
T U M
I N S T I T U T F Ü R I N F O R M A T I K

An Extended Version of Mini-Statecharts

Peter Scholz

������
TUM-I9628
Juni 1996

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-06-1996-I9628-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1996 MATHEMATISCHES INSTITUT UND
INSTITUT F ÜR INFORMATIK
TECHNISCHE UNIVERSIT̈AT M̈UNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

An Extended Version of Mini-Statecharts �Peter ScholzTechnische Universit�at M�unchen, Institut f�ur InformatikD-80290 M�unchen, GermanyE{Mail: scholzp@informatik.tu-muenchen.de

�This work is partially sponsored by the German Federal Ministry of Education and Research (BMBF)as part of the compound project \KorSys" and by BMW (Bayerische Motoren Werke AG).1

AbstractStatecharts are a visual speci�cation mechanism for specifying reactive, embed-ded systems. They are implemented in commercial tools like Statemate. However,some syntactic constructs impede the modular system speci�cation and have a con-fusing semantics. In [NRS96] we presented Mini-Statecharts, a lean version of Stat-echarts. Mini-Statecharts are restricted to the most important syntactic elements ofStatecharts but are nevertheless powerful enough to specify complex systems. In thiscontribution, we extend the core language with local variables and integer-valuedsignals to avoid state explosion. We show that the formal semantics, presented in[NRS96], smoothly carries over to the semantics of the extended language.

2

Contents1 Introduction 42 The Core Language of Mini-Statecharts 52.1 Sequential Automata : 52.2 Parallel Composition : 62.3 Broadcast Communication : 62.4 Hierarchical Decomposition : 72.5 Hiding and Restriction : 83 The Extended Language of Mini-Statecharts 93.1 Signals, Variables, Expressions, and Commands : : : : : : : : : : : : : : : 103.2 Extended Sequential Automata : 123.3 Extended Hierarchical Decomposition : 143.4 Resolution of Con
icts : 143.5 The Formal Semantics of Mini-Statecharts : : : : : : : : : : : : : : : : : : 153.5.1 Sequential Automata : 163.5.2 Parallel Composition : 183.5.3 Hiding and Restriction : 183.5.4 Hierarchical Decomposition : 193.5.5 Delayed Communication : 203.5.6 Instantaneous Communication : 203.5.7 Macro-/Micro-Step Communication : : : : : : : : : : : : : : : : : 214 Conclusion and Future Work 24

3

1 IntroductionStatecharts [Har87] are a visual speci�cation language proposed for specifying reactivesystems. They extend conventional state transition diagrams with structuring and com-munication mechanisms. These mechanisms allow the description of large and complexsystems. Due to this fact Statecharts have become quite successful in industry. The fullStatecharts language, however, contains many mechanisms that cause problems concern-ing both their syntax and semantics. An overview of these problems can be found in[vdB94].In this paper, we describe a small and slender version of Statecharts, called Mini-State-charts. In contrast to traditional Statecharts [Har87], Mini-Statecharts can be clearly de-composed into subcharts. Thus, they can be developed in a fully modular way by simplysticking them together. Mini-Statecharts are restricted to the most essential constructs.The basic components are sequential, deterministic automata. Mini-Statecharts can beorthogonally composed and hierarchically decomposed. We introduce three di�erent syn-tactic constructs for broadcasting, which di�er in their timing. A scoping mechanism torestrict broadcasting to certain subcharts is presented.[Mar92] and [HRdR92] already provided steps in the right direction. Our work extendstheir approaches by local variables, integer-valued signals, and the concept of explicitfeedback operators for communication. Our language has a formal and at the same timeunderstandable semantics. It has been developed by analyzing case studies from ourindustrial partners.Although Mini-Statecharts are powerful enough to describe large and complex reactivesystems, we assign a concise, formal semantics to them. It is given in a fully functional way,based on the speci�cation methodology Focus. Therefore, we can mix pure functionalFocus speci�cations [BDD+93, SS95, GS95] with Mini-Statecharts. The main intentionof this paper is to demonstrate� how to restrict and modify the syntax of traditional Statecharts [Har87] in order toget a modular speci�cation language,� that in contrast to related approaches we are able to de�ne a formal, denotational,compositional semantics for Mini-Statecharts, and� that Mini-Statecharts are not a toy language but can be used to specify practicalsystems with many complex states.Furthermore, the semantics can be immediately executed by a suitable interpreter. Thus,we do not only de�ne a theoretical semantics, but in addition provide a simple programfor simulating and prototyping Mini-Statecharts. This is in contrast to existing tools likeStatemate [Har90, Inc90], where the semantic behavior of the prototyping tool sometimesdi�ers from the published Statecharts semantics. Even the authors of Statemate admitthat the Statemate's simulation and dynamic tests tools, and its various code generatorshave a slightly di�erent semantics [HN95]. In our approach there exists exactly onesemantics. It can be used to prototype and simulate reactive systems as well as to reasonabout systems in a suitable theorem prover, like Isabelle [Pau94]. In the context of4

veri�cation, the availability of a compositional semantics is desirable to get manageableproofs.We presented our core language in [NRS96]. The interested reader is referred to thisreport. However, we want to mention that it is not necessary to study it before reading thiscontribution. We here repeat the most important issues. Those readers who are interestedin an formal treatment and the semantic problems that can occur, are nevertheless invitedto a detailed lecture. We show that the formal semantics, presented in [NRS96], smoothlycarries over to the semantics of the extended language.This paper is structured as follows. In Section 2 we introduce the core language of Mini-Statecharts and present a concise, abstract syntax for it. For the reader who is familiarwith [NRS96], most of this part is a repetition. In Section 3 we extend the core languageby the concept of local variables and integer-valued signals and develop a formal semanticsfor it.2 The Core Language of Mini-StatechartsOur formalism assumes a global, discrete time. We assume that every Mini-Statechartcan make a step | at least an idle step | at every single time point. This assures timeprogress because every single transition takes place in one time unit [GS95]. Informallyspeaking, every Mini-Statechart consumes and yields a sequence of sets of signals. Eachelement of the sequence denotes the set of signals that are present at one time unit. Allother signals that are not contained in this set are assumed to be absent. Subsequentsets denote subsequent instants of time. Signals that occur between two consecutive timeticks are considered to arrive simultaneously.In this section we propose an abstract, inductively de�ned textual syntax for Mini-State-charts S. It consists of sequential automata, parallel composition, feedback, hierarchicaldecomposition, and hiding. For a detailed introduction in the core language of Mini-Statecharts the interested reader is referred to [NRS96]. Let M denote a (potentiallyin�nite) set of signal names, States a nonempty (potentially in�nite) set of state-names,and B(M) the Boolean terms over M . }fin(X) denotes the set of �nite subsets of someset X.2.1 Sequential AutomataSequential automata are the basic elements of Mini-Statecharts. The deterministic, se-quential automaton (�; �d; �; �)is an element of S i� the following syntactic constraints hold:1. � 2 }fin(States) denotes the nonempty �nite set of all states of the automaton.2. �d; � 2 � represent the default state and the current state, respectively. We needthe state �d to initialize Mini-Statecharts for re-entering non-history, hierarchicallydecomposed states (see Section 3.5.4).5

3. � : � � B(M) ! � � }fin(M) is the �nite, partial, deterministic state transitionfunction that takes a state and a Boolean term and yields the subsequent statetogether with a �nite set of output signals. For every Boolean variable a 2 M in theterm t 2 B(M) the occurrence of a means that signal a has to be present and :ameans that this signal has to be absent to enable the trigger condition. Of course,we also allow Boolean terms like :(a^ b). In this case, a and b must not together bepresent to enable the condition. Trigger conditions formulated over Boolean termsallow any combination of absent or present signals as guard.We do not explicitly denote the set of signals that the automaton A = (�; �d; �; �) canreact on. This set is implicitly given by the transition function �. � is exactly de�ned forthese signals that A can react on.At every instant of time, A consumes a set of signals x and instantaneously produces aset of signals y, if there exists a transition with trigger condition t such that t is enabledby x and �(�; t) = (�0; y). Otherwise it performs an idle step, which does not have tobe explicitly speci�ed in �. For instance, :(a ^ b) is enabled by the signal sets fg, fag,and fbg but not by fa; bg. In Section 3.5.1, we derive an equivalent, total state transitionfunction �0 from �, which is directly triggered by sets of signals instead of Boolean terms.For convenience, �0 is applied in the semantics and � in the syntax.2.2 Parallel CompositionSuppose S1 and S2 are Mini-Statecharts. Then their parallel composition is denoted byAnd (S1; S2):This leads to a Mini-Statechart that behaves like S1 and S2 simultaneously: output signalsets of S1 and S2 are simply uni�ed at every single time tick. In the graphical notationparallel components are separated by splitting a box into components using dashed lines[Har87]. Being in a parallel component means being in all of its substates at the same time,independently and concurrently. Note that the pure parallel composition does not containany broadcast communication mechanism as in the original literature. Communication iscarried out explicitly by the aid of our feedback operators which will be introduced in thenext section.2.3 Broadcast CommunicationParallel composition is used to denote orthogonal components. However, parallel systemsoften are not completely independent. Therefore, Statecharts provide a broadcast commu-nication mechanism to pass messages between components working in parallel. In [Har87]this behavior is already integrated in the orthogonal composition of Statecharts. Broad-casting is achieved by feeding back all generated signals to all components. This meansthat there exists an implicit feedback mechanism at the outermost level of a Statechart.Unfortunately, this implicit signal broadcasting leads to a non-compositional semantics.We avoid this problem by adding an explicit feedback operator. In the literature di�erentsemantic views of the feedback mechanism can be found [vdB94]. Hence, we provide three6

di�erent feedback operators for the most interesting views. Suppose that S is in S andL 2 }fin(M) is the set of signals which should be fed back, then the constructsI-Feedback (S; L); D-Feedback (S; L); and M-Feedback (S; L)are also in S. They denote instantaneous, delayed, and macro-/microstep feedback, re-spectively. These operators di�er in their signal propagation mechanisms: I-Feedback andD-Feedback feed the signals back at the same instant of time (perfect synchrony hypothesis[BG88]) and at the next instant of time, respectively. M-Feedback distinguishes betweentwo levels of time, namely macro- and microtime.Example 1 (TV Set) We introduce our syntax by the aid of an example which is adaptedfrom [HdR91]. It models a television set with two sound levels (MUTE and SOUNDON).Only two channels (CH1 and CH2) can be received. The graphical notation is borrowedfrom [Har87]. The current state of every sequential automaton is characterized by a �lledbox and every transition between states � and �0 is labeled with \t/x", i� �(�; t) = (�0; x).The feedback operator is pictured in Fig. 1 as an extra box, sticked to the bottom of theMini-Statechart.When we change from one channel to another, usually the sound is turned o� for amoment to avoid unwanted noise. To model this, we de�ne two parallel componentsSCHANNELS and SSM (SM for switching mode). Pressing a channel button \1", \2"on the remote control, the internal signal \sm" is generated and the TV simultaneouslyswitches to the corresponding channel. The signal \sm" is instantaneously fed back by theaid of I-Feedback. Therefore, the parallel automaton SSM also is immediately triggered,i.e., reacts on \sm" and simultaneously generates \mute". The signal \mute" is also fedback and therefore SSOUND reacts on \mute". Finally, the sound will be turned o�. Afterone time tick, the signal \sound" is generated to turn it on again.I-Feedback (And (SCHANNELS;And (SSM ; SSOUND)); fsm; sound;muteg)SCHANNELS = (fCH1;CH2g;CH1;CH1; �CHANNELS)�CHANNELS(CH1; 1) = (CH1; fsmg)�CHANNELS(CH1; 2) = (CH2; fsmg)�CHANNELS(CH2; 1) = (CH1; fsmg)�CHANNELS(CH2; 2) = (CH2; fsmg)SSM = (fSILENT;LOUDg;LOUD;LOUD; �SM)�SM(LOUD; sm) = (SILENT; fmuteg)�SM(SILENT;:sm) = (LOUD; fsoundg)SSOUND = (fMUTE;SOUNDONg;SOUNDON;SOUNDON; �SOUND)�SOUND(MUTE; sound) = (SOUNDON; fg)�SOUND(SOUNDON;mute) = (MUTE; fg).2.4 Hierarchical DecompositionMini-Statecharts include a clear and e�ective way to express hierarchical structures. Incontrast to original Statecharts [Har87], this decomposition is fully modular because weprohibit inter-level transitions, i.e., transitions between states of di�erent levels of hierar-chy. Suppose that (�; �d; �; �) is a sequential automaton. ThenDec (�; �d; �; �) by %7

CH2

1 / {sm}

1 / {sm} 2 / {sm}

2 / {sm}

CH1

CHANNELS SM

SILENT

sm / {mute}

LOUD

SOUND

sm / {sound}

MUTE

SOUNDON

mute / {} sound / {}:
sm, sound, mute: I-FeedbackFigure 1: TV Setis also in S, where: % : �! (S � fHistory;NoHistoryg) [fNoDecgis a total, �nite function. With respect to the construct Dec (�; �d; �; �) by % the sequen-tial automaton (�; �d; �; �) is called the master. A state � 2 � with %(�) 6= NoDec (whereNoDec stands for no decomposition) is called a re�ned state of the master whereas �1(%(�))is called the slave of the master which is controlled by state �. �i denotes the i-th projec-tion. The e�ect of this decomposition can be described by the following rules. Wheneverthe current state of the master is � and %(�) = NoDec, then Dec (�; �d; �; �) by % hasa behavior according to (�; �d; �; �). Otherwise, when � is entered, Dec (�; �d; �; �) by %starts behaving like master and slave simultaneously. When � is left, the slave �rst ter-minates its action concerning the current input signals and then is left. This is callednon-preemptive interrupt/exit.2.5 Hiding and RestrictionSpecifying large reactive systems possibly leads to large charts with many signal names.This may promote name clashes which could be avoided by the utilization of hiding andrestriction. Suppose that S is in S and L;R 2 }fin(M), then the constructsLocal (S; L) and Restrict (S;R)are also in S. Local (S; L) hides any generation of any l 2 L by S and makes S insensitiveto any l generated by the environment. Restrict (S;R) has the opposite behavior. Itrestricts the input and output signals of S to signals in R. Note that these operatorsboth are not available in conventional Statecharts. However, in our opinion they areessential to describe large reactive systems. They can be used to restrict signals to certaincomponents of the system. The restrict operator was not yet presented in [NRS96]. Notethat Restrict (S;R) can be expressed by the aid of Local (S; L) and vice versa.8

3 The Extended Language of Mini-StatechartsIn spite of parallel composition and hierarchy, state explosion can occur, for example, ifwe extend our TV set to �ve channels. The result is pictured in Fig. 2. It is unthinkableto design a commercial TV set with 100 channels in this way: we would get an automatonwith 100 states and 10,000 transitions.
2 / {sm}

1 / {sm}

2 / {sm}

1 / {sm}

1 / {sm}

3 / {sm}

5 / {sm}

CH2

CH3CH4

CH5

2 / {sm}

2 / {sm} 3 / {sm}

3 / {sm}

3 / {sm}

4 / {sm}

4 / {sm}

4 / {sm}

5 / {sm} 5 / {sm}

5 / {sm} 5 / {sm}

1 / {sm}

4 / {sm}

1 / {sm}

3 / {sm}

4 / {sm}

2 / {sm}

CH1

Figure 2: Example: TVTherefore, we decided to extend Mini-Statecharts with local variables in order to avoid thisstate explosion. Traditional Statecharts allow to declare and access to global variables.However, global variables impede the de�nition of a compositional semantics. Moreover,there exist two basic concepts for communication: message passing and global variables.Traditional Statecharts incorporate both. In our opinion, there is no need to use bothconcepts together in one language.In this section we propose a syntactic notation for Mini-Statecharts that has been extendedby the concept of local integer variables and integer-valued signals. In contrast to a puresignal, an integer-valued signal incorporates, in addition to the information about itspresence, an integer number denoting its value.
9

3.1 Signals, Variables, Expressions, and CommandsIn contrast to Section 2, M is here disjointly partitioned in Mp and Mv, representing theset of pure and integer-valued signals, respectively. Furthermore, we assume a set V ofvariables. V has to be disjoint from the sets introduced so far. The other syntactic setsassociated with T , a simple language for transitions (borrowed from [Win93] and adaptedfor our purposes) are:� integers Int,� truth values Bool = ftrue; falseg,� arithmetic expressions Aexp,� Boolean expressions Bexp, and� commands Com.In presenting the syntax of T we will follow the convention that� n ranges over the numbers Int;� X ranges over the variables V ;� Ev and Ep range over Mv and Mp, respectively;� a/b range over arithmetic/Boolean expressions Aexp/Bexp and� c ranges over commands Com.We describe the formation rules for arithmetic/Boolean expressions and commands by:� a ::= n jX jEv j a1 add a2 j a1 sub a2 j a1 mul a2,� b ::= true j false j a1 equ a2 j a1 leq a2 j not b j b1 and b2,� c ::= skip jX := a jEv := a jEp j if b then c1 else c2 � j c1; c2 jwhile b do c od.Note that we use if b then c � as an abbreviation for if b then c else skip �. The meaningof these expressions and commands is straightforward. In contrast to [Inc90, HN95], weuse the semicolon as sequential and not as parallel composition. To see the di�erence,we take a look at the following example. Suppose that the command c of a transition isde�ned as X := X + 1; Y := X and that X = 2 is the value X had before executing thiscommand. Executing c in our setting would yield Y = 3. In [Inc90, HN95] however wewould get Y = 2. Thus, the semicolon there signi�es more \do this too" than \and thendo".However, when two or more commands want to change the same variable in the same stepso-called racing conditions [HN95] can occur, which have to be detected by Statemate'ssimulation and dynamic test tools because the values of the variables are unknown before10

runtime. In our opinion, this is complicated and super
uous. As a consequence, wehave chosen the sequential execution order to get a non-ambiguous meaning and to avoiddynamic analysis.To de�ne the denotational semantics of T we �rst need a partial function
 : Mv ! ZZthat holds the value for present integer-valued signals. Here, we often interpret
 as a setG in }fin(Mv � ZZ), where8(m;n) 2 }fin(Mv � ZZ) : (m;n) 2 G,
(m) = n8(m1; n1); (m2; n2) 2 G : m1 = m2) n1 = n2:We abbreviate Mv ! ZZ to �. We then de�ne an environment " as a total function" : V ! ZZ. This function also is often interpreted as a set E in }fin(V � ZZ), where thefollowing condition have to be ful�lled:8(v; n) 2 }fin(V � ZZ) : (m;n) 2 E , "(v) = n8(v1; n1); (v2; n2) 2 E : v1 = v2) n1 = n28v 2 V 9n 2 ZZ : (v; n) 2 E:The set of all environments is denoted by E . Note that E contains total functions whereas� only contains partial functions: variables have a de�ned value at every single time point,whereas signals have only when they are present. With this background we are able tode�ne the semantic functions:AJ:K : Aexp! �! E ! ZZBJ:K : Bexp! �! E ! IBCJ:K : Com! }fin(M)� �� E ! }fin(M)� �� E :where IB = ftt; ffg. We de�ne the denotation of an arithmetic expression, by structuralinduction, using the typed �-calculus:AJnK
 = �" 2 E :nZZAJXK
 = �" 2 E :"(X)AJEvK
 = �" 2 E :
(Ev)AJa1 add a2K
 = �" 2 E :(AJa1K
"+AJa2K
")AJa1 sub a2K
 = �" 2 E :(AJa1K
"�AJa2K
")AJa1 mul a2K
 = �" 2 E :(AJa1K
" � AJa2K
"):Remember that every value-carrying signal Ev that occurs in a command on a transitionhas also to occur positively in the trigger condition. This implies that
(Ev) is de�ned.Therefore, AJEvK
 is also de�ned. The denotation of a Boolean expression is also de�nedby structural induction: BJtrueK
 = �" 2 E :ttBJfalseK
 = �" 2 E :ffBJa1 equ a2K
 = �" 2 E :(AJa1K
" = AJa2K
")BJa1 leq a2K
 = �" 2 E :(AJa1K
" � AJa2K
")BJ not bK
 = �" 2 E ::(BJbK
")BJb1 and b2K
 = �" 2 E :(BJb1K
" ^ BJb2K
"):11

Let \let w = g in f" be an abbreviation for (�w:f)g. The de�nition of CJcK for commandsc is a bit more subtle than the de�nitions of AJ:K and BJ:K:CJskipK = �(x;
; ") 2 }fin(M)� �� E :(x;
; ")CJX := aK = �(x;
; ") 2 }fin(M)� �� E :let n = AJaK
" in (x;
; "[n=X])CJEv := aK = �(x;
; ") 2 }fin(M)� �� E :let n = AJaK
" in (x [fEvg;
[n=Ev]; ")CJEpK = �(x;
; ") 2 }fin(M)� �� E :(x [fEpg;
; ")CJc1; c2K = CJc2K � CJc1KCJif b then c1 otherwise c2 �K(x;
; ") = (CJc1K(x;
; ") if BJbK
" = ttCJc2K(x;
; ") elseCJwK = CJif b then c;w �Kwhere while b do c od is abbreviated to w. But this involves w on both sides of theequation. For the solution of this kind of recursive equations we refer to [Win93]. Wewrite
[n=Ev] for the function obtained from
 by replacing its value in Ev by n.The execution of commands, separated by the semicolon is strictly sequential. For exam-ple, Ev := 1;X := Ev + 1;Ev := Ev + 2 yields X = 2 and Ev = 3. This means that eventhough the value of Ev in the current step is 1 and in the next step 3, Ev can change itsvalue between these two time points. However, to get a well-de�ned semantics, the valuethat is used for communication is Ev = 3.3.2 Extended Sequential AutomataApplying the concepts introduced above, we have to modify the syntactic notation forour sequential automata and get: (Vl; �d;�; �d; �; �)where �, �d and � are as in Section 2. The following, additional syntactic constraintsmust hold:1. Vl 2 }fin(V) denotes the set of local, i.e., private read/write variables. Thesevariables can be only read and/or written by the automaton itself. They have to beinitialized:2. �d : Vl ! Int is a �nite, total function that describes the initial values of the localvariables.Furthermore, � has to be modi�ed:� : �� B(M)! �� Comis the �nite, partial state transition function that takes a state and a Boolean term andyields the subsequent state together with a command, describing the modi�cation of the12

internal variables and the generation of pure or value-carrying signals. In contrast to theversion of � that was used in our core language, here }fin(M) is substituted by Com. Thismeans that in the extended language, an action does not only consist of the generationof a set of (pure) signals, but of a whole command.There is a further syntactic restriction on �. For every transition with label t=c thefollowing must be valid: each integer-valued signal Ev that occurs on the right-hand-sideof an assignment in c also has to occur either \before" on the left-hand-side of anotherassignment in c or positively in t. This condition must be ful�lled in order to guaranteea de�ned value for Ev. In this context, to occur positively means that we must be able toderive that Ev is present in the trigger condition t. This is the case whenever t) Ev is atautology. As in the core language we assume that every transition, i.e., every commandcan be computed in exactly one instant of time.Note that the trigger condition is a Boolean term as in the core language. Also for integer-valued signals, we only check absence or presence but not their values. As a consequence,the determinism of even the extended automata is easily decidable by static analysis andwe can avoid dynamic analysis.In the following we want to demonstrate how a TV with 100 channels can be speci�edusing this kind of deterministic automaton (Fig. 3). In addition, state-of-the-art TVsets provide the opportunity to simply switch through the programs by incrementingor decrementing the channel number. This can be done with buttons \�" and \	",modeled as pure signals. Moreover, we have one integer-valued signal \changeto". In thegraphical notation every transition between states � and �0 is now labeled with \t/c", i��(�; t) = (�0; c). The partial function �d is assumed to initialize the unique local variableof Fig. 3 X by 1.
CH then X := X add 1else X := 1 �; smchangeto / X := changeto; sm� / if X leq 99	 / if 2 leq X then X := X sub 1 else X := 100 �; smFigure 3: A TV with 100 channels, speci�ed in the extended languageThe textual version of Fig. 3 is de�ned in the sequel:S = (fXg; �d; fCHg;CH;CH; �) where�(CH; changeto) = (CH; X := changeto; sm)�(CH;�) = (CH; if X � 99 then X := X add 1 else X := 1 �; sm)�(CH;) = (CH; if 2 � X then X := X sub 1 else X := 100 �; sm)and the partial function �d is assumed to initialize the unique local variable X by 1.

13

3.3 Extended Hierarchical DecompositionThe usage of the extended language also enforces a rede�nition of the decompositionoperator. Suppose that (Vl; �d;�; �d; �; �) is an extended sequential automaton. ThenDec (Vl; �d;�; �d; �; �) by % res 'is an extended, hierarchical decomposed Mini-Statechart, where the decomposition func-tion % is slightly adapted to the extended language:% : �! (S � fHistory;NoHistoryg � fRefresh;NoRefreshg) [fNoDecgis a total, �nite function. Note that % is modi�ed. In addition to the possibility to choosewhether a master state is history re�ned or not, we now can specify whether we wantto initialize all local variables of the slave when reentering it or not. This is denoted byRefresh and NoRefresh, respectively. ' denotes the resolution function and is de�ned inthe sequel.3.4 Resolution of Con
ictsUsing integer-valued signals some problems can occur. Let us assume that each of twoparallel components S1, S2 tries to broadcast the integer-valued signal Ev. Furthermore,we suppose that S1 assigns 21 to Ev, while at the same instant of time S2 assigns 42. Inthis case, we get a semantic con
ict. However, the orthogonally composed Mini-StatechartAnd (S1; S2) must produce the signal Ev with a unique value. Hence, we introduce a totalresolution function ', which resolves this con
ict and produces a unique value:' : }fin(S �M � ZZ)! ZZ:For every set of con
icting integers, ' yields the integer that will be calculated when acon
ict occurs. Using sets of triples of the form (S; x; n) 2 S �M � ZZ as possible inputvalues for ', we can de�ne subtle resolution functions. For example, let M = fa; bg thenwe can de�ne:� '1(f(S1; a; 3); (S2; a; 4)g) = 3,'1(f(S1; b; 5); (S2; b; 6)g) = 5.'1 is a resolution function that always prefers the output of chart S1, independentof the signal name.� '2(f(S1; a; 3); (S2; a; 4)g) = 3,'2(f(S1; b; 5); (S2; b; 6)g) = 6.In this case, '2 is a resolution function that prefers the output of chart S1 whenevera con
ict for signal a occurs, while for b chart S2 is preferred.� '3(f(S1; a; 3); (S2; a; 4)g) = 7,'3(f(S1; b; 5); (S2; b; 6)g) = 11.Here, '3 simply adds all con
icting values.14

Of course, there are many other alternatives to de�ne the resolution function. We include' in the syntactic notation of the parallel composition and get instead of And (S1; S2):And (S1; S2; '):In addition, contradictory integer-valued signals also can emerge when employing thecommunication operators. Though in this case we do not have two parallel, con
ictingMini-Statecharts, we can get con
icts between signals from the environment and signalsthat are fed back for communication. Thus, the operators for the delayed, instantaneous,and macro-/microstep feedback operator are also straightforwardly adapted:D-Feedback (S; L; '); I-Feedback (S; L; '); and M-Feedback (S; L; '):Signal con
icts also can occur whenever applying the hierarchical decomposition. Thiscan be the case when both master and slave broadcast the same signal with di�erentinteger values. Hence, we also have to specify a resolution function for the hierarchicaldecomposition and get Dec (Vl; �d;�; �d; �; �) by % res '.The remaining constructs of the core language, Local (S; L) and Restrict (S;R), need notto be modi�ed.3.5 The Formal Semantics of Mini-StatechartsReactive systems continuously interact with their environment. Thus, to de�ne theirsemantics, their complete input/output behavior has to be described. This can be doneby communication histories. We model the communication history of Mini-Statecharts bystreams carrying tuples of sets of (pure and integer-valued) signals together with values ofinteger-valued signals. Mathematically, we describe the behavior of Mini-Statecharts bystream processing functions. Hence, we brie
y discuss the notion of streams and streamprocessing functions. For a detailed description we refer to [BDD+93] and [SS95].Given a set X of signals, a stream over X, denoted by X!, is an in�nite sequence ofelements from X. Our notation for the concatenation operator is &. Given an element xof type X and a stream s over X, the term x&s denotes the stream that starts with theelement x followed by the stream s. The destructor ft selects the �rst element of a stream.A stream processing function is a function with type X! ! X!. Besides the constructorand the destructor we need an auxiliary function s # k that yields for a positive naturalnumber k the k-th element of stream s.The de�nition of the semantics for the macro-/microstep feedback operator causes prob-lems concerning the compositionality. We will give an example that re
ects the situationin Section 3.5.7. In order to get a compositional semantics also for this operator, we haveto introduce a new special signal.Let y be an extra signal that is not yet contained in M . The occurrence of y in a signalset of the output stream indicates that the Mini-Statechart has not changed its currentstate(s) in this step. This signal will be called stop (signal). It is needed to indicate theend of a so-called micro-cycle (see Section 3.5.7). In the sequel, the set M [fyg will beabbreviated by My. Note that the set of signals L 2 }fin(M), which shall be fed back,15

does not contain the stop signal. The functionality of the denotational semantics isDJ:K : S ! (}fin(M)� �)! ! (}fin(My)� �)!:This semantics is denoted as a higher order function. For its formal de�nition, we use anauxiliary higher order function of typeJ:K : S ! E ! (}fin(M)� �)! ! (}fin(My)� �� E � S)!to take into account current/successor environment and successor chart. For S 2 S ands 2 (}fin(M)� �)!, DJSKs is de�ned byDJSKs = strip (JSK(refresh S) s)where strip (w; x; y; z)&s = (w; x)&(strip s). The auxiliary function refresh initializesthe environment according to the initialization functions �d. We now de�ne the streamsemantics for all syntactic constructs of Mini-Statecharts.3.5.1 Sequential AutomataInformally, a sequential, deterministic, and reactive automaton (Vl; �d;�; �d; �; �) takesa set of (pure and value-carrying) input signals, the so-called stimuli, reacts on it whilemanipulating its own, local variables, produces a set of (pure and value-carrying) signalsas output and then behaves like an automaton with modi�ed current state and modi�edenvironment function. Note that the local variables are not visible to other automata.Thus, communication is done by events only. In contrast to basic Mini-Statecharts, value-carrying events are now allowed. If we would restrict ourself to pure signals, extendedMini-Statecharts would communicate exactly like Mini-Statecharts, presented in [NRS96].The transition function � is de�ned on Boolean terms. Reactive systems, however, have toreact on a set of signals. Thus, we have to de�ne which transition is triggered by a givenset of signals. For this reason, we use a strict and total function trigger interpreting aBoolean term over signals with respect to some given set of signals. The function triggeris exactly de�ned as in the core language.trigger : B(M)� }fin(M)! ftt; ff;?g:Remember that for every Boolean variable a 2 M in term t 2 B(M) the occurrence ofa means that signal a has to be present and :a means that this signal has to be absentto enable the trigger condition. Because (^;:) is a possible basis for Boolean terms wede�ne trigger for these constructs only. If one wants to deal with _;), ,, etc., triggersimply has to be adapted in a straight forward fashion. Let a 2 M , x 2 }fin(M) andt; t1; t2 2 B(M) then trigger (a; x) := a 2 xtrigger (t1 and t2; x) := trigger (t1; x) ^ trigger (t2; x)trigger (not t; x) := :trigger (t; x):16

Note that trigger is exactly the same as in [NRS96]. To get a semantics which deals withsets of signals instead of Boolean terms, we consider in the sequel a total, deterministicstate transition function �0 with the functionality�0 : �� }fin(M)! �� Com:For � 2 � and x 2 }fin(M) we de�ne:�0(�; x) := 8><>: �(�; t) if 9t 2 B(M); �0 2 �; c 2 Com :�(�; t) = (�0; c) ^ trigger (t; x) = tt:(�; skip) else.Note that the function � is only de�ned for �nitely many t 2 B(M). Therefore, the aboveexistential quanti�er is easily decidable. Obviously, �0 is a total function. Every sequentialautomaton with a total state transition function is reactive which means that it can makea step at every single time tick. This represents the characterizing property of reactivesystems. Additionally, we require deterministic automata which is expressed by1:8� 2 �; x 2 }fin(M) 91t 2 B(M); �0 2 �; c 2 Com :�(�; t) = (�0; c) ^ trigger (t; x) = tt:This property ensures �0 to be a well-de�ned function. Notice that the above de�nitionof reactiveness and determinism are de�ned on the semantics. However, it is straightforward to formulate syntactic de�nitions of reactiveness and determinism:� � is reactive, if 8� 2 � : �Wt2T�(�) t�, tt:� � is deterministic, if 8� 2 �A 8t1; t2 2 T�(�) : t1 6= t2) (t1 ^ t2 , ff):where T�(�) := ft 2 B(M) j 9�0 2 �; c 2 Com : �(�; t) = (�0; c)g.Besides simulation, Statemate [Inc90], provides the opportunity to generate executable,deterministic C code. The non-determinism in a Statemate speci�cation is resolved bythe aid of complicated rules. Therefore, we have decided to focus upon a deterministicsemantics right from the beginning. However, from a theoretical point of view there is nodi�culty to handle nondeterministic sequential automata.J(Vl; �d;�; �d; �; �)K" (x;
)&s = let (�0; c) = �0(�; x);(y;
0; "0) = CJcK(x;
; ");S 0 = (Vl; �d;�; �0; �)in if � 6= �0;then (y;
0; "0; S 0)&(JS 0K"0 s)else (y [fyg;
0; "0; S 0)&(JS 0K"0 s).The sequential automaton takes the current environment " together with the tuple (x;
)in every time point. x represents the set of all (pure and integer-valued) signals that arecurrently present.
 is de�ned for all integer-valued signals that are contained in x.
(Ev)denotes the current integer value for all signals Ev in x \Mv.191 means that there exists exactly one. 17

In the case that the automaton changes its current state (� 6= �0) the semantics instan-taneously yields the quadruple (y;
0; "0; S 0). Here y denotes the set of generated outputsignals,
0, "0, and S 0 the successors for
, ", and S, respectively. If the automaton doesnot change its current state, this is indicated by the additional output of y. After that,the automaton behaves like the automaton with modi�ed current state.3.5.2 Parallel CompositionThe parallel composition of And (S1; S2; ') behaves as S1 and S2 synchronously together.Generated signals of the parallel components are uni�ed, denoted by y1 [y2 and
1 ['
2,where [denotes the standard union and [' the union of integer-valued signals w.r.t. '.The union of the environments "1 and "2 has to be performed with care. Both "1 and "2are total function on V . However, unifying them must yield a total function again. Thisis achieved by "1 [V2V1 "2, which is "i for all variables in Vi with i 2 f1; 2g: Here, Vi denotesthe set of signals that are used in chart Si.JAnd (S1; S2; ')K" (x;
)&s = let (y1;
1; "1; S 01) = ft(JS1K" (x;
)&s);(y2;
2; "2; S 02) = ft(JS2K" (x;
)&s);y0 = y1 [y2;
0 =
1 ['
2; "0 = "1 [V2V1 "2;S 0 = And (S 01; S 02; ')in if y 2 y1 \ y2then (y0;
0; "0; S 0)&(JS 0K"0 s)else (y0nfyg;
0; "0; S 0)&(JS 0K"0 s).And (S1; S2; ') does not change its current states, if both S1 and S2 do not change theirs,which is indicated by y 2 y1 \ y2. Note that an equivalent condition to this would beS1 = S 01^S2 = S 02. The reader might now why we did not choose this condition instead ofy 2 y1 \ y2. One might argue that we then even could de�ne your semantics without stopsignal. However, we will precisely explain the reason for our strategy in Section 3.5.7.The formal semantics of And (S1; S2; ') demonstrates the advantage of our compositionalsemantics: to de�ne JAnd (S1; S2; ')K we just have to calculate JS1K and JS1K and thenput the results together.3.5.3 Hiding and RestrictionAs already mentioned, Local (S; L) and Restrict (S;R) for S 2 S and L;R 2 }fin(M) areused for encapsulation, which is formally denoted by:JLocal (S; L)K" (x;
)&s = let (y;
0; "0; S 0) = ft(JSK"(xnL;
jMvnL)&s);S 00 = Local (S 0; L)in (ynL;
0jMvnL; "0; S 00)&JS 00K"0 sJRestrict (S;R)K" (x;
)&s = let (y;
0; "0; S 0) = ft(JSK"(x \R;
jMv\R)&s);S 00 = Restrict (S 0; R)in (y \ R;
0jMv\R; "0; S 00)&JS 00K"0 s.Again,
jMv\R denotes the restriction of
 on signals in Mv \R. It is obvious that oneof these constructs can be considered to be an abbreviation: either Restrict (S;R) can bede�ned as Local (S;MnR) or Local (S; L) as Restrict (S;MnR).18

3.5.4 Hierarchical DecompositionDecomposition of a single state occurs when one wants to re�ne the behavior of thisstate. This decomposition for a sequential automaton (Vl; �d;�; �d; �; �) is denoted by thetotal, �nite function %. The formal semantics of hierarchical decomposition is denotedas follows, where (Vl; �d;�; �d; �; �) is abbreviated to A. Variables with index m and sdenote master and slave, respectively.(1) JDec A by %A res 'K" (x;
)&s =(2) let (ym;
m; "m; A0) = ft(JAK" (x;
)&s)(3) in if %(�) = NoDec(4) then let S 0 = Dec A0 by %(5) in (ym;
m; "m; S 0)&JS 0K"m s(6) else let f = if �3(%(�)) = Refresh then (refresh �1(%(�))) else id;(7) (ys;
s; "s; S 0) = ft(J�1(%(�))K(f ") (x;
)&s);(8) y = if y 2 ym \ ys then ym [ys else (ym [ys)nfyg;(9)
0 =
m ['
s;(10) "0 = "m [VsVl "s(11) in if (y 2 ym or �2(%(�)) = History)(12) then let S 00 = Dec (�; �d; A0; �) by %[(S 0; �2(%(�)); �3(%(�)))=�](13) in (y;
0; "0; S 00)&JS 00K"0 s(14) else let S 00 = Dec (�; �d; A0; �) by %[(init(S 0);NoHistory; �3(%(�)))=�](15) in (y;
0; "0; S 00)&JS 00K"0 s.To de�ne the semantics of Dec A by %A we �rst let make the master one step, denoted byft(JAK"(x;
)&s) in line (2). If the current state � of the master is not decomposed at all(3) %(�) = NoDec, the semantics immediately proceeds to the next step like a for a puresequential automaton (5).Otherwise (6), if %(�) 6= NoDec, then �1(%(�)) denotes the slave and we use the followingabbreviations: f represents the function refresh if �3(%(�)) = Refresh, i.e., if the localvariables of the slave shall be initialized and otherwise the function id. id representsthe identity and leaves the current environment unchanged, whereas (refresh �1(%(�)))initializes all variables of the slave according to their default values.Similar to the parallel composition, Dec A by %A only generates a stop signal in the currentstep, when both master and slave generate one.
0 denotes the values of the integer-valuedsignals y\Mv that are present in the next step; "0 denotes the new environment. In (10),Vl denotes the local variables of A and Vs all variables of the slave �1(%(�)).In line (11) we have again to distinguish between two di�erent cases. If A does notchange its current state (y 2 ym), the semantic function proceeds to the next step, wherethe slave has to be modi�ed. This is achieved by substituting S 0 for S in % (12). Thesame must be done if the state � of the master is history decomposed. However, if themaster changes its current state from � to �0 (� 6= �0 is indicated by y 62 ym) and � is nothistory decomposed, then the slave must be initialized (14),(15). init is de�ned accordingto [NRS96]: init(S 0) initializes all sequential automata in S 0 to their default states. Notethat init does not initialize variables.
19

3.5.5 Delayed CommunicationIn [NRS96] we demonstrated that broadcast communication is the critical point of thelanguage. We presented three di�erent feedback operators. In the extended language, thedelayed feedback is, like in [NRS96], also the one with the \easiest" formal semantics:JD-Feedback (S; L; ')K" (x1;
1)&(x2;
2)&s =let (y;
0; "0; S 0) = ft(JSK" (x1;
1)&(x2;
2)&s);S 00 = D-Feedback (S 0; L; ')in (y;
0; "0; S 00)&(JS 00K"0 (x2 [(y \ L);
2 ['
0jMv\L)&s).The tuples (x1;
1) and (x2;
2) denote the input signals of the current and the nextinstant of time, respectively. Signals (y;
0) are instantaneously generated and fed back asadditional input in the next time point: (x2[(y\L);
2['
0jMv\L), where
jMv\L denotesthe restriction of
 on signals in Mv \ L. Whenever a con
ict for integer-valued signalsoccur, the resolution function ' speci�es whether the environment or the component itselfwins recognition.3.5.6 Instantaneous CommunicationThe synchrony hypothesis [Ber89] demands that action and the event causing this actionoccur at the same instant of time. As a consequence, the above mentioned delayedfeedback now instantaneously takes place. The signals in z generated by Mini-StatechartS are intersected with the signals L to be fed back and then uni�ed with the externalsignals in x. This signal set is passed to S at the same instant of time. Hence, to de�neone step of the semantics of I-Feedback (S; L; '), i.e., ft(JI-Feedback (S; L; ')K" (x;
)&s)we have to �nd a solution for the following equation:z = �1(ft(JSK" (x [(z \ L);
)&s)):This can be achieved by computing a �xed point for the subsequent function:�z:�1(ft(JSK" (x [(z \ L);
)&s)):We abbreviate this function by f "x;
. Because of negative trigger conditions, some problemscan emerge when de�ning the formal semantics of this operator. This problems and howto solve them was discussed in detail in [NRS96]. We there showed that we must rejectcertain Mini-Statecharts, which are lacking in unique �xed points. Charts to be rejectedcan be detected by static analysis. In this contribution, we assume that unproper chartsalready have been rejected. Formally, the semantics of the instantaneous feedback for notrejected charts is de�ned by:JI-Feedback (S; L; ')K" (x;
)&s =let f "x;
 = �z:�1(ft(JSK" (x [(z \ L);
)&s));(y;
0; "0; S 0) = ft(JSK(x [(lfp(f "x;
) \ L))&s);
00 =
 ['
0;in (y;
00; "0; S 0)&(JI-Feedback (S 0; L; ')K"0 s)where lfp computes the least �xed point of a monotonic function w.r.t. the subset orderingand is de�ned as follows:lfp : (}fin(M)! }fin(My))! }fin(M)20

where lfp(fx) = ilfp(fx; ;) andilfp(fx; y) = if f "x;
(y)nfyg = y then y else ilfp(f "x;
; f "x;
(y)nfyg):In the sequel, we want to demonstrate the functionality of lfp. Let us take a look at Fig.4. We assume that the environment currently produces x = fa; bg, where the value ofa and b is 1 and 2, respectively, i.e.,
(a) = 1 and
(b) = 2. For all other signals
 isunde�ned in the current time point. Both automata do not have any local variables andso we simply have " = ;. First of all, we get f "x;
(;) = fbg. Applying this function oncemore yields f "x;
(fbg) = fb; cg: The last application produces f "x;
(fb; cg) = fb; cg and a�xed point is reached. �01�1�2fa; bg : I-Feedback�02
a=b := 3b=c := 4

Figure 4: Example: instantaneous feedbackDue to the de�nition of our state transition function the concept of [NRS96] smoothlycarries over to the extended language. Note that we only can achieve this result becausetransitions are triggered by the presence or absence of (even pure) signals. If transitionswere also triggered by the values of signals, it would not be possible to lift the conceptfor instantaneous feedback as easy as demonstrated.3.5.7 Macro-/Micro-Step CommunicationIn this section we describe a further semantic view of the feedback operator. The basisof the macro-/micro-step feedback M-Feedback (S; L) is to distinguish between signals xwhich are generated by the environment, or stimuli in short, and internal signals y whichare generated by the system S itself.We assume that a reactive system gets a set of stimuli x and starts reacting (1.1)-(1.4),(2.1)on it while the stream s of external stimuli is interrupted (2.1). Internal signals are fedback (1.4), the system reacts on these signals, and proceeds until \useful" signals cannotbe produced any longer (1.2),(1.3). However, in contrast to the instantaneous feedbackthe generated signals are fed back at the next instant of (micro) time (1.4). Hence, thefeedback mechanism results in a stream of signal sets (1.1)-(1.4) and we get di�erentlevels of system time. If this stream contains no \useful" signals anymore we say that thefeedback operator terminates (see below) (1.3). If the feedback terminates, the generatedsignals are transmitted to the environment and the next stimulus set is reacted on (2.3).Every single step (1.1) of this chain reaction is called a micro-step, whereas a series ofmicro-steps (1.1)-(1.4), starting with the �rst step after the input stream was interrupted21

� �a=fg :a=fbgFigure 5: Restart after \Termination"and ending with the last step before the feedback operator terminates, is called a micro-cycle or macro-step. In one macro-step we can distinguish eight di�erent variants forlifetime of stimuli and internal signals. Lifetime of both kinds of signals can be onemicro-step as well as the whole micro-cycle. However, due to space limitations in thispaper we only present the following variant (for some arbitrary stream t):�steps(S; L)" (x;
) = let (y;
0; "0; S 0) = ft(JSK" (x;
)&t) (1.1)in if (y 2 y) ^ (y \ L = x) ^
0jL\Mv =
 (1.2)then (y;
0; "0; S)&(fyg; S)1 (1.3)else (y;
0; "0; S 0)&�steps(S 0; L)"0 (y \ L;
0jL\Mv). (1.4)where lifetime of both stimuli x and internal signals y is one micro-step (1.4). For theother variants, the interested reader is referred to [NRS96]. To de�ne the semantics of themacro-/micro-step feedback operator, we have to discuss the notion of termination �rst.According to [HPSS87] a macro-step terminates if no transition is possible anymore. At�rst glance, this notion of termination seems to be sensible. At second glance, however, thefollowing two problems arise. First of all, reactive systems never terminate in a classicalsense. This is assured by our total transition function �0. To achieve a similar behavioras proposed in [HPSS87] we could de�ne a macro-step to terminate if no current state ischanged and no signals are generated. However, this solution is not adequate. Becauseof the existence of negative trigger conditions the Mini-Statechart is able to restart if nosignals are generated.Example 2 The automaton A in Fig. 5 shows an example for this phenomenon. Letus assume that state � has been reached. Now, let signal a be sent by the environment.Thus, A generates the empty set of signals and stays in state �, i.e., the current statedoes not change and no signals are generated. However, the empty set of signals triggersthe condition :a. Hence, A \restarts" and produces fbg as new output.As a consequence, we have to de�ne another notion of termination:Let S 2 S and L 2 }fin(M) then we say that �steps(S; L)" (x;
) terminates for stimulus(x;
) 2 }fin(M)� � and (current) environment " in step k 2 IN i�k = minfi 2 IN j 8j > i : fyg = �1((�steps(S; L)" x)#j)g:This means that | beginning with step k | the feedback operation produces the samesignal set in every single successor-step and the corresponding Mini-Statechart does notchange its internal structure forever (1.2). We say it has reached a stable state. Inthe sequel, we will abbreviate this termination predicate to term (S; L; k; (x;
); "). Thebehavior of the stream semantics is now formally denoted by:22

JM-Feedback (S; L)K" (x;
)&s = if 9k 2 IN : term (S; L; k; (x;
); ") (2.1)then let (y;
0; "0; S 0) = (�steps(S; L)" (x;
))#k (2.2)in (y;
0; "0; S 0)&JM-Feedback(S 0; L)K"0 s (2.3)else ?. (2.4)Note that only internal signals of the very last, i.e., the k-th micro-step are transmittedto the environment (2.3). However, it would not be hard to rede�ne this step semantics insuch a way that all internal signals are collected and transmitted to the environment aftertermination. Theoretically, we only require the semidecideability of the predicate term(2.1). Of course the termination of each macro-step is in practice even (fully) decidable bystatic analysis because our Mini-Statecharts only deal with a �nite state and signal space.Hence, we also could have de�ned a total step semantics as for the instantaneous feedback.If the micro cycle does not terminate we assign ? as semantics (2.4) which coincides withthe e�ect of testing termination of the micro cycle. Testing may not terminate itself whichwould yield a ? result.We now want to motivate the need of the stop signal. We say that our denotationalsemantics is compositional if for all S1; S2 2 S the following is valid [Win93]:DJS1K = DJS2K =) DJC(S1)K = DJC(S2)K:This de�nition needs the notion of context. In our setting, a context C(:) intuitively is aMini-Statechart S 2 S with exactly one \hole" (:) of type S. In this hole we can pluganother Mini-Statechart S 0. De�ning the semantics for the macro-/microstep feedbackoperator without stop signal, we can �nd Mini-Statecharts that produce the same outputstreams, but do not agree in all contexts. This will be demonstrated in Example 3.Example 3 (Motivation for the Stop Signal) Let S and S 0 denote the automata thatare pictured in Fig. 6 (a) and (b), respectively. We suppose that the environment suppliesboth components with the input stream ;!. Once being initiated, both automata startreacting forever because all transitions are labeled with \true".First of all, we assume that we would have de�ned the semantics without stop signal, thenS1 produces an in�nite stream of which all all elements are empty signal sets by proceedingidle steps. In contrast, S2 toggles between �0 and �00 but also produces an in�nite streamof empty sets. We get DJS1K(;; ;)! = DJS2K(;; ;)! = (;; ;)! as denotational semantics.Let us now assume that both automata are embedded in the Macro-/Microstep Feedbackoperator, i.e., we have M-Feedback (S1; ;) and M-Feedback (S2; ;). In contrast to above,now ; can be fed back. As we will see in the sequel, this is not trivial. M-Feedback (S1; ;)takes the �rst element of the input streams, makes an idle step, produces the empty set ofsignals, and terminates. Now the chart can consume a further element of the input streamand starts reacting on that set again. In spite of this complicated internal behavior, likeS1, also M-Feedback (S1; ;) produces (;; ;)! as output.M-Feedback (S2; ;), in contrast, has a di�erent behavior. Here, the micro cycle neverterminates because the automaton carries on changing its current state forever. Hence,we get ? as overall semantics. Thus, the overall result is DJM-Feedback (S1; ;)K 6= DJM-Feedback (S2; ;)K in contradiction to the compositionality.The introduction of the stop signals easily solves this problem, because we get DJS1K(;; ;)! =(fyg; ;)! 6= (;; ;)! = DJS2K(;; ;)! as denotational semantics and S1; S2 can be distin-guished by their output streams. 23

true / fg
(a) (b)true / fgtrue / fg�0 �00�
Figure 6: Motivation for the stop signalThe reason for the failure of a semantics without this extra signal is near at hand. Thoughwithout using the stop signal we could check whether the current state has changed witha condition like S = S 0, we never would recognize this internal behavior in the outputstream. As a consequence, we would distinguish the semantics of components that onethe one hand have the same output stream, but on the other hand a di�erent terminationbehavior.4 Conclusion and Future WorkWe presented the textual and visual speci�cation language \Mini-Statecharts". Mini-Statecharts are a subclass of Statecharts, which were �rst introduced by David Harel.We restricted our language to the essential syntactic constructs of Statecharts. Mini-Statecharts are, in contrast to Harel's Statecharts, well-suited for the modular develop-ment of parallel, reactive systems. Because of their modularity, we were able to assign acompositional, formal semantics to them.However, the author admits that the assumption of a global clock impedes the usage ofMini-Statecharts for the speci�cation of distributed systems. Each distributed componentnormally is driven by its own, local clock. Thus, the communication of distributed com-ponents has to be synchronized. To develop a formal semantics that deals with a numberof local clocks instead of one single, global clock is left to future work.Also left to further work is the development of a formal semantics for a non-deterministicversion of Mini-Statecharts. This goal can be achieved either by using sets of streamprocessing functions or relations. Non-determinism is the most appropriate possibility toexpress underspeci�cation. Re�ning a non-deterministic speci�cation step by step, we geta deterministic and therefore implementable speci�cation in the end. In the semantics,re�nement is denoted by set inclusion. Each re�nement step must not enlarge the setof possible implementations. To formalize this iterative re�nement process, we have todevelop a re�nement calculus. It �xes the set of feasible syntactic transformations forevery re�nement step.AcknowledgmentThanks are owed to Manfred Broy, Olaf M�uller, Christian Prehofer and especially JanPhilipps who read an earlier version of this paper and provided many helpful comments.24

References[BDD+93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T. F. Gritzner, and R. Weber.The Design of Distributed Systems: An Introduction to Focus | RevisedVerison. Technical Report TUM-I9202-2, Technische Universit�at M�unchen,Fakult�at f�ur Informatik, 80290 M�unchen, Germany, 1993.[Ber89] G. Berry. Real time programming: special purpose or general purpose lan-guages. Information Processing 89, 1989.[BG88] G Berry and G. Gonthier. The ESTEREL Synchronous Programming Lan-guage: Design, Semantics, Implementation. Technical Report 842, INRIA,1988.[GS95] R. Grosu and K. St�len. A Denotational Model for Mobile Point-to-PointData
ow Networks. Technical Report SFB 342/14/95 A, Technische Univer-sit�at M�unchen, 1995.[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science ofComputer Programming, 8:231 { 274, 1987.[Har90] D. Harel. Statemate: A working environment for the development of complexreactive systems. IEEE Transactions on Software Engineering, 16:403 { 413,1990.[HdR91] C. Huizing and W.-P. de Roever. Introduction to design choices in the seman-tics of statecharts. Information Processing Letters, 37, 1991.[HN95] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. Sub-mitted to: ACM Transations Software Engineering Methods, 1995.[HPSS87] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the Formal Semanticsof Statecharts. Proceedings on the Symposium on Logic in Computer Science,pages 54 { 64, 1987.[HRdR92] J.J.M. Hooman, S. Ramesh, and W.P. de Roever. A compositional axiomati-zation of Statecharts. Theoretical Computer Science, 101:289 { 335, 1992.[Inc90] i-Logix Inc. Languages of Statemate. i-Logix Inc., 22 Third Avenue, Burling-ton, Mass. 01803, U.S.A., January 1990.[Mar92] F. Maraninchi. Operational and Compositional Semantics of SynchronousAutomaton Compositions. volume 630 of Lecture Notes in Computer Science,pages 550 { 564. Springer-Verlag, 1992.[NRS96] D. Nazareth, F. Regensburger, and P. Scholz. Mini-Statecharts: A Lean Ver-sion of Statecharts. Technical Report TUM-I9610, Technische Universit�atM�unchen, 1996. Also available in the WWW: http://wwwbroy.informatik.tu-muenchen.de/reports/TUM-I9610.html.25

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LectureNotes in Computer Science. Springer, 1994.[SS95] B. Sch�atz and K. Spies. Formale Syntax zur logischen Kernsprache der Focus-Entwicklungsmethodik. Technical Report TUM-I9529, Technische Universit�atM�unchen, 1995.[vdB94] M. von der Beeck. A Comparison of Statecharts Variants. In H. Langmaack,W.-P. de Roever, and J. Vytopil, editors, Formal Techniques in Real-Time andFault-Tolerant Systems : Third International Symposium Organized Jointlywith the Working Group Provably Correct Systems - ProCoS, volume 863 ofLecture Notes in Computer Science. Springer, 1994.[Win93] G. Winskel. The Formal Semantics of Programming Languages. The MITPress, 1993.

26

