TLTI

TECHNISCHE
UNIVERSITAT
MUNCHEN

INSTITUT FUR INFORMATIK

Sonderforschungsbereich 342:
Methoden und Werkzeuge fiir die Nutzung
paralleler Rechnerarchitekturen

Load Balancing for Problems with
Good Bisectors, and Applications in

Finite Element Simulations:
Worst-case Analysis and Practical Results

Stefan Bischof, Ralf Ebner, Thomas Erlebach

TUM-19811
SFB-Bericht Nr. 342/05/98 A
Mai 98

TUM-INFO-05-19811-150/1.—FI

Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

©1998 SFB 342 Methoden und Werkzeuge fiir

Anforderungen an:

Druck:

die Nutzung paralleler Architekturen

Prof. Dr. A. Bode

Sprecher SFB 342

Institut fiir Informatik
Technische Universitdt Miinchen
D-80290 Miinchen, Germany

Fakultat fir Informatik der
Technischen Universitat Miinchen

Load Balancing for Problems with
Good Bisectors, and Applications in

Finite Element Simulations:
Worst-case Analysis and Practical Results

Stefan Bischof Ralf Ebner
Thomas Erlebach

Institut fur Informatik
Technische Universitat Munchen
D-80290 Miunchen, Germany

{bischof |ebner|erlebach}@in.tum.de
http://www{mayr|zenger}.in.tum.de/

May 28, 1998

Abstract

This paper studies load balancing issues for classes of problems
with certain bisection properties. A class of problems has a-bisectors
if every problem in the class can be subdivided into two subproblems
whose weight is not smaller than an a-fraction of the original prob-
lem. It is shown that the maximum weight of a subproblem produced
by Algorithm HF, which partitions a given problem into N subprob-
lems by always subdividing the problem with maximum weight, is at
most a factor of [1/a] - (1 — a)l1/*]=2 greater than the theoretical
optimum (uniform partition). This bound is proved to be asymptot-
ically tight. Two strategies to use Algorithm HF for load balancing
distributed hierarchical finite element simulations and experimental
results are presented. For this purpose, a certain class of weighted
binary trees representing the load of such applications is shown to
have 1/4-bisectors. This establishes a performance guarantee of 9/4
for load balancing in this case.

1 Introduction

Load balancing is one of the major research issues in the context of parallel
computing. Irregular problems are often difficult to tackle in parallel be-
cause they tend to overload some processors while leaving other processors
nearly idle. For these applications it is very important to find methods for
obtaining a balanced distribution of load. Usually, the load is created by pro-
cesses that are part of a (parallel) application program. During the run of
the application, these processes perform certain calculations independently
but have to communicate intermediate results or other data using message
passing. One is usually interested in achieving a balanced load distribution
in order to minimize the execution time of the application or to maximize
system throughput.

Load balancing problems have been studied for a huge variety of models,
and many different solutions regarding strategies and implementation mech-
anisms have been proposed. A good overview of recent work can be obtained
from [SHK95], for example. [SS97] reviews ongoing research on dynamic load
balancing, emphasizing the presentation of models and strategies within the
framework of general classification schemes.

In this paper we study load balancing for a very general class of problems.
The only assumption we make is that all problems in the class have a certain
bisection property. Such classes of problems arise, for example, in the con-
text of distributed hierarchical finite element simulations. We show how our
general results can be applied to numerical applications in several ways. The
remainder of the paper is structured as follows. In Section 2 we present and
analyze a very general and simple algorithm that computes a good load dis-
tribution for classes of problems with a-bisectors. Section 3 briefly explains
distributed finite element simulations with recursive substructuring. Two
strategies for applying the algorithm from Section 2 to these applications are
discussed. Section 4 shows that certain weighted trees, which model the load
of applications in numerical simulations like the one discussed in Section 3,
have 1/4-bisectors. This implies a performance guarantee! of 9/4 for load
balancing these applications. Section 5 summarizes our results.

2 Using Bisectors for Load Balancing

In many applications a computational problem cannot be divided into many
small problems as required for an efficient parallel solution directly. Instead,

!An algorithm has performance guarantee p if the maximum load produced by the
algorithm is at most a factor of p larger than the maximum load of an optimum solution.

Input: problem p, positive integer N
begin
P« {p};
while |P| < N do
begin
q < a problem in P with maximum weight;
bisect ¢ into ¢; and gs;
P (PU{q,e}) \{¢}
end;
output P;
end.

Figure 1: Algorithm HF (Heaviest Problem First)

a strategy similar to divide and conquer is used repeatedly to divide prob-
lems into smaller subproblems. We refer to the division of a problem into two
smaller subproblems as bisection. Assuming a weight function w that mea-
sures the resource demand, a problem p cannot always be bisected into two
subproblems p; and ps of equal weight w(p)/2. For many classes of problems,
however, there is a bisection method that guarantees that the weights of the
two obtained subproblems do not differ too much. The following definition
captures this concept more precisely.

Definition 1 Let 0 < a < % A class P of problems with weight function
w : P — R* has a-bisectors if every problem p € P can be efficiently divided
into two problems py € P and py € P with w(p;) + w(p2) = w(p) and

w(p1), w(pa) € [aw(p); (1 — a)w(p)].

Note that this definition requires for the sake of simplicity that all prob-
lems in P can be bisected, whereas in practice this is not the case for prob-
lems whose weight is below a certain threshold. We assume, however, that
the problem to be divided among the processors is big enough to allow further
bisections until the number of subproblems is equal to the number of proces-
sors. This is a reasonable assumption for most relevant parallel applications.
A definition very similar to ours (a-splitting) is used by KUMAR, GRAMA,
and Rao [KV87, KGV94| [KGGK94, pp. 315-318] under the assumption
that the weight of a problem is unknown to the load balancing algorithm.

2.1 Tight Analysis of Algorithm HF

Figure 1 shows Algorithm HF, which receives a problem p and a number
N of processors as input and divides p into N subproblems by repeated

application of a-bisectors to the heaviest remaining subproblem. A perfectly
balanced load distribution on N processors would be achieved if a problem
p of weight w(p) was divided into N subproblems of weight exactly w(p)/N
each. The following theorem gives a worst-case bound on the ratio between
the maximum weight among the N subproblems produced by Algorithm HF
and this ideal weight w(p)/N.

Theorem 2 Let P be a class of problems with weight function w: P — Rt
that has a-bisectors. Given a problem p € P and a positive integer N,
Algorithm HF uses N — 1 bisections to partition p into N subproblems pq,
..., N Such that

w(p) |1 L1]-2
a0 <[] -l
Proof: It is obvious that Algorithm HF uses N — 1 bisections to partition
p into N subproblems. In the following we show that the stated inequality
regarding the maximum weight among these subproblems holds.

We introduce the bisection tree 1" to represent the run of the algorithm
on input p and N. The root of T is the problem p. If the algorithm bisects
a problem ¢ into ¢; and g9, nodes ¢; and ¢, are added to 1" as children of
node ¢. In the end, 17" has N leaves, which correspond to the N subproblems
computed by the algorithm, and all problems that were bisected by the al-
gorithm appear as internal nodes with exactly two children. Figure 2 gives
an example of a bisection tree for a problem of weight 44 from a class of
problems with %—bisectors. We follow the convention of drawing the node
with greater weight among two children of the same parent as a left child of
that parent.

The following properties hold for bisection trees arising from classes of
problems with a-bisectors. Let the leaves of the tree be py, ..., py and let

m .= maxlSiSN W(pz)
(a) w(g) > m for all internal nodes q

(b) w(q) > —L-w(q') if ¢’ is a child of ¢

— l-a

(a) holds because the algorithm always bisects a subproblem of maximum
weight; since one of the p; has weight m, there must have been at least one
subproblem of weight > m during the whole run of the algorithm, and thus
the algorithm never bisected a problem of weight < m. (b) follows directly
from w(q') < (1—a)w(q), which holds because the algorithm uses a-bisectors.

Now remove from the bisection tree all internal nodes which are not parent
of a leaf. This partitions the bisection tree into a number of disjoint branches,

4

Figure 2: Example of a bisection tree

) leaf-branch) leaf-branch 1nternal branch

Figure 3: Branches obtained from the example tree

f

Figure 4: Composed leaf-branches obtained from the example tree

whose shape can be that of a leaf-branch (one of the internal nodes of the
branch has two leaf children) or that of an internal branch (all the internal
nodes of the branch have exactly one leaf child). The branches obtained from
the example tree of Figure 2 are shown in Figure 3. Our goal is to derive a
lower bound for the average weight of the leaves in each branch.

Consider a leaf-branch with & internal nodes, £ > 1. Denote its internal
nodes by vy, vg, ..., vg such that v;;; is the parent of v; for 1 < < k — 1.
Furthermore, let ¢; denote the leaf child of v; for 2 < i < k, and let ¢y and
c; denote the leaf children of v;. As (a) implies w(vy) > m, we have by (b)

w(v;) > (ﬁ)iilm for 1 <i <k and w(g) > « (ﬁ)zflm for1 < i <k.

The average weight of the leaves ¢y, ..., ¢ can now be bounded from below
as follows:

— k—ﬂ(m(l—a)er(a—l) (1_ﬁ>>

(k+1)(1 —a)k1"

If there are internal branches, we do not deal with them separately but
instead attach them to leaf-branches. For example, one can consider the
leaf-branches one by one and attach to each leaf-branch all internal branches
that intersect the path from the leaf-branch to the root of the bisection
tree and that have not been attached to a different leaf-branch beforehand.
Here, attaching an internal branch to a leaf-branch means making the root
of the leaf-branch a child of the bottom-most internal node of the internal
branch, resulting in a new leaf-branch. We call the leaf-branches obtained by
attaching zero or more internal branches to an original leaf-branch composed
leaf-branches. Observe that conditions (a) and (b) are satisfied for these
composed leaf-branches as well. Hence, the lower bound above also pertains
to the average weight of the leaves in such a composed leaf-branch. The
bisection tree from Figure 2 contained two leaf-branches and one internal
branch as illustrated in Figure 3. Attaching the internal branch to one of the
leaf-branches gives the composed leaf-branches shown in Figure 4.

As every leaf of the bisection tree appears in exactly one composed leaf-
branch, we conclude that mingey W is a lower bound on the average

6

weight of all leaves in the bisection tree. Therefore, we obtain
al 1

wip) = ;W(pi) = N A — a1 (1)

Besides, we observe that

. 1 - 1 9
e B ey ey (e Ty o R)

and we claim that (k4 1)(1 — @)*~" as a function of & € N is maximized for
k = |1/a] — 1. To see this, let f(k) = (k+ 1)(1 — «)*! and consider the
ratio f(k)/f(k—1) = (1 —a)(k + 1)/k. We obtain:

>1 fork<é—1

f (k) 1
=¢ =1 fork=--1
Flk—1) 2
<l fork>_;-1
For a fixed value of «, f(k) is monotone increasing from k£ = 1 to k =

|1/a] — 1 and monotone decreasing for larger values of k. If 1/« is not
an integer greater than 2, f(k) is maximum only for k¥ = |1/a] — 1. If
1/a is an integer greater than 2, f(k) is maximum for £ = |1/a] — 1 and for
k= [1/a]—2. In any case we have maxgen ((k 4+ 1)(1 — 2)*™1) = f([1/a] —
1) =[1/a] - (1 — a)/*=2 and the theorem follows with (1) and (2). O

For some values of o, Table 1 gives worst-case bounds on the ratio between
maxi<;<y W(p;) and % as well as a value of k for which (k+1)(1 —a)*!is
maximized. These bounds show that the worst-case deviation from the ideal
load distribution, in which w(p;) = % for all 1 < i < N, is bounded by a
small constant for a wide range of a. Note that in many cases an ideal load

distribution cannot be achieved by any algorithm.

Corollary 3 Let P be a class of problems with weight function w : P — Rt
that has a-bisectors. Given a problem p € P and a positive integer N,

Algorithm HF uses N — 1 bisections to partition p into N subproblems py,
.., py such that

max w(p;) < wip) !

1<i<N N e(l—a)ln

Proof: In the proof of Theorem 2 it was shown that

max w(n) < " a((k + 1)(1 -)*). 3)

7

Table 1: Worst-case ratio of Algorithm HF for different values of «

o k | ratio o k | ratio o k | ratio
0.02 | 49 | 18.96 0.21] 3| 2.50 0.31 | 2| 2.07
0.04 | 24| 9.78 0.22 | 3| 2.43 0.32 | 2| 2.04
0.06 | 15| 6.73 0.23 | 3| 2.37 0.325 | 2 | 2.025
0.08 11| 5.21 024 3| 2.31 0.33 | 2] 2.01
0.10 | 8| 4.30 0252 2.25 0.331 | 2 | 2.007
0.12| 7| 3.72 026 | 2| 2.22 0.332 | 2 | 2.004
0.14| 6| 3.29 02712 2.19 0.333 | 2 | 2.001
0.16 | 5| 2.99 028 | 2| 2.16 0.334 | 1| 2.00
0.18| 4| 2.76 0291 2| 2.13 0.40 | 1| 2.00
0.20 | 3| 2.56 0.30 | 2| 2.10 0.50 | 1| 2.00

Observe that the term maximized on the right hand side of this inequality
is a differentiable function of k. Therefore, we define f : R* — R* by
f(k) = (k+ 1)(1 — a)*~L. The derivative of f is:
Pk = (1= @) 1 ((k + 1) In(1 = a) + 1)
The derivative is zero for
(k+1)In(l —a) =—1,

k= ln(Iia) -1

Substituting yields f(k) = (e(1 — a)?In ﬁ)fl, and this is the global
maximum of f. Hence,

which is the case only for

1
E+1)(1—a)hH <
r’rcleal\}](((=) < e(l—a)?ln ="~

and the corollary follows directly from inequality (3). 0

In Figure 5 the worst-case bound for the ratio between max;<;<y w(p;)
and w(p)/N from Theorem 2 as well as the continuous approximation of this
bound (e(1 — a)?In ﬁ)fl from Corollary 3 are plotted for 0.08 < o < 0.5.
It turns out that the continuous approximation of the bound matches the
discrete bound (cf. Table 1) almost exactly for @ < 0.3. To complete this
part of our analysis, we observe that the exact upper bound on the ratio
between max;<;<y w(p;) and w(p)/N is 2 for o > 1/3.

Now we give a lower bound for the worst-case ratio between the maximum
weight subproblem generated by Algorithm HF and the ideal value given by
a uniform partition. This will show that the upper bound from Theorem 2
is tight.

ratio

9.0 1

4.5 1

4.0

3.5 1

3.0 1

2.5 1

2.0 T T T (6]
0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.50

Figure 5: Plot of discrete (dotted) and continuous worst-case bounds

Theorem 4 For each 0 < a < % there exists a class of problems Q% that
has a-bisectors and contains a family of problems (¢')en such that

=00 w(q') o

hm maXlSiSNl W(qi) — \‘EJ . (]_ — a) LiJ 72,
N

where Ny = |1/a]-2' -1 and ¢}, ¢, . . ., qfvl are the subproblems generated by
Algorithm HF on input ¢¢ and N;.

Proof: Let Q% be a class of problems with weight function w : P — R* and
the following properties:

(a) each ¢ € Q* with w(g) > 1 can only be partitioned into 2 subproblems
of weight w(q)/2 each

(b) each ¢ € Q“ with w(q) < 1 can only be partitioned into 2 subproblems
of weight (1 — a)w(g) and aw(q)

(¢) for every [€ N there is a problem ¢! € Q% of weight w(g') = 2!

Clearly, Q% has a-bisectors according to Definition 1.

9

Let k = [1/a] —2. For a given [€ N, choose a problem ¢! € Q of weight
2! and let N; = (k+2)2' — 1. On input ¢’ and N;, Algorithm HF proceeds as
follows. After the first 2! — 1 bisections, there are 2! subproblems of weight 1
each. We assign level 0 to these problems and call them active. As the
weight of each active problem is < 1, the next 2! bisections performed by the
algorithm subdivide all active problems on level 0 and generate subproblems
of weight 1 — a and «, which are assigned level 1. Now the 2 problems on
level 1 with weight 1 — o become active. This process is repeated such that
in phase i, ¢ > 0, the algorithm subdivides all 2! problems of weight (1 — «)?
on level 4. At the end of phase i there are (i + 2)2' subproblems altogether.
The subdivision process is finished when exactly one active subproblem on
level k of weight (1 — «)* remains.

To ensure that the algorithm indeed subdivides the active problems on
level 7 in phase 7 for all 0 < ¢ < k and not the heaviest inactive problem, which
has weight «, it is required that (1 — «)® > a. This is obvious for k = 0, 1.
For k > 2, recall that the series (1 —1/(k+1))* converges strictly decreasing
from above to e”! and note that k = |1/a] — 2 implies o < 1/(k+2) < 1/4.

Hence,
1 * 1\ 1 1
1—-a)fr>(1—-—) >([1—-—— | >=>Z>q.
(O‘)—< k+2>_< k+1>—e—4—0‘

In the end, Algorithm HF has generated (k +2)2' — 1 subproblems and a
maximum weight of (1 —). Thus,

!
o wig') (1 0k ol
g wg) = == (L=a)i(k+2-27),
and the assertion of the theorem follows by substituting k = [1/a] — 2 and
taking into account lim;_,., 27" = 0. |

2.2 A Better Bound for Small NV

Note that the bound of Theorem 2 is independent of NV, the number of desired
subproblems. Although we have shown that this bound is tight asymptoti-
cally, it is possible to obtain a better bound if N is sufficiently small. Again,
we will show that this improved bound is tight. To establish this result, we
need the following

Lemma 5 Let « < 1/5, 2 < k < 1/a. Then, with the assumptions of
Theorem 2, for any leaf-branch of a bisection tree with k leaves py, pa, ..., Dk
and root p:

k—1

ggiaévv(pi) <w(p)(l-a)

10

Proof: If all bisections are exact a-bisections we conclude that the maximum
weight subproblem generated by Algorithm HF has weight w(p)(1 —)% !
since o < (1 —a)* ! for k < 1/a and o < 1/5. Clearly, the upper bound
remains valid if the maximum weight subproblem is the leftmost leaf of the
leaf-branch.

Therefore, we consider the case that the maximum weight subproblem
does not result from the last bisection step. Let m := max;<j<; w(p;). The
combined weight of the maximum weight leaf and the 2 leaves generated in
the last bisection step is at least 2m. The total weight of the remaining leaves
can be bounded from below by

o((20))

using the same argument as in the proof of Theorem 2. Thus,

w(p)
()

11—«

and it remains to show that the right hand side of this inequality is no more
than w(p)(1 — a)*~L. But since a < 1/5 and k < 1/a we have

1 0.64+¢t

(1—a)*+(1—a)!

<<1ia>k_3+1> (1—a)k O

Theorem 6 Let P be a class of problems with weight function w: P — Rt
that has a-bisectors and assume o < 1/5. Given a problem p € P and a
positive integer N < 1/a, Algorithm HF uses N — 1 bisections to partition p
into N subproblems py, ..., py such that

<
<

N-1
Joax w(p:) < w(p)(l—a)™".

Proof: We will show that the worst-case bisection tree is a single leaf-branch
if the assumptions of the theorem hold. The claim then follows immediately
from the previous lemma.

Let us assume that the bisection tree generated by the run of Algo-
rithm HF is not a single leaf-branch. Consequently, the bisection tree has
internal nodes which are not parent of a leaf. We call these nodes cut-nodes.
Let m := max;<;<ny W(p;). Observe that a cut-node has weight at least 2m.

11

If there are 2 or more cut-nodes we distinguish two cases. First, assume
that there are 2 cut-nodes such that one is neither an ancestor nor a de-
scendant of the other. Then their combined weight is at least 4m and thus
m < (1/4)w(p). But we have 1/4 < e < (1 —a)"~! by the assumptions of
the theorem. If there are 2 cut-nodes ¢; and ¢, such that ¢; is an ancestor
of ¢, we know that c¢; is the parent of an internal node not on the path
between c¢; and ¢y and thus the weight of ¢; is at least 3m. We conclude that
m < (1/3)w(p) < e 'w(p) in this case.

Now consider the case that there is exactly one cut-node c¢. If the max-
imum weight leaf is not in the subtree rooted at ¢ we conclude w(p) > 3m
and finish the proof for this case as above. Otherwise, let the children of ¢
be x and y and assume without loss of generality that the maximum weight
leaf is contained in the leaf-branch rooted at x. Denote the number of bisec-
tion steps in the leaf-branch rooted at = (y) by d, (d,), and let N' denote
the number of leaves in the subtree rooted at c¢. Observe that N’ > 4,
1 <dg,d, <N —3and d, +d, = N'—2. As we have a < 1/5 and the
maximum weight leaf is contained in the leaf-branch rooted at x, we conclude
w(z) > m(7=)% using Lemma 5. Since any internal node in the leaf-branch
rooted at y has weight at least m, we have w(y) > m(:==)%"" as in the proof
of Theorem 2. Combining these two bounds and substituting d, = N'—2—d,

yields:

w(z) +w(y) > m <<1ia>dz i <1ia>N’3d1> > m <1ia>N'1,

where the last inequality is equivalent to (1 — o)V 1% 4+ (1 — a)%+2 > 1.
This can be shown to hold for o < 1/5 by a straightforward calculation using
analytic techniques. Hence, using w(c) = w(z) + w(y) we have

w(e) 2 m yw3 @)

1 -«

Assume that there are d, nodes, d, > 0, above ¢ on the path from ¢ to the
root p of the bisection tree. Observe that

() 2 wio) (1)@.)

11—«

As N = N' +d,, Equations (4) and (5) imply m < w(p)(1 — a)¥ " O

It is easy to verify N(1 — o)Vt < [1].(1 - a)LéJ_Z for N < ||
observing that the left-hand side of this inequality is monotone increasing

12

General upper bound

Improved upper bound for N =8
2.5

10,050 0.075 0.100 0.125

(0}

Figure 6: Comparison of general and improved upper bound

from N =1to N = GJ and the inequality holds trivially for the latter value
of N. Figure 6 compares the general with the improved upper bound on the
ratio between max;<;<y w(p;) and % for N = 8.

Let & be the real root of the equation (1 — a)*>+ (1 —a)® —1 = 0.
It can be shown that & =~ 0.245122 is the largest possible value for a in
Lemma 5 and Theorem 6. For o > & there are indeed leaf-branches and
bisection trees with a maximum weight leaf that is heavier than the upper
bound provided by Lemma 5 and Theorem 6. If we choose @ = 1/4 and
N = 4, for example, there is a leaf-branch whose maximum leaf weight is
(3/7)w(p) > (3/4)3w(p). Furthermore, it is possible to construct bisection
trees with max; <<y w(p;) = w(p)(1—a)/(2—a) for N =4, a < (3—/5)/2.
Figure 7 illustrates these exceptional cases for N = 4.

1

Figure 7: Worst-case leaf-branch and bisection tree for N =4, a =

13

E = 100000
thickness = 0.01

10 Poisson ratio = 0.3

plane stress

AV

1.0 !

Figure 8: Static system of a short cantilever

3 Application of Algorithm HF to Distributed
Finite Element Simulations

In this section, we present the application of Algorithm HF for load balanc-
ing in the field of numerical simulations with the finite element (FE) method
[Bra97, Bur87]. The FE method is used in statics analysis, for example, to
calculate the response of objects under certain loading and boundary condi-
tions.

In [Hiit96, HS94], an adaptive FE method based on the principle of re-
cursive substructuring has been developed. It is an iterative procedure where
in several runs of computation the result is improved automatically until a
predefined accuracy is reached. The costs for achieving this accuracy are
much lower than with a non-adaptive procedure.

3.1 Recursive Substructuring

Starting an analysis with the FE method, an object is described by defining
its shape and its structural properties. Then, the boundary and loading
conditions have to be imposed on the object. A system of partial differential
equations describes the relation between external loads and internal forces.

As an example from structural engineering, we consider a short cantilever
under plane stress conditions, a problem from the domain of plane elasticity.
The quadratic panel is uniformly loaded on its upper side. The left side of
the cantilever is fixed as shown in Figure 8.

14

The physical properties for the material of the cantilever are given by the
Youngs modulus E and the Poisson ratio v. The differential equations (6)
and (7) describe the response of the object under the external loads:

E 0%u E 0%v E 0%u
. + . + . — _f (6)
1—v2 022 2(1—v) 0xdy 2(1+v) 0y?
E 0%v FE 0%u E 0%v
=9, (7)

1— 12 9y +2(1—1/) . 8x8y+2(1+1/) e
where u and v are the unknown displacements and f and ¢ the external forces
in z- and y-direction, respectively.

We substructure the physical domain of the cantilever recursively (Fig-
ure 9, left). With the method of [Hiit96, HS94], a tree data structure is built
reflecting the hierarchy of the substructured domain (see Figure 9, right). In
each node, points on the separator line represent unknown values of displace-
ment, and points on the border carry variable boundary conditions imposed
by the parent node. Each tree node contains a system of linear equations
whose stiffness matriz S determines the unknown displacement values de-

> = (f > .

o

In the leaves, the system of equations is constructed by a standard FE dis-
cretization. Roughly speaking, the equations are obtained by an approxima-
tion of the functions u, v, f, and g by linear combinations (a, 0, f, and g,
respectively) of partially bilinear basis functions with limited support within
the discretizing mesh, and some additional algebraic and analytical transfor-
mations. The system of equations of an internal tree node is assembled out
of the equations of its children, as described in [Hiit96].

Now, the task is to solve all those systems of linear equations. We use an
iterative solver which traverses the tree several times, promoting displace-
ments in top-down direction and reaction forces in bottom-up direction. In
each node, the amount of work to be done stays the same during the itera-
tions. But since the adaptive structure of the tree is not known a priori, it is
essential to have a good load balancing strategy before the parallel execution
of the solving phase.

D S

3.2 Application of Algorithm HF
We assign a load value £(p) to each tree node p, given by
U(p) = Cymy(p) + Cs ns(p)

15

Free Boundary—"5* ?

Separat 0

Fixed Boundary-

yvl Incomp. Point .
XU 1

A
Rbe

S IRAARN

fsdfet pifet foided il

Figure 9: A coarse discretizing mesh and the resulting binary tree data struc-
ture for the short cantilever

with n,(p) points on the border without boundary conditions (grey points
in Figure 9), and n4(p) points on the separator line of node p (black points
belonging to the borders of both children in Figure 9). The load value ¢(p)
models the computing time of node p, where the constants Cs and (), are
independent of node p and C; ~ 6 (). Points with fixed boundary values as
well as incompatible points on the separator (white points) do not contribute
to the load value £(p).

We can interpret the FE tree as an approximate (potential) bisection tree
by accumulating the load of all nodes in the subtree rooted in node p to get
the weight value w(p):

(p) = ((p) if p is leaf
WAP) = L(p) +w(cr) +w(ez) if p is internal node or root,

where ¢; and ¢y are the children of p.

16

97.81 3986

70,73 3945

Figure 10: The discretizing meshes for the domain of the short cantilever

The weight values are collected during the tree construction phase by
simply counting and accumulating the number of points on the separator of
each tree node.

If we want to apply Algorithm HF to this tree of weight values, we must
specify which bisection steps the algorithm can perform. Our first approach
is to define a bisection step as the removal of the root node p of a subtree.
This yields two subtrees rooted at the children ¢; and ¢, of p, and p is ignored
for the remainder of the load balancing phase.

Such bisection steps do not exactly match Definition 1, because the weight
of node p exceeds the weight sum w(c;) +w(cy) of the children by ¢(p). How-
ever, {(p) (work load of the one-dimensional separator) is negligible compared
to w(p) (work load of the two-dimensional domain) in our application if the
FE tree is large enough. Hence, the results of Theorem 2 and Corollary 3
are well approximated.

Algorithm HF chops N subtrees off the FE tree, each of which can be
traversed in parallel by the iterative solver. These N subtrees contain the
main part of the solving work and may be distributed over the available N
processors. The upper N — 1 tree nodes cannot exploit the whole number of
processors, anyway. Therefore, such a distribution does not sacrifice parallel
potential in the upper tree levels.

3.3 Runtime Examples

In [EP98], a parallel implementation of the recursive substructuring tech-
nique is described using the dataflow language FASAN as coordination and
automatic parallelization platform. For this paper, however, we used a hand-
coded parallel version based on PVM [BDG"94] in order to minimize com-

17

O

o 50 ¢ static load balances=- |

° 40 | % load balance with Algorithm HF-—+-— |

S

b= 30 1

= [

= 20 RETE .
B e D S

3 10} Foeee

2]

O Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
123456 7 8 910111213141516

number of workstations

Figure 11: Runtime results for 1,279 tree nodes

munication overhead. The number of solver iterations (tree traversals) was
fixed to 100. The experiments were run on a cluster of workstations of type
HP 9000/720.

Figure 11 shows the runtime results of the numerical simulation of the
short cantilever under uniform load described above. We have chosen quite
a small tree of 1,279 element nodes and maximal depth 11 (see the left
discretizing mesh in Figure 10, representing the leaves of the FE tree). Since
adaptivity was limited to two additional tree levels only, the node weights
resulted in o = 0.18571.

For two workstations, the partitioning with Algorithm HF is identical
to static partitioning (just chopping off the root node). Further speedup
from 4 to 6 processors with Algorithm HF occurs earlier than with static
partitioning (from 6 to 7 processors). In this comparatively small problem,
it is mainly the critical path of the FE tree that determines the lower bound
for the tree traversal time and inhibits further acceleration with more than
five processors.

The effect of Algorithm HF is more important in larger simulations, where
adaptivity for high numerical accuracy is distinct and where it is essential
to split the biggest subtrees. The runtime results of a computation with a
deeper FE tree of maximal depth 17 can be seen in Figure 12. It contains
11,263 nodes (Figure 10, right), and « has quite a bad value of 0.10615. Here,
the runtime improvement with Algorithm HF is more significant, since the
load value ¢(p) of the root is quite small in relation to the weight sum w(p) of
the whole tree. We observe that the distributed iterative solver is up to 70%
faster with application of Algorithm HF compared to static partitioning if at
least four processors are used. Even on 16 processors, static partitioning does
not split the subtree which is responsible for the longest computing time.

18

350 [T T T T T T T T T T T T T T T T]
static load balancesz-
i load balance with Algorithm HF-—-
300 .
)
ﬁ 250 r \ 1
o ‘\‘
E 200 F | 1
5 150 E i
= \ S B g B g g Bl
(@) *—"”J'\\\ . B
« 100 ¢ - B -
50 .
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
123456 7 8 910111213141516
number of workstations

Figure 12: Runtime results for 11,263 tree nodes

Nevertheless, we clearly recognize, again, the influence of the critical tree
path: Applying Algorithm HF, we reach nearly minimal runtime with eight
processors already.

3.4 Further Improvements

For arbitrary adaptive FE simulations, we cannot give a limit for the bisection
factor a. If o gets too small, we still have two possibilities to prevent too
bad a partitioning:

e During the tree construction phase, we can choose between horizontal
and vertical bisection of the subdomain of each node, whichever leads
to the greater local value of a.

e Moreover, we might set /N as a multiple of the number of available
processors, so there is still a chance to compensate a small « value by
assigning multiple partitions to one processor.

As the factor « is known immediately after the tree construction or re-
finement phase, the user can be warned before starting the iterative solver if
the partitioning is not satisfactory.

To avoid the small-a-problem completely, another strategy using Algo-
rithm HF allows the removal of a single edge of a tree as a bisection step. This

19

strategy partitions the entire given FE tree into /N subtrees of approximately
equal size. Section 4 shows that FE trees satisfying the conditions

cy) + o)
U(c;) (i=1,2)

{(p)
{(p)

(AVARVAN

have good bisectors. This application of Algorithm HF also takes into ac-
count that the main memory resources of the processors become the limiting
factor if very high accuracy of the simulation is required. In this case, find-
ing a partitioning of the entire tree (not only a set of equal-sized subtrees
ignoring their ancestors in the tree) is necessary.

4 Weighted Trees with Good Bisectors

Let T be the set of all rooted binary trees with node weights ¢(v) satisfying:

(1) £(p) < l(c1) + €(c2) for nodes p with two children ¢; and ¢,
(2) £(p) > £(c) if ¢ is a child of p

The weight of a tree T' = (V, E) in T is defined as w(T') = 3" {(v).

This class T of binary trees models the load of applications in hierarchical
finite element simulations, as discussed in Section 3. Recall that in these
applications the domain of the computation is repeatedly subdivided into
smaller subdomains. The structure of the domains and subdomains yields
a binary tree in which every node has either two children or is a leaf. The
resource demands (CPU and main memory) of the nodes in this FE tree are
such that the resource demand at a node is at most as large as the sum of the
resource demands of its two children. In order to parallelize the computation,
it is necessary to distribute the FE tree among a number of processors in a
balanced way.

Note that Conditions (1) and (2) ensure that the two subtrees obtained
from a tree in 7 by removing a single edge are also members of 7.

The following theorem shows that trees from the class 7 can be i—bisected
by removal of a single edge unless the weight of the tree is concentrated in
the root.

Theorem 7 Let T'= (V,E) be a tree in T, and let r be its root. If {(r) <

%W(T), then there is an edge e € E such that the removal of e partitions T’

into subtrees Ty and Ty with w(Ty),w(T) € [sw(T); 3w(T)].

4

Proof: We give a simple method to find the required edge. Pick an arbitrary
node v of T as a start node. While T\ {v} contains a subtree 7" with

20

Figure 13: The 5 cases for v in proof of Theorem 7

w(T") > 2w(T), replace v by the node adjacent to v which is contained in
T'. This process always terminates after less than |V| iterations at a node v
such that all subtrees 7" in 1"\ {v} satisfy w(7") < 3w(T'). We claim that at
least one of these subtrees also satisfies w(T”) > tw(T), and thus the edge
connecting v and 7" can be picked as the required separator edge. In order
to prove the claim we distinguish several cases regarding the position of v in
T (see Figure 13). For every case the assumption that all subtrees of 7"\ {v}
have weight < tw(7') will lead to a contradiction.

Case 1: v has degree 3. Let u be the parent of v. Let T} be the subtree
of T\ {v} that contains u, and let T and T3 be the other two subtrees.
Assume that all three subtrees have weight < tw(7’). Consequently, v must
have weight > tw(T) because w(T) = w(T1) + w(T2) + w(T3) + {(v). But
then u must also have weight > w(T) because it is the parent of v, and this
implies w(T) > w(T). A contradiction.

Case 2: v has degree 2 and is the root of T'. Let 77 and T3 be the two
subtrees of 7\ {v}, and let u; and uy be the corresponding children of v. If
both subtrees have weight < fw(T), it follows also that ¢(u;) < sw(T) and
((ug) < yw(T'), which implies £(v) < €(u;) + €(us) < w(T’). On the other
hand, w(T') = w(T1) + w(T3) 4 £(v) implies £(v) > tw(T'). A contradiction.

Case 3: v has degree 2 and is not the root of T. Let u be the parent
of v, and let ¢ be the child of v. Let T} be the subtree in 7"\ {v} that
contains u, and let 75 be the other subtree. If both subtrees have weight
< tw(T), w(T') = w(T1) + w(T») + £(v) implies £(v) > iw(T). But then
{(u) > L(v) > sw(T). A contradiction.

Case 4: v has degree 1 and is a leaf of T. Let T} be the tree T'\ {v},
and let u be the parent of v. Assume that w(7}) < tw(T'). Then w(T) =
w(Ty) + ¢(v) implies £(v) > 3w(T). But then w(T7) > {(u) > {(v) > 3w(T).
A contradiction.

21

Case 5: v has degree 1 and is the root of T'. Let T} be the tree T\ {v}.
As L(v) = L(r) < 3w(T), w(T') = £(v) + w(T}) implies w(T}) > w(T). O

According to Theorem 2 a problem p from a class of problems that has
i—bisectors can always be subdivided into N subproblems pq, ..., py such
that max;<;<yw(p;) < % . % The following corollary gives a condition
on trees in 7 that ensures that they can be subdivided into N subproblems

1

using ;-bisectors.

Corollary 8 Let T = (V, E) be a tree in T, and let r be its root. Let N be
a positive integer. If w(T') > 3(N — 1)€(r), Algorithm HF partitions T into
N subtrees by cutting exactly N — 1 edges such that the maximum weight of

; ; 9, w(T)
the resulting subtrees is at most 3 - ==

Proof: After k£ bisection steps according to Theorem 7 there are k + 1
(1)

subtrees. There is at least one subtree 1" with weight at least VIZT Let 7’ be

w(T w(T
the root of T7". If k +1 < N, we have w(T") > ﬁ > ﬁ > 30(r) > 30(r"),
and another bisection step is possible.
The upper bound for the maximum weight of any subtree follows directly
from Theorem 2 for v = 1/4 (see also Table 1). O

Note that an optimal min-max k-partition of a weighted tree (i.e., a par-
tition with minimum weight of the heaviest component after removing k
edges) can be computed in linear time [BP95, Fre91]. These algorithms are
preferable to our approach using Algorithm HF in the case of trees that are
to be subdivided by removing a minimum number of edges. Since the heavi-
est subtree in the optimal solution does obviously not have a greater weight
than the maximum generated by Algorithm HF', the bound from Corollary 8
still applies and provides a non-trivial worst-case performance guarantee for
these optimal algorithms as well.

5 Conclusion and Future Work

The existence of a-bisectors for a class of problems was shown to allow good
load balancing for a surprisingly large range of values of @. The maximum
load achieved by Algorithm HF is at most a factor of [1/a] - (1 — a)l/el=2
larger than the theoretical optimum (uniform distribution). This bound was
proved to be tight. It gives a performance guarantee of factor 2 for a > 1/3
and factor 3 for & > 1 — 1/v/2 ~ 0.159.

Load balancing for distributed hierarchical finite element simulations was
discussed, and two strategies for applying Algorithm HF were presented. The

22

first strategy tries to make the best use of the available parallelism, but re-
quires that the nodes of the FE tree representing the load of the computation
have good separators. The second strategy tries to partition the entire FE
tree into subtrees with approximately equal load. For this purpose, it was
proved that a certain class of weighted trees, which include FE trees, has
1/4-bisectors. Here, the trees are bisected by removing a single edge. Parti-
tioning the trees by removing a minimum number of edges ensures that only
a minimum number of communication channels of the application must be
realized by network connections. Our results provide performance guaran-
tees for balancing the load of applications with good bisectors in general and
of distributed hierarchical finite element simulations in particular. For the
latter application, we showed that the maximum resulting load is at most a
factor of 9/4 larger than in a perfectly uniform distribution.

We implemented the load balancing methods proposed in this paper and
integrated them into the existing finite element simulations software ARESO.
We obtained considerable improvements already for small problems, as com-
pared to the static (compile-time) processor allocation currently in use. Since
ARESOQ is primarily a solver of hierarchical equation systems, it is not limited
to statics simulations. Other physical problems described by elliptic partial
differential equations are tractable as well. Currently, we add a component
for CFD (computational fluid dynamics) simulations taken from [Fun97].

Among the applications of project B3 of SFB 342, we can find other
hierarchical numerical distributed algorithms that could be accelerated with
Algorithm HF: Domain decomposition in the process of chip layout with
the placement tool GORDIAN [RR93, Reg97] may result in an unbalanced
binary tree. The subsequent layout process could obviously be improved by
load distribution with Algorithm HEF.

Another application is the multi-dimensional adaptive numerical quadra-
ture agho [Bon93, Bon95|. It is based on an adaptively growing binary tree.
Algorithm HF may be applied in much the same way as in the ARESO ap-
plication, because each traversal visits all tree nodes and adds a new (and
potentially incomplete) layer of leaves.

If a large number of processors is available it is highly desirable to ac-
complish the problem decomposition in parallel. It is possible to parallelize
Algorithm HF while maintaining the worst-case bound on the maximum
load. But this parallel algorithm seems to require a fairly high amount of
communication to route subproblems to free processors. Therefore, we also
investigate a different parallel load balancing strategy that avoids the above
mentioned routing problem. The maximum load generated by this algorithm
in the worst-case is higher than the corresponding bound for Algorithm HF
only by a small factor.

23

Simulation results indicate that Algorithm HF performs very well on av-
erage even for very small values of a. Assume that the actual bisection
parameter is drawn uniformly atrandonlfionltheinuﬂval[a,%L a <L %,
and that all bisections are independent and identically distributed. Then the
observed ratio between the maximum load generated by Algorithm HF and
the ideal load is much smaller than the worst-case bound. We think it nec-
essary to confirm these experimental observations by a detailed average-case
analysis of Algorithm HF under the above assumptions.

References

[BDG'94] A. Beguelin, J. Dongarra, A. Geist, J. Weicheng, R. Manchek, and

[Bon93]

[Bon95]

[BPY5]

[Bra97]

[Bur87]

[EP9S]

[Fre91]

V. Sunderam. PVM : Parallel Virtual Machine : A Users’ Guide and
Tutorial for Networked Parallel Computing. The MIT Press, Cam-
brigde (MA) et. al., 1994.

T. Bonk. A New Algorithm for Multi-Dimensional Adaptive Numerical
Quadrature. In W. Hackbusch, editor, Adaptive Methods — Algorithms,
Theory and Applications: Proceedings of the 9th GAMM Seminar,
Kiel, January 22-24, 1993, pages 54-68. Vieweg Verlag, Braunschweig,
1993.

T. Bonk. Ein rekursiver Algorithmus zur adaptiven numerischen Qua-
dratur mehrdimensionaler Funktionen. PhD thesis, Institut fir Infor-
matik, Technische Universitat Miinchen, 1995.

Ronald I. Becker and Yehoshua Perl. The shifting algorithm technique
for the partitioning of trees. Discrete Appl. Math., 62:15-34, 1995.

Dietrich Braess. Finite Elemente. Springer, Berlin, 1997. 2. iiberar-
beitete Auflage.

D.S. Burnett. Finite Element Analysis. Addison-Wesley Publishing
Company, 1987.

Ralf Ebner and Alexander Pfaffinger. Higher Level Programming and
Efficient Automatic Parallelization: A Functional Data Flow Approach
with FASAN. In Proceedings of the ParCo97 Parallel Computing Con-
ference, 16-19 September 1997, Bonn Bad Godesberg. Elsevier Science
Publishers, Amsterdam, 1998. To appear.

Greg N. Frederickson. Optimal Algorithms for Tree Partitioning. In
Proceedings of the Second Annual ACM-SIAM Symposium on Discrete
Algorithms SODA 91, pages 168-177, New York, 1991. ACM Press.

24

[Fun97]

[HS94]

[Hiit96]

[KGGKY4]

[KGV94]

[KV87]

[Reg97]

[RR93]

[SHKY5]

[SS97]

Kilian Funk. Anwendung der algebraischen Mehrgittermethode auf
konvektionsdominierte Stromungen. Diplomarbeit, Technische Uni-
versitat Munchen, 1997.

Reiner Hiittl and Michael Schneider. Parallel Adaptive Numerical Sim-
ulation. SFB-Bericht 342/01/94 A, Technische Universitit Miinchen,
1994.

Reiner Huttl. Ein iteratives Losungsverfahren bei der Finite-Element-
Methode unter Verwendung von rekursiver Substrukturierung und hier-
archischen Basen. PhD thesis, Institut fir Informatik, Technische
Universitat Miinchen, 1996.

Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. In-
troduction to Parallel Computing: Design and Analysis of Algorithms.
The Benjamin/Cummings Pubishing Company, Inc., Redwood City,
CA, 1994.

Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vempaty. Scal-
able Load Balancing Techniques for Parallel Computers. J. Parallel
Distrib. Comput., 22(1):60-79, 1994.

Vipin Kumar and Nageshwara Rao Vempaty. Parallel depth-first
search, Part II: Analysis. International Journal of Parallel Program-
ming, 16(6):501-519, 1987.

H. Regler. Anwenden von Algebraischen Mehrgittermethoden auf das
Plazierproblem im Chipentwurf und auf die numerische Simulation von
Stromungen. PhD thesis, Technische Universitat Miinchen, 1997.

H. Regler and U. Riide. Layout optimization with Algebraic Multi-
grid Methods (AMG). In Proceedings of the Sixzth Copper Mountain
Conference on Multigrid Methods, Copper Mountain, April 4-9, 1993,
Conference Publication, pages 497-512. NASA, 1993. Also available
as technical report SFB 342/11/93 A, TU Miinchen.

Behrooz A. Shirazi, Ali R. Hurson, and Krishna M. Kavi, editors.
Scheduling and Load Balancing in Parallel and Distributed Systems.
IEEE Computer Society Press, Los Alamitos, CA, 1995.

Thomas Schnekenburger and Georg Stellner, editors. Dynamic Load
Distribution for Parallel Applications. TEUBNER-TEXTE zur Infor-

matik. Teubner Verlag, Stuttgart, 1997.

25

SFB 342:

Methoden und Werkzeuge flie Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

342/01/95 A

342/02/95 A

342/03/95 A

342/04/95 A

342/05/95 A

342/06/95 A
342/07/95 A

342/08/95 A

342/09/95 A

342/10/95 A

342/11/95 A
342/12/95 A

342/13/95 A

342/14/95 A

342/15/95 A

Listealler erschienenen Berichte von 1990-1994
auf besondere Anforderung

Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

Lester R. Lipsky, Appie van de Liefvoort: Transformation of
the Kronecker Product of Identical Servers to a Reduced Product
Space

Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de
Liefvoort: Auto-Correlation of Lag-k For Customers Departing
From Semi-Markov Processes

Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse
Grids: Applications to Multi-dimensional Schrodinger Problems
Maximilian Fuchs: Formal Design of a Model-N Counter
Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-
crosystem Technology

Alexander Pfaffinger: Parallel Communication on Workstation
Networks with Complex Topologies

Ketil Stglen: Assumption/Commitment Rules for Data-flow Net-
works - with an Emphasis on Completeness

Ketil Stglen, Max Fuchs: A Formal Method for Hardware / Soft-
ware Co-Design

Thomas Schnekenburger: The ALDY Load Distribution System
Javier Esparza, Stefan Romer, Walter Vogler: An Improvement of
McMillan’s Unfolding Algorithm

Stephan Melzer, Javier Esparza: Checking System Properties via
Integer Programming

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile Point-
to-Point Dataflow Networks

Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to
Compute the Concurrency Relation of Free-Choice Signal Tran-
sition Graphs

Reihe A

342/16/95 A

342/17/95 A
342/18/95 A

342/19/95 A

342/20/95 A

342/21/95 A

342/22/95 A

342/23/95 A

342/24/95 A

342/01/96 A

342/02/96 A

342/03/96 A

342/04/96 A

342/05/96 A

342/06/96 A

342/07/96 A

342/08/96 A

342/09/96 A

342/10/96 A

342/11/96 A

Bernhard Schatz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

Georg Stellner: Using CoCheck on a Network of Workstations
Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wis-
muller: Workshop on PVM, MPI, Tools and Applications

Thomas Schnekenburger: Integration of Load Distribution into
ParMod-C

Ketil Stglen: Refinement Principles Supporting the Transition from
Asynchronous to Synchronous Communication

Andreas Listl, Giannis Bozas: Performance Gains Using Subpages
for Cache Coherency Control

Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded
Treewidth into Optimal Hypercubes

Petr Jancar, Javier Esparza: Deciding Finiteness of Petruplé&d
Bisimulation

M. Jung, U. Rude: Implicit Extrapolation Methods for Variable
Coefficient Problems

Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic
Multigrid Methods for the Solution of the Navier-Stokes Equations
in Complicated Geometries

Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix
Dependent Geometric Coarsening and Algebraic-Multigrid Coars-
ening for Second Order Elliptic PDEs

Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint
Embeddings of Complete Binary Trees into Hypercubes

Thomas Huckle: Efficient Computation of Sparse Approximate
Inverses

Thomas Ludwig, Roland Wismdiller, Vaidy Sunderam, Arndt
Bode: OMIS — On-line Monitoring Interface Specification

Ekkart Kindler: A Compositional Partial Order Semantics for Petri
Net Components

Richard Mayr: Some Results on Basic Parallel Processes

Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht

P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher,
F. Weimer, H.-M. Windisch: Sprachkonzepte zur Konstruktion
verteilter Systeme

Stefan Lamberts, Thomas Ludwig, Christian Roder, Arndt Bode:
PFSLib — A File System for Parallel Programming Environments
Manfred Broy, Gheorghe Stefanescu: The Algebra of Stream Pro-
cessing Functions

Reihe A

342/12/96 A

342/13/96 A

342/14/96 A

342/15/96 A

342/16/96 A

342/17/96 A
342/18/96 A

342/01/97 A

342/02/97 A

342/03/97 A

342/04/97 A

342/05/97 A

342/06/97 A

342/07/97 A

342/08/97 A

342/09/97 A

342/10/97 A

342/11/97 A

342/12/97 A
342/13/97 A

Javier Esparza: Reachability in Live and Safe Free-Choice Petr
Nets is NP-complete

Radu Grosu, Ketil Stglen: A Denotational Model for Mobile
Many-to-Many Data-flow Networks

Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mit-
schang, Angelika Reiser, Stephan Zimmermann: On Transforming
a Sequential SQL-DBMS into a Parallel One: First Results and
Experiences of the MIDAS Project

Richard Mayr: A Tableau System for Model Checking Petri Nets
with a Fragment of the Linear Time-Calculus

Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von
mobilen, dynamischen Focus-Netzen

Richard Mayr: Model Checking PA-Processes

Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model
Checker on Diet: Verification on Local States

Tobias Muller, Stefan Lamberts, Ursula Maier, Georg Stellner
Evaluierung der Leistungsfahigkeit eines ATM-Netzes mit paral-
lelen Programmierbibliotheken

Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids:
Recent Developments for Elliptic Partial Differential Equations
Bernhard Mitschang: Technologie fur Parallele Datenbanken -
Bericht zum Workshop

nicht erschienen

Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierar-
chische Basen zur effizienten Kopplung substrukturierter Probleme
der Strukturmechanik

Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman
Neunhoeffer, Stefan Schulte: Fluid Structure Interaction: 3D Nu-
merical Simulation and Visualization of a Micropump

Javier Esparza, Stephan Melzer: Model Checking LTL using Con-
straint Programming

Niels Reimer: Untersuchung von Strategien fur verteiltes uadt
Ressourcenmanagement

Markus Pizka: Design and Implementation of the GNU INSEL-
Compiler gic

Manfred Broy, Franz Regensburger, Bernhard Schatz, Katharina
Spies: The Steamboiler Specification - A Case Study in Focus
Christine Rockl: How to Make Substitution Preserve Strong
Bisimilarity

Christian B. Czech: Architektur und Konzept des Dycos-Kerns
Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow

Reihe A

342/14/97 A

342/15/97 A

342/16/97 A

342/17/97 A

342/18/97 A

342/19/97 A

342/20/97 A

342/21/97 A

342/22/97 A

342/23/97 A

342/24/97 A

342/25/97 A

342/26/97 A

342/27/97 A

342/28/97 A

342/29/97 A

342/01/98 A

342/02/98 A

342/03/98 A

Norbert Frohlich, Rolf Schlagenhaft, Josef Fleischmann: Partition-
ing VLSI-Circuits for Parallel Simulation on Transistor Level

Frank Weimer: DaViT: Ein System zur interaktiven Ausfuihrung
und zur Visualisierung von INSEL-Programmen

Niels Reimer, Jurgen Rudolph, Katharina Spies: Von FOCUS nach
INSEL - Eine Aufzugssteuerung

Radu Grosu, Ketil Stglen, Manfred Broy: A Denotational Model
for Mobile Point-to-Point Data-flow Networks with Channel
Sharing

Christian Roder, Georg Stellner: Design of Load Management for
Parallel Applications in Networks of Heterogenous Workstations
Frank Wallner: Model Checking LTL Using Net Unfoldings
Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen
Theorembeweisers in einer taktikgesteuerten Beweisumgebung zur
Losung eines Beispiels aus der Hardware-Verifikation —Fallstudie—
Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated The-
orem Proving

T. Ludwig, R. Wismdiller, V. Sunderam, A. Bode: OMIS - On-line
Monitoring Interface Specification (Version 2.0)

Stephan Merkel: Verification of Fault Tolerant Algorithms Using
PEP

Manfred Broy, Max Breitling, Bernhard Schatz, Katharina Spies
Summary of Case Studies in Focus - Part Il

Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel
Processing of Aggregat and Scalar Functions in Object-Relational
DBMS

Marc Fuchs: Similarity-Based Lemma Generation with Lemma-
Delaying Tableau Enumeration

Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase Frame-
Work for the Evaluation and Maintenance of Automated Theorem
Prover Data (incl. Documentation)

Radu Grosu, Ketil Stglen: Compositional Specification of Mobile
Systems

A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schie-
mann, T. Schnekenburger (Herausgeber): “Anwendungsbezogene
Lastverteilung”, ALV’'98

Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommu-
nikationsanwendung indcus

Katharina Spies: Eine Methode zur formalen Modellierung von
Betriebssystemkonzepten

Reihe A

342/04/98 A Stefan Bischof, Ernst W. Mayr: On-Line Scheduling of Parallel
Jobs with Runtime Restrictions

342/05/98 A Stefan Bischof, Ralf Ebner, Thomas Erlebach: Load Balancing for
Problems with Good Bisectors, and Applications in Finite Element
Simulations: Worst-case Analysis and Practical Results

SFB 342:

Reihe B

342/1/90 B
342/2/90 B
342/3/90 B
342/4/90 B
342/1/91 B
342/2/91 B
342/3/91 B
342/4/91 B
342/5/91 B

342/6/91 B

342/7/91 B
342/1/92 B

342/2/92 B

342/1/93 B

342/2/93 B

342/1/94 B

Methoden und Werkzeugdée flie Nutzung paralleler
Rechnerarchitekturen

Wolfgang Reisig: Petri Nets and Algebraic Specifications

Jorg Desel: On Abstraction of Nets

Jorg Desel: Reduction and Design of Well-behaved Free-choice
Systems

Franz Abstreiter, Michael Friedrich, Hans-Jurgen Plewan: Das
Werkzeug runtime zur Beobachtung verteilter und paralleler Pro-
gramme

Barbara Paechl1: Concurrency as a Modality

Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier-Toolbox —
Anwenderbeschreibung

Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop
Uber Parallelisierung von Datenbanksystemen

Werner Pohlmann: A Limitation of Distributed Simulation Meth-
ods

Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually
Shared Memory Scheme: Formal Specification and Analysis
Dominik Gomm, Ekkart Kindler: Causality Based Specification
and Correctness Proof of a Virtually Shared Memory Scheme

W. Reisig: Concurrent Temporal Logic

Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set
of-Support

Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturiiberblick

Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen fur MIDAS

