problem. To gain insight into this relationship it is only
natural to start with unit execution times as is done in Section 4. It turns
out that the problem becomes manageable with small constant competitive
ratio even if nothing is known about the precedence constraints.

To fill the gap between these two extremes — totally unrelated running
times versus unit execution times — we identify the runtime ratio (the ratio
of the running time of the longest and shortest job) as the distinctive pa-
rameter of a job system for the achievable competitive ratio. Our results for
the proposed on-line schedulers in Section 5 demonstrate a smooth, linear
transition of the competitive ratio from the case of unit execution times to
unrelated execution times that is governed by the runtime ratio. The impor-
tance of this parameter has also been demonstrated recently in [CM96] for
off-line scheduling of jobs with multiple resource demands, both malleable
(allow for virtualization with proportional slowdown) and non-malleable.

Although we are interested in on-line scheduling, it might be appropri-
ate to briefly mention some complexity results for the corresponding off-line
problems. Not surprisingly, almost any variant of these scheduling prob-
lems is N'P-hard. BLAZEWICZ, DRABOWSKI, and WEGLARZ [BDW86] have
proved that it is strongly AN/P-hard to compute optimal schedules for parallel
job systems with unit execution times and no dependencies if N is part of
the problem instance. For any fixed N they showed that the problem can
be solved in polynomial time. Furthermore, it is known [GJTY83] that the
problem is N"P-hard for sequential job systems with precedence constraints
that are the disjoint union of an in-forest and and an out-forest. The schedul-
ing problem for parallel job systems with arbitrary job running times and
without dependencies is strongly N'P-hard for every fixed N > 5 [DL89]. If
precedence constraints consisting of a set of chains are involved, the problem

of computing an optimal 2-processor schedule for a parallel job system is also
strongly NP-hard [DL89).

4 Jobs with Unit Execution Time

In this section, we restrict our model to the case where all jobs have the same
execution time. When the dependency graph is known to the scheduler this
problem has been intensively studied by GAREY, GRAHAM, JOHNSON and
YAao [GGJY76]. We show that similar results hold in an on-line environment,
where a job is available only if all its predecessors have completed execution.

4.1 Complete Model

The LEVEL algorithm collects all jobs that are available from the beginning.
Since available jobs are independent we can easily transform the problem of
scheduling these jobs to the BIN PACKING problem: the size of a job divided
by N is just the size of an item to be packed, and the time-steps of the sched-
ule correspond to the bins (see [CGJ96| for a survey on BIN PACKING). Let
PAcCK be an arbitrary BIN PACKING heuristic. We parameterize the LEVEL
algorithm with PACK to express the fact that a schedule for a set of indepen-
dent jobs is generated according to PACK. Thereafter, the available jobs are
executed as given by this schedule. Any jobs that become available during
this execution phase are collected by the algorithm. After the termination of
all jobs of the first level a new schedule for all available jobs is computed and
executed. This process repeats until there are no more jobs to be scheduled.

Algorithm LEVEL(PACK) :
while not all jobs are finished
do
A:={J e J|J is available};
schedule all jobs in A according to PACK;
wait until all scheduled jobs are finished,

First, we use the Next-Fit (NF) bin-packing heuristic for scheduling on
each level. NF packs the items in given order into a so-called active bin. If
an item does not fit into the active bin, the active bin is closed and never
used again. A previously empty bin is opened and becomes the next active

bin.

THEOREM 4.1 LEVEL(NF) is 3-competitive.

9

Proof: The number of iterations of the while-loop is exactly the length of a
critical path in the dependency graph. There are two possibilities for each
level:

1. The partial schedule for this level has length 1. Let 7} denote the
number of levels of this type.

2. The partial schedule for this level has length > 2. By the packing rule
of NF it is clear that the average efficiency of 2 consecutive time-steps
in such a partial schedule is > 1/2. From this we conclude that the
average efficiency of all time-steps but maybe the last one is > 1/2.
Let Ty denote the number of final time-steps with efficiency < 1/2 in
partial schedules for levels of this type.

Since Ty + Ty < Thax < Topy we can apply Lemma 2.1 with a; = 1/N,
ay =1/2, 3 =1, yielding:

2
TLEVEL(NF) < <3 - N) Topt- u

Since NF can be implemented to run in linear time (in the number of items to
be packed) the scheduling overhead is very low when NF is used to compute
partial schedules. Now we use the First-Fit (FF) bin-packing heuristic in-
stead of NF to achieve a better competitive ratio with only a modest increase
of the scheduling overhead. FF in contrast to NF considers all partially filled
bins as possible destinations for the item to be packed. An item is placed
into the first (lowest indexed) bin into which it will fit. If no such bin exists,
a previously empty bin is opened and the item is placed into this bin. It has
been shown [Joh74] that FF has time-complexity ©(nlogn) for a list of n
items.

THEOREM 4.2 LEVEL(FF) is 2.7-competitive.

The proof of this theorem uses the weighting function from [GGJY76]. Let
W :[0,1] — [0,8/5] be defined as follows:

6 1
s for 0<a<yg,
9 1 1 1
W(a): EOZ—E for E<O[§§,
ga—l—% for %<a§%,
6 4 1
za+ g5 for 5 <a<l

Figure 2 depicts the graph of W.
We need the following results from [GGJYT76]:

10

W(a)
8
5
1
|
|
|
7
10
1
2
1
5
a
1 1 1 1
6 3 2

Figure 2: Weighting function for the analysis of BIN PACKING

LEMMA 4.3 Let B denote a set of items with total size < 1. Then
17
ZW(size(b)) < —

beB - 10
If all sizes are < 1/2, then

S W (size(t)) < ;

beB
THEOREM 4.4 If L is a list of items with sizes < 1, then
FF(L) <) W(size(r)) + 1.
€L

Together with the above lemma this theorem provides the best known upper
bound for the number of bins used by first-fit. If L* is the number of bins
used in an optimal packing of L, then first-fit uses at most [(17/10)L*] bins.
Now we are ready to prove Theorem 4.2:

Proof: Let J be a job system with unit execution time and arbitrary
precedence-constraints. We define

W(T) =Y Wsize(7)).

JET

11

Thus W (J) is the total weight of all job sizes. Let [be the number of levels
of the job system. For 1 < ¢ <[let U; be the set of jobs of each level. By
Theorem 4.4 we can upper bound the length of the partial schedule for each
level i, 1 < i <, generated by LEVEL(FF):

TLEVEL(FF)(Ui) < W(UZ) + 1.

We can think of an optimal packing of J with the dependencies removed
as a partition of J into J* sets each of which has total size < 1. Applying
Lemma 4.3 yields W (J) < 1£7*. Together with the fact that the length of
the optimal schedule for J without dependencies cannot be longer than the
length of the optimal schedule for 7 we conclude:

! !
Tievenr) = Y Tievewe) (Ui) < Y (W(U) +1) = W(T) +1 < 1.7 Topy + 1.
i=1 i=1
Since | = Tax < Tops, the result follows. |
The competitive ratio 2.7 of LEVEL(FF) is nearly optimal. To show
this, we give an asymptotic lower bound of 2.691 for the competitive ratio
of each deterministic on-line scheduling algorithm. For the sake of clarity,
we first prove a slightly weaker lower bound of 2.69 Ti,; — 4 for the length
of a schedule generated by a deterministic on-line scheduler. Using Salzer
numbers we refine this construction to derive the asymptotic lower bound.

Fix N e N, N > 71806, and let

N N
A=|— 1 B .=|— 1

BIEE 51
C::LgJ+1, D:=N-A-B-C-1.

The job system (see Figure 3) consists of [> 4 levels with one chain of [— 4
tasks and [jobs of size A, [— 1 jobs of size B, [— 2 jobs of size C, [— 3 jobs
of size D.

Additional dependencies are assigned dynamically by an adversary de-
pending on which parallel job of each level is scheduled last by the on-line
algorithm. This is possible because the on-line scheduler cannot distinguish
between the parallel jobs on the same level. The optimal schedule has length
[and is shown in Figure 4. Here, the parallel job with successors is scheduled
first on each level. Contrary to the optimal solution, the on-line scheduler is
forced to schedule and execute all jobs on one level to make the jobs on the
next level available. The schedule generated by LEVEL(FF) is thus the best
possible on-line schedule (see Figure 5) and has length

-1 [—2 l—3
— —4) >2.691 — 4
H[QLL[GLL[@LLU) >2.691—4,

12

if21(1—1),61(l—2),and 421 (I — 3). It is easy to see that any [€ N with
42 | [fulfills the above conditions.

Jobs scheduled last by

2T .
///‘/’ \ the on-line scheduler
R

|

[\
P [—1 Jobs
|1\ @ 1
P
))

Level

Figure 3: Job system used in lower bound proof

The following sequence (Z;),.y Was investigated by SALZER [Sal47]:

tl = 2,
ti+1 :tz(tl—1)+1, for i Z 1.

13

The first five numbers of this sequence are 2,3, 7,43, 1807. Closely related is
the following series:

o0

1
hee =D 5

i=1 *

> 1.69103. (1)

There are two basic relations for the Salzer numbers that can be derived
inductively from their definition:

k
1 1
D it
it g —1
k
th - tk+1 — 1.
=1

Let A; = |[N/t;] +1,1 < i <k, be the sizes of the parallel jobs on the first
k levels. Setting Agy,y = N — Zle A; — 1, we can conclude that

N
Apir < -1,
N
N
Appr > ——— — (k+1).
ther — 1

It is easy to see that t5,1 — 1 jobs of size A,y can be scheduled in one time-
step on N — 1 processors. To ensure that no more than t;,; — 1 jobs of size
Ag41 can be co-scheduled on N processors we choose N > (k+ 1) (tg12 — 1).
The job system again consists of [> &k + 1 levels with one chain of | — (k +1)
tasks and [— (1 —1) jobs of size 4;, 1 <i < k+1. Dependencies are assigned
dynamically as above. The length of the optimal schedule is [, whereas every
schedule generated by a deterministic on-line scheduler has length at least

z[lj}f‘lﬂ Fl= (k4 1)

From this and (1) we see that the competitive ratio can be brought arbitrarily
close to 1 + hy for k — oo, | = w(k).

The competitive ratio of LEVEL(F'F)) can be improved if the maximum
size of a job is restricted to | N/2].

THEOREM 4.5 LEVEL(FF) is 2.5-competitive, if no job requests more than
half of the total number of processors.

14

D

C

B
Fé
<
=
A

A

1 . Time
[21
Figure 4: Optimal schedule
N | |
C
2
2 B D
=
S0] e
A
B
oooooo C H
T Time
[21 2.691

Figure 5: On-line schedule generated by LEVEL(FF)

15

Proof: Analogous to the proof of Theorem 4.2 using the second inequality
of Lemma 4.3. []
Similarly to the unrestricted case, an asymptotic lower bound > 2.4 for the
competitive ratio of any deterministic on-line scheduler for this problem can
be derived. Further restrictions of the maximum job size might yield some-
what better competitive ratios for the LEVEL algorithm, but this situation is
already handled well by the GENERIC algorithm in [FKST93, Sga94] which
achieves competitive ratio 1 + 1/(1 —), if no job requests more than AN,
0 < A < 1, processors. For example, A = 1/2 yields competitive ratio 3 for
the GENERIC algorithm that is valid for job systems with arbitrary execu-
tion times.

We also remark that the results of this subsection remain valid if we as-
sume a l-dimensional array of length N as interconnection topology instead
of using the complete model, since the BIN PACKING algorithms assign con-
secutive processors to the jobs and the assignments in different time-steps
are independent from each other.

4.2 Hypercube

In this subsection we study the problem of on-line scheduling parallel job
systems with arbitrary precedence-constraints and unit execution times for
hypercube connected parallel computers.

It is not difficult to schedule a set of independent parallel jobs each of
which requests a subcube of a certain dimension. First, we sort the jobs by
size in non-increasing order. To avoid fragmentation, we use only normal
subcubes for job execution:

DEFINITION 4.6 A k-dimensional subcube is called normal, if the labels of
all its processors differ only in the last k positions.

For each time-step of our schedule we allocate jobs from the head of the
sorted list to normal subcubes while there are unscheduled jobs left and the
hypercube is not completely filled. If the time step is full we have to add a
new time-step to our schedule (if there are any unscheduled jobs left).

It is easy to see that the efficiency of this schedule for independent jobs
is 1 in all time-steps except possibly the last. We refer to this strategy as
PAack_HC. The algorithm for job systems with arbitrary dependencies is just
the LEVEL algorithm using PACK_HC instead of a BIN PACKING heuristic.

THEOREM 4.7 LEVEL_HC is an optimal deterministic on-line scheduler with
competitive ratio 2.

16

Proof: The number of iterations of the while-loop is exactly the length of a
critical path in the dependency graph. Thus T¢; < T4, < Topt. Since the
efficiency of the schedule is at least 1/N all the time, we have for fixed N by

Lemma 2.1:
1-1/N 1
T pvenne < (1 + f) Topt = (2 - N) Topt-

It remains to show that no deterministic on-line scheduler can achieve a
better competitive ratio. To this behalf, we use a job system similar to the
preceding subsection. It uses N — 1 levels with N + 1 tasks on each level.
Again, the dependencies are assigned dynamically by an adversary according
to the decisions of the deterministic on-line scheduler. The job from level z,
1 <1 < N — 2, scheduled last by the on-line scheduler is designated to be
predecessor of all jobs on level i + 1. Therefore any on-line scheduler ALG
needs at least 2 time-steps to schedule all jobs of one level. In an optimal
schedule, the job with dependencies is scheduled first together with N — 1
other jobs from the same level. The N — 1 remaining jobs are scheduled in
time-step N. This gives the desired lower bound for the competitive ratio:
Tarc S 2(N —1) 1

=2 —. u
T = N N

Algorithm LEVEL_HC :
while not all jobs are finished
do
A:={J e J|J is available};
schedule all jobs in A according to PACK_HC;
wait until all scheduled jobs are finished,

The job system in the proof of Theorem 4.7 contains no parallel jobs and the
hypercube structure isn’t used at all. Therefore the derived lower bound is
valid for any interconnection topology and sequential job systems as well as
parallel job systems. Note that the structure of the dependency graph is an
out-forest.

COROLLARY 4.8 No deterministic on-line algorithm for scheduling job sys-
tems with unit execution times and dependencies can have a competitive
ratio better than 2.

Interestingly, this lower bound is identical to the lower bound proved by
SHMOYS, WEIN, and WILLIAMSON [SWW95] for sequential job systems with
arbitrary running times but without precedence-constraints.

17

5 Parallel Job Systems with Restricted Run-
time Ratio

We have shown in the preceding section that on-line scheduling of parallel
jobs with unit execution time and precedence-constraints is possible with
small constant competitive ratio. On the other hand, if execution times
are arbitrary, there exists no on-line scheduler with acceptable worst-case
performance. It is only natural to explore the case that job runtimes are
restricted by some criterion other than unit execution time in order to achieve
a respectable competitive ratio.

For a set of jobs J we therefore define the runtime ratio RR = RR(J) :=
tmax/tmin- In this section we study the problem of on-line scheduling parallel
job systems with dependencies where the runtime ratio is restricted by a
parameter Tz > 1 which is not known to the on-line scheduler. This problem
often arises in practice when upper and lower bounds for the running time
of a job are known in advance but the actual running time is unknown.
This situation also makes clear that the parameter Tk cannot be used as
additional information for scheduling decisions by the on-line scheduler and
is therefore not part of the problem instance. Indeed, our results show that
this knowledge is not necessary for the on-line scheduler to achieve a near
optimal competitive ratio that depends only on T%.

In this paper, we study this problem for the complete model. First,
we give a lower bound of max {(Tg + 1) /2, hoo + 1} for the asymptotic com-
petitive ratio of any deterministic on-line scheduler for this problem. For
simplicity we normalize the time of the shortest job to 1. The job system
used in this lower bound argument is very simple (see Figure 6) and consists
of N layers with two tasks and one parallel job of size N on each layer. The
parallel job depends on one of the tasks on the same layer and is predecessor
of both tasks of the following layer. The task scheduled first by the on-line
scheduler is assigned running time Tk and the remaining task runs for 1 unit
of time and is predecessor of the parallel job. Clearly, the makespan of any
schedule generated by an on-line scheduler is at least N(Tp + 1). If Ty is
sufficiently large (e.g., Tr > 2), the optimal solution first schedules the criti-
cal path which has length 2N followed by the tasks of length T in parallel.
The competitive ratio of any deterministic on-line scheduler is thus lower
bounded by

N(Tgp +1) Tr+1

For small Ty, this bound is quite weak. But in this case, we can use the
job system from the lower bound construction in subsection 4.1. Since the

18

Layer 1 Layer 2 Layer N

Jobs are given by:
(#proc, Time)

[]

Figure 6: Difficult job system for RRR-scheduling

runtime ratio of this job system is 1 this yields an asymptotic lower bound
of hs + 1 for the competitve ratio.

We now describe an algorithm designated RRR that achieves competi-
tive ratio Tr/2+4. A key feature of this algorithm is the distinction between
big jobs that request more than half of the total number of processors and
small jobs with size < | N/2]. Let « := «(t) denote the efficiency at time ¢.
The RRR algorithm tries to keep the efficiency at least 1/2 whenever possi-
ble. There are two reasons that hinder the RRR algorithm from achieving
this goal. First, there might be no job available and second, there might be
not enough processors available to schedule a big job. The second case is
much more severe than the first one which can be handled by the GRAHAM
argument (cf. Lemma 2.2) without much loss of performance. Therefore, the
RRR algorithm must prevent big jobs from being delayed too long in order
to bound the fraction of the total schedule length with low efficiency. This is
done by occasionally stopping to schedule small jobs, if all big jobs request
more processors than currently available and the efficiency is below 1/2.

We present two versions of the RRR algorithm. The first one assumes
that ¢, is a known quantity. Again, we normalize the running time of the
shortest job to 1 and a unit of time refers to this normalized time quantum.
In the second version we remove this assumption and employ an adaptive
waiting-strategy to maintain a comparable competitive ratio. The RRR algo-
rithm maintains two sets, L; and L, containing the available big respectively
small jobs. We assume that any job that becomes available is immediately

19

inserted into the appropriate set, and we will not state this activity explicitly
in the pseudo-code description of our algorithms.

Algorithm RRR
while L; not empty
do
schedule a big job exclusively;
od
while not all jobs are finished
do
while L, not empty
do
schedule small jobs greedily;
od
if L1 not empty
then
if a big job can be scheduled
then

wait for a scheduled job to finish;
else co start of a delay phase oc
collect small jobs that become available
during the next 2 units of time;
schedule those jobs greedily and
then wait for all scheduled jobs to finish;
while L; not empty
do
schedule a big job exclusively;
od

[=

fi
else
walit for next available job;

[=

THEOREM 5.1 The RRR algorithm is (Tx/2 + 4)-competitive for any job
system (J, <) and RR(J) < Tk.

Proof: We partition the schedule generated by the RRR algorithm into 3
different kinds of phases:

20

1. Efficiency is at least 1/2.
2. Efficiency is below 1/2 and there is no job available.

3. Efficiency is below 1/2 and the algorithm waits for the termination of all
jobs.
We refer to the third type as a delay phase and denote the total time of each
kind by T>1/2, Thojob, and Tyelay respectively. The total time of the RRR
schedule that is spent in phases of type 1 and 2 can easily be bounded by
3Tt , because we have T5,/9 < 2T by a straightforward area-argument
and Tojob < Tnax < Topy by Lemma 2.2.

It remains to show that They < (Tr/2 + 1)Top. We define a delayed
job as a big job that was available at the beginning of a delay phase. Let t;
denote the start time of delay phase 7. First, we bound the length of a delay
phase by Tk + 2. If no small jobs become available during the first two units
of time after the beginning of a delay phase, no more jobs are scheduled until
all currently running jobs terminate. Since the running time of any job is no
more than Tk, such a delay phase lasts at most time Tk. On the other hand,
if small jobs become available during the first two units of time, then these
are collected and scheduled greedily at time tf = ; + 2 (resp. t{ < t; + 2 if
all jobs running at time ¢; terminate before two units of time have elapsed)
in addition to those jobs still running at time ¢7. If the total size of these
small jobs is no more than the number of idle processors at time ¢}, they can
be scheduled immediately. Clearly, the length of a delay phase is bounded
by Tr + 2 in this case. Should the total size of the small jobs exceed the
number of idle processors at time ¢ we can schedule enough small jobs to
raise the efficiency above 1/2 as long as small jobs that were collected during
the interval [t;, t7] are available. The time-span while the efficiency is at least
1/2 is, of course, a phase of type 1 and not part of the delay phase. Clearly,
the length of the second part of a delay phase is bounded by Tz and therefore
the length of a delay phase is always bounded by Ty + 2.

Let d denote the number of delay phases in a schedule generated by the
RRR algorithm. We distinguish two cases:

1. d = 1: We have to show that the optimal solution needs at least time
2. This follows immediately from the fact that each delayed job must
have a predecessor in the job system because otherwise it would have
been scheduled earlier.

2. d > 1: This case will be proven by constructing a chain of jobs in the
dependency graph with total execution time at least 2d. From that we
have Tipy > 2d and together with Tyeny < d(Tk + 2) the claim follows.

The construction of this chain proceeds as follows: Starting with an arbi-
trary delayed job that is scheduled after delay phase d we observe that there

21

must be a small job that is ancestor of this delayed job and is scheduled
immediately after the delayed jobs of delay phase d—1 (i.e. without having a
small job as direct predecessor that is itself scheduled after the delayed jobs
of delay phase d — 1) because otherwise this delayed job would have been
scheduled earlier. We add such a small job at the front of the chain.

To augment the chain, we state the possibilities for the direct predecessor
of a small job that is scheduled by the RRR algorithm immediately after the
delayed jobs of delay phase i:

Type 1. Delayed job of delay phase i or big job that is successor of a delayed
job of delay phase 1,

Type 2: Small job collected during delay phase i,

Type 3: Small job running from the beginning of delay phase .

This is due to the fact that the RRR algorithm schedules all small jobs that
are available by time t7 before the delayed jobs of delay phase <.

We continue the construction inductively according to these three pos-
sibilities. If there is a direct predecessor of Type 1 of the small job that is
currently head of the list, we can repeat the initial construction step of the
chain and add a delayed job and its small ancestor at the front of the chain.
When there is no direct predecessor of Type 1 but a direct predecessor of
Type 2, we add 2 more jobs at the front of the chain: the Type 2 job and a
direct predecessor of this job that was running at the beginning of the delay
phase during which this Type 2 job was collected. Finally, if there is only a
direct predecessor of Type 3, we add this job at the front of the chain. The
inductive construction stops as soon as the head of the chain is a small job
that is scheduled before the delayed jobs of the first delay phase.

To complete the proof, we show that the total execution time of the
jobs along this chain is at least 2d. The construction of the chain starts with
2 jobs, a delayed job and its small ancestor. Since the minimum running
time of any job is 1, these 2 jobs need at least 2 units of time for execution
in any schedule. If the construction proceeds by adding a Type 1 job, the
same argument applies. Continuing with a Type 2 job means that again 2
more jobs with were added to the chain. If a Type 3 job is encountered, we
know that this job must have execution time at least 2 because it is direct
predecessor of a small job that is scheduled immediately after the delayed
jobs of the delay phase the Type 3 job belongs to. Thus, for each delay phase
in the schedule generated by the RRR algorithm, the above construction
adds jobs with total execution time at least 2 to the chain. [|

22

Algorithm RRR_ADAPTIVE

1:=0;

while

od
while

co i counts the number of delay phases oc
L, not empty
do
schedule a big job exclusively;

not all jobs are finished
do
while L, not empty
do
schedule small jobs greedily;
od
if L, not empty
then
if a big job can be scheduled
then
do it;
else
if a > %
then
wait for a scheduled job to finish;
else co start of a delay phase oc
ifi>0
then
=14 1;
ti i, := current minimum execution time;
collect small jobs that become available
for time <2t :
schedule those jobs greedily and
then wait for all scheduled jobs to finish;
else
=1+ 1;
wait for all scheduled jobs to finish;
fi
while L; not empty
do
schedule a big job exclusively;
od
fi
fi
else
wait for next available job;
fi

The assumption that ¢,;, is known to the RRR algorithm can be dropped
by employing an adaptive waiting strategy without much loss in competitive

23

performance. We describe this adaptive version separately in order to keep
our presentation modular. The modifications of the RRR algorithm are as
follows: Since t,;, is now unknown the RRR_ADAPTIVE algorithm doesn’t
collect small jobs during the first delay phase. In all following delay phases
(if any), the algorithm calculates # . . the minimum execution time of any
finished job up to the start of delay phase 7. The duration during which small
jobs are collected is now limited by 2¢ . (and, of course, by tmax)-
THEOREM 5.2 The RRR_ADAPTIVE algorithm is (T/2 + 5.5)-competitive
for any job system (J, <) and RR(J) < Tk.

Proof: With the notation of the proof of Theorem 5.1 we conclude analo-
gously that the above theorem holds for d = 1. If d > 1, we have

d
Tdelay S dtmax +2 Z tfnin'
=2

d 4. <9 Topt — 2 tmin- To see this, we observe that

First, we show that 2 ., ¢!

after delay phase ¢, 1 <1 < d, at least one delayed job has to be scheduled.
Let t“t1 := t,;,. The running time of such a delayed job is at least 'l
since this job is executed before the start of delay phase i + 1 (if i < d).
Even in an optimal schedule all delayed jobs must be scheduled sequentially
because they require more than half of the available processors for execution.

Therefore:

d+1 d
2Tope > 2Dty =2 thi + 2tmin. (2)
=2 =2

As in the proof of Theorem 5.1 we can construct a chain of jobs in the
dependency graph with total execution time at least (2d — 1)tyin. The only
difference in the construction is that there is no collection of small jobs during
the first delay phase and therefore a Type 3 job might only run for time ¢,,;, in
this delay phase. This yields another lower bound for the optimum schedule
length:

Topt > (2d — 1)ty (3)

From (2) and (3) we conclude:
d
Tdelay S dtma,x +2 Z tinin
=2
S dtmax +2 Topt —2 tmin

d—1/2)T
%Topt + (TR/2 — 2)tmin + 2 Topt

T 5 2
<L+)T
—<2+2 TR> Pt

24

<

If the number of delay phases of a schedule generated by the RRR_ADAPTIVE
algorithm is less than (T + 1)/2, we can derive a better upper bound:

2
Tdelay S <d+ 2— T_> Topt-
R

However, this bound is useful for a posteriori analysis only, since the number
of delay phases can be arbitrarily large. Since the total schedule time that
is spent in phases of type 1 and 2 (cf. proof of Theorem 5.1) is bounded by
3 Topt , the proof is complete. [|
Clearly, both algorithms can easily compute the runtime ratio RR(J) for any
scheduled job system J. From this, we can bound the actual performance
for the generated schedules:

Trrr < (RR(J)/2 + 4) Topt,
TRRR_ADAPTIVE < (RR(j)/Q + 55) TOPt'

For practical purposes it is desirable to have tools that allow to control the
performance of a scheduler in addition to worst-case guarantees such as the
competitive ratio. Let Ti;, be the sum of the execution times of all big jobs
in J, and let Wia denote the total work of all jobs. Then we have the
following lower bound for the length of an optimal schedule:

Topt Z max {Wtotal/Na Tma,xa Tbig} .

Again, our on-line algorithms can compute Woa and T, during the schedul-
ing process. Assuming that the on-line scheduler has knowledge of the pre-
decessor /successor relationships (which usually will be the case after all jobs
have been scheduled), Tj.x can be computed by searching a longest path in
the dependency graph. The quotient of the length of the on-line schedule
and the above lower bound is then an upper bound for the performance of
our on-line schedulers.

6 Conclusion and Open Problems

We have presented and analyzed several on-line scheduling algorithms for
parallel job systems. It has become evident that runtime restrictions improve
the competitive performance achievable by on-line schedulers. Therefore, if
enough a priori knowledge on job running times is available to bound the
runtime ratio of a job system our schedulers can guarantee a reasonable
utilization of the parallel system. But even without any such knowledge the
RRR_ADAPTIVE algorithm produces schedules that are almost best possible
from a worst-case point of view. All on-line algorithms considered in this
paper are computationally simple, and thus the scheduling overhead involved

25

can safely be neglected, provided that the system has suitable means to
deliver the necessary load information.

It still remains to study the described scheduling problems for a num-
ber of other popular interconnection topologies. In the unit execution time
model, we have preliminary results for 2- and 3-dimensional arrays with com-
petitive ratio < 10 but in general it appears that the competitive ratio might
grow exponentially with the dimension of the array.

References

[AG94]

[BDW86]

[BEPT96]

[CGJ96]

[CMO96]

[DL8Y]

[FKST93]

George S. Almasi and Allan Gottlieb. Highly Parallel Computing.
The Benjamin/Cummings Publishing Company, Inc., Redwood
City, CA, second revised edition, 1994.

J. Blazewicz, M. Drabowski, and J. Weglarz. Scheduling Multi-
processor Tasks to Minimize Schedule Length. IEEE Transactions
on Computers, C-35(5):389-393, 1986.

J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz.
Scheduling Computer and Manufacturing Processes. Springer-
Verlag, Berlin, 1996.

E.G. Coffman, Jr., M.R. Garey, and D.S. Johnson. Approximation
Algorithms for Bin Packing: A Survey. In Dorit S. Hochbaum, ed-
itor, Approzimation Algorithms for NP-Hard Problems, chapter 2,
pages 46-93. PWS Publishing Company, Boston, 1996.

Soumen Chakrabarti and S. Muthukrishnan. Resource Scheduling
for parallel database and scientific applications. In Proceedings
of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA 96 (Padua, Italy, June 24-26, 1996), pages
329-335, New York, 1996. ACM SIGACT, ACM SIGARCH, ACM
Press.

Jianzhong Du and Joseph Y.-T. Leung. Complexity of Scheduling
Parallel Task Systems. SIAM J. Disc. Math., 2:473-487, 1989.

Anja Feldmann, Ming-Yang Kao, Jiti Sgall, and Shang-Hua Teng.
Optimal Online Scheduling of Parallel Jobs with Dependencies.
In Proceedings of the 25th Annual ACM Symposium on Theory
of Computing (San Diego, California, May 16-18, 1993), pages
642-651, New York, 1993. ACM SIGACT, ACM Press.

26

[FR95]

[FRI6]

[FST94]

[GGJYT76]

(G197]

[GITYS3]

[Gra66]

[Gra69]

[Joh74]

[Lei92]

Dror G. Feitelson and Larry Rudolph. Parallel Job Scheduling:
Issues and Approaches. In Dror G. Feitelson and Larry Rudolph,
editors, Job Scheduling Strategies for Parallel Processing (IPPS’
95 Workshop, Santa Barbara, CA), LNCS 949, pages 1-18, Berlin,
1995. Springer-Verlag.

Dror G. Feitelson and Larry Rudolph. Toward Convergence in
Job Schedulers for Parallel Supercomputers. In Dror G. Feitelson
and Larry Rudolph, editors, Job Scheduling Strategies for Paral-
lel Processing (IPPS’ 96 Workshop, Honolulu, HI), LNCS 1162,
pages 1-26, Berlin, 1996. Springer.

Anja Feldmann, Jifi Sgall, and Shang-Hua Teng. Dynamic
scheduling on parallel machines. Theoretical Computer Science,
Special Issue on Dynamic and On-line Algorithms, 130(1):49-72,
1994.

M.R. Garey, R.L. Graham, D.S. Johnson, and A.C.-C. Yao. Re-
source Constrained Scheduling as Generalized Bin Packing. J.
Comb. Theory Series A, 21:257-298, 1976.

Minos N. Garofalakis and Yannis E. loannidis. Parallel Query
Scheduling and Optimization with Time- and Space-Shared Re-
sources. In Matthias Jarke, Michael J. Carey, Klaus R. Dittrich,
Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A.
Jeusfeld, editors, Proceedings of the 23rd International Conference
on Very Large Data Bases VLDB 97 (Athens, Greece, August 25—
29), pages 296-305, San Francisco, CA, 1997. Morgan Kaufmann
Publishers, Inc.

M.R. Garey, D.S. Johnson, R.E. Tarjan, and M. Yannakakis.
Scheduling Opposing Forests. SIAM J. Algebraic Discrete Meth-
ods, 4(1):72-93, March 1983.

R.L. Graham. Bounds for Certain Multiprocessing Anomalies.
The Bell System Technical Journal, pages 1563-1581, 1966.

R.L. Graham. Bounds on Multiprocessing Timing Anomalies.
SIAM J. Appl. Math., 17(2):416-429, March 19609.

David S. Johnson. Fast Algorithms for Bin Packing. J. Com-
put. Syst. Sci., 8:272-314, 1974.

F. Thomson Leighton. Introduction to Parallel Algorithms and
Architectures: Arrays e Trees Hypercubes. Morgan Kaufmann
Publishers, Inc., San Mateo, CA, 1992.

27

[Rah96]

[Sald7]

[Sga94]

[SSA*94]

[ST85]

[SWWO5]

[WC92]

Erhard Rahm. Dynamic Load Balancing in Parallel Database
Systems. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and
Yves Robert, editors, Proceedings of the Second International
EURO-PAR Conference on Parallel Processing, EURO-PAR’96
(Lyon, France, August 26-29), Volume 1, LNCS 1123, pages 37—
52, Berlin, 1996. Springer-Verlag.

H.E. Salzer. The Approximation of Numbers as Sums of Recipro-
cals. American Mathematical Monthly, 54:135-142, 1947.

Jiti Sgall. On-Line Scheduling on Parallel Machines. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA 15213, 1994.

Craig B. Stunkel, Dennis G. Shea, Biilent Abali, Mark Atkins,
Carl A. Bender, Don G. Grice, Peter H. Hochschild, Douglas J.
Joseph, Ben J. Nathanson, Richard A. Swetz, Robert F. Stucke,
Michael Tsao, and Philip R. Varker. The SP2 Communication
Subsystem. Research Report RC 19914, IBM Research Division,
T.J. Watson Research, 1994.

Daniel D. Sleator and Robert E. Tarjan. Amortized Efficiency
of List Update and Paging Rules. Communications of the ACM,
28(2):202-208, 1985.

David B. Shmoys, Joel Wein, and David P. Williamson. Schedul-
ing Parallel Machines On-Line. SIAM J. Comput., 24(6):1313—
1331, 1995.

Qingzhou Wang and Kam Hoi Cheng. A Heuristic of Scheduling
Parallel Tasks and its Analysis. STAM J. Comput., 21(2):281-294,
April 1992.

28

SFB 342:

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/01/95 A
342/02/95 A
342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A
342/09/95 A
342/10/95 A

342/11/95 A
342/12/95 A

342/13/95 A
342/14/95 A

342/15/95 A

342/16/95 A

Liste aller erschienenen Berichte von 1990-1994
auf besondere Anforderung

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of the
Kronecker Product of Identical Servers to a Reduced Product Space
Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de
Liefvoort: Auto-Correlation of Lag-k For Customers Departing
From Semi-Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse Grids:
Applications to Multi-dimensional Schrodinger Problems
Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology

Alexander Pfaffinger: Parallel Communication on Workstation Net-
works with Complex Topologies

Ketil Stelen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware/Software
Co-Design

Thomas Schnekenburger: The ALDY Load Distribution System
Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via
Integer Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-
to-Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to Com-
pute the Concurrency Relation of Free-Choice Signal Transition
Graphs

Bernhard Schitz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

Reihe A

342/17/95 A
342/18/95 A

342/19/95 A
342/20/95 A
342/21/95 A
342/22/95 A
342/23/95 A
342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A
342/04/96 A
342/05/96 A
342/06/96 A
342/07/96 A
342/08/96 A
342/09/96 A
342/10/96 A
342/11/96 A

342/12/96 A

342/13/96 A

Georg Stellner: Using CoCheck on a Network of Workstations
Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wismidiller:
Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distribution into
ParMod-C

Ketil Stolen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages
for Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petri Nets up
to Bisimulation

M. Jung, U. Riide: Implicit Extrapolation Methods for Variable
Coefficient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic
Multigrid Methods for the Solution of the Navier-Stokes Equations
in Complicated Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix
Dependent Geometric Coarsening and Algebraic-Multigrid Coars-
ening for Second Order Elliptic PDEs

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint Em-
beddings of Complete Binary Trees into Hypercubes

Thomas Huckle: Efficient Computation of Sparse Approximate
Inverses

Thomas Ludwig, Roland Wismiiller, Vaidy Sunderam, Arndt Bode:
OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri
Net Components

Richard Mayr: Some Results on Basic Parallel Processes

Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht

P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher,
F. Weimer, H.-M. Windisch: Sprachkonzepte zur Konstruktion
verteilter Systeme

Stefan Lamberts, Thomas Ludwig, Christian Réder, Arndt Bode:
PFSLib — A File System for Parallel Programming Environments
Manfred Broy, Gheorghe Stefanescu: The Algebra of Stream Pro-
cessing Functions

Javier Esparza: Reachability in Live and Safe Free-Choice Petri
Nets is NP-complete

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Many-
to-Many Data-flow Networks

Reihe A

342/14/96 A

342/15/96 A
342/16/96 A

342/17/96 A
342/18/96 A

342/01/97 A

342/02/97 A
342/03/97 A
342/04/97 A
342/05/97 A

342/06/97 A

342/07/97 A
342/08/97 A
342/09/97 A
342/10/97 A
342/11/97 A
342/12/97 A
342/13/97 A
342/14/97 A

342/15/97 A

342/16/97 A

Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard
Mitschang, Angelika Reiser, Stephan Zimmermann: On Transform-
ing a Sequential SQL-DBMS into a Parallel One: First Results and
Experiences of the MIDAS Project

Richard Mayr: A Tableau System for Model Checking Petri Nets
with a Fragment of the Linear Time p -Calculus

Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von
mobilen, dynamischen Focus-Netzen

Richard Mayr: Model Checking PA-Processes

Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model
Checker on Diet: Verification on Local States

Tobias Miiller, Stefan Lamberts, Ursula Maier, Georg Stellner:
Evaluierung der Leistungsf”ahigkeit eines ATM-Netzes mit paral-
lelen Programmierbibliotheken

Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids: Re-
cent Developments for Elliptic Partial Differential Equations
Bernhard Mitschang: Technologie f”ur Parallele Datenbanken -
Bericht zum Workshop

nicht erschienen

Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierarchis-
che Basen zur effizienten Kopplung substrukturierter Probleme der
Strukturmechanik

Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman Ne-
unhoeffer, Stefan Schulte: Fluid Structure Interaction: 3D Numer-
ical Simulation and Visualization of a Micropump

Javier Esparza, Stephan Melzer: Model Checking LTL using Con-
straint Programming

Niels Reimer: Untersuchung von Strategien fiir verteiltes Last- und
Ressourcenmanagement

Markus Pizka: Design and Implementation of the GNU INSEL-
Compiler gic

Manfred Broy, Franz Regensburger, Bernhard Schatz, Katharina
Spies: The Steamboiler Specification - A Case Study in Focus
Christine Rockl: How to Make Substitution Preserve Strong
Bisimilarity

Christian B. Czech: Architektur und Konzept des Dycos-Kerns
Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow
Norbert Frohlich, Rolf Schlagenhaft, Josef Fleischmann: Partition-
ing VLSI-Circuits for Parallel Simulation on Transistor Level
Frank Weimer: DaViT: Ein System zur interaktiven Ausfiihrung
und zur Visualisierung von INSEL-Programmen

Niels Reimer, Jiirgen Rudolph, Katharina Spies: Von FOCUS nach
INSEL - Eine Aufzugssteuerung

Reihe A

342/17/97 A
342/18/97 A
342/19/97 A
342/20/97 A
342/21/97 A
342/22/97 A
342/23/97 A
342/24/97 A

342/25/97 A

342/26/97 A
342/27/97 A
342/28/97 A
342/29/97 A

342/01/98 A

342/02/98 A
342/03/98 A

342/04/98 A

Radu Grosu, Ketil Stglen, Manfred Broy: A Denotational Model for
Mobile Point-to-Point Data-flow Networks with Channel Sharing
Christian Roder, Georg Stellner: Design of Load Management for
Parallel Applications in Networks of Heterogenous Workstations
Frank Wallner: Model Checking LTL Using Net Unfoldings
Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen
Theorembeweisers in einer taktikgesteuerten Beweisumgebung zur
Losung eines Beispiels aus der Hardware-Verifikation — Fallstudie —
Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated The-
orem Proving

T. Ludwig, R. Wismiiller, V. Sunderam, A. Bode: OMIS - On-line
Monitoring Interface Specification (Version 2.0)

Stephan Merkel: Verification of Fault Tolerant Algorithms Using
PEP

Manfred Broy, Max Breitling, Bernhard Schatz, Katharina Spies:
Summary of Case Studies in Focus - Part 11

Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel
Processing of Aggregat and Scalar Functions in Object-Relational
DBMS

Marc Fuchs: Similarity-Based Lemma Generation with Lemma-
Delaying Tableau Enumeration

Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase Frame-
Work for the Evaluation and Maintenance of Automated Theorem
Prover Data (incl. Documentation)

Radu Grosu, Ketil Stglen: Compositional Specification of Mobile
Systems

A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schie-
mann, T. Schnekenburger (Herausgeber): ”‘Anwendungsbezogene
Lastverteilung”’, ALV’98

Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommu-
nikationsanwendung in Focus

Katharina Spies: Eine Methode zur formalen Modellierung von
Betriebssystemkonzepten

Stefan Bischof, Ernst W. Mayr: On-Line Scheduling of Parallel
Jobs with Runtime Restrictions

SFB 342 :

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B
342/1/91 B
342/2/91 B
342/3/91 B
342/4/91 B
342/5/91 B

342/6/91 B

342/7/91 B
342/1/92 B

342/2/92 B
342/1/93 B
342/2/93 B

342/1/94 B

Methoden und Werkzeuge fiir die Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice
Systems

Franz Abstreiter, Michael Friedrich, Hans-Jiirgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler
Programme

Barbara Paechl: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier- Toolbox
-Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
iber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation
Methods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis
Dominik Gomm, Ekkart Kindler: Causality Based Specification
and Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fiir MIDAS

