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Abstract

Machine learning is a key component for integrating the knowledge and experience of
physicians in medical imaging. With the design of algorithms that are able to generalize
from observed evidences, and to make predictions about unseen data, machine learning can
be applied in many fields such as computer aided diagnosis, detection and segmentation.
In the last decade, random forests became a popular ensemble learning algorithm, as they
achieve state-of-the-art performance in numerous computer vision tasks. Consisting in
an ensemble of independent decision trees, random forests are very intuitive models that
offer a flexible probabilistic framework for solving different learning tasks. Following a
divide and conquer strategy, they efficiently create partitions of high-dimensional feature
spaces, and model probability distributions in each cell of these partitions. Thereby, they
permit to approximate any arbitrary functions or densities for classification, regression or
clustering tasks.

In this thesis, we formalize random forests models as ensemble partitioning approaches
and propose novel related techniques for classification, regression and clustering. We in-
troduce new task-specific forest models and demonstrate their great potential in different
medical applications such as organ localization, segmentation, lesion detection and image
categorization. First, multiple organ localization is formulated as a regression problem, in
which each voxel votes for the position of all organs of interest. Therefore, we instantiate
forest-related techniques to solve efficiently this regression task, and show the benefits
of our approach in Magnetic Resonance scans. Further than localization, we tackle the
problem of multiple organ segmentation in Computer Tomograms. As strong prior knowl-
edge such as organ arrangement, their size and shape is contained in annotated scans, we
propose to integrate such rich information within a novel structured output forest model.
Built on a joint classification-regression formulation, our method enforces leaf clusters that
are consistent in terms of organ class and spatial location, and learns thereby spatial reg-
ularization directly from the data. Through extensive experimentation, we demonstrate
the ability of our approach to provide improved class predictions compared to the classical
classification strategy. Afterward, we address the problem of detecting Parkinson-related
lesions within the midbrain in 3D transcranial ultrasound. To this end, we formulate a
detection paradigm that mimicks human experts by using probabilistic modeling of vi-
sual and spatial information based on random forests. On a highly challenging database
of 3D-TCUS volumes from 22 subjects, our approach show very promising results rela-
tively close to the human inter-rater observability. Finally, to recognize the modality of
a medical image, we propose a fast clustering approach based on random ferns to build
a dictionary a visual words. Moreover, we introduce in this context a novel clustering
approach based on multiple-decisions stumps that we call STARS. Taking advantages
of extreme randomization, our both methods achieve very good performance on a real
medical database.
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Zusammenfassung

Maschinelles Lernen stellt eine wichtige Komponente dar, um das Wissen und die
Erfahrung medizinischer Experten in Bildgebungs-Anwendungen wie Computer-gestütze
Diagnose, Erkennung und Segmentierung zu integrieren. Im letzten Jahrzehnt sind Ran-
dom Forests ein populärer Algorithmus für “Ensemble Learning” geworden, da sie in
zahlreichen Computer Vision-Problemen state-of-the-art Ergebnisse erbringen. Als En-
semble von voneinander unabhängigen Entscheidungsbäumen sind Random Forests sehr
intuitive Modelle, die einen flexiblen, probabilistischen Rahmen anbieten, um verschiedene
Lernaufgaben zu lösen.

In dieser Dissertation formalisieren wir Random Forest-Modelle als Methode für “En-
semble Partitionierung”, und wir schlagen neue verwandte Techniken zur Klassifikation,
Regression und Clustering vor. Wir führen neue Aufgaben-spezifische Forest-Modelle ein,
und wir zeigen ihr großes Potenzial in verschiedenen medizinischen Anwendungen wie
Lokalisierung von Organen, Segmentierung, Erkennung von Läsionen und Bildkategori-
sierung. Zuerst wird die Lokalisierung von Organen als Regressions-Problem formuliert,
indem jeder Voxel zur Positionsbestimmung jeweils aller Organe beiträgt. Somit verwen-
den wir Forests-verwandte Techniken um diese Regression Aufgabe zu lösen, und zeigen
die Vorteile unserer Methode in Kernspin-Tomogrammen. Über die Lokalisierung hinaus
gehen wir die simultane Segmentierung mehrerer Organe in Computer-Tomogrammen an.
Da starkes Vorwissen wie die Anordnung von Organen, deren Grösse oder Form in an-
notierten Datensätzen enthalten ist, schlagen wir vor, diese reiche Information in einem
neuen Strukturierten-Output-Forest-Modell zu integrieren. Basierend auf einer gemein-
samen Klassifizierungs- und Regressions-Formulierung erzwingt unsere Methode die Er-
zeugung von “Leaf-Clusters”, die konsistent in Organklasse und räumlicher Position sind.
Dadurch wird eine räumliche Regularisierung direkt aus den Daten gelernt. In zahlreichen
Experimenten demonstrieren wir die Fähigkeit unserer Methode, verbesserte Klassvorher-
sagen zu leisten. Danach wenden wir uns dem Problem der automatischen Erkennung von
Parkinson-assoziierten Läsionen im Mittelhirn mittels 3D transkraniellen Ultraschall zu.
Zu diesem Zweck formulieren wir ein Detektionsparadigma, welches menschliche Experten
imitiert, indem es visuelle und räumliche Informationen probabilistisch durch den Einsatz
von Random Forests modeliert. Unsere Methode zeigt auf einer anspruchsvollen Daten-
bank von 3D transkranielle Ultraschall Volumen mit 22 Probanden sehr vielversprechende
Ergebnisse, welche sich sehr gut mit den Beobachtungen menschlicher Interrater decken.
Um die Modalität eines medizinisches Bild zu erkennen, stellen wir schließlich einen effizi-
enten Random Ferns-basierten Clustering-Algorithmus vor, um ein visuelles Wörterbuch
zu lernen. Außerdem führen wir in diesem Zusammenhang eine neue Clustering-Methode
ein: die sogenannten STARS, als Ensemble von Multi-Entscheidung-Stumps. Mit dem Vor-
teil von extremer Randomisierung erreichen unsere beiden Methoden sehr gute Ergebnisse
auf einer echten medizinischen Datenbank.
Schlagwörter:
Maschinelles Lernen, Random Forests, Random Ferns, Analyse Medizinischer Bilddaten





Acknowledgments

“I can no other answer make, but, thanks, and thanks.”
William Shakespeare

These are (hopefully) the last few sentences I am writing in this thesis. I would like to
dedicate them to all the people that helped me throughout this crazy adventure during
the four years of my PhD. First of all, I would like to thank my PhD advisor Nassir Navab,
not only for his constant trust and support, but also for offering me the great chance of
doing research on my beloved topic of machine learning applied to medical imaging, and
this, in the wonderful environment of the Computer Aided Medical Procedures group.

In fact, I am deeply thankful to all the guys from our group. I would like to start by
mentioning Nicolas Padoy, for his great support and supervision during the first year of
my PhD, for all the great discussions we had, and for all the time he spent reading my
thesis and giving precious feedback. After his departure, I had the chance to get a great
supervision from Diana Mateus, who always brought me to new ideas and challenges.
Then, I would like to thank my first office mates Martin Groher and Hauke Heibel, for
our collaboration, for the many discussions on medical imaging, for answering all my
(philosophical?) interrogations on programming, and of course for our regular (research)
meetings in numerous pubs in Munich. Furthermore, I would like to thank Ben Glocker,
not only for the great time we had in Cambridge, but also for offering me to crash at his
place when I arrived in England, for the exciting research we did together, and for all the
nice BBQ afternoons in his garden. Afterward, I would like to thank Stefan Hinterstoißer,
not only for being a very precious kicker teammate, but also for the nice ice cream breaks
on the terrace at the university and for the numerous sunny days spent in Munich’s beer
gardens. I would also like to thank Selen Atasoy for all the exciting discussions on so many
research topics such as wavelet theory, manifold learning or cognitive science. Further, I
had the chance to collaborate with Ahmad Ahmadi, and I would like to thank him for
the great time and the great work on 3D transcranial ultrasound. I would also like to
mention that without the constant support and help of Martin Horn and Martina Hilla,
nothing would have been possible. Finally, I would like to thank all the other CAMP guys:
Darko Zikic, Max Baust, Pierre Georgel, Marco Feuerstein, Andreas Keil, Stefan Holzer,
Jose Gardiazabal, Loren Schwarz, Slobodan Ilic, Nicolas Brieu, Cedric Cagniart, Richard
Brosig, Tobias Lasser, Mehmet Yigitsoy, Steffi Demirci and many others. I would also



like to mention the very good time we had at each MICCAI conference, which was not
only an opportunity to discover new exciting works in the field of medical imaging, but
also to meet our friends from Imperial College, especially Pete Mountney, Dan Stoyanov
and Matina Giannarou.

During these four years, I had the chance to visit two research centers which are
Siemens Corporate Research and Microsoft Research Cambridge. I would like to take
this opportunity say how much I am thankful to Gözde Ünal and Antonio Criminisi for
giving me the chance to work with them, to learn so much and to be involved in such
great research projects. Furthermore, I would like to thank Axel Möller-Martinez from
the department of Nuclear Medicine at Klinikum Rechts der Isar for his great collabo-
ration. Finally, I would also like to thank the members of my thesis committee Prof.
Nicholas Ayache and Prof. Johann Schlichter, for accepting my request to be in my thesis
committee, for taking the time to read this thesis, and for taking part to my PhD defense.

I would like to conclude these ackowledgements by saying how much I am deeply
thankful to my parents, for their inconditional support through all the years, while I
was studying, when I decided to go to Germany, and during my PhD. I would like also
to especially thank my grandfather, who always challenged me to explain my work using
intuitive explanations. This definitely helped me in improving the way I present my work,
design my slides and write this thesis. Finally, I would like to say how grateful I am to
have my wonderful Stephanie, that supported me through this adventure with so much
love, patience, positive energy, good mood and humour. She is my sunbeam that always
knows how to motivate me and cheer me up, or how to make me laugh and distract me
by taking me out. Thanks for all.

P.S.: Thanks to all the bands that wrote the wonderful music I’ve been listening to during
thousands of hours of crazy hacking and thesis writing.

viii



CONTENTS

Thesis Outline 1

1 Machine Learning in Medical Applications 5
1.1 An Illustrated Introduction to Machine Learning . . . . . . . . . . . . . . . 5
1.2 Applying Machine Learning to Medical Applications . . . . . . . . . . . . . 10
1.3 Learning-based Approaches in Medical Applications . . . . . . . . . . . . . 12

1.3.1 Computer Aided Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Multiple Organ Localization and Segmentation . . . . . . . . . . . 15
1.3.3 Image Registration and Tracking . . . . . . . . . . . . . . . . . . . 16
1.3.4 Medical Image Categorization and Retrieval . . . . . . . . . . . . . 17

1.4 Our Contributions in this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Random Forests 21
2.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Decision Trees and Random Forests Models . . . . . . . . . . . . . . . . . 23

2.2.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1.1 Tree Model . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1.2 “Divide”: the Node Model . . . . . . . . . . . . . . . . . . 25
2.2.1.3 “Conquer”: the Leaf Model and the Partition Formalism . 28

2.2.2 Random Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2.1 Forest training and tree randomization . . . . . . . . . . . 31
2.2.2.2 Forest Parameters . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2.3 Forests prediction . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Classification Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Class Posteriors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.3 Classification Objective Function . . . . . . . . . . . . . . . . . . . 35
2.3.4 Forest Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.5 Class Balancing Problem . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.6 A Few Toy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Regression Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



CONTENTS

2.4.2 Regression Posteriors . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.3 Regression Objective Function . . . . . . . . . . . . . . . . . . . . . 42
2.4.4 Forest Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.5 A Few Toy Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Clustering Forests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.2 Cluster Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.3 Clustering Objective Function . . . . . . . . . . . . . . . . . . . . . 49
2.5.4 Forest Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Related Random Ensemble Partitioning Approach: Random Ferns 51
3.1 Ferns Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 Random Ferns Training . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.2 Random Ferns Prediction . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.3 Random Ferns Ensemble . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.4 Random Ferns Parameters . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Random Ferns for Classification, Regression, Clustering . . . . . . . . . . . 59
3.2.1 Classification Ferns . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2.2 Regression Ferns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Clustering Ferns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Random Forests: Contributions in Medical Applications 69
4.1 Multiple Organ Detection and Localization in multi-channel Magnetic Res-

onance scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . 72
4.1.3.2 Feature Representation . . . . . . . . . . . . . . . . . . . . 73
4.1.3.3 Ensemble Regression Approaches . . . . . . . . . . . . . . 75
4.1.3.4 Anatomy localization . . . . . . . . . . . . . . . . . . . . . 77

4.1.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Multiple Organ Segmentation in CT scans . . . . . . . . . . . . . . . . . . 81
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.3 Joint Classification-Regression Forests . . . . . . . . . . . . . . . . 83

4.2.3.1 Joint Classification-Regression formulation . . . . . . . . . 83
4.2.3.2 Classification-Regression Posteriors . . . . . . . . . . . . . 84
4.2.3.3 Robust statistics . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.3.4 Node optimization . . . . . . . . . . . . . . . . . . . . . . 85
4.2.3.5 Multiple organ segmentation . . . . . . . . . . . . . . . . 86

4.2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 87

x



CONTENTS

4.2.4.1 Measuring the segmentation accuracy . . . . . . . . . . . . 88
4.2.4.2 Cross-validation experiments . . . . . . . . . . . . . . . . 88
4.2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 Detection of Substantia Nigra Echogenicities in 3D Transcranial Ultra-

sound towards Computer Aided Diagnosis of Parkinson Disease . . . . . . 93
4.3.1 Introduction and Medical Motivation . . . . . . . . . . . . . . . . . 93
4.3.2 Data acquisition and Midbrain Segmentation . . . . . . . . . . . . . 94

4.3.2.1 Data acquisition: . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.2.2 (Semi-)automatic midbrain segmentation: . . . . . . . . . 94

4.3.3 Detection of Substantia Nigra echogenicities in 3D . . . . . . . . . . 95
4.3.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 97
4.3.3.2 Learning the data term P (E|x, I) . . . . . . . . . . . . . . 97
4.3.3.3 Learning the prior P (A|x) . . . . . . . . . . . . . . . . . . 98
4.3.3.4 SNE detection . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Content-based Modality Recognition . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.3 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.3.1 Visual Feature Space . . . . . . . . . . . . . . . . . . . . . 107
4.4.3.2 Extreme Random Subspace Projection Ferns . . . . . . . . 107
4.4.3.3 From Multiple Independent Partitions to an Implicit Dic-

tionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 110
4.4.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 STARS: Several Thresholds on a Random Subspace . . . . . . . . . . . . . 115
4.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.5.2 STARS Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5.2.1 Formal Definition of a STARS . . . . . . . . . . . . . . . . 117
4.5.2.2 STARS Ensemble: an Efficient Implementation . . . . . . 119

4.5.3 STARS for Classification and Clustering . . . . . . . . . . . . . . . 122
4.5.3.1 STARS for Classification . . . . . . . . . . . . . . . . . . . 122
4.5.3.2 STARS for Clustering . . . . . . . . . . . . . . . . . . . . 127
4.5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5.4 STARS: Application to Content-based Modality Recognition . . . . 127

5 Conclusion and Outlook 131

A Similarity Learning: Contributions in Medical Applications 135
A.1 Similarity Learning for Multi-modal Registration of Medical Images . . . . 135

A.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.1.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 137

xi



CONTENTS

A.1.2.2 Data points generation . . . . . . . . . . . . . . . . . . . . 138
A.1.2.3 Fitting the similarity model through support vector re-

gression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.1.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . 140
A.1.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.1.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 142
A.2 Similarity Learning for Guide-wire Tracking in Fluoroscopic Sequences . . 144

A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.2.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . 146
A.2.2.2 Local Mean Orthogonal Profiles . . . . . . . . . . . . . . . 148
A.2.2.3 Data points generation by motion learning . . . . . . . . . 148
A.2.2.4 Learning data term through support vector regression . . 149

A.2.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 152

B Wavelet Energy Map, A Robust Support for Multi-modal Registration
of Medical Images 153
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
B.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2.2 Energy vs. Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B.2.3 Extraction of local spectral components . . . . . . . . . . . . . . . . 156

B.2.3.1 The redundant wavelet transform . . . . . . . . . . . . . . 156
B.2.3.2 Choice of the wavelet basis . . . . . . . . . . . . . . . . . 158

B.2.4 Local energy formulation . . . . . . . . . . . . . . . . . . . . . . . . 159
B.2.5 Energy based registration framework . . . . . . . . . . . . . . . . . 159

B.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.3.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.3.2 Robustness to noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
B.3.3 Efficiency on medical images . . . . . . . . . . . . . . . . . . . . . . 165

B.3.3.1 2D registration experiments: Real Magnetic Resonance
datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

B.3.4 3D registration experiments: T1 Magnetic Resonance and SPECT-
Tc volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

List of Figures 170

List of Tables 179

References 181

xii



THESIS OUTLINE

Chapter 1: Machine Learning for Medical Applications In this first chapter, we
propose a short introduction to machine learning and give a brief overview of its different
applications in medical imaging. Starting with the well-known definition of Tom Mitchell,
we describe the key components of machine learning and the different tasks of supervised,
semi-supervised and unsupervised learning. Then we present a few examples of medical
applications such as computer aided diagnosis, organ localization, segmentation, regis-
tration, tracking, medical image categorization and retrieval. Afterward, we discuss the
challenges of applying machine learning to medical imaging problems, e.g. the difficulties
of collecting medical data and building a reliable ground truth. Finally, we conclude this
chapter by presenting our contributions in the present thesis.

Chapter 2: Random Forests This second chapter constitutes the methodic core of
the thesis. Here, we start by defining the decision tree model as a partitioning approach.
Aiming at subdividing observations, each tree can be seen as a directed acyclic graph,
where each node consists of a splitting function and a posterior model. We detail how to
train a tree following a greedy optimization strategy: at each node, several splitting func-
tion candidates are generated and the best is chosen according to a task-specific objective
function. Finally, a posterior model can be learned from the training data at each leaf
of the tree in order to make predictions about new incoming observations. To improve
the generalization of single decision trees and overcome their limitations, Random Forests
have been introduced as ensemble of independent trees [11]. Two classical strategies for
creating independent trees are detailed in this chapter: (1) by using bootstrap aggregat-
ing (“bagging”) or (2), by injecting randomness in the node optimization. The prediction
of a random forest can then be computed by simply averaging the contributions of each
individual tree. Afterward, we show that random forests can be instantiated for classifi-
cation, regression and clustering tasks, by designing appropriate objective functions and
posterior models. Additionally, we propose to illustrate this chapter by providing a few
intuitions on their behaviour using numerous toy examples.

Chapter 3: Related Ensemble Partitioning Approach: Random Ferns In this
third chapter, we present a forest-related approach which is based on the similar principle
of ensemble partitioning, namely the Random Ferns, which are often presented as en-
semble of constrained trees [71]. We demonstrate in this thesis that in contrast to trees,
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they are not hierarchical but can be interpreted as an intersection of decision stumps.
Similarly, they can be easily adapted for different tasks such as classification, regression
and clustering. Through several toy examples, we investigate the behaviour of Random
Ferns, and this, for classification and regression problems.

Chapter 4: Random Forests: Contributions in Medical Applications The
fourth chapter reports our contributions in medical imaging using forests-related tech-
niques. We demonstrate their great potential and introduce novel application-specific
models by: (1) using an appropriate problem formulation, (2) designing a task-specific
objective function and (3), defining an adapted posterior model. First, we present effi-
cient regression approaches based on random ferns and forests to estimate the position
and the size of multiple organs of interest in MR Dixon sequences [73]. Compared to
state-of-the-art atlas registration, our approaches show better localization accuracy for
an increased robustness. Second, we tackle the problem of multiple organ segmentation
and propose a new random forest model based on a joint classification-regression formu-
lation. Through exhaustive experimentations, we demonstrate that this joint formulation
yields better results than classification by learning spatial smoothness directly from the
data. Thereafter, we address the problem of detecting Substantia Nigra echogenicities in
3D transcranial ultrasound, which are related to Parkinson disease. To this end, we formu-
late a detection paradigm that mimicks human experts by using probabilistic modeling of
visual and spatial information based on random forests. To learn this spatial information,
we propose a novel parametrization based on two hemisphere-specific coordinate systems
that accounts for asymmetric changes of scales and orientation of the midbrain anatomy.
On a database of 3D-TCUS volumes from 22 subjects, our approach show very promising
results relatively close to the human inter-rater observability. Afterward, we report our
work on modality recognition based on the visual content of a medical image [75]. To
this end, we use a random ferns clustering approach to build efficiently a dictionary of
visual words. On a real database of medical images, we illustrate the advantages of our
approach in terms of speed and accuracy. Finally, we propose a novel approach that we
call STARS [76], which builds upon an ensemble of multi-decision stumps. We show how
to instantiate them for classification and clustering, and analyze their behaviour on a
few toy examples. In the same context of modality recognition, STARS are derived for
dictionary learning and achieve impressive results that are slightly better as hierarchical
K-means or random ferns clustering.



“You can make predictions about everything but the future”
Lao Tzu





CHAPTER

ONE

MACHINE LEARNING IN MEDICAL APPLICATIONS

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E”
Tom Mitchell.

1.1 An Illustrated Introduction to Machine Learning
Human being has always been a curious creature, constantly aiming at increasing his
knowledge about the world he lives in. In order to build new knowledge on a given topic
of interest, the first step is to collect a large amount of observations or realizations. To
illustrate our point, let us take the example of an entomologist, who wishes to study a
particular insect species, namely the ants. Before starting to build a generic anatomical
model, or to construct a categorization, an entomologist needs to go on the “field”, walk in
the nature and start collecting observations by taking pictures, capturing some specimens
or making drawings as shown on fig.1.1. Once a maximum of information from different
sources is available, our expert can start analyzing the observations, by extracting some
common characteristics or morphological features such as the size, the color, the weight,
the shape or the presence of wings. Then, by looking across all observations, perform-
ing comparisons based on their different characteristics or features, the entomolgist can
identify similar subgroups, categorize his specimens into different casts such as workers,
soldiers or queens, build a generic anatomical model for each of these classes, and make
predictions for new observed ants.

Towards achieving new knowledge, the typical process of learning consists thus of
following steps: (1) collecting a large amount of observations, (2) extracting relevant in-
formation, (3) designing a general model that best explains past and future observations.
In the case where the complexity of the object of interest is low and the observations are
consistent, this process seems scalable for a human being. However this becomes more
difficult if the object of interest is the realization of a complex phenomenon, possibly in-
fluenced by a lot of factors, and where a large amount of information is available. In this
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Figure 1.1: Observations: drawing of different ant specimens of the species Formica Rufa

context, a new field emerged a few decades ago to develop computer-based approaches
supporting humans in building new knowledge directly from observations: Machine Learn-
ing.

Considered as a branch of artificial intelligence, machine learning aims at designing
algorithms that are able to learn from past experience in order to make predictions about
the “future”, i.e. new observations. In his tentative definition, Tom Mitchell introduces 3
important components of a learning algorithm. First, the notion of “experience” can be
understood as the act or process of directly perceiving events or reality according to the
Merriam-Webster dictionary. In machine learning, the “experience” consists of all the
observations of a phenomenon and eventually their associated interpretation. Second, the
term “task” refers to the goal of the learning algorithm, e.g. making decisions, predictions
or adapting a behaviour facing new observations. Third, a “performance” measure needs
to be defined so that a learning system can assess and optimize its own learning ability
based on the desired outputs. Taking the example of the categorization of ant specimens,
the learning task could be defined as the classification of ants into different casts, based
on the experience consisting in a set of ant observations and their class labels. A
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performance measure could be for instance the ratio of prediction errors estimated
on new unseen ant observations. So finally, this definition gives a basis explaining the
inputs and the outputs of a learning algorithm and that it can measure and improve its
perfomance on its own. But one crucial term remains undefined: “learning”. “Learning”
refers to the process of understanding the observations and inferring a model able to
generalize from them. Once the learning phase finished, the system is able to perform
predictions about unseen data and to react by making decisions.

Machine learning is applied in many fields where: (1) an immense amount of infor-
mation from different sources or sensors is available, (2) there is only limited knowledge
on the topic, and (3), uncertainty has to be taken into account. Explaining complex
phenomena with an appropriate and realistic mathematical model can be a very difficult
task. To leverage this problem, machine learning approaches proposes to learn directly
from the data. Whether a learning system requires teaching from a human or not, it can
be classified into different classes of tasks: supervised, unsupervised and semi-supervised.

Figure 1.2: Different ant classes: here are depicted 4 different ant casts of the Formica Rufa species,
namely the “queen”, “princess”, “soldier” and “worker”

Supervised Learning: The goal of supervised learning is to design algorithms to teach
a system to make decisions or perform predictions based on observations. For instance,
let us consider the problem of recognizing the cast of an ant based on its morphological
features. Given some specimens with their associated casts as shown on fig.1.2, the goal
is to find some discriminant characteristics to be able to classify new observed specimens
into one of the following classes: “Queen”, “Princess”, “Soldier” or “Worker”. As we are
learning from annotated examples or in other words, a training set, such a task is called
supervised learning. By looking at the overall size, the presence of wings, the size of the
mandibles and the presence of reproduction organs, we could easily design a system which
automatically assigns a new observation to one of the previously defined classes. Such a
supervised problem is called classification and the learning system as shown on fig.1.3
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Figure 1.3: Classifier: supervised learner which first learns from annotated observations, and then
permits to predict the class label of a new incoming specimen.

is then called classifier.

Figure 1.4: Ant aging: here are depicted several ants and their corresponding age

Now let us consider the case depicted in fig.1.4, where we would like to predict the age
of the observed specimens. We have exactly the same setup, i.e. we are given a training
set of ants with their corresponding age, and we want to design a prediction system based
on morphological characteristics. The desired output being a continuous variable, such a
problem is a supervised problem called regression.

Figure 1.5: Regressor: supervised learner which first learns from annotated observations, and then
permits to predict the age of a new incoming specimen.

To summarize, supervised learning consists of two types of tasks, namely classification
and regression, in which a (human) teacher provides a training set of both observations
and corresponding outputs to the learning system. Formally, let us denote by X ∈ X
a multi-dimensional observation vector containing for instance all morphological charac-
teristics of an ant, where X ⊂ RD is called input feature space. To each observation
X ∈ X , an output Y ∈ Y is associated, where Y ⊂ RD′ is the (multi-dimensional) output
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space. Depending on the type of output, we can distinguish between the two supervised
learning tasks classification and regression: in classification, Y is a one-dimensional value
from a finite set of discrete labels, and in regression, Y consists of one or more continuous
values. Given a training set

{
X(n),Y(n)

}N
n=1

, which embodies what Tom Mitchell calls
experience and consists of N past observations and their corresponding outputs, the goal
of a learning algorithm is to find a prediction function Ψ(X) = Y, or in a probabilistic
fashion, to model the conditional distribution P (Y|X) or the joint distribution P (X,Y).
During a training phase, the parameters of the function or distribution model are opti-
mized using the training set according to a predefined performance measure or objective
function. Afterward, the trained system can be used to perform predictions for a new
unseen observation X, e.g. using Ŷ = Ψ(X) or Ŷ = argmaxY∈Y P (Y|X).

Unsupervised Learning: In unsupervised learning problems, there are no output as-
sociated to the observations. The goal may be then to: (1) discover similar groups in
the feature space X , known as clustering task, or (2) to estimate the distribution of the
observations in X called density estimation [9]. So if we consider again our entomology
example, now we are given only a few ant specimens, and we aim at discovering simi-
lar groups based on a few characteristics. Considering a set of observations

{
X(n)

}N
n=1

,
while the goal of density estimation is to model the distribution P (X), clustering aims
at identifying a set of clusters K = {Kk}Kk=1 which represent (non-overlapping) subsets
of consistent observations within X . Here, the training can be done by optimizing an
objective function especially designed in the input feature space X . As illustrated by
fig.1.6, the choice of morphological features is crucial for unsupervised tasks as they can
yield very different results.

Semi-supervised Learning: In some cases, outputs are known only for a few obser-
vations. If we denote by

{
X(n),Y(n)

}N
n=1

the subset having a corresponding output and{
X′(m)

}M
m=1

the remaining observations, the goal here is to learn the function Ψ or esti-
mate the distributions P (Y|X) by making use of both data sets. This task can be solved
for instance by optimizing a joint objective function consisting of a supervised term using{
X(n),Y(n)

}N
n=1

, and an unsupervised term based on the remaining
{
X′(m)

}M
m=1

.

After this brief introduction, we will discuss in the next section the challenges of
applying machine learning in the field of medical imaging.
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Figure 1.6: Clustering: unsupervised learning that aims at discovering subgroups within the set of
ant specimens.

1.2 Applying Machine Learning to Medical Applica-
tions

Machine learning found applications in many fields such as genetics, natual language pro-
cessing, search engines, computer vision, computational finance or stock market analysis.
In the case of medical applications, the interest for learning-based methods seems more
recent. Nevertheless, this trend is increasing, and more works containing machine learning
as keyword are published each year. Moreover medical imaging conferences such as MIC-
CAI started to dedicate sessions and workshops to learning-based approaches in medical
imaging.

This “late” gain of interest could be explained by the fact that applying machine
learning to medical imaging is very challenging, and this for several reasons. First, as
“objects” of interest are human patients, risk must be minimized and methods that are
actually transferred into the clinical routine requires to be well understood, highly reliable
and robust. Suffering from their reputation of being black-box machines, learning-based
approaches needs to be demystified and thoroughly studied to achieve higher acceptance
in the medical context. Second, compared to computer vision, medical images are highly
multi-dimensional (3D or more, several channels), they are multi-modal i.e. acquired with
very different imaging systems, they have very different resolutions and can suffer from low
signal to noise ratio. Hence, learning methods needs to be scalable to high-dimensional
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problems and robust to noisy or ambiguous information. Third, such approaches require
a lot of training data to avoid overfitting and gain enough generalization. Compared
to the time needed for taking a picture with a digital camera and making it publicly
available on the internet, acquiring medical images is a very long process. Moreover,
since subjects are real patients, data needs to be anonymized and has to remain often
within the scope of joint projects with hospitals. Consequently, making medical images
publicly available for the community is very difficult, and building huge training sets
or benchmark databases is very challenging. Fourth, most of the learning-based tasks
in medical imaging need to be supervised, i.e. data needs to be manually annotated.
Building a reliable ground truth or in other words (human) gold standard is often a very
tedious task which requires three key resources: (i) a set of medical experts, (ii) a user-
friendly and efficient annotation tool, and (iii) a lot of time. Having more than only one
expert is crucial to reduce the impact of inter- and intra-observer variability. Indeed, in
modalities that need high interpretation skills such as ultrasound, annotation results may
vary dramatically depending on the experience of the expert and on the time spent in the
annotation task. In fact, due to a “learning” effect, the same observer can provide very
different annotations of the same data, depending if it is seen at the beginning or at the
end of the labelling process. Hence, to improve the quality of the gold standard, multiple
annotations needs to be collected for each data and then merged. As illustrated by fig.1.7,
another solution would be to put the human expert and the learning algorithm in the
same loop, and to iteratively alternate between machine labelling and human correcting
phases until both converge to a ground truth. Nevertheless real breakthroughs can be
achieved in medical imaging by proposing approaches that requires only a little or no
supervision at all. In the next section, we present a few applications of machine learning
in the field of medical imaging such as computer aided diagnosis, detection/segmentation,
registration/tracking and image categorization/retrieval.
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Figure 1.7: Human-Machine Iterative Labeling: iteratively alternate between machine labeling
and human correcting phases until both converge to a ground truth

1.3 Learning-based Approaches in Medical Applica-
tions

In the medical field, knowledge mainly builds upon the experience or the amount of
evidences accumulated by medical experts in the hospitals all over the world. The human
body is a very complex machinery, that consists of many components, and which can be
influenced by many factors. Hence, modeling its different functions or disfunctions is a
very difficult task. With its ability of generalizing from past observations and to perform
predictions, machine learning seems to offer the perfect tools to integrate the experience
and knowledge of medical experts into medical imaging applications.

The last decade witnessed an increasing interest for learning-based approaches to solve
different tasks in the medical field. For instance, computer aided diagnosis aims at sup-
porting experts decisions based on different information sources such as imaging data,
symptoms and patient information. In medical image analysis, numerous learning-based
approaches permit to automatically detect and segment anatomical structures or diseases
in any type of images. Recently, many content-based retrieval techniques have been in-
troduced to provide new access to the information contained in medical databases. This
permits to support diagnosis or therapy decisions by retrieving similar cases that have
been encountered in the past, or to easily access information from multiple sources for
research and teaching. Furthermore, for multi-modal image registration or tracking of
medical tools, improvements in robustness and accuracy have been achieved by learning
application-specific similarity measures directly from the data.

In the following, we will give a few examples of learning-based approaches in these key
medical applications.
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1.3.1 Computer Aided Diagnosis
According to the Merriam-Webster dictionary, the definition of diagnosis is the art or act
of identifying a disease from its signs and symptoms. Nowadays, many imaging systems
are available to investigate the different “signs” or symptoms and provide additional in-
formation. However, medical images may be very difficult to interpret as they sometimes
provide a low signal to noise ratio. Diagnosis becomes then an art or act of interpreta-
tion, that is subjective and highly depends on the experience level of the observer and
the time allowed for the investigation. The role of computer aided diagnosis is to support
medical experts bridging the gap between subjective interpretation of patient data and
objective identification of diseases. Trained using past experience of multiple experts, a
learning-based diagnosis system permits to improve the objectivity and thereby the relia-
bility of the diagnosis, reducing inter- and intra-observer variability. Obviously, increasing
the reliability of diagnosis is crucial for the screening of invasive and lethal diseases such
as cancer, where early diagnosis is primordial for reducing mortality rate.

Figure 1.8: Computer Aided Diagnosis: classical learning-based approaches rely on two phases: first
the detection or segmentation of possible lesions, and then the classification into benign or malignant

Since medical imaging became digital, machine learning can play a crucial role to
support early diagnosis of cancer. The last decade, a lot of learning-based techniques
have emerged, most of them based on a two-phases framework as illustrated by fig.1.8:
(1) detection and/or segmentation of abnormalities, and (2) classification of the detected
abnormality into benign or malignant. Both phases can be casted as a supervised clas-
sification task, first providing semantic information by classifying each pixel/voxel as
belonging to a suspicious lesion or not, and second permitting to further analyze or quan-
tify the detected/segmented abnormalities and to finally classify them as dangerous or
not. Classification being a supervised learning task, it requires a training set consisting of
training images where cancer lesions have been manually labelled and identified as benign
or malignant. A typical classification scheme consists of three components: (1) feature
extraction, (2) feature selection or dimensionality reduction, and (3) classifier. In the first
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component, relevant and discriminative information is extracted from the raw images. For
instance, to characterize pixel context in medical images, features are computed to encode
visual and textural information. Second, feature selection or dimensonality reduction aims
at providing a more compact and hopefully discriminative feature representation. Third,
a classifier has the role of assigning to each pixel a label “suspicious” or not. Let us give a
few examples of learning-based approaches aiming at supporting early diagnosis of lethal
diseases such as cancer or atherosclerosis.

As investigated in [83], many works have been focussing on breast cancer which is the
most invasive and the first cause of cancer-related death for women. In [87, 16, 69], authors
propose automated methods for detecting suspicious masses and micro-calcifications in
mammograms. In [108, 96], alternative approaches proposed to use Dynamic contrast
enhanced Magnetic Resonance (MR) images for cancer screening. Following a classical
workflow, tumors are first delineated in the MR images and then classified as benign
or malignant. Similarly, early diagnosis of lung cancer has motivated much research
towards automatic detection of glass nodules in computer tomogram (CT) lung images
[97, 111, 27]. As these types of nodules have been reported to have a higher probability
of becoming malignant, it is crucial to detect them reliably. Proposed approaches aims
at first segmenting tumor candidates in the CT images and then classify them as benign
or malignant based on some volumetric and textural features. Recently, to improve the
quality of prostate cancer diagnosis, learning-based approaches have been explored in
[59, 98, 2] using different imaging modalities such as MR, spectrocopy or histopathological
images. Again, the goal is first to detect cancerous lesions and second to classify them into
different tumor grades. In the field of dermatology, the quality of skin cancer screening
highly depends on the experience of the dermatologist. Based on optical images [86] or
spectroscopy, learning techniques are also gaining interest for the automatic classification
of skin moles into benign or malignant and to distinguish between the different types of
skin cancer. Since changes in colors, shape or texture are typical from skin cancer, the
mole is first segmented and characterized by extracting color, textural and shape features.
Then, a classifier trained on an annotated database of optical images permits to decide
whether the mole is dangerous or not.

To prevent heart attacks and monitor the evolution of atherosclerosis in coronary arter-
ies, the most commonly used investigation technique is intravascular ultrasound (IVUS).
IVUS permits to acquire high-resolution images of the inner wall of coronary arteries, by
using a rotating ultrasound probe which is inserted through a catheter into the femoral
artery. Based on RF data or the ultrasound images, many learning methods have been
proposed [107, 95, 94] to assess the composition of atherosclerotic lesions within the artery
walls. Using visual and textural features, each pixel can be classified into one of the typ-
ical classes of tissues such as lipid or fibrous composing such plaque. Finally, based on
the assessment of the composition and the morphology of atherosclerotic plaque, the risk
of rupture and thereby of heart attack can be evaluated.
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1.3.2 Multiple Organ Localization and Segmentation
Medical image analysis aims at first, understanding the semantic content of medical im-
ages, and second, extracting and quantifying relevant information for diagnosis or research.
Automatic localization of anatomical structures and organ segmentation are typical
problems that can be tackled using learning-based approaches. As illustrated by fig.1.9,
while the localization task can be defined as automatically finding the position, the size
and optionally the main orientation of an organ, the segmentation task aims at delineating
the boundary of an organ by for instance assigning a label to all its voxels.

Localizing automatically multiple anatomical structures permits to augment the con-
tent of raw medical images by providing additional semantic information. While it could
be considered as a preprocessing step for further organ segmentation, diverse clinical
applications can benefit from such automatic annotation, such as semantic navigation or
content-based retrieval. By registering a new patient scan with an annotated “atlas” scan,
the position of all organ of interest can be easily inferred by transferring these annotations
to the new patient data. This approach, known as atlas-based registration, is considered
as state-of-the-art for multiple organ localization. However, for large field-of-view scans,
this task becomes very difficult due to high inter-patient variability.

Inspired by their success in computer vision, machine learning approaches were intro-
duced a few years ago for solving the task of anatomy detection. For instance, aiming
at localizing the heart chambers in 3D cardiac CT, a new learning-based method called
marginal space learning (MSL) was introduced by Zheng et al. in [109]. Using a detection
framework, authors propose to break down the complexity of exhaustive search in the full
3D similarity transformation space by using a cascade of three classifiers. Sequentially,
the first classifier identifies probable candidates for the 3D position of the organ of inter-
est, and the followings perform a refinment search in position-orientation and finally in
the full 3D pose. Recently, regression-based solutions emerged to tackle the problem of
organ localization. Exploiting the fact that first, strong prior knowledge is available on
human anatomy and second, image acquisition procedures are often standard procedures,
it can be expected that voxels, based on their contextual information, can predict the
surrounding anatomy. For instance, if a voxel neighborhood shows visual characteristics
that are typical of heart tissues, besides the position of the heart, this voxel can also
provide a confident estimate of the position of the nearby lungs. In this context, Zhou et
al. presented in [112] a regression approach for localizing the left ventricle in 2D cardiac
ultrasound images. There, a function is learned directly from annotated data to predict
the relative position, scale and orientation of the left ventricle.

Going from organ localization towards organ segmentation is far from being straight-
forward. Indeed, while a classification formulation seems to be a natural choice for assign-
ing an organ label to each pixel, it suffers from a lack of spatial consistency. To tackle this
problem with a learning based approach, several options are available: (i) pixel/voxel-wise
classification coupled with spatial regularization, (ii) regression providing organ location
as initialization followed by a classical segmentation approach, and (iii) a full regression
approach. In [110], authors proposed to go for a sequential approach extending their
concept of marginal space learning. To delineate organs in CT scans, they add to their
cascade of classifiers a last component which is based on a statistical shape model. While
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Figure 1.9: Multiple organ localization and segmentation: while localization consists in estimat-
ing the position, the size and optionally the orientation of the anatomy of interest, segmentation involves
a voxel-wise labeling

they have shown very impressive performance, building such a cascade of classifiers is a
computationally intensive learning procedure which requires large training sets.

1.3.3 Image Registration and Tracking

Image registration and tracking are key components in all image analysis or navigation
tasks. While image registration can be defined as the task of identifying the geometric
transformation that maps the coordinate system of one image to the other, tracking aims
at identifying the geometric transformation mapping the model of an object of interest
from a frame at timestep t to a frame at timestep t + 1. Due to the nature of medical
images, both image registration and tracking are very challenging. Indeed, medical images
can be multi-modal, i.e. they can be acquired with different imaging systems, and they
often show low signal to noise ratio.

To improve robustness of registration, learning approaches have been introduced to
learn data driven similarity measures. In [53], authors proposed a similarity learning
approach for the registration of 3D multi-modal images based on a classification scheme.
First, image patch pairs are characterized using local visual features and then they are
given to a classifier which decides if these patches are matching or not. Later in [13],
the similarity learning is again casted as a binary classification task using an elegant
embedding of the input data from two arbitrary feature spaces into the Hamming space.
Both approaches showed very promising results for the registration of CT and MR images.

To improve the robustness of tracking, learning approaches can also be used to detect
the tool of interest or learn data driven similarity measures. For instance, the tracking of a
deformable guide-wire in fluoroscopic sequences is a challenging task due to the low signal
to noise ratio of the images and the apparent complex motion of the object of interest.
A learning-based tracking approach by detection based on marginal space learning was
presented by Barbu et al. in [7]. Later, Wang et al. proposed in [104] the combination of
learning-based detectors and online appearance models.
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Figure 1.10: Medical content-based retrieval: hospital databases contain a capital of knowledge
that can be used for further diagnostics, research or teaching

1.3.4 Medical Image Categorization and Retrieval
During the last decade, major advances in medical imaging have permitted to bring new
imaging modalities into the hospitals. Each year, the amount of medical information
produced by an hospital never ceases to grow. As illustrated by fig.1.10, this experience
accumulated over the years embodies a precious capital of knowledge that can be used for
further diagnostics, research or teaching [65]. While a part of this knowledge resides in the
medical reports in form of text, rich additional information is contained in the attached
digital images produced by different imaging systems. For this reason, alternatives to
current text-retrieval methods should be developed, such that research, teaching or even
computer aided diagnosis can benefit from the full information contained in the images.
Indeed, by retrieving images that show a very similar content as a case of interest, one
could also profit from all information attached to these images, such as the diagnosis from
different experts, the employed therapies or the different therapy outcomes.

Let us take the example of endomicroscopy. Recently, to assess the risk of gastroin-
testinal cancer, a new technology has been introduced known as probe-based confocal
laser endomicroscopy. With this new imaging system, non-invasive “optical biopsies” can
be performed to investigate the nature of the tissues. As endoscopists typically rely on
similarity-based reasoning to establish a diagnosis, André et al. [3, 4, 5] explored sev-
eral content-based retrieval approaches to support diagnosis. By retrieving very similar
endoscopic videos which were labelled as benign or malignant, they demonstrate state-of-
the-art performance for automated diagnosis.
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1.4 Our Contributions in this Thesis

To conclude this introduction, the different contributions of this thesis are theoretical
as well as application-oriented. Along the methodical chapters 2,3 and the application
chapter 4, our theoretical contributions are: (i) to define the random forest framework
and related techniques using a partition formalism, (ii) to propose a novel interpretation
of random ferns as an intersection of decision stumps instead of the classical definition as
constrained tree, and (iii) to introduce a novel ensemble approach we call STARS, that can
be seen as an ensemble of multi-decision stumps. By using the partition formalism along
this thesis, we can clearly define, compare each approach and analyze their behaviour
using numerous toy examples. Thereby, we can hopefully convince the reader that these
ensemble techniques are fully transparent models with a well understood behaviour.

As detailed in chapter 4, our contributions in the context of medical applications are:
(i) to tackle different medical imaging problems such as organ localization, segmentation,
lesion detection and image categorization, and (ii) to design for each application novel
and task-specific forest-related approaches. First, we propose to address the problem of
multiple organ localization using regression forests and ferns for whole-body MR, building
upon the work of Criminisi et al. in [21]. We show that forest-related techniques achieve
better performance than atlas registration, and this, while being scalable to multiple or-
gans. Moreover, we demonstrate that our novel regression ferns strategy benefits from a
very fast training and testing by taking advantage from extreme randomization and the
compact fern structure. Beyond organ localization, we introduce a new type of random
forest for multiple organ segmentation. Using a joint classification-regression formula-
tion, each voxel is associated to an organ class label as well as its distances to all organ
boundaries. By solving this joint objective, the structured output forest learns implicitely
spatial regularization directly from the data and provides thereby improved single voxels
predictions.

In the context of early diagnosis of Parkinson disease, we contribute to the develop-
ment of learning-based tools for the support of computer aided diagnosis. Indeed, we
introduce a novel paradigm to detect Parkinson-related lesions within the midbrain using
3D transcranial ultrasound. Mimicking human experts, two forest models are designed
to capture visual as well as spatial information, the latest being encoded using a novel
parametrization that accounts for asymmetric changes of scales and orientation of the
midbrain anatomy. On a database of 3D-TCUS volumes from 22 subjects, our approach
shows very promising results relatively close to the human inter-rater observability.

In the context of content-based retrieval in medical databases, we address the problem
of recognizing the modality of an image based on its visual content only to enable improved
image retrieval. To this end, we propose very efficient approaches based on random ferns
and STARS clustering to build a dictionary of visual words. Experiments conducted on
CT, MR, PET, US and X-ray images taken from the ImageCLEF 2010 database show that
our approach is a fast alternative to K-means clustering which provides better performance
in terms of accuracy and speed.

Besides our main contributions related to random forests, we also report in the ap-
pendix A the novel strategies we proposed for the learning of application-specific similarity
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1.4 Our Contributions in this Thesis

measures in the field of multi-modal registration and tracking. First, we introduced an
elegant regression approach based on support vector regression to learn a multi-modal
similarity measure. As statistics relating the intensities of two multi-modal images are
intuitively constrained by the object of interest and the imaging modalities, we learn a
mapping from the subspace described by joint intensity distributions to the target regis-
tration error. This yields increased accuracy and robustness compared to classical mutual
information on multi-channel MR and SPECT images. In the context of deformable guide-
wire tracking, we demonstrate that the robustness of tracking can be also improved by
learning a data term directly from fluoroscopic images. Therefore, we adapt our regression
framework for tracking, and learn the relationship between features extracted from the
original image and the tracking error. To reduce the intrisic dimensionality of this feature
space, we first learn a guide-wire motion distribution model. Random samples can then
be generated from this distribution, and we can build a training set by computing the
visual features and tracking errors corresponding to these deformations. The data term
is then learned from this training set using support vector regression. The resulting data
term is integrated into a tracking framework based on a second-order MAP-MRF formu-
lation. Experiments conducted on two fluoroscopic sequences show that our approach is
a promising alternative for deformable tracking of guide-wires.
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CHAPTER

TWO

RANDOM FORESTS

“L’arbre c’est la puissance qui lentement épouse le ciel.”
Antoine de Saint-Exupéry

This chapter constitutes the methodic pillar of the thesis, in which we define the
decision tree and random forest models. We propose to formalize decision trees as a
partitioning approach, as they efficiently subdivide the feature space and model locally
the posterior distribution within their leaves. We then discuss how to define task-specific
objective functions to optimize their nodes and how to choose appropriate models for
the leaf posteriors. Besides all their advantages such as fast learning and prediction, or
scalability to large training sets, decision trees have some limitations and tend to suffer
from overfitting. To reach an increased generalization, they can be used in an ensemble
fashion to constitute a so-called random forest. We will show how to create such ensembles
of independent trees by injecting randomness during the training phase. Finally, we
discuss how to derive random forests for different learning tasks such as classification,
regression and clustering.
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Chapter 2: Random Forests

2.1 Mathematical Notations
◦ X : input feature space, where X ⊂ RD

◦ Y : output space, where Y ⊂ RD′

◦ B: Boolean set, B = {0, 1}
◦ X: feature vector containing one observation instance, with X ∈ X
◦ Y: output vector containing one prediction instance, with Y ∈ Y
◦ F: decision tree, directed acyclic graph of binary decisions, F = {N,E}
◦ N: set of node, each node Nl encoding a decision function fl
◦ E: set of directed edges, where each edge represents a directed link between two nodes
◦ f : decision function, defined as f : X → B
◦ Γ: set of decision function candidates
◦ v: linear projection, defined as v : X → R
◦ τ : threshold, defined as τ ∈ R
◦ P : partition of the feature space X , ensemble of Z cells P = ⋃Z

z=1 C(z)

◦ C: cell of a partition
◦ F : random forest, ensemble of T decision trees F = {Ft}Tt=1
◦ C: set of cells from the different partitions of a forest, C =

{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
◦ K: set of K clusters K = {Kk}Kk=1
◦ ∆: objective function
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2.2 Decision Trees and Random Forests Models

2.2 Decision Trees and Random Forests Models

Aiming at building knowledge from a set of observations, decision trees incarnate a simple
tool based on following strategy: partition observations by using a set of simple deci-
sions in a hierarchical fashion. Considering our introductory example of ant specimens,
a tree can be easily designed to partition the different observations into 4 casts. As il-
lustrated by fig.2.1, this can be achieved by using only 3 different decisions performed on
morphological characteristics which are: (1) does the specimen have reproduction organs,
(2) does it possess oversized mandibles, and (3) does it have wings. After applying the
first decision on all observations, the specimens corresponding to a negative or positive
answer are sent respectively to the left or right branch of the tree. Then, while on the left
the decision (2) permits to split the specimens into two groups that can be indentified as
“Workers” and “Soldier”, on the right, the decision (3) subdivides observations into the
casts “Queen” and “Princess”.

In a nutshell, decision trees are hierarchical learners consisting of an ensemble of
simple (binary) decisions. Back in 1984, Breiman et al. formalized in [12] the tree model
for classification and regression tasks. Afterward, decision trees became very popular and
were widely used in numerous machine learning applications. One reason for their success
may be that they benefit from many advantages: they are very intuitive, they are fast
and scalable to very large datasets, and they can be formulated in a probabilistic fashion
to take uncertainty into account. Over the years, many learning algorithms have been
proposed and the most popular is probably the C4.5 of Quinlan [82]. However, learning an
optimal decision tree is known to be NP-complete, and it can yield over complex models
which are not able to generalize well e.g. that suffer from overfitting on the training set.

Inspired by the emergence of ensemble learning, Ho proposed in [41, 42] to construct
an ensemble of “weak” decision trees, namely random forests, instead of aiming at opti-
mizing a single complex tree. In these works, authors propose to inject randomization in
the learning process in order to create decorrelated trees. By averaging their predictions,
authors demonstrate that random forests achieve greater generalization and thereby supe-
rior accuracy. In [11], Breiman proposes an alternative approach for injecting randomness
in the learning phase. Known as “bagging”, for bootstrap aggregating, this technique con-
sists of training each independent tree with a random subset of the training set.

Since then, random forests have been successfully used in many applications, mostly
formulated as classification tasks. However, they can also be applied to solve regres-
sion, clustering, density estimation, semi-supervised learning or manifold learning tasks
as demonstrated in [20]. In the present thesis, we will show how to use random forests in
different medical applications formulated as classification, regression or clustering tasks.

In the following, we start by defining the decision tree as a directed acyclic graph, and
to formalize it as a partitioning approach. Afterward, we detail the node/leaf models and
show different example of splitting functions. Finally, we discuss how independent trees
can be combined together into a strong learner called random forest.
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Chapter 2: Random Forests

Figure 2.1: Decision tree: its goal is to partition observations by using simple decisions in a hierarchical
fashion

2.2.1 Decision Tree
Considering an input feature space X ⊂ RD and an output space Y ⊂ RD′ , our goal is to
learn a model which is able to perform predictions in Y given an observation in X . In a
probabilistic framework, we can formulate this task as a maximum a posteriori problem:

Ŷ = argmaxY∈Y P (Y|X) (2.1)

Given a training set {X(n),Y(n)}Nn=1 ∈ X × Y , we aim at learning the posterior P (Y|X).
Finding a suitable model for this posterior and learning it over the full feature space X
is a very difficult task. To leverage this problem, a decision tree follows a “divide” and
“conquer” strategy: (1) it creates a partition over the input feature space using a set
of decisions, and (2) it estimates P (Y|X) in each “cell” of this space.

2.2.1.1 Tree Model

Decision trees are based on the following idea: perform predictions using a sequence
of simple decisions. In fact, a decision tree model consists of an ensemble of (binary)
decisions organized in a hierarchical fashion. First of all, let us analyse briefly what
the term “hierarchical” means and what it implies. Referring to the common sense, a
hierarchy is an ordered structure. Hence, a decision tree F can be formally defined as a
directed acyclic graph, composed of a set of nodes N and a set of directed edges
E. Each node encodes a (binary) decision, and is connected by a directed edge to at
most one parent node from the superior level and at least two children nodes from the
lower level. “Directed” implies that: (1) the tree can be traversed only using a descending
path, i.e. the parent-to-children direction, and (2) that nodes from different levels are
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2.2 Decision Trees and Random Forests Models

Figure 2.2: Decision tree: a decision tree is a directed acyclic graph, where each node is equipped
with a decision function

not intervertible. “Acyclic” means that there is no cycles within a tree model. While
the node at the top of a tree is called root, nodes at the bottom are called leaves. An
observation can traverse the tree downward, following a unique path which is determined
by decisions taken at each traversed node, until it reaches a leaf as illustrated on fig.2.2.
During the learning phase, the data that reached a given leaf is used to model the posterior
distribution “locally”. During the test phase, these posterior distributions permit to make
predictions about new unseen observations reaching a given leaf. Note that in the present
thesis, we will focus mostly on binary decision trees.

2.2.1.2 “Divide”: the Node Model

To perform a binary decision, a node Nl from the set N of a tree is equipped with a
so-called splitting function fl whose role is to split incoming observations denoted by Sl
into two subsets S leftl and Srightl . These two subsets are disjoints, i.e. Sl = S leftl ∪ Srightl

and S leftl ∩ Srightl = ∅, and they are sent respectively to the left and the right child of Nl.
The splitting function fl is defined as follows:

fl : X → B
fl(X) = 0, X is sent to the left
fl(X) = 1, X is sent to the right

(2.2)

As reported in [20], there are many possibilities for the class of decision functions.
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Figure 2.3: Classes of splitting function: the mostly used splitting functions are linear projections
followed by a thresholding operation

However, the most common choice is the class of linear projection coupled with a threshold
operation:

fl(X) = (X · vl ≥ τl) (2.3)

where dim(vl) = dim(X ) and τl ∈ R. If vl has only non-zero entries, then the splitting
function is a hyperplane which takes into account all input features as illustrated by fig.2.3
on the right. However, if vl is sparse, fl performs splitting using only a subset of features.
In the extreme case where vl has only one non-zero component, then splitting is performed
only based on one feature i.e. along one dimension of X as shown on fig.2.3 on the left.
More complex decision functions such as non-linear can be also used, however the tree
philosophy encourages the choice of simple functions which can be efficiently computed
and optimized.

Tree learning and node optimization: As shown by the pseudo-code in alg.1, tree
learning can be basically defined as an iterative node optimization and splitting. Indeed,
at a given node, first a good splitting function has to be chosen and then the training
data is split and sent towards the left and the right child. Depending on the chosen class
of functions, several parameters need to be determined. In the case of linear projections
coupled with simple thresholding, the degree of freedom is D+ 1 = dim(X ) + 1. To avoid
a complex optimization procedure in a high-dimensional search space, node optimization
follows a greedy strategy. If we consider the node Nl, a set of NTry candidates functions
Γl =

{
f

(i)
l

}NTry
i=1

is generated and evaluated given the incoming training points Sl and a
predefined objective function ∆. The best candidate is then the function which maximizes
∆:

f ∗l = argmaxfl∈Γl
∆(Sl,S leftl ,Srightl ) (2.4)

During the training phase, decision functions at each node are optimized to iteratively
split the training until a stopping criteria has been reached.
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2.2 Decision Trees and Random Forests Models

Algorithm 1: Tree Training: Pseudocode example
1: \\\\\\\\\\\\\\\\\\\\\\\\\\ Main function \\\\\\\\\\\\\\\\\\\\\\\\\\
2: Training set: S =

{
X(n),Y(n)

}
, n ∈ {1, · · · , N}

3: Tree object: F
4: Parameters: MaxDepth, MinPopPerLeaf, NTry
5: \\perform iterative splitting, starting with the root node
6: depth = 0;
7: splitNode(F.N0, S, depth, MaxDepth, MinPopPerLeaf, NTry);
8: Output: trained tree F
9:
10: \\\\\\\\\\\\\\\\\\\\\\\\\\ Iterative splitting \\\\\\\\\\\\\\\\\\\\\\\\\\
11: function splitNode(Nl, Sl, depth, MaxDepth, MinPopPerLeaf, NTry)
12: \\Model posterior and initialize node as leaf
13: Nl.Posterior← estimatePosteriorDistribution(Sl);
14: Nl.isLeaf = TRUE
15: \\If max depth is not reached, try to split
16: if depth < MaxDepth then
17: \\loop over the split candidates
18: ∆best = 0;
19: for (int i = 1, i ≤ NTry, i+ +) do
20: fl ← generateSplittingFunctionCandidate;
21: \\split the data
22:

(
S leftl ,Srightl

)
← applySplittingFunction(Sl, fl);

23: \\If enough points left and right, evaluate the split quality
24: if

(
|S leftl | ≥ MinPopPerLeaf & |Srightl | ≥ MinPopPerLeaf

)
then

25: ∆ = computeObjectiveFunction(Sl,S leftl ,Srightl );
26: if (∆ > ∆best) then
27: Nl.splitFunc = fl;
28: ∆best = ∆;
29: S leftbest = S leftl ;
30: Srightbest = Srightl ;
31: end if
32: end if
33: end for
34: \\Check whether we found a good split and iterate splitting if yes
35: if ∆ > 0 then
36: Nl.isLeaf = FALSE
37: depth = depth + 1;
38: splitNode(Nl.leftChild, S leftbest, depth, MaxDepth, MinPopPerLeaf, NTry);
39: splitNode(Nl.rightChild, Srightbest , depth, MaxDepth, MinPopPerLeaf, NTry);
40: else
41: return;
42: end if
43: end if
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Chapter 2: Random Forests

Figure 2.4: Partitioning approach: a decision tree creates a partition of the feature space, and each
leaf corresponds to a “cell” of this space

2.2.1.3 “Conquer”: the Leaf Model and the Partition Formalism

Once the bottom of the tree has been reached, iterative splitting of the training data
stops and the current node becomes a leaf node. Three common stopping criteria can
be defined: (1) maximal tree depth, (2) minimum population per leaf, and (3) minimum
variation of the objective function ∆. The first criterion considers just the depth of the
hierarchy, and once a certain depth has been reached, then the iterative splitting stops.
The second criterion is based on the number of training instances arriving in a node, and
if the population of training points is below a certain threshold, the splitting stops. The
last criterion concerns the objective function which is optimized. If its variation is below
a certain threshold, then it is considered that there is no additional information gained
after splitting the training instances.

While the role of “internal” nodes is to split and send observations downward the tree,
the role of the leaves is to model the posterior distribution given a subset of the training
set. As these decisions are taken in the input feature space, all training points arriving
in a leaf are consistent in X . Hence, each leaf corresponds to a part or “cell” of the
feature space as illustrated by fig.2.4, and the ensemble of leaves of a decision tree builds
a partition P over X . In the remaining of this thesis, we will consider the terms “leaf”
and “cell” as synonyms. Let us define this partition as an ensemble of cells P = ⋃Z

z=1 C(z),
where each C(z) corresponds to a leaf of the decision tree. Note that the C(z) cover the
full feature space X and have no overlap. Moreover, we emphasize again the fact that
trees are directed acyclic graphs, and that interverting nodes would results in a totally
different partition of X . Furthermore, per construction, all cells are populated during the
training, and posterior distributions can be modelled in each cell as:

P (Y|X ∈ C(z),P) (2.5)

i.e. by using the subset of the training set that reaches the leaf/cell C(z). If the partition
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2.2 Decision Trees and Random Forests Models

P counts only a few number of cells, then these posteriors might suffer from high uncer-
tainty. On the other side, if their number is very high, each cell will include only a few
training points, leading then to overfitting.

Tree prediction: Once a decision tree has been trained, prediction for a new unseen
observation X can be easily performed as detailed in the pseudo-code in alg.2. Depending
on the results of the different decision functions, X is sent downward the tree, following
a path which is unique and leads to a leaf C(z). Hence, at test time, a tree F can be seen
as a surjective function taking as input an observation and returning a cell:{

F : X → {C(1), · · · , C(z), · · · , C(Z)}
F(X) = C(z) (2.6)

The posterior model stored in this leaf permits to perform a prediction by using for
instance a maximum a posteriori:

Ŷ = argmaxY P (Y|X ∈ C(z),P) (2.7)

Algorithm 2: Tree Prediction: Pseudocode example
1: Observation: X
2: Tree object: F
3: leafReached = FALSE;
4: currentNode = F.N0
5: while (leafReached == FALSE) do
6: \\perform binary decision
7: val = currentNode.splitFunc(X)
8: \\depending on the results, go to left or right child
9: if (val == 1) then
10: currentNode = currentNode.rightChild
11: else
12: currentNode = currentNode.leftChild
13: end if
14: \\check whether the observation reached a leaf
15: if (currentNode.isLeaf == TRUE) then
16: leafReached == TRUE
17: Posterior = currentNode.Posterior
18: end if
19: end while
20: Output: Posterior

To conclude this section, decision trees can approximate any arbitrary function if
enough training data is available. On one side, decision trees can be considered as non-
parametric models since their size depends on the amount of training data. On the
other side, a parametric model is learned from the data in each cell. As discussed in
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the introduction of this chapter, training an optimal tree is a NP-complete problem, and
decision trees are prone to overfitting. Inspired by the trend of ensemble learning, we
will show in the next section how to replace a single decision tree by an ensemble of
decorrelated trees to achieve greater generalization.
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2.2.2 Random Forests
A random forest F is basically an ensemble of T independent decisions trees F =
{F1, · · · ,Ft, · · · ,FT}. As demonstrated by Breiman in [11], replacing a single tree by
an ensemble of decorrelated trees provides very good generalization. During the learning
phase, randomness can be injected to achieve independence between trees contructed from
the same training set. In the following section, we will explain several tree randomization
approaches.

2.2.2.1 Forest training and tree randomization

To build decorrelated or independent trees based on a unique training set, several ran-
domization approaches have been proposed. In [11], Breiman introduced the concept of
bagging which comes from the combination of the terms “bootstrap” and “aggregating”.
Given a training set S = {X(n),Y(n)}Nn=1, a bootstrap is basically a subset St of the full
training set, in which element has been randomly sampled using a uniform distribution,
and this, with or without replacement. As illustrated by fig.2.5, each tree Ft of the ensem-
ble is then trained using a different bootstrap St. Finally, predictions from all individual
trees are aggregated together using averaging.

Figure 2.5: Bagging e.g. “bootstrap aggregating”: each tree is trained on a different random
subset of the training set

As reported in [36], randomization can be also injected in the node optimization.
Indeed, as this phase relies on a greedy strategy, a set of splitting functions candidates
is generated and the best is then chosen according to a predefined objective function.
Obviously, randomness can be injected in the generation of function candidates. Let
us take the example of linear projections followed by a thresholding operation. First,
the projection vector v can be randomly drawn using any kind of distributions. This
encourage the trees to select different type of features and to weight them differently.
Furthermore, the choice of threshold τ can be also randomized instead of optimizing it or
taking the mean/median of the projected values.
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The impact of injecting randomness in the tree training has several advantages: first,
increasing the degree of randomness decreases the correlation between the different trees
and provide thereby greater generalization, second it enables implicit feature selection if
v is constrained to be sparse and third, it permits to gain independence from the training
set, i.e. to gain robustness to noisy data.

2.2.2.2 Forest Parameters

Random forests offer a very flexible framework with a lot of freedom for designing task-
specific objective functions, different classes of splitting functions or posterior models.
Moreover, they possess only a few hyperparameters which influence has been exhaustively
studied, as in [20], and is now well understood. The two most important degrees of
freedom are: (1) the number of trees and (2), the tree depth. As illustrated by
fig.2.6, increasing the number of trees permits to average out noisy predictions, and thus
corresponds in a monotonic decrease of the prediction error. The maximal allowed depth
of the tree is a crucial parameter that needs to be optimized as it directly impacts the
generalization ability of each tree. Indeed, while a short tree will not be very confident in
its prediction because its leaves still contains a lot of heterogenous data, a very deep tree
will have very few training data in its leaves to compute reliable statistics. Therefore,
the tree start to explain too well the training data, e.g. by fitting noisy features, and
will suffer from poor generalization. For this reason, the prediction error curve decreases
with the tree depth until it reaches a minimum and then increases again. This minimum
corresponds to the optimal tree depth, providing a good modeling of the observations and
a great generalization.

Figure 2.6: Forest parameters: Tree depth and number of trees are the two most important parame-
ters. While increasing the number of trees correspond to a decreasing in the prediction error, tree depth
needs to be carefully tuned as it controls the generalization ability of the forests.

2.2.2.3 Forests prediction

Let us consider a random forest of T trees F = {Ft}Tt=1, each tree Ft yielding a partition
Pt of the feature space X . As each individual tree can be seen as a surjective function
associating an observation X ∈ X to a cell C(zt)

t of partition Pt, the whole forest is a
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function which associates X to an ensemble of cells:

F(X) =
{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
(2.8)

If we consider that each Pt is equiprobable, the forest prediction can be simply computed
by averaging the tree posteriors:

P (Y|X) = 1
T

T∑
t=1

P (Y|X ∈ C(zt)
t ,Pt) (2.9)

Averaging is commonly used as it is a good compromise between giving more weight to the
most confident tree and reducing noisy contributions [20]. Nevertheless, other aggregation
approaches are possible. For instance, the contributions from each individual tree can be
ranked according to their confidence, and averaging can be performed by using only a
fraction of the most confident predictions. Another alternative would be to perform a
weighted averaging of all contributions according to their confidence.

In the following sections, we will detail how to instantiate random forests for classifi-
cation, regression and clustering tasks.
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2.3 Classification Forests

In computer vision or machine learning, random forests have been mainly applied for
classification tasks. Besides their advantage of having great generalization ability, be-
ing scalable to large datasets, and benefitting of fast training and predictions, they are
particularly well adapted to multi-class problems as they are inherently multi-class, and
provide probabilistic output. In the following section, we first start with a probabilistic
formulation of the multi-class classification task. We then explain how class posterior
distributions can be easily modelled in the leaves of each random tree. Afterward, we
detail the node optimization procedure and give several examples of objective functions.
Thereafter, we will discuss the different approaches for combining tree predictions, and
we will show how to handle cases where classes are unbalanced, i.e. where classes have
different cardinality in the training set. Finally, we will conclude the section with a few
classification toy examples.

2.3.1 Problem Statement

In a classification task, we consider an input feature space X ⊂ RD and an output space
Y ⊂ R which is a finite set of K discrete values Y = {y1, · · · , yk, · · · , yK} representing
the different classes. Our goal is to model the posterior probability distribution P (Y|X),
where X ∈ X and Y ∈ Y . Hence, given any unseen observation in X , we are able to
predict its label using the maximum a posteriori:

Ŷ = argmaxY∈Y P (Y|X) (2.10)

Given a training set {(X(n), Y (n))}Nn=1 ∈ X × Y , each tree of a forest F = {Ft}Tt=1
permits to build a partition Pt over the input feature space X . Considering the tree
model presented in the previous section, two components needs to be instantiated for the
classification task: (1) the leaf posterior and (2), the objective function.

2.3.2 Class Posteriors

Let us consider the partition Pt = {C(zt)
t }Zt

zt=1 built by the random tree Ft. As illustrated
by fig.2.7, class posteriors can be simply approximated in each cell C(zt)

t of Pt as follows:

P (yk|X ∈ C(zt)
t ,Pt) =

|
{
X(n) ∈ C(zt)

t , Y (n) = yk
}
|

|
{
X(n) ∈ C(zt)

t

}
|

(2.11)

During the training of the tree, the goal will be to split recursively the training data to
reduce the class uncertainty linked to these class posteriors, i.e. by creating leaves that
are class-consistent. We show in the next section how to define the objective function for
node optimization.
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class 1

class 2

class 3

Figure 2.7: Classification forest: each tree Ft builds a partition Pt over the feature space and class
posteriors can be easily approximated in each cell of Pt

2.3.3 Classification Objective Function
At each node Nl of the tree Ft, a splitting function fl permits to split the subset Sl of the
training set arriving in this node. As detailed in the previous section, the goal of node
optimization is to find the best splitting function according to a predefined objective
function. In classification tasks, several objective functions have been proposed that
mostly aim at reducing the class uncertainty. In the following, we will define the most
popular which is the Information Gain and a variant based on the Gini impurity.

Information gain measures the difference between the class uncertainty before and
after the splitting. A common measure of uncertainty is the so-called Shannon’s entropy
which is defined for discrete random variables as follows:

H(Sl) = −
K∑
k=1

P (yk|Sl) log (P (yk|Sl)) (2.12)

After splitting Sl into two subsets S leftl and Srightl that are respectively sent to the left
and right child nodes, the reduction of uncertainty can be measured using the information
gain ∆:

∆ = H(Sl)− wleftH(S leftl )− wrightH(Srightl ) (2.13)

where wleft = |Sl|/|S leftl | and wright = |Sl|/|Srightl |. Another variant to Shannon’s entropy
that can be used within the information gain is the Gini impurity defined as:

G(Sl) =
K∑
k=1

P (yk|Sl)(1− P (yk|Sl)) (2.14)

As shown on fig.2.8, both Shannon’s entropy and Gini impurity have a similar behaviour
and reach their maximum when the class posterior is uniform i.e. when P (yk|Sl) = 1

K
.

Therefore, one can expect similar results by using one of these two functions. There
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Figure 2.8: Classification objective functions: Information gain and Gini impurity are illustrated
in this plot for a binary classification task. The X-axis represents the probability of one class and on the
Y-axis the value of both objective functions. Both can be seen as measures of class uncertainty and reach
their maximum for 0.5.

are also many other approaches available that propose to minimize the so-called Out-Of-
Bag (OOB) error. One part of Sl is used to model the posteriors and the other part to
compute the OOB error based on a specific loss function. In this thesis, we focus on node
optimization using information gain.

As detailed in the previous section, tree training follows a greedy optimization strategy.
At each node, a set of splitting function candidates are generated randomly and the best
candidate is chosen as the one maximizing ∆:

f ∗l = argmaxfl∈Γl
∆(Sl,S leftl ,Srightl ) (2.15)

Intuitively, optimizing these objective functions leads to leaf clusters of data points that
are similar in the feature space X and that belong to the same class.

2.3.4 Forest Prediction
Once the training phase accomplished, predictions can be performed for new incoming
observations by sending them through all trees of the forest and combining tree posteriors.
As discussed in the previous section, a common approach to compute the forest prediction
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Y for an observation X is to average the tree posteriors:

P (Y|X) = 1
T

T∑
t=1

P (Y|X,Pt) (2.16)

where Pt is the partition induced by tree Ft, and then to use the maximum a posteriori:

Ŷ = argmaxY∈Y P (Y|X) (2.17)

In classification tasks, this approach can be seen as combining trees’ smooth labelling
outputs. Alternatively, trees’ hard labelling outputs can be combined together, and this
approach is called major voting. In this case, maximum a posteriori is first performed
on each tree:

Ŷt = argmaxY∈Y P (Y|X,Pt) (2.18)

and the forest finally predicts the label which counts most of the tree “votes”
{
Ŷt

}T
t
:

Ŷ = argmaxY∈Y

(
T∑
t=1

[
Ŷt = Y

])
(2.19)

where [· = ·] is a boolean function outputting a 1 if the proposition is true and a 0 if
not. Clearly, the disadvantage of using major voting is that the probabilistic nature of
forest outputs e.g. class confidence for the labelling decision is lost. Moreover, all votes
have the same influence regarding the final prediction, even if individual votes come from
tree leaves having very different confidence. While a random forest achieves its great
generalization by combining outputs of an ensemble of randomized trees, individual trees
show very different performances depending on the part of the feature space the new
observation X is falling. Instead of using a simple averaging of the tree posteriors, one
can think of ranking first the tree posteriors based on a measure of uncertainty such as
Shannon’s entropy, and perform averaging using only the best tree predictions.

2.3.5 Class Balancing Problem
While in classification toy examples, each classes are constructed so that they have sim-
ilar number of training points, real world applications very often suffer from unbalanced
classes. Clearly, if the number of training points for each class is very different, the
computation of the posterior using eq.2.11 becomes biased towards the bigger class. To
prevent this kind of bias during the training, there are two possible solutions: (1) use a
balanced bootstrap of the training set, or (2) use a class normalization when computing
the posteriors.

In the first solution, balanced bootstraps of the training set
{
X(n),Y(n)

}N
n=1

are gen-
erated, i.e. M observations are sampled from each class with:

M < inf
Y∈Y
|
{
X(n), Y(n) = Y

}
| (2.20)

Each individual tree is then trained using such a bootstrap and posteriors are computed
normally using eq.2.11. While this solution seems very simple, it is not applicable in
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typical detection cases, where for instance one aims at detecting anomalies that constitutes
a very small class compared to the background class. Indeed, one will never be able to
cover the rich variability of the background class by learning only from very small subsets.
To overcome this problem, class priors can be computed beforehand from the full training
set using:

P (Y) =
|
{
X(n), Y(n) = Y

}
|

N
(2.21)

Hence, the class posterior can be computed in each leaf C(z) integrating these priors:

P (Y|X ∈ C(zt)
t ,Pt) = 1

Q

1
P (Y)

|
{
X(n) ∈ C(zt)

t , Y (n) = Y
}
|

|
{
X(n) ∈ C(zt)

t

}
|

(2.22)

where Q is a normalization constant. This solution permits to reliably remove the bias
introduced by unbalanced classes and will be the approach we use in all our applications.

2.3.6 A Few Toy Examples

Figure 2.9: Classification toy examples: we propose to study the forests behaviour on these 3
datasets

In this part, we propose to illustrate how forests approximate class posterior distribu-
tions, and to show the influence of the main forests parameters, e.g. the tree depth and
the number of trees. Therefore, we will use 3 toy examples using the “cross”, “sun” and
“two moons” datasets (see fig.2.9). These three datasets are binary classification problems
where classes are represented by blue or red points in a two dimensional feature space.
While these classification tasks may seem easy, they reveal a few challenges: classes are
not linearly separable, they may consist of separated clusters, or even be concave, and
have a few noisy points which overlap on the other class.
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Let us start with a single tree, each node splitting function selecting a random di-
mension and a random threshold chosen within the interval defined by the features of the
data points. Hence, these functions correspond to simple axis-aligned splits. We fix the
number of function candidates to 10 per node and we vary the depth of the tree between
5 and 15. We propose to plot the resulting posterior over the feature space using a color
code varying from deep blue to red according to the posterior values for the blue and the
red class.

As shown on fig.2.11, when the tree gains in depth, it provide a posterior which better
fits the underlying class distribution. As we consider only a single tree, the changes in
posterior values are very sharp witnessing the underlying partition. For a depth of 15, we
start noticing some signs of overfitting, as some noisy data points influence the posteriors.
Hence, a good compromise has to be found for the tree depth as it has a big influence on
the generalization.

Figure 2.10: Classification posterior of a random forest: Increasing the number of trees provides
a smoother posterior and permits to reach a greater generalization.

Now let us set the tree depth equal to 10 and vary the number of trees. As illustrated
by fig.2.12 and 2.10, increasing the number of trees permits to get smoother posteriors,
yielding smoother boundaries between the classes. Moreover, one can notice that the
influence of noisy points decreases, as their contribution in the posterior estimation are
averaged out. To conclude, increasing the number of trees permits to achieve greater
generalization and smoother posteriors.
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Figure 2.11: Classification posterior of a single random tree: we propose here to study the
influence of the depth parameter.
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Figure 2.12: Classification posterior of a random forest: here the tree depth is set to 10, and we
propose to study the influence of the number of trees.
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2.4 Regression Forests
While random forests have been widely used for classification tasks, their ability to solve
regression problems has been less studied despite all their advantages. Indeed, regression
forests permit to efficiently model complex non-linear functions, and this, while being
scalable to large training sets and high dimensional input and output spaces. In fact,
they are very similar to classification forests, the only difference residing in the fact
that the prediction output is continuous instead of being categorical, and can be multi-
dimensional. In this section we start by defining the regression problem in a probabilistic
fashion. Afterward, we detail how the posterior can be modeled in each leaf using a simple
multivariate Gaussian distribution. Then we explain how to train regression forests and
show how to define an objective function for regression. Afterward, we present different
prediction approaches, and finally conclude the section with a few regression toy examples.

2.4.1 Problem Statement
We consider an input feature space X ⊂ RD and an output space Y , which is a multi-
dimensional continuous space Y ⊂ RD′ . To each input feature vector X is associated
an output vector Y ∈ Y . Exactly as for classification forests, our goal is to model
the posterior probability distribution P (Y|X). Given a training set {(X(n),Y(n))}Nn=1 ∈
X × Y , each tree of a forest F = {Ft}Tt=1 permits to build a partition Pt over the input
feature space X . As for a classification task, two tree components needs to be instantiated
for the regression task: (1) the leaf posterior and (2), the objective function.

2.4.2 Regression Posteriors
Let us consider the partition Pt = {C(zt)

t }Zt
zt=1 built by the random tree Ft. As illustrated

by fig.2.13, posteriors can be modeled in each cell C(zt)
t as:

P (Y|X ∈ C(zt)
t ,Pt) = N (zt)

t (Y | µ(zt)
t ,Σ(zt)

t ) (2.23)

N (zt)
t is a multivariate Gaussian with mean µ

(zt)
t and covariance matrix Σ(zt)

t estimated
in the output space Y from the subset of the training points that fall into the cell C(zt)

t of
partition Pt. While many other choices are possible to model the posterior in each leaf
such as probabilistic linear or Gaussian mixtures [20], we focus in this thesis on single
multivariate Gaussian models for their simplicity. A regression tree is finally equivalent
to a probabilistic piece-wise constant regressor, and by using trees that are deep enough,
one can approximate any arbitrary functions, even with such a simple model, as soon as
they are injective. During the training of the tree, the goal is to reduce the prediction
uncertainty linked to this multivariate Gaussian model. In the following section, we detail
how to define the objective function for node optimization.

2.4.3 Regression Objective Function
As for classification tasks, at each node Nl of the tree Ft, a splitting function fl permits to
split the subset Sl of the training set arriving in this node. The goal of node optimization
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Figure 2.13: Regression forest: each tree Ft builds a partition Pt over the feature space and regression
posteriors can be easily approximated in each cell of Pt

is to find the best splitting function aiming at reducing the prediction uncertainty. In the
present thesis, we will use the Information Gain, based on the continuous version of
Shannon’s entropy:

H(Sl) =
∫

Y∈Y
P (Y|Sl) log (P (Y|Sl))dY (2.24)

As posteriors are modeled using a multivariate Gaussian, H has following closed form:

H(Sl) = 1
2 log

(
(2πe)D′ |Σ(Sl)|

)
(2.25)

where Σ(Sl) is the covariance matrix estimated in the output space Y from the subset of
training points Sl. After splitting Sl into two subsets S leftl and Srightl that are respectively
sent to the left and right child nodes, the reduction of uncertainty can be measured using
the information gain ∆:

∆ = H(Sl)− wleftH(S leftl )− wrightH(Srightl ) (2.26)

where wleft = |Sl|/|S leftl | and wright = |Sl|/|Srightl |. Again, during node optimization, sev-
eral splitting function candidates are generated and the best is then chosen by maximizing
∆:

f ∗l = argmaxfl∈Γl
∆(Sl,S leftl ,Srightl ) (2.27)

Intuitively, optimizing this objective function yields leaf clusters of data points that are
consistent in the input feature space X and in the output space Y .

2.4.4 Forest Prediction
Once the training phase accomplished, predictions can be performed for new incoming
observations by sending them through all trees of the forest and combining tree posteriors.
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Figure 2.14: Regression toy examples: we propose to study the forests behaviour on these 2 functions

As for classification forests, the posterior distributions from all individual trees can be
averaged:

P (Y|X) = 1
T

T∑
t=1

P (Y|X,Pt) (2.28)

where Pt is the partition induced by tree Ft. Predictions can be then computed using
either the maximum a posteriori:

Ŷ = argmaxY∈Y P (Y|X) (2.29)

or alternatively, the conditional mathematical expectation E [Y|X]:

Ȳ =
∫

Y
YP (Y|X)dY (2.30)

which can be simplified in the case of multivariate Gaussian models to:

Ȳ = 1
T

T∑
t=1

µ
(zt)
t (2.31)

where µ(zt)
t are the means in the leaves in which observation X falls in each tree. Fur-

thermore, one can derive the confidence of a leaf prediction from its associated covariance
matrix. Indeed, individual trees can show very different confidences depending on the
part of the feature space the new observation X is falling. Hence, tree posteriors can be
first ranked according to their confidence, and averaging can be performed using only the
best tree predictions.

2.4.5 A Few Toy Examples
In this part, we propose to illustrate how regression forests permit to approximate arbi-
trary functions, and to show the influence of the main forests parameters, e.g. the tree
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depth and the number of trees. Therefore, we will use 2 toy examples using two functions
parametrized as z = f(x, y) we call “hill” and “peaks” functions (see fig.2.14). These
two datasets consist of 10000 points (x, y, z) generated using non-linear functions and
additive noise. Here, the x and y dimensions will represent our input feature space and
the z dimension the output space. While the first function possess only one maximum, it
is very noisy. In contrast, the second function shows more variations but is less noisy.

Let us start with a single tree, where at each node, a dimension is set at random and
a threshold is randomly chosen within the interval defined by the features of the data
points. This permits to generate functions corresponding to simple axis-aligned splits.
The number of function candidates is set to 10 per node and we vary the depth of the tree
between 5 and 15. In each leaf, the regression posterior is modelled by a one-dimensional
Gaussian distribution, where the mean and the variance are estimated from the training
data. We propose to plot the resulting mathematical expectation over the feature space,
and to overlay some points of the training set to show how well the predicted function
fits the data points. Note that the output or the regression forest in this configuration is
an ensemble of piece-wise constant approximations of the input data.

As shown on fig.2.15, when the tree gains in depth, it provide a regression output
which better fits the underlying function. Here we consider only a single tree, and the
changes in values are very sharp as the tree output is a piece-wise function. In the case
of the “hill” function, we can clearly notice problems of overfitting, as noisy data points
have a big impact on the regression output. Here again, a good compromise has to be
found for the tree depth as it has a big influence on the generalization.

Now let us set the tree depth equal to 10 and vary the number of trees. As illustrated
by fig.2.16, increasing the number of trees permits to get smoother regression output.
This clearly demonstrates the great potential of regression forest, i.e. how an ensemble of
piece-wise function approximations can yield a nice and smooth approximation of a non-
linear function. Moreover, one can notice that the influence of noisy points decreases, as
their contribution in the posterior estimation are averaged out. To conclude, increasing
the number of trees also permits to achieve greater generalization.
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Figure 2.15: Regression output of a single random tree on two toy examples: we propose here
to study the influence of the depth parameter.
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Figure 2.16: Regression output of a random forest on two toy examples: here the tree depth
is set to 10 and we propose to study the influence of the number of trees.
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2.5 Clustering Forests
Classification and regression are two classical supervised learning tasks as the goal is to
model the relationship between an input and an output feature space. As only training
points from an input feature space X are available, clustering and density estimation are
unsupervised problem. While in clustering, the goal is to discover “clusters” or in other
words groups of points having similar characteristics in X , in density estimation, one aims
at modelling the probability distribution P (X) where X ∈ X . In the present thesis, we
will show how to define, train and use random forests for clustering tasks such as visual
dictionary learning for image categorization or retrieval. For the derivation of random
forests for density estimation, we invite the reader to refer to [20].

2.5.1 Problem Statement
As clustering is an unsupervised task, we consider an input feature space X ⊂ RD only.
Our goal is to discover a set of K clusters K = {Kk}Kk=1 consisting of observations that
are consistent in X . Given a set {X(n)}Nn=1 ∈ X , each tree of a forest F = {Ft}Tt=1 permits
to build a partition Pt over the input feature space X . The main idea of clustering forests
is very simple: each partition Pt will be constructed so that each of its cells maximizes
the consistency of the points it contains. Each cell of Pt corresponds then to a cluster.

2.5.2 Cluster Model
Let us consider the partition Pt = {C(zt)

t }Zt
zt=1 built by the random tree Ft. As illustrated

by fig.2.17, a random tree is able to efficiently find clusters in high-dimensional spaces by
simply associating each cell C(zt)

t to a cluster according to the partition it induces. Thus,
each tree can map a point X ∈ X to a cluster simply by looking at the cell it falls in:

Ft(X) = C(zt)
t (2.32)

If the tree is deep, then the partition Pt counts many cells and thereby many clusters.
If the tree is not deep, then it will yield only a few clusters. Of course, the partitioning
results from a tree can be further processed by for instance merging neighboring and
consistent cells. However, performing additional steps for each tree of the ensemble may
increase consequently the clustering complexity.

Now, if we consider the entire forest F = {Ft}Tt=1, each individual tree induces its own
partition, so a point X ∈ X is finally associated to a vector of cells:

F(X) =
{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
(2.33)

Instead of having each point belonging to one cluster, each point is associated to a set of
clusters coming from different partitioning results of the same feature space. Thus, now
following question arises: how can we merge these multiple clustering results into one
global clustering? The problem becomes now to find a mapping Λ which associates each
set of cells C =

{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
to a global cluster:

Λ(C) = Kk (2.34)
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Figure 2.17: Clustering forest: each tree Ft builds a partition Pt over the feature space and each
cell is associated to a cluster.

Merging multiple clustering is a very general problem, and many approaches have been
proposed as reported for instance in [92]. To respect the philosophy of random forests,
we focus on two very simple approaches for creating global clustering: (1) perform inter-
section between the different partitions to create a global partition and thereby global
clusters, (2) keep the vectors of cells as an implicit representation of the global clusters.

Inspired from [79], the first approach proposes to merge all partitions {Pt}Tt=1 into
a global partition Pglobal =

{
Czg

global

}Zg

zg=1
by computing their intersection. All re-

gions of X are subdivided so that each cell Czg

global corresponds to a unique vector
C =

{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
. Of course, not all vector combinations really repre-

sent a global cell. During the training, global cells are identified as those being effectively
populated by observations. Finally, these global cells are associated to clusters, and Λ
is defined as the mapping associating a vector C to a global cell Czg

global and thereby to a
cluster.

Already applied to learn visual dictionary for image categorization [64, 89], the second
approach is much simpler. No further operation is required as observations are represented
by their cell vector C. The global clustering is kept implicit, and can be seen as a simple
concatenation of the multiple clustering results coming from the different trees.

2.5.3 Clustering Objective Function
Let us now briefly detail how to train a clustering tree and how to define an appropriate
objective function. Considering a node Nl of the tree Ft, a splitting function fl needs
to be chosen to split the subset Sl of the training set arriving in this node. To find the
best splitting function for this node, we need to define an objective function. While in
classification or regression, the objective function was defined on the output space, in the
present case, it needs to be constructed in the input space. Indeed, in supervised learning,
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decisions are made in the input space, but are chosen so that they also reduce uncertainty
in the output space. In contrast to supervised learning, clustering explicitely aims at
enforcing a consistence in X , and this, using decisions made in X . An objective function
can be then defined to reduce the uncertainty in X , using the Information Gain based
on the continuous version of Shannon’s entropy:

H(Sl) =
∫

X∈X
P (X) log (P (X))dX (2.35)

As the distribution in each node is modeled using a multivariate Gaussian, H has following
closed form:

H(Sl) = 1
2 log

(
(2πe)D|Σ(Sl)|

)
(2.36)

where Σ(Sl) is the covariance matrix estimated in the input space X from the subset of
training points Sl. After splitting Sl into two subsets S leftl and Srightl that are respectively
sent to the left and right child nodes, the reduction of uncertainty can be measured using
the information gain ∆:

∆ = H(Sl)− wleftH(S leftl )− wrightH(Srightl ) (2.37)

where wleft = |Sl|/|S leftl | and wright = |Sl|/|Srightl |. During node optimization, several
splitting function candidates are generated and the best is then chosen by maximizing ∆:

f ∗l = argmaxfl∈Γl
∆(Sl,S leftl ,Srightl ) (2.38)

Again, note that optimizing this objective function yields leaf clusters of data points that
are consistent in the input feature space X .

2.5.4 Forest Prediction
Once the training phase accomplished, a new incoming observation X can be pushed
through all trees of the forest F = {Ft}Tt=1, to compute its corresponding cell vector
C =

{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
. Then, by using one of the two approaches discussed

previously, this cell vector C can be associated to a global cluster by using explicit inter-
section, or C can be used as an implicit representation of the global cluster.

2.6 Conclusion
In this chapter, we presented random forests, a fascinating multi-task ensemble learner,
which consists of an ensemble of decision trees. In this thesis, we propose a partition
formalism to fully understand their philosophy: divide and conquer. Indeed, ran-
dom forests basically aim at constructing piece-wise posterior models by, (1) creating
a partition over the full feature space using simple decisions, and (2) model the poste-
rior distribution in each cell of this space. We demonstrated along the different sections
that, by defining the right objective function and designing an appropriate posterior
model within the leaf, one can adapt random forests to tackle any kind of learning prob-
lem. Indeed, while they have been mainly used for classification, random forests can be
formulated to solve many other learning tasks such as regression or clustering.
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CHAPTER

THREE

RELATED RANDOM ENSEMBLE PARTITIONING
APPROACH: RANDOM FERNS

“So much of life, it seems to me, is determined by pure randomness.”
Sidney Poitier

In this chapter, we present a forest-related approach, namely the random ferns. Pro-
posed originally for tracking application [71], random ferns were motivated by the need
of fast learning, fast prediction and less memory consumption. Therefore, authors aban-
donned node optimization to increase the learning speed and designed a constrained tree
having only one decision function per level to get a more compact model. Random ferns
are a random partitioning approach which are often presented as an ensemble of con-
strained trees. Indeed, a fern is basically a tree which systematically applies the same
decision function for each node of the current level. In the following, we will first intro-
duce random ferns in their original application and explain how they can be interpreted as
intersection of decision stumps. We will discuss their similarities and differences with ran-
dom trees, and show how to instantiate them for classification, regression and clustering
tasks.
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When they designed the random ferns approach, the main motivation of Özuysal et
al. was to be able to learn and recognize patch classes, and this, faster than with random
trees. As shown on fig.3.1, the basic idea was to perform a sequence of simple tests relying
on the comparison of pixel intensities within a patch. The position of the pixels to compare
are chosen at random, and the results of the tests are stored as binary numbers. These
binary numbers permit then to encode the bin indexes of multinomial distributions that
model ferns outputs for the different classes. During the training phase, these multinomial
distributions, or in other words class histograms are learned by performing the sequence
of tests on training examples. Depending on their results to the tests, the training patches
fall in different bins and class histograms are incremented accordingly. Finally, prediction
can be made for new incoming patches by performing this sequence of tests, and reading
out the class posteriors contained in the different class histograms at the resulting index.
While random ferns benefit of a more compact and simple structure than random trees,
authors demonstrates in [71] that they show similar performances for patch classification.
In the following, we will formalize the random fern model, and show that it can be
also interpreted as a partitioning approach. However, at the difference of random trees,
random ferns are not real hierarchical models.

3.1 Ferns Model
Considering an input feature space X ⊂ RD and an output space Y ⊂ RD′ , we aim
at learning the posterior distribution P (Y|X) where X ∈ X and Y ∈ Y . To perform
predictions in Y given an observation in X , we can use maximum a posteriori:

Ŷ = argmaxY∈Y P (Y|X) (3.1)

As for random trees, given a training set {X(n),Y(n)}Nn=1 ∈ X ×Y , we learn the posterior
P (Y|X) by (1) building a partition over the input feature space, and (2) estimating
P (Y|X) in each “cell” of this space.

Intuitively, random ferns can be seen as constrained random trees, which have only
one decision function or node per level as illustrated by fig.3.2. They build a partition
P over the feature space X , and this, by using the same sequences of decision functions
for all training data. This means that data are not explicitely split and sent towards
left or right children as in randomized trees, and decision functions are defined over the
whole feature space (see fig.3.3). This is the major difference between trees and ferns and
implies that a random fern is an ensemble of decision functions F = {Nl}Ll=1, and not a
real hierarchical model. A more appropriate interpretation would be an intersection of
decision stumps, where each decision stump is represented by a node Nl. Each node Nl

is equipped with a splitting function fl defined as:{
fl : X → B
fl(X) = (X · vl ≥ τl)

(3.2)

where dim(vl) = dim(X ) and τl ∈ R. The role of fl here is to split the full feature space
into 2 halves we denote H(0)

l and H(1)
l when fl(X) = 0 or 1 respectively.
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Figure 3.1: Random ferns: Introduced for patch classification, random ferns rely on a sequence of
simple tests comparing the intensity of pixels at random positions. Results of these tests are stored as
binary numbers that encode bin indexes, or in other words, cells of the feature space.
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Figure 3.2: Random ferns are often interpreted as constrained random trees: they have only
one decision function or node per level.

Figure 3.3: Partitions induced by random trees and ferns: As they have only one node per level,
ferns have decision functions defined over the whole feature space.
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Figure 3.4: Random ferns as intersection of decicsion stumps: Each decision function splits the
whole feature space in two half spaces. Cells of the partition induced by a random fern result from the
intersection of these half spaces.
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Let us now consider a point X ∈ X which is sent through the fern F. Gathering
the outputs of the decision functions at each node, X is associated to a set of half-
spaces

{
H(b1)

1 , · · · ,H(bl)
l , · · · ,H(bL)

L

}
, where the superscript bl denotes the binary output

of function fl. As X belongs to all these half-spaces, one can define the cell C(z) containing
X as:

C(z) =
L⋂
l=1
H(bl)
l (3.3)

As illustrated in fig.3.4, we can thereby create a partition P = {C(z)}Zz=1 over X . In the
ferns implementation, the computation of this intersection is implicitly solved by using a
binary encoding. Indeed, the outputs of all decision functions are combined to determine
the index z of the cell C(z) in which X falls as follows:

z = 20 · b1 + · · ·+ 2l−1 · bl + · · ·+ 2L−1 · bL (3.4)

Clearly, the order in which the decision functions are evaluated does not change the un-
derlying partition. Indeed, nodes can be interverted, yielding only a change in the binary
encoding, but the resulting partition would stay the same. Computations on nodes could
be even parallelized. However, random ferns suffer from two important limitations: (1)
there is no guarantee that all cells of the partition P will be populated during the train-
ing phase, and (2) not all binary combinations induce a possible cell. The first limitation
implies that, in contrast to random trees, a random fern may create empty cells during its
training phase. This can happen for instance if the fern is very deep, or if the training set
is not big enough or not representative of the feature space. Then, as no incoming train-
ing data reaches these empty cells, no posterior models can be learned. Consequently,
if new incoming observations fall in this non-populated cell, no reliable prediction can
be performed, except if a prior distribution is available. The second limitation is less
problematic as it only means that the cell encoding could be more compact. Let us now
detail briefly the training procedure of random ferns.

3.1.1 Random Ferns Training
As shown in alg.3, the training procedure of random ferns is very simple. In contrast to
random trees, there is no node optimization, and the training data is not explicitely split.
Hence, the observations just need to be pushed through all nodes and then all binary
outputs are stored. Afterward, the corresponding cell indexes are computed from the
binary outputs of each point. Finally, posteriors can be computed in each cell C(z) from
its associated training points:

P (Y|X ∈ C(z),P) (3.5)

3.1.2 Random Ferns Prediction
Once a random fern has been trained, a prediction for a new unseen observation X can be
very efficiently performed as detailed in the pseudo-code in alg.4. X is basically pushed
through all nodes, and binary outputs are gathered to compute the index of the cell C(z)
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Algorithm 3: Random Ferns Training: Pseudocode example
1: Training set: S =

{
X(n),Y(n)

}
, n ∈ {1, · · · ,N}

2: Random fern object: F
3: Parameters: NbNodes
4: \\initialize matrix containing binary vectors
5: B = new Matrix (N,NbNodes),
6: \\loop over the nodes
7: for (int i = 1, i ≤ NbNodes, i+ +) do
8: f ← generateRandomSplittingFunction;
9: F.splitFunc{i} ← f
10: \\compute binary outputs and store them
11: B(:, i)← computeSplittingFunctionOutputs(S, f)
12: end for
13: \\compute cell indexes from binary vectors and store them in vector Z of length N
14: Z ← computeCellIndexes(B)
15: \\loop over the cells and estimate posterior
16: Z = 2NbNodes

17: for (int z = 1, z ≤ Z, z + +) do
18: \\retrieve training points falling in current cell
19: Sz ← retrieveDataInCell(S,Z, z)
20: \\Learn posterior from these training points
21: F.Posterior{z} ← estimatePosteriorDistribution(Sz);
22: end for
23: Output: trained random fern F

Algorithm 4: Random Ferns Prediction: Pseudocode example
1: Observation: X
2: Random fern object: F
3: \\initialize binary vector
4: B = new Vector (NbNodes),
5: \\loop over the nodes
6: for (int i = 1, i ≤ NbNodes, i+ +) do
7: \\compute binary outputs and store them
8: B(i)← computeSplittingFunctionOutputs(X,F.splitFunc{i})
9: end for
10: \\compute cell indexes from binary vectors
11: z ← computeCellIndexes(B)
12: \\retrieve cell posterior
13: Posterior = F.Posterior{z};
14: Output: Posterior
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it falls in. Hence, at test time, a fern F can be seen as a function taking as input an
observation and returning a cell:{

F : X → {C(1), · · · , C(z), · · · , C(Z)}
F(X) = C(z) (3.6)

The posterior model stored in C(z) permits to perform a prediction by using for instance
a maximum a posteriori:

Ŷ = argmaxY P (Y|X ∈ C(z),P) (3.7)

To conclude, random ferns benefit of very fast learning and prediction and this, while
having a compact structure. However, they can encounter some problems if no prior is
available to “fill” empty cells. In the following part, we will briefly show that as random
forests, random ferns can be used in an ensemble fashion to constitute strong learner.

3.1.3 Random Ferns Ensemble
As random forests, an ensemble F of T independant random ferns F =
{F1, · · · ,Ft, · · · ,FT} can constitute a strong learner. Since random ferns are not subject
to any optimization procedure, they are strongly decorrelated and thus, don’t need any
further randomization step as bagging for instance. Each random fern Ft yields a random
partition Pt of the feature space X . During the prediction phase, the ferns ensemble can
be considered as a function which associates an unseen observation X to an ensemble of
cells:

F(X) =
{
C(z1)

1 , · · · , C(zt)
t , · · · , C(zT )

T

}
(3.8)

Considering that each Pt is equiprobable, the ensemble prediction can be simply computed
by averaging the tree posteriors:

P (Y|X) = 1
T

T∑
t=1

P (Y|X ∈ C(zt)
t ,Pt) (3.9)

As random ferns are constructed without any optimization, averaging seems to be the
most robust prediction approach. However, exception handling has to be performed for
predictions coming from “empty” cells. Either, all cells can be initialized using a prior
distribution, or prediction from empty cells have to be discarded.

3.1.4 Random Ferns Parameters
Ensembles of random ferns offer a lot of freedom for the choice of different classes of
splitting functions or posterior models. They possess only a few hyperparameters, the
most important being: (1) the number of ferns and (2), the fern depth. Similarly
as forests, increasing the number of ferns permits to average out noisy predictions, and
thus corresponds in a monotonic decrease of the prediction error. The maximal depth of
the fern is a crucial parameter that needs to be optimized as it directly impacts gener-
alization. However, there is a major difference due to the “optimization-free” nature of
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the random ferns. On one side, a fern needs to be much deeper than a tree to achieve a
good partitioning of the data, and on the other side, they are less prone to overfitting as
they do not explicitely fit the underlying data structure. Nevertheless, if a fern becomes
to deep, then the risk of creating empty cells increases, and predictions may become less
reliable. For this reason, the prediction error curve also decreases with the fern depth
until it reaches a minimum and then increases again. This minimum corresponds to the
optimal ferns depth, providing a good partitioning of the observations and a great gener-
alization. In the following, we will shortly discuss how to derive random ferns ensemble
for classification, regression and clustering tasks.

3.2 Random Ferns for Classification, Regression,
Clustering

Similarly to random forests, random ferns permits to tackle several supervised and unsu-
pervised tasks such as classification, regression and clustering. As random ferns usually do
not have any optimization procedures, only posteriors in the cells are task specific. As the
posteriors are defined is very similar to random forests, we give only a short reminder for
the sake of completeness. We propose also to study the influence of the ferns parameters
on a few toy examples.

3.2.1 Classification Ferns
We consider the input feature space X ⊂ RD and the output space Y ⊂ R which is
a finite set of K discrete values Y = {y1, · · · , yk, · · · , yK}. Our goal is to model the
posterior probability distribution P (Y|X), where X ∈ X and Y ∈ Y . Given a training
set {(X(n), Y (n))}Nn=1 ∈ X × Y , each fern of an ensemble F = {Ft}Tt=1 permits to build a
partition Pt over the input feature space X . Considering the partition Pt = {C(zt)

t }Zt
zt=1

built by the random fern Ft, class posteriors can be estimated in each cell C(zt)
t of Pt as

follows:

P (yk|X ∈ C(zt)
t ,Pt) =

|
{
X(n) ∈ C(zt)

t ,Y(n) = yk
}
|

|
{
X(n) ∈ C(zt)

t

}
|

(3.10)

Influence of ferns parameters: In this part, we propose to show the influence of the
main ferns parameters, e.g. the fern depth and the number of ferns. Therefore, we will
use the same 3 toy examples as for classification forests using the “cross”, “sun” and “two
moons” datasets (see fig.3.5). Remember that these three binary classification problems
reveal a few challenges: non-linearly separable, multi-clusters classes, and noisy data
points.

Let us start with a single fern, each node function selecting a random dimension and
a random threshold, corresponding thus to axis-aligned splits. Remember that ferns are
optimization-free so we do not need to set a number of function candidates. We vary
only the depth of the fern between 5 and 15. We propose to plot the resulting posterior

59



Chapter 3: Related Random Ensemble Partitioning Approach: Random
Ferns

Figure 3.5: Classification toy examples: we propose to study the ferns behaviour on these 3 datasets

over the feature space using a color code varying from deep blue to red according to the
posterior values for the blue and the red class.

As shown on fig.3.8, when the fern gains in depth, it builds a more complex partition
yielding a posterior which better matches the underlying class distribution. Again, as
there are no optimization, the partition construction is not making use of the data, which
explains the high variability of a single fern. Thus, a single fern has to be in general
deeper than a tree to approximate well the class posterior distribution. On the other side,
even with a depth of 15, no signs of overfitting are visible, as noisy data points have no
influence on the building of the partition. Nevertheless, with an increasing depth the risk
of creating empty cells gets higher. Thus a good compromise has to be found for the ferns
depth, as it moreover has a big influence on the generalization.

Figure 3.6: Classification posterior of a random ferns ensemble: Increasing the number of ferns
provides a smoother posterior and permits to reach a greater generalization.

Now let us set the depth equal to 10 and vary the number of ferns. As illustrated by
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Figure 3.7: Comparison classification forest and ferns ensemble: for a depth of 10, trees have
more sharper posteriors and ferns get smoother class boundaries.

fig.3.9 and 3.6, since ferns are not optimized, increasing the number of ferns is crucial as it
permits to better fit the data, achieve better generalization and get smoother posteriors,
i.e. smoother boundaries between the classes. While comparing the predictions of random
ferns to forests (see fig.3.7), one can see that a forest provides sharper posteriors and
spherical clusters can not be well fitted using axis-aligned splits. Due to their random
nature, ferns show already smoother class boundaries even when using axis-aligned splits.
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Figure 3.8: Classification posterior of a single random fern: we propose here to study the
influence of the depth parameter.
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Figure 3.9: Classification posterior of a random ferns ensemble: here the depth is set to 10, and
we propose to study the influence of the number of ferns.
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Figure 3.10: Regression toy examples: we propose to study the ferns ensemble behaviour on these
2 functions

3.2.2 Regression Ferns
Here we consider the input feature space X ⊂ RD and the output space Y ⊂ RD′ .
Similarly we aim at modeling the posterior probability distribution P (Y|X). Given a
training set {(X(n), Y (n))}Nn=1 ∈ X × Y , each fern of an ensemble F = {Ft}Tt=1 builds a
partition Pt over X . If we consider the partition Pt = {C(zt)

t }Zt
zt=1 built by the random

tree Ft, posteriors can be modeled in each cell C(zt)
t as:

P (Y|X ∈ C(zt)
t ,Pt) = N (zt)

t (Y | µ(zt)
t ,Σ(zt)

t ) (3.11)

N (zt)
t is a multivariate Gaussian with mean µ

(zt)
t and covariance matrix Σ(zt)

t estimated
in the output space Y from the subset of the training points that fall into the cell C(zt)

t of
partition Pt.

Influence of ferns parameters: In this part, we propose to show how ferns ensemble
perform in regression tasks, in order to approximate arbitrary functions. We will demon-
strate the influence of the main ferns parameters, e.g. the fern depth and the number
of ferns. Therefore, we will use 2 toy examples using the two “hill” and “peaks” func-
tions (see fig.3.10). These two datasets consist of 10000 points (x, y, z) generated using
non-linear functions and additive noise. Remember that our input feature space is here
represented by x, y and the output space by z.

Let us start with a single fern, where at each node a dimension and a threshold
are chosen at random generating thereby axis-aligned splits. Again, here there is no
optimization step. We vary the depth of the tree between 5 and 15. In each leaf, the
regression posterior is modelled by a one-dimensional Gaussian distribution, where the
mean and the variance are estimated from the training data. We propose to plot the
resulting mathematical expectation over the feature space, and to overlay some points of
the training set to show how well the predicted function fits the data points. Note that
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the output or the random ferns in this configuration is an ensemble of piece-wise constant
approximations of the input data.

As shown on fig.3.12, when the fern gains in depth, it provide a regression output
which better fits the underlying function. However, as it is optimization-free, the size of
the cells may not always be adapted to the variation in z. This explains why the extrema
of the peaks function seems cut out when the fern is not deep enough. In the case of
the “hill” function, we can clearly notice problems of empty cells where the predicted
surface shows holes. This happens when the fern gets to deep and no prior information
is available. Similarly as for trees, a good compromise has to be found for the fern depth
as it has a big influence on the generalization.

Figure 3.11: Comparison regression forest and ferns ensemble: Clearly, for a depth of 10, trees
achieve better prediction than ferns, as ferns needs to be more deep to give a better approximation.

Now let us set the fern depth equal to 10 and vary the number of ferns. As illustrated
by fig.3.13, increasing the number of ferns permits to get smoother regression output.
Comparing the predictions of random ferns to regression forests (see fig.3.11), one can see
that a forest provides a better fit for a comparable depth and number of trees. Indeed,
random ferns need to be more deep to increase their prediction accuracy. Again, their
partitions are not created according to the training set, and consequently they don’t create
smaller cells to better fit fast variations of the output. However, considering the fact that
they are “optimization-free”, predictions results are impressive.
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Figure 3.12: Regression output of a single random fern: we propose here to study the influence
of the depth parameter.
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Figure 3.13: Regression output of a random ferns ensemble: here the depth is set to 10 and we
propose to study the influence of the number of ferns.
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3.2.3 Clustering Ferns
In the case of clustering, we only consider an input feature space X ⊂ RD. As for random
forests, each cell of the partitions induced by the random ferns are associated to a cluster.
Hence, each random fern is used to map a point X ∈ X to a cluster, and this happens by
simply looking at the cell it falls in:

Ft(X) = C(zt)
t (3.12)

Thus, each observation is associated to a set of clusters coming from different partitioning
results of the same feature space. These multiple clustering results can be merged into
one global clustering using the 2 approaches presented in the previous chapter which are:
(1) perform intersection between the different partitions to create a global partition and
thereby global clusters, (2) keep the vectors of cells as an implicit representation of the
global clusters.

3.3 Conclusion
In this section, we presented an efficient variant of the random forests, which can be
derived for many learning tasks such as classification, regression and clustering. Since
their introduction, they have been always seen as ensemble of constrained trees. However,
to fully understand the nature of random ferns and their properties, the best interpretation
is to consider each fern as an intersection of decision stumps. This permits to better
identify their advantages and pitfalls. Indeed, they benefit of a very compact structure
and are usually “optimization-free” learner. However, since they are constructed as an
intersection of decision stumps, some cells may stay unpopulated during the learning
phase, in contrast to random trees. If no prior information is available to “fill” these
empty cells, then problems may be encountered if observations fall in these “black holes”.
Moreover, due to their highly randomized nature, they need to be much deeper than trees
to reach same performance, and this, even more if the feature space is high-dimensional
or contains uninformative features. On the other hand, they are more robust to noisy
features as their optimization-free learning provide dependence from the training set.
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CHAPTER

FOUR

RANDOM FORESTS: CONTRIBUTIONS IN MEDICAL
APPLICATIONS

“Medicine makes people ill, mathematics makes them sad [...]”
Martin Luther

In this chapter, we report our forests-related contributions in different medical imaging
applications. First, we present an efficient regression approach based on random ferns and
forests to estimate the position and the size of multiple organs of interest in whole-body
multi-channel MR scans. Further, we propose to tackle the problem of multiple organ
segmentation using a novel joint classification-regression random forest model. Through
exhaustive experimentations, we demonstrate that this joint formulation yields better
results than classification by learning spatial smoothness directly from the data. In the
context of early diagnosis of Parkinson’s disease, we introduce a novel paradigm to detect
Parkinson-related lesions within the midbrain using 3D transcranial ultrasound. Two
forest models are designed to capture visual as well as spatial information, the latest being
encoded using a novel parametrization that accounts for asymmetric changes of scales
and orientation of the midbrain anatomy. Afterward, we report our work on modality
recognition based on the visual content of a medical image. To this end, we use random
ferns clustering to build efficiently a dictionary of visual words, and demonstrate on a real
database of medical images the advantages of our approach in terms of speed and accuracy.
Finally, we introduce a new ensemble approach called STARS: Several Thresholds on a
Random Subspace. Motivated by the fact that using multiple decisions at each node
instead of relying on binary decisions may be beneficial in the case of complex non-linear
clusters, STARS can be seen as ensemble of multiple-decision stumps. Applied to the
task of modality recognition, they provide better results than hierarchical clustering and
random ferns.
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4.1 Multiple Organ Detection and Localization in
multi-channel Magnetic Resonance scans

Automatic localization of multiple anatomical structures in medical images provides im-
portant semantic information with potential benefits to diverse clinical applications. In
the current section, we describe an efficient approach for estimating location and size
of multiple anatomical structures in MR scans which has been published in [73]. Our
contribution is three-fold: (1) we apply supervised regression techniques to the problem
of anatomy detection and localization in whole-body MR, (2) we adapt random ferns
to produce multi-dimensional regression outputs and compare them with random re-
gression forests, and (3) introduce the use of 3D LBP descriptors in multi-channel MR
Dixon sequences. The localization accuracy achieved with both fern- and forest-based
approaches is evaluated by direct comparison with state of the art atlas-based registra-
tion, on ground-truth data from 33 patients. Our results demonstrate improved anatomy
localization accuracy with higher efficiency and robustness.

4.1.1 Introduction

Following the success of combined PET/CT, the possibility of combining PET with MRI
has gained increased interest, as significant advantages are expected compared to PET/CT
for many imaging tasks in neurology, oncology and cardiology [47]. However, before its in-
troduction in the clinical practice, a technical challenge impacting the quality of PET/MR
imaging needs to be solved: the attenuation correction of 511 keV photons according to
the radiodensity of the tissues. While in PET/CT [51], radiodensity information provided
by CT at X-ray energies can be converted into attenuation information, MR does not pro-
vide any information on the tissue density. Therefore, methods have been investigated to
generate an attenuation correction map directly from MR. For brain imaging, atlas-based
solutions using registration were evaluated in [52, 43]. For whole-body imaging, differ-
ent approaches based on the classification of tissues into 4 classes (background, lungs,
fat, and soft tissue) have been investigated, for instance in [62]. While previous methods
showed promising results for attenuation correction of whole body imaging with PET/MR,
they propose only a coarse tissue classification, not accounting for organ-specific atten-
uation and for the attenuation introduced by bones. To further improve the quality of
whole-body PET data reconstruction, we aim at generating organ-specific attenuation
information directly from MR. Therefore, the position of the organs which impact the
attenuation of photons need to be known. In this section, we present a novel regression
approach for simultaneously localizing multiple organs in multi-channel whole-body MR.
In fact, we propose a strategy based on random ferns for efficient regression and compare
them to random regression forests. Experiments on 33 patient scans demonstrate better
performance than atlas-based techniques in terms of accuracy, speed, and robustness.
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4.1.2 Related Work
Classical object detection algorithms are based on sliding windows and classifiers whose
role is to predict whether a voxel belongs to the object of interest or not. In [100], Viola
and Jones introduced a fast detection approach based on a cascade of classifiers trained
using Adaboost. Built as a succession of classifiers taking sequentially more and more
features into account, this approach achieved impressive performance for real-time face
detection.

In medical applications, there has been an increasing interest in regression-based so-
lutions for organ localization. Since the human body consists of a specific arrangement of
organs and tissues, it can be expected that voxels, based on their contextual information,
can predict the surrounding anatomy. For instance, if the neighborhood of a voxel shows
an appearance which is typical of heart tissue, besides the position of the heart, this voxel
can provide an estimate of position of the nearby lungs. In [112], Zhou et al. introduced
an approach based on boosting ridge regression to detect and localize the left ventricle
(LV) in cardiac ultrasound 2D images. There, the learned function predicts the relative
position, scale and orientation of the LV based on Haar-like features computed on 2D im-
ages. Impressive results are demonstrated on echocardiogram sequences. To detect and
localize the heart chambers in 3D cardiac CT, Zheng et al. proposed in [109] an approach
called marginal space learning (MSL). To break down the complexity of learning directly
in the full 3D similarity transformation space, the authors demonstrate that training a
classifier on projections of the original space effectively reduces the search space. Using
this idea, they build a cascade of classifiers based on probabilistic boosting tree (PBT)
to predict first the position, then the position-orientation and finally the full 3D pose.
In [110], the authors push this idea further to non-rigid marginal space learning using
statistical shape models. Although these approaches have shown very good performance
on CT scans, building such a cascade of classifiers is a computationally intensive learning
procedure which requires large training sets.

In this work, we avoid intensive training by building a single regressor predicting
simultaneously the position of multiple organs. In [21], Criminisi et al. proposed a re-
gression approach based on random forests for the localization of organs in 3D CT scans.
The authors showed that their method achieves better performance than atlas registra-
tion, and this, while benefiting of fast training and testing. While in [21], the authors
could rely on absolute radiodensity values provided by CT, here, we deal with MR images
which provide only relative values and suffer from field inhomogeneities. To tackle this
challenging problem, we adapt the regression forest framework by introducing 3D LBP
descriptors. Additionally, we implement a random ferns regression approach and compare
it with forests. Both regression techniques are evaluated and compared to an atlas-based
registration approach.

4.1.3 Proposed Method
This section describes details of our organ detection and localization approach. First, we
cast this problem as a regression task. Second, we introduce our feature representation
based on water and fat channels computed from MR Dixon sequences. Third, we present
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Figure 4.1: Organ Localization Approach: Learn a probabilistic mapping from voxels to organ
bounding boxes

our regression strategy using ferns and forests. Finally, we show how to combine voxel
predictions to localize all organs of interest in one shot.

4.1.3.1 Problem Statement

In the context of MR Dixon sequences, we are given two MR channels, i.e. the wa-
ter and fat channels represented by the two intensity functions I(water) : Ω → R and
I(fat) : Ω → R, where Ω ⊂ R3 is the image domain. Considering a set of K organs of
interest, their location within a patient scan can be represented by a set of bounding
boxes O = {O1, · · · ,Ok, · · · ,OK}, where each 3D bounding box Ok contains one organ
and is parametrized as a vector Ok = [x0

k, y
0
k, z

0
k, x

1
k, y

1
k, z

1
k]. Now given the water and

fat channels from an unseen patient, the goal of multiple organ localization is to estimate
simultaneously the parameters of the different bounding boxes containing the organs of
interest.

In our framework, we propose a probabilistic regression strategy in which each voxel
x ∈ Ω votes for the relative offsets to all organs bounding boxes. We denote by Y =
[Y1, · · · ,Yk, · · · ,YK ] the vector containing all relative offsets between voxel location
x = [x, y, z] and the different bounding boxes, where each component Yk is defined as:

Yk =
[
x0
k − x, y0

k − y, z0
k − z, x1

k − x, y1
k − y, z1

k − z
]

(4.1)

On fig.4.2, these relative displacements between one voxel x and the heart or liver bound-
ing box are represented by the arrows. Here, we consider the following organs: head, left
lung, right lung, heart and liver.
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Figure 4.2: Voxel predictions: Relative displacements from a voxel to the bounding boxes of all organ
of interest

In a probabilistic fashion, we aim at modeling the probability distribution
P (Y| x, I(water), I(fat)). The contribution of each voxel to the position of all organ bounding
boxes can be then estimated using either the maximum a posteriori:

Ŷ = argmaxY P (Y| x, I(water), I(fat)) (4.2)

or the mathematical expectation:

Ŷ =
∫

Y
Y.P (Y| x, I(water), I(fat))dY (4.3)

While individual votes will produce very noisy predictions, their probabilistically weighted
combination will produce an accurate output (see fig.4.1). Now, in such high-dimensional
spaces, modeling the posterior distribution P (Y| x, I(water), I(fat)) directly is very chal-
lenging. Therefore we propose to use a random ferns regression approach. Following a
“divide” and “conquer” strategy, they provide efficient piecewise approximations of any
distribution in high-dimensional spaces by: (1) partitioning the space using simples deci-
sions, and (2) estimating the posterior in each “cell” of this space. Before we explain in
more details our random ferns regression approach, we describe in the next part the new
features we introduce to characterize the visual context of a voxel x using both the fat
and water channels from the MR Dixon sequence.

4.1.3.2 Feature Representation

As described in [58], MR Dixon imaging techniques are based on the one shot acquisition
of a so-called “in phase” scan where water and fat signals are in-phase and an “opposite
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Figure 4.3: MR Dixon sequence: such a protocol permits to generate two MR channels, namely the
“fat” and “water” weighted scans.

phase” scan where water and fat signals are 180◦ out-of-phase. Using these two scans
from the same patient, water and fat signals can be separated to construct a water I(water)

and a fat I(fat) channel as shown on fig.4.3. Since these 2 channels are perfectly registered,
we propose to take advantage from their complementary nature and design a feature rep-
resentation based on both water and fat information. While in CT intensity information
is directly related to the underlying tissue distribution, MR intensity information is not
absolute and suffers from variability between different images. For this reason, we will
not rely on intensities as in [21], but on textural information by employing Local Binary
Patterns (LBP) [68]: we propose to extract textural context variations at different scales
(see fig. 4.4).

Let us consider a 3D region Rs
x at scale s centered on voxel location x and a set

{N s,q
x }

Q
q=1 of Q 3D asymmetric cuboidal regions having different sizes, orientations and

offsets in the neighborhood of x. Using this, we can extract two binary feature vectors
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Figure 4.4: 3D LBP multi-scale features: Mean intensities of neighboring regions are compared and
encoded into a binary feature vector.

X(water)
s and X(fat)

s from the two channels where each entry is the result of the following
binary test comparing average intensities within regions N s,q

x and Rs
x:

X(i)
s [q] = 1

|N s,q
x |

∑
x′∈N s,q

x

I(i)(x′) < 1
|Rs

x|
∑

x′∈Rs
x

I(i)(x′), (4.4)

and this, ∀q ∈ {1, · · · , Q} and i ∈ {water, fat}. Repeating this operation at several
scales results in two feature vectors X(water) and X(fat) describing the multi-scale textural
context for both channels in the neighborhood of voxel location x. Since X(water) and X(fat)

are binary vectors, they can be further encoded to reduce their dimensionality. Finally,
they are concatenated in one feature vector: X =

[
X(water), X(fat)

]
.

4.1.3.3 Ensemble Regression Approaches

This section explains how we use ferns and forests to efficiently approximate the posterior
distribution P (Y|X), where X represents the visual context of voxel x given the two
channels I(water) and I(fat). While regression forests have been used for detecting organs
in CT [21], there exists little work on ferns-based regression. In [26], Dollar et al. use a
ferns-based regressor in a cascade fashion for pose detection of objects in 2D images. In
contrast, we use a single ensemble regressor which permits to capture information on the
position of all organs of interest.

Piece-wise Regression: We assume a training set
{

(X(n),Y(n))
}N
n=1

computed over
a set of M patient MR volumes. To efficiently approximate the distribution P (Y|X),
we propose to use random ferns to first subdivide the input feature space by building a
partition P over it. After subdividing the feature space, we obtain cells containing data
points which are easier to model even with simple mathematical models such linear or
constant functions. As illustrated by the low-dimensional toy example on Fig. 4.5, the
combination of these models over the whole partition results then in a complex non-linear
model. Formally, P is defined as an ensemble of Z cells P =

{
C(z)

}Z
z=1

. With P given,
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Figure 4.5: Random Ferns Regression: The data samples are associated to a color value in the
output space. The lines represent the splitting functions that create a partition over the input feature
space. In each cell, simple models are fitted to the points. Their combination over the full space results
in a complex non-linear predictor

we propose to model the posterior in each cell C(z) as follows:

p(Y|X ∈ C(z),P) = N (z)(Y|µ(z),Σ(z)) (4.5)
where N (z) is a multivariate Gaussian distribution whose parameters are estimated

during the training phase. In fact, this choice permits to model the full distribution
as a piecewise Gaussian distribution. In contrast to fitting a Gaussian mixture model,
partitioning is here performed in the input feature space and not in the output space.
Based on this, we can model the probability distribution of Y over the full feature space
according to partition P . Clearly, the quality of the posterior approximation depends
on the partition P . If its number of cells Z is low, then the posterior approximation
will be very rough. On the other hand, if Z is high, each cell will include few training
points. In this case, the partition P tends to overfit the training data and suffers from
poor generalization. To achieve better generalization, we construct multiple independent
partitions {Pt}Tt=1 using an ensemble of random ferns. The posterior estimates from the
different partitions of the ensemble are then combined using averaging.

Training/Testing: During the training of a fern, the whole training data is used at each
node. This is in contrast to trees where only a subset is considered at each node. If we
consider again the training set

{
(X(n),Y(n))

}N
n=1

computed over a set of different patient
scans, all feature vectors are pushed through the ferns ensemble and fall into the cells of
the different partitions. Finally, the parameters of each Gaussian can be estimated for
each cell C(zt)

t using the subset
{
Y(n)|X(n) ∈ C(zt)

t

}N
n=1

of training data that fell into C(zt)
t .

In this work, we do not use optimization in the construction of our ferns regressor, i.e. the
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splitting functions are chosen randomly. While this permits to have a very fast training
procedure, it provides independence from the training set. This can be an advantage
for instance in the case of noisy data. Once the training has been performed, all node
functions and thresholds are frozen. During the test phase, an unseen data point X is
pushed through the whole ensemble until it reaches a cell in each partition. Then, each
cell contributes to the final prediction using its stored Gaussian model as seen in section
4.1.3.1. Next, we describe how to combine the predictions to localize all organs of interest.

4.1.3.4 Anatomy localization

Let us consider the water I(water) and fat I(fat) channels of an unseen patient. From both
channels, a set of feature vectors

{
X(n)

}N
n=1

is extracted from voxel locations
{
x(n)

}N
n=1

. By

pushing this set of feature vectors through the regression ensemble, predictions
{
Ŷ(n)

}N
n=1

are computed as described in section 4.1.3.1. They correspond to the relative displace-
ments Ŷ(n) =

[
Ŷ(n)

1 , · · · , Ŷ(n)
k , · · · , Ŷ(n)

K

]
between each location x(n) =

[
x(n), y(n), z(n)

]
and all organ bounding boxes O = {O1, · · · ,Ok, · · · ,OK}. The bounding box of organ
Ok can be finally estimated as follows:

Ok =
N∑
n=1

wn
(
Ŷ(n)
k +

[
x(n),x(n)

])
(4.6)

where each wn weights the contribution of voxels according to the confidence of their
predictions. Note that ∑N

n=1wn = 1. In this work, we discard contributions having low
confidence and perform averaging on the remaining predictions.

4.1.4 Experiments and Results
In this section, we compare our approach based on regression ferns with regression forests
and the current state-of-the-art multi-atlas registration.

Data: Our dataset currently consists of scans from 33 patients who underwent a 3-Tesla
whole-body MR Dixon sequence. All patients have cancer (mostly neck, lung, liver can-
cer) and show a high variability in their anatomy partially due to their disease. For the
detection and localization of organs, we use the water and fat channels. In each scan, we
manually delineated the bounding boxes for following organs: head, left lung, right lung,
liver and heart. The size of the volumes are 192 × 124 × 443 and the pixel spacing is
2.6× 2.6× 2.6 mm.

Regression approach: 100 runs of cross-validation experiments have been conducted
where each experiment consists of a training phase on 20 patients chosen randomly and
a test phase on the 13 remaining patients. For both forests and ferns, all parameters
(number of trees/ferns and tree depth/number of nodes) have been tuned by performing
grid-search within the same range for both techniques. Note that node optimization has
been performed for random forests based on information gain. For prediction, each fourth
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Figure 4.6: Real patient data: MR Dixon sequences from 33 cancer patients have been used for our
cross-validation experiments.

MEAN LOCALIZATION ERRORS (mm)
Organs Random Ferns Random Forests Atlas min Atlas max Atlas mean
Head 9.82± 8.07 10.02± 8.15 18.00± 14.45 70.25± 34.23 35.10± 13.17

Left Lung 14.95± 11.35 14.78± 11.72 14.94± 11.54 60.78± 29.47 30.41± 11.39
Right Lung 16.12± 11.73 16.20± 12.14 15.02± 13.69 63.95± 30.13 29.85± 12.62

Liver 18.69± 13.77 18.99± 13.88 18.13± 16.26 70.59± 32.88 31.74± 13.49
Heart 15.17± 11.70 15.28± 11.89 13.31± 11.03 60.38± 28.90 29.82± 12.23
Overall 14.95± 11.33 15.06± 11.55 15.88± 13.40 65.19± 31.12 31.38± 12.58

Table 4.1: Organ localization results: Compared to atlas-based method, our approaches based on
random ferns and forests achieve better accuracy and lower uncertainty.

pixel is used and described using 3D LBPs computed over 26 cuboidal regions chosen at
3 different scales.

Multi-atlas registration: 100 runs of cross-validation experiments have been per-
formed. Each experiment is defined as follows: a set of 20 patients are chosen randomly
as multi-atlas database and 1 patient is randomly chosen as test case. All 20 patients
from the database are registered to the test patient using affine registration. Then, using
the ground truth position of the bounding boxes of the test patient (which is not available
in reality), we evaluate the theoretical lower and upper bounds of the error by using the
patients in the database who provide the lowest and highest localization error. The mean
error is computed over the whole database.

Results: Results reported on Tab.4.1 shows that we achieve an accuracy which is better
than the “best case” atlas accuracy, while providing an increased robustness. Taking
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a look at the localization error per organ, one can notice that the lowest error for our
approach is achieved for the localization of the head, which is due to the fact that the
head is surrounded by a lot of air which makes it easier to localize. While the heart shows
second lowest error, lungs and liver were more difficult to localize. This is mainly due
to the high inter-patient variability of the shape of these organs and to breathing-related
deformations. The best results were obtained with 14 ferns/6 nodes for random ferns,
and 6 trees/depth of 8 for regression forests. On a laptop with MATLAB 64 Core Duo 2.4
GHz, the training/testing time on 20/13 patients is 0.7/0.5 s for random ferns. Random
Forests need 25/1 s. Concerning atlas registration, each single affine registration needs
12.5 s. Now if we analyze the results obtained by random ferns and regression forests,
both approaches reach comparable localization accuracy. At first glance, one could expect
forests to provide better localization performance as they benefit of node optimization in
contrast to ferns. This can be explained by the limited size of the feature pool. Indeed,
the 3D LBP like features compose a compact and relevant set of features to represent the
visual context of voxels. For this reason, ferns achieve very good localization accuracy
while being much faster to train and evaluate. To conclude, our approach provides a fast
and robust solution for organ detection and localization and thus fulfills our requirements
towards organ-specific attenuation map.

4.1.5 Conclusion
Our contribution is a supervised regression approach based on random ferns and random
forests to detect and localize in one shot multiple organs in whole-body multi-channel
MR images. Experiments conducted on a dataset of 33 patients show that our approach
achieves an accuracy which is better than atlas-based methods, while providing higher
robustness (lower uncertainty) and faster training/prediction times. Furthermore, this
approach can be also useful to integrate semantic information i.e. incorporating organ
labels in further applications such as registration, image navigation or image retrieval.
In future work, the online performance of the proposed approach could be investigated
to enable a fast updating of our organ localization system. Then we would like to move
towards the construction of organ-specific attenuation correction maps.
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Figure 4.7: Organ localization results: 3D visualization of the localization outputs
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4.2 Multiple Organ Segmentation in CT scans
In this section, we report our latest work on the segmentation of multiple organs in CT
scans, which has been published in [37]. We introduce a new type of random forests
that is built on a joint classification and regression formulation: the forest model aims
at solving jointly (1) a classification task in which each voxel is associated to an organ
class label and (2), a regression task in which each voxel is mapped to its distances to all
organ boundaries. This enables the selection of more discriminative features leading to
leaf clusters that are consistent in terms of class and spatial location. This implicitely
integrates spatial regularization directly within our forest model. Experiments performed
on real CT datasets demonstrate the benefits of our joint formulation for multiple organ
segmentation.

Figure 4.8: Atlas registration: State-of-the-art for multiple organ segmentation

4.2.1 Introduction
Organ segmentation can be defined as the task of assigning each voxel of a CT scan to an
organ label. By registering the scan to segment with an annotated “atlas” scan, the labels
of all voxels can be easily inferred by transferring the “atlas” labels to the new patient data
as illustrated by fig.4.8. This approach, known as atlas-based registration, is considered
as state-of-the-art for multiple organ segmentation. However, for large field-of-view scans,
this task becomes very difficult due to the high inter-patient variability. Indeed, while
affine registration lacks of flexibility, deformable registration may be difficult to regularize
and thus can yield very large deformations which are not realistic considering the nature
of the tissues.
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Besides marginal space learning strategies [109] that show impressive results for the
localization and segmentation of single anatomical structures, we demonstrated in the
previous section that random forests and ferns can been successfully applied for the task
of organs localization in multi-channel MR [73] as well as in CT [21]. Using regression
forests and related techniques, we proposed to learn a statistical mapping relating each
voxel to all organs of interest. Thereby we could: (1) discover key anatomical landmarks
which provide best predictions, and (2) benefit of prior knowledge on the relative positions
between all organs. Since in the case of anatomy localization, the goal is to predict the
position and the size of each organ of interest, it can be easily formulated as a regression
approach. In the case of segmentation, each voxel of a scan needs to be associated to
an organ class. Hence the most natural way of tackling this problem is to formulate it
as a classification task. However, classifying voxels based on their local visual context is
very difficult in medical images, and yields predictions that lack of spatial consistency.
There are two major advantages that are totally ignored when formulating the problem
as a classification task: medical imaging follows often standard acquisition procedures,
and the human anatomy offers a strong prior information on the global context such as
the arrangement of organs, their size, shape, etc. Indeed, rich information beyond voxels
labels is contained in annotated data and in the present section we propose to exploit this
information to improve the consistence of predictions. Therefore, we introduce a novel
random forest framework based on a joint classification-regression formulation. Each voxel
is associated to an organ class label and to a vector containing its distance to all organ
boundaries. By defining a joint classification-regression objective function, we encourage
the selection of features leading to leaf clusters that are consistent in terms of class and
spatial location. Thereby, spatial regularization is implicitely learned from the data and
integrated directly within our forest model. In several experiments on synthetic and real
data, we demonstrate the benefits of our approach which yields prediction with increased
spatial consistency.

4.2.2 Problem statement
Let us consider a set of K organ classes represented by the labels O = {Ok}Kk=1. In the
general case, the goal of multiple organ segmentation is to assign an organ label O to
each voxel x ∈ R3 of a CT volume defined by an intensity function I : Ω ⊂ R3 → R. In a
probabilistic fashion, we can formulate this task as a maximum a posteriori problem:

Ô = argmaxO∈O P (O|x, I) (4.7)

Given a set of observations and their associated labels, we need to learn the posterior
distribution P (O|x, I). As we saw in the previous sections, such probability distributions
can be efficiently approximated by using random forests. Usually, classification forests
aim at reducing the class uncertainty by maximizing at each node the information gain
based on Shannon’s entropy. While this objective may be solved during the training
phase, forest predictions very often lacks of spatial consistency. In the present work, we
propose to integrate additional spatial information within the same forest model by using
a joint classification-regression formulation.
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Figure 4.9: Classification vs. Regresion Forests: while classification forests (on the left) build leaf
clusters that are consistent regarding the classes, regression forests (on the right) build leaf clusters that
are consistent in terms of spatial location.

4.2.3 Joint Classification-Regression Forests

Classification and regression forests both aim at building leaf clusters that are homogenous
according to the input feature space and to the output space. In the present work,
we propose is to define a joint classification-regression objective to build clusters that
have better characteristics for our task of multiple organ segmentation: (1) each voxel is
associated to an organ class and (2) to its distances to all organ boundaries. This provides
implicitely spatial regularization to our forest model, since leaf clusters will be consisting
of training points that are: (i) homogenous in the feature space, (ii) belonging to the
same class and (iii) have similar distances to the different organ boundaries as illustrated
by fig. 4.9. Moreover, it benefits of implicit shape context information embedded in the
regressed distances to the organ boundaries.

4.2.3.1 Joint Classification-Regression formulation

In the context of classification, each voxel x ∈ R3 of a CT volume is associated to an
organ label O. Now, let us define by Bk the set of voxels belonging to the boundary of
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Figure 4.10: Regression objective: each voxel is associated to its distances to all organ boundaries.
Thereby, we incorportate implicit organ shape information by using euclidean signed distances map.

organ Ok and its associated signed distance function Dk:{
Dk(x) = minx′∈Bk

||x− x′||, if x /∈ Ok

Dk(x) = −minx′∈Bk
||x− x′||, if x ∈ Ok

(4.8)

As illustrated by Fig.4.10, we propose to associate each voxel x to a vector D =
[D1(x), · · · , Dk(x), · · · , DK(x)], where D ∈ D ⊂ RK contains the signed distance to all
organ boundaries. Note that all these distances are computed in mm. Hence, we can
formulate our joint classification-regression objective as the learning of the joint posterior
P (O,D|x, I), which can be rewritten as:

P (O,D|x, I) = P (D|O,x, I)P (O|x, I) (4.9)

In the next section, we describe how to model both distributions P (D|O,x, I) and
P (O|x, I).

4.2.3.2 Classification-Regression Posteriors

Now let us define the posterior models we will use for our joint classification-regression
task. Using a database of 3D CT scans, following training set can be constructed:

{(x(n), I(n),O(n),D(n))}Nn=1

where N = NbScans × NbVoxels, NbScans being the number of CT volumes in the
database, and NbVoxels the number of voxels extracted (randomly) in each scan for
training. Note that for the moment, as we have not defined the feature space yet, each
voxel x is associated to the full CT data I. To model the dependence of organ class
and distances to organ boundaries, we need to model the class posterior as well as the
conditional regression posterior. If we denote by S the subset of the training instances
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that reach a given node, the class posterior can be simply modeled using a multinomial
distribution as:

P (O = Ok|x, I) = |Sk|/|S| (4.10)
where Sk represents the instances of S that belongs to class Ok. We propose to model
the conditional regression posterior for each class as:

P (D|O = Ok,x, I) = N (Sk)
k (D|µ(Sk)

k ,Σ(Sk)
k ) (4.11)

where N (Sk)
k is a multivariate Gaussian with mean µ

(Sk)
k and covariance matrix Σ(Sk)

k

estimated from the subset Sk that belong to class Ok.

4.2.3.3 Robust statistics

During the learning phase, the training instances are iteratively split and the number
of examples from a given class reaching the nodes/leaves is successively reduced. As
the estimation of the conditional regression posterior is based on empirical means and
covariances, it can become statistically problematic for small sample sizes. To overcome
this problem, and to increase robustness against outliers, we replace the classical maximum
likelihood estimation by a weighted Gaussian update, where the node’s parent distribution
plays the role of a prior. The mean can be then computed as follows:

µchild
k = κ

κ+ |Schild
k |

µparent
k + |Schild

k |
κ+ |Schild

k |
D̄child
k (4.12)

and the covariance matrix:

Σchild
k = ν + n− 1

ν + n− 1 + |Schild
k |

Σparent
k + |Schild

k |
ν + n− 1 + |Schild

k |
Γchild
k

+ κ|Schild
k |

(κ+ |Schild
k |)(ν + n− 1 + |Schild

k |)Λchild
k

(4.13)

D̄child
k and Γchild

k are respectively the empirical mean and covariance computed from the
set of observations Schild

k from a given class reaching the child node. µparent
k and Σparent

k

are the mean and covariance from the parent node, and Λchild
k the covariance between the

empirical mean and the prior (parent) mean Λchild
k = (µparent

k − D̄child
k )(µparent

k − D̄child
k )>.

The parameters κ and ν permit to control the trade-off between the prior and the empirical
information. In fact, when the amount of training samples |Schild

k | is large enough, the
empirical mean and covariance computed in the child node have more influence. In the
case when the amount of training samples falls below a certain threshold defined by κ and
ν, then the mean and covariance update relies more on the parent prior. In the following,
we will discuss the node optimization which goal is to jointly reduce the uncertainty linked
to the class and regression posteriors.

4.2.3.4 Node optimization

To characterize long range intensity context, we propose to use an infinite dimensional
feature space where each feature basically compares the mean intensity in two different
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regions Ω1 and Ω2. The corresponding splitting function fΩ1,Ω2,τ is then defined by the
position and the size of both regions and a threshold:

fΩ1,Ω2,τ (x, I) =
 1
|Ω1|

∑
x′∈Ω1

I(x′)− 1
|Ω2|

∑
x′∈Ω2

I(x′) < τ

 (4.14)

Having defined the type of splitting function, now we need an adapted objective function
for our greedy optimization strategy. Given a subset of training points we denote S, we
define a joint entropy measure:

H(S) = −
∑

O∈O

∫
D∈D

P (O,D|x, I) log (P (O,D|x, I))dD (4.15)

Using the chain rule 4.9, this can be rewritten as:

H(S) = −
∑

O∈O
P (O|x, I) log (P (O|x, I))︸ ︷︷ ︸

Hc = Shannon’s entropy

+
∑

O∈O
P (O|x, I)

(
−
∫

D∈D
P (D|O,x, I) log (P (D|O,x, I))dD

)
︸ ︷︷ ︸

Hr = weighted differential entropy

(4.16)

where Hc is driving the classification objective, and Hr as conditional regression term,
can be seen as a regularization: H(S) = Hc(S) + Hr(S). As the conditional regression
posterior is modeled using a multivariate Gaussian distribution, Hr can be rewritten as:

Hr(S) =
∑

Ok∈O
P (Ok|x, I)

(1
2 log

(
(2πe)K |Σ(Sk)

k |
))

(4.17)

where Σ(Sk)
k is estimated from the points of Sk belonging to organ class Ok. As both

Hc and Hr may live in quite different ranges of values, we propose to normalize these
entropies with respect to the root node:

H(S) = Hc(S)
Hc(S0) + Hr(S)

Hr(S0) (4.18)

where S0 represent the full training set at the root node. Finally, based on this entropy
formulation, we compute the information gain ∆ to measure the quality of a split. During
node optimization, several decision function candidates are generated and the best is then
chosen by maximizing ∆. This encourages the choice of features that permits in the end
to build homogenous leaf clusters in terms of class and in terms of location within the
anatomy.

4.2.3.5 Multiple organ segmentation

Now that we are able to estimate the joint probability P (O,D|x, I), we want to associate
a class label to each unseen voxel x. As inferring the distance from one voxel to the

86



4.2 Multiple Organ Segmentation in CT scans

Figure 4.11: Database of 3D CT scans from 80 patients: high inter-patient variability, noise and
artifacts such as contrast agents of metal implants make this database challenging for our segmentation
experiments.

boundary of each organ based on the visual context is very challenging, we can expect
the regression output to be very noisy. More generally, during the training of a tree, the
classification objective for organ segmentation may be reached ealier in tree levels than the
regression objective. Hence, we propose to consider only themarginal class posteriors for
segmentation, as a more robust strategy since the regression posteriors remain uncertain:

Ô = argmaxO∈O P (O|x, I) (4.19)

Thereby, the regression term has an influence during the training phase for features and
test selection, but not during the test phase. In the following section, we will investi-
gate the performances of our joint classification-regression forests for the segmentation of
multiple organs in real CT data.

4.2.4 Experiments and Results

Through exhaustive experiments on a 3D CT database of 80 patients, we propose to
demonstrate the benefits of our approach over a classical multi-class classification method.
As shown on fig.4.11, this database is really challenging due to the high inter-patient
variability and also noise and artifacts such as metal implants. In all scans, 6 organs of
interest have been manually segmented: liver, spleen, left and right kidneys, left and right
pelvic bones. Note that this manual segmentation will be considered as gold standard in
our evaluation.
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4.2.4.1 Measuring the segmentation accuracy

To measure quantitatively the segmentation accuracy, we compute the DICE coefficient,
the mean surface distance (MSD), the root mean square surface distance (RMS-SD) and
the Hausdorff distance (HD). The DICE coefficient is defined as an overlap ratio between
the gold standard segmentation Vgold and the forest segmentation output Vforest:

DICE(Vgold,Vforest) = 2.|Vgold ∩Vforest|
|Vgold|+ |Vforest|

(4.20)

where Vgold represents the set of voxels belonging to the gold standard segmentation and
Vforest to the forest segmentation output. Hence, the DICE coefficient tends towards 1
when the segmentation output has a large overlap with the gold standard. For the three
other measures, we need to consider the 3D segmentation boundaries of the gold standard
Sgold and of the forest output Sforest. Thus, the mean surface distance is evaluated as:

MSD(Sgold,Sforest) = 1
|Sforest|

∑
x∈Sforest

min
x′∈Sgold

||x− x′|| (4.21)

the root mean squared surface distance as:

RMS-SD(Sgold,Sforest) =
√√√√ 1
|Sforest|

∑
x∈Sforest

min
x′∈Sgold

||x− x′||2 (4.22)

and the Hausdorff distance as:

HD(Sgold,Sforest) = max
(

max
x∈Sforest

( min
x′∈Sgold

||x− x′||), max
x∈Sgold

( min
x′∈Sforest

||x− x′||)
)

(4.23)

Note that the three latest measures are all in mm, and tend towards zero if the predicted
segmentation is ideally good.

4.2.4.2 Cross-validation experiments

To demonstrate the benefit of our joint classification-regression formulation, we propose
to compare our approach to a classical classification strategy using random forest. To this
end, we perform a two-folds cross-validation, i.e. the database is split in two subsets of 40
patient scans which are successively used as training and test set. For both approaches,
we investigate the same range of parameters, using forest counting 40 trees and varying
the tree depth until a maximum of 20. To construct the training set, we use bagging to
select from each training scan a random subset of 5% of all voxels.

During the greedy optimization, at each node a set of 100 features is randomly gener-
ated, and 10 uniformly distributed thresholds are evaluated. The best split candidate is
then chosen by maximizing the information gain. For the posterior computation, we use
the Gaussian update for the mean and covariance estimation presented in the previous
section, and we choose κ = 10 and ν = 10.
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Figure 4.12: Overall segmentation results: Four different quality measures are shown in this figure:
DICE measures the overlap agreement between the forest output and gold standard where 1 indicates
perfect results. MSD, RMS-SD, and HD are different measures of surface distances in millimeters between
prediction and gold standard where 0 indicates perfect results. Results for classification forests are the
blue bars on the left, and for our approach the red bars on the right. All four measures confirm the
benefits of our approach that yields better segmentation results.

4.2.4.3 Results

The quantitative results for individual organs and the average performance are sum-
marized in fig.4.12. We report comparative results with respect to the gold standard
annotations over the four different segmentation measures previously described, i.e. the
DICE, MSD, RMS-SD and HD. All confirm the benefits of a joint classification-regression
formulation by showing improvement for the segmentation of all organs of interest. In
particular, improvements in RMS-SD and HD, that are more sensitive to large local errors,
show that our approach permits to reduce the amount of outliers. While both classifi-
cation and joint classification-regression forests perform partitioning in the same feature
space, the joint objective function permits to select better feature tests that encourage
the creation of clusters in the leaves that are consistent in terms of classes and spatial
location. This yields prediction outputs that are spatially more consistent.

Further qualitative results showing the gold standard segmentation, the forest outputs
for both approaches, as well as the probability maps can be found in fig.4.13 and 4.14.
Again, one can see that our joint classification-regression approach permits to learn im-
plicitely spatial regularization from the data: better segmentation results can be achieved
while reducing the “tentacle-like” outliers at the bottom of the liver or kidneys, around
the ribs or the vertebrae, and also to prevent the segmentation of the pancreas as being
part of the kidney. By looking only at the visual context of pixels, all these outliers make
sense, as for instance the left kidney and the pancreas are neighboring and have very
similar intensities. Learning spatial regularization directly from the data encourage the
disambiguation of such cases.
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4.2.5 Conclusion
To conclude, in this section, we proposed an novel random forest approach to tackle the
problem of multiple organ segmentation. When casting segmentation as a classification
task, strong prior knowledge contained in the annotated scans such as organ positions,
size or shape are not exploited. We proposed to take advantage of this rich information
by formulating the segmentation problem as a joint classification-regression task: each
voxel is associated to an organ class label and to a vector containing its distance to all
organ boundaries. By defining a joint classification-regression objective function, our novel
random forest model aims at creating leaf clusters of voxels being consistent regarding
their class and spatial location. We could demonstrate the benefits of our approach in
extensive experiments on real CT data. Indeed, results confirm the fact that better
predictions can be obtained, reducing outliers due to ambiguous visual context. In this
work, the regression output, which aims at predicting full organ distance maps, has not
been used directly for segmentation. In the future, we need to investigate approaches to
also take advantage of this regression output in order to further improve the segmentation
results.
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4.2 Multiple Organ Segmentation in CT scans

Figure 4.13: From left to right: Gold standard manual segmentation, MAP estimate of classification
forest, MAP estimate of our joint approach, probability map of standard classification, probability map
of our joint approach.
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Figure 4.14: From left to right: Gold standard manual segmentation, MAP estimate of classification
forest, MAP estimate of our joint approach, probability map of standard classification, probability map
of our joint approach.
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4.3 Detection of Substantia Nigra Echogenicities in
3D Transcranial Ultrasound towards Computer
Aided Diagnosis of Parkinson Disease

Parkinson’s disease (PD) is a neurodegenerative movement disorder caused by decay of
dopaminergic cells in the substantia nigra (SN), which are basal ganglia residing within
the midbrain area. In the past two decades, transcranial B-mode sonography (TCUS) has
emerged as a viable tool in differential diagnosis of PD and recently has been shown to
have promising potential as a screening technique for early detection of PD, even before
onset of motor symptoms. In TCUS imaging, the degeneration of SN cells becomes visible
as bright and hyper-echogenic speckle patches (SNE) in the midbrain. Recent research
proposes the usage of 3D ultrasound imaging in order to make the application of the
TCUS technique easier and more objective. In this section, we report our latest contri-
bution in the development of learning-based tools to support the diagnosis of Parkinson
disease, which has been published in [72]. For the first time, we propose an automatic
3D SNE detection approach based on random forests, with a novel formulation of SNE
probability that relies on visual context and anatomical priors. On a 3D TCUS dataset of
11 PD patients and 11 healthy controls, we show that our SNE detection approach yields
promising results that seem to correlate well with experts annotations.

4.3.1 Introduction and Medical Motivation

Parkinson’s Disease (PD) is a neuro-degenerative movement disorder which has been the
matter of increasing research in the medical and scientific community for the past decades.
The primary symptoms of PD affect the motoric system, such as rigidity, shaking or slow-
ness, but PD may also evoke non-motor symptoms such as dementia in later stages of
the disease. The root cause of PD is the death of dopaminergic substantia nigra (SN)
cells, which are located in the midbrain area. Although it is not known whether it is
the cause or an effect of SN cell death, the progress of the disease is accompanied by a
build-up of ferrite deposits within the SN. Over the past two decades, several studies have
shown that these physiological changes can be visualized using transcranial ultrasound
(TCUS), making this imaging technique a viable tool in differential diagnosis of PD [103].
Additionally, it has been shown recently that TCUS can be used as an early indicator of
PD [8]. This result is particularly relevant, since it increases the hope that TCUS can
be used as a cheap, quick and non-invasive early-detection and screening tool for large
populations. The changes in SN are visible in TCUS in form of hyper-echogenicities, i.e.
small bright speckle patches, within the midbrain. If performed by an expert sonographer
with substantial experience in this technique, sensitivity and specificity of this technique
can be as high as 90% [32]). However, the challenging nature of TCUS images causes
high intra- and inter-rater variability and makes it difficult for less experienced groups
to reach the diagnostic reliability of expert groups in this field [102]. Recently, the usage
of three-dimensional (3D-) TCUS started being investigated for PD diagnosis, since it
can make this promising PD screening technique easier, more objective, and more sig-
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nificant due to the volumetric analysis of substantia nigra echogenicities (SNE). In this
section, we introduce a fully automatic approach for the detection of SNE voxels within
the midbrain, once the latter has been localized. There is little related work in literature
concerning the automatic analysis of SNE, but similar to our work, all approaches we
are aware of perform a midbrain ROI segmentation first and a SNE detection within the
midbrain subsequently. Kier et al. [50] and Chen et al. [15] respectively perform SN pixel
detection using morphological operators or image-feature-based SVM classification, both
within a manually segmented midbrain in 2D. Engels et al. [28] use a hierarchical finite-
element model and active contours to simultaneously segment the midbrain and SNEs in
2D. Despite early work on segmentation of midbrain area in 3D ultrasound [1], to our
knowledge, there is no previous work on (semi-) automatic SNE analysis in 3DUS. The
main contributions of our work are therefore to 1) propose a novel and volumetric SNE
detection method based on random-forest, 2) formulate a detection paradigm mimicking
human experts by using probabilistic modeling of visual and spatial SNE features and
3) demonstrate the reliability of our SNE detection approach on a database of 3D-TCUS
volumes from 22 subjects.

4.3.2 Data acquisition and Midbrain Segmentation
4.3.2.1 Data acquisition:

For validation of our methods, we utilize a 3D-TCUS dataset acquired on 22 subjects,
comprising 11 PD patients and 11 healthy controls. The acquisition was performed using
3D Freehand Ultrasound, i.e. by synchronized acquisition of 2D ultrasound images and 3D
optical tracking data. Additionally, the acquisition was performed in a bi-lateral fashion,
i.e. by reconstructing and combining US image information from both the left and the
right bone window into a single bi-lateral 3D volume. The bi-lateral acquisition is an
advantage in TCUS imaging and is not achievable in 2D. It partly allows for compensation
of differing bone window qualities and leads to an information gain of TCUS image data in
the midbrain area. In our study, only one subject had to be excluded from our evaluation
due to an insufficient bone window, which is less than the typical 10% on whom this
technique cannot be applied [103]. In total, the remaining dataset used in this study
comprises data of 11 previously diagnosed PD patients and 11 healthy controls. The 3D
volumes were reconstructed at an isotropic resolution of 0.45mm and labeled by a blinded
expert into the regions ”midbrain”, ”SNE left” and ”SNE right”. Manual segmentations
of midbrain and SNEs are used as gold standard in this study, but one should note that
even in the 2D method, intraclass correlation coefficients (ICC) of around ICC 0.85 are
reported as the inter-rater variability [99] and variability in 3D is possibly higher than
that. Hence, within our study, we assume that an SNE detection quality within the ranges
of 2D variability can be argued as acceptable.

4.3.2.2 (Semi-)automatic midbrain segmentation:

In previous work [1], Ahmadi et al. proposed an easy-to-use, robust and accurate semi-
automatic method for midbrain segmentation in B-Mode 3D-TCUS. The 3D-TCUS seg-
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mentation method is based on a statistical shape model (SSM) of the midbrain, which
was created using the above described dataset of 22 subjects. The segmentation method
combines the SSM with a localized region-based cost function, an explicit active surface
formulation and a gradient-descent optimization. The only required interaction for the
user is to manually position the SSM mean shape with high overlap onto the midbrain
region in the 3D-TCUS volume, which takes a few seconds only. In a five-fold cross-
validation setup, the method achieved a high regional overlap with the manual expert
segmentation (median DICE 0.85) and was able to retain a median of 95% of diagnosti-
cally relevant SNE voxels. This segmentation outcome will be used as a region of interest
for our following detection approach.

4.3.3 Detection of Substantia Nigra echogenicities in 3D
As illustrated by fig.4.15, an experimented observer can detect PD-related hyper-
echogenicities in the left and right SN using 3D TC-US. Unfortunately, TCUS cannot
visualize the SN regions themselves, but only the high-contrast SNE speckles located ran-
domly within the area of SN. Thus, relying on prior knowledge of the midbrain anatomy
and the known rough location of the SN within the midbrain, an experimented observer
has to decide whether an echogenicity belongs to the SN or not based on location and
intensity of speckle patches. This makes the detection of Parkinson-related SNEs quite
challenging. In the present work, we aim at providing a reliable detection of PD-related
SNEs in 3D by analoguously integrating two types of information: (i) visual context and
(ii) spatial location within the midbrain.
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Figure 4.15: Goal of our approach: On the top left, the anatomy of the midbrain is detailed, showing
the Substantia Nigra regions located at the front of both hemispheres. The other images show examples
of typical SNE speckle patterns (in yellow) in 3D TCUS transversal slices.
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4.3.3.1 Problem statement

Let us consider an intensity function denoted by I : Ω → R, where Ω ⊂ R3 is the image
domain representing the 3D ultrasound data. We assume that we are given a segmentation
of the midbrainM⊂ Ω, either from a manual expert segmentation or alternatively from
the output of a ROI detection algorithm [1]. In this work, we propose to formulate
the detection problem as a classification task in which each voxel x ∈ M needs to be
associated to a label c ∈ {0, 1}, where 0 denotes the background and 1 the Substantia
Nigra Echogenicities (SNE) class. In fact, c is the realization of 2 random variables (E ,A)
where E represents the observation of an echogenicity and A of the Substantia Nigra (SN),
i.e. c = 1 if and only if E = 1 and A = 1. Therefore, we aim at learning P (E ,A|x, I),
which represents the joint probability of observing an echogenicity E belonging to the SN
A given the location x and the intensity function I. It is important to note that (1) it
is not the SN itself which causes hyper-echogenicities but only potential acoustic micro-
scatterers residing within it and (2) echogenicities can happen in the whole skull in TCUS
due to tissue boundaries and micro-scatterers present in the entire brain tissue. Hence,
we can assume the independence of the random variables E and A, and decompose this
joint probability as follows:

P (E ,A|x, I) = P (E|x, I)P (A|x) (4.24)

The first term P (E|x, I) is a data term, encoding the probability of observing an echogenic-
ity given some visual information at location x, and the second term P (A|x) is an anatom-
ical prior not depending on I, i.e. the ultrasound data. As learning these probability dis-
tributions is challenging due to the dimensionality of the problem, we propose to use two
discriminative models based on random forests. Geremia et al. in [35, 34] demonstrated
state-of-the-art results for the segmentation of multiple-sclerosis lesions based on multi-
channel MRI data. In addition to a forest using visual context, we propose to learn a
novel spatial prior based on two hemisphere-specific coordinate systems. In the following,
we describe how to use random forests for learning: (1) the data term P (E|x, I) and (2),
the prior P (A|x).

4.3.3.2 Learning the data term P (E|x, I)

In TCUS, echogenicities are characterized by higher intensities and higher contrast.
Therefore, we propose to describe the visual context of a voxel at location x by ex-
tracting a set of simple features that encode the mean intensities in cuboidal regions of
different sizes in the neighborhood of x similarly as in [35, 34]. Let us denote by X the
space spanned by these simple features, and X the feature representation associated to a
voxel at location x. We consider a training set

(
X(n), E (n)

)N
n=1

, where each feature vector
X(n) is associated to a label E (n) which is equal to 1 if there is an echogenicity at location
x(n) and 0 if not. To efficiently partition this high-dimensional space X , we propose to
use a random forest. Each tree is a directed acyclic graph, and each node consists in a
decision function fv,τ defined as:

fv,τ (X) = (X · v ≥ τ) (4.25)
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Figure 4.16: Midbrain anatomy: in the transversal plane, the midbrain has a characteristic butterfly
shape. The Substantia Nigra are thin structures located at the front of both hemispheres. A hemisphere-
specific coordinate system is computed to express voxel spatial location accounting for inter-patient
asymmetric changes of scales and orientation.

v being a vector of dimensionality dim(X ), and τ ∈ R a threshold. Here, we use axis-
aligned splits in X , by generating v having only one non-zero entry. At each node, the
choice of v and τ is optimized following a greedy optimization strategy. From a set of
functions that are drawn randomly, the best candidate is selected by maximizing the
information gain based on Shannon’s class entropy. The posterior distribution can be
estimated from the set of training instances S reaching the current node as:

P (E = e|x, I) =
|
{
X(n) ∈ S, E (n) = e

}
|

| {X(n) ∈ S} |
(4.26)

By optimizing the information gain, the tree aims at minimizing the uncertainty on the
random variable E , encouraging thereby the creation of leaves containing either mostly
echogenicities, or mostly background. Nodes are grown until a maximal tree depth has
been reached, or when the number of feature points falls below a given threshold. Finally,
in each leaf, the posterior distribution P (E|x, I) is computed on the set of features points
reaching this leaf using eq.4.26 and stored. Now, to predict the probability of observing
an echogenicity at a location x for an unseen ultrasound volume of the midbrain, one just
needs to first extract its associated feature vector X, to push it downward the tree until it
reaches a leaf, and to use the stored posterior distribution. Considering a random forest
consisting of T trees, predictions can be simply computed by averaging tree posteriors:
P (E|x, I) = 1

T

∑T
t Pt(E|x, I).

4.3.3.3 Learning the prior P (A|x)

As shown on fig.4.16, the midbrain has a characteristic butterfly shape in the transversal
plane, which does not vary much along the longitudinal axis. The Substantia Nigra are
thin structures located at the front of both hemispheres and do not vary much along the
longitudinal axis either. Hence, we propose to express the location of each voxel using
patient-specific coordinate systems that represent the left and right midbrain hemispheres
in the transversal plane. By doing so, we can easily account for asymmetric changes of
scales and orientation of the midbrain anatomy, which can occur in TCUS imaging. Let
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us denote by {x(m)}Mm=1 =M, the finite set ofM voxels belonging to the midbrain. First,
the centers of the left and right hemispheres are computed by performing a K-means
clustering on M. Then, each voxel is associated to its nearest cluster center to create
the 2 hemisphere subsets Hleft and Hright. Finally, principal component analysis is applied
to each of these subsets to compute a hemisphere-specific transversal coordinate system,
and the location of each point is expressed in the normalized coordinate systems of the
hemisphere it belongs to. The in-plane location of each voxel x(m) can then be encoded
by a vector x′(m) =

[
x′(m), y′(m), h(m)

]
, where x′(m) and y′(m) are the in-plane components

in the hemisphere coordinate system, and h(m) is a categorical variable encoding the
left/right side. To summarize, each voxel x(m) is associated for the training phase to a
couple

(
x′(m), A(m)

)
, where A(m) is equal to 1 if x(m) belongs to the Substantia Nigra

and 0 if not. As in the previous section, we use a random forest to learn the prior P (A|x)
using a training set of 3D TCUS from different patients. During the training, each tree
aims at separating the SN from the rest of the midbrain, and creates clusters in its leaves
that are consistent in terms of spatial location x′.

4.3.3.4 SNE detection

Once the data term and the prior have been learned from a set of labelled midbrains, a
new unseen patient data can be processed as follows:

1. the midbrainM is segmented,

2. the hemisphere coordinate systems are determined using K-means followed by a
PCA on the voxels belonging toM,

3. the probability P (E|x, I) and the prior P (A|x) are computed for each x ∈M,

4. the joint probability P (E ,A|x, I) can be predicted using Eq.4.24.

Hence, we obtain for each voxel a probability of belonging to an SNE, and we can use
a threshold T ∈ [0, 1] to create a binary segmentation of the ferrite deposits: c = 1 if
P (E ,A|x, I) ≥ T , and c = 0 otherwise.

4.3.4 Experiments and Results
In this section, we evaluate our SNE detection approach on the bi-lateral 3D TCUS dataset
volume of 22 subjects, consisting of 11 PD patients and 11 healthy controls. The 3D
volumes were reconstructed at an isotropic resolution of 0.45mm and labeled by a blinded
expert into the regions ”midbrain”, ”SNE left” and ”SNE right”. For our validation, we will
consider this labeling as gold standard. We conduct comparative experiments to evaluate
our SNE detection approach based on 2 discriminative models (VisForest-PriorForest)
against the simple forest without spatial prior (VisForest), and a forest with a spatial
prior constructed using a Gaussian model for each hemisphere (VisForest-GaussianPrior).
We perform a leave-one-patient-out cross-validation, i.e. we train all models on 21 labeled
midbrains and test on the remaining one. As the outputs from our system are probabilities
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Figure 4.17: The effect of our spatial prior: From left to right, (i) the manual segmentation
overlayed on the US data, (ii) the predicted posterior using the data term forest and (iii) the output after
combining with the forest-based spatial prior. All outputs are probabilistic and can be thresholded to
provide a binary segmentation.

F-measure Specificity Sensitivity
Mean Std Median Mean Std Median Mean Std Median

VisForest 0.456 0.115 0.463 0.775 0.060 0.779 0.845 0.081 0.859
VisForest-GaussianPrior 0.508 0.155 0.547 0.819 0.045 0.812 0.829 0.113 0.844
VisForest-PriorForest 0.519 0.148 0.574 0.835 0.043 0.832 0.828 0.099 0.829

Table 4.2: Overall SNE Detection results on 22 patients: The proposed prior permits to achieve
better detection by improving the specificity, i.e. by better rejecting echogenicities that do not belong to
the estimated SN. Moreover, using a forest-based prior provides slightly better results.

between 0 and 1, we perform a ROC analysis, i.e. we vary the threshold’s value to compute
a binary segmentation, compute the corresponding confusion matrices for each run and
derive different quality measures: f-measure, specificity and sensitivity.

The number of trees is set to 10 for all experiments, and best results were obtained
for a depth = 15 for the VisForest, and for a depth = 10 for the PriorForest. Overall
results are summarized in tab. 4.2. On the left, the best f-measure are reported by using
threshold values of 0.5, 0.1 and 0.2 respectively for the VisForest, VisForest-GaussianPrior
and VisForest-PriorForest models. By including our hemisphere-specific spatial prior, the
f-measure is increased from 0.456 (VisForest) to 0.518 (VisForest-PriorForest). More-
over, learning this prior distribution using a random forest provides slightly better results
than with Gaussian prior achieving 0.508. On the right, the best compromise between
sensitivity and specificity are computed from the ROC analysis for all approaches. As
illustrated by fig. 4.17, the proposed prior permits to achieve improved specificity by
better rejecting echogenicities that do not belong to the estimated SN. By varying the
segmentation threshold, we also compute the area under curve which is AUC = 0.903
for our approach, compared to a VisForest alone AUC = 0.879 or with a simple Gaus-
sian prior AUC = 0.891. Detailed segmentation results are presented for each patient
in fig. 4.18, and additional visual results comparing gold standard expert segmentation
with our approach are pictured in fig.4.19 and 4.20.
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Figure 4.18: Evaluation of our SNE detection approach on 22 patients

4.3.5 Discussion and Conclusion
In this section, we presented the first approach for the automatic detection of Substantia
Nigra Echogenicities in 3D TCUS. As the interpretation of such data is very difficult and
yields high inter and intra-observer variability, our aim is to provide an objective and reli-
able segmentation of such Parkison-related speckle patches. Inspired by the way medical
experts recognize SNE, we proposed a probabilistic formulation combining two discrim-
inative models: (1) a ”visual” random forest specialized on the detection of echogenic-
ities and (2) a ”spatial” random forest modeling a location prior within the midbrain.
Therefore, voxel locations are parametrized within hemisphere-specific coordinate sys-
tems in order to account for asymmetric changes of orientation and scale in the midbrain
anatomy. Through experimentations conducted on 22 patients data, we show promising
segmentation results that seem to correlate well with expert labeling. From the segmen-
tation output of our system, we can quantify automatically the volumetric amount of
hyper-echogenicities in each hemisphere. Currently in [81], we propose to integrate this
information within the very first computer aided diagnosis system for Parkinson disease
based on 3D TCUS.
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Figure 4.19: 3D visualization of the results: On top, in situ visualization of the detection results.
The midbrain and the lesions are represented respectively by red and yellow 3D meshes. Below, experts
annotations (left) are compared to the output of our approach (right). Our detection results seem to
correlate well with experts annotations.
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Figure 4.20: More SNE detection results: Left the manual segmentation overlayed on the US data
and right, the output of our detection approach. All outputs are probabilistic and can be thresholded to
provide a binary segmentation.
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4.4 Content-based Modality Recognition
Introduced as a new subtask of the ImageCLEF 2010 challenge, we aim at recognizing
the modality of a medical image based on its content only. Therefore, we propose to
rely on a representation of images in terms of bag of words from a visual dictionary.
In this section, we describe our very fast approach that allows the learning of implicit
visual dictionaries which has been published in [75]. Instead of a unique computationally
expensive clustering to create the dictionary, we propose a multiple random partitioning
method based on Extreme Random Subspace Projection Ferns. By concatenating these
multiple partitions, we can very efficiently create an implicit global quantization of the
feature space and build a dictionary of visual words. Taking advantages of extreme
randomization, our approach achieves very good speed performance on a real medical
database, and this for a better accuracy than K-means clustering.

4.4.1 Introduction
With the goal of promoting multi-modal information retrieval, ImageCLEF proposes each
year a medical retrieval challenge [65]. Made accessible by the Radiological Society of
North America (RSNA), the database for this challenge contains more than seventy thou-
sands images taken from publications that appeared in the journals Radiology and Radio-
graphics. Consisting of 2D images in JPEG format, this collection counts medical images
from different modalities, but also photographs, drawings and graphics. Moreover, many
have been “processed” e.g. zoomed, cropped or annotated by medical experts. Because of
their high variability, retrieval of medical images in such multi-modal database is a chal-
lenging task. In [49], Kalpathy-Cramer et al. demonstrated the importance of recognizing
first the modality of images in order to improve the precision of image retrieval. Moti-
vated by this, a new subtask was organized last year at the ImageCLEF 2010 challenge.
In this section, we propose to tackle the problem of recognizing the modality of an image
based on its visual content only. Since similar anatomies appear in the different classes,
we can not rely on semantic information to discriminate the modalities. However, since
each imaging system is based on a different physical phenomenon, resulting images show
particular local visual signatures such as textural and noise patterns at small scales. For
instance, ultrasound images contain particular speckle patterns while relevant informa-
tion is contained in low fequency edges. Hence, to recognize modalities independently
of organs or anatomical structures appearing in the images, we propose to rely on local
textural and noise patterns information extracted at random positions of the image. To
efficiently represent the global statistics of appearance of such local signatures in an im-
age, a bag of visual words (BoW) can be constructed based on a visual dictionary. While
K-means clustering is a classical approach to build visual dictionaries, it suffers from sev-
eral limitations such as its computational cost and its dependence on the quality of its
initialization.

In this section, our main technical contribution is an extreme random clustering ap-
proach to build efficiently implicit dictionaries and construct discriminative BoWs. As
shown on fig.4.21, our approach begins with the random sampling of the input feature
space by extracting low level visual features at random positions in the images. Then,

104



4.4 Content-based Modality Recognition

Figure 4.21: Dictionary Learning Overview: First, visual features are extracted at random positions
in the images. Then, multiple independent partitions of the feature space are built. Finally, each cell of
these partitions are associated to a visual words.

multiple random partitions are built using Extreme Random Subspace Projection Ferns.
Finally, each cell of these partitions is associated to a visual word to form what we call
an implicit dictionary. Experiments conducted on CT, MR, PET, US and X-ray images
taken from the ImageCLEF 2010 database show that our approach is a fast alternative to
K-means clustering which provides better performance in terms of accuracy and speed.

4.4.2 Related Work

In computer vision, bag of visual words (BoW) have become a standard representation
tool for multi-class image recognition tasks. BoWs describe the content of an image in
terms of the frequency of appearance of the so-called visual words. The extraction of
these visual words relies on a quantization of the high dimensional space spanned by low-
level visual features [106]. A classical approach to quantize the feature space is K-means
clustering [90]. While K-means is highly dependent on the quality of its initialization, its
major drawback is its computational cost. Indeed, performing several runs of K-means
clustering in a high dimensional space may last a few days, which is not suitable for
updating the BoW representation of a medical database that changes on a daily basis.

During the last decade, efforts have been made to overcome the limitations of K-
means clustering to learn dictionaries. For instance, Nister et al. [67] introduced a
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tree-based approach for CD-cover recognition relying on hierarchical K-means that shows
better performance in terms of speed. Using mean shift, Jurie et al. [48] overcame
K-means’ tendency to draw cluster centers towards denser regions of the feature space.
Winn et al. [105] generated compact dictionaries by merging some of the visual words,
and this, without loss of discriminativity. In order to improve the discriminativity of
dictionaries, Perronin et al. [80] introduced an approach that combines universal and
class specific dictionaries and uses generative models. Yang et al. [106] proposed instead
to unify the unsupervised clustering with the training of a classifier. In the same direction,
Mairal et al. [60] presented an optimization framework to learn simultaneously a sparse
representation from a dictionary and its associated classifier.

As the papers cited above, we aim at improving the learning of dictionaries. The focus
of the proposed method differs from those in [80, 106, 60], as we propose to replace a
single but complex clustering step by the construction of multiple random partitions to
very efficiently quantize the feature space and thereby learn an implicit dictionary.

Since trees are able to identify natural clusters in high-dimensional spaces, random
forests have been recently applied to dictionary learning. For instance, Moosmann et
al. [64] and later Shotton et al. [89] proposed to build visual dictionaries for object
categorization by using leaves and nodes from all trees of a random forest as visual words.
Such dictionaries have shown state of the art performances while benefiting from fast
learning and evaluation. To identify clusters with a higher resolution, Perbet et al. pro-
posed in [79] to compute the intersections of all partitions and to represent them with the
nodes of a graph, which is then clustered with a Markov Cluster algorithm. If this method
leads to an explicit global partition of the feature space, its construction requires to solve
a second clustering problem. Moreover, reducing the redundancy of the dictionary may
lead to a loss of discriminativity. Following the idea of using leaves and nodes as visual
words from Moosmann et al. [64], we propose a very efficient dictionary learning ap-
proach based on extreme randomized clustering using ferns we call Extreme Random
Subspace Projection Ferns, which provides a compact structure and benefits from
very fast training and evaluation.

4.4.3 Proposed Method
We formulate the imaging modality recognition problem as an instance of a multi-class
classification problem. Our contribution is a method to learn a visual dictionary based
on extreme randomization in order to construct bag of visual words (BoWs) to represent
the images we want to classify. With an extreme random partitioning algorithm we
call Extreme Random Subspace Projection Ferns (ERSP), we can very efficiently
construct multiple quantizations of the feature space that we then use to build an implicit
dictionary. As shown on fig.4.21, our approach consists in the following steps:

1. Extract random points from the visual feature space.

2. Build efficiently multiple random partitions of the feature space with ERSP.

3. Concatenate these multiple random partitions.

106



4.4 Content-based Modality Recognition

4. Associate each cell to a visual word to construct an implicit dictionary.

5. Build bag of visual words (BoWs).

6. Classify using SVM with RBF kernel [19].

In contrast to K-means clustering, our approach is very fast and efficient, it is neither
dependent on initialization nor requires the number of clusters to be known beforehand.
Moreover, introducing randomization in the clustering phase permits to gain independence
of the available training set, which in turn provides better generalization in the case of
undersampled feature space, unbalanced data or noisy labeling. Finally, the proposed
method can be used in a supervised as well as semi-supervised setting. Next, we describe
the steps of the method enumerated above in details.

4.4.3.1 Visual Feature Space

The choice of suitable low-level visual features is crucial. In classical object recognition,
features are especially designed for recognizing an object subject to different imaging con-
ditions. Recognizing imaging modalities contrasts from classical recognition since similar
objects may appear in several classes, e.g. bone structures appearing in CT as well as in
X-ray images, or arteries and blood vessels that are visible in X-ray angiography and MR
Time of Flight. Fortunately, the observation of medical images from different modalities
shows particular textural and noise patterns at small scales. For instance, ultrasound
images contain particular speckle patterns while relevant information is contained in low
fequency edges. Hence, to recognize modalities independently of organs or anatomical
structures appearing in the images, we propose to rely on local textural and noise pat-
terns information extracted at random positions of the image. Hence, we propose the
extraction of the following low-level visual features: Patch colors/intensities, Local Bi-
nary Patterns (LBP) [68], as texture operator to encode local color/intensity changes,
and Histograms of Oriented Gradients (HOG) [23], to encode local appearance with local
distributions of color/intensity gradient directions. These local visual features are com-
puted on a set of patches that can be extracted densely or at particular keypoints of the
image, and that may have different size. In the present work, we use patches of size 17×17
extracted at random positions. This patchsize allows us to capture small scale patterns
independently of edges, corners or keypoints locations.

4.4.3.2 Extreme Random Subspace Projection Ferns

As explained in chapter 3, a random fern can be seen as the intersection of decision
stumps which permits to partition efficiently the feature space. As shown on fig. 4.22,
recall that while a tree is a set of random decision functions that split feature vectors
at each node towards the left or the right branch, a fern systematically applies the same
decision function for each node of the current level. This means that, in contrast to
random trees, the decision function is defined in the whole feature space. Results of these
random tests are finally stored as binary values, leading to a more compact and simple
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Splitting functions 
for classic random tree

Splitting functions
 for random fern
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Splitting functions
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Figure 4.22: Random trees and random ferns: In contrast to a tree, a fern applies only one decision
function per level. It induces splitting functions which traverse the whole feature space.

structure for performances that are similar to those of random trees [71]. Motivated by
their performance we choose to use random ferns for partitioning the visual feature space.

A ferns ensemble can be built as follows: we denote by F = {Ft}Tt=1 the random
ferns ensemble. Each fern Ft is defined as a set of L binary decision functions ft,l. The
output of evaluating a function ft,l on a visual feature vector X ∈ RD is binary, that is
ft,l(X) : X 7→ {0, 1}. We denote the result of the evaluation bt,l. Hence, to an input
feature vector X corresponds a binary vector bt = [bt,1, . . . , bt,l, . . . , bt,L]> encoding the
cell of the partition where the vector falls.

In our Extreme Random Subspace Projection Fern (ERSP) approach, we combine
random dimension selection and random projections [31] at each node test. Moreover, we
propose to investigate the effects of pushing the randomization one step further. Instead
of searching for the best threshold according to the information gain as in Extreme Ran-
domized Trees [36], we study the use of purely random splits. Thereby, the clustering
becomes independent from the training data, providing robustness to outliers or under-
sampled feature spaces and which permits to generate set of thresholds that better cluster
non-binary separable data once they are combined.

Let us now formally describe our Extreme Random Subspace Projection Fern (ERSP)
approach. We denote {Nl}Ll=1 the nodes of a given fern. As shown on fig. 4.23, at
each node Nl, we first randomly select d dimensions from the visual feature space. This
means at each node we consider the set of Q “subvectors” {Xsub

q,l } from the subspace
Rd computed from the full training set, where d < D. Then, each subvector Xsub

q,l is
projected to R using a randomly generated unit vector vl ∈ Rd: Xproj

q,l = v>l ·Xsub
q,l . The

binary splitting is performed with a threshold τl on each projected vector Xproj
q,l . Usually,

this threshold is optimized according to the data. For instance, τl can be defined as the
median of the projected data. In this work, we also investigate the effects of randomizing
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this threshold. To summarize, the following decision function is defined on the random
subspace as fl(Xsub) : Xsub 7→ {0, 1}:

fl(Xsub) .= max(0, sign(v>l ·Xsub − τl)).

The binary partition produced at node Nl is then stored in bl ∈ {0, 1}. Finally, a random
fern outputs a binary vector b encoding the index of the cell in which a feature vector
falls, i.e. b = [b1, . . . , bl, . . . , bL]>. Note that once the training has been performed, all
nodes operations are frozen. The pseudocode describing the growing of a fern is detailed
in Alg. 5.

Splitting functions
 for random fern

X

d dimensions

Xsub

Nl

vl

   τl

>τl b = 1l

b = 0l
T

random

select

≥

Figure 4.23: ERSP algorithm: At each node, subdimensions of the original feature space are randomly
selected. Then subvectors are projected using a random vector and finally, a random threshold operation
is applied.

4.4.3.3 From Multiple Independent Partitions to an Implicit Dictionary

Let us denote {Pt}Tt=1 the T independent partitions of the feature space built with a ferns
ensemble. Each partition is defined as the set of cells:

Pt =
{
C(1)
t , · · · , C(z)

t , · · · , C(Z)
t

}
(4.27)

with cardinality Z = 2L. C(z)
t represents the cell indexed by a unique binary vector

bt = [bt,1, . . . , bt,l, . . . , bt,L]> resulting from the splitting operations induced by the fern
Ft. To construct our dictionary D, all random partitions are concatenated and each of
their cells are associated to a visual word of the dictionary:

D = {Dm}Mm=1 =
{
C(1)

1 , · · · , C(Z)
1 , · · · , C(1)

T , · · · , C(Z)
T

}
(4.28)

Since these visual words are not induced by an explicit global quantization of the space,
but from overlapping partitions, the resulting dictionary is called “implicit”. Now that the
dictionary has been defined, each new feature vector X can be associated to a visual word
as follows: first, X is passed through each ferns of the ERSP ensemble and corresponding
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Algorithm 5: Pseudocode for Extreme Random Subspace Projection Fern
1: Input: {Xq}, (q ∈ {1, · · · , Q}) {input feature vectors}
2: Output: {bq}, {output binary vectors}
3: \\loop over the nodes
4: for each node Nl, (l ∈ {1, · · · , L}) do
5: \\select randomly d dimensions
6:

{
Xsub
q,l

}
← selectRandomSubspace({Xq},d)

7: \\generate randomly a random unit vector of dimension d
8: vl ← generateRandomProjection
9: \\project all subvectors
10: for each subvector Xsub

q,l do
11: Xproj

q,l ← v>l ·Xsub
q,l

12: end for
13: \\generate randomly a threshold in the range of the projections values
14: τl ← generateRandomThreshold

({
Xproj
q,l

})
15: \\perform binary test for each projection value
16: for each projection value Xproj

q,l do
17: if Xproj

q,l > τl then
18: bq[l] = 1
19: else
20: bq[l] = 0
21: end if
22: end for
23: end for

output cell indexes {Pt(X)}Tt=1 are gathered. Then, the BoW is updated by incrementing
the frequency of appearance of visual words according to these indexes. Finally, an image
I is then represented by a the bag of words defined as:

H(I) = [P (D1|X ) · · ·P (Dm|X ) · · · P (DM |X )] (4.29)

where X =
{
XI
q

}Q
q=1

is a set of features extracted from Q random patches of image I, and
P (Dm|X ) the probability of a visual word Dm knowing X . Finally, H(I) can be fed to a
SVM classifier with a RBF kernel for modality classification.

4.4.4 Experiments and Results
In this section, we propose to recognize the modality of medical images taken from the
ImageCLEF 2010 database [65]. While modality recognition was a new subtask from
the medical image retrieval challenge at ImageCLEF 2010, this application brings new
challenges as the database given as training set consists of classes with heterogenous
content and very high variability. The same organs may appear in each modality, and
different kinds of organs or anatomical structures appear within the same class. Moreover,
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CLASSIFICATION RESULTS
K-means

Nb of clusters 1000 2000 5000 10000
F-measure 75.1% 75.2% 75% 74.2%

Our approach
ferns/nodes/clusters 8/8/2048 8/10/2560 10/8/8192 10/10/10240

F-measure 76.8(74.9)% 75.8(75.1)% 76.8(75.9)% 76.9(76)%

Table 4.3: Classification results: our approach against K-means for different numbers of ferns and
nodes. We investigate the effects of randomizing the choice of the threshold (results in parenthesis). Our
approach provides slightly better results, even by using extreme randomization.

the database contains some multi-modal images such as PET/CT, which create overlap
between classes. Note that we constrain here the problem to the most interesting and
challenging modalities from the database:

◦ CT: Computerized tomography (314 images).

◦ MR: Magnetic resonance imaging (299 images).

◦ PET: Positron emission tomography including PET/CT (285 images).

◦ US: ultrasound including (color) doppler (307 images).

◦ XR: x-ray including x-ray angiography (296 images).

This leads to a total of 1501 images. GX (Graphics,drawings,...) and PX (Pho-
tographs,...) classes have been discarded for our study.

To build the dictionaries, 5000 random patches are extracted for each class which
make a total of 25000 visual features. During the test phase, 1000 random features are
computed to construct the BoW of an image. For each test, classes are rebalanced by
using random subsampling. A grid-search is performed to find the best hyperparameters
for the SVM classifier. Note that all experiments are performed with MATLAB and we
use the fast Kmeans++ implementation proposed by Arthur et al. [6] to perform K-means
clustering with a clever initialization.

Tab. 4.3 compares the classification results and tab. 4.4 the times needed to cluster
the data points to create the dictionary. Our approach performs slightly better than
K-means even if thresholds are randomly chosen. Moreover, while K-means needs sev-
eral hours to perform one clustering run, our method clusters the data in less than two
seconds. Fig. 4.24 compares the confusion matrices our approach against K-means, and
fig. 4.25 presents the classification results for each class. For both approaches, most of the
confusion occurs between the CT and MR, and between the two and some of the X-ray
images. This is expected as CT and MR may sometimes be difficult to discriminate using
only local information. Indeed, they both contain patterns showing high variability ac-
cording to the chosen feature representation. Moreover, images may suffer from artifacts
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CLUSTERING TIME
K-means

Nb of clusters 1000 2000 5000 10000
Time in hours 2.3 h 3.5 h 6.6 h 11.3 h

Our approach
ferns/nodes/clusters 8/8/2048 8/10/2560 10/8/8192 10/10/10240
Time in seconds 1.08 s 1.16 s 1.28 s 1.41 s

Table 4.4: Clustering time: our approach against K-means for different numbers of ferns and nodes.
While K-means requires a few hours to get create a good dictionary, our approach needs less than 2s.
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Figure 4.24: Confusion matrices: K-means (left) compared to our approach (right). Our approach
outperforms K-means for almost all modality classes. For both, most of the confusion happens between
CT and MR, while PET and US are well recognized due to their particular appearance.

due to the imaging system itself or to jpeg compression. Such artifacts may alter intensity
patterns and distributions or worst, create artificial structures that look very similar in
CT and MR. Confusions between CT and X-ray can be explained from the fact that they
are based on the same physical phenomenon. Concerning MR and X-ray, confusions occur
for instance in the case of cropped images of the knee which, except from the cartilage,
are very dark. On the other hand, PET and US images show very discriminant patterns
that can be very well separated. In the case of PET-CT images, since colors are used
to represent PET signals, they can be be also well recognized. In fig. 4.26, we compare
the influence of increasing the number of ferns on the f-measure, and this for both ERSP
methods with and without threshold randomization. These figures suggest that with ex-
treme randomization: (1) more ferns are needed to achieve comparable performance, and
(2), the performance converges towards a limit while in the other case, we can expect
further increase in the f-measure.
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Figure 4.25: Overall classification accuracy: Comparative results for the different modalities be-
tween K-means and our approach. Our approach outperforms K-means for almost all modality classes.
Again, most of the confusion happens between CT and MR, while PET and US are well recognized.

4.4.5 Discussion and Conclusion
In this section, our contribution is an approach to construct implicit dictionaries for
modality recognition using extreme randomization. The backbone of our method is a
clustering algorithm based on random ferns we call Extreme Random Subspace Projec-
tion (ERSP) ferns. Our approach is very fast, it provides independence from the available
training set through extreme randomization, it is not highly dependent on the initializa-
tion, and it does not require the a-priori knowledge of the number of clusters. Experiments
conducted on medical images from ImageCLEF 2010 database show that our approach is
a fast alternative to K-means clustering for building efficiently dictionaries for multi-class
classification.

113



Chapter 4: Random Forests: Contributions in Medical Applications

3 5 8 10 12
68

70

72

74

76

78

Nb of Ferns

F
−m

ea
su

re

 

 

3 nodes
5 nodes
8 nodes
10 nodes

3 5 8 10 12
55

60

65

70

75

80

Nb of Ferns

F
−m

ea
su

re

 

 

3 nodes
5 nodes
8 nodes
10 nodes

Figure 4.26: Threshold randomization: Classification results for ERSP approach without (top) and
with (bottom) threshold randomization according to the number of ferns and to the number of nodes.
If extreme randomization is used (bottom), more ferns are needed to achieve comparable performance.
Moreover, the performance converges towards a limit while in the other case (top), we can expect further
increase in the f-measure.
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4.5 STARS: Several Thresholds on a Random Sub-
space

In this section, we propose a novel random partitioning approach we call STARS: Sev-
eral Thresholds on a Random Subspace that has been published in [76]. Instead
of modeling directly the posterior distribution over the entire space, we propose to divide
the problem by creating multiple partitions in different random directions of the feature
space. The novelty of our STARS approach resides in the fact that they consist of multi-
decisions stumps (see fig.4.27), which permits to extract more information from each
subspace. By aggregating the predictions of multiple independent STARS elements, a
strong ensemble learner can be constructed. In the following, we start by motivating and
defining our STARS model, and we demonstrate that it can be very efficiently imple-
mented. Afterward, we show that STARS ensemble can be instantiated for different tasks
such as classification or clustering, and this in an offline or online fashion. Furthermore,
we analyze their behaviour on a few toy examples and adapt them for dictionary learning
to tackle the problem of modality recognition of a medical image.

Figure 4.27: STARS ensemble: They can be seen as an ensemble of multi-decisions stumps.

4.5.1 Motivation
A wide range of computer vision applications such as face detection, object recognition
or tracking can be formulated as supervised learning tasks. These latests can be modeled
in a probabilistic fashion as a maximum a posteriori problem, which requires learning the
class posterior distributions in a specific feature space in order to perform predictions for
new incoming observations.

A major challenge is to find an efficient and memory-friendly approach for partitioning
the full space and evaluating the posterior in each resulting “cell”. A simple and well
studied partitioning approach is the decision tree. If a tree benefits of fast training and
evaluation, it suffers from some limitations. Indeed, training an optimal tree is a NP-
complete problem, and with a high risk of overfitting. However an ensemble of independent
trees, namely random forest, can achieve state-of-the-art performance, and this, in several
applications such as tracking [54], object categorization [10], or dictionary learning [64],
[89]. To achieve such performances, binary decisions are performed at each node of the
trees based on a simple linear operation, which is very often a projection on a random
subspace. While this permits to very fast partition the feature space, binary decisions
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Figure 4.28: STARS motivation: Using multi-decisions permits to capture more information in a
random subspace than a binary decision.

bring only limited information on the input data after projection on this random subspace.
To take full advantage of the information contained in each random subspace, we propose
in this section a novel partitioning structure we call STARS: Several Thresholds on
A Random Subspace.

In contrast to trees, a STARS can be seen as a multi-decisions stump, i.e. a single
node using multiple decisions instead of a single binary decision. As illustrated by fig.4.28,
the motivation comes from realizing that a single binary decision is not well adapted to
handle multiple clusters. By simply increasing the number of thresholds on the subspace
induced by a random projection, a full partition can be built and posteriors can be learned
in each cell of this subspace. While a single STARS constitutes a weak learner, combining
an ensemble of independent STARS permits to construct a strong learner. In this section,
we will define the STARS model, explain how to implement it efficiently and finally discuss
how to derive them for classification or clustering.
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Figure 4.29: STARS model: provides a fast partitioning on a random one-dimensional subspace.

4.5.2 STARS Model
To fully exploit the information contained in each random subspace, we propose to use
multiple decisions to partition the random subspace and fast approximate the posterior
as shown on fig.4.29. In this section, we start with the formal definition of STARS
elements, and then combine STARS to build a strong classifier.

4.5.2.1 Formal Definition of a STARS

From multiple decisions to a partition:
Let us denote by F a STARS model. F is defined by a random unit vector v of dimension-
ality D and a vector T whose entries are ordered thresholds T = (τ1, · · · , τb, · · · , τB)>,
where τ1 < τ2 < · · · < τb < · · · < τB and B is the number of thresholds. Intuitively, a
STARS creates a partition P of the subspace defined by v using the thresholds T . P is
represented by a set of “cells” or “bins” of this subspace:

P =

 ]−∞, τ1]︸ ︷︷ ︸
C(1)

, ]τ1, τ2, ]︸ ︷︷ ︸
C(2)

· · · , ]τB−1, τB]︸ ︷︷ ︸
C(Z−1)

, ]τB,+∞[︸ ︷︷ ︸
C(Z)

 (4.30)

where
{
C(z)

}Z
z=1

denote the cells and Z is the total number of cells.

STARS definition:
Consider an input point X of feature space X . Passing X through STARS F associates
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Figure 4.30: Influence of random projection: 2 overlapping classes are generated from 2 Gaussian
distributions. A random direction is represented by a green vector. Below, the approximated probability
distribution of the data points is plotted after projection on these 2 different directions. The performance
of a STARS structure depends on the chosen direction according to the kind of data to classify.

this point with an index z ∈ {1, · · · , Z}. This index corresponds to the cell Cz in which
the projection X on v falls. We define Xproj ∈ R to be the projection:

Xproj = X> · v, (4.31)

Then Xproj is compared to each threshold contained in T . To vectorize this operation,
we use a all-ones vector 1B of dimension B and simultaneously compare Xproj to all
thresholds as follows:

Xbin =

( 1B︸︷︷︸
B×1

·Xproj︸ ︷︷ ︸
1×1

) ≥ T︸︷︷︸
B×1

 (4.32)

where ≥ is the operator comparing the entries of two vectors. Xbin is a binary vector,
whose bth entry is equal to 1 when the condition Xproj ≥ τb is fulfilled and 0 otherwise.
The cell in which the point falls is determined by 2 thresholds such that τb−1 ≤ Xproj ≤ τb.
These 2 thresholds are easily detected as they corresponds to the 2 consecutive entries in
Xbin containing a 1 and then a 0. The index z of the cell in which the point falls can be
efficiently determined by summing the entries of Xbin and add 1:

z =
∥∥∥Xbin

∥∥∥
1

+ 1 (4.33)

Note that since thresholds are ordered, vectors Xbin are always composed of ones entries
followed by zero entries. Therefore, summing all one elements (and adding 1) allows to
unambiguously determine the cell index. Finally to summarize, the STARS operation
associates each point X to the index of the cell z in which its projection falls:{

F : (X) 7−→ z

F(X) .=
∥∥∥((1B · (X> · v)) ≥ T

)∥∥∥
1

+ 1 (4.34)

Choice of v:
v is chosen to have same dimensionality as the input feature space. Its entries are ran-
domly generated in the range [−1, 1]. To add some randomization to the feature selection,
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a subset of d dimensions are randomly selected. This permits to analyze dependencies
between different subset of features and can be done by keeping only d non-zero entries
in the vector v. Finally, v is normalized.

Choice of T :
While there are plenty of possibilities for setting the thresholds in T , we use the training
set to generate them in the interval defined by their projections. This is a reasonnable
choice permitting to restrict the thresholds to the part of the feature space that is effec-
tively occupied by the data points. Then, in the present work thresholds are chosen such
that they create an uniform binning. While using such an uniform binning is equivalent
to performing histogramming in random subspaces, thresholds can be generated on this
interval using any kind of distribution.

Estimation of the posterior:
To estimate the posterior distribution on the random subspace defined by the vector v,
all points of the training set

{
(X(n),Y(n))

}N
n=1

are passed through the STARS structure
F and to compute their cell indexes. Posterior can then be learned in each cell using their
corresponding training points:

p(Y|X ∈ C(z),P) (4.35)

As shown in fig. 4.29, a STARS structure permits to build a fast partition in one direction
of the feature space and to approximate the posterior in each of its cell. The choice of this
direction according to the training set seems to be crucial to ensure good performance.
Indeed, by using only one partitioning element, a random choice of the projection may
lead to a high variance. For this reason, we propose to use STARS in an ensemble learning
fashion. As stated by Freund et al. in [31], with a large set of random projections, the
probability of capturing interesting directions of the data as is high. Moreover, using
random projections is computationally very efficient.

By using multiple STARS learners, one can construct a strong learner, where each
STARS builds a partition Pt over a different random projection of the same feature space.
Once the training phase finished, posterior estimates of all individual STARS can be
combined using averaging:

p(Y|X) = 1
T

T∑
t=1

p(Y|X,Pt) (4.36)

In the following, we will show how STARS ensemble can be very efficiently implemented
for fast learning or prediction.

4.5.2.2 STARS Ensemble: an Efficient Implementation

In this section, we detail our algorithm to create an ensemble of T STARS F = {Ft}Tt=1.
Then, we discuss the advantages provided by our approach compared to methods based
on Fisher’s linear discriminant.
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Figure 4.31: STARS algorithm: associating input feature vectors to the cells in which they falls.
First the data is projected on a set of random directions. Then each projection is compared to a set of
thresholds producing a binary vector. The cell index is determined by summing all entries of this binary
vector and adding 1.

Efficient Ensemble learning:
One main advantage of having a simple structure such as a STARS is the possibility of
high vectorization of the code permitting an efficient implementation. First a D × T
matrix V containing all T random projection vectors vt as columns is generated, where
D is the dimensionality of the feature space X . The training data contained in the
matrix S ∈ RN×D, where each row is an observation, is projected on V to obtain a
matrix Sproj ∈ RN×T containing the projections of data points in all random directions.
In the next step, the minimum and the maximum of Sproj are computed for each one-
dimensional subspaces to setup the intervals for each STARS. A T×B matrix T containing
all thresholds is generated using these intervals and all projections Sproj are thresholded
resulting in a N × T ×B binary matrix Sbin. The cell indexes stored in a N × T matrix
z are finally computed by summing all elements of Sbin along the third dimension and
adding 1 to ensure that first cell indexes are equal to 1. The pseudocode for the training
of a STARS ensemble is summarized in alg.6 and illustrated in fig. 4.31. Note that all
functions in alg.6 can easily be vectorized/parallelized.

After gathering the output indices z, it is possible to estimate the posterior probabil-
ities on each partition Pt associated to Ft. As discussed in the previous chapters, there
are several possibilities to combine their posteriors. In the present work, we assume all
partitions are equiprobable and use a simple averaging:

p(Y|X) = 1
T

T∑
t=1

p(Y|X,Pt) (4.37)

STARS ensemble parameters:
As for trees and ferns, STARS ensemble possess only a few hyperparameters, the most
important being (1) the number of STARS and (2), the number of decision bins.
As STARS are weak learners, increasing their number permits to increase the prediction
performance. The number of decisions per STARS is a crucial parameter as it directly
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Algorithm 6: Pseudocode for STARS Ensemble
1: Input: S =

{
X(n)

}
, (n ∈ {1, · · · , N}) {input feature vectors}

2: Output: z =
{
z(n)

}
, {cell indexes}

3: \\create a matrix V containing the random projections as columns
4: V ← generateRandomProjections
5: \\project all points of the training set on all different random vectors
6: Sproj = performProjections(S,V)
7: \\first compute ranges for thresholds
8: Sprojmin = min(Sproj)
9: Sprojmax = max(Sproj)
10: \\create B thresholds for each STARS so that intervals defined by the min and max

are uniformly binned
11: T = generateThresholds(Sprojmin ,S

proj
maxi, B)

12: \\perform thresholding and output binary vectors
13: Sbin = performThresholding(Sproj, T )
14: \\compute the cell indexes
15: z = sum(Sbin)
16: z = z + 1 {ensure that first cell index is 1}

controls the number of cells or bins of the partition induced by each STARS. Consequently,
it needs to be optimized to achieve a good generalization. STARS have an “optimization-
free” nature and their performance is directly linked to their random projection. Hence,
to provide a good partitioning of the full feature space, a STARS ensemble needs more
weak learners than a forest or random ferns ensemble.

Comparison to Fisher’s linear discriminant (FLD) based approach:
In an ensemble fashion, our STARS approach constitutes a strong learner even if it is
based on random projections. We propose here to illustrate this by comparing it to an
approach which searches for an optimal subspace before performing a decision. As FLD
aims at finding the best subspace to discriminate classes, we propose to build a FLD-based
ensemble learner and to compare it with a STARS ensemble on a few synthetic datasets.
Note that to train such a FLD ensemble, we use different bootstraps of the training set to
ensure the construction of different FLD weak learners. As shown on fig 4.32, FLD fails
to discriminate multi-clusters or non-convex classes. Indeed, while STARS do not make
any assumption on the class distribution, FLD makes the assumptions that classes are
linearly separable, uni-modal and Gaussian distributed.

In the following, we will briefly explain how STARS can be used for different learning
tasks such as classification and clustering.
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Figure 4.32: Comparison of FLD based ensemble and STARS: Clustering of synthetic datasets.
In contrast to FLD, a few STARS show better ability to separate multi-clusters and non-convex classes.

4.5.3 STARS for Classification and Clustering
4.5.3.1 STARS for Classification

Let us consider a training set
{
X(n),Y(n)

}N
n=1

of N observations from the feature space
X ⊂ RD and their associated class labels from the finite set of labels denoted by Y =
{yk}Kk=1. The goal of multi-class classification is to learn the posterior P (Y|X), to be then
able to perform predictions for an unseen observation X by using maximum a posteriori:

Ŷ = argmaxY∈Y p(Y|X) (4.38)

To learn efficiently this posterior, a partition P , defined as an ensemble of Z cells
P =

{
C(z)

}Z
z=1

, is constructed by using a STARS. It is then possible to approximate
the posterior in each cell C(z).

Pruning: For classification purposes, STARS ensemble can be efficiently pruned. In-
deed, after training, STARS elements having a low discriminativity can be discarded.
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Intuitively, the smaller the overlap of the posterior distributions of each class, the more
discriminative is the STARS. Different measures can be designed to determine the dis-
criminativity of each STARS, for instance using classical distribution distances such as
the Kullback-leibler divergence (KL) measured over a full partition:

KL(Pz) =∑
Y,Y′∈Y
Y 6=Y′

Z∑
z=1

p(Y|X ∈ C(z),P) log
(
p(Y|X ∈ C(z),P)
p(Y′|X ∈ C(z),P)

)
(4.39)

Intuitively, this measure takes into account the divergences between all classes and results
in a high value for a discriminative partition. Finally, we simply perform pruning by dis-
carding STARS having a KL measure which are lower than a pre-defined threshold.

Influence of STARS parameters: In this part, we propose to show the influence of
the main STARS parameters, e.g. the number of decisions and the number of STARS.
Therefore, we will use the same 3 toy examples as for forests and ferns: the “cross”, “sun”
and “two moons” datasets (see fig.3.5).

Let us start with a single STARS, where its projection is randomly generated and
the bins are uniformly distributed within the interval defined by the features of the data
points. STARS are optimization-free weak learners that approximate the posteriors on
random direction. We vary only the number of bins between 8 and 32. We propose to
plot the resulting posterior over the feature space using a color code varying from deep
blue to red according to the posterior values for the blue and the red class.

As shown on fig. 4.34, when the number of decision bins is increasing, it builds partition
with a higher resolution yielding more stripes perpendicularly to the projection vector.
Again, as there are no optimization, the partition construction is not making use of
the data, which explains the high variability of a single STARS. As for ferns, when the
number of decision bins increases, the risk of creating empty bins is higher. Hence, a good
compromise has to be found for the number of bins as it definitely has a big influence on
the generalization.

Now let us set the number of bins equal to 16 and vary the number of STARS. As
illustrated by fig.4.35, STARS are weak learners which performance highly depends on
the random projection. Thus, increasing the number of STARS is crucial as it permits to
better fit the data, achieve better generalization and get smoother posteriors, i.e. smoother
boundaries between the classes. Fig. 4.33 demonstrates that STARS ensemble compare
well with forests or random ferns.
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Figure 4.33: Comparison to forests and random ferns: despite its very simple structure, STARS
provide a good class posterior which compares well with the other methods
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Figure 4.34: Classification posterior of a single STARS: we propose here to study the influence
of the number of decision bins parameter.
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Figure 4.35: Classification posterior of a STARS ensemble: the number of bins is set to 16, we
propose here to study the influence of the number of STARS.
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4.5.3.2 STARS for Clustering

Considering an input feature space X ⊂ RD, each cell of the partitions induced by STARS
can be associated to a cluster. Hence, as for random forests and ferns, each STARS maps
a point X ∈ X to a cluster, and this happens by simply looking at the cell it falls in:

Ft(X) = C(zt)
t (4.40)

Again, each observation is associated to a set of clusters coming from multiple partitions
in different projections of the same feature space. They can be merged into one global
clustering using the 2 approaches presented in the previous chapter which are: (1) perform
intersection between the different partitions to create a global partition and thereby
global clusters, (2) keep the vectors of cells as an implicit representation of the global
clusters.

4.5.3.3 Discussion

In this section, we presented a novel fast random partitioning approach called STARS,
which can be seen as an ensemble of multi-decisions stumps. They permit to create ef-
ficiently multiple partitions in random projections of the same feature space, to finally
approximate the posterior probability distribution in each cells of each random subspace.
Due to their simple structure, STARS ensemble can be very efficiently implemented in
a highly vectorized fashion, and they can be derived for multiple learning tasks such as
classification, regression or clustering. One interesting property of STARS is that they
keep track of cells neighborhood in contrast to trees or ferns. Indeed, in these latests, it is
impossible to know from their structure which cells are neighboring in the feature space.
In STARS, their structure reflects their cell neighborhood of the subspaces. This nice
property permits for instance to perform regularization between neighboring cells while
estimating the posteriors, or to easily perform soft cell assignment for incoming observa-
tions. Another idea that needs to be investigated would be to compute the cell indexes
by using an intersection strategy as in ferns. While this would increase the complexity of
the approach, the created cells would be better localized and provide improved posteriors.

4.5.4 STARS: Application to Content-based Modality Recogni-
tion

Now we propose to apply STARS to the problem of learning visual dictionaries to com-
pactly represent images with bag-of-visual-words. Remind that a Bag of Visual Words
(BoW) representation considers a set of feature vectors extracted locally from patches of
an image. To construct a compact image representation, this feature space is quantized
in cells. Each cell is represented by a visual word and the whole set of visual words is
called dictionary. Each local feature vector can be associated to one of the visual words
of this dictionary depending on the cell of the space it belongs to. A BoW is then de-
fined as the histogram of appearance of the visual words of the image. A classical way
of building a dictionary is to use hierarchical K-means clustering [67] on the set of visual
features extracted from a training set of images. Based on a hierarchical tree structure,
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this approach proposes to perform a simple K-means clustering with a small amount of
clusters at each node of the tree. In the end, the resulting cluster centers in the leaves of
the tree define the visual words of the dictionary. Each feature vector is pushed through
the whole hierarchical structure and associated to its nearest cluster center. By replacing
one single hierarchy by an ensemble of trees and by getting rid of the K-means clustering
step, Moosmann et al. showed in [64] impressive results for dictionary learning. Following
this idea, we propose to use our STARS approach to create multiple partitions of the
feature space, and to associate each cell of each STARS to a visual word. Finally, by
passing a set of local visual features through the STARS ensemble and by gathering all
output indexes, a BoW is constructed as the histogram of appearance of each cell index
over the training dataset.
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Figure 4.36: Overall classification results for modality recognition of medical images: our
STARS approach (overall 81.7%) performs mostly better than hierarchical K-means (76.1%) and Ran-
dom Ferns (79.43%)

In contrast to classical image categorization, we propose here to recognize the modality
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of medical images taken from the ImageCLEF2010 database [65] as in the previous section.
Assuming that local intensity patterns, texture and noise information permit to dis-

criminate between modality classes, we use the same low-level visual features as before:
patch colors/intensities, Local Binary Patterns (LBP) [68] as texture operator to encode
local color/intensity changes, and Histograms of Oriented Gradients (HOG) [23] to en-
code local appearance with local distributions of color/intensity gradient directions. In
these experiments, we compare our approach to hierarchical K-means and random ferns
to build visual dictionaries. The branching factor has been set to 3 for hierarchical K-
means, which means that at each node, K-means clustering is performed with K = 3.
We investigated performances for hierarchy having different depths, note that the result-
ing number of visual words is then Kdepth. For ferns, we tested different numbers of
ferns/nodes and best performances have been reached with 10/10 Ferns/Nodes. For our
STARS ensemble, we tested the effects of increasing the number of STARS and of bins. In
the training phase, 5000 random patches are extracted for each class which make a total
of 25000 visual features. During the test phase, 10000 random features are computed to
construct the BoW of an image. Finally, 5-folds cross-validation has been performed on
the constructed BoWs.

As shown on fig.4.36, the dictionary learning approach based on STARS clustering
(overall 81.7%) performs mostly better than hierarchical K-means (76.1%) and random
ferns (79.43%). According to the confusion matrices, all three methods have similar
behavior as observed already in the previous section: most of the confusion occurs between
the CT and MR, and between the two and some of the X-ray images. On the other hand,
PET and US images show very discriminant patterns that can be very well separated.
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CHAPTER

FIVE

CONCLUSION AND OUTLOOK

“This is the end.”
Jim Morrison

Along the different chapters of this thesis, our goal was twofold as reflected by its title:
“Random Forests for Medical Applications.”

First, we aimed at presenting random forests, a fascinating and multi-task ensemble
learner, as a partitioning approach. While they have been mainly used for classifica-
tion, random forests gain more and more interest for solving other learning tasks such as
regression or clustering. The partition formalism we use in this thesis permits to fully un-
derstand the philosophy of random forests: divide and conquer. Indeed, they construct
piece-wise posterior models by, (1) creating a partition over the full feature space using
simple binary decisions, and (2) model the posterior distribution in each cell of this space.
In fact, by defining the right objective function and designing an appropriate posterior
model within the leaf, one can adapt the random forests to tackle any kind of learning
problem. Afterward, we presented and analyzed the random ferns, often considered as
ensemble of constrained trees. We propose instead a new interpretation of random ferns
as intersection of decision stumps, and this permits us to better understand their
advantages and pitfalls. Benefitting of a highly randomized nature, they are very fast,
compact and robust to noisy data. However, as they are optimization-free, they need to
be deeper than trees and may create empty cells. Finally, we proposed our own ensemble
partitioning approach, namely the STARS. Constructed as ensemble of multi-decisions
stumps, they permit to create partitions in multiple random projections of the same fea-
ture space. Due to their simple structure, they can be very efficiently implemented and
derived for different learning tasks. Moreover, they respect the neighborhood structure
of the cells in the feature space, which would allow for instance to perform neighborhood
regularization during the learning phase, or to perform soft cell assignment.

Second, we demonstrated the great potential of forests-related approaches in different
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medical applications such as multiple organ localization, segmentation, lesion detection or
content-based modality recognition of medical images. While very often, a classification
formulation of such tasks seems to be a natural choice, the lesson learned here is that
simple classification is not always the most appropriate formulation in a field such as
medical imaging. Indeed, classification relies often on local visual context only, which is
in medical imaging often noisy or ambiguous. Since the human body consists of a generic
anatomy, there is a huge prior information on the global context, i.e. on the position,
shape and appearance of the different organs. By formulating our tasks as regression,
joint classification-regression, or by combining visual information and spatial prior, we
could demonstrate major improvement in performances and robustness. Random forests
embody the perfect framework for learning-based approaches in medical applications, as
they permit to integrate application specific objective functions and posteriors. In all
medical applications, a lot of rich information remains hidden, ignored or unused while
formulating the problem of interest. In future work, we aim at modeling and integrating
more application-specific prior information in forest models to further demonstrate their
great potential. Moreover, the different sources of information embedded in medical imag-
ing data do not live in completely independent spaces. Indeed, they are inter-connected
and should have very interesting structures that need to be explored. For instance, while
formulating organ segmentation as a classification task, each voxel is only associated to
the target organ label. However, human anatomy has been exhaustively studied and de-
composed in multiple hierarchical systems and structures. So why not taking advantage
of this hierarchical semantic information to redefine the organ segmentation problem as
a hierarchical classification? Each voxel would be associated to a hierarchy of labels,
and new objective functions could be designed to drive the hierarchical classification, by
giving successively priority to the different levels in the hierarchy. Furthermore, most
learning-based approaches that have been proposed in medical imaging follow discrimina-
tive strategies. Indeed, given an observation such as a medical data, the goal is very often
to infer the desired output. Beyond this, the creation of anatomical generative models
is of great interest, as they would permit to generate random anatomical samples from
the learned distributions, the far goal being to learn a human anatomy generative model.
While such generative models become reality for human body shape by using 3D laser
scanners, the construction of anatomical models raise many challenges to capture all the
variability across the population, e.g. by matching each anatomical structure perfectly.
However, the impact of such models for medical imaging applications would be dramatic
for numerous tasks such as semantic parsing, segmentation, registration or abnormality
detection. Several strategies could be elaborated for the creation of modality-specific
models, multi-modal models or real anatomical models. While the two firsts would be
built from imaging data and could be used only in application-specific setups, the latest
would require high-resolution optical data such as the one shared by the Visible Human
Korean project and could be used as a latent model for all types of imaging modalities.

Finally, we also implicitely argued in this thesis for the application of machine learning
approaches in the field of medical imaging. While machine learning suffered a lot from
its image of “sorcery”, we hopefully convinced the reader along this thesis that at least
random forests and related techniques are transparent models with a fully understandable
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behaviour. As many tasks in medical imaging still need to be defined in a supervised way,
human expert annotations remain a crucial requirement. On one side, we would like to
encourage the community to build shared databases of labelled patient data, even if we
are aware of the difficulties that need to be overcome. On the other side, further efforts
can be done in learning-based medical imaging to move from fully supervised approaches
towards semi-supervised or unsupervised formulations. Furthermore, in the context of
medical image analysis, new strategies need to be explored to facilitate the convergence
between human and machine predictions. First, fast learning approaches such as the
few presented in this thesis could be pushed towards efficient online learning to enable
systems to evolve as new observations come in. Second, we strongly believe that novel
approaches based on active learning need to be explored to open the doors for interac-
tive human-machine learning. Indeed, transferring fully automatic frameworks into the
clinical routine is challenging. Often specialized for particular applications or machine se-
tups, such approaches might suffer from low acceptance. Designing novel human-machine
interactive frameworks could lead to very efficient solutions that would be very flexible
to different imaging conditions or system setups and would get better acceptance in the
clinical routine.
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APPENDIX

A

SIMILARITY LEARNING: CONTRIBUTIONS IN MEDICAL
APPLICATIONS

In this appendix, we present our learning-based contributions for multi-modal image regis-
tration and guide-wire tracking in fluoroscopic sequences that have been published respec-
tively in [77] and [74]. We propose a novel framework based on support vector regression
to learn data-driven similarity measures. First, we show how to use this framework in the
context of multi-modal image registration by learning a function which relates the space
of joint intensity distributions to the registration error. Then, we adapt this framework to
a deformable problem, namely the tracking of a guide-wire in fluoroscopic sequences. We
first learn the distribution of guide-wire motions to reduce the complexity of the problem.
Then by generating random samples from this distribution, we build a training set of local
visual features and their corresponding tracking error. The data term is finally learned
using support vector regression.

A.1 Similarity Learning for Multi-modal Registra-
tion of Medical Images

In multi-modal registration, similarity measures based on intensity statistics are the cur-
rent standard for aligning medical images acquired with different imaging systems. In
fact, the statistical relationship relating the intensities of two multi-modal images is con-
strained by the application, defined in terms of anatomy and imaging modalities. In this
chapter, we present the benefits of exploiting application-specific prior information con-
tained in one single pair of registered images. By varying the relative transformation
parameters of registered images around the ground truth position, we explore the man-
ifold described by their joint intensity distributions. An adapted measure is fitted using
support vector regression on the training set formed by points on the manifold and their
respective geometric errors. Experiments are conducted on two different pairs of modali-
ties, MR-T1/MR-TOF and MR-T1/SPECT. We compare the results with those obtained
using mutual information and Kullback-Leibler distance. Experimental results show that
the proposed method presents a promising alternative for multi-modal registration.

135



Chapter A: Similarity Learning: Contributions in Medical Applications

A.1.1 Introduction

Image registration is a crucial processing step in all image analysis tasks in which infor-
mation from various imaging sources needs to be combined. Establishing correspondences
between images acquired with different medical imaging modalities is a challenging task
known as multi-modal registration. Objective functions that evaluate the quality of align-
ment, known as similarity measures, are optimized to identify the geometric transforma-
tion that maps the coordinate system of one modality to the other [115]. The choice of the
appropriate measure is not straightforward, because it implicitly models the relationship
between the different images to register [84]. Classical measures such as sum of square
differences (SSD) or correlation coefficient (CC) make the assumption of a linear func-
tional mapping between the intensities of the images to align. But this hypothesis is far
from being realistic according to the physics of different imaging systems. Modeling the
real relationship between different imaging modalities is very difficult and this explains
why statistical measures have become more and more popular. Since its introduction by
Viola and Wells [101] and Collignon et al [18], mutual information remains the state of
the art of multi-modal registration of medical images.

Even though the statistics relating intensities of two multi-modal images is modality-
specific, there were only few attempts to incorporate prior knowledge in such similarity
measures. Chung et al. [17] proposed to use as prior information a reference joint proba-
bility distribution of registered images from different modalities. Images are then aligned
by minimizing the Kullback-Leibler distance between an observed and the expected joint
histogram. Leventon et al. [55] compared two methods to model this reference histogram
from a training set of registered images, namely a mixture of Gaussians and Parzen win-
dowing. The distance to this expected histogram is then estimated by using log likelihood.
In these works however, the use of prior information remains limited to one reference joint
distribution.

Zhou et al.[113] propose an approach based on Adaboost to learn local similarity mea-
sures for anatomic landmarks detection in echocardiac images. It uses an atlas of the left
ventricle containing pairs of local patches with their relative displacements. In a mono-
modal scenario, the method shows that incorporating prior information can improve the
detection results. This approach requires however extensive initial supervision.
Joint histograms of multi-modal images warped with different relative transformations
describe a manifold embedded in the joint distribution space. Our contribution is to de-
fine a similarity measure relating the topology of such manifolds to the registration error.
This yields an application-specific similarity measure, which requires one single pair of
registered images as prior information. Using a set of relative transformations between
the two images, we generate a training set of data points from the corresponding joint
histograms and their associated geometric error values defined in section A.1.2. The sim-
ilarity measure is then learned by performing a support vector regression on this data.

The remainder of the chapter is organized as follows: Section A.1.2 presents our regres-
sion approach to define an application-specific similarity measure. Section A.1.3 reports
experiments performed in two different and challenging applications in comparison to clas-
sical methods such as mutual information and Kullback-Leibler distance. Results show
that our approach presents a promising alternative for multi-modal registration. Section
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Figure A.1: Our regression approach: learn a similarity Ψ mapping each point of the manifoldM
(abtract representation on the left) to a value of the geometric error (on the right).

A.1.4 concludes the paper and gives an outlook on future work.

A.1.2 Methods
A.1.2.1 Problem statement

The goal of multi-modal image registration is to identify the geometric transformation
that maps the coordinate system of one modality to the other. Let us consider two 2D
images defined on the domains Ω1 and Ω2 with intensity functions I1 : Ω1 ⊂ R2 → R
and I2 : Ω2 ⊂ R2 → R. The two dimensional case is discussed for better readability,
the extension to three dimensions being straightforward. The registration task can be
defined as a maximization problem, in which we want to estimate the best transformation
T according to a chosen similarity measure S computed on the discrete overlap domain
Ω = Ω1 ∩ T (Ω2):

T = argmaxT SΩ(I1, T (I2)). (A.1)
The joint intensity distribution p(I1, I2) of both images can be evaluated by histogram-

ming or parzen windowing. In most of statistical measures, the similarity SΩ is a mapping
from the joint distribution space J into R. While Mutual Information (MI) gives a mea-
sure of the distance between the joint histogram of both images and what it would be
if their intensity distributions were independant, the Kullback-Leibler distance (KL) [17]
evaluates the distance between an observed po and an expected pe joint histogram:

MI(I1, I2) = D(p(I1, I2)||p(I1)p(I2)) (A.2)
KL(I1, I2) = D(po(I1, I2)||pe(I1, I2)), (A.3)

where D in its general form is defined on two histograms p and q as:

D(p||q) =
∑
x

p(x)log
(
p(x)
q(x)

)
. (A.4)

The statistical relationship relating the intensities of two different multi-modal images
is constrained by the application. With “application", we mean the combination of the
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modalities to relate and the different tissues appearing in the imaged anatomy, e.g. blood,
bones or muscles. Joint histograms of images warped with different relative transforma-
tions describe a manifoldM embedded in J which is application-specific. In [17], Chung
et al. makes use of one expected joint histogram, corresponding to one single reference
point on such a manifold. The used Kullback-Leibler divergence is however not adapted
to its topology.

Instead, we propose to model an application-specific similarity Ψ taking into account
how the topology of M relates to the registration error. By using a set of relative geo-
metric transformations {Ti}i∈N between a source and a target image, we sample M by
the joint histograms JI1,Ti(I2). Each of these “points" is then associated to a geometric
error derived from the corresponding transformation parameters, generating thereby a set
of data points. Finally, the similarity Ψ is defined by performing a regression on these
points. The following section presents how to generate data points to relate this manifold
M to the geometric error.

A.1.2.2 Data points generation

Our objective is to model a similarity Ψ learned on the full manifoldM:

Ψ :M→ R, (A.5)

which has favorable characteristics for registration purposes, namely convexity, smooth-
ness and the ability to estimate the geometric error. To model an accurate mapping Ψ,
the manifoldM must be sampled thoroughly as a function of the transformation T , whose
space is parameterized as follows:

T (tx, ty, θ) where


tx ∈ [−M,+M ]
ty ∈ [−N,+N ]
θ ∈ [−φ,+φ]

(A.6)

By sampling the space of transformations, a set {Ti}1≤i≤Q of Q transformations is gener-
ated. Then, by using a pair of registered images from different modalities, joint histograms
are computed according to these {Ti}1≤i≤Q. As illustrated by Fig. A.1, each joint his-
togram is then associated to a geometric error value. In medical image registration, the
target registration error (TRE) permits the evaluation of error in translation and orienta-
tion between corresponding structures or organs appearing in both modalities. The TRE
is computed by comparing the positions of a set of points {pi, 1 ≤ i ≤ P} after being
mapped by the estimated transformation T and by the ground truth transform G:

E(T ) = 1
P

i=P∑
i=1
‖T (pi)−G(pi)‖ . (A.7)

This procedure permits us to generate following couples:{
(JI1,Ti(I2), E(Ti))

}
1≤i≤Q

, (A.8)

which we denote {(Ji, Ei)}1≤i≤Q for better readability.
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A.1.2.3 Fitting the similarity model through support vector regression

We propose to learn the similarity by approximating the function Ψ with the previously
generated data points. Since this function is a high dimensional non-linear mapping, we
use support vector regression for its ability of modeling complex non-linear functions.
We consider the problem of fitting a similarity function on the set of Q data points
{(Ji, Ei)}1≤i≤Q. The {Ji}, as discrete approximations of the joint intensity distributions,
consist of B × B bins. They are linearized into a vector of dimensionality B2. Let
ϕ be a non-linear mapping from M into a hidden feature space H with dimensional-
ity dim(H) > B2 used to model non-linear relationships between joint histograms and
their corresponding geometric error values. The mapping Ψ is modeled by the following
function:

Ψ(J ) = w · ϕ(J ) + b, (A.9)
where w is a linear separator of dimensionality dim(H) and b a bias. The optimal regres-
sion function is then given by the minimum of the following functional [91]:

1
2 ‖w‖

2 + C
Q∑
i=1

(
ξ+
i + ξ−i

)
, (A.10)

where C controls the flexibility of the model. This functional aims at minimizing the norm
of w and the regression errors on the data points, characterized by the slack variables ξ+

i

and ξ−i . The optimal vector w0 can be written as a linear combination of the training
vectors in H with weights {αi}1≤i≤Q:

w0 =
Q∑
i=1

αi ϕ(Ji). (A.11)

The regression function becomes then:

Ψ(J ) =
Q∑
i=1

αi ϕ(Ji) · ϕ(J ) + b =
Q∑
i=1

αi K(Ji,J ) + b, (A.12)

where K is the kernel associated to ϕ in H. To handle non-linear relations between
the manifold M and the TRE, K is chosen as a RBF kernel, giving thus the following
similarity model:

Ψ(J ) =
Q∑
i=1

αi exp
(
− |Ji − J |2

σ2

)
+ b. (A.13)

A.1.3 Experiments and Results
Our regressed similarity measure is evaluated on two challenging applications for multi-
modal registration: rigid registration of MR-T1 and MR-TOF (Angiography) images of
the carotid artery, and of MR-T1 and SPECT images of the brain. In this paper, we focus
on 2D rigid-body experiments to prove the concept of our novel approach.

This permits in particular to show that the approach is not limited to pairs of images
with a tissue distribution similar to the image pair used for training. Indeed, in the
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Figure A.2: Multi-modal Images used in our experiments: T1 and TOF MR Angiography of the
neck of the same patient.

following experiments, a pair of corresponding images from a 3D dataset is used for
training. The obtained similarity measure is then evaluated on pairs of images taken
from the 3D datasets of the other patients. For statistical relevance, the pairs are chosen
randomly and the tests are repeated. It must be noted that the tissue distribution varies
depending on the randomly chosen slices, which can originate from the neck or from the
head.

A.1.3.1 Experimental Setup

Our similarity measure will be compared to normalized mutual information (NMI) and
Kullback-Leibler distance (KL) in terms of success rate, accuracy and capture range. We
consider a registration experiment as successful when the final target registration error is
inferior to a given threshold te. In fact, this permits to quantify the ability of an approach
to converge in the neighborhood of the right solution. We then define the accuracy as the
mean target registration error on all registered images after the removal of such outliers.
Capture range is evaluated by assessing the success rate as function of an increasing initial
TRE. Knowing the ground truth position of each dataset, an initial random perturbation
is applied to each pair of images according to a given value of TRE. Experiments are then
repeated with an increasing initial target registration error.

The objective of our experiments is to highlight the benefits of a similarity measure
taking advantage of prior information. Since the convergence to the right solution depends
on the topography of the search space offered by a similarity measure, we use a Downhill-
Simplex optimizer, that does not require any gradient information. For fair comparison,
all measures have the same number of joint histogram bins (32 × 32) and are tested in
the same conditions.

In both experimental setups T1/TOF and T1/SPECT, a cross-validation of N tests
is performed on a set of P patients. A test consists of one regression step performed
on a random pair of slices from a given patient and one validation step consisting of
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P − 1 evaluations performed on the other P − 1 patients. During the regression step, our
similarity measure and the expected joint histogram needed by KL are computed on the
same pair of images. During an evaluation, all measures are tested in the same conditions
on a random pair of slices taken from another patient with the same initial perturbation.
By using 10 initializations with an increasing TRE per evaluation, we can investigate the
ability of each measure to converge towards the right solution and thereby assess their
capture range.

The transformation space is sampled as follows: −40 ≤ tx ≤ +40 (in pixels),
−40 ≤ ty ≤ +40 and −40 ≤ θ ≤ +40 (in degrees) with a step of 4 for each parame-
ter, generating thereby 9261 data points. For the choice of the hyperparameters σ and
C, a grid-search has been performed. All experiments are performed with the Spider
environment for MATLAB on an Intel Core 2 Duo CPU 2.40 GHz.

MR-T1 and MR-TOF Angiography images: experiments are conducted on images
(refer to Fig. A.2) taken from P = 8 patients (48 pairs of images) with different staging of
atherosclerosis. Both sequences were consecutively acquired, patients were positioned on
a vacuum pillow and the acquisition was ECG gated to ensure perfect alignment. Images
have a resolution of 128x128 with a pixel size of 2.5mm x 2.5mm. The threshold te is
set to 1cm which corresponds to 4 pixels. A cross-validation of N = 32 tests has been
performed, which then corresponds to N × (P − 1)× 10 = 2240 registration experiments.

MR-T1 and SPECT-Tc images: experiments are conducted on images taken from
P = 5 patients (73 pairs of images): a healthy patient, one with a glioma, one with
a carcinoma, one with a stroke and finally one with an encephalopathy. These already
registered datasets are taken from the publicly available Whole Brain Atlas database.
Images have a resolution of 128x128 with a pixel size of 1.67mm x 1.67mm. The threshold
te is set to 1cm which corresponds to 6 pixels. A cross-validation of N = 40 tests has been
performed, which then corresponds to N × (P − 1)× 10 = 1600 registration experiments.

A.1.3.2 Results

The objective of our experiments is to show the benefits of a similarity measure taking
full advantage of prior information. As shown on Fig. A.3, the optimal regression model
provides a smooth and convex search space, which is very close to the original TRE surface
to approximate. Moreover, the global optimum has been preserved at the right position.
In fact, smoothness and convexity are crucial characteristics to prevent the optimizer of
being stuck in a local optimum and to ensure its convergence to the global one. The great
advantage of our approach is its ability to model the convexity, the smoothness and the
capture range of the similarity measure. Indeed, its convexity can be changed by choosing
another function of the geometric error. The choice of hyperparameters C and σ influences
the flexibility of the regression and thus the smoothness of the resulting function. During
the regression process, increasing the sampling range of the transformation space permits
to increase the capture range of the trained similarity. A high capture range is crucial
when no good initialization parameters are available. Results presented in Fig. A.3
shows the overall success rate and the final TRE as functions of the initial TRE. While
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the success rate of other measures sinks with an increasing initial TRE, our regressed
similarity measure shows a good behaviour. This highlights its greater capture range
and this, for a better accuracy. In the T1-TOF experiments, KL provided once a better
accuracy for an initial TRE of 22.5 mm. This comes from the fact that KL was only
successful on three registration experiments: Ψ and MI were actually better than KL in
these specific experiments, but in the displayed results their accuracy is averaged on many
more experiments as they have much higher sucess rates.

Our method was robust face to different tissue distributions, e.g. coming from patients
affected by different kinds of disease or from different locations of the head that were not
learned during the regression phase. For example, while slices from the top of the skull
contain mostly skin, bone, cerebrospinal fluid, grey and white matter, slices in the middle
of the head also consists of muscles and eyes. This could suggest that the manifold on
which the similarity was learned is not strictly dependent on the anatomy. This needs
however to be extensively studied with further experimentations.

A.1.4 Discussion and Conclusion
In this work, we propose to take advantage of prior information, namely a registered
pair of images, in order to improve results in multi-modal registration. Our contribution
is to define, with a regression approach, a new similarity measure relating the manifold
described by joint histograms of two different modalities to the registration error. Ex-
periments conducted on MR-T1/MR-TOF and MR-T1/SPECT images show that the
presented method is a promising alternative for multi-modal registration. We empirically
demonstrated that these manifolds are not dependant on the choice of the particular
training pair within the dataset. This means that such an adapted application-specific
measure can be defined by using a single pair of manually registered images from the spe-
cific application. Moreover, its robustness to different or new tissue distributions suggests
that such manifolds could be modality-specific. In future work, we will further study their
dependence to the variations of tissue distribution within the images.
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Figure A.3: Registration experiments: On top, plot of the similarity Ψ for variations in translation
in x and y between −20 and +20 pixels - in the middle, plot of the success rate (in percent) and at the
bottom final TRE (mean and standard deviation in mm) according to an increasing initial TRE. Left
MR-SPECT, right T1-TOF
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A.2 Similarity Learning for Guide-wire Tracking in
Fluoroscopic Sequences

Deformable guide-wire tracking in fluoroscopic sequences is a challenging task due to the
low signal to noise ratio of the images and the apparent complex motion of the object of
interest. Common tracking methods are based on data terms that do not differentiate well
between medical tools and anatomic background such as ribs and vertebrae. A data term
learned directly from fluoroscopic sequences would be more adapted to the image charac-
teristics and could help to improve tracking. In this work, our contribution is to learn the
relationship between features extracted from the original image and the tracking error.
By randomly deforming a guide-wire model around its ground truth position in one single
reference frame, we explore the space spanned by these features. Therefore, a guide-wire
motion distribution model is learned to reduce the intrisic dimensionality of this feature
space. Random deformations and the corresponding features can be then automatically
generated. In a regression approach, the function mapping this space to the tracking
error is learned. The resulting data term is integrated into a tracking framework based
on a second-order MAP-MRF formulation which is optimized by QPBO moves yielding
high-quality tracking results. Experiments conducted on two fluoroscopic sequences show
that our approach is a promising alternative for deformable tracking of guide-wires.

A.2.1 Introduction
During the last decade, the success of angiographic interventions relied on the ability
of physicians to navigate in the patient’s anatomy based only on their mental three-
dimensional representation of the human body as well as on the haptic feedback from
the instruments. Recent advances in computer aided planning and navigation techniques
offer great potential of minimizing the risk of complications and improving the precision.
In the case of angiographic applications, the most common imaging modality is X-ray
fluoroscopy A.4. Currently, in order to monitor guidance procedures, a roadmap, e.g.
a digital subtracted angiography (DSA) showing vessel anatomy, is computed during
the intervention. Unfortunately, such roadmaps cannot directly be fused with the intra-
operative fluoroscopic sequence due to misalignment caused by respiratory motion. A
fundamental step toward a successful integration of any navigation application into clinical
routine is the estimation and compensation of such respiratory motion. Determining this
spatio-temporal information is a challenging task due to the fact that fluoroscopic X-ray
images have a low signal to noise ratio, are subject to big changes in contrast and suffer
from background clutter in the abdominal area. Moreover, the apparent motion of the
guide-wire is a combination of multiple components. The major motion in the chest is
caused by patient breathing. A second, deformable component results from forces applied
to the guide-wire by the physician and by surrounding organs which are subject to non-
uniform motions during the breathing cycle. Furthermore, the guide-wire may sometimes
partially vanish.

A recent approach dealing with the problem of guide-wire tracking in fluoroscopy is
[40]. In this work, Heibel et al. proposed a scheme for deformable tracking based on a
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Figure A.4: Fluoroscopic X-ray: Tracking the guide-wire is challenging task in these images having
a low signal to noise ratio and suffering from background clutter in the abdominal area.

MAP-MRF formulation. However, their data term does not differentiate well between
medical tools and anatomic background such as ribs and vertebrae. A learned data term
being more robust and adapted to the image characteristics of fluoroscopic sequences
could help to further improve the tracking. Since MRF formulations are derivative free
optimization procedures, they ease the integration of such learning based energies for
which analytical derivatives are hard to derive if possible at all. Learning permits to
model complex relationships between the information contained in the images and the
quality of alignment. In the context of guide-wire tracking, we can distinguish two kinds
of learning approaches: First, methods for the detection of the guide-wire in each frame
and second, methods used for learning a data driven energy. A learning-based tracking
approach by detection based on marginal space learning was presented by Barbu et al. in
[7]. Later, Wang et al. proposed in [104] the combination of learning-based detectors and
online appearance models. In the case of energy learning, Nguyen et al. [66] addressed
the problem of modeling the error surface of parametric appearance models in order to
minimize the number of local minima for image alignment and recently Pauly et al. sug-
gested in [77] to learn the statistical relationship between two different imaging modalities
to model a data term for multi-modal rigid registration.

In this work, our contribution is a learning approach for deformable tracking: we
propose to learn a data term based on the relationship between features extracted from
the original image and the tracking error. As illustrated in Fig.A.5, we introduce novel
features, namely the local mean orthogonal intensity profiles that represent information
contained in the original image. Since deformable transformations have a high number
of degrees of freedom, the intrisic dimensionality of the space spanned by these features
is high. However, typical guide-wire deformations are lying on a subspace we propose to
learn to reduce the complexity of our problem. A set of random deformations is then
generated automatically and applied to the ground truth position of the guide-wire on a
single reference image. A training set of data points from the corresponding local mean
orthogonal profiles and their associated tracking error values is thereby created. Learning
is then performed on this dataset with a support vector regression. The resulting data
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Figure A.5: Similarity learning: robustness of tracking can be improved by learning a data term
directly from fluoroscopic images

term is integrated into a tracking framework based on a MAP-MRF formulation which is
solved with higher-order clique reduction techniques. Due to the higher-order nature of
our problem and since we are dealing with non-submodular energy functions we chose a
combination of the recently proposed reduction scheme of Ishikawa [45] and the QPBO
[39] optimizer supporting improvements in order to deal with unlabeled nodes [85]. The
remainder of the chapter is organized as follows: Section A.2.2 presents our regression
approach to define an optimal data term for guide-wire tracking. Section A.2.3 reports
experiments performed on two fluoroscopic sequences. Results show that our approach
presents a promising alternative for guide-wire tracking in fluoroscopic sequences. Section
A.2.4 concludes the paper and gives an outlook on future work.

A.2.2 Methods

A.2.2.1 Problem statement

The goal of tracking is to identify the relative motion of an object in a series of consecutive
frames. In most tracking algorithms, we can distinguish two phases: first, the detection
of the object of interest in the initial frame followed by the actual tracking in each new
frame given previous positions. In this paper, we focus on the problem of tracking a
guide-wire through a fluoroscopic sequence knowing its initial position. Let us denote C
our guide-wire model and {It}t∈{0,...,T} the set of consecutive images in which we want to
track the guide-wire. In fluoroscopic images, guide-wires appear as curvilinear structures
which can be represented as B-spline curves. The advantage of such a representation is its
low-dimensionality, its implicit smoothness and its local support of control points. Our
guide-wire model C is defined as the following linear combination of control points:
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C(s) =
M∑
i=1

Ni(s)Pi where s ∈ [0, 1] (A.14)

where Ni denote the basis functions and Pi the positions ofM control points. By using
this model, we want to estimate the optimal curve parameters, i.e. the best configuration
of the control points, to match the visible structures in an image, and this, knowing
its previous position. The tracking problem can be then formulated as a maximum a
posteriori estimation:

C∗t = argmaxCt
P (It|Ct)P (Ct) (A.15)

where C∗t is the best curve estimate at instant t. P (It|Ct) is the likelihood of observing
the data knowing the model and P (Ct) the prior or probability of the current curve
configuration. Let us assume the likelihood to follow a Gaussian distribution and the
prior a Gibbs’ distribution, we can then reformulate Eq.A.15 as an energy minimization:

C∗t = argminCt
(Edata(It|Ct) + Ereg(Ct)) (A.16)

Ereg(Ct) is a regularization term which constraints the space of possible model config-
urations. Assuming constant length of guide-wire segments in fluoroscopic sequences, we
define the regularization term in order to penalize changes in length:

Ereg(Ct) =
∫ 1

0

(
1− ‖C

′
t(s)‖

‖C ′0(s)‖

)2

ds (A.17)

where C ′t and C ′0 are the first derivatives at instant t and 0 respectively. Thank to the
inherent smoothness of a B-spline representation, higher-order terms can be discarded.
Edata(It|Ct) can be seen as a data term which drives the model according to the current
image:

Edata(It|Ct) =
∫ 1

0
Φ(It(Ct(s))) ds (A.18)

A common choice for Φ is a function which enhances tubular structures similar to
the ridgeness measure proposed by Frangi et al. [30]. Such measures can be tuned to
emphasize only structures of the scale of the guide-wire and to remove outliers such as ribs
or vertebrae. However, since the data term is only evaluated along the current position
of the curve, the main drawback is a very low capture range and a lack of robustness in
terms of outliers or partial occlusions.

Instead of relying on the feature image intensities along the curve profile, we propose
to extract features from the unprocessed image orthogonally to the curve, namely local
mean orthogonal intensity profiles. We can then model a data term by learning a function
Ψ relating the space M spanned by these features and the tracking error. By using a
single fluoroscopic image and a set of local displacements around the ground truth position
of our guide-wire, we can sample the space M by extracting the local mean orthogonal
intensity profiles associated to each displaced curve. Each of these “points" ofM is then
associated to a tracking error derived from the corresponding curve parameters, hereby
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generating a set of data points. Finally Ψ is modeled by performing a regression on these
points. The following section presents how to extract the mentioned features.

A.2.2.2 Local Mean Orthogonal Profiles

In a fluoroscopic image, a human being may recognize the guide-wire because of its curvi-
linear aspect and its darker intensities compared to its environment. For this reason, a
common method would be to enhance this structure and to keep track of it along the
sequence by using a data term based on the intensity profile along the curve. Unfor-
tunately, in the case of larger displacements between two consecutive frames, it is hard
to relocate the guide-wire in a heterogeneous region containing outliers without any in-
formation about the search direction. Indeed, such data terms suffer from an extremely
narrow valley around the global extremum. To overcome this problem and benefit from
an increased capture range, we propose features which describe the intensity profiles or-
thogonally to the curve. First, we subdivide our curve Ct into n segments

{
Skt
}
k∈{1,...,n}

.
Each segment Skt is a spline we characterize by the following descriptor J k

t :

J k
t = 1

q

q∑
j=1

Λk,j
t , (A.19)

with q being the number of sample points along this segment. Λk,j
t is an orthogonal

intensity profile whose rth element is defined as:

Λk,j
t (r) = It

(
Skt (u) + r · n(u)

)
(A.20)

where n(u) is the normal vector at point u = (j − 1)/(q − 1) and r ∈ {−R, ..., R}.
The dimensionality of this vector is 2R+ 1 which corresponds to the length of the profile
centered on the segment. Note that since only the profile’s shape is of interest, each profile
Λk,j
t is normalized between 0 and 1. Taking the mean over the segment provides a feature

vector which is more robust to noise and outliers. Each curve Ct is then described by the
following set

{
J k
t

}
k∈{1,...,n}

.

A.2.2.3 Data points generation by motion learning

The goal of our approach is to learn a function Ψ relating the local mean orthogonal
profiles and the tracking error:

Ψ :M→ R, (A.21)

with good characteristics for tracking purposes, namely convexity and smoothness.
Therefore, the spaceM spanned by these features needs to be sampled thoroughly as a
function of the relative displacement. Since the guide-wire is a deformable structure, the
intrisic dimensionality of our features according to free deformations would be high and
thus, hard to sample. However, in a real fluoroscopic sequence, a guide-wire is not subject
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to free deformations. Indeed, main displacements are due to breathing motions and addi-
tional small deformations. This means that in reality, our features do not describe the full
spaceM but lie on a lower dimensional subspace. To reduce the complexity of our prob-
lem, we propose to learn the deformation probability distribution from a real sequence.
Thus, random displacements can be automatically generated to build our training dataset.

Learning guide-wire Motions: During a sequence, each segment Skt of our curve
Ct is subject to a series of consecutive displacements we denote

{
Dk
t

}
t∈{0,...,T−1}

. Each
Dk
t is modeled by a vector containing the displacements of sample points of the segment

between 2 consecutive frames. Its jth element is defined as:

Dk
t (j) = Skt+1(u)− Skt (u) (A.22)

These vectors are collected for all segments along the whole sequence and grouped in a
training set D =

{
Dk
t

}k∈{1,...,n}
t∈{0,...,T−1}

. To learn the underlying probability distribution of these
displacements, we propose to model it with a gaussian mixture model G. The parameters
of G can be estimated by using Expectation-Maximization. Once we have learned our
gaussian mixture model, we can generate random segment displacements {Di}i∈{1,...,Q}
from this probability distribution.

Data points generation: As shown on Fig.A.6, by using a reference fluoroscopic
image, e.g. the first frame of the sequence, we can generate local mean orthogonal profiles
{Ji}i∈{1,...,Q} by perturbating the segments of the ground truth curve with the randomly
generated displacements {Di}i∈{1,...,Q}. The corresponding tracking error Ei associated to
each Ji is computed as follows:

Ei = ‖Di‖2 (A.23)

This procedure permits us to generate the set of pairs {(Ji, Ei)}1,...,Q, on which the
regression will be performed to learn our function Ψ.

A.2.2.4 Learning data term through support vector regression

From previously generated data points, the function Ψ can be learned through non-
parametric support vector regression. Let us consider the problem of fitting a function
on the set of Q data points {(Ji, Ei)}i∈{1,...,Q}. Ψ is modeled as the following function:

Ψ(J ) = 〈w , J 〉+ b, (A.24)

where w is a weighting vector of dimensionality dim(M) and b a bias. This can be
written as a convex optimization problem [91]:

minimize 1
2 ‖w‖

2

subject to:
{
Ei − 〈w , Ji〉 − b ≤ ε
〈w , Ji〉+ b− Ei ≤ ε

(A.25)
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Figure A.6: Data term learning: by perturbing the ground-truth curve from a single frame with
random displacements, we can build a training set of local mean orthogonal profiles with their associated
tracking errors.

This aims at minimizing the norm of w to penalize the model complexity and the
regression errors on the data points with a regression tolerance denoted by ε. Equation
(A.25) corresponds to minimizing the following functional:

minimize 1
2 ‖w‖

2 + C
Q∑
i=1

(
ξ+
i + ξ−i

)

subject to:


Ei − 〈w , Ji〉 − b ≤ ε+ ξ+

i

〈w , Ji〉+ b− Ei ≤ ε+ ξ−i
ξ+
i , ξ

−
i ≥ 0

(A.26)

where C weights the impact of the errors and thus the flexibility of the model. Ac-
cording to the Representer theorem, a solution wopt of this minimization is always a linear
combination of the training vectors inM with weights {αi}i∈{1,...,Q}:

wopt =
Q∑
i=1

αi Ji (A.27)

which leads to the following model:

Ψ(J ) =
Q∑
i=1

αi 〈Ji , J 〉+ b (A.28)

Finally, the global data term computed on all segments can be written as:

Elearn
data (Ct) = 1

n

n∑
k=1

Ψ(J k
t ) (A.29)
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A.2.3 Experiments and Results
In the following experiments, we show the successful application of our machine learning
approach for the tracking of guide-wires in fluoroscopic images. The two sequences we
used for our experiments were accquired during liver chemoembolizations. In this proce-
dure, a guide-wire is inserted into the femoral artery and threaded into the aorta. The
catheter is then advanced into the hepatic artery. Once the branches that feed the liver
cancer are reached, the chemotherapy is infused. In both sequences, the catheter is al-
ready inserted in the artery and we aim at recovering from breathing motions.

Motion learning: A set of inter-frame segment displacements is computed from a ref-
erence sequence where the guide-wire positions were manually annotated. A gaussian
mixture model is then fitted to this dataset by using EM algorithm. The analysis of
Bayes’ Information Criterion leads to the choice of two gaussian components.

Data term learning: A quadratic B-spline is fit to each hand-labeled point set by
minimizing discontinuities in the second derivative [25]. Given the previously learned
gaussian mixture model, a set of Q = 3000 random segment displacements is automati-
cally generated. By perturbating the ground-truth curve from a single frame with these
random displacements, we can build a training set of 3000 local mean orthogonal profiles
with their associated tracking errors. Note that the choice of Q is a compromise between
complexity and accurate modeling of the data term. During the experiments profiles with
different radii are evaluated. Finally, the data term is learned by performing a support
vector regression.

Tracking experiments: Experiments are conducted on two clinical sequences of 142
and 228 frames with a resolution of 512 × 512 pixels and respective pixel spacings of
0.432× 0.432 mm and 0.308× 0.308 mm. In order to evaluate the tracking results, guide-
wires are manually annotated in each frame. The following distance measure has been
used throughout all experiments to assess the quantitative tracking quality:

χ = 1
2

 1
|Ct|

∑
xi∈Ct

min
y∈CGT

d(xi, y)2 + 1
|CGT|

∑
yj∈CGT

min
x∈Ct

d(x, yj)2

 . (A.30)

Here CGT is the manually annotated curve and Ct the tracking result of an individual
frame.

Results: Tab.A.1 shows mean errors on whole sequences where the data term is trained
on the first frame of one sequence, and tested in tracking in both sequences. Submillimeter
yet subpixel tracking accuracy can be achieved with our learned data-term and this, for
a frame rate of 1.5 frame/s on a 3 Ghz duo core. Moreover, cross-validation illustrates
the robustness of our approach even if it has been trained on another sequence showing
different contrasts, motions and background. Note that since the Seq.1 presents motions of
higher amplitude, its mean error is slightly bigger than for the other sequence. The great
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Tracking Results
Trained on Seq.1, Frame 1 Seq. 2, Frame 1
Tested on Seq.1 Seq.2 Seq.1 Seq.2

Profile Radius 5 pixels 10 pixels 5 pixels 10 pixels 5 pixels 10 pixels 5 pixels 10 pixels
χ mean (mm2) 0.7115 0.5249 0.1636 0.1622 0.6632 0.5815 0.1796 0.1700
χ std dev (mm2) 0.4289 0.2715 0.1633 0.1185 0.6184 0.3366 0.1771 0.1645

Table A.1: Tracking experiments in real fluoroscopic sequences: training performed on initial
frame and tested on the following frames.

advantage is the ability to model the convexity and smoothness of this term. Indeed,
its convexity properties can be designed by replacing the tracking error function A.23.
The choice of hyper-parameter C from equation (A.26) influences the flexibility of the
regression and thus the smoothness of the resulting function.

A.2.4 Discussion and Conclusion
In this work, our contribution was to learn the relationship between features extracted
from an unprocessed image and the tracking error in order to model a data term. Exper-
iments conducted on two fluoroscopic sequences show that our approach is a promising
alternative for deformable guide-wire tracking. Indeed, our method is robust to changes in
contrast, background clutter and partial occlusions of the guide-wire during the sequence,
and this, even if training was performed on another dataset. Since the feature space un-
der free deformations is high-dimensional, we proposed to model the distribution of the
reduced space of typical guide-wire motions with a gaussian mixture model. In turn, this
permitted us to automatically generate random guide-wire deformations from this distri-
bution for the sake of regression. Going further, the space of relative motions between
consecutive frames could be constrained during tracking to expected guide-wire motions.
In future work, we will explore the possibility of deriving an adapted regularization term
from this motion distribution model.
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APPENDIX

B

WAVELET ENERGY MAP, A ROBUST SUPPORT FOR
MULTI-MODAL REGISTRATION OF MEDICAL IMAGES

Multi-modal registration is the task of aligning images from an object acquired with dif-
ferent imaging systems, sensors or parameters. The current gold standard for medical
images is the maximization of mutual information by computing the joint intensity dis-
tribution. However intensities are highly sensitive to various kinds of noise and denoising
is a very challenging task often involving a-priori knowledge and parameter tuning. In
this chapter, we report our work published in [78] on a novel robust information support
for multi-modal registration: the wavelet energy map, giving a measure of local energy
for each pixel. This spatial feature is derived from local spectral components computed
with a redundant wavelet transform. The multi-frequential aspect of our method is par-
ticularly adapted to robust registration of images showing ambiguities such as tissues,
complex textures and multiple interfaces. We show the benefits of the wavelet energy
map approach in comparison to the classical framework in 2D and 3D rigid registration
experiments on synthetic and real data.

B.1 Introduction
Image registration is a crucial preprocessing step in all image analysis tasks in which
information from various imaging sources needs to be combined. These sources of infor-
mation can be acquisitions from different viewpoints of an object, at different times or
with different sensors [114]. Establishing the correspondences between images acquired
with different medical imaging modalities is a challenging task known as multi-modal reg-
istration. To identify the geometric transformation that maps the coordinate system of
one modality to the other [115], objective functions that evaluate the quality of alignment
known as similarity measures are optimized. The choice of the appropriate measure is
not straightforward, because it implicitly models the relationship between the different
images to register. Indeed, this measure quantifies how well images are registered accord-
ing to the transformation parameters [84]. As modeling the physical relationship between
different imaging modalities is very difficult, statistical measures have become more and
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more popular.
Since its introduction by Viola and Wells [101] and Collignon et al [18], mutual infor-

mation remains the state of the art of multi-modal registration of medical images. Several
other entropy-based measures have also been introduced: for example, the normalized
version of mutual information proposed by Studholme et al. [93] or the Kullback-Leibler
distance introduced by Chung et al. [17]. Furthermore, a quantitative-qualitative mea-
sure of mutual information has been presented by Luan et al. [57] to take the saliency of
each image voxel into account. All these different entropy definitions use the same sup-
port of information: the intensity distribution. But image intensities are very inclined to
be corrupted by noise due to different phenomena that can occur during the acquisition
procedure. Indeed, medical images such as magnetic resonance suffer very often from
different types of noise due to interferences between electronic devices, which can dramat-
ically influence registration results. Image denoising is however a very challenging task,
because the type of noise has to be known or modeled to perform an efficient filtering.

To gain in robustness, Gan and Chung [33] introduced a novel spatial feature named
maximum distance-gradient-magnitude (MDGM) for rigid registration of medical images.
Each pixel is characterized by the most dominant local variation and its intensity value.
Again, taking into account intensity values can lead to misregistration in presence of noise.

Because of its ability to extract features characterizing local frequency components,
the Discrete Wavelet Transform (DWT), whose main application is data compression,
has been recently introduced in the field of image registration. Le Moigne et al. [63] and
Sharman et al. [88] proposed to perform the registration on a feature space formed by the
dominant local variations. In a coarse to fine strategy, wavelet coefficients are selected with
a magnitude above a certain threshold. This selection method is also used by Hongli et al.
[44] on approximation coefficients computed with a slightly different wavelet transform
scheme. Using a Complex Wavelet Transform (CWT), Oubel et al. [70] present a 2
steps registration framework, in which a first alignment is done on low frequency and
refinement on high frequency coefficients from the first decomposition level. But relying
on these high frequency components is not a safe strategy, especially in the case of high
frequency noise. Li et al. [56] propose an energy feature based on the coefficients of
the first decomposition level computed with a Discrete Frame Wavelet Transform. Each
pixel being only characterized by the highest part of the frequency spectrum, again, these
features are not reliable in the presence of noise.

To take fully advantage of this kind of transforms, we combine the information con-
tained in all sub-bands of the frequency spectrum. In this paper, we propose to perform
the registration on a novel feature map we name wavelet energy map (WEM), whose
computation is parameter-free and which is very robust to the noise present in the orig-
inal images. The WEM measures the local signal energy at each pixel and is computed
from local spectral components in its neighborhood. These spectral components are ob-
tained with the redundant wavelet transform [22], which gives the best approximation of a
space-frequency representation. For registration tasks, the energy probability distribution
of the WEM is used as input for mutual information. The method does not require any
additional a-priori information or parameter, but only a slightly increased initial compu-
tation. The multi-frequential aspect of this approach is especially adapted to registration
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of medical images presenting ambiguities such as tissues with complex textures or multi-
ple interfaces. We demonstrate its value on a wide range of experiments on synthetic and
real images.

In the remaining of this chapter, section B.2 will define the wavelet energy map and
the registration framework. Section B.3 will present experiments demonstrating three
properties of the WEM:

1. correctness: energy and intensity maps give the same global maximum for mutual
information

2. robustness: registration on local energies is robust to noise

3. efficiency: mutual information computed on wavelet energy maps outperforms the
classical approach in terms of robustness for an equivalent accuracy

B.2 Methods

B.2.1 Problem statement
The goal of multi-modal image registration is to identify the geometric transformation
that maps the coordinate system of one modality to the other. Let us consider two 2D
images defined on the domains Ω1 and Ω2 with intensity functions I1 : Ω1 ⊂ R2 → R and
I2 : Ω2 ⊂ R2 → R. The registration task can be defined as a maximization problem, in
which we want to estimate the best transform T according to a chosen similarity measure
S computed on the discrete overlap domain Ω = Ω1 ∩ T (Ω2):

T = argmaxT SΩ(I1, T (I2)) (B.1)

Since intensities are highly sensitive to noise, we propose to evaluate the similarity in a
more robust feature space. We introduce a novel spatial feature map named wavelet energy
map (WEM) giving a measure of local energy around each pixel of the original images. In
the following parts, we define the concept of local energy and its computation from local
spectral components extracted with a redundant wavelet transform. We will discuss the
2D case for better readability, the extension to three dimensions being straightforward.
In that case, T is the composition of a translation and a rotation.

B.2.2 Energy vs. Intensity
In signal processing, the energy of a signal x(t) is defined as:

E =
∫
t
|x(t)|2 (B.2)

and in the discrete case, for an image with intensity function I:

E =
∑
i,j

|I(i, j)|2 (B.3)
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Interpreting a zero image as a flat surface, energy can be understood as the work
capacity accumulated during its deformation to the final relief. In the previous equation,
energy is expressed in terms of intensities. Because they do not provide any contex-
tual information, intensity values are not a safe support of information. Their variation
frequencies, in contrary, offer a safer support by involving spatial context. Parseval’s the-
orem guarantees that in a Hilbert space (we assume intensity functions being elements of
a Hilbert space, for example L2(R2)) the energy of a signal x can also be determined from
its frequency spectrum: ∫

t
|x(t)|2 dt =

∫
f
|X(f)|2 df (B.4)

with X being the Fourier transform of x. In the discrete case we obtain:∑
i,j

|I(i, j)|2 =
∑
f

|FI(f)|2 (B.5)

where FI is the 2D Fourier transform of the image. The major drawback of the Fourier
transform is its poor resolution in space domain. To define a local energy as a spatial
feature, we need a frequency-space representation to know which spectral components
exist at any given position in the image. A relatively new method introduced by Gross-
mann and Morlet [38] known as wavelet transform provides the best approximation of
this space-frequency representation.

B.2.3 Extraction of local spectral components
B.2.3.1 The redundant wavelet transform

The traditional discrete wavelet transform (DWT) projects a signal onto an orthogonal
wavelets basis. Its principle is to extract iteratively the information contained in each sub
bands of the frequency spectrum [61]. In practice, the DWT is performed by passing the
image through a cascade of orthogonal high pass (H) and low pass (L) filters to select
each sub bands and analyze their content. The resulting decomposition coefficients are
then down-sampled according to the Nyquist-Shannon sampling theorem as represented
on Fig. B.1. The original image is decomposed in 4 components: HH corresponds to the
application of high pass filters in x and y directions, HL to high pass in x and low pass
in y direction, LH to the contrary and LL to low pass filters in both directions. The LL
component is then redecomposed in 4 components and the process is repeated. HH, HL
and LH components are called details and LL approximation coefficients.

Orthogonality is a crucial property ensuring the most exact conservation of the spec-
tral information. DWT does not only provide orthogonality between each sub bands,
but also between their components. Its major drawback is the down-sampling operation
that results in a loss of position information. Hence, we use another transform known as
redundant discrete wavelet transform (RDWT) that basically removes the down-sampling
operation. The RDWT also known as “Algorithme à trous” produces an over complete
representation of the image and is considered as a better approximation of the continuous
wavelet transform [22]. It is implemented by using a bank of filters (refer to the filter
cascade on Fig. B.2). In the one-dimensional case, the signal is filtered by a low l and a
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Figure B.1: Discrete Wavelet Transform of a 2D image.

high pass h as shown below:

vj+1[n] =
p∑

k=1
vj[k]lj[n− 2jk] (B.6)

wj+1[n] =
p∑

k=1
vj[k]hj[n− 2jk] (B.7)

with vj+1 being the approximation and wj+1 the detail component at the decomposi-
tion level j + 1 and p the size of the filter. This is analog to a classical filtering of the
signal by iteratively inserting zeros, or in other words “holes” (“trous” in french) between
all coefficients of the filters.

In the two-dimensional case, each row and column of the original image are treated
like a one dimensional signal. By introducing redundant information, the RDWT is not
orthogonal but projects the signal onto a frame. A frame can be a stable and redundant
representation of signals if its basis verifies the Heisenberg-Weyl condition [24].

The whole frequency axis is then covered by this representation and it can be consid-
ered according to Daubechies [24] as a quasi-orthogonal expansion. Such a representation
helps to characterize textures of an image and increases the robustness to additive noise
[29]. This redundancy has the main advantage to permit a better localization of each
spectral components in the image: indeed, to each pixel corresponds a set of coefficients
characterizing the local spectrum.
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Figure B.2: Redundant Discrete Wavelet Transform: Filter bank for 1D signals.

B.2.3.2 Choice of the wavelet basis

Since the RDWT removes the down-sampling operation, the spatial sampling rate is fixed
across all scales. This gives to this transform a translational invariance property in con-
trary to the traditional DWT. Unfortunately the RDWT is not rotational invariant. To
reduce the impact of this rotational non invariance, we focus on two types of wavelets
that have a compact support: orthogonal wavelets from the Daubechies family and the
biorthogonal Cohen-Daubechies-Feauveau 9/7 wavelets.

Orthogonal wavelets:
Orthogonality and compact support are important properties to ensure the most exact
conservation of information. If we can find a scaling function Φ associated with a multires-
olution analysis and orthogonalize its basis, we can then find the associated orthogonal
wavelets. But the orthogonalization of the basis associated to Φ has a main drawback:
it renders a non-compacted support. Daubechies constructed the only known orthogonal
wavelets offering a compact support and a specified number of vanishing moments. Van-
ishing moments are also a valuable property, in fact they limit the wavelet’s ability to
represent polynomial behaviour of a signal.

Biorthogonal wavelets:
To gain in flexibility in the construction of wavelets bases, the orthogonality condition
can be relaxed. A basis does not have to be orthogonal to offer a stable representation of
information. By using its dual basis, it is possible to reconstruct exactly the information.
This allows the construction of more families of compactly supported wavelets that can
also be symmetric. Symmetry is a nice property in many applications to construct filters
with a linear phase of the transfer function. Cohen-Daubechies-Feauveau 9/7 wavelets
that are also used in the JPEG2000 compression standard.
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Figure B.3: Method overview: the wavelet energy map computation.

B.2.4 Local energy formulation
After decomposing an image I with a RDWT in m sub-bands with m being the maximum
number of possible levels, we obtain for each pixel (i, j) a set of 3m+1 coefficients (3 detail
components per level and the approximation from the last level) providing information
on local frequency components. Let w(i, j) be the coefficient vector:

w(i, j) = (w1(i, j), w2(i, j), . . . , w3m+1(i, j)) (B.8)

Using Parseval’s theorem, we can define a local energy W(i, j) computed from the local
spectral components:

W(i, j) = ‖w(i, j)‖2 =
3m+1∑
k=1
|wk(i, j)|2 (B.9)

We name wavelet energy map (WEM) the array containing all values W(i, j). Its
computation is summarized by Fig. B.3.

B.2.5 Energy based registration framework
In terms of WEMs, equation B.1 becomes:

T = argmaxT SΩ(W1, T (W2)) (B.10)

with W1 and W2 being the WEMs computed from both images to align. Since different
imaging systems emphasize different characteristics of an object, the resulting WEMs
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will highlight different structures. As presented in the introduction, statistical similarity
measures are the current standard in multi-modal registration. Thus, we propose to use
the mutual information (MI) to evaluate the statistical relationship between both wavelet
energy maps. First, we normalize them between 0 and 1:

W(i, j) = W(i, j)−mini,j(W(i, j))
maxi,j(W(i, j)) (B.11)

By dividing the domain [0, 1] in N bins B1, . . . ,BN , we can determine the probability of
a pixel x to fall in the bin Bk:

p(x ∈ Bk) =
#
{

(i, j), W(i, j) ∈
[
k
N

k+1
N

[}
#Ω (B.12)

where #· is the cardinality operator. It is then possible to compare the shared amount of
information in the energy maps of both images by using the classical definition of MI:

MI(W1, T (W2)) =
H(W1) +H(T (W2))−H(W1, T (W2))

(B.13)

with H(W) being Shannon’s definition of information entropy:

H(W) = −
N∑
k=1

p(x ∈ Bk)log2(p(x ∈ Bk)) (B.14)

The joint entropy H(W1, T (W2)) is defined by using the probability of the pixel x to
respectively fall into the bins Bk and Bl in the maps W1 and T (W2).

B.3 Experiments and Results
First, experiments on synthetic datasets show that energy and intensity maps give the
same global maximum for mutual information. Further tests reveal the robustness of our
approach to gaussian noise. Finally, 2D and 3D experiments on real medical datasets
illustrate the benefits of a WEM based registration framework. The different wavelets
transforms are based on the Matlab implementation by Gabriel Peyré and the Rice wavelet
toolbox. To compute a consistent WEM, three conditions have to be fulfilled:

1. Images must have the same pixel size,

2. the domains where the RDWT is computed must have a size which is a factor of 2,

3. both images have to be decomposed in the same number of levels.

Convergence to the right solution depends much more on the topography of the search
space offered by the similarity measure than on the optimizer. Hence, we can choose a
Downhill-Simplex optimizer, that does not require any gradient information, to solve our
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measure maximization tasks. The quality of registration will be evaluated by using the
target registration error (TRE). The TRE is computed by comparing the positions of a
set of points {pi, 1 ≤ i ≤M} after being mapped by the estimated transform T and by
the ground truth transform G:

TRE = 1
M

i=M∑
i=1
‖T (pi)−G(pi)‖ (B.15)

In the following, mutual information computed on wavelet energy map will be denoted
by MEI (Mutual Energy Information), while the classical approach on intensity maps
by MII (Mutual Intensity Information). Different MEI based on Haar, Daubechies 4
(D4) and Cohen-Daubechies-Feauveau 9/7 (CDF) wavelet bases have been evaluated. All
experiments were performed with MATLAB 7.5.0 on a Intel Core 2 Duo CPU 2.40 GHz.

B.3.1 Correctness

The goal of these experiments is to show that registration performed with MEI leads to
the same global maximum than by using MII. Therefore, we use synthetic images and
plot both measures to compare their global maxima and smoothness. For a better under-
standing and visualization of the results, we analyze separately rotation and translation.
The images contain ambiguities resulting in several local maxima to demonstrate the su-
periority of our approach in terms of smoothness of the search space.

Experiment 1:

Figure B.4: Experiment 1: the Mandelbrot fractal image and its inverse used for visualizing the
similarity measure as function of the rotation parameter.
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We use a Mandelbrot fractal with equation f(z) = z8 +c which has interesting multi-
frequential characteristics. Indeed, it shows fine structures at arbitrary small scales, as
observed in medical images presenting tissues with complex textures. This fractal shows
an orientation ambiguity: we can distinguish 7 different global rotation maxima. Thus a
“CVPR 2009” detail is added to give an orientation to the whole image (see Fig. B.4).
We compare MEI and MII similarity measures for this image and its inverse, both hav-
ing a resolution of 256x256. Similarity values are plotted for a rotation angle varying
between −90 and +90 degrees. As shown on Fig. B.5 (left), the global maxima perfectly
correspond for both approaches. Besides, the WEM emphasizes the right solution by
smoothing other local maxima contrary to the intensity map.

Figure B.5: Experiment 1 and 3 (left) and (right): plot of the similarity measures for rotation angles
between −90 and +90 degrees. On this figure, D4 wavelet has been used to compute the WEM.

Experiment 2:

In our second experiment, we use the following sum of cosinus to simulate multi-
ple interfaces such as those observed in many medical images: f(x) = a1cos(2πf1x) +
a2cos(2πf2x) + a3cos(2πf3x). The resulting image shows ambiguities in both x and y
directions. As before, we add the “CVPR 2009” detail giving a unique solution (see Fig.
B.6). We compare MEI and MII for this image and its inverse, both having a resolution
of 128x128. Similarity values are plotted for translation parameters varying between −20
and +20 pixels in both directions. As shown on Fig. B.7 the global maximum perfectly
corresponds for both approaches. This experiment also reveals the abilities of the WEM
to both emphasize the global maximum and offer a smoother search space, which are very
valuable for optimization purposes.

B.3.2 Robustness to noise
The goal of these experiments is to argue for the superiority of MEI in terms of robustness
in comparison to the classical approach, even when a denoising step has been performed
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Figure B.6: Experiment 2: the multiple interfaces image and its inverse used for visualizing the
similarity measure as function of the translation parameters.

Figure B.7: Experiment 2: Measures plotted for variations in translation. On this figure, D4 wavelet
was used to compute the WEM.

prior to the similarity computation. Two denoising methods are used: averaging and
adaptive wavelet denoising [14]. The later method is parameter-free and based on soft-
thresholding of the wavelet coefficients. It was chosen for fair comparison with wavelet
energy maps. Denoising being a challenging task usually involving a priori knowledge
on the type of noise, a “denoising-free” measure such as MEI is very valuable for robust
registration. We will use for the following experiments a gaussian noise model, that affects
independently all pixels of the images and thus highly corrupts the information content.
We show in experiment 3 that MEI preserves its search space from distortions on the
same synthetic images corrupted by gaussian noise. Experiment 4 shows its robustness
to different levels of noise and is performed on an image without any ambiguity. A real
registration framework is used for evaluation of the search space formed by the three
transform parameters.

Experiment 3
The impact of gaussian noise on the smoothness of the search space of MEI, MII and MII
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preceded by a denoising step is analyzed. We use the same figures and setup than in the
previous section, and add to all images an additive gaussian noise with σ = 20% of the
maximum intensity value.

Figure B.8: Experiment 3: From left to right, top to bottom: MEI, MII without denoising, MII with
adaptative wavelet denoising and MII with averaging denoising for variation in translation. In this figure,
D4 wavelet was used to compute the WEM.

Figures B.5 (right) and B.8 show that our approach preserves the global maximum in
presence of gaussian noise unlike the others. Even when a denoising step is applied prior
to the computation of the similarity measure, MEI offers a smoother search space with a
meaningful global maximum. The rotational case even reveals that MII looses the right
solution.

Experiment 4
In this experiment, we evaluate the robustness to an increasing amount of gaussian noise.
MEI is compared to MII and MII preceded by a denoising step on an image without any
ambiguity. We use the portrait of Lena with a resolution of 128x128 pixels. Registration
to its inverse image is performed with a Downhill Simplex optimizer by starting from
10 random initial positions within the range −3 to +3 pixels translation and −3 to +3
degrees rotation.

Fig. B.9 shows the mean target registration error in function of the percentage of noise.
For the classical computation of mutual information, the TRE increases dramatically in
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Figure B.9: 2D Registration noise experiment: performed on Lena image and its inverse to evaluate
the robusness to noise of each method.

contrast to our approach that always presents the smallest error. Even when a denoising
step is performed prior to the registration, results illustrate the benefits of MEI in terms
of robustness.

B.3.3 Efficiency on medical images

In this part, we evaluate the efficiency of our approach in 2D and 3D multi-modal regis-
tration experiments. First, 2D experiments are conducted on magnetic resonance (MR)
images from sequences acquired with different system parameters, namely T1, T2, PD
and TOF acquisitions. Then, 3D experiments are performed on MR and SPECT volumes
with an increasing amount of noise. MEI computed with Haar, D4 and CDF wavelet
bases are compared to the classical MII. To evaluate the registration efficiency of each
method, we distinguish between success rate and accuracy. A registration is considered
as successful when the final target registration error is inferior to a given threshold te.
Otherwise, the approach did not converge in the neighborhood of the right solution. The
accuracy is evaluated as the mean target registration error computed on the cases where
all methods have converged under te.

The chosen multi-modal datasets contain ambiguities which can lead classical ap-
proaches to misregistration. Experimental results illustrate the ability of our method to
cope with such ambiguities by emphasizing the right global maximum and smoothing
other local extrema.
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Figure B.10: Experiments on different MR channels: T1, T2, proton density (PD) spin echo
sequences and Time of Flight (TOF) MR Angiography gradient echo sequence of the neck of the same
patient (from left to right, and top to bottom)

B.3.3.1 2D registration experiments: Real Magnetic Resonance datasets

Between June 2005 and November 2006, volunteers were recruited at a partner hospital at
the Neurology department of Klinikum Rechts der Isar in Munich, Germany to perform
a study on internal carotid artery stenosis. All patients underwent the same MR imag-
ing protocol: they were imaged using a 1.5T Magnetom Symphony Quantum Gradient
scanner from Siemens Healthcare Sector. Four different sequences were acquired: T1, T2,
PD and TOF images (refer to Fig. B.10). The MR scans were centered on the carotid
bifurcation and patients were positioned on a vacuum pillow. Surface coils receiving the
electro-cardiogram gated MR signal for imaging were fixed on the neck to ensure a perfect
alignment between the four sequences. These datasets are considered as ground truth for
all our experiments.

While T1, T2, PD sequences provide different information related to tissue character-
istics, TOF gives dynamic information related to the blood flow in arteries. The circular
shape of the neck makes the registration task ambiguous in 2D. Indeed, to recover the
right rotation parameter, registration can only rely on corresponding tissues or interfaces
appearing in each modalities.

In the following experimental setup, 2D registration tests are conducted on all possible
combinations of T1, T2, PD and TOF images taken from 8 patients. They have a reso-
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lution of of 128 x 128 with a pixel size of 1.25mm x 1.25mm. Knowing the ground truth
position for each dataset, we give a random initial perturbation within the TRE range
of 20mm. The threshold te is set to 10mm which corresponds to 50% of the initial TRE
range. Results presented in tables B.1,B.2 reveal the benefits of our approach on real
medical datasets: MEI shows the best success rates for an equivalent accuracy. In hard
tasks such as registrations to TOF images, both success rate and accuracy are better.
Even though MII is an accurate measure, it shows more local extrema than MEI when
images present ambiguities. These local extrema trap the optimizer, leading thereby to
more misregistration errors. In contrast, by smoothing these local extrema, our approach
offers a better success rate.

Success rate in %
Haar MEI D4 MEI CDF MEI MII

T1/TOF 87.50% 87.50% 87.50% 84.38%
T1/T2 100% 100% 100% 98.96%
T1/PD 100% 100% 100% 98.96%
T2/TOF 86.46% 87.50% 87.50% 85.42%
T2/PD 100% 100% 100% 98.96%
PD/TOF 87.50% 87.50% 87.50% 82.29%

Table B.1: 2D registration experiments: success rate on T1, T2, PD and TOF images.

Target Registration Error in mm
Haar MEI D4 MEI CDF MEI MII

T1/TOF mean 2.84 3.18 2.80 3.75
std dev 1.69 1.96 0.92 2.16

T1/T2 mean 0.91 0.90 0.99 0.64
std dev 0.64 0.49 0.59 0.55

T1/PD mean 0.95 1.04 1.05 0.83
std dev 0.55 0.55 0.52 0.58

T2/TOF mean 2.99 3.25 3.19 3.26
std dev 1.78 2.03 2.02 2.32

T2/PD mean 1.14 1.02 1.25 0.60
std dev 0.61 0.56 0.73 0.44

PD/TOF mean 2.68 3.03 2.79 3.21
std dev 1.82 1.91 1.61 2.32

Table B.2: 2D registration experiments: final TRE on T1, T2, PD and TOF images.

B.3.4 3D registration experiments: T1 Magnetic Resonance
and SPECT-Tc volume

Single photon emission computed tomography (SPECT) is a nuclear medicine tomo-
graphic imaging technique used to provide information related to the blood flow. In
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3D, SPECT volumes present a blurry cloud aspect with smooth intensity variations that
do not correspond to any structure visible in the MR volume. This makes the recovery of
transformation parameters for such a task challenging.

In the following experimental setup, 3D registration tests are conducted on MR and
SPECT volumes of 4 patients taken from the Whole Brain Atlas online database [46].
They have an in-plane resolution of 128 x 128 with a voxel size of 1.67mm x 1.67mm x
1mm. When the size in z is not a power of 2, a zero-padding is performed at the boundaries
of the volume before the RDWT. Knowing the ground truth for each dataset, an initial
perturbation is applied within a range of 14mm of initial TRE. By using 20 initializations
for each patient, and this for an increasing amount of noise, we can investigate the ability
of each measure to converge towards the right solution and thereby assess their robustness.
The threshold te is set to 7mm which corresponds to 50% of the initial TRE range. Results
presented in Fig. B.11 show that MEI offers better success rate for a better accuracy.
With an increasing amount of noise, even though an averaging denoising step is performed
prior to registration, our approach leads to better results. Since noise is localized in a
small part of the frequency spectrum, its impact is minimized by the computation of the
WEM. As in the 2D experiments, our method copes better with the ambiguities caused
by the aspect of the SPECT volumes.

B.4 Conclusion
In this chapter, we proposed to perform the registration on a feature map called wavelet
energy map (WEM) instead of using the original image. We empirically showed that
mutual information performed on the WEM leads to the same solution than the classical
approach on intensity maps. Moreover, its multi-frequential aspect permits to empha-
size the global maximum in ambiguous cases containing multiple local extrema, offering
thereby a smoother search space, even in presence of noise. 2D and 3D registration exper-
iments on real medical datasets illustrated the efficiency of our approach in comparison to
the classical framework which is more sensitive to noise and image ambiguities. In future
work, we plan to address the rotational non-invariance issue of the redundant wavelet
transform, for instance by using filters computed on more orientations.
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B.4 Conclusion

Figure B.11: 3D registration: Plot of success rate and final TRE according to an increasing
amount of noise for MR-SPECT volumes.
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