
TECHNISCHEUNIVERSIT�ATM �UNCHEN
INSTITUT F�UR INFORMATIKSonderforschungsbereich 342:Methoden und Werkzeuge f�ur die Nutzungparalleler Rechnerarchitekturen

Load Balancing for Problems withGood Bisectors, and Applications inFinite Element Simulations:Worst-case Analysis and Practical ResultsStefan Bischof, Ralf Ebner, Thomas Erlebach

TUM-I9811SFB-Bericht Nr. 342/05/98 AMai 98

TUM{INFO{05-I9811-150/1.{FIAlle Rechte vorbehaltenNachdruck auch auszugsweise verbotenc
1998 SFB 342 Methoden und Werkzeuge f�urdie Nutzung paralleler ArchitekturenAnforderungen an: Prof. Dr. A. BodeSprecher SFB 342Institut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GermanyDruck: Fakult�at f�ur Informatik derTechnischen Universit�at M�unchen

Load Balancing for Problems withGood Bisectors, and Applications inFinite Element Simulations:Worst-case Analysis and Practical ResultsStefan Bischof Ralf EbnerThomas ErlebachInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, Germany{bischof|ebner|erlebach}@in.tum.dehttp://www{mayr|zenger}.in.tum.de/May 28, 1998AbstractThis paper studies load balancing issues for classes of problemswith certain bisection properties. A class of problems has �-bisectorsif every problem in the class can be subdivided into two subproblemswhose weight is not smaller than an �-fraction of the original prob-lem. It is shown that the maximum weight of a subproblem producedby Algorithm HF, which partitions a given problem into N subprob-lems by always subdividing the problem with maximum weight, is atmost a factor of b1=�c � (1 � �)b1=�c�2 greater than the theoreticaloptimum (uniform partition). This bound is proved to be asymptot-ically tight. Two strategies to use Algorithm HF for load balancingdistributed hierarchical �nite element simulations and experimentalresults are presented. For this purpose, a certain class of weightedbinary trees representing the load of such applications is shown tohave 1=4-bisectors. This establishes a performance guarantee of 9=4for load balancing in this case. 1

1 IntroductionLoad balancing is one of the major research issues in the context of parallelcomputing. Irregular problems are often di�cult to tackle in parallel be-cause they tend to overload some processors while leaving other processorsnearly idle. For these applications it is very important to �nd methods forobtaining a balanced distribution of load. Usually, the load is created by pro-cesses that are part of a (parallel) application program. During the run ofthe application, these processes perform certain calculations independentlybut have to communicate intermediate results or other data using messagepassing. One is usually interested in achieving a balanced load distributionin order to minimize the execution time of the application or to maximizesystem throughput.Load balancing problems have been studied for a huge variety of models,and many di�erent solutions regarding strategies and implementation mech-anisms have been proposed. A good overview of recent work can be obtainedfrom [SHK95], for example. [SS97] reviews ongoing research on dynamic loadbalancing, emphasizing the presentation of models and strategies within theframework of general classi�cation schemes.In this paper we study load balancing for a very general class of problems.The only assumption we make is that all problems in the class have a certainbisection property. Such classes of problems arise, for example, in the con-text of distributed hierarchical �nite element simulations. We show how ourgeneral results can be applied to numerical applications in several ways. Theremainder of the paper is structured as follows. In Section 2 we present andanalyze a very general and simple algorithm that computes a good load dis-tribution for classes of problems with �-bisectors. Section 3 brie
y explainsdistributed �nite element simulations with recursive substructuring. Twostrategies for applying the algorithm from Section 2 to these applications arediscussed. Section 4 shows that certain weighted trees, which model the loadof applications in numerical simulations like the one discussed in Section 3,have 1=4-bisectors. This implies a performance guarantee1 of 9=4 for loadbalancing these applications. Section 5 summarizes our results.2 Using Bisectors for Load BalancingIn many applications a computational problem cannot be divided into manysmall problems as required for an e�cient parallel solution directly. Instead,1An algorithm has performance guarantee � if the maximum load produced by thealgorithm is at most a factor of � larger than the maximum load of an optimum solution.2

Input: problem p, positive integer NbeginP fpg;while jP j < N dobeginq a problem in P with maximum weight;bisect q into q1 and q2;P (P [fq1; q2g) n fqg;end;output P ;end.Figure 1: Algorithm HF (Heaviest Problem First)a strategy similar to divide and conquer is used repeatedly to divide prob-lems into smaller subproblems. We refer to the division of a problem into twosmaller subproblems as bisection. Assuming a weight function w that mea-sures the resource demand, a problem p cannot always be bisected into twosubproblems p1 and p2 of equal weight w(p)=2. For many classes of problems,however, there is a bisection method that guarantees that the weights of thetwo obtained subproblems do not di�er too much. The following de�nitioncaptures this concept more precisely.De�nition 1 Let 0 < � � 12 . A class P of problems with weight functionw : P ! R+ has �-bisectors if every problem p 2 P can be e�ciently dividedinto two problems p1 2 P and p2 2 P with w(p1) + w(p2) = w(p) andw(p1);w(p2) 2 [�w(p); (1� �)w(p)].Note that this de�nition requires for the sake of simplicity that all prob-lems in P can be bisected, whereas in practice this is not the case for prob-lems whose weight is below a certain threshold. We assume, however, thatthe problem to be divided among the processors is big enough to allow furtherbisections until the number of subproblems is equal to the number of proces-sors. This is a reasonable assumption for most relevant parallel applications.A de�nition very similar to ours (�-splitting) is used by Kumar, Grama,and Rao [KV87, KGV94] [KGGK94, pp. 315{318] under the assumptionthat the weight of a problem is unknown to the load balancing algorithm.2.1 Tight Analysis of Algorithm HFFigure 1 shows Algorithm HF, which receives a problem p and a numberN of processors as input and divides p into N subproblems by repeated3

application of �-bisectors to the heaviest remaining subproblem. A perfectlybalanced load distribution on N processors would be achieved if a problemp of weight w(p) was divided into N subproblems of weight exactly w(p)=Neach. The following theorem gives a worst-case bound on the ratio betweenthe maximum weight among the N subproblems produced by Algorithm HFand this ideal weight w(p)=N .Theorem 2 Let P be a class of problems with weight function w : P ! R+that has �-bisectors. Given a problem p 2 P and a positive integer N ,Algorithm HF uses N � 1 bisections to partition p into N subproblems p1,. . . , pN such that max1�i�N w(pi) � w(p)N � � 1�� � (1� �)b 1�c�2 :Proof: It is obvious that Algorithm HF uses N � 1 bisections to partitionp into N subproblems. In the following we show that the stated inequalityregarding the maximum weight among these subproblems holds.We introduce the bisection tree T to represent the run of the algorithmon input p and N . The root of T is the problem p. If the algorithm bisectsa problem q into q1 and q2, nodes q1 and q2 are added to T as children ofnode q. In the end, T has N leaves, which correspond to the N subproblemscomputed by the algorithm, and all problems that were bisected by the al-gorithm appear as internal nodes with exactly two children. Figure 2 givesan example of a bisection tree for a problem of weight 44 from a class ofproblems with 17 -bisectors. We follow the convention of drawing the nodewith greater weight among two children of the same parent as a left child ofthat parent.The following properties hold for bisection trees arising from classes ofproblems with �-bisectors. Let the leaves of the tree be p1, . . . , pN and letm := max1�i�N w(pi).(a) w(q) � m for all internal nodes q(b) w(q) � 11��w(q0) if q0 is a child of q(a) holds because the algorithm always bisects a subproblem of maximumweight; since one of the pi has weight m, there must have been at least onesubproblem of weight � m during the whole run of the algorithm, and thusthe algorithm never bisected a problem of weight < m. (b) follows directlyfrom w(q0) � (1��)w(q), which holds because the algorithm uses �-bisectors.Now remove from the bisection tree all internal nodes which are not parentof a leaf. This partitions the bisection tree into a number of disjoint branches,4

4435 9530 1515 78510 55Figure 2: Example of a bisection tree1510 55 5(a) leaf-branch 158 7(b) leaf-branch
4435 95(c) internal branchFigure 3: Branches obtained from the example tree

1510 55 5
4435 95158 7Figure 4: Composed leaf-branches obtained from the example tree5

whose shape can be that of a leaf-branch (one of the internal nodes of thebranch has two leaf children) or that of an internal branch (all the internalnodes of the branch have exactly one leaf child). The branches obtained fromthe example tree of Figure 2 are shown in Figure 3. Our goal is to derive alower bound for the average weight of the leaves in each branch.Consider a leaf-branch with k internal nodes, k � 1. Denote its internalnodes by v1, v2, . . . , vk such that vi+1 is the parent of vi for 1 � i � k � 1.Furthermore, let ci denote the leaf child of vi for 2 � i � k, and let c0 andc1 denote the leaf children of v1. As (a) implies w(v1) � m, we have by (b)w(vi) � � 11���i�1m for 1 � i � k and w(ci) � � � 11���i�1m for 1 � i � k.The average weight of the leaves c0, . . . , ck can now be bounded from belowas follows:1k + 1 kXi=0 w(ci) � 1k + 1 m+ kXi=2 �� 11� ��i�1m!= 1k + 1 m(1� �) + �m k�1Xi=0 1(1� �)i!= 1k + 1 �m(1� �) +m(�� 1)�1� 1(1� �)k��= m(k + 1)(1� �)k�1 :If there are internal branches, we do not deal with them separately butinstead attach them to leaf-branches. For example, one can consider theleaf-branches one by one and attach to each leaf-branch all internal branchesthat intersect the path from the leaf-branch to the root of the bisectiontree and that have not been attached to a di�erent leaf-branch beforehand.Here, attaching an internal branch to a leaf-branch means making the rootof the leaf-branch a child of the bottom-most internal node of the internalbranch, resulting in a new leaf-branch. We call the leaf-branches obtained byattaching zero or more internal branches to an original leaf-branch composedleaf-branches. Observe that conditions (a) and (b) are satis�ed for thesecomposed leaf-branches as well. Hence, the lower bound above also pertainsto the average weight of the leaves in such a composed leaf-branch. Thebisection tree from Figure 2 contained two leaf-branches and one internalbranch as illustrated in Figure 3. Attaching the internal branch to one of theleaf-branches gives the composed leaf-branches shown in Figure 4.As every leaf of the bisection tree appears in exactly one composed leaf-branch, we conclude that mink2N m(k+1)(1��)k�1 is a lower bound on the average6

weight of all leaves in the bisection tree. Therefore, we obtainw(p) = NXi=1 w(pi) � Nmmink2N 1(k + 1)(1� �)k�1 : (1)Besides, we observe thatmink2N 1(k + 1)(1� �)k�1 = 1maxk2N ((k + 1)(1� �)k�1) ; (2)and we claim that (k + 1)(1� �)k�1 as a function of k 2 N is maximized fork̂ = b1=�c � 1. To see this, let f(k) = (k + 1)(1 � �)k�1 and consider theratio f(k)=f(k � 1) = (1� �)(k + 1)=k. We obtain:f(k)f(k � 1) = 8><>: > 1 for k < 1� � 1= 1 for k = 1� � 1< 1 for k > 1� � 1 :For a �xed value of �, f(k) is monotone increasing from k = 1 to k =b1=�c � 1 and monotone decreasing for larger values of k. If 1=� is notan integer greater than 2, f(k) is maximum only for k = b1=�c � 1. If1=� is an integer greater than 2, f(k) is maximum for k = b1=�c� 1 and fork = b1=�c�2. In any case we have maxk2N �(k + 1)(1� �)k�1� = f(b1=�c�1) = b1=�c � (1� �)b1=�c�2, and the theorem follows with (1) and (2). utFor some values of �, Table 1 gives worst-case bounds on the ratio betweenmax1�i�N w(pi) and w(p)N as well as a value of k for which (k+1)(1��)k�1 ismaximized. These bounds show that the worst-case deviation from the idealload distribution, in which w(pi) = w(p)N for all 1 � i � N , is bounded by asmall constant for a wide range of �. Note that in many cases an ideal loaddistribution cannot be achieved by any algorithm.Corollary 3 Let P be a class of problems with weight function w : P ! R+that has �-bisectors. Given a problem p 2 P and a positive integer N ,Algorithm HF uses N � 1 bisections to partition p into N subproblems p1,. . . , pN such that max1�i�N w(pi) � w(p)N � 1e(1� �)2 ln 11�� :Proof: In the proof of Theorem 2 it was shown thatmax1�i�N w(pi) � w(p)N �maxk2N ((k + 1)(1� �)k�1) : (3)7

Table 1: Worst-case ratio of Algorithm HF for di�erent values of �� k ratio0:02 49 18:960:04 24 9:780:06 15 6:730:08 11 5:210:10 8 4:300:12 7 3:720:14 6 3:290:16 5 2:990:18 4 2:760:20 3 2:56
� k ratio0:21 3 2:500:22 3 2:430:23 3 2:370:24 3 2:310:25 2 2:250:26 2 2:220:27 2 2:190:28 2 2:160:29 2 2:130:30 2 2:10

� k ratio0:31 2 2:070:32 2 2:040:325 2 2:0250:33 2 2:010:331 2 2:0070:332 2 2:0040:333 2 2:0010:334 1 2:000:40 1 2:000:50 1 2:00Observe that the term maximized on the right hand side of this inequalityis a di�erentiable function of k. Therefore, we de�ne f : R+ ! R+ byf(k) = (k + 1)(1� �)k�1. The derivative of f is:f 0(k) = (1� �)k�1 � ((k + 1) ln(1� �) + 1) :The derivative is zero for (k + 1) ln(1� �) = �1 ;which is the case only for k̂ = �1ln(1��) � 1.Substituting yields f(k̂) = �e(1� �)2 ln 11����1 , and this is the globalmaximum of f . Hence,maxk2N ((k + 1)(1� �)k�1) � 1e(1� �)2 ln 11�� ;and the corollary follows directly from inequality (3). utIn Figure 5 the worst-case bound for the ratio between max1�i�N w(pi)and w(p)=N from Theorem 2 as well as the continuous approximation of thisbound �e(1� �)2 ln 11����1 from Corollary 3 are plotted for 0:08 � � � 0:5.It turns out that the continuous approximation of the bound matches thediscrete bound (cf. Table 1) almost exactly for � � 0:3. To complete thispart of our analysis, we observe that the exact upper bound on the ratiobetween max1�i�N w(pi) and w(p)=N is 2 for � � 1=3.Now we give a lower bound for the worst-case ratio between the maximumweight subproblem generated by Algorithm HF and the ideal value given bya uniform partition. This will show that the upper bound from Theorem 2is tight. 8

0.08 0.14 0.20 0.26 0.32 0.38 0.44 0.502.02.5
3.03.5
4.04.5
5.0

�

ratio

Figure 5: Plot of discrete (dotted) and continuous worst-case boundsTheorem 4 For each 0 < � � 12 there exists a class of problems Q� thathas �-bisectors and contains a family of problems (ql)l2N such thatliml!1 max1�i�Nl w(qli)w(ql)Nl = � 1�� � (1� �)b 1�c�2 ;where Nl = b1=�c � 2l� 1 and ql1; ql2; : : : ; qlNl are the subproblems generated byAlgorithm HF on input ql and Nl.Proof: Let Q� be a class of problems with weight function w : P ! R+ andthe following properties:(a) each q 2 Q� with w(q) > 1 can only be partitioned into 2 subproblemsof weight w(q)=2 each(b) each q 2 Q� with w(q) � 1 can only be partitioned into 2 subproblemsof weight (1� �)w(q) and �w(q)(c) for every l 2 N there is a problem ql 2 Q� of weight w(ql) = 2lClearly, Q� has �-bisectors according to De�nition 1.9

Let k = b1=�c�2. For a given l 2 N , choose a problem ql 2 Q� of weight2l and let Nl = (k+2)2l� 1. On input ql and Nl, Algorithm HF proceeds asfollows. After the �rst 2l� 1 bisections, there are 2l subproblems of weight 1each. We assign level 0 to these problems and call them active. As theweight of each active problem is � 1, the next 2l bisections performed by thealgorithm subdivide all active problems on level 0 and generate subproblemsof weight 1 � � and �, which are assigned level 1. Now the 2l problems onlevel 1 with weight 1� � become active. This process is repeated such thatin phase i, i � 0, the algorithm subdivides all 2l problems of weight (1� �)ion level i. At the end of phase i there are (i + 2)2l subproblems altogether.The subdivision process is �nished when exactly one active subproblem onlevel k of weight (1� �)k remains.To ensure that the algorithm indeed subdivides the active problems onlevel i in phase i for all 0 � i � k and not the heaviest inactive problem, whichhas weight �, it is required that (1� �)k � �. This is obvious for k = 0; 1.For k � 2, recall that the series (1� 1=(k+1))k converges strictly decreasingfrom above to e�1 and note that k = b1=�c� 2 implies � � 1=(k+2) � 1=4.Hence, (1� �)k � �1� 1k + 2�k � �1� 1k + 1�k � 1e � 14 � � :In the end, Algorithm HF has generated (k+2)2l� 1 subproblems and amaximum weight of (1� �)k. Thus,max1�i�Nl w(qli) = w(ql)Nl � (1� �)k(k + 2� 2�l) ;and the assertion of the theorem follows by substituting k = b1=�c � 2 andtaking into account liml!1 2�l = 0. ut2.2 A Better Bound for Small NNote that the bound of Theorem 2 is independent ofN , the number of desiredsubproblems. Although we have shown that this bound is tight asymptoti-cally, it is possible to obtain a better bound if N is su�ciently small. Again,we will show that this improved bound is tight. To establish this result, weneed the followingLemma 5 Let � � 1=5, 2 � k � 1=�. Then, with the assumptions ofTheorem 2, for any leaf-branch of a bisection tree with k leaves p1; p2; : : : ; pkand root p: max1�i�kw(pi) � w(p)(1� �)k�1:10

Proof: If all bisections are exact �-bisections we conclude that the maximumweight subproblem generated by Algorithm HF has weight w(p)(1 � �)k�1since � < (1 � �)k�1 for k � 1=� and � � 1=5. Clearly, the upper boundremains valid if the maximum weight subproblem is the leftmost leaf of theleaf-branch.Therefore, we consider the case that the maximum weight subproblemdoes not result from the last bisection step. Let m := max1�i�k w(pi). Thecombined weight of the maximum weight leaf and the 2 leaves generated inthe last bisection step is at least 2m. The total weight of the remaining leavescan be bounded from below bym � 11� ��k�3 � 1!using the same argument as in the proof of Theorem 2. Thus,m � w(p)� 11���k�3 + 1 ;and it remains to show that the right hand side of this inequality is no morethan w(p)(1� �)k�1. But since � � 1=5 and k � 1=� we have1 � 0:64 + e�1� (1� �)2 + (1� �)k�1� � 11� ��k�3 + 1! (1� �)k�1: utTheorem 6 Let P be a class of problems with weight function w : P ! R+that has �-bisectors and assume � � 1=5. Given a problem p 2 P and apositive integer N � 1=�, Algorithm HF uses N � 1 bisections to partition pinto N subproblems p1, . . . , pN such thatmax1�i�N w(pi) � w(p)(1� �)N�1 :Proof: We will show that the worst-case bisection tree is a single leaf-branchif the assumptions of the theorem hold. The claim then follows immediatelyfrom the previous lemma.Let us assume that the bisection tree generated by the run of Algo-rithm HF is not a single leaf-branch. Consequently, the bisection tree hasinternal nodes which are not parent of a leaf. We call these nodes cut-nodes.Let m := max1�i�N w(pi). Observe that a cut-node has weight at least 2m.11

If there are 2 or more cut-nodes we distinguish two cases. First, assumethat there are 2 cut-nodes such that one is neither an ancestor nor a de-scendant of the other. Then their combined weight is at least 4m and thusm � (1=4)w(p). But we have 1=4 < e�1 < (1� �)N�1 by the assumptions ofthe theorem. If there are 2 cut-nodes c1 and c2 such that c1 is an ancestorof c2, we know that c1 is the parent of an internal node not on the pathbetween c1 and c2 and thus the weight of c1 is at least 3m. We conclude thatm � (1=3)w(p) < e�1w(p) in this case.Now consider the case that there is exactly one cut-node c. If the max-imum weight leaf is not in the subtree rooted at c we conclude w(p) � 3mand �nish the proof for this case as above. Otherwise, let the children of cbe x and y and assume without loss of generality that the maximum weightleaf is contained in the leaf-branch rooted at x. Denote the number of bisec-tion steps in the leaf-branch rooted at x (y) by dx (dy), and let N 0 denotethe number of leaves in the subtree rooted at c. Observe that N 0 � 4,1 � dx; dy � N 0 � 3 and dx + dy = N 0 � 2. As we have � � 1=5 and themaximum weight leaf is contained in the leaf-branch rooted at x, we concludew(x) � m(11��)dx using Lemma 5. Since any internal node in the leaf-branchrooted at y has weight at least m, we have w(y) � m(11��)dy�1 as in the proofof Theorem 2. Combining these two bounds and substituting dy = N 0�2�dxyields:w(x) + w(y) � m � 11� ��dx + � 11� ��N 0�3�dx! � m� 11� ��N 0�1 ;where the last inequality is equivalent to (1 � �)N 0�1�dx + (1� �)dx+2 � 1.This can be shown to hold for � � 1=5 by a straightforward calculation usinganalytic techniques. Hence, using w(c) = w(x) + w(y) we havew(c) � m� 11� ��N 0�1 : (4)Assume that there are dz nodes, dz � 0, above c on the path from c to theroot p of the bisection tree. Observe thatw(p) � w(c)� 11� ��dz : (5)As N = N 0 + dz, Equations (4) and (5) imply m � w(p)(1� �)N�1. utIt is easy to verify N(1 � �)N�1 � � 1�� � (1 � �)b 1�c�2 for N � � 1��observing that the left-hand side of this inequality is monotone increasing12

0.050 0.075 0.100 0.1252.53.03.54.04.5
5.05.56.06.57.0
7.58.0

�

ratio

Improved upper bound for N = 8
General upper bound

Figure 6: Comparison of general and improved upper boundfrom N = 1 to N = � 1�� and the inequality holds trivially for the latter valueof N . Figure 6 compares the general with the improved upper bound on theratio between max1�i�N w(pi) and w(p)N for N = 8.Let �̂ be the real root of the equation (1 � �)2 + (1 � �)3 � 1 = 0.It can be shown that �̂ � 0:245122 is the largest possible value for � inLemma 5 and Theorem 6. For � > �̂ there are indeed leaf-branches andbisection trees with a maximum weight leaf that is heavier than the upperbound provided by Lemma 5 and Theorem 6. If we choose � = 1=4 andN = 4, for example, there is a leaf-branch whose maximum leaf weight is(3=7)w(p) > (3=4)3w(p). Furthermore, it is possible to construct bisectiontrees with max1�i�N w(pi) = w(p)(1��)=(2��) for N = 4, � � (3�p5)=2.Figure 7 illustrates these exceptional cases for N = 4.
3 36 28 614

6 2 3 38 614
Figure 7: Worst-case leaf-branch and bisection tree for N = 4, � = 1413

p = 0.1

1.0

1.0

E = 100000

thickness = 0.01

Poisson ratio = 0.3

plane stress

Figure 8: Static system of a short cantilever3 Application of Algorithm HF to DistributedFinite Element SimulationsIn this section, we present the application of Algorithm HF for load balanc-ing in the �eld of numerical simulations with the �nite element (FE) method[Bra97, Bur87]. The FE method is used in statics analysis, for example, tocalculate the response of objects under certain loading and boundary condi-tions.In [H�ut96, HS94], an adaptive FE method based on the principle of re-cursive substructuring has been developed. It is an iterative procedure wherein several runs of computation the result is improved automatically until aprede�ned accuracy is reached. The costs for achieving this accuracy aremuch lower than with a non-adaptive procedure.3.1 Recursive SubstructuringStarting an analysis with the FE method, an object is described by de�ningits shape and its structural properties. Then, the boundary and loadingconditions have to be imposed on the object. A system of partial di�erentialequations describes the relation between external loads and internal forces.As an example from structural engineering, we consider a short cantileverunder plane stress conditions, a problem from the domain of plane elasticity.The quadratic panel is uniformly loaded on its upper side. The left side ofthe cantilever is �xed as shown in Figure 8.14

The physical properties for the material of the cantilever are given by theYoungs modulus E and the Poisson ratio �. The di�erential equations (6)and (7) describe the response of the object under the external loads:E1� �2 � @2u@x2 + E2(1� �) � @2v@x@y + E2(1 + �) � @2u@y2 = �f (6)E1� �2 � @2v@y2 + E2(1� �) � @2u@x@y + E2(1 + �) � @2v@x2 = �g; (7)where u and v are the unknown displacements and f and g the external forcesin x- and y-direction, respectively.We substructure the physical domain of the cantilever recursively (Fig-ure 9, left). With the method of [H�ut96, HS94], a tree data structure is builtre
ecting the hierarchy of the substructured domain (see Figure 9, right). Ineach node, points on the separator line represent unknown values of displace-ment, and points on the border carry variable boundary conditions imposedby the parent node. Each tree node contains a system of linear equationswhose sti�ness matrix S determines the unknown displacement values de-pendent on the external forces:S � û̂v � = � f̂̂g � :In the leaves, the system of equations is constructed by a standard FE dis-cretization. Roughly speaking, the equations are obtained by an approxima-tion of the functions u, v, f , and g by linear combinations (û, v̂, f̂ , and ĝ,respectively) of partially bilinear basis functions with limited support withinthe discretizing mesh, and some additional algebraic and analytical transfor-mations. The system of equations of an internal tree node is assembled outof the equations of its children, as described in [H�ut96].Now, the task is to solve all those systems of linear equations. We use aniterative solver which traverses the tree several times, promoting displace-ments in top-down direction and reaction forces in bottom-up direction. Ineach node, the amount of work to be done stays the same during the itera-tions. But since the adaptive structure of the tree is not known a priori, it isessential to have a good load balancing strategy before the parallel executionof the solving phase.3.2 Application of Algorithm HFWe assign a load value `(p) to each tree node p, given by`(p) = Cb nb(p) + Cs ns(p)15

Incomp. Points

f

y,v
x,u

Free Boundary
Separator
Fixed Boundary

Figure 9: A coarse discretizing mesh and the resulting binary tree data struc-ture for the short cantileverwith nb(p) points on the border without boundary conditions (grey pointsin Figure 9), and ns(p) points on the separator line of node p (black pointsbelonging to the borders of both children in Figure 9). The load value `(p)models the computing time of node p, where the constants Cs and Cb areindependent of node p and Cs � 6Cb. Points with �xed boundary values aswell as incompatible points on the separator (white points) do not contributeto the load value `(p).We can interpret the FE tree as an approximate (potential) bisection treeby accumulating the load of all nodes in the subtree rooted in node p to getthe weight value w(p):w(p) = � `(p) if p is leaf`(p) + w(c1) + w(c2) if p is internal node or root;where c1 and c2 are the children of p.16

 �� ��

Figure 10: The discretizing meshes for the domain of the short cantileverThe weight values are collected during the tree construction phase bysimply counting and accumulating the number of points on the separator ofeach tree node.If we want to apply Algorithm HF to this tree of weight values, we mustspecify which bisection steps the algorithm can perform. Our �rst approachis to de�ne a bisection step as the removal of the root node p of a subtree.This yields two subtrees rooted at the children c1 and c2 of p, and p is ignoredfor the remainder of the load balancing phase.Such bisection steps do not exactly match De�nition 1, because the weightof node p exceeds the weight sum w(c1)+w(c2) of the children by `(p). How-ever, `(p) (work load of the one-dimensional separator) is negligible comparedto w(p) (work load of the two-dimensional domain) in our application if theFE tree is large enough. Hence, the results of Theorem 2 and Corollary 3are well approximated.Algorithm HF chops N subtrees o� the FE tree, each of which can betraversed in parallel by the iterative solver. These N subtrees contain themain part of the solving work and may be distributed over the available Nprocessors. The upper N � 1 tree nodes cannot exploit the whole number ofprocessors, anyway. Therefore, such a distribution does not sacri�ce parallelpotential in the upper tree levels.3.3 Runtime ExamplesIn [EP98], a parallel implementation of the recursive substructuring tech-nique is described using the data
ow language FASAN as coordination andautomatic parallelization platform. For this paper, however, we used a hand-coded parallel version based on PVM [BDG+94] in order to minimize com-17

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

so
lv

er
 r

un
tim

e
[s

ec
]

number of workstations

static load balance
load balance with Algorithm HF

Figure 11: Runtime results for 1,279 tree nodesmunication overhead. The number of solver iterations (tree traversals) was�xed to 100. The experiments were run on a cluster of workstations of typeHP 9000/720.Figure 11 shows the runtime results of the numerical simulation of theshort cantilever under uniform load described above. We have chosen quitea small tree of 1,279 element nodes and maximal depth 11 (see the leftdiscretizing mesh in Figure 10, representing the leaves of the FE tree). Sinceadaptivity was limited to two additional tree levels only, the node weightsresulted in � = 0:18571.For two workstations, the partitioning with Algorithm HF is identicalto static partitioning (just chopping o� the root node). Further speedupfrom 4 to 6 processors with Algorithm HF occurs earlier than with staticpartitioning (from 6 to 7 processors). In this comparatively small problem,it is mainly the critical path of the FE tree that determines the lower boundfor the tree traversal time and inhibits further acceleration with more than�ve processors.The e�ect of AlgorithmHF is more important in larger simulations, whereadaptivity for high numerical accuracy is distinct and where it is essentialto split the biggest subtrees. The runtime results of a computation with adeeper FE tree of maximal depth 17 can be seen in Figure 12. It contains11,263 nodes (Figure 10, right), and � has quite a bad value of 0:10615. Here,the runtime improvement with Algorithm HF is more signi�cant, since theload value `(p) of the root is quite small in relation to the weight sum w(p) ofthe whole tree. We observe that the distributed iterative solver is up to 70%faster with application of Algorithm HF compared to static partitioning if atleast four processors are used. Even on 16 processors, static partitioning doesnot split the subtree which is responsible for the longest computing time.18

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

so
lv

er
 r

un
tim

e
[s

ec
]

number of workstations

static load balance
load balance with Algorithm HF

Figure 12: Runtime results for 11,263 tree nodesNevertheless, we clearly recognize, again, the in
uence of the critical treepath: Applying Algorithm HF, we reach nearly minimal runtime with eightprocessors already.3.4 Further ImprovementsFor arbitrary adaptive FE simulations, we cannot give a limit for the bisectionfactor �. If � gets too small, we still have two possibilities to prevent toobad a partitioning:� During the tree construction phase, we can choose between horizontaland vertical bisection of the subdomain of each node, whichever leadsto the greater local value of �.� Moreover, we might set N as a multiple of the number of availableprocessors, so there is still a chance to compensate a small � value byassigning multiple partitions to one processor.As the factor � is known immediately after the tree construction or re-�nement phase, the user can be warned before starting the iterative solver ifthe partitioning is not satisfactory.To avoid the small-�-problem completely, another strategy using Algo-rithm HF allows the removal of a single edge of a tree as a bisection step. This19

strategy partitions the entire given FE tree into N subtrees of approximatelyequal size. Section 4 shows that FE trees satisfying the conditions`(p) � `(c1) + `(c2)`(p) � `(ci) (i = 1; 2)have good bisectors. This application of Algorithm HF also takes into ac-count that the main memory resources of the processors become the limitingfactor if very high accuracy of the simulation is required. In this case, �nd-ing a partitioning of the entire tree (not only a set of equal-sized subtreesignoring their ancestors in the tree) is necessary.4 Weighted Trees with Good BisectorsLet T be the set of all rooted binary trees with node weights `(v) satisfying:(1) `(p) � `(c1) + `(c2) for nodes p with two children c1 and c2(2) `(p) � `(c) if c is a child of pThe weight of a tree T = (V;E) in T is de�ned as w(T) =Pv2V `(v).This class T of binary trees models the load of applications in hierarchical�nite element simulations, as discussed in Section 3. Recall that in theseapplications the domain of the computation is repeatedly subdivided intosmaller subdomains. The structure of the domains and subdomains yieldsa binary tree in which every node has either two children or is a leaf. Theresource demands (CPU and main memory) of the nodes in this FE tree aresuch that the resource demand at a node is at most as large as the sum of theresource demands of its two children. In order to parallelize the computation,it is necessary to distribute the FE tree among a number of processors in abalanced way.Note that Conditions (1) and (2) ensure that the two subtrees obtainedfrom a tree in T by removing a single edge are also members of T .The following theorem shows that trees from the class T can be 14 -bisectedby removal of a single edge unless the weight of the tree is concentrated inthe root.Theorem 7 Let T = (V;E) be a tree in T , and let r be its root. If `(r) �34w(T), then there is an edge e 2 E such that the removal of e partitions Tinto subtrees T1 and T2 with w(T1);w(T2) 2 [14w(T); 34w(T)].Proof: We give a simple method to �nd the required edge. Pick an arbitrarynode v of T as a start node. While T n fvg contains a subtree T 0 with20

vuT1
T2 T3

v = rT1 T2 vuT1
T2 vuT1 v = rT1Figure 13: The 5 cases for v in proof of Theorem 7w(T 0) > 34w(T), replace v by the node adjacent to v which is contained inT 0. This process always terminates after less than jV j iterations at a node vsuch that all subtrees T 0 in T n fvg satisfy w(T 0) � 34w(T). We claim that atleast one of these subtrees also satis�es w(T 0) � 14w(T), and thus the edgeconnecting v and T 0 can be picked as the required separator edge. In orderto prove the claim we distinguish several cases regarding the position of v inT (see Figure 13). For every case the assumption that all subtrees of T n fvghave weight < 14w(T) will lead to a contradiction.Case 1: v has degree 3. Let u be the parent of v. Let T1 be the subtreeof T n fvg that contains u, and let T2 and T3 be the other two subtrees.Assume that all three subtrees have weight < 14w(T). Consequently, v musthave weight > 14w(T) because w(T) = w(T1) + w(T2) + w(T3) + `(v). Butthen u must also have weight > 14w(T) because it is the parent of v, and thisimplies w(T1) > 14w(T). A contradiction.Case 2: v has degree 2 and is the root of T . Let T1 and T2 be the twosubtrees of T n fvg, and let u1 and u2 be the corresponding children of v. Ifboth subtrees have weight < 14w(T), it follows also that `(u1) < 14w(T) and`(u2) < 14w(T), which implies `(v) � `(u1) + `(u2) < 12w(T). On the otherhand, w(T) = w(T1) + w(T2) + `(v) implies `(v) > 12w(T). A contradiction.Case 3: v has degree 2 and is not the root of T . Let u be the parentof v, and let c be the child of v. Let T1 be the subtree in T n fvg thatcontains u, and let T2 be the other subtree. If both subtrees have weight< 14w(T), w(T) = w(T1) + w(T2) + `(v) implies `(v) > 12w(T). But then`(u) � `(v) > 12w(T). A contradiction.Case 4: v has degree 1 and is a leaf of T . Let T1 be the tree T n fvg,and let u be the parent of v. Assume that w(T1) < 14w(T). Then w(T) =w(T1) + `(v) implies `(v) > 34w(T). But then w(T1) � `(u) � `(v) > 34w(T).A contradiction. 21

Case 5: v has degree 1 and is the root of T . Let T1 be the tree T n fvg.As `(v) = `(r) � 34w(T), w(T) = `(v) + w(T1) implies w(T1) � 14w(T). utAccording to Theorem 2 a problem p from a class of problems that has14 -bisectors can always be subdivided into N subproblems p1, . . . , pN suchthat max1�i�N w(pi) � w(p)N � 94 . The following corollary gives a conditionon trees in T that ensures that they can be subdivided into N subproblemsusing 14 -bisectors.Corollary 8 Let T = (V;E) be a tree in T , and let r be its root. Let N bea positive integer. If w(T) � 43(N � 1)`(r), Algorithm HF partitions T intoN subtrees by cutting exactly N � 1 edges such that the maximum weight ofthe resulting subtrees is at most 94 � w(T)N .Proof: After k bisection steps according to Theorem 7 there are k + 1subtrees. There is at least one subtree T 0 with weight at least w(T)k+1 . Let r0 bethe root of T 0. If k + 1 < N , we have w(T 0) � w(T)k+1 � w(T)N�1 � 43`(r) � 43`(r0),and another bisection step is possible.The upper bound for the maximum weight of any subtree follows directlyfrom Theorem 2 for � = 1=4 (see also Table 1). utNote that an optimal min-max k-partition of a weighted tree (i.e., a par-tition with minimum weight of the heaviest component after removing kedges) can be computed in linear time [BP95, Fre91]. These algorithms arepreferable to our approach using Algorithm HF in the case of trees that areto be subdivided by removing a minimum number of edges. Since the heavi-est subtree in the optimal solution does obviously not have a greater weightthan the maximum generated by Algorithm HF, the bound from Corollary 8still applies and provides a non-trivial worst-case performance guarantee forthese optimal algorithms as well.5 Conclusion and Future WorkThe existence of �-bisectors for a class of problems was shown to allow goodload balancing for a surprisingly large range of values of �. The maximumload achieved by Algorithm HF is at most a factor of b1=�c � (1 � �)b1=�c�2larger than the theoretical optimum (uniform distribution). This bound wasproved to be tight. It gives a performance guarantee of factor 2 for � � 1=3and factor 3 for � � 1� 1= 4p2 � 0:159.Load balancing for distributed hierarchical �nite element simulations wasdiscussed, and two strategies for applying Algorithm HF were presented. The22

�rst strategy tries to make the best use of the available parallelism, but re-quires that the nodes of the FE tree representing the load of the computationhave good separators. The second strategy tries to partition the entire FEtree into subtrees with approximately equal load. For this purpose, it wasproved that a certain class of weighted trees, which include FE trees, has1=4-bisectors. Here, the trees are bisected by removing a single edge. Parti-tioning the trees by removing a minimum number of edges ensures that onlya minimum number of communication channels of the application must berealized by network connections. Our results provide performance guaran-tees for balancing the load of applications with good bisectors in general andof distributed hierarchical �nite element simulations in particular. For thelatter application, we showed that the maximum resulting load is at most afactor of 9=4 larger than in a perfectly uniform distribution.We implemented the load balancing methods proposed in this paper andintegrated them into the existing �nite element simulations software ARESO.We obtained considerable improvements already for small problems, as com-pared to the static (compile-time) processor allocation currently in use. SinceARESO is primarily a solver of hierarchical equation systems, it is not limitedto statics simulations. Other physical problems described by elliptic partialdi�erential equations are tractable as well. Currently, we add a componentfor CFD (computational
uid dynamics) simulations taken from [Fun97].Among the applications of project B3 of SFB 342, we can �nd otherhierarchical numerical distributed algorithms that could be accelerated withAlgorithm HF: Domain decomposition in the process of chip layout withthe placement tool GORDIAN [RR93, Reg97] may result in an unbalancedbinary tree. The subsequent layout process could obviously be improved byload distribution with Algorithm HF.Another application is the multi-dimensional adaptive numerical quadra-ture aqho [Bon93, Bon95]. It is based on an adaptively growing binary tree.Algorithm HF may be applied in much the same way as in the ARESO ap-plication, because each traversal visits all tree nodes and adds a new (andpotentially incomplete) layer of leaves.If a large number of processors is available it is highly desirable to ac-complish the problem decomposition in parallel. It is possible to parallelizeAlgorithm HF while maintaining the worst-case bound on the maximumload. But this parallel algorithm seems to require a fairly high amount ofcommunication to route subproblems to free processors. Therefore, we alsoinvestigate a di�erent parallel load balancing strategy that avoids the abovementioned routing problem. The maximum load generated by this algorithmin the worst-case is higher than the corresponding bound for Algorithm HFonly by a small factor. 23

Simulation results indicate that Algorithm HF performs very well on av-erage even for very small values of �. Assume that the actual bisectionparameter is drawn uniformly at random from the interval [�; 12], � � 12 ,and that all bisections are independent and identically distributed. Then theobserved ratio between the maximum load generated by Algorithm HF andthe ideal load is much smaller than the worst-case bound. We think it nec-essary to con�rm these experimental observations by a detailed average-caseanalysis of Algorithm HF under the above assumptions.References[BDG+94] A. Beguelin, J. Dongarra, A. Geist, J. Weicheng, R. Manchek, andV. Sunderam. PVM : Parallel Virtual Machine : A Users' Guide andTutorial for Networked Parallel Computing. The MIT Press, Cam-brigde (MA) et. al., 1994.[Bon93] T. Bonk. A New Algorithm for Multi-Dimensional Adaptive NumericalQuadrature. In W. Hackbusch, editor, Adaptive Methods { Algorithms,Theory and Applications: Proceedings of the 9th GAMM Seminar,Kiel, January 22{24, 1993, pages 54{68. Vieweg Verlag, Braunschweig,1993.[Bon95] T. Bonk. Ein rekursiver Algorithmus zur adaptiven numerischen Qua-dratur mehrdimensionaler Funktionen. PhD thesis, Institut f�ur Infor-matik, Technische Universit�at M�unchen, 1995.[BP95] Ronald I. Becker and Yehoshua Perl. The shifting algorithm techniquefor the partitioning of trees. Discrete Appl. Math., 62:15{34, 1995.[Bra97] Dietrich Braess. Finite Elemente. Springer, Berlin, 1997. 2. �uberar-beitete Au
age.[Bur87] D.S. Burnett. Finite Element Analysis. Addison-Wesley PublishingCompany, 1987.[EP98] Ralf Ebner and Alexander Pfa�nger. Higher Level Programming andE�cient Automatic Parallelization: A Functional Data Flow Approachwith FASAN. In Proceedings of the ParCo97 Parallel Computing Con-ference, 16{19 September 1997, Bonn Bad Godesberg. Elsevier SciencePublishers, Amsterdam, 1998. To appear.[Fre91] Greg N. Frederickson. Optimal Algorithms for Tree Partitioning. InProceedings of the Second Annual ACM-SIAM Symposium on DiscreteAlgorithms SODA '91, pages 168{177, New York, 1991. ACM Press.24

[Fun97] Kilian Funk. Anwendung der algebraischen Mehrgittermethode aufkonvektionsdominierte Str�omungen. Diplomarbeit, Technische Uni-versit�at M�unchen, 1997.[HS94] Reiner H�uttl and Michael Schneider. Parallel Adaptive Numerical Sim-ulation. SFB-Bericht 342/01/94 A, Technische Universit�at M�unchen,1994.[H�ut96] Reiner H�uttl. Ein iteratives L�osungsverfahren bei der Finite-Element-Methode unter Verwendung von rekursiver Substrukturierung und hier-archischen Basen. PhD thesis, Institut f�ur Informatik, TechnischeUniversit�at M�unchen, 1996.[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. In-troduction to Parallel Computing: Design and Analysis of Algorithms.The Benjamin/Cummings Pubishing Company, Inc., Redwood City,CA, 1994.[KGV94] Vipin Kumar, Ananth Y. Grama, and Nageshwara Rao Vempaty. Scal-able Load Balancing Techniques for Parallel Computers. J. ParallelDistrib. Comput., 22(1):60{79, 1994.[KV87] Vipin Kumar and Nageshwara Rao Vempaty. Parallel depth-�rstsearch, Part II: Analysis. International Journal of Parallel Program-ming, 16(6):501{519, 1987.[Reg97] H. Regler. Anwenden von Algebraischen Mehrgittermethoden auf dasPlazierproblem im Chipentwurf und auf die numerische Simulation vonStr�omungen. PhD thesis, Technische Universit�at M�unchen, 1997.[RR93] H. Regler and U. R�ude. Layout optimization with Algebraic Multi-grid Methods (AMG). In Proceedings of the Sixth Copper MountainConference on Multigrid Methods, Copper Mountain, April 4{9, 1993,Conference Publication, pages 497{512. NASA, 1993. Also availableas technical report SFB 342/11/93 A, TU M�unchen.[SHK95] Behrooz A. Shirazi, Ali R. Hurson, and Krishna M. Kavi, editors.Scheduling and Load Balancing in Parallel and Distributed Systems.IEEE Computer Society Press, Los Alamitos, CA, 1995.[SS97] Thomas Schnekenburger and Georg Stellner, editors. Dynamic LoadDistribution for Parallel Applications. TEUBNER-TEXTE zur Infor-matik. Teubner Verlag, Stuttgart, 1997.
25

SFB 342: Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

bisher erschienen :

Reihe A

Liste aller erschienenen Berichte von 1990-1994
auf besondere Anforderung

342/01/95 A Hans-Joachim Bungartz: Higher Order Finite Elements on Sparse
Grids

342/02/95 A Tao Zhang, Seonglim Kang, Lester R. Lipsky: The Performance of
Parallel Computers: Order Statistics and Amdahl’s Law

342/03/95 A Lester R. Lipsky, Appie van de Liefvoort: Transformation of
the Kronecker Product of Identical Servers to a Reduced Product
Space

342/04/95 A Pierre Fiorini, Lester R. Lipsky, Wen-Jung Hsin, Appie van de
Liefvoort: Auto-Correlation of Lag-k For Customers Departing
From Semi-Markov Processes

342/05/95 A Sascha Hilgenfeldt, Robert Balder, Christoph Zenger: Sparse
Grids: Applications to Multi-dimensional Schrödinger Problems

342/06/95 A Maximilian Fuchs: Formal Design of a Model-N Counter
342/07/95 A Hans-Joachim Bungartz, Stefan Schulte: Coupled Problems in Mi-

crosystem Technology
342/08/95 A Alexander Pfaffinger: Parallel Communication on Workstation

Networks with Complex Topologies
342/09/95 A Ketil Stølen: Assumption/Commitment Rules for Data-flow Net-

works - with an Emphasis on Completeness
342/10/95 A Ketil Stølen, Max Fuchs: A Formal Method for Hardware / Soft-

ware Co-Design
342/11/95 A Thomas Schnekenburger: The ALDY Load Distribution System
342/12/95 A Javier Esparza, Stefan Römer, Walter Vogler: An Improvement of

McMillan’s Unfolding Algorithm
342/13/95 A Stephan Melzer, Javier Esparza: Checking System Properties via

Integer Programming
342/14/95 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile Point-

to-Point Dataflow Networks
342/15/95 A Andrei Kovalyov, Javier Esparza: A Polynomial Algorithm to

Compute the Concurrency Relation of Free-Choice Signal Tran-
sition Graphs

Reihe A

342/16/95 A Bernhard Schätz, Katharina Spies: Formale Syntax zur logischen
Kernsprache der Focus-Entwicklungsmethodik

342/17/95 A Georg Stellner: Using CoCheck on a Network of Workstations
342/18/95 A Arndt Bode, Thomas Ludwig, Vaidy Sunderam, Roland Wis-

müller: Workshop on PVM, MPI, Tools and Applications
342/19/95 A Thomas Schnekenburger: Integration of Load Distribution into

ParMod-C
342/20/95 A Ketil Stølen: Refinement Principles Supporting the Transition from

Asynchronous to Synchronous Communication
342/21/95 A Andreas Listl, Giannis Bozas: Performance Gains Using Subpages

for Cache Coherency Control
342/22/95 A Volker Heun, Ernst W. Mayr: Embedding Graphs with Bounded

Treewidth into Optimal Hypercubes
342/23/95 A Petr Jančar, Javier Esparza: Deciding Finiteness of Petri Nets up to

Bisimulation
342/24/95 A M. Jung, U. Rüde: Implicit Extrapolation Methods for Variable

Coefficient Problems
342/01/96 A Michael Griebel, Tilman Neunhoeffer, Hans Regler: Algebraic

Multigrid Methods for the Solution of the Navier-Stokes Equations
in Complicated Geometries

342/02/96 A Thomas Grauschopf, Michael Griebel, Hans Regler: Additive
Multilevel-Preconditioners based on Bilinear Interpolation, Matrix
Dependent Geometric Coarsening and Algebraic-Multigrid Coars-
ening for Second Order Elliptic PDEs

342/03/96 A Volker Heun, Ernst W. Mayr: Optimal Dynamic Edge-Disjoint
Embeddings of Complete Binary Trees into Hypercubes

342/04/96 A Thomas Huckle: Efficient Computation of Sparse Approximate
Inverses

342/05/96 A Thomas Ludwig, Roland Wismüller, Vaidy Sunderam, Arndt
Bode: OMIS — On-line Monitoring Interface Specification

342/06/96 A Ekkart Kindler: A Compositional Partial Order Semantics for Petri
Net Components

342/07/96 A Richard Mayr: Some Results on Basic Parallel Processes
342/08/96 A Ralph Radermacher, Frank Weimer: INSEL Syntax-Bericht
342/09/96 A P.P. Spies, C. Eckert, M. Lange, D. Marek, R. Radermacher,

F. Weimer, H.-M. Windisch: Sprachkonzepte zur Konstruktion
verteilter Systeme

342/10/96 A Stefan Lamberts, Thomas Ludwig, Christian Röder, Arndt Bode:
PFSLib – A File System for Parallel Programming Environments

342/11/96 A Manfred Broy, Gheorghe Ştefănescu: The Algebra of Stream Pro-
cessing Functions

Reihe A

342/12/96 A Javier Esparza: Reachability in Live and Safe Free-Choice Petri
Nets is NP-complete

342/13/96 A Radu Grosu, Ketil Stølen: A Denotational Model for Mobile
Many-to-Many Data-flow Networks

342/14/96 A Giannis Bozas, Michael Jaedicke, Andreas Listl, Bernhard Mit-
schang, Angelika Reiser, Stephan Zimmermann: On Transforming
a Sequential SQL-DBMS into a Parallel One: First Results and
Experiences of the MIDAS Project

342/15/96 A Richard Mayr: A Tableau System for Model Checking Petri Nets
with a Fragment of the Linear Time� -Calculus

342/16/96 A Ursula Hinkel, Katharina Spies: Anleitung zur Spezifikation von
mobilen, dynamischen Focus-Netzen

342/17/96 A Richard Mayr: Model Checking PA-Processes
342/18/96 A Michaela Huhn, Peter Niebert, Frank Wallner: Put your Model

Checker on Diet: Verification on Local States
342/01/97 A Tobias Müller, Stefan Lamberts, Ursula Maier, Georg Stellner:

Evaluierung der Leistungsfähigkeit eines ATM-Netzes mit paral-
lelen Programmierbibliotheken

342/02/97 A Hans-Joachim Bungartz and Thomas Dornseifer: Sparse Grids:
Recent Developments for Elliptic Partial Differential Equations

342/03/97 A Bernhard Mitschang: Technologie für Parallele Datenbanken -
Bericht zum Workshop

342/04/97 A nicht erschienen
342/05/97 A Hans-Joachim Bungartz, Ralf Ebner, Stefan Schulte: Hierar-

chische Basen zur effizienten Kopplung substrukturierter Probleme
der Strukturmechanik

342/06/97 A Hans-Joachim Bungartz, Anton Frank, Florian Meier, Tilman
Neunhoeffer, Stefan Schulte: Fluid Structure Interaction: 3D Nu-
merical Simulation and Visualization of a Micropump

342/07/97 A Javier Esparza, Stephan Melzer: Model Checking LTL using Con-
straint Programming

342/08/97 A Niels Reimer: Untersuchung von Strategien für verteiltes Last- und
Ressourcenmanagement

342/09/97 A Markus Pizka: Design and Implementation of the GNU INSEL-
Compiler gic

342/10/97 A Manfred Broy, Franz Regensburger, Bernhard Schätz, Katharina
Spies: The Steamboiler Specification - A Case Study in Focus

342/11/97 A Christine Röckl: How to Make Substitution Preserve Strong
Bisimilarity

342/12/97 A Christian B. Czech: Architektur und Konzept des Dycos-Kerns
342/13/97 A Jan Philipps, Alexander Schmidt: Traffic Flow by Data Flow

Reihe A

342/14/97 A Norbert Fröhlich, Rolf Schlagenhaft, Josef Fleischmann: Partition-
ing VLSI-Circuits for Parallel Simulation on Transistor Level

342/15/97 A Frank Weimer: DaViT: Ein System zur interaktiven Ausführung
und zur Visualisierung von INSEL-Programmen

342/16/97 A Niels Reimer, Jürgen Rudolph, Katharina Spies: Von FOCUS nach
INSEL - Eine Aufzugssteuerung

342/17/97 A Radu Grosu, Ketil Stølen, Manfred Broy: A Denotational Model
for Mobile Point-to-Point Data-flow Networks with Channel
Sharing

342/18/97 A Christian Röder, Georg Stellner: Design of Load Management for
Parallel Applications in Networks of Heterogenous Workstations

342/19/97 A Frank Wallner: Model Checking LTL Using Net Unfoldings
342/20/97 A Andreas Wolf, Andreas Kmoch: Einsatz eines automatischen

Theorembeweisers in einer taktikgesteuerten Beweisumgebung zur
Lösung eines Beispiels aus der Hardware-Verifikation –Fallstudie–

342/21/97 A Andreas Wolf, Marc Fuchs: Cooperative Parallel Automated The-
orem Proving

342/22/97 A T. Ludwig, R. Wismüller, V. Sunderam, A. Bode: OMIS - On-line
Monitoring Interface Specification (Version 2.0)

342/23/97 A Stephan Merkel: Verification of Fault Tolerant Algorithms Using
PEP

342/24/97 A Manfred Broy, Max Breitling, Bernhard Schätz, Katharina Spies:
Summary of Case Studies in Focus - Part II

342/25/97 A Michael Jaedicke, Bernhard Mitschang: A Framework for Parallel
Processing of Aggregat and Scalar Functions in Object-Relational
DBMS

342/26/97 A Marc Fuchs: Similarity-Based Lemma Generation with Lemma-
Delaying Tableau Enumeration

342/27/97 A Max Breitling: Formalizing and Verifying TimeWarp with FOCUS
342/28/97 A Peter Jakobi, Andreas Wolf: DBFW: A Simple DataBase Frame-

Work for the Evaluation and Maintenance of Automated Theorem
Prover Data (incl. Documentation)

342/29/97 A Radu Grosu, Ketil Stølen: Compositional Specification of Mobile
Systems

342/01/98 A A. Bode, A. Ganz, C. Gold, S. Petri, N. Reimer, B. Schie-
mann, T. Schnekenburger (Herausgeber): “Anwendungsbezogene
Lastverteilung”, ALV’98

342/02/98 A Ursula Hinkel: Home Shopping - Die Spezifikation einer Kommu-
nikationsanwendung in FOCUS

342/03/98 A Katharina Spies: Eine Methode zur formalen Modellierung von
Betriebssystemkonzepten

Reihe A

342/04/98 A Stefan Bischof, Ernst W. Mayr: On-Line Scheduling of Parallel
Jobs with Runtime Restrictions

342/05/98 A Stefan Bischof, Ralf Ebner, Thomas Erlebach: Load Balancing for
Problems with Good Bisectors, and Applications in Finite Element
Simulations: Worst-case Analysis and Practical Results

SFB 342 : Methoden und Werkzeuge für die Nutzung paralleler
Rechnerarchitekturen

Reihe B

342/1/90 B Wolfgang Reisig: Petri Nets and Algebraic Specifications
342/2/90 B Jörg Desel: On Abstraction of Nets
342/3/90 B Jörg Desel: Reduction and Design of Well-behaved Free-choice

Systems
342/4/90 B Franz Abstreiter, Michael Friedrich, Hans-Jürgen Plewan: Das

Werkzeug runtime zur Beobachtung verteilter und paralleler Pro-
gramme

342/1/91 B Barbara Paech1: Concurrency as a Modality
342/2/91 B Birgit Kandler, Markus Pawlowski: SAM: Eine Sortier-Toolbox —

Anwenderbeschreibung
342/3/91 B Erwin Loibl, Hans Obermaier, Markus Pawlowski: 2. Workshop

über Parallelisierung von Datenbanksystemen
342/4/91 B Werner Pohlmann: A Limitation of Distributed Simulation Meth-

ods
342/5/91 B Dominik Gomm, Ekkart Kindler: A Weakly Coherent Virtually

Shared Memory Scheme: Formal Specification and Analysis
342/6/91 B Dominik Gomm, Ekkart Kindler: Causality Based Specification

and Correctness Proof of a Virtually Shared Memory Scheme
342/7/91 B W. Reisig: Concurrent Temporal Logic
342/1/92 B Malte Grosse, Christian B. Suttner: A Parallel Algorithm for Set-

of-Support
Christian B. Suttner: Parallel Computation of Multiple Sets-of-
Support

342/2/92 B Arndt Bode, Hartmut Wedekind: Parallelrechner: Theorie, Hard-
ware, Software, Anwendungen

342/1/93 B Max Fuchs: Funktionale Spezifikation einer Geschwindigkeits-
regelung

342/2/93 B Ekkart Kindler: Sicherheits- und Lebendigkeitseigenschaften: Ein
Literaturüberblick

342/1/94 B Andreas Listl; Thomas Schnekenburger; Michael Friedrich: Zum
Entwurf eines Prototypen für MIDAS

