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ownomialswhich gives a uni�ed presentation of regular algebra and iterationtheories. The kernel of the calculus is an equational axiomatizationcalled Basic Network Algebra (BNA) for 
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1 IntroductionThe idea of control and data 
ow is a classic concept that can be found in manyapproaches to computation, programming, and computing machinery. Often the
ow is visualized by 
ow graphs. The idea of data 
ows had mainly two sources.Single assignment languages are based on the concept of a set of (nonrecursive)declarations. The order of the evaluation of the declaration is then only de-termined by their data dependencies. These dependencies can be shown in anacyclic graph called their data 
ow graph. In
uenced by these ideas and bythe concept of Petri-nets and their �ring rules, Jack Dennis suggested data 
owgraphs and gave �ring rule semantics for them. Quite independently, versions ofdata 
ow graphs can be found in many software engineering methods and alsofor the description of switching circuits.Gilles Kahn suggested a mathematical model for asynchonously communi-cating agents that could be used as a model for deterministic data 
ow nets.The data
ow networks used in [Kah74] describe a collection of processes whichwork in a parallel and asynchronous way and communicate by sending values overFIFO channels. Moreover, Kahn's data
ow networks were deterministic and thusthe input-output relation speci�ed by such processes is actually a (continuous)function. The main result of Kahn in [Kah74] asserts that the function speci�edby a deterministic network may be obtained from the functions speci�ed by itscomponents using the least �xed-point construction.It turns out that Kahn's elegant theorem cannot be extended in an easyway to the case of nondeterministic data
ow networks. In such networks, thecomponents are capable of making arbitrary choices during computation and theinput-output behaviour speci�ed by such a network is not longer a function, butan arbitrary relation. For such networks, fundamental results by Keller [Kel78]and Brock-Ackermann [BrA81] have shown a mismatch between the operationalmeaning of the networks and their input-output behaviour. In other words, theinput-output behaviour of its components is no longer su�cient to compute thebehaviour of a network. This situation, known as merge or Brock-Ackermannanomaly, was solved by adding information to the input-output behaviour byusing scenarious, traces, or oracles, etc. Extensions to the nondeterministic casewere suggested for instance in [SN85, Bro87, Kok87, Jon89, Bro93].In this paper we take the viewpoint of [Park83, Bro87] and model nondeter-ministic data
ow networks with the help of oracles. An oracle provides a prioriglobal information on the choices in all the nondeterministic points and it allowsto give the semantic of a nondeterministic network by a set of (stream processing)functions.Graphs are used in many methods in computing science to represent the
ow of information, data and control. To be able to use algebraic techniquesfor such graphs, we have to represent graphs by terms. To do this, we have to�nd appropriate algebraic operators for the construction of graphs. Typically, thesame graphs (isomorphic graphs) can then be represented by quite di�erent terms.Two terms that denote the same graphs are, therefore, called graph isomorphic.4



Graph isomorphism of terms is an equivalence relation on terms that can beaxiomatized by equations. In addition to these laws of graph isomorphism, wemay use more speci�c laws that hold due to the semantic theories of the speci�c
ow models.Algebraic models for nondeterministic data 
ow are di�cult to be obtained asan extension of those for deterministic data 
ow, mainly due to the unsoundnessof the �xed-point equation. Our approach is to use the calculus of 
ownomials,see [Ste94].The calculus of 
ownomials is an algebraic calculus very similar to the calculusof polynomials. Its aim is to capture the syntax and the semantics of severaldigraph-like models used in computer science. It was obtained as a uni�cationof the classical regular algebras presented in [Kle56, Con71] and of the iterationtheories developed starting with the study of 
owchart schemes in [Elg75, BE93b,Ste87a, Ste86, CaS90] among others. The basic results of the calculus and somehistorical comments may be found in [Ste94].In order to obtain an axiomatization for cyclic processes one has to use alooping operation. We use the feedback operator introduced in [Ste86]. The keyfeature of this operation is that(1) after its application both the input and the output are hidden (they arenot visible anymore).Some other possibilities are repetition [Kle56, Ste87b], where(2) after the application of this operation both the input and the output remainvisible,or iteration [Elg75], where(3) after the application of this operation the input remains visible, but notthe output1.The kernel of the 
ownomial calculus is given by the a�-
ow algebra; we alsouse the BNA (Basic Network Algebra) acronym of [BS94] for the correspond-ing equational theory. This algebra gives a complete characterization for 
ow-graphs/networks modulo graph isomorphism. For a detailed treatment see [Ste86,CaS88{89, Ste94].One aim of the present paper is to show that the 
ownomial calculus maybe applied to the study of (asynchronous) data
ow computation as well. As wesaid, what we study here from the various approaches to handle the semanticsof nondeterministic data
ow networks are the algebraic properties of the oracle-based model presented in [Park83, Bro87, Bro93]. In this approach, the semanticsof a nondeterministic data
ow network is speci�ed as a set of stream processingfunctions.The main results of our paper are as follows:1In [Bro93] a \feedback" operation di�erent from the one in this paper is used. In fact theoperation in [Bro93] is a dual iteration, where after the application of the operation the outputremains available, but not the input. 5



� We show that the algebra of stream processing functions called SPF (whichwe use as a semantic model for deterministic networks) and the algebra ofsets of stream processing functions called PSPF (which we use as a semanticmodel for nondeterministic networks) are BNA models. As a byproductthese results show that both semantics above are compositional. We alsoidentify the additional axioms satis�ed by the branching components thatcorrespond to constants in these two algebras.� For the deterministic case we also study the coarser equivalence on networksgiven by the input-output behaviour and provide a correct and completeaxiomatization.A somewhat similar approach is given by E. Stark in [Sta92]. There it is shownthat an algebra with the same operators (parallel and sequential compositionsand feedback) may be used to study nondeterministic data
ow networks. Asbranching constants Stark uses the `copy' constant and certain sink and sourceconstants. The main result of [Sta92] is a theorem of correctness and completenessfor networks modulo \bu�er bisimilarity".The paper is organized as follows: In section 2 we give a short overview ofthe calculus of 
ownomials. Section 3 is devoted to the study of deterministicdata
ow networks. We give two complete axiomatizations presented as extensionof BNA (Basic Network Algebra) axioms, namely one for networks modulo graphisomorphism equivalence and one for the coarser equivalence induced on networksby the input-output behaviour. Section 4 deals with nondeterministic data
ownetworks. We show that the algebra PSPF (sets of stream processing functions)model satis�es the BNA axioms as well. Some additional sound laws are given,but the problem of a complete axiomatization for the equivalence induced onnetworks by the PSPF semantics is not solved and left open. Detailed proofs ofcertain technical theorems are presented in section 5. Some conclusions are givenin the last section 6.2 FlownomialsThe algebra of binary 
ownomials gives an algebraic presentation of directed
owgraphs and their behaviours. It uses three operations:\ ++ " (parallel composition), \�" (sequential composition) and \""(feedback)and various constants for describing the branching structure of the 
owgraphs:\I" (identity), \X" (transposition), \^k" (rami�cation) and \_k" (iden-ti�cation).In table 3 we use some particular cases of the rami�cation and identi�cationconstants, namely ^0;^2;_0;_2 denoted by ?;^;>;_, respectively.In the standard version presented in [Ste94] there are three groups of algebraicequations (see table 3): 6



(A) a large group of algebraic equations for 
owgraphs modulo graph isomor-phismB1{B10, A1{A19, R1{R5, and F1{F5;(S) some critical algebraic equations S1{S4 for the data 
ow nodes for rami�-cation and identi�cation;(Z) an axiom scheme ENZ, presented as a conditional equation.Following Milner, one may call the axioms (A) \static laws". The critical axiomsS1{S4 describe the dynamic part of the model with the possibility to make copiesof or to delete some components.2 (Z) is an invariance law which allows to useS1{S4 in a cyclic environment.The kernel of the axioms are the BNA axioms (the resulting algebraic struc-ture is called a�-
ow algebra)B1{B10, R1{R5, and F1{F2which gives a complete axiomatization for 
owgraphs with bijective connectionsmodulo graph isomorphism. The remaining graph isomorphism axioms A1{A19and F3{F5 give a complete axiomatization for the branching constants consideredas angelic �nite relations where divergence is not dominant. This standard versionwas designed to handle sequential 
owchart algorithms. One goal of the presentpaper is to study axiomatizations for the branching structures of the data
ownetworks, starting with the axiomatization of the angelic theory of relations.Once the graph isomorphism axioms are considered, one has to add a fewvery simple axioms (as in S and Z above) in order to obtain the classical settingsof algebraic theories and iteration theories or matrix theories as well as regularalgebras.One resulting algebraic structure that is of interest for the study of determin-istic data
ow computation is the d�-
ow algebra de�ned by� the graph isomorphism axioms with the branching constants ?;^;>,� the critical axioms S3{S4,� the enzymatic axiom for converses of functions, i.e. for terms written with++ ; �; I;X;?;^.This algebraic structure is dual to the strong iteration theory structure of [Ste87b]and it is complete for the 
owgraphs modulo unfolding equivalence (see chapter8 of [Ste94] for more details).Example 2.1 As a running example we use the data
ow networks as shown inFigure 1(a){(c). They may be represented by 
ownomial expressions as well. For2They are sometimes known in computer science as the \referential transparancy" and\garbage collection" properties. 7
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x1 x1 x1 x1 x1tzy1 y2Figure 1: Data
ow networksinstance, the data
ow network shown in (a) may be represented by the followingexpression:̂ 1 � [(I1 ++ f � 1X1) � (f ++ I1) � (^1 � (f 0 "1 ++ I1) ++ 1X1)] "1We will show in the following that all the networks in �gure 1 compute the samestream processing function { provided the rami�cation constant ^ is interpretedas the copy constant �̂ (see below) and the cells are deterministic components {and, moreover, their equality may be proved using the d�-
ow axioms. 2In the next section we adapt the algebra of 
ownomials to data 
ow nets.3 Deterministic NetworksIn this section we construct a semantic model SPF(M) for the interpretation ofdeterministic data
ow networks. It is based on stream processing functions.A stream represents a communication history of a channel. A stream of mes-sages over a given message set M is a �nite or in�nite sequence of messages. Wede�ne the set of streams M! byM! =def M� [M1By x_y we denote the result of concatenating two streams x and y. We assumethat x_y = x, if x is in�nite. By hi we denote the empty stream.8



If a stream x is a pre�x of a stream y, we write x v y. The relation v is calledpre�x order. It is formally speci�ed as follows:x v y =def 9z 2M! : x_z = yThe behavior of deterministic interactive systems with n input channels and moutput channels is modeled by functionsf : (M!)n ! (M!)mcalled (m, n)-ary stream processing functions. We often denote function applica-tion f(x) by f:x to avoid brackets. A stream processing function is called pre�xmonotonic, if for all tuples of streams x; y 2 (M!)n we havex v y ) f:x v f:yThis particular ordering is extended to tuples and functions pointwise in a straight-forward way. A stream processing function f is called continuous, if f is mono-tonic and for every directed set S �M! we have:f: t S = tff:x : x 2 SgBy tS we denote the least upper bound of a set S, if it exists. A set S is calleddirected, if for any pair of elements x and y in S there exists an upper boundin S. The set of streams is complete in the sense that for every directed set ofstreams there exists a least upper bound.In the following we will use an extension of this setting to the many sortedcase. Let S be a set of sorts. Let D = fDsgs2S be an S-sorted set of messagesand Ms := D�s [ D1s be the set of streams over Ds representing communicationhistories of channels of type s.Concatenation in S� is denoted by +. Let a 2 S�. Hence a = a1 + : : :+ ajaj,where ai is the i-th letter of a. Denote by Ma the product Ma1 � : : :�Majaj .Given an S-sorted set D of messages and the corresponding sets of streamsMs for s 2 S, we de�ne the set of stream processing functions with input sortsa 2 S� and output sorts b 2 S� bySPF(M)(a; b) = ff :Ma !Mb j f is pre�x continuous g:The BNA constants and operations are interpreted as follows:� Summation: For f 2 SPF(M)(a; b) and g 2 SPF(M)(c; d) the parallelsum f ++ g 2 SPF(M)(a+ c; b+ d) is de�ned by(f ++ g)(x; y) = (f(x); g(y)); for x 2Ma and y 2Mc� Composition: For f 2 SPF(M)(a; b) and g 2 SPF(M)(b; c) the functionalcomposition f � g 2 SPF(M)(a; c) is the usual one de�ned by(f � g)(x) = g(f(x)); for x 2MaNote that we have used the diagramatic order.9



� Feedback: For f 2 SPF(M)(a+ c; b+ c) the feedback f "c2 SPF(M)(a; b)is de�ned as follows: For streams x 2Ma, we specifyf "c (x) = Gk�1 ykwhere the streams yk 2Mb and zk 2Mc are inductively de�ned by:3(y1; z1) = f(x; h i), where h i denotes the empty stream, and(yk+1; zk+1) = f(x; zk), for k � 1.Since f is continuous we can equivalently de�ne f "c by �xpoint techniques,because (y; z) = � Gk�1 yk; Gk�1 zk�is the least �xpoint of the function�y; z : f(x; z)and, in other words, the least solution of the equation(y; z) = f(x; z)� (Block) Identity: Ia 2 SPF(M)(a; a) is de�ned byIa(x) = x; for all x 2Ma� (Block) Transposition: aXb 2 SPF(M)(a+ b; b+ a) is de�ned byaXb(x; y) = (y; x); for x 2Ma and y 2MbNow we look at the meaning of the various branching constants. In the case ofdeterministic stream processing functions the meaning of the rami�cation con-stants ^ and ? is more or less standard: ^ is the copy constant �̂ and ? is the(rich) sink constant � . They are de�ned as follows:� (Block) Copy: �̂a 2 SPF(M)(a; a+ a) de�ned by�̂a(x) = (x; x); for x 2Ma� (Block rich) Sink: �a 2 SPF(M)(a; 0) de�ned by�a(x) = ( ); for x 2Mawhere ( ) denotes the empty tuple of streams.The constant > may be interpreted as a dummy source � , de�ned as follows:3f is continuous, hence this de�nition is well formed.10



� (Block dummy) Source: �a 2 SPF(M)(0; a) de�ned by�a( ) = (h ia)where h ia is the a-tuple of empty streams h i.Finally, the constant _ is usually left uninterpreted in this case of deterministicdata
ow networks. Its standard meaning in asynchronous data
ow is as thenondeterministic \merge" constant.43.1 Graph IsomorphismWith the operators introduced above, SPF(M) becomes a heterogenous algebra.This algebra ful�lls the axioms of BNA.Theorem 3.1 (Graph isomorphism)(SPF(M); ++ ; �; "; Ia; aXb) is a BNA model.Theorem 3.2 (Graph isomorphism with constants �̂ ; � ; �)(SPF(M); ++ ; �; "; Ia; aXb; �̂ ; � ; �) obeys the following additional axiomsA5{A9, A12{A13, A16{A19 and F4in table 3 with �̂ ; � ; � instead of ^;?;>, respectively.In the terminology of [Ste94] this means that SPF is a d�-ssmc with feedback.The proof of these theorems is given in detail in section 5. The main ideas arepresented below.Sketch of proofs: It is easy to see that all the axioms apart from the feedbackequations hold. Actually, SPF(M) is a subtheory of the algebraic theory Pow(M)of all the functions on M (de�ned in [TWW79], for instance), hence it is a wellknown fact that the axioms B1{B10, A5{A8, A16{A19, and S3{S4 in table 3 arevalid. In addition, A9 and A12{A13 clearly hold.It remains to be shown that the axioms involving the feedback operation (R1{R5 and F1{F2 and F4 in table 3) are valid. The proofs are fairly easy. The most\di�cult" proof is that of axiom R5, which shows that a simultaneous multiplefeedback is equivalent to repeated unary feedbacks. 24However, in [BS94] an \equality test" meaning is assigned to the _ constant as a \dual"version of the copy constant. 11



3.2 Input-Output BehaviorThe next step is to take into account the coarser equivalences on deterministicnetworks which identify the networks that have the same tree unfolding or com-pute the same input-output function. For deterministic data
ow networks bothways give the same equivalence.First we note that the strong axioms S3{S4 of table 3 hold in SPF, hence SPFis an algebraic theory. This means that each multiple-output function is a tupleof one-output functions. Consequently, we may suppose each cell in a networkand the network itself have exactly one output.Next, a network as above (with one output and each cell with one output,too) may be unfolded towards inputs into a tree. The unfolding of a multipleoutput network is the tuple of the unfoldings corresponding to each output.We say two deterministic data
ow networks F and G are unfolding equivalent,and write F �unfold G, i� F and G unfold into the same tuple of trees.On the other hand, we say F and G are input-output equivalent with respectto functional interpretations of the atoms, and write F �IO G, i� for all inter-pretations of the atoms as stream processing functions the networks compute thesame function.Lemma 3.3 (unfolding correctness)If F 0 �unfold F 00, then F 0 �IO F 00.Proof: By a general result (see example 4.2.4 in [Ste94]), the strong axiomsS3{S4 together with the graph isomorphism axioms imply the �xpoint equation.As an example for f : a+ b! b we obtain:(f � �̂b) "b= �̂a � (Ia ++ (f � �̂b) "b) � fThis and the continuity assumption imply that the unfolding process is correct.2Theorem 3.4 [Ste87b, Ste94](Axiomatizing the unfolding equivalence)The axioms of d�-
ow in table 3 are correct and complete for deterministicdata
ow networks modulo unfolding equivalence.(Recall that this means: the graph isomorphism axioms in t heorem 3.2, B1{B10, A5{A9, A12{A13, A16{A19, R1{R5, F1{F2, and F4, the strong axiomsS3{S4, and the enzymatic axiom for converses of functions, i.e. ENZFn�1 .)Using this theorem we may restate lemma 3.3 above in a formal way, since un-folding correctness follows from the validity of the d�-
ow axioms in SPF. Theaxioms may be easily veri�ed. The following lemma states the validity of theenzymatic rule.Lemma 3.5 ENZFn�1 holds in SPF.The proof is given in section 5. 12



Example 3.6 The proof of the above theorem may be illustrated with the helpof the data
ow networks in Figure 1. One may easily see that the data
ownetworks (a), (b), and (c) have the same unfolding. Actually, the unfolding is thepair (t; t), where t is the tree (d), provided that f1 and f2 in (d) denote the �rstand the second output component of f in (a); (b), and (c).Let us see how we may prove their equality in the axiomatic system given bythe d�-
ow axioms. This axiomatic system has the graph isomorphism axiomsand two new ingredients: the critical axioms S3{S4 and the invariance/enzymaticaxiom ENZFn�1, for the class E of terms (\enzymes") speci�ed using the branch-ing constants �̂ and � and the BNA signature.Of these new axioms, ENZFn�1 is, by far, the most complicated. It may beexplained using the representation of the networks as system of equations. Forexample, the functions computed by the network in (a), (b), (c) are given by theleast �xpoint solutions corresponding to y1 and y2 in the following systems (S1),(S2), (S3), respectively:var:: x1 : in; y1; y2 : out; u; v; z; t : local inv = y1 f1(x1; t) = y1 f1(x1; w) = y1f1(x1; z) = y2 f1(x1; z) = y2 f1(x1; w) = y2f1(x1; t) = v f2(x1; t) = z f2(x1; w) = wf2(x1; t) = z f2(x1; z) = tf2(x1; z) = tf 0(v; u) = u(S1) (S2) (S3)where f1; f2 are the components in which f can be decomposed such thatf1 = f � (I1 ++ �1) and f2 = f � (�1 ++ I1).In such a system, the invariance axiom applied for the relations generated bythe � constant allows to delete some equations of the system, provided theyde�ne variables that are not used in the generation of the output. In the runningexample u and the corresponding equation may be deleted. Formally, if we writethe left-hand side terms of the system as the tupleF1 := (v; f1(x1; z); f1(x1; t); f2(x1; t); f2(x1; z); f 0(v; u))then, by axiom S3,F1 � [I2 ++ (I3 ++ �1)] = (v; f1(x1; z); f1(x1; t); f2(x1; t); f2(x1; z); �1)= [I1 ++ (I3 ++ �1)] � F 0where F 0 is the tupleF 0 := (v; f1(x1; z); f1(x1; t); f2(x1; t); f2(x1; z))Due to graph isomorphism transformations the resulting system speci�ed by F 0and the variables (y1; y2; v; z; t) is equivalent to the system in (S2) speci�ed bythe variables (y1; y2; z; t) and the tupleF2 := (f1(x1; t); f1(x1; z); f2(x1; t); f2(x1; z))13



A bit more complicated is the invariance of the relations induced by the �̂ con-stant. In this case, we may identify certain variables such that the terms in thecorresponding equations become equal after the identi�cation. In the runningexample, we may identify z and t since after identi�cation both terms f2(x1; t)and f2(x1; z) are equal. Formally, if w is a new variable, then by axiom S4 we get[I1 ++ �̂1] � F2 = (f1(x1; w); f1(x1; w); f2(x1; w); f2(x1; w)) =S4 F3 � [I2 ++ �̂1]where F3 := (f1(x1; w); f1(x1; w); f2(x1; w))The resulting system speci�ed by F3 and the variables (y1; y1; w) is shown in (S3).Finally, we observe that each system may be minimized using such transfor-mations and that the minimal systems are in bijective correspondence with theunfolding trees. 2Next, we show that two deterministic data
ow networks unfold into the sametuple of trees if and only if they compute the same input-output function for allfunctional interpretations of the atomic cells.5Theorem 3.7 (unfolding equivalence = input-output equivalence)F 0 �unfold F 00 i� F 0 �IO F 00 for all functional interpretations of the atoms.Proof: \)" Already proved (unfolding correctness).\(" We show the validity of the equivalent statement: If F 0 and F 00 aredi�erent trees, then there exists a functional interpretation of the atoms suchthat F 0 and F 00 compute di�erent functions.We use a domain of data D consisting of partial �-terms over X (\partial"means that terms �(x1; : : : ; xn) with some unde�ned arguments are allowed; suchunde�ned elements are denoted by \?"), where{ X is an in�nite set of variables and{ � is a signature containing a symbol �f : m! 1 for each atom f : m! 1which occurs either in F 0 or F 00.The interpretation is:Case m � 1: A cell f : m! 1 acts by:f(x) = �f (?; : : : ; ?)_g(x)g(t_1 x1; : : : ; t_mxm) = �f (t1; : : : ; tm)_g(x1; : : : ; xm)Case m = 0: A cell f : 0! 1 produces the output (�f)1, or formallyf( ) = �f( )_f( )5This is not the case for the 
owchart interpretation of 
owgraphs. In that case the unfoldingequivalence does not coincide with the input-output equivalence and has to be combined withthe reductions of the subtrees without outputs to the empty tree, see section 10 of [Ste94].14



Take a distinguished variable xi for each input i and consider as input the tupleof streams ((x1)1; : : : ; (xn)1)The output jF j((x1)1; : : : ; (xn)1)produced by a tree F : n! 1 is a stream of termst_1 t_2 : : :where ti is the partial approximation of F up to level i.Since F 0 and F 00 are di�erent, there is a level i such that they are di�erent upto level i, hence jF 0j((x1)1; : : : ; (xn)1) 6= jF 00j((x1)1; : : : ; (xn)1)and the implication is proved. 2We illustrate the proof by an example.Example 3.8 The idea of the di�cult part in the proof above may be illustratedby the tree in Figure 1(d) as follows. Under the interpretation displayed, theoutput computed by the tree-network isg(?; ?)_g(x1; h(?; ?))_g(x1; h(x1; h(?; ?)))_g(x1; h(x1; h(x1; h(?; ?))))_ : : :One may see that the �rst output gives the approximation of the tree up to level1, the second up to level 2, and so on. 2Corollary 3.9 (Axiomatization of the input-output behavior in the deterministiccase)The d�-
ow axioms give a correct and complete axiomatization for the streamprocessing functions obtained as interpretations of deterministic data
ow net-works.Following [Sta92], we say a stream processing function is a f�̂ ; � ; �g-bu�eringmorphism if it is speci�ed by a data
ow network built up with the BNA operationsand constants and� constants the copy �̂ , sink � , and source � ,� the trivial cells sd 2 SPF(0; s) for d 2Ms; s 2 S de�ned by sd( ) = d.Corollary 3.10 The d�-
ow axioms give a complete axiomatization for the bu�er-ing functions.For the particular class of stream processing functions in the previous corollaryit is possible to obtain a stronger axiomatization result, similar to the one inin [Sta92], where the enzymatic axiom is replaced by the following equationalscheme: (xi � �̂) "= (xj � �̂) "for i; j > 0. 15



II. Axioms for the additional constants � ; � ; �̂ (without feedback)A5 �̂a � ( �̂a ++ Ia) = �̂a � (Ia ++ �̂a)A6 �̂a � aXa = �̂aA7 �̂a � (�a ++ Ia) = IaA8 �a � �̂a = �a ++ �aA9 �a � �a = I0A12 �0 = I0 A13 �a+b = �a ++ �bA16 �0 = I0 A17 �a+b = �a ++ �bA18 �̂0 = I0 A19 �̂a+b = ( �̂a ++ �̂b) � (Ia ++ aXb ++ Ib)IV. Axioms for the action of feedback on the branching constantsF4 �̂a "a= �aIV. The strong axioms (f : a! b)S3 f � �b = �aS4 f � �̂b = �̂a � (f ++ f)VI. The enzymatic ruleENZFn�1 : f � (Ib ++ y) = (Ia ++ y) � g implies f "c= g "d,where y : c! d is a term written with++ ; �; I;X and some constants in � ; �̂and f : a+ c! b+ c; g : a+ d! b+ d are arbitraryTable 1: The axiomatization of deterministic data
ow networks16



4 Nondeterministic NetworksDeterministic data 
ow nets have more or less a canonical denotational semantics,which was used in the previous chapter. To �nd such semantics for nondeterminis-tic networks is less obvious. The semantics of nondeterministic data
ow networksmay be reduced to the semantics of deterministic networks using oracles. Such anoracle �xes a priori the behaviour of the network regarding the nondeterministicpoints. Given a �xed oracle, a nondeterministic network becomes deterministicand it computes a stream processing function. Varying the oracle we obtain thesemantics of a nondeterministic network as a set of stream processing functions.Formally, we construct the model PSPF(M) for the interpretation of nondeter-ministic data
ow networks as follows.First, for streams a; b 2 S� de�nePSPF(M)(a; b) := fF j F � SPF(a; b)gNext, the operations ++ ; �; " are de�ned in an elementwise manner byF ++G = ff ++ g j f 2 F; g 2 GgF �G = ff � g j f 2 F; g 2 GgF " = ff " j f 2 FgThen, each constant c 2 fI; X; �̂ ; � ; �g of SPF is interpreted as a correspondingconstant fcg of PSPF.In this model, we may give meaning to additional nondeterministic branchingconstants, namely:� (Block) Split: for a 2 S�̂a = f �̂a� j � : ! ! f1; 2ggwhere for an oracle �, �̂a� (x) =def (y; z), with y and z obtained by splittingx according to �. That is, if �(i) = 1 then the i-th input is delivered onoutput channel 1, otherwise on output channel 2. This de�nition is extendedto arbitrary words a 2 S� using the identities in A18{A19.6� (Block) Merge7: for a 2 S�_a = f ��_a j � : ! ! f1; 2ggwhere for an oracle �, ��_a (x; y) = z with z obtained from x and y accordingto �. With A14{A15 this de�nition is extended to arbitrary a 2 S�.6Notice that we have independent oracles for each input channel in a and not a unique onefor all the inputs in a. With a de�nition that uses the later version the axiom A19 would fail.7We de�ne here a merge that is neither nonstrict nor fair. The treatment of a fair nonstrictmerge needs a more sophisticated semantic model (see [Bro93]).17



� (Block rich) Source: for a 2 S��a = fgx j x 2Magwhere for x 2Ma; gx : 0! a is the function given by gx( ) = x.By split, merge, and source we have introduced three nondeterministic constantsfor data 
ow nodes.4.1 Graph IsomorphismAs it is well-known, for nondeterministic terms certain classic algebraic equa-tions do not hold such as the �xed-point equation. Nevertheless all equationscharacterizing graph isomorphismes hold, of course.Theorem 4.1 (Graph isomorphism)(PSPF; ++ ; �; "; I; X) is a BNA model.Proof: The proof follows directly from the corresponding result in the deter-ministic case (theorem 3.1). The key point is the observation that all the BNAaxioms8 are identities with both the left-hand side and the right-hand side termscontaining at most one occurrence of a variable and each variable that occurs inone part of an identity occurs in the other part, as well. Hence the validity of theproof of a BNA axiom in PSPF may be checked on elements and it is reduced tothe validity of the corresponding axiom in SPF. 2To these axioms for graph isomorphism we can add equations for the constants.Theorem 4.2 (Graph isomorphism with various constants)(PSPF; ++ ; �; "; I; X; �̂ ; � ; �_; �) obeys the additional axiomsA1{A2, A4{A6, A8{A9, A12{A19 and F3{F4in table 3 where �̂ ; � ; �_; � replace ^;?;_;>, respectively.Notice that, for the remaining axioms, only one inclusion holds, i.e. \�" forA3, A7, A11 and F5 and \�" for A10.The details of the proof may be found in section 5. Since axioms A1{A2 and A5{A6 are valid, the oracle based semantics of the nondeterminism is associative andcommutative. Hence we may equivalently use the extended branching constants�̂ak� : a ! ka and ��_ka : ka ! a for k � 1, where � : ! ! f1; : : : ; kg is ak-oracle. On the other hand, axioms A3 and A7 do not hold, hence we have anot fair merge and therefore a nonangelic calculus of relations.8Recall, the BNA axioms are B1{B10, R1{R5 and F1{F2 in table 3.18



II'. Axioms for the additional constants � ; �; �_; �̂ (without feedback)A1 (�_a ++ Ia) � �_a = (Ia ++ �_a) � �_a A2 aXa � �_a = �_aA3o (�a ++ Ia) � �_a � Ia A4 �_a � �a = �a ++ �aA5 �̂a � ( �̂a ++ Ia) = �̂a � (Ia ++ �̂a) A6 �̂a � aXa = �̂aA7o �̂a � (�a ++ Ia) � Ia A8 �a � �̂a = �a ++ �aA9 �a � �a = I0A10o �_a � �̂a � ( �̂a ++ �̂a) � (Ia ++ aXa ++ Ia) � (�_a ++ �_a)A11o �̂a � �_a � IaA12 �0 = I0 A13 �a+b = �a ++ �bA14 �_0 = I0 A15 �_a+b = (Ia ++ bXa ++ Ib) � (�_a ++ �_b)A16 �0 = I0 A17 �a+b = �a ++ �bA18 �̂0 = I0 A19 �̂a+b = ( �̂a ++ �̂b) � (Ia ++ aXb ++ Ib)IV'. Axioms for the action of feedback on the branching constantsF3 �_a "a = �a F4 �̂a "a = �aF5o [(Ia ++ �̂a) � (aXa ++ Ia) � (Ia ++ �_a)] "a � IaTable 2: Axioms satis�ed by the split-merge interpretation of the branchingconstants in PSPF
19



4.2 The Input-Output BehaviourIn this section we look to the axiomatization problem for the input-output be-haviour of nondeterministic data
ow networks.It is easy to see that neither the strong axioms S1{S2 nor S3{S4 in table 3hold. Similarly, due to the nondeterministic behaviour of the cells the �xpointidentity is not valid, hence the unfolding of networks is not a correct rule. Allthese comments amount to say that algebraic or iteration theories cannot be usedin this setting.These observations lead towards a counterexample to a thesis9 of Bloom andEsik. Bloom and Esik's thesis (see [BE88], for instance):Whenever an iterative process is present an iteration theory structuremay be found.There are many examples which were studied in full detail by Bloom and Esikshowing that this is the case when one tries to capture the iteration laws incombination with the algebraic theory laws. On the other hand, PSPF providesan example of a natural iterative process which is neither an algebraic theory nora dual algebraic theory (i.e., neither S1{S2 nor S3{S4 of table 3 hold). Since aniteration theory is an algebraic theory we get the following result.Corollary 4.3 Bloom's and Esik's thesis is false.By contrast, the 
ownomial calculus starts with an axiomatization of the iterationoperation combined with the monoidal category primitives rather than with thealgebraic theory primitives. This is the key reason for the successful applicationof the 
ownomial calculus to the case of nondeterministic data
ow networks, asit has been presented in the previous subsection.One may perhaps suggest to replace Bloom and Esik thesis above by thefollowing weaker one:Whenever an iterative process is present the BNA laws hold, such thatan a�-
ow algebra may be found.Since the BNA laws are correct and complete for graphs modulo graph isomor-phism, this is true whenever one correctly has a graphical description of theunderlined iterative process.The problem of axiomatizing the input-output behaviour of nondeterministicdata
ow networks is still open. We do not have a result similar to corollary 3.9.To be more precise, let us de�ne a f�̂ ; �_; � ; � ; � ; �̂g- bu�ering morphism as a setof stream processing functions speci�ed by a data
ow network built up with9Strictly speaking, this is a thesis and not a conjecture since it states that the informalnotion of an iterative process is captured by the formal de�nition of iteration theories.20



� the split �̂ , merge �_, (rich) sink � , (dummy) source � , (rich) source � andcopy �̂ constants� the trivial cells sd 2 SPF(0; s) for d 2Ms(s 2 S) de�ned bysd( ) = d.Let R be a subset of branching constants in f�̂ ; �_; � ; � ; �; �̂g. We are interestedin the following problems for an arbitrary R and either for arbitrary networks orfor acyclic networks, only.� Expressivness: Characterize the R-bu�ering morphisms.(Certain invariants and/or complexity measures may be useful to classifythe equivalent networks.)� Decidability: Check the decidability of the equality problem for varioussets R of branching constants.� Axiomatization: Give complete (and correct) axiomatizations for the R-bu�ering morphisms.In general, the above problem is open although we have certain partial results.(See corollary 3.10, for example.) To be more speci�c, the problem is open forsubsets R which contains both the split and merge constants.These problems are particularly useful for modelling communication networkslike INTERNET. One may see that such a communication network is asyn-chronous and nondeterministic, it contains split and merge vertices. It is mainlyused to broadcast data so that no computing cells are used, except for trivialbu�ering components.5 Proofs of the Graph Isomorphism TheoremsIn this section we give the detailed proofs of our theorems.Lemma 5.1 (Axiom R5 of table 3)(f "p+q) = (f "q) "pfor f 2 SPF(M)(m + p + q; n + p + q). Hence one application of a multiplefeedback may be replaced by repetitive applications of unary feedbacks.Proof: Let f 2 SPF(M)(m+ p + q; n+ p + q). Then:� f "p+q2 SPF(M)(m;n) is de�ned by(f "p+q)(x) = ywhere y = tk�1yk and yk; zk; wk are inductively de�ned by(yk; zk; wk) = f(x; zk�1; wk�1) for k � 121



where z0 = h i; w0 = h i.Denotez := tk�1zkw := tk�1wk� (f "q) "p 2 SPF(M)(m;n) is de�ned as follows:((f "q) "p)(x) = ywhere y = ti�1yi and yi; zi are inductively de�ned by(yi; zi) = (f "q)(x; zi�1) for i � 1where z0 = h i, hence by the de�nition of f "q there are elements ~yi;j; ~zi;j; ~wi;jfor i; j � 1 such that for all i � 1:yi = tj�1~yi;j; zi = tj�1~zi;j and(~yi;j; ~zi;j; ~wi;j) = f(x; zi�1; ~wi;j�1) for j � 1where ~wi;0 = h i.It is obvious that each sequence (~yi;j)i;j; (~zi;j)i;j, and ( ~wi;j)i;j is increasingon both indices i; j, hence the following notation makes sense:z := ti�1zi andw := ti�1wi, where for i � 1 : wi := tj�1 ~wi;j .Proof of f "p+q= (f "q) "p:A) f "p+qv (f "q) "pFirst note that (yk; zk; wk) v (~yk;k; ~zk;k; ~wk;k); 8k � 1Indeed, for k = 1 it follows by(y1; z1; w1) = f(x; z0; w0)= f(x; h i; h i)= f(x; z0; ~w1;0)= (~y1;1; ~z1;1; ~w1;1)and if it holds for k, then it holds for k + 1 by:(yk+1; zk+1; wk+1) = f(x; zk; wk)v f(x; ~zk;k; ~wk;k)v f(x; zk; ~wk;k)v f(x; zk; ~wk+1;k)= (~yk+1;k+1; ~zk+1;k+1; ~wk+1;k+1)22



By this we get (f "p+q)(x) = y= tk�1ykv tk�1~yk;k= ti�1 tj�1 ~yi;j= ti�1yi= y= ((f "q) "p)(x)B) (f "q) "pv f "p+qWe prove by a double induction that(~yi;j; ~zi;j; ~wi;j) v (y; z; w); 8i; j � 1First note that (y; z; w) = f(x; z; w)Indeed, f(x; z; w) = f(x;tk�1zk;tk0�1wk0)= tk�1f(x; zk; wk)= tk�1(yk+1; zk+1; wk+1)= (y; z; w)For i = 1: If j = 1 then we have(~y1;1; ~z1;1; ~w1;1) = f(x; z0; ~w1;0)= f(x; h i; h i)= (y1; z1; w1)v (y; z; w)and the passing from j to j + 1 follows by(~y1;j+1; ~z1;j+1; ~w1;j+1) = f(x; z0; ~w1;j)= f(x; h i; ~w1;j)v f(x; z; w)= (y; z; w)The inductive step from i to i+ 1: If j = 1, then(~yi+1;1; ~zi+1;1; ~wi+1;1) = f(x; zi; ~wi+1;0)= f(x;tj0�1~zi;j0; h i)v f(x; z; w)= (y; z; w)and the passing from j to j + 1 is similar as in the previous case i = 1.23



2Proof: (of theorem 3.1)The validity of the axioms without feedback B1{B10 is obvious.R1 may be proved as follows. Let f : a0 ! a; g : a + c ! b + c; h : b ! b0and x 2Ma0 . Then [f � (g "c) � h](x) = h(y)where y = Fk yk for yk 2Mb; zk 2 Mc inductively de�ned by(y1; z1) = g(f(x); h ic)(yk+1; zk+1) = g(f(x); zk) (k � 1)On the other hand, [(f ++ Ic) � g � (h++ Ic)] "c (x) = twhere t = Fk tk for tk 2Mb; t0k 2Mb0 ; wk 2Mc inductively de�ned bytk = h(t0k) (k � 1)(t01; w1) = g(f(x); h ic))(t0k+1; wk+1) = g(f(x); wk)) (k � 1)By induction it follows that h(yk) = tk and zk = wk for all k. Hence h(y) = t,i.e. R1 is valid. R2 may be proved in a similar way.For R3 take x 2Ma. Then[f � (Ib ++ g)] "c (x) = ywhere y = Fk yk for yk 2Mb; z0k 2 Md; zk 2Mc inductively de�ned byzk = g(z0k) (k � 1)(y1; z01) = f(x; h ic)(yk+1; z0k+1) = f(x; zk) (k � 1)and [(Ia ++ g) � f ] "d (x) = twhere t = Fk tk for tk 2Mb; wk 2Md inductively de�ned by(t1; w1) = f(x; g(h id))(tk+1; wk+1) = f(x; g(wk)) (k � 1)Since h ic v g(h id) we get (y1; z01) v (t1; w1). This implies z1 = g(z01) v g(w1),hence (y2; z02) v (t2; w2) and so on. This proves one inclusiony =Gk yk vGk tk = t24



For the opposite inclusion, �rst note that z1 = g(z01) w g(h id), hence (y2; z02) w(t1; w1). This implies z2 = g(z02) w g(w1), hence (y3; z03) w (t2; w2) and so on.This shows that y = Gk yk+1 w Gk tk = tand R3 is proved.R4 is obvious, R5 has beeen proved in lemma 5.1 and F1, F2 are obviouslyvalid. 2Proof: (Theorem 3.2) The validity of the axioms A5{A9, A12{A13, A16{A19,and F4 of table 3 with �̂ ; � ; � instead of ^;?;> is obvious. 2Proof: (ENZ-Correctness, lemma 3.5) We havef � (Ib ++ y) = (Ia ++ y) � gwhere y :Mc !Md is such that for each i 2 f1; : : : ; jcjg there is a j such thaty(z):i = z:jThe results r = (f "c):x and t = (g "d):x are determined by the �xpoint itera-tions: (r0; s0) = (hi; hi) (t0; u0) = (hi; hi)(ri+1; si+1) = f(x; si) (ti+1; ui+1) = g(x; ui)We obtain y(s0) = u0 ^ r0 = t0Moreover, assuming y(si) = ui ^ ri = ti we obtain(ti+1; ui+1) =g(x; ui) =g(x; y(si)) =(ri+1; y(si+1)) where (ri+1; si+1) = f(x; si)This gives us all we need for an induction proof on i that shows y(si) = ui ^ ri =ti. 2Proof: (Theorem 4.2) First of all, we explain the interplay between the branch-ing constants. The meaning of ^ and _ as the split and merge constants, respec-tively, is taken for granted. In order to have a theory which is closed under thefeedback operation, we have to see which is the result of the application of thefeedback to such constants.It is easy to see that �̂s� "s= �sfor all oracles �, hence �̂s "s= �s. This equality re
ects the fact that our feedbackis the least �xed point solution. 25



For the other constant one may see that��_s "s= �sfor all oracles �. (For each oracle �, the merge function ��_s is continuous, hence��_s "sis a well-de�ned function and has to be equal to the unique function �s : s! 0.)All these amount to say that a set of branching constants including thesplit and merge constants and closed to the network algebra operations containsf�̂ ; �_; � ; �g.We use extended oracles � : ! ! f1; : : : ; kg for k � 1. For instance, themeaning of such an oracle in the case of the split constant �̂sk� is to show thenumber of the output channel where the current token is sent to. Similarly forthe merge constant.Axioms A14{A15 and A18{A19 hold by de�nition. On the other hand, it iseasy to see that A12{A13 and A16{A17 hold. Hence we may restrict ourself tothe analysis of the remaining axioms in the case of single channels, i.e. a = s 2 S.For axiom A1 it is enough to see that both terms are equal to �_3s. Clearly,( �0�_s ++ Is) � �00�_s = ��_3swhere � is the 3-oracle obtained from �0 and �00 according to the left-hand sideformula. Similarly for the right-hand side term. The proof is �nished showingthat a 3-oracle may be simulated by 2-oracle in both ways corresponding to theleft-hand side and right-hand side term of the identity, respectively.A5 may be proved in a similar way.For A2 and A6 it is enough to replace an oracle � : ! ! f1; 2g by the oracle� obtained interchanging numbers 1 and 2.Axioms A4 holds since for all oracles � one has ��_s � �s = �s ++ �s.Axiom A8 holds, too. (The splitting of an empty stream is a couple of emptystreams.)Clearly, �s � �s = I0, hence A9 is valid.Finally, axioms F3 and F4 are valid, as we have already seen in the beginningpart of the proof.In the remaining part of the proof we show that the other axioms do not hold.For A3, one may see that [(�s ++ Is) ��_s ](x) is the pre�x of x up to the max-imal token k such that �(1) = : : : = �(k) = 2. Hence A3 is not valid, but the\�" inclusion holds. On the other hand, it is interesting to note that varying �and keeping �xed x we get the pre�x closure of x.26



For the dual axiom A7, one may see that[ �̂s� (�s ++ Is)](x)is the substream of x given by those positions k for which �(k) = 2. Hence A7fails, but the inclusion \�" holds. In this case, varying � and keeping �xed x weget the substream closure of x.For A10 one may see thatE(�0; �00;  0;  00) = ( �̂s�0 ++ �̂s�00 )(Is ++ sXs ++ Is)(  0�_s ++  00�_s )generate a larger class of stream processing functions thanF (�; � ) = ��_s � �̂s�Indeed, E(�0; �00;  0;  00)(1_ 2 _ : : : ; a _ b _ : : :) = (2_ : : : ; b _ : : :)for �0 = 1 _ 2 : : : ; �00 = 1 _ 2 : : : ;  0 = 2 : : : ;  00 = 1 _ 1 _ : : :. On theother hand, this output is not possible forF (�; � )(1_ 2_ : : : ; a _ b _ : : :)since the �rst output on at least one channel here is in the set f1; ag.Conversely, it may be seen that F (�; � ) may be simulated by E(�0; �00;  0;  00) ifone takes �0 and �00 as certain restrictions of � and  0 and  00 as certain restrictionsof �. More precisely, for an oracle � and a subset of natural numbers A � ! letus denote by �jA the oracle obtained by restricting � to A, i.e. if A consists ofthe elements a1 < a2 < : : : then �jA(i) = �(ai) for i = 1; 2; : : :. Now�0 = � j��1(1); �00 = � j��1(2);  0 = �j��1(1);  00 = �j��1(2)(In case certain oracles as above are �nite, we may extend them to in�nite oraclesin an arbitrary way and the result holds.)With respect to A11, one may easily see thatE(�; ) = �̂s� �  �_sgenerate a set of functions which properly includes Is.Finally, the left-hand side of F5 speci�es a bag, hence the corresponding setof functions properly include Is. 2This concludes our proofs. 27



6 ConclusionsDiagrams and also 
ow graphs have been and still are very popular in manysoftware engineering methods. For a foundation of such ideas the algebra of 
owgraphs is a very helpful basis. Its application to data
ow graphs leads to analgebraic calculus where laws of graph isomorphisms and laws of semantic char-acteristics of data
ow nodes are combined. Besides studying nondeterminism,another interesting area is in the �eld of recursively de�ned data
ow graphs andthe related �eld of dynamic data
ow nets that has a close relationship to Milner's�-calculus.AcknowledgementIt is a pleasure to thank Ch. Facchi for help in preparing the manuscript and R.Grosu for stimulating discussions on the algebra of stream processing functions.7 Appendix: The AxiomsTable 3 lists the groups of axioms we were starting with. The adapted axiomsfor data
ow networks are given in the previous two tables.
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I. Axioms for ssmc-ies (symmetric strict monoidal categories)B1 f ++ (g ++ h) = (f ++ g) ++ h B2 I0 ++ f = f = f ++ I0B3 f � (g � h) = (f � g) � h B4 Ia � f = f = f � IbB5 (f ++ f 0) � (g ++ g0) = f � g ++ f 0 � g0 B6 Ia ++ Ib = Ia+bB7 aXb � bXa = Ia+b B8 aX0 = IaB9 aXb+c = (aXb ++ Ic) � (Ib ++ aXc) B10 (f ++ g) � cXd = aXb � (g ++ f)for f : a! c; g : b! dII. Axioms for the additional constants >;?;_;^ (without feedback)A1 (_a ++ Ia) � _a = (Ia ++ _a) � _a A2 aXa � _a = _aA3 (>a ++ Ia) � _a = Ia A4 _a � ?a = ?a ++?aA5 ^a � (^a ++ Ia) = ^a � (Ia ++ ^a) A6 ^a � aXa = ^aA7 ^a � (?a ++ Ia) = Ia A8 >a � ^a = >a ++>aA9 >a � ?a = I0A10 _a � ^a = (^a ++ ^a) � (Ia ++ aXa ++ Ia) � (_a ++ _a)A11 ^a � _a = IaA12 >0 = I0 A13 >a+b = >a ++>bA14 _0 = I0 A15 _a+b = (Ia ++ bXa ++ Ib) � (_a ++ _b)A16 ?0 = I0 A17 ?a+b = ?a ++?bA18 ^0 = I0 A19 ^a+b = (^a ++ ^b) � (Ia ++ aXb ++ Ib)III. Axioms for feedbackR1 f � (g "c) � h = ((f ++ Ic) � g � (h++ Ic)) "c (relating \"" and \�")R2 f ++ g "c= (f ++ g) "c (relating \"" and \ ++ ")R3 (f � (Ib ++ g)) "c= ((Ia ++ g) � f) "d (shifting blocks on feedback)for f : a+ c! b+ d; g : d! cR4 f "0= f (no feedback)R5 (f "b) "a= f "a+b (multiple feedbacks)Table 3: The Algebra of Binary Flownomials29



IV. Axioms for the action of feedback on constantsF1 Ia "a= I0 F2 aXa "a= IaF3 _a "a= ?a F4 ^a "a= >aF5 [(Ia ++ ^a) � (aXa ++ Ia) � (Ia ++ _a)] "a= IaV. The strong axioms (f : a! b)S1 >a � f = >b S2 _a � f = (f ++ f) � _bS3 f � ?b = ?a S4 f � ^b = ^a � (f ++ f)VI. The enzymatic ruleENZFn�1: f � (Ib ++ y) = (Ia ++ y) � g implies f "c= g "d,where E is a class of abstract relations (i.e., of terms written with++ ; �; I;X and some constants in >;?;_;^), y : c! d is in Eand f : a+ c! b+ c; g : a+ d! b+ d are arbitraryTable 3: The Algebra of Binary Flownomials (continued)
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