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AbstractFunctional speci�cations in FOCUS have been used to specify and verify designsof a number of reactive, discrete systems. In this paper we extend this speci�cationstyle to deal with real-time and hybrid systems. As mathematical foundation weemploy Banach's �xed point theory in metric spaces. The goal is to show thatthe theory used for discrete functional speci�cations smoothly carries over to real-time and hybrid systems. An example of a thermostat speci�cation illustrates themethod.
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1 IntroductionHybrid systems are dynamical systems consisting of both discrete and continuous compo-nents. They are used to model the behavior of embedded real-time systems in a physicalenvironment. This topic is becoming very active in Computer Science, due to the increas-ing importance of embedded and real-time systems and the emergence of results showingthat some techniques used for the speci�cation and veri�cation of reactive, digital sys-tems can be adapted to deal with hybrid systems. By their nature hybrid systems form aninterdisciplinary topic that lies at the junction of Computer Science and Control Theory.From the control theory or dynamic systems viewpoint, it is interesting to investigatehybrid systems concerning the questions usually asked in these disciplines, such as theproblems of analysis of dynamic behavior, realizability, and controller synthesis.On the other hand, from the traditional computer scientist viewpoint, hybrid systemscan be seen as a natural extension of reactive systems by the introduction of analogcomponents into the model. Therefore, computer scientists rather investigate how to carryover their description and speci�cation languages for reactive and/or real-time systems tohybrid systems, together with their proposed methodology for analysis, veri�cation, andre�nement.In this paper we take the viewpoint of a computer scientist and extend the formalismof functional speci�cation in FOCUS [BDD+93, Bro93, BD92] to deal with real-time andhybrid systems. Functional speci�cations describe the behavior of a system as a networkof functions, where every function processes in�nite streams of incoming messages andyields in�nite streams of outgoing messages. In the discrete setting, several approacheshave been taken to give functional speci�cations a semantics:� In [Bro93, BD92] domain theory is used to develop a semantic model for discretestream processing functions together with a tailored re�nement methodology.� In [GS96] metric spaces are employed to give a semantics for functionally speci�ed,discrete mobile data-ow networks.We follow the second approach and extend the static parts of [GS96] to a description andspeci�cation method for hybrid systems. Our goal is to show that only slight modi�cationsmust be carried through, so that the whole theory smoothly carries over to the hybridcase:First, discrete streams of type IN ! M have to be replaced by dense streams of typeIR+ ! M , where M denotes the set of all messages. Second, the property of a discretestream processing function to be strongly pulse driven (delay between input and outputof at least one time step) has to be changed to an adequate property for dense streams,called delayed (delay between input and output of at least � > 0). These modi�cationsallow us to employ Banach's �xed point theorem as in the discrete case to prove thewell-de�nedness of a functional speci�cation.4



1.1 Related WorkRecently, a number of description and speci�cation languages for reactive and/or real-time systems together with their proposed methodology for analysis, veri�cation, andre�nement were extended to deal with hybrid systems. An overview of the growing �eldcan be found in [GNRR93, AKNS95, AHS96].For example, in [ACH+95] a theory of hybrid �nite automata has been developed. Forveri�cation purposes, these automata are restricted to linear hybrid automata, where allvariables follow piecewise-linear trajectories. For this subclass of systems the standardsymbolic model checking techniques for reachability analysis can be carried over. Ap-proximation techniques allow a treatment of systems whose veri�cation problem is notdecidable and for which the iterative veri�cation procedures do not converge.Besides model checking, also re�nement techniques have been extended to deal with hybridsystems. As examples, that are by no means representative, we mention I/O Automata[LSVW95] and TLA, which has been extended to TLA+ [Lam93].1.2 OverviewThe rest of the paper is organized as follows: Section 2 introduces stream processingfunctions and relates them to the corresponding notions in the theory of metric spaces.In Section 3 composition operators are de�ned that are used to build networks out ofsingle functions. In particular, the mathematical foundation of the feedback operatoris presented. In Section 4 a short guideline for the speci�cation of components with theconcepts introduced so far is presented. Section 5 illustrates the speci�cation method withthe simple example of a thermostat. Finally, Section 6 gives a conclusion and highlightstopics for future work.2 Speci�cation with Stream Processing FunctionsWe regard a distributed system as a network of components that exchange messages viadirected channels. On every input or output channel messages are received from, or sentto, the environment. Therefore, every channel reects an input or output communicationhistory of the system.The system itself is described by a set of functions, where each function processes inputhistories and produces output histories according to its speci�cation. To describe under-speci�cation or nondeterminism we use sets of functions instead of single functions.
5



2.1 Dense Communication HistoriesCommunication histories of discrete systems can be modeled by sequences of messages,i.e., functions of type IN !M , whereM denotes the set of all messages [Bro93, BDD+93].For hybrid systems this model has to be extended to incorporate real time. One possibilityis to add real time stamps. In the literature this is known as sampling semantics [MP93].Here, instead, we develop a super dense semantics and therefore introduce real time ordense streams.Let M be the (potentially in�nite) set of all messages. A dense stream x over a set M isrepresented by a total function x : IR+ !M , where IR+ denotes the set of all non-negativereal numbers. Since we describe reactive systems, which continuously respond to stimulifrom the environment, time never halts, and we use IR+ as the time scale instead of timeintervals. The set of all dense streams is denoted by M IR+. For every dense stream x weabbreviate the restriction xj[0;t] by x# t.In order to motivate the usefulness of this de�nition we have adapted the example of athermostat from [ACH+95], where it is presented by means of hybrid automata.Example 1 (Dense Stream) The temperature of a room in a cool environment can bemodeled by a dense stream x. We assume that without the presence of any heater, thetemperature decreases according to the exponential function x(t) = �e�Kt, where t denotesthe time, � the initial temperature, and K is a positive constant determined by the room.A mathematical treatment of functional speci�cations requires dealing with feedbackloops. In the discrete case, dealing with streams of type IN ! M , the semantics ofsuch loops has been successfully described as least �xed points of functions over do-mains [Bro93, BDD+93]. The underlying mathematical model is Scott's domain the-ory [SG90, Win93]. Fixed points of stream processing functions over dense streams,however, are more naturally and elegantly described by the �xed point theory of Banach.It is based upon the mathematical background of metric spaces. In order to specify loopsof stream processing functions in Section 3, we therefore introduce the main concepts ofmetric space theory.De�nition 1 (Metric Space) A metric space is a pair (D; d) consisting of a nonemptyset D and a mapping d : D � D ! IR, called a metric or a distance, which has thefollowing properties:(1) 8x; y 2 D : d(x; y) = 0 , x = y(2) 8x; y 2 D : d(x; y) = d(y; x)(3) 8x; y; z 2 D : d(x; y) � d(x; z) + d(z; y):We need a metric for dense streams, which is de�ned in the sequel.De�nition 2 (The Metric of Streams) The metric space of dense streams (M IR+ ; d)is for all x; y 2M IR+ de�ned as follows: d(x; y) = inff2�t j t 2 IR+ ^ x# t = y# tg:From this de�nition a metric d(n) for n-tuples of streams (M IR+)n can be easily derived.6
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...nmfFigure 1: Stream Processing FunctionLet n 2 IN and x; y 2 (M IR+)n then d(n)(x; y) is de�ned asd(n)(x; y) = maxfd(xi; yi) j 1 � i � ng:A metric space (D; d) is called complete whenever each Cauchy sequence converges toan element of D [Eng77]. The metric space on stream tuples ((M IR+)n; d(n)) is complete[Eng77]. Complete metric spaces are a presupposition for Banach's �xed point theorem.This theorem, which will be explained later on, guarantees | under certain assumptions| the existence of a unique �xed point of loops in functional speci�cations.2.2 Stream Processing FunctionsComponents of real time or hybrid systems can be functionally speci�ed by stream pro-cessing functions over dense streams. Components are connected by directed channels toform a network. Each channel links an input port to an output port. A (m;n)-ary streamprocessing function with m input and n output ports is a function f withf : (M IR+1 )m ! (M IR+2 )nwhere M1 and M2 represent two (not necessarily di�erent) sets of messages. The graphicnotation of f is pictured in Fig. 1. If we want to express some kind of nondeterminismwe describe components by a set of stream processing functions rather than by a singlefunction.Our operational understanding that stream processing functions model interacting com-ponents leads to a basic requirement for them. An interactive component is not capableto take back an output message that it has already emitted. This requirement can beful�lled by a certain kind of stream processing functions, namely behaviors.A stream processing function is said to be a behavior if its input until time t completelydetermines its output until time t. It is said to be a delayed behavior if its input untiltime t completely determines its output until time t + � for � > 0. In other words, adelayed behavior imposes a delay of at least an arbitrarily small real value between inputand output. Here, � denotes the delay of f . It is quite realistic to assume components to7



be delayed because reactive systems always need a certain time to react. Instantaneousreactions, however, can be expressed by (non-delayed) behaviors.De�nition 3 ((Delayed) Behavior) A (m;n)-ary stream processing function f is calleda behavior if 8x; y 2 (M IR+)m; t 2 IR+ : x# t = y# t) f(x)# t = f(y)# tand a delayed behavior (with delay � > 0) if8x; y 2 (M IR+)m; t 2 IR+ : x# t = y# t) f(x)# (t+ �) = f(y)# (t+ �):Note that the operator # is overloaded to stream tuples in a point-wise style, i.e., x# t fora stream tuple x 2 (M IR+)m denotes the tuple we get by applying # t to each componentof x.The equivalent property in Scott's theory is monotonicity. From a theorem by Knasterand Tarski it is well-known that monotonic functions over complete partial orders have aleast �xed point [Win93].We model speci�cations by sets of (delayed) behaviors. They can be composed intonetworks of functions, which themselves behave as (delayed) behaviors. For this purpose,we will introduce three composition operators in the next section. For one of them, thefeedback operator, the existence of a unique �xed point of the feedback loop is guaranteedonly for delayed behaviors. To prove this formally we introduce a notion correspondingto delayed behaviors in metric space theory.De�nition 4 (Lipschitz Functions) Let (D1; d1) and (D2; d2) be metric spaces and letf : D1 ! D2 be a function. We call f a Lipschitz function if there is a constant c � 0such that the following condition is satis�ed for all x; y 2 D1:d2(f(x); f(y)) � c � d1(x; y):The Lipschitz constant Lip(f) of a Lipschitz function f is denoted by the in�mum of allc that ful�ll the above mentioned inequation. If Lip(f) � 1 we call f non-expansive. IfLip(f) < 1 we call f contractive.The following theorem relates the notions of behaviors and delayed behaviors to non-expansiveness and contractivity. Whereas the �rst ones have a operational justi�cation,the latter ones represent their transfer to metric space theory and will be used as arequirement for Banach's �xed point theorem.Theorem 1 A stream processing function is a delayed behavior i� it is contractive withrespect to the metric of stream tuples. A stream processing function is a behavior i� it isnon-expansive with respect to the metric of stream tuples.Proof 1 We prove the �rst statement of the theorem. First, we prove the only-if-direction.Suppose that d(m)(x; y) = 2�t0 and that f is a delayed behavior with delay �. d(m)(x; y) =8



2�t0 implies that x# t0 = y# t0. Therefore, f(x)# (t0+ �) = f(y)# (t0+ �). Finally, we getinff2�t j t 2 IR+ ^ f(x)# t = f(y)# tg � 2�(t0+�) = 2�� � d(m)(x; y). Since 2�� < 1 for all� > 0, f is contractive.Now, we prove the if-direction. Suppose that d(m)(x; y) = 2�t1 , d(n)(f(x); f(y)) = 2�t2 ,and that f is contractive, i.e., 9c < 1 : 8x; y : d(n)(f(x); f(y)) � c � d(m)(x; y). Then2t1�t2 � c < 1 = 20. This implies because of the monotonicity of the logarithmic functionthat t1 < t2. We can �nd some � > 0 with t1 + � = t2. As a consequence we getx# t1 = y # t1 ) f(x)# (t1 + �) = f(y)# (t1 + �). In other words, f is a delayed behavior.The second equivalence can be proven accordingly.3 Composition OperatorsThe de�nition of networks is the main structuring principle on the functional speci�cationlevel. There is no (semantical) di�erence in principle between a single component and anetwork of components. A network can be de�ned either by recursive equations or byspecial composition operators. We choose the second alternative and consider three basiccomposition operators, namely sequential/parallel composition and feedback.In our functional speci�cation technique, networks of components can be represented bydirected graphs, where the nodes represent components and the edges represent point-to-point, directed communication channels (see, for instance, Fig. 2).3.1 Sequential CompositionSequential composition is simply de�ned by functional composition of two stream pro-cessing functions. The graphic representation of this composition is pictured in Fig. 2.De�nition 5 (Sequential Composition) Let f and g be (m;n)-ary and (n; k)-ary streamprocessing functions, respectively. Then f � g is the (m;k)-ary stream processing functionde�ned by(f � g)(x) = g(f(x)).The following theorem and corollary depict important properties of the sequential com-position:Theorem 2 The sequential composition of two Lipschitz functions f : D1 ! D2 andg : D2 ! D3 is a Lipschitz function with constant Lip(f) � Lip(g).Proof 2 d3(g(f(x1)); g(f(x2))) � Lip(g) � d2(f(x1); f(x2)) � Lip(g) � Lip(f) � d1(x1; x2).Corollary 1 The sequential composition of two behaviors is a behavior. The sequentialcomposition of two delayed behaviors with delays �1 and �2, respectively, is a delayedbehavior with delay �1 + �2. The sequential composition of a behavior and a delayedbehavior is a delayed behavior. 9
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......m kn lf g fkgFigure 3: Parallel CompositionDue to the above theorem, the proof of this corollary is obvious.3.2 Parallel CompositionThe parallel composition is de�ned intuitively. Sticking two components orthogonallytogether yields a component which input/output ports consists of all input/output portsof the composed components (see Fig. 3). Formally:De�nition 6 (Parallel Composition) Let f and g be (m;n)-ary and (k; l)-ary streamprocessing functions. Then fkg is the (m+k; n+ l)-ary stream processing function de�nedby (fkg)(x1; : : : ; xm+k) = (f(x1; : : : ; xm); g(xm+1; : : : ; xm+k)):As for the sequential composition, an equivalent property can also be formulated for theparallel composition:Theorem 3 The parallel composition of two behaviors is a behavior. The parallel com-position of two delayed behaviors with delays �1 and �2, respectively, is a delayed behavior10



with delay min(�1; �2). The parallel composition of a behavior and a delayed behavior isa behavior.Proof 3 We prove the second statement of the theorem. Let f be a (m;n)-ary delayedbehavior with delay �1 and g be a (k; l)-ary delayed behavior with delay �2. Without loss ofgenerality we assume that �1 < �2. Let x; y 2 (M IR+)k, then g(x)# (t+ �2) = g(y)# (t+ �2)implies that g(x)# (t+�1) = g(y)# (t+�1). The other statements can be proven accordingly.Note that the sequential composition of a behavior and a delayed behavior is a delayedbehavior, whereas the parallel composition of a behavior and a delayed behavior is \only"a behavior.3.3 Feedback OperatorSystems described by functional speci�cations may contain loops. In the graphic notation,this is denoted by circular graphs (Fig. 4). The feedback operator feeds k output channelsback to k input channels of a (m+ k; n+ k)-ary delayed behavior.De�nition 7 (Feedback Operator) Let f : (M IR+1 )m� (M IR+)k ! (M IR+2 )n � (M IR+)kbe a (m+ k; n+ k)-ary delayed behavior. Then �kf is a (m;n)-ary delayed behavior suchthat the value (z1; : : : ; zn) of (�kf)(x1; : : : ; xm) is calculated as follows:(z1; : : : ; zn; y1; : : : ; yk) = f(x1; : : : ; xm; y1; : : : ; yk)where (y1; : : : ; yk) is the solution of the equation(y1; : : : ; yk) = g(x1;:::;xm)(y1; : : : ; yk):Here g(x1;:::;xm) is de�ned as a (k; k)-ary delayed behavior:g(x1;:::;xm)(y1; : : : ; yk) = �n+1;n+k(f(x1; : : : ; xm; y1; : : : ; yk))where �n+1;n+k denotes the projection on the last k ports.The central issue of our contribution is that the �xed point operator is well-de�ned, i.e.,that the unique solution of (y1; : : : ; yk) = g(x1;:::;xm)(y1; : : : ; yk)exists. The existence of this �xed point is guaranteed by Banach's �xed point theorem:Theorem 4 (Banach's Fixed Point Theorem) Let (D; d) be a complete metric spaceand f : D ! D a contractive function. Then there exists an x 2 D, such that the followingholds:(1) x = f(x) (x is a �xed point of f)(2) 8y 2 D : y = f(y)) y = x (x is unique)(3) 8z 2 D : x = limn!1fn(z) wheref0(z) = zfn+1(z) = f(fn(z)) 11
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Figure 4: Feedback OperatorProof 4 For instance, see [Sut75].In the context of this paper, we can apply Banach's theorem in the following way. Firstof all, the metric space ((M IR+)k; d(k)) is complete. Secondly, f is a (m + k; n + k)-arydelayed behavior and therefore contractive. Remember that f need not to be a basicstream processing function, but can also be a composed, delayed behavior. Moreover,also g(x1;:::;xm) : (M IR+)k ! (M IR+)k is by de�nition a contractive function. Altogether, allassumptions of Banach's �xed point theorem are ful�lled and the existence of a unique�xed point (y1; : : : ; yk) of g(x1;:::;xm) is ensured. Hence, every delayed behavior has a unique�xed point.Banach's �xed point theorem is the counterpart of Knaster/Tarski's �xed point theorem inthe theory of metric spaces. However, note that Knaster/Tarski's theorem only guaranteesthe existence of a least �xed point, i.e., that potentially more than one �xed point canexist. In contrast, Banach's �xed point theorem guarantees the existence of a unique �xedpoint.Again it is a straightforward proof to show that the feedback �kf is a delayed behavior,provided that f is a delayed behavior.4 Speci�cation of ComponentsThe here presented notion of speci�cation of components is de�ned according to [BDD+93].A component is modeled by a non-empty set of behaviors, which is represented by a predi-cate on functions. Each function from this set corresponds to one particular, deterministicbehavior. 12



Hence, a functional speci�cation of a component C is given by the predicateP : ((M IR+1 )m ! (M IR+2 )n)! IBwhich describes the following set S of (m;n)-ary behaviorsff : (M IR+1 )m ! (M IR+2 )n jP (f) ^ f is a behaviorg:This is denoted by JCK = S. Every (m;n)-ary behavior describes a potential input/outputbehavior of the component. The composition operators de�ned in Section 3 can easily belifted to sets: JC1 � C2K = ff � g j f 2 JC1K ^ g 2 JC2KgJC1 k C2K = ff k g j f 2 JC1K ^ g 2 JC2KgJ�kCK = f�k(f) jf 2 JCKg:If the above set only contained one single element, it would represent a deterministiccomponent.In most cases components are modeled not only by behaviors but by delayed behaviors.Delayed behaviors with delay � usually have an unde�ned output stream during theinterval [0; �). Thus, during this interval, nothing can be said about the input/outputbehavior of the component. The component remains underspeci�ed in this time andtherefore behaves non-deterministically.To abolish this underspeci�cation, we can assume that the component generates a prede-�ned value during the interval [0; �), as we shall see in the example.5 ExampleIn this section we give a functional speci�cation of a thermostat, a simple hybrid systemused as an introductory example in [ACH+95]. The temperature of a room is controlledby a thermostat, which continuously senses the temperature and turns a heater on ando�. The temperature is governed by di�erential equations.When the heater is o�, the temperature Temp of the environment, denoted by the densestream x, decreases according to the function x(t) = �e�Kt (see Example 1). When theheater is on, the temperature of the environment follows the function x(t) = �e�Kt +h(1�e�Kt), where h is a constant that depends on the power of the heater, � is the initialtemperature of the room, and K is a constant determined by the environment. K can beconsidered to be direct proportional to the geometric size of the room. We wish to keepthe temperature between min and max degrees and turn the heater on and o� accordingly.13



fC � fHfC fHx 2 TempIR+ y 2 fon; o�gIR+ z 2 f0; hgIR+Figure 5: Thermostat Modeled as Open System5.1 Thermostat as Open SystemThe controlling part of the resulting system for this informal description is shown in Fig. 5.The system consists of the two components Control and Heater. The �rst one is describedby a set Control of functions fC , described by the predicatePC : (TempIR+ ! fon; o�gIR+)! IB:Each function fC with PC(fC) = true produces signals o� or on, if the incoming stream oftemperature signals overshoots max or undershoots min, respectively. These signals serveas an input stream for the Heater:PH : (fon; o�gIR+ ! f0; hgIR+)! IBthat produces the corresponding heating power, which can be 0 or h. Note that we modelonly the heating power of the heater, but not the resulting absolute temperature. Thetemperature of the room is regarded as part of the system's environment. This is di�erentfrom [ACH+95], where the temperature is an inherent part of the system description.Therefore, the environment is there modeled as part of the system.In fact, the model of hybrid automata does not emphasize on an interface concept tothe environment, so that [ACH+95] describes merely closed systems without dividing theoverall speci�cation into system and environment. The advantage of our approach is itsmodularity, which allows us to separate the environment from the system speci�cation.This is one of the essential issues of our approach. The application of our functionalspeci�cation method to the thermostat example shows that indeed only the environmentbehaves continuously. The system itself, i.e., Controller and Heater behave as value-discrete components. They produce signals on, o�, 0, and h. The environment, however,is characterized by the temperature, which is denoted by a real-valued (Temp) stream.In the sequel, we give the precise speci�cations of the components Control and Heater.First of all, we de�ne Control = ffC jPC (fC) ^ fC is a delayed behaviorg:fC(x) = y14



where the output stream y is de�ned by the predicate PC :8y 2 fon; o�gIR+ 8t 2 IR+ : x(t) � min ) y(t+ �C) = on ^x(t) � max ) y(t+ �C) = o� ^min < x(t) < max ) y(t+ �C) = y(t):Here �C > 0 denotes the delay of the componentControl. However, this speci�cation leavesthe value y(t) in the interval [0; �C) unspeci�ed. We can abolish this under-speci�cationby simply extending fC . We de�ne y(t) = o� in this interval and get a determinis-tic component, i.e., a one-element set. Now, we specify the Heater = ffH jPH(fH) ^fH is a delayed behaviorg: fH(y) = zwhere the output stream z is de�ned by the Boolean predicate PH :8z 2 f0; hgIR+ 8t 2 IR+ : y(t) = o� ) z(t+ �H) = 0 ^y(t) = on ) z(t+ �H) = h:Again, to avoid under-speci�cation, we de�ne z(t) = 0 for t 2 [0; �H) and get a determin-istic component, represented by a one-element set. Being a deterministic component, thewhole thermostat can then be described using the sequential compositionControl �Heater:This component has delay �C + �H according to Corollary 1.5.2 Thermostat as Closed SystemTo model the continuous part of the speci�cation, we add the environmentEnv = ffE jPE(fE) ^ fE is a behaviorgto it, where the predicate PE has typePE : (f0; hgIR+ ! TempIR)! IBand we get a closed system (Fig. 6).Env is speci�ed as a component that cools the temperature down according to the ex-ponential function �e�Kt (see also Example 1), if the Heater is o�. When it is on, thetemperature follows the function �e�Kt + h(1 � e�Kt). We combine these two functionsto one function x(t) = �e�Kt + z(t) � (1 � e�Kt) and get:fE(z) = xwhere the output stream x 2 TempIR+ is de�ned by the di�erential equation:x0(t) = z(t)�K�x(t)15



fHfC fE �1(fC � fH � fE)x 2 TempIR+ y 2 fon; o�gIR+ z 2 f0; hgIR+
Figure 6: Thermostat Modeled as Closed Systemwhere x0(t) denotes the �rst di�erentiation of x(t). Using the product rule for di�erenti-ations, it can be calculated as follows:x0(t) = ��Ke�Kt + z0(t)� (z0(t) � e�Kt + z(t) � (�K)e�Kt)= K(z(t)��)e�Kt= z(t)�K�x(t)and get PE(fE) :,8z 2 f0; hgIR+ 8x 2 TempIR+ 8t 2 IR+ : fE(z) = x ^ x0(t) = z(t)�K�x(t)as overall result. Env and Control � Heater form a closed system in the shape of afeedback: �1(Control �Heater � Env):This de�nition is well-de�ned, as the occurring �xed point is uniquely determined accord-ing to our theory in Section 3: as Control�Heater contains one single contractive functionwith delay �C + �H , Control �Heater �Env is contractive according to Corollary 1, evenif all functions in Env have no delay at all. Therefore, Banach's �xed point theorem canbe applied.6 Conclusion and Further WorkWe have shown that the speci�cation formalism of discrete timed stream processing func-tions can easily be extended to deal with real-time and hybrid systems. We could givefunctional speci�cations with feedback a semantical foundation by introducing the conceptof delayed behaviors that allows us to employ Banach's �xed point theorem.Characteristic of our approach is that our functional model naturally reects the physicaland conceptual structure of the system and its environment. In particular, it is possible16



to distinguish clearly between system and environment. In the thermostat example thisstructural clarity has been documented. Furthermore, we have the impression that theconcept of well-known mathematical functions leads to a simple and clear speci�cationstyle.In the discrete case a veri�cation methodology by (structural, behavioral, and interface)re�nements is well studied and understood. Further work should explore how to carryover these results to the hybrid setting. Generally, there are several possibilities to extendour speci�cation method with a veri�cation methodology:� As our speci�cation style provides a clear distinction between environment and sys-tem, it seems to be natural to re�ne the system to a discrete description. Thereforea transformation from analog (but inherently discrete) to discrete speci�cations hasto be investigated. In the case of the thermostat, e.g., the system itself (Controllerand Heater) is translated to a discrete system by simply abstracting dense streams todiscrete streams (IN !M), as it is already value-discrete. Using such a transforma-tion the system can be re�ned by the well known discrete veri�cation methodology,whereas the environment is still described with continuous mathematics.� Alternatively, one could stay in the hybrid speci�cation style and investigate howthe discrete re�nement concepts carry over to dense streams and continuous values.� Apart from these veri�cation approaches through re�nements it would be inter-esting to investigate property checking methods. As hybrid model checkers such asHyTech [ACH+95] are inherently connected to state based descriptions, an appropri-ate formalism has to be developed for the functional description style. An advantageof property checking is that it veri�es properties of both system and environment,whereas re�nements cover the systems behavior only.Finally, it would be interesting to analyze another type of streams as functions of typeIN !M � IR, yielding a sampling semantics.AcknowledgmentThanks are owed to Manfred Broy who provided �rst ideas concerning both dense streamsand behaviors. The authors have bene�ted from many discussion with Ketil St�len onthis and on related topics. We also thank Radu Grosu and Ketil St�len for the stimulatingtechnical report on discrete timed streams.
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