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AbstractWe present deterministic sorting and routing algorithms forgrids and tori with additional diagonal connections. For largeloads (h � 12), where each processor has at most h data packets inthe beginning and in the end, the sorting problem can be solved inoptimal hn=6+o(n) and hn=12+o(n) steps for grids and tori withdiagonals, respectively. For smaller loads we present a new con-centration technique that yields very fast algorithms for h < 12.For a load of 1, the theoretically most interesting case, sortingtakes only 1:2n + o(n) steps and routing only 1:1n + o(n) steps.For tori we can present optimal algorithms for all loads h � 1.The above algorithms all use a constant size memory for all pro-cessors and never copy or split packets. If packets may be copied,1{1 sorting can be done in only in 23n + o(n) on a torus with di-agonals. Gaining in general a speedup of 3 by only doubling thenumber of communication links compared to a grid without diag-onals, our work suggests to build grids and tori with diagonals.Keywords: parallel architecture, mesh connected processor ar-rays, diagonal connections, parallel algorithms, sorting, routing
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1 IntroductionMesh-connected processor arrays have been in the focus of research onparallel computation for many years. Among others, one of the rea-sons for their popularity lies in their scalability, an important propertythat many other architectures are lacking [1, 2, 23, 29]. Routing andsorting are important algorithmic problems studied for mesh architec-tures, because they are the building blocks for a lot of algorithms. Forconventional grids of processors with four-neighborhood there is a longline of research until �nally optimal results for deterministic sorting androuting were obtained [6, 10]. In this paper we study grids with eight-neighborhood, that is, grids with diagonals, presenting optimal resultsfor sorting and routing.The standard grid architecture with its four-neighborhood has beenextended in several ways. So it is quite popular to study higher dimen-sional grids or grids with additional wrap-around connections, so-calledtori. Another possibility to enlarge the neighborhood of grid processorsis to equip them with additional diagonal connections. In spite of the factthat meshes with diagonals are well-known and have been used for someapplications like matrix multiplication and LU decomposition [14, 26],near to nothing has been known how to exploit the additional commu-nication links for faster sorting and routing. Equipping grids with addi-tional wrap-around connections often leads to twice as fast sorting androuting algorithms [6, 10]. Equipping grids with diagonals �rst meansto double the number of data channels. We show that with diagonalconnections there exist sorting and routing algorithms that are morethan twice as fast as algorithms for grids without diagonals. Our algo-rithms are deterministic and optimal|they match the bisection boundasymptotically.In the following we speak of h{h problems when each processorinitially and �nally contains h packets. In this paper we regard theload h = O(1) as a small constant|we don't consider the case that h isa function of the grid size. For two-dimensional n � n meshes withoutdiagonals 1{1 problems have been studied for more than twenty years.Several 1{1 sorting algorithms exist for bu�er size 1, i.e., each processor
3



Table 1: Comparison of selected results for grids with and without diagonals.We omit sublinear terms. All algorithms are deterministic. Except for h = 1the results for sorting and routing are the same.New resultsProblem with diagonals Without diagonals1{1 routing 1:11n 2n Leighton et al. [18]1{1 sorting 1:2n 2n Kaklamanis and Krizanc [3],Kaufmann et al. [6]4{4 sorting 1:6n 4n Kunde [9]8{8 sorting 1:86n 4n Kunde [10], Kaufmann et al. [6]12{12 sorting 2n 6n Kunde [10], Kaufmann et al. [6]can store only one packet at each time. The fastest ones need 3n+ o(n)steps [19, 22, 27]. For bu�er size 2 the 1{1 sorting problem can besolved deterministically in 2:5n + o(n) transport steps [9]. Kaklamanisand Krizanc [3] presented a randomized algorithm (with constant bu�ersize) that sorts in only 2n + o(n) steps with high probability. Usingderandomization techniques, this algorithm can even be made determin-istic [6]. For 1{1 routing Leighton, Makedon, and Tollis [18] presented anoptimal deterministic algorithm (with constant bu�er size) that exactlymatches the distance bound of 2n � 2 steps. Rajasekaran and Over-holt [21] further reduced the bu�er size. We present algorithms for gridswith diagonals that need 1:2n+o(n) steps for 1{1 sorting and 1:11n+o(n)steps for 1{1 routing. For grids with diagonals we summarize some ofthe new results in Table 1 and compare them with the so far known bestresults on grids without diagonals. In the table we omit all sublinearterms, which are of no importance for the asymptotic complexity.Kaufmann and Sibeyn [5] invented randomized algorithms for h{hproblems on an n � n mesh that need hn=2 + o(n) steps if h � 8. It ispossible to solve the h{h routing and sorting problems within the samenumber of steps deterministically [6, 10]. These results are optimal, sincethey match the simple bisection bound of hn=2 steps valid for this typeof architecture. On meshes with diagonals we reach hn=6+O(n2=3) steps4



for deterministic h{h sorting and routing, provided that h � 12. Thisgives an acceleration factor of 3.For wrap-around meshes (or tori) without diagonals Kaufmann andSibeyn [5] presented a randomized h{h sorting algorithm with hn=4 +o(n) steps for h � 8. There exist equally fast deterministic algorithms [6,10]. Both algorithms match asymptotically the bisection bound of hn=4.If we add diagonals to tori, we can sort and route in only hn=12+O(n2=3)steps if h � 12. That means we again get a speedup of 3. Though thediameter of a torus with diagonals is n=2 and the bisection bound ishn=12, our best algorithm for the h{h problem with h � 12 needs stilln + o(n) steps. Still the algorithm remains optimal for h < 12 since itmatches asymptotically a lower bound of Krizanc and Narayanan whoshowed that even the 1{1 sorting problem takes at least n � o(n) stepson a torus with diagonals if data packets cannot be copied and the bu�ersize is 9 [7]. We also show that the requirement of no data replication isnecessary for their lower bound: We show that copying packets enablesto sort in 23n + o(n) time while still using only bu�er size 9. Thuswe have optimal h{h sorting algorithms for tori for all h. Recently,Sibeyn independently discovered an optimal sorting algorithm for toriwith diagonals for large h [24].The results of this paper demonstrate that grids with diagonals area promising architecture because the gain of reduced running times isobviously bigger than the extra costs of additional links. This work andits predecessor [12] have inspired related work [7, 24].We use a sorting method that is mainly based on all-to-all map-pings [10]. This method was the breakthrough to deterministic algorithmthat match the bisection bound. It is based on Leighton's Column-sort [16]. Roughly speaking that scheme consists of two kinds of oper-ations: local sorting in blocks of processors (cheap) and global commu-nication in a regular communication pattern (expensive). The sortingalgorithm performs the global communication, called all-to-all mapping,twice. In the third section we present this method in more detail andshow that the central task to obtain an e�cient algorithm is to devisean e�cient all-to-all mapping.Thus, in Section 4 we present an optimal all-to-all mapping for tori
5



with diagonals. Compared to grids without wrap-around connections,the advantage of tori is that there are no border processors and so thesituation is identical for all processors. Having obtained an optimalall-to-all mapping for tori, we proceed with an embedding of tori intogrids, culminating in the presentation of an optimal all-to-all mappingfor grids without wrap-arounds. In particular, that implies one of ourmain results, namely that h{h sorting with h � 6 can be done in asymp-totically hn=6 steps. Finally, among others, in Section 6 we apply thisresult to obtain fast algorithms for values h < 12 (see Table 1 for asmall selection), thereby using concentration techniques, most notablyconcentrating all-to-all mappings.2 PreliminariesIn this section we present basic de�nitions and notations.A processor grid with diagonals is a network of n2 processors ar-ranged in an n � n array. Processor (r; c) in row r and column c onthe grid is directly connected by a bi-directional communication link toprocessor (r0; c0) if maxfjr � r0j; jc � c0jg = 1. We speak of a diagonalconnection if jr � r0j = jc� c0j = 1. A torus is a grid with wrap-aroundconnections. Since tori have no borders, each processor is the center ofan eight-neighborhood.For a full h{h routing problem each processor contains exactly h pack-ets initially, each packet has a destination address, and each processoris destination of exactly h packets. The routing problem is to trans-port each packet to its destination address. For the more general sortingproblem the destination of each packet is not �xed, but determined byits rank according to some linear order. We assume that each packet ina processor P lies in a (memory) place (P; j), where 0 � j < h. Fora given j the set of places f (P; j) j P is a processor g is called the jthlayer. There are exactly h disjoint layers, numbered from 0 to h�1. Theplaces are indexed by an index function g that is a one-to-one mappingfrom the places onto f0; : : : ; hn2 � 1g. Then the sorting problem withrespect to g is to transport the ith smallest element to the place indexedwith i� 1. 6



For a full h{h routing problem one can supply each packet with anindex of its destination processor. In this manner the full h{h routingproblem becomes an h{h sorting problem.The model of computation is the conventional one, where only nearestneighbors exchange data [17, 15]. In one step a communication linkcan transport at most one packet in each direction. Processors maystore more than h packets, but the number has to be bounded by aconstant that is independent of the number of processors. For complexityconsiderations we count only communication steps; we ignore operationswithin a processor.Each processor has eight links. We assume that diagonal links leadingout of the grid at its border are connected together. These additionalconnections along the border are called outer links (cf. Figure 2.1).3 Sorting and routing with all-to-all map-pingsIn this section we briey describe how to sort the elements on a grid withthe help of an all-to-all mapping that distributes data uniformly all overthe mesh. Then we discuss how we can use the same methods even forpartial h{h routing problems. You can �nd a more detailed descriptionin the paper that introduced all-to-all mappings [10]. Sorting with all-to-all mappings is indeed a re�nement of Leighton's Columnsort [16].For sorting we divide the n�n-mesh into m2 quadratic n=m�n=m{submeshes, called blocks. We further divide each block intom2 subblocksand call a layer of such a subblock a brick. That means each blockcontains hm2 bricks arranged in h layers. We number the blocks from0 to m2 � 1 such that block i and block i + 1 are neighbors. We mustchoose the indexing g in such a way that all places in block i have smallerindices than all places in block i+1. We call such an indexing block-wisecontinuous. To see the correctness of the following sorting method weuse the 0{1 principle.In a �rst step we sprinkle all data all over the mesh in order to getapproximately the same number of ones into each block. We start by
7



Figure 2.1: Grids with diagonals and outer links. For grids with 8-neighborhood we assume that each processor has 8 bidirectional communi-cation links. At the border we connect neighboring processors with additionallinks that would not be used otherwise doubling e�ectively the transport ca-pacity between them (left side). Other wires are not really used by our al-gorithms, but it yields conceptually simpler algorithms when assuming thatthe remaining outgoing and incoming links of a processor are connected inloop-back mode (right side).sorting each block individually as follows. The ith brick gets elements i,i+m2, i+2m2, and so on. In this way the number of ones in each brickdi�ers at most by 1. Next we send from every block exactly h bricksto every block on the mesh as illustrated in Figure 3.1. Now each blockcontains almost the same number of ones (the di�erence is at most hm2).We call such a global distribution of data an all-to-all mapping [10].In a second step we sort each block in such a way that the �rst brickcontains the smallest elements and the last brick the largest ones. So atmost one brick contains zeros and ones. Let us call it the dirty brick.Since each block contains almost the same number of ones, the positionof the dirty brick is also almost the same in each block: The positions ofthe dirty bricks di�er at most by one, say, the position is either the kth
8



Figure 3.1: The standard all-to-all mapping on a mesh with 16 blocks.or (k +1)st brick, provided that a brick contains at least hm2 elements.Now an all-to-all mapping sends the �rst h bricks of each block tothe �rst block, the second h bricks of each block to the second block, andso on. Afterwards all dirty bricks are in the bk=hcth or b(k + 1)=hcthblock, so the whole mesh is nearly sorted. To �nish, we sort all adjacentpairs of blocks.How long does it take to sort by the above method? We perform twoall-to-all mappings and sort three times locally in blocks. For distancereasons the all-to-all mapping takes 
(n) steps. The local operationstake O(n=m) steps, since a block is n=m processors wide. The smallerthe blocks are, the faster the algorithm will be. As mentioned above themethod only works if each brick contains at least hm2 elements. Thereare hm4 bricks in the mesh that contains altogether hn2 elements, soeach brick contains n2=m4 elements. The above condition impliesn2m4 � hm2:This inequality leaves a lot of freedom. We choose m = 3pn=h andassume that m is an integer. In total the complexity of the all-to-allmapping asymptotically governs the time of our method.9



The above sorting algorithm directly applies to full h{h routing prob-lems. For partial h{h routing problems with a total loading of 75 percent,for example, the sorting algorithm would route the packets to wrong des-tinations. This problem can be overcome in the following way. Insteadof sorting the blocks in the beginning of the second step, we send packetswith block address j to those bricks which are going to the block withindex j. That is, we use the bricks as a basic transport unit.It may happen that too many packets want to go to their transportbricks. One can show, however, that after the �rst all-to-all mappingin each block the number of packets destined for an arbitrary block j isat most h n2m4 + ej , where Pj ej � m2. In this case at most ej packetshave to move to bricks destined to either block j � 1 or to block j + 1.It can be shown that this routing within the blocks takes only O(m2)additional steps which is neglectable.4 An Optimal All-to-all Mapping for theTorusSince the all-to-all mapping predominates the overall complexity of sort-ing with all-to-all mappings, the main task in the following is to presentan e�cient all-to-all mapping. For tori this is the contents of this section.We assume that the torus consists of (2k + 1) � (2k + 1) blocksand each block consists of (2k + 1)2 bricks. We have to send one brickfrom each block to each other block. So we have to �x one route foreach pair of blocks, along which one brick travels. There are (2k + 1)4such pairs. To make the algorithm simple, we want to make the routebetween two blocks dependent only on their relative positions. In thisway we need to describe only the routes from one �xed block to the other(2k + 1)2 � 1 blocks. What makes routes simple in another way is thatwe give only routes to the 4(2k + 1) � 4 blocks with maximal distance.All other blocks are somewhere in the middle of some route to a blockwith maximal distance. All blocks on such a route use the same routeto get their bricks. That were the simple facts, now come the hard ones:� One link between two processors can transfer exactly one packet10



Figure 4.1: Routes from the center block to all other blocks.in one step. We assume that it can transfer slightly more, i.e.,1 + 1=(2k + 1).� Bricks need not be transported as a whole. Parts of bricks mayreach their destination at di�erent times (and indeed they will).Under these assumptions all routes look as shown in Figure 4.1. The ar-rows show how data ows from the center block to all the other blocks.The algorithm performs in k phases. In each phase some data is trans-ported one block far in the direction of the arrows. In the �rst phase,of course, only the inner eight arrows are used and in each subsequentphase data reaches farer towards the outer blocks at the borders. In thekth phase, data is transferred along all arrows.Data is transferred in such manner that in the end each block willhave received a fraction of 1=(2k+1)2 of the center block's data. Beforegoing into the details|i.e., telling how much data is transferred overeach arrow in each phase|we exploit some more symmetry. Figure 4.1shows 8 triangles. These 8 triangles are quite similar, one can map oneonto the other by rotation or shearing or both. The corresponding arrows11



of di�erent triangles always transport the same amount of data in eachstep. Therefore it su�ces to describe the data movements in one triangleto describe the whole algorithm.Each triangle consists of k rows, where the block in the �rst row isadjacent to the center and the kth row is at the border. Let aij denotethe amount of data in the ith row of a triangle after the jth phase. Byan induction on j we show thataij = 12(k + 1)(k + 2)i+ (k � j)(k + 1)(j + 1)(j + 2)(2k + 1)2for i � j. (For i > j, obviously aij = 0.) For j = 1 and i = 1 thismeans a1;1 = 1 + 1=(2k + 1), which is exactly the amount shifted fromthe center brick into each triangle in the �rst phase: i=jaij for i = 1and j = 1. For j > 1 we have to verify for i � j thataij + i+ 1j ai+1;j � ij aij = ai;j�1; (�)since in the jth phase the ith row receives an amount of i=j aij packetsfrom the i�1st row and sends an amount of (i+1)=j ai+1;j to the i+1strow. A simple calculation shows that (�) indeed holds:aij + i+ 1j ai+1;j � ij aij= 12(k + 1)((i + 1)2 + (j � i)i)(k + 2) + (i+ 1 + j � i)(k � j)j(j + 1)(j + 2)(2k + 1)2= 12(k + 1)(j + 2)(k + 2)i+ (k + 2 + jk � j2 + k � j)j(j + 1)(j + 2)(2k + 1)2= 12(k + 1)(k + 2)i+ (k � j + 1)j(j + 1)(2k + 1)2= ai;j�1So after the kth stage we have a fraction ofaik = 12i(2k + 1)212



of the center block in the ith row, which means that we have 12=(2k+1)2in each block, provided that we transport data in such a way that eachblock within a row gets exactly the same amount of data.Each phase takes only n=(2k+1) steps if the capacity of a link is 1+1=(2k + 1). We show that the above algorithm indeed uses only a linkcapacity of 1 + 1=(2k + 1). For each of the (2k + 1)2 blocks there are8 triangles. For i � j, the ith rows of these 8(2k + 1)2 triangles receivei=j aij b packets during the jth phase, where b is the number of processorsin one block. The total amount of moved packets is therefore 8(2k+1)2 �Pji=1 ij aij � b packets. For symmetry reasons each link is subject to anequal ow of data. There are (2k + 1)2 � b processors in the grid. Eachhas 8 links, so the capacity per link is Pji=1 ij aij = 1 + 1=(2k + 1):jXi=1 ij aij = 12(k + 1)(k + 2)Pji=1 i2 + (k � j)Pji=1 ij(j + 1)(j + 2)(2k + 1)2= 12(k + 1) 16 (k + 2)j(2j + 1)(j + 1) + 12 (k � j)j(j + 1)j(j + 1)(j + 2)(2k + 1)2= 1 + 12k + 1 :We assumed one link has capacity of 1 + 1=(2k + 1) packets instead ofone packet at a time. If we return to the normal capacity of 1, then theabove algorithm can be performed with a slowdown of 1 + 1=(2k + 1),which means it needs n=(2(1 + 1=(2k + 1))) instead of n=2 steps. Wechose k = n1=3 which corresponds to a block-size of n4=3. That meanswe can perform an all-to-all mapping in n=2 +O(n2=3) steps on a toruswith diagonals.This fast all-to-all mapping yields immediately a fast sorting algo-rithm.Theorem 4.1 A torus with diagonals can solve the h{h sorting problemfor h � 12 in asymptotically optimal hn=12 +O(n2=3) steps.13
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Figure 5.1: An embedding of an 8� 8-torus into an 8� 8-grid with the inter-mediate step of a 4� 4-grid resulting from the \folding process."Proof. Two all-to-all mappings need hn=12 + O(n2=3) steps using theabove algorithm. Local sorting needs another O(n2=3) steps. Everysorting algorithm needs at least hn=12 steps, the bisection bound. 25 An Embedding of Tori with Diagonalsinto Grids with DiagonalsAt �rst sight, due to its wrap-around connections the torus appears tobe more complicated than the grid. By now, however, the torus with di-agonals came nearer to its bisection bound for sorting than the grid [12].The reason is the symmetry of the torus|no center, no borders|, whichyields simple algorithms.A torus without diagonals can be embedded into a grid with de-lay 2 [25]. In this section we show that there is also an embedding fortori with diagonals into grids. Again the delay is 2. The rough idea is tofold the torus two times, bringing together 4 processors each time, andthen again unfolding it as described in Figure 5.1. Since the embeddingjumbles a sorting algorithm's indexing, we also have to show that em-bedding all-to-all mappings on a torus onto the grid results in all-to-allmappings. As a consequence we get an optimal all-to-all mapping forthe grid with diagonals.
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To embed a torus algorithm into a grid, �rst, a one-to-one mappingfrom torus processors to grid processors is necessary, second, to show howmoves from one processor to another are translated into moves on thegrid. Here a move simply means a data transport between neighboringprocessors.Subsequently, for the ease of presentation we �rst concentrate onthe one-dimensional case, that is, embedding a ring of processors intoa linear array. Assume that the processors of the ring and of the arrayare consecutively numbered from 0 to n � 1. Then the mapping of thering processors to the array processors is given by the bijective functions : f0; : : : ; n� 1g ! f0; : : : ; n� 1g,s(i) = � 2i if 0 � i < n=22(n� i� 1) + 1 if n=2 � i < n.The following lemma shows that s maps neighboring ring processors toarray processors that have at most distance 2 from each other. So delay 2is the best we can hope for.Lemma 5.1 js(i)�s(i+1)j � 2 for 0 � i < n�1 and js(n�1)�s(0)j =js(n=2� 1)� s(n=2)j = 1.Proof. First consider 0 � i < n=2 � 1. Then js(i) � s(i + 1)j = j2i �2(i + 1)j = 2: Second consider n=2 � i < n � 1. Then js(i) � s(i +1)j = j2(n � i � 1) + 1 � 2(n � (i + 1) � 1) + 1j = 2: Finally we havejs(n=2� 1)� s(n=2)j = j2(n=2� 1)� 2(n� (n=2� 1)� 1) + 1j = 1 andjs(n� 1)� s(0)j = j2(n� (n� 1)� 1) + 1� 2 � 0j = 1: 2To describe how moves in the torus are simulated by at most twomoves in the grid requires to introduce some more notation. Startingwith a notion for moves and double moves in the next de�nition it willbe possible to give a precise and simple description of the translationof moves on the ring (which may be \to the left"(�1), \to the right"(+1), or \remain where you are" (0)) into double moves on the array.We make additionally use of the symbolic values \�0" and \+0" for thedescription of double moves. Both these zeros in fact mean the moveleads from a processor to itself, using outer links. The real importanceof �0- and +0-moves lies in two-dimensional tori and grids.15



De�nition 5.21. There are �ve kinds of possible move directions, represented bythe symbols �1, �0, 0, +0, and +1. A �1 (+1) represents a moveto the left (right) and 0 represents \remain where you are." Thespecial symbols �0 and +0 represent a move to the left (resp. right)that turns around on half the way and returns to the processor itstarted, using the outer links.2. A move is represented by a pair (i; r), where i 2 f0; : : : ; n � 1gdenotes the processor where the move starts and r 2 f�1; 0;+1gdenotes the direction of the move.3. A double move is represented by a pair (i; [r1; r2]), where i 2f0; : : : ; n � 1g denotes the processor where the move starts andr1; r2 2 f�1;�0; 0;+0;+1g denote the directions of the doublemove.The following de�nition presents the transformation of moves on thetorus to double moves on the grid.De�nition 5.3 The function m mapping moves to double moves is de-�ned as m(i; r) = (s(i); �(i; r));where � is de�ned via �(i; r) r = �1 r = 0 r = +1i = 0 [�0; 1] [0; 0] [1; 1]0 < i < n=2 [�1;�1] [0; 0] [1; 1]i = n=2� 1 [�1;�1] [0; 0] [1;+0]i = n=2 [+0;�1] [0; 0] [�1;�1]n=2 < i < n� 1 [1; 1] [0; 0] [�1;�1]i = n� 1 [1; 1] [0; 0] [�1;�0] .The de�nition of m(i; r) guarantees that the resulting double moveis in fact possible, e.g., that [+0;�1] is applied only at the right border,while [1; 1] is never applied at the right border.16



To show the correctness of our proposed translation of ring algorithmsinto array algorithms, we have to show that no link between neighboringprocessors is used for more than one transport at any point of time.To formalize this, we introduce the notion of a collision between doublemoves. Two double moves collide if they make use of the same linkbetween two processors at the same point of time in the same direction.Note that a collision may only occur between the �rst moves or betweenthe second moves of double moves, because �rst and second moves takeplace at di�erent times.De�nition 5.4 A collision occurs whenever there are two double moves(i; [t1; t2]) such that i = j and r1 � t1 (collision during �rst move) ori + r1 = j + t1 and r2 � t2 (collision during second move). Herein \�"means syntactic equality on f�1;�0; 0;+0;+1g (that is, for example,�0 6� 0).Lemma 5.5 Let (i1; r1) and (i2; r2) be two moves on a ring such that(i1; r1) 6= (i2; r2). Then the corresponding double moves on the arraym(i1; r1) and m(i2; r2) do not collide.Proof. We can safely assume r1; r2 6= 0 since 0 stands for \remain whereyou are." The double moves m(i1; r1) and m(i2; r2) cannot collide dur-ing their �rst move unless i1 = i2, that is, they start from the sameprocessor. Let us assume that indeed i1 = i2 =: i, but r1 6= r2, i.e., r :=r1 = �r2. Let m(i; r) = (s(i); [r11; r12]) and m(i;�r) = (s(i); [r21; r22]).From the de�nition of m (see De�nition 5.3 and compare the columnsr = �1 and r = +1 for each value of i) follows r21 6= r11, so the �rstmove of the double moves m(i; r) and m(i;�r) leads into two di�erentdirections.Showing that also the second moves of double moves do not collidecompletes the proof. The only possible directions for double moves are[0; 0], [+1;+1], [�1;�1], [+1;+0], [�1;�0], [+0;�1], and [�0;+1] as thede�nition of function m shows. If the second components of two suchdirections are identical, so are the �rst components because the sameprocessor cannot perform [+0;�1] and [�1;�1] or [�0;+1] and [+1;+1]at the same time, since e.g. [+0;�1] is only possible at the right border,while [�1;�1] is not possible at the right border.17



(1; 0) (0; 1) (�1; 0) (0;�1)
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Figure 5.2: Realization of all valid moves (rx; ry) in the two-dimensional case.The moves in the upper row employ conventional links, the moves in the lowerrow outer links.If there were a collision of m(i1; r1) and m(i2; r2) during the secondmove of the double move, then also their �rst move directions would beidentical. But this means that the whole directions are identical, fromwhich follows that also a collision during the �rst move of the doublemove would occur. We have seen in the �rst part of the proof that thisis not possible. 2Having dealt successfully with the one-dimensional case, we now pro-ceed with the de�nition of move, double move, and collision for two-dimensional tori and grids. We handle the two-dimensional case essen-tially by projections to the two dimensions.18



De�nition 5.61. A (two-dimensional) move is a pair (mx;my) of one-dimensionalmoves mx and my , called the x- and y-part of (mx;my). A move((ix; rx); (iy ; ry)) is performed by sending a packet from proces-sor (ix; iy) to processor (ix + rx; iy + ry) over a link according toFigure 5.2.2. A (two-dimensional) double move is a pair (Mx;My) of one-dimen-sional double movesMx andMy , called x- and y-part of (Mx;My).A double move ((ix; [rx; sx]); (iy ; [ry ; sy])) is performed by sendinga packet from processor (ix; iy) to processor (ix + rx; iy + ry) andthen to processor (ix + rx + sx; iy + ry + sy) over the two linksaccording to Figure 5.2 (�rst (rx; ry), then (sx; sy)).3. Two two-dimensional double moves (Mx;My) and (Nx; Ny) collideif both pairs Mx and Nx, and My and Ny collide.4. A two-dimensional move (mx;my) on a torus is mapped to a two-dimensional double move on a grid by the function M(mx;my) :=(m(mx);m(my)).The following lemma provides the correctness of our methodologyalso in the two-dimensional case.Lemma 5.7 Let (mx;my), (nx; ny) be two moves on a torus such that(mx;my) 6= (nx; ny). Then M(mx;my) and M(nx; ny) do not collide.Proof. Let us assume that M(mx;my) and M(nx; ny) do collide. Thenm(mx) and m(nx), and m(my) and m(ny) collide. By Lemma 5.5 wemay concludemx = nx andmy = ny , a contradiction to the precondition(mx;my) 6= (nx; ny). 2Now we are ready to state one of our main results. It providesa general translation of torus algorithms onto grids with a delay fac-tor of 2. For this purpose, we introduce the two-dimensional embed-ding function f from tori into grids. The embedding function f fromf0; : : : ; n�1g�f0; : : : ; n�1g to f0; : : : ; n�1g�f0; : : : ; n�1gmaps torus19



processors to grid processors in a component-wise fashion with respectto the two-dimensional coordinates of the processors. That is, it makesuse of the mapping s from the one-dimensional case such that we havef(i; j) := (s(i); s(j)):The subsequent theorem now demonstrates that the mathematical em-bedding given by the functions f and M can be realized in our model ofcomputation.Theorem 5.8 An algorithm on a torus can be simulated on a grid ofsame size with delay 2 such that the uniquely determined processor f(i; j)on the grid plays the rôle of processor (i; j) on the torus.Proof. Let us for the moment assume that there are no compare{exchange operations|in fact, no algorithm in this paper really relieson the full compare{exchange model. So besides internal operationsprocessors only send packets to their neighbors and receive packets fromthem. In every second step processor f(i; j) simulates processor (i; j) bysending and receiving identical packets and performing identical inter-nal operations. The directions of the sends and receives, however, arenot identical, but the images under M . Within two steps each packetmust reach its destination going over one intermediate processor, whichmust route incoming packets into the appropriate direction. Fortunately,this is simple because the incoming and outgoing directions are alwaysidentical, so no additional information needs to be added to the packetsthemselves.Compare{exchange steps can be simulated as well. Here the interme-diate processor gets both packets in the �rst step and sends them sortedback in the second step. The intermediate processor must know whetherit is simulating a transport or a compare exchange step, so we can al-low only algorithms that are oblivious in the type of steps performed byall processors. Actually, an algorithm with compare{exchange steps issimulated without compare{exchange steps. 2It is possible to generalize Theorem 5.8 to arbitrary higher dimen-sional grids. 20



We can now translate sorting algorithms for the torus into sortingalgorithms for the grid. Of course, the indexing gets transformed, too.To get a sorting algorithm for the grid that allows to choose an arbitraryblock-wise continuous indexing function directly we show that the all-to-all mapping performed along the embedded torus also describes anall-to-all mapping on the grid without wraparounds.If we consider a block in the grid then this block is normally nota block in the embedded torus. However, if a block B in the grid hassidelength 2b, where b is the sidelength of a block on the torus, then Bis the image of four blocks of the torus.Let B denote blocks in the grid, and A denote blocks in the torus.Let I(i) denote the interval [2ib; 2(i + 1)b � 1] for i = 0; : : : ; n=(2b) � 1.Then let B(i; j) = I(i) � I(j) denote a block in the grid. Let I0(i)denote the set of even integers from I(i) and I1(i) the odd ones. ThenA(i; j)[x; y] := s�1(Ix(i)) � s�1(Iy(j)) describes a block in the torus forall x; y 2 f0; 1g, where s is de�ned as in the beginning of the section. Itis easily seen that A(i; j)[x; y] \ A(l;m)[u; v] = ; for (x; y) 6= (u; v) or(i; j) 6= (l;m) and all x; y; u; v 2 f0; 1g. I.e., the union of all A(i; j)[x; y]�lls the whole torus. Further, note thatf�1(B(i; j)) = A(i; j)[0; 0] [A(i; j)[0; 1] [A(i; j)[1; 0] [A(i; j)[1; 1]:Lemma 5.9 The function ata 0 = f � ata � f�1 is an all-to-all mappingon the grid, if ata is an all-to-all mapping on the torus.Proof. We show for all blocks B(i; j) and B(l;m) that jata 0(B(i; j)) \B(l;m)j = c for a �xed value c. (For an h{h problem c = 16hb4=n2.)Since ata is an all-to-all mapping on the torus we havejata(A(i; j)[x; y]) \A(l;m)[u; v]j = c0for all i; j; l;m and all x; y; u; v. Thereforejata(f�1(B(i; j))) \ f�1(B(l;m))j = 16c0:Since f is a bijection we concludejf(ata(f�1(B(i; j)))) \ f(f�1(B(l;m)))j = 16c021



for all i; j; l;m. Hence ata 0 is an all-to-all mapping on the grid. 2Theorem 5.10 A grid with diagonals can solve the h{h sorting prob-lem in asymptotically optimal hn=6 + O(n2=3) steps for every blockwisecontinuous indexing scheme for h � 12.Proof. A torus can perform an all-to-all mapping for load 12 in n=2 +O(n2=3) steps, thus by Lemma 5.9 and Theorem 5.8 a grid can performan all-to-all mapping in n+O(n2=3) steps. The result easily generalizesto h � 12. 26 Results for Small Loads Using Concen-tration TechniquesConcentrating data in a smaller area of a grid turns a 1{1 problem into anh{h problem. Since h{h problems were not studied intensively until quiterecently [13]|though already Valiant and Brebner [28] considered themas early as in 1981 and others maybe even earlier|, data concentrationwas introduced a short time ago [9]. The �rst use of concentration was tosolve the 1{1 sorting problem in 2:5n+o(n) steps, while the previous bestknown bound without using concentration was 3n + o(n) [22]. (Todayan optimal 2n+ o(n) steps algorithm is known [3, 6].)We solved 12{12 sorting in optimal time. So h{h sorting with h < 12is a candidate for speed-up via concentration. Let us start with thefastest algorithm for grids in this paper, an algorithm for the 1{1 routingproblem.Theorem 6.1 Let s(n) be the time a 9{9 sorting algorithm needs ona grid with diagonals. Then on a grid with diagonals routing works in8=9n + s(n=9) + O(n2=3) steps and on a torus with diagonals it worksin 4=9n+ s(n=9) +O(n2=3) steps.Proof. Let us divide the torus or the grid into 9 submeshes each n=3�n=3big and each submesh into 9 subsubmeshes each n=9�n=9 big. We route22



a packet in three stages to its destination. The destination of each packetconsists of a submesh-number (1{9), a subsubmesh-number (1-9), anda position within a subsubmesh ((x; y) 2 f1; : : : ; n=9g � f1; : : : ; n=9g).In the �rst stage each packet whose subsubmesh-number is not alreadycorrect is shifted into one of the right subsubmeshes leaving its relativeposition in the subsubmesh unchanged. In the case of a torus the nearestcorrect subsubmesh is chosen and the shift takes n=9 steps. In the caseof a grid the right subsubmesh within the original submesh is chosenand the shift takes 29n steps. Next the position within the subsubmeshis adjusted using 9{9 sorting algorithm for grids, which takes anothers(n=9) steps. Finally, each packet is routed to the right submesh withoutchanging its position within the submesh. This takes n=3 steps for atorus and 23n steps for a grid. 2It is not known how fast the best 9{9 sorting algorithm is, that is whywe stated Theorem 6.1 in terms of the parameter s(n). By Theorem 5.10we already know that s(n) � 2n, but later Theorem 6.3 will establishs(n) � 179 n � 1:9n.Corollary 6.2 On a grid with diagonals 1{1 routing works in 8981n +O(n2=3) steps. On a torus it takes only 5381n+O(n2=3) steps.Proof. Combine Theorem 6.1 and Theorem 6.3 for h = 9. 2Krizanc and Narayanan [7] found lower bounds for sorting on meshesand tori with diagonals: 1{1 sorting takes at least 1:166n steps on a gridand at least n � o(n) steps on a torus if data replication is forbiddenand queue-size bounded by 9. Using the �rst part of Theorem 6.1, theyconcluded that routing is faster than sorting on a grid. The secondpart of Theorem 6.1 now demonstrates that sorting is also harder thanrouting on tori.Let us next turn to sorting. We present results for the 1{1, 2{2, 3{3,4{4, 5{5, 6{6, 7{7, and 8{8 sorting problem on grids with diagonals. Thetechnique used in these algorithms is a combination of concentration andall-to-all mappings, that is, we present routing schemes that move all thedata to a small area and simultaneously sending bricks from each block
23



to each block. We can describe all routing schemes by diagrams thatshow data movement and load after each phase.In general we divide the mesh into square shaped clusters. In thebeginning we perform a local all-to-all mapping on each cluster indi-vidually. Then an equal portion of all clusters is sent into each clusterof the concentration region. This concludes the concentrating all-to-allmapping.We must give a diagram for each cluster in the concentration areademonstrating how it receives data from each cluster in the grid. Wecan cut down the number of these diagrams by exploiting symmetries.Theorem 6.3 A grid with diagonals can solve the h{h sorting problemin t+O(n2=3) steps with bu�er size b using c� c many clusters that areconcentrated into d � d many clusters located in the center, where t, c,d, and b are as follows for the varying h.h{h t c� c d� d b1{1 65n = 1:2n 20� 20 4� 4 252{2 75n = 1:4n 10� 10 4� 4 153{3 64n = 1:5n 8� 8 4� 4 134{4 85n = 1:6n 10� 10 6� 6 145{5 53n � 1:67n 6� 6 4� 4 126{6 74n = 1:75n 8� 8 6� 6 137{7 116 n � 1:83n 12� 12 10� 10 148{8 137 n � 1:86n 14� 14 12� 12 159{9 179 n � 1:89n 18� 18 16� 16 16Proof. We divide the n � n mesh into c � c square shaped clusters ofsize n=c�n=c each and describe a concentrating all-to-all mapping thatroutes 1=d2 of the data in each of the c2 clusters into each of the d2 clus-ters in the center of the mesh. The concentrating all-to-all mappingconsists of several phases. In each phase data are transported betweenneighboring clusters. In principle we have to describe d2 routing schemes24



that concentrate 1=d2 of the data in each of the c2 clusters in one of thed2 center clusters. These routes all are scheduled in parallel. Actually,it is su�cient to give the description of (d � 2)d=8 + d=2 types of theseroutes, because due to symmetry we only face (d � 2)d=8 + d=2 basi-cally di�erent types of goal clusters. In detail we present the routingscheme only for the 3{3 problem, since the involved diagrams describingthe schemes are quite space consuming. For the 3{3 problem we havec = 8 and d = 4, so up to symmetry there are 3 goal clusters, called A,B, and C (see Figure 6.1). For these three types we present each time�ve diagrams exhibiting the routing scheme that takes �ve phases forthe 3{3 problem.For the 3{3 problem the basic transport unit is 1=48 of the origi-nal load of a cluster (which are 3n2=64 packets), which is 1/16 of then2=64 processors per cluster. An arrow simply means a move of a trans-port unit from a cluster to one of its neighbors. Labeled arrows de-note multiple transport units. The superposition of everything doesnot exceed 16 basic transport units, which means that not more thann2=64 packets from any cluster to each of its neighbors are transportedduring one phase. (Actually, no more than 13 basic transport unitsare ever used between two clusters, which means that we could solvethe 3:69{3:69 problem within the same time. Similar tricks are possi-ble for other loads.) Figure 6.1 depicts the three routing schemes. Youcan check the correctness by counting the arrows between two arbitraryneighbors, taking the 4 existing symmetries into regard.Altogether this implies that one phase works in n=8 steps. Thus wecan realize a concentrating all-to-all mapping by �rst all-to-all mappingall clusters individually (n=8 steps) and then performing the �ve phases(58n steps). 2Concentration is a technique not very well suited for tori, since aproper subgrid of a torus is a grid, but not a torus. The gain by concen-tration is usually more than compensated by the loss of having to workon a grid instead of a a handy torus. We overcome this di�culty by datareplication, but only in this case. All other algorithms never copy datapackets.
25
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Phase5 12122 22 28 8 612 3 91010 315 156 6Figure 6.1: The three types of routing schemes of a concentrating all-to-all mapping for the 3{3 sortingproblem.
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Theorem 6.4 If replication is allowed, a torus can solve the 1{1 sortingproblem in 2=3n+O(n2=3) steps with bu�er size 9.Proof. We divide the n� n torus into 9 subgrids of size n=3� n=3. Weconcentrate all data in all 9 subgrids, which requires data replication.Now all 9 subgrids contain all data, identically. We can now use oursorting algorithm for tori individually on all 9 subgrids, sorting in layer�rst order. We can use the algorithm for tori, since each subgrid behavesjust as a torus: If some element is shifted downwards across the border ofthe subgrid, it reappears at the upper border, since in the above subgridthe same algorithm shifts the same data element downwards.In the end, all nine subgrids contain all data sorted in layer �rstorder. Now the ith subgrid gets again rid of all data save the ith layer,hence all data is sorted. The concentration takes n=3 steps and sortingof subgrids takes n=3 + O(n2=3) steps according to Theorem 4.1. Thusthe overall running time is 23n+O(n2=3). 2Data replication was crucial in order to achieve this running time.Krizanc and Narayanan showed that with bu�er size 9 and withoutmaking copies a torus with diagonals needs at least n � o(n) steps forsorting [7].7 Historical remarksIn this section we give a short account to the main points in the historyof sorting and routing algorithms on grids (also see [25].):Thompson and Kung [27] and Nassimi and Sahni [20] were the �rstthat presented O(n) steps algorithms for sorting on meshes. In 1986,Schnorr and Shamir [22] presented an optimal 3n+ o(n) steps algorithmunder the assumption of bu�er size 1 (also see [8] for the correspondinglower bound). Schnorr and Shamir's result has been improved for bu�ersize greater than 1. Introducing concentration techniques, the runningtime could be improved to 2:5n+ o(n) steps [9]. Then Kaklamanis andKrizanc developed an optimal 2n+o(n) steps algorithm, which, however,was randomized [3]. Finally, Kaufmann, Sibeyn, and Suel derandomized
28



the latter algorithm and won the �rst deterministic, asymptotically op-timal algorithm [6]. Note that for the corresponding routing problem anoptimal algorithm even up to additive constants (it matches the distancebound 2n� 2) was already known quite long [18].As to the h{h sorting problem for h � 8, �rst a hn + o(n) stepsalgorithm for sorting was given [9]. Later an optimal randomized hn=2+o(n) steps algorithm matching the bisection bound was discovered [4].Recently, the �rst optimal deterministic algorithm was presented [10].Later, by derandomizing the optimal randomized algorithm, Kaufmann.Sibeyn, and Suel obtained the same algorithm in a di�erent way [6].For meshes with diagonals �rst a result better than the bisectionbound for meshes without diagonals, that is, a 29hn+o(n) steps algorithmwas presented [12]. We improved this to optimal hn=6+o(n) steps usingcompletely new techniques.For deterministic average case sorting for grids with and withoutdiagonals now also optimal results are known, which in general are twiceas fast as in the worst case [11].8 ConclusionDoubling the capacity of each individual communication link in a meshobviously leads at most to twice as fast algorithms. By adding diagonalconnections we also doubled the overall capacity of all communicationlinks, but got three times as fast algorithms. This somehow counterin-tuitive result suggests to build parallel computers as grids or tori withdiagonals rather than plain grids, though the algorithms are not practi-cal for small processor numbers. The constant factors in the low orderterms, mostly O(n2=3), are rather high. Since we presented asymptoti-cally optimal algorithms for nearly all and particularly for all practical(i.e., large h) cases, as an open question remains to develop algorithmswith smaller low order terms to get more practical algorithms.By using a di�erent sorting scheme with only one all-to-all mapping,we can halve the running times of many of our algorithms in the averagecase [11]. Particularly, we get in the average optimal h{h sorting androuting algorithms for tori and grids with diagonals for all h.29
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