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ABSTRACT  

An increasing number of studies investigate the impact of 
pulsed interferences in the frequency bands allocated to 
satellite navigation and show that such interferences can 
be considered as a significant threat for GNSS receiver 
performances. Analytical models which include on the 
one side the pulse parameters (pulse peak power, pulse 
duty cycle or pulse repetition frequency) and on the other 

side the receiver front-end parameters (ADC levels, filter 
bandwidth and pulse blanking threshold) already allow to 
closely evaluate the corresponding degradations. 
However, the impact of the spreading codes and 
especially their interaction with the interfering pulses is 
usually neglected. 

It is indeed often assumed that the randomness of the 
spreading codes enables to ignore any repetitive chip 
pattern of the code that could correlate with periodical 
pulse sequences. Moreover, if the code segments 
corrupted by the high power pulses are blanked too, they 
are not used afterwards in the correlation process. The 
balancedness of the remaining codes should not lead to 
any artifact in the signal-to-noise plus interference ratio 
(SNIR) estimated with the correlator output. Hence, for 
pure random codes, the pulse positions should not 
influence the statistical properties of the correlator output. 
If however the codes contain series of identical chips, so-
called runs, which are synchronized and similar to the 
pulse sequence and if these runs are not perfectly blanked, 
the effective SNIR will likely be modified. Although the 
design of navigation codes should guarantee that such 
periodical chip patterns do not exist, detailed 
investigations show that certain properties of non-strictly 
random codes could still give rise to some unexpected 
results for the SNIR. 

It is consequently the intention of this paper to first set-up 
a more accurate analytical model for the impact of pulsed 
signals onto the receiver SNIR and secondly to show that 
in some specific conditions, non-ideal code properties 
might lead to anomalies of the SNIR degradation in a 
pulsed interference environment. Such conditions are 1) 
Non-ideal randomness properties of the spreading 
sequences, 2) Pulse interference sequences which are 
synchronized with sub-patterns of the codes and 3) 
Specific configurations of the receiver front-end which 
favor such SNIR degradations. 

1 INTRODUCTION 

Typically, a GNSS receiver can face high power pulsed 
signals in two situations. In the first one, the pulses 
constitute interfering signals, transmitted by external 
systems, and having no commonalities with the GNSS 
signals. This is the case, for example, of the 
DME/TACAN pulsed signals transmitted in the frequency 



bands shared with the Galileo E5 signals.  In the second 
one, the pulses are transmitted by terrestrial emitters, 
aiming at improving the receiver’s navigation 
performance (accuracy, availability) in a specific area, 
like an airport. Those sources, called pseudolites, share 
the frequency bands with the GNSS signals as well as 
many features of the signal structure. 

In both cases it is mandatory to estimate how the 
corresponding pulsed signals will affect the receiver 
performance. This is usually quantified with the signal-to-
noise plus interference ratio, SNIR, at the correlator 
output and analytical models help determining the pulse 
effects onto this figure of merit. 

The objective of this paper is then to show the sensitivity 
of the SNIR with parameters related either to the receiver 
front-end, to the interfering pulses or to the spreading 
codes. For this purpose, the following structure has been 
adopted. 

In the first part, the main functional blocks of the receiver 
front-end (bandlimiting filter, AGC, ADC and blanker) 
will be described, as well as their behaviour in presence 
of pulsed signals. Then, a literature survey of existing 
models used to evaluate the impact of pulsed signals onto 
the SNIR will follow. It will be shown that each of the 
models focuses only on one specific type of interfering 
scenario. It will also be shown that some characteristics 
like the AGC dynamic or the interaction between the 
pulse amplitude and the blanking threshold needs to be 
described more precisely to refine the existing models. As 
a consequence enhanced analytical models will be 
developed to evaluate the impact of pulsed interferences 
onto the SNIR. Monte Carlo simulations will enable to 
validate the corresponding analytical models. 

In a second part, specific examples of receiver front-end 
configurations and pulse characteristics will be proposed 
to demonstrate the influence of the non-ideal randomness 
properties of the spreading sequences used for navigation. 
Here, the three main Golomb postulates of code 
randomness will be recalled, and particular attention will 
be paid to the balance of positive and negative code chips 
as well as the identification of segments of code, called 
runs, which are composed of identical chip values. Such 
runs can effectively interact with the pulse entering the 
correlator, leading to unexpected SNIR variations. Again, 
simulations will be used to verify that for some specific 
cases the “synchrony” between the pulses and the code 
runs could effectively lead to deviations of some dBs, 
w.r.t. standard analytical models for the SNIR. 

In the final part, the consequences of the former results 
will be developed for specific applications. This concerns 
especially scenarios with a zero Doppler between 
navigation and pulsed signals which will magnify the 
non-randomness of the spreading codes. Pseudolite 
applications could belong to this category and an adequate 
spreading codes selection should therefore be made. 

2 FRONT-END RECEIVER MODEL 

2.1 FUNCTIONAL BLOCK DESCRIPTION 
Considering a typical GNSS receiver front-end, Figure 1 
represents the main functional blocks which will 
influence the SNIR evaluated with the correlator output. 

 
Figure 1: Typical GNSS Receiver Front-End 

Analogue filtering and down-conversion are merged in a 
single block. Here, the main focus is given to the 
interaction between the Automatic Gain Control (AGC), 
the Analog-to-Digital Converter (ADC) and the blanker 
that are now described in more details. 

- The AGC will adapt the amplitude of the signal 
entering the ADC to minimize the quantization losses. 
The two main methods to achieve this objective 
consist in regulating either the percentiles of the ADC 
output distribution or the power of the ADC input over 
a short interval. This last solution has been retained. 

- For the ADC, 2N quantization levels are considered 
and all samples beyond the maximal levels (±2N-1) are 
clipped. 

- The digital blanker sets to zero all samples whose 
absolute value is larger than the blanking threshold. 

The following three figures show the signal variations 
after the low-pass filter, after the AGC and after the 
blanker. The corresponding curves have been generated 
with a software tool aiming at modeling the receiver 
front-end chain. 

 
Figure 2: Analogue signal after low pass-filtering 

 
Figure 3: Analogue signal after AGC 
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Figure 4: Digital signal after blanker 

It can be observed from Figure 3 that the proposed AGC 
uses a gain based on a power estimated over a time 
window with duration comparable to the pulse duration.  

During the pulse, the amplitude decay can be easily 
recognized and the pulse amplitude once compressed 
converges to a constant. Due to the relatively low AGC 
dynamic, the pulse is not compressed rapidly enough and 
the corresponding samples are blanked (Figure 4).  In the 
remaining part of the compressed and un-blanked pulse, 
the amplitude of the noise (containing also the navigation 
signals at very low power) is much too low and is not 
adapted for later processing (for example large 
quantization losses have to be expected). 
Once the pulse stops, the AGC gain increases again to 
adapt the amplitude of the noise samples to the ADC 
quantization grid. At the beginning of this recovery 
period, the amplitude of the noise and navigation signals 
is much too low and large quantization losses have to be 
expected again. Once the steady state is reached after 
pulse stops, it can be observed that the blanking threshold 
is set too low: thermal noise samples are also blanked, 
which leads to additional losses. 
The former descriptions enabled to underline the role of 
each element of the receiver front-end and its incidence 
on the samples used to evaluate the SNIR in case of 
inappropriate setting. In the proposed example this 
corresponded to an AGC recovery time with same 
duration as the pulse, and a too low blanking threshold 
compared to the noise standard deviation. It is proposed 
now to verify quantitatively these observations. 

2.2 MATHEMATICAL CONVENTIONS 
In this section, the analytical expressions of the signal 
along the different blocks of the reception chain are 
described. The corresponding variables are indicated in 
Figure 1. 
Here a single navigation satellite signal and a single 
pulsed signal are considered at reception. This simplified 
situation enables to better illustrate the receiver behavior 
and to derive the analytical models. The corresponding 
methodology can be extended for the situations with 
multiple satellite navigation signals (one of them being 
the desired one) and with multiple pulsed signals 
(interferers or pseudolite). 

• Received Signal 

The baseband notation for the received signal r(t) can 
then be decomposed as follows: 

w(t)(t)s(t) sr(t) ps ++= ~  (1) 

Where )(ss t  represents the navigation signal, )(s~p t  the 

pulsed signal and w(t) the additive thermal noise. All 
three signals are considered in-phase, which represents a 
worst case situation for the impact of the pulsed signal. 

    - The navigation signal can itself be written as: 
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Herein, 
- cs(t) is the spreading code sequence of length L and 

s
mc is the mth chip value 

- ps(t) is the chip waveform with a PSD, called Gd(f), 
normalized over the transmission bandwidth. 
- s

cT  is the chip duration 
- Ps is the power at receiver antenna output port 
- τs is the code delay 

- The pulsed signal, (t)s p~ , is characterized by a Pulse 

Repetition Frequency (PRF), pf , and a pulse duration 

(PD), pT . The corresponding Pulse Duty Cycle (PDC) 

is given by pp fT=PDC . The pulse has a peak power 

equal to Pp, a pulse shape pp(t), and a PSD, called Gp(f), 
also normalized over the transmission bandwidth. 

In the particular case of pulsed Pseudolite signals, only a 
portion of spreading codes will be transmitted during the 
pulse (see [4]). 

- The additive thermal noise, w(t), is defined by a 
Gaussian distribution, p(w), with a Power Spectral 
Density (PSD) N0 supposed flat over an infinite 
bandwidth. 

• Signal After Filtering  

The equivalent low-pass filter h(t) is assumed to be a 
brickwall filter of one-sided bandwidth β/2 (β is the 
equivalent passband bandwidth). The filter output reads: 

 h(t)*r(t)(t)r f =  (3) 

The noise  signal (n(t)=h(t)*w(t)) is white over the 
bandwidth β, and follows the corresponding distribution: 
n(t)~N(0,σ2) with σ2 = N0·β.  

• Signal After AGC: 

The AGC multiplies the filtered signal rf(t) with a gain 
G(t) to maintain a constant power at the input to the ADC. 
This gain is inversely proportional to the power estimated 
over the recovery time period (RT): 

(t)r G(t)(t)r fg ⋅=   
1
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This means that after multiplication with the AGC gain, 
the signal rg(t) has unit power over any time window of 
duration RT. If the AGC input would be a noise with 
variance σ2, the AGC output, rg(t), has variance one (unit 
power). This level is then used as reference for the 
quantization grid of the ADC. 



• Signal After ADC: 

The role of the ADC is two-fold: 
- It samples the signal rg(t) at a sampling rate fs equal to 

the Nyquist frequency fs=β. 
- It quantizes the signal rg(t) into a discrete valued 

signal that can take 2N values if it belongs to the 
interval [-Lclip, Lclip]. Lclip is called the clipping voltage. 
If rg(t) exceeds this interval it is clipped as follows: 
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(5) 

For typical receiver implementations the blanking 
threshold is smaller than the clipping voltage and the 
effects of the clipping can be ignored. Because one of the 
main objectives was to observe the effects of the blanking 
threshold, BTH, onto the SNIR, the clipping voltage is set 
much higher than its optimal value which minimizes the 
quantization losses (see [11]). This solution allows a 
larger range of variations for the BTH.  
• Signal After Blanker:  

The signal after the blanker is then given by: 



 <

==
otherwise              0

BTHif         )(
))(()(

(t)rtr
trftx dd

dB
 (6) 

It is important to note for the later mathematical 
derivations that fb(�) is odd and linear over [-BTH, BTH]. 

• Correlation:  

The final step of the signal processing chain consists in 
correlating the digital signal, x(t), with the local replica, 
i.e. the receiver internal code, cs(t). The correlation is 
performed over a code period of duration, T (also called 
coherent integration time).  
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• SNIR Estimator: 

The signal-to-noise plus interference ratio, SNIR is 
representative for the performance of the acquisition, the 
phase tracking loop and demodulation and in some 
extends to the code tracking loop (see [7]). The 
expression of the SNIR for the tracked satellite signal, 
sl(t), is given by (see also [9]). 

]var[

][
][SNIR

2

C

CE
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2.3 ASSUMPTIONS 
For the derivations of the mathematical models for the 
SNIR, the following assumptions have been used:  
[A.1] The magnitude of the power of the satellite 

navigation signal is significantly smaller than the 
power of the thermal noise. 

[A.2] All signals are considered real. Derivations 
suppose that all energy is on the in-phase component.  

[A.3] The chip waveforms are considered two-valued 
(+1/-1). This corresponds to the most usual waveforms 

(BPSK, BOC). Derivations could be extended to 
multi-level waveforms like the CBOC. 

[A.4] The amplitude of the pulse is constant. 
[A.5] The effects of band limitation on the navigation 

signals are ignored (β>>Gabor bandwidth of the 
received navigation signal). It means that the chip 
plateaus do not see any ripples and can be considered 
as constant. This is also true for the pulse. 

[A.6] The ADC samples at Nyquist rate (fs = β). 
[A.7] Quantization is assumed to be performed with 

high-enough resolution (large number of quantization 
levels) such that quantization losses can be neglected. 
Furthermore, no clipping effect will occur as long as 
BTH < Lclip. As a consequence, rd(t) = rg(t). 

[A.8] No transient effects of AGC are considered. As 
shown later in section 4, two AGC behaviors will be 
distinguished: a fast or a slow gain regulation will 
apply according to the value of the recovery time 
w.r.t. the pulsed duration. It will be seen that in each 
situation the AGC gain will take a constant value 
during the time intervals either with or without pulses.  

The former assumptions will always be applicable in this 
paper. Now further assumptions will be used for the 
derivation of the closed form expressions for the SNIR. 
Note that for the analysis of the code/pulse synchrony 
effects, these assumptions will not apply (see section 7). 

[A.9] All spreading codes are random and independent. 

[A.10] Even if the pulses occur periodically, no time 
dependency between the pulses and the received 
spreading code exist (the PRF is not multiple of the 
inverse of the code period). In that way the pulse can 
arise in any portion of the code. 

[A.11] The portion of the spreading code during the 
pulse is considered random and balanced (as many “0” 
as “1” symbols), as well as the portion of the code out 
of the pulse. 

[A.12] The pulse takes positive and negative values 
with same probability. 

3 EXISTING SNIR DEGRADATIONS MODELS 

In literature several analytical models of the SNIR have 
been proposed. They usually give expressions for the 
SNIR of satellite and pseudolite signal tracking in 
presence of interference. The models differ according to 
the type of interference (continuous wave, narrow-band 
Gaussian noise, pseudolite signals, etc.), the interference 
power and the relative dynamic of the interference 
transmitter w.r.t. the ranging source. Here a review of the 
models considering pulsed interferences is proposed. 

• Model for low power interfering pulses 
In [3] the following expression for the SNIR in presence 
of a low power pulse is proposed: 

 

∫⋅+
=

2/

2/-

)().(.PDC

SNIR β

β

dffGfGPN

S
T

pdpo

 

(9) 



• Model for multiple high and low power interfering 
pulses 

The above model considers that no pulse is blanked. 
Therefore a different model was proposed in [3] to take 
into account concurrent reception of multiple pulses with 
low and high powers, which potentially may trigger the 
blanker: 
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Herein 
- PDCB is the proportion of time when the signal level 
exceeds the blanking threshold. 
- N represents the number of pulses with peak power 
lower than the blanking threshold. Here, each low power 
pulse with index i is characterized with a non-normalized 

PSD, )(
~

, tG ip , and a Pulse Duty Cycle, PDCi. 

• Model for multiple high power pseudolite pulses 
In [5], the situation of Kp non-overlapping pseudolite 
pulses is analyzed. Their power is sufficiently high to 
saturate (clipped ADC) the front-end of a receiver which 
is not equipped with a blanker (note that this situation is 
not considered in the current paper since BTH < Lclip). 

The SNIR for the tracked satellite signal is given by: 

)PDC1(PDC

)PDC1.(
SNIRSat ⋅−+⋅⋅

⋅−
=

pp

p

KKp

Ks  (11) 

Herein 

- 
10/)/(10 typIS

s = represents the typical post-correlation 
signal-to-noise plus interference ratio in absence of 
pulsed pseudolite signals (without saturation). For the 
calculation of the interference power, I typ, the average 
number of interfering signals and the average code 
cross-correlation function values are taken into account 
(in addition to the thermal noise). Furthermore, the 
powers are measured over the front-end filter 
bandwidth, β. [4] shows that in the particular case of the 
GPS CA signals, 10 satellites are visible and the average 
cross-correlation is -30 dB. 

- 10/)/( max10 IPPLp = represents the maximal post-

correlation pulse-to-noise-plus-interference ratio (in 
saturation). In [4], it is supposed that the saturated 
power equals the thermal noise power into the front-end 
bandwidth, β (=N0.β). In comparison to s, this ratio is 
derived by considering the worst-case configuration of 
alignment between the spreading code of the tracked 
signal and one of the interfering pseudolites signals (in 
the case of GPS C/A codes this value is -21.6 dB [14]) 

When considering the tracking of one of the pseudolite 
signals, it is supposed again that the receiver operates in 
saturation. The SNIR becomes (from [5]): 

)PDC)1(1(PDC)1(

PDC
SNIR max

PL ⋅−−+⋅−⋅
⋅=

pp KKp

s  
(12) 

Herein 10/)/(
max

max10 ISs = represents the maximal 

(saturated) signal-to-noise-plus-interference power ratio. 
In the case of the GPS CA code [5] shows that 
(P/I)max=(S/I)max-21.6 dB. 

• Model considering the front-end receiver dynamic 
behavior 

In [6] the SNIR model which considers the dynamic of 
the receiver front-end, and especially the Recovery Time 
(RT) of the AGC, is proposed for a single pulse supposed 
completely blanked. 

))RTPDC(PRF1).(/.(SNIR int +⋅−= oNCT  (13) 

Hence, each SNIR expression is representative of a 
specific configuration of the receiver (application of a 
blanker, working in saturation mode, dynamics of the 
AGC), or of the interfering signals (high, low power, 
pulse overlapping). All of these expressions can be 
considered in some extends complementary. Now, it 
would be useful to have a more generalised expression 
which could cover these different situations 
simultaneously. Furthermore, it is proposed to 
additionally account for the following aspects: 

- The blanking threshold amplitude and its effects on 
the thermal noise samples 

- The contributions of the noise and the tracked signal 
during the pulse. 

- For the calculation of the interference contribution, the 
properties of the partial cross-correlation should be 
considered during the pulse only (a section of epoch), 
instead of considering the cross-correlation properties 
over a complete code epoch. Moreover, the cross-
correlations of this model do not have to be evaluated 
only for code delays equal to an integer number of 
chips but also for code delays expressed in fraction of 
chip. Indeed, in that former case, the chip waveforms 
have an additional influence on the cross-correlation. 

- Equations (11) and (12) considers the maximal cross-
correlation value which is a worst case appearing only 
a very small proportion of time, while most of cross-
correlation experiences between satellites and 
pseudolites will be much smaller. 

- Finally the dynamic and the relative position between 
the interfering and desired signals have also to be 
covered. 

It is therefore proposed to derive a set of analytical 
models which could include the previous existing models 
and take additionally into account some of the 
aforementioned aspects.  

4 AGC BEHAVIOUR 

4.1 PRESENTATION 
Figure 3 represented the behavior of the output of the 
AGC whose recovery time was roughly equal to the pulse 
duration. This situation could be considered as non-
optimal since the pulse was not totally blanked and a non-
negligible part of the noise samples were useless for later 
correlation due to the transient time after pulse stopped. It 

 



is now proposed to consider two extreme cases: a fast and 
a slow AGC. Here the analysis of corresponding signals at 
the output of the AGC will help supporting the analytical 
derivations for the SNIR model by highlighting the 
relevant contributions. 

4.2 FAST AGC 
Figure 5 represents the output of a fast AGC.  

 
 

Figure 5: Signal after fast AGC 

For a fast AGC, the gain is estimated on a time window 
much shorter than the duration of the pulse. Therefore: 
� During the pulse, the AGC gain depends on both pulse 
and thermal noise powers: 

p
on PGtG +== 21)( σ  

If the power of the pulsed signal is magnitudes stronger 
than the noise, the gain could even be simplified to 

p
on PG 1≈  

� Beyond the pulse, the power of the thermal noise, σ², 
determines the AGC gain value, G(t) = Goff =1/σ. 
As shown on Figure 5 the pulse is compressed and takes 
an amplitude equivalent to the normalized variance of the 
thermal noise present out of the pulse.  
 
Hence it can be observed that for a fast AGC two 
different gain values Gon/Goff have to be considered. 
 
It can be seen from Figure 5 that when the blanking 
threshold is configured such that the pulsed signal is 
suppressed, non-negligible parts of the noise and 
navigation signal would also be potentially blanked 
leading to undesirable SNIR degradations. Therefore the 
application of a blanker in combination with a fast AGC 
is questionable. But even without blanker, the fast AGC 
efficiently compresses the pulsed signal with a factor 

pP1  and thus reduces its degrading contribution in the 

SNIR. If the navigation signals still exist during the pulse, 
they are so compressed that their contribution to the SNIR 
is marginal. 

Finally, the quantization error for the noise samples out-
of-the pulse is identical to the one without pulse since the 
AGC gain takes the steady state and nominal value 1/σ. 

4.3 SLOW AGC 

Figure 6 represents the output of a slow AGC.  

 
Figure 6: Signal after slow AGC 

For a slow AGC, the gain is now estimated on a time 
window whose duration encompasses several pulses. 
Therefore the AGC gain is identical during and aside the 
pulses and equals: 

pPGGtG ⋅+=== PDC1)( 2
offon σ  

Hence, the pulse amplitude after AGC becomes: 
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And the noise standard deviation becomes:  

pp

p

PPDCP

PtG

. if )PDC(           

)PDC().(

22

22

<<⋅≈

⋅+=

σσ

σσσ  

Again, the Gon/Goff notation can be used for later 
analytical derivations even though both gains are equal 
now. As a consequence, for a slow AGC, the general 
behavior of the signal before and after the pulse is 
identical, only the scale has changed as shown in 
Figure 6. 

For a slow AGC, the application of the blanker is now 
worthwhile as soon as its amplitude is set between the 
standard deviation of compressed noise, and the pulse 
amplitude. For the interval without pulses and since the 
noise is now compressed, higher quantization losses have 
to be accounted since their amplitude is no more set 
optimally for the ADC quantization grid. However and 
because a large number of quantization bits (e.g. 8) has 
been considered as working assumption ([A.7]), even 
compressed the signals are quantized over enough levels 
which still enable to neglect the quantization losses. 

For the interval with pulses, if the pulse is effectively 
suppressed due to an appropriate blanking threshold 
setting, this is also true for the noise and navigation 
signals (except for some marginal samples corresponding 
to the “negative” queues of the noise distribution, which 
draw the amplitude of the AGC output below the blanking 
threshold). 



5 IMPROVED SNIR DEGRADATIONS MODELS 

5.1 SEGMENTATION 
Figure 5 and Figure 6 show that during each coherent 
integration interval, T, two contributions can be easily 
distinguished: 

- For a fast AGC, the first interval contains only 
navigation signal and thermal noise samples and is 
not compressed. The second interval will contain the 
samples for the compressed pulse in addition to the 
noise and signal samples. 

- For a slow AGC, the first interval contains also only 
navigation and thermal noise samples but now it is 

compressed with the gain: pP⋅+ PDC1 2σ . The 

second interval contains no samples if the blanker is 
appropriately set, or contains the pulsed signal, 
navigation signals and noise all compressed with the 
same former gain.  

Because the spreading codes have been chosen as 
random, the signal during the pulse is independent from 
the signal outside the pulse ([A.10]). Therefore the mean 
(resp. variance) of the correlator output can be evaluated 
with the weighted average of the mean (resp. variance) of 
two partial correlator outputs. The first partial correlator 
output is obtained by correlating the segments without 
pulses, the second one is obtained by correlating the 
segments during the pulses. Note that for the variance, the 
noise and interference contributions are inversely 
proportional to their activity period (see [15]). 

As a conclusion, the weighted mean and variance 
accounts for the PDC. This is shown on the following 
equations: 

]var[.PDC]var[).PDC1(]var[
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Both mean and variances are then applied to the general 
SNIR expression in Eq. (8). 

As a consequence the next sections will concentrate on 
the derivation of the statistical properties of the partial 
correlations between the local replica and: 

- the thermal noise plus navigation signal, multiplied 
by the gain Goff, which is applicable aside the time 
intervals with pulses 

- the pulsed signal (and thermal noise plus navigation 
signals) when multiplied by Gon. 

Note that if the blanking threshold is set below the pulse 
amplitude, a large majority of samples are suppressed and 
the terms E[Con] and var[Con] are very small or even 
negligible in equation (14). 

In the following sub-sections the analytical expressions 
for the contributions to the mean and variance will be 
derived for the following cases: 

- Contribution of the noise and navigation signal in 
intervals without pulses (section 5.2) 

- Contribution of the noise and navigation signal in 
intervals with pulses (section 5.3) 

- Contribution of the pulsed signals (section 5.4) 

5.2 TRACKED SIGNAL AND NOISE 
CONTRIBUTIONS TO THE PARTIAL-
CORRELATION STATISTICS FOR 
INTERVALS WITHOUT PULSES 

In this section, the analytical expressions for the mean and 
variance of the partial correlations evaluated in intervals 
without pulses are presented. In this situation the samples 
containing thermal noise and the navigation signals are 
multiplied with the gain Goff whose value differs 
according to the fast or slow AGC type. The exact 
mathematical derivations, which are based on Taylor 
expansion up to the order 1, are given in appendix A.  

The expression for the mean of the correlator output is: 
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The expression for the variance of the correlator output is: 
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Note that in the former expressions the Qn(x) functions 
are defined by:  
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5.3 TRACKED SIGNAL AND NOISE 
CONTRIBUTIONS TO THE PARTIAL-
CORRELATION STATISTICS FOR 
INTERVALS WIT PULSES 

In this section, the analytical expressions for the 
contribution of the noise to the mean and variance of the 
partial correlations during intervals containing pulses are 
presented. In this situation the samples containing the 
pulse, the thermal noise and the navigation signals are 
multiplied with the gain Gon. The mathematical 
derivations, again based on Taylor expansion up to the 
order 1, can be found in appendix B. It is recalled that an 
important assumption enabling the derivation of these 
quantities is that the pulse amplitude is constant ([A.4]). 

The expression for the mean of the correlator output is: 
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The expression for the variance of the correlator output is: 
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The former expression supposes of course that the pulses 
are not blanked (see section 4 for more details). 



5.4 CONTRIBUTION OF THE PULSES TO THE 
PARTIAL-CORRELATION STATISTICS 

This section determines the contribution of the pulses 
when correlated with the navigation signals.  According 
to the relative dynamic between the navigation signal 
source and the pulse emitter two different analytical 
models have to be considered. 
•••• Spectral Separation Coefficient for dynamic 
configuration 
In this situation it is supposed that the navigation signal 
source is moving w.r.t. the receiver and the terrestrial 
pulse emitter. This is mainly the case for a typical GNSS 
scenario using MEO satellites as ranging sources. Here, 
the relative delay between the local replica, locked to the 
satellite navigation signal, and the pulsed signal 
permanently drifts over time. 

The most encountered and accepted analytical model to 
account for the effects of the interference onto the SNIR 
is based on the Spectral Separation Coefficient (SSC) 
model (e.g. [13], [12]). The SSC expression is given by: 
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It is recalled that the PSDs of the desired, Gs(f), and 
interfering, Gp(f), signals are normalized over their 
respective transmission bandwidths. 

When applying the SSC in the specific context of pulsed 
interference it is necessary to account for pulse duty 
cycle, as already proposed in equation (9). Note that 
equation (9) applies for pulsed with low peak power. For 
higher power it is necessary to account for the AGC gain 
which scales the corresponding power. Hence, the 
variance of the correlator output during the time interval 
containing the pulses becomes: 
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Hence the AGC gain will effectively affect the impact of 
the pulsed signals by compressing their amplitude with 
Gon. 

By considering that the portion of the spreading codes 
during the pulse are well-balanced ([A.11]) the mean of 
the correlator output during such time intervals is null 
(E[Con] = 0). 

•••• Waveform Convolution Coefficient for the static 
configuration 
Here, the navigation signal source is fixed w.r.t. the 
terrestrial emitting source and the receiver is not moving. 
Two typical scenarios apply: For the first scenario, the 
navigation source is a pseudolite (usually emitting in 
pulses) while the pulsed source can either be an 
interfering source (radar) or another pseudolite located in 
its vicinity. The second scenario corresponds to a 
geostationary satellite emitting signals used for ranging, 
additionally to the MEO satellites. This could be the case 
of the SBAS (EGNOS, WAAS) systems using 
geostationary satellites to disseminate corrections data 
and possibly ranging sources. 

In both situations the delay, τs,p, between the replica and 
the pulses does not vary significantly. The use of the SSC 
is not exactly appropriate and the relative delay τs,p needs 
to be accounted. In appendix C the variance of the partial 
correlator with the pulse contribution is shown to become 
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Here WCC represents the Waveform Convolution 
Coefficient, function of τs,p, and is defined as  
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The derivation of this equation supposes Tp multiple Tc. 
In fact, from (21) and (22) it is shown that the SSC is 
proportional to the average of the WCC for τs,p varying 
between 0 and Tc. 
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•••• Consideration of the blanked samples 
Because it is also necessary to consider the samples 
contained in the pulses which are blanked, the 
contribution of the pulse to the variance becomes: 
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The coefficient Kcc is either the WCC or the SSC 
according to the relative velocity between the interfering 
and navigation signal sources. For a dynamic situation Kcc 
will take the form of the Spectral Separation Coefficient 
and for a static situation Kcc will take the form of the 
Waveform Convolution Coefficient. 
As a conclusion the variance of the partial correlator 
output during the pulse equals (considering the pulse and 
noise contributions): 

pulseonnoiseonon ]}{var[]}{var[]var[ CCC +=  (26) 

5.5 ANALYTICAL EXPRESSIONS FOR THE SNIR 
In this section, it is proposed to provide the closed form 
expressions of the SNIR for specific settings of the 
blanking threshold corresponding to the following cases. 

•••• Slow AGC with very high blanking threshold 
Here it is supposed that the blanking threshold is set much 
larger than the pulse amplitude (no sample is blanked 
during the complete integration time). In that case, 
simplifications described in Appendix–D enable to 
deduce the general expressions of the mean and variance 
of the correlator output over a coherent integration: 
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Based on these expressions, the closed form expression 
for the SNIR is (see Appendix–D): 
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This expression implicitly means that the navigation 
signals samples can still contribute to the SNIR (no power 
loss of (1-PDC)² at numerator). 

•••• Slow AGC with optimal blanking threshold 
Here the blanking threshold is set such that the complete 
pulse is blanked but all noise samples during the periods 
without pulse are preserved (optimal situation). In this 
situation, all contributions to the mean or variance during 
the pulse are suppressed, and since Goff=Gon, for a slow 
AGC, the SNIR expression is: 
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•••• Fast AGC without blanker 
For a fast AGC, no blanker is applied since it was shown 
in section 4.2 that it does not provide any real benefit. 
Furthermore, it is supposed that the AGC gain 
compressed the thermal noise and navigation signals 
during the pulse in such a way that they do not influence 
either the mean or variance of the partial correlation. The 
closed-form expression for the SNIR becomes: 
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6 VALIDATION OF THE ANALYTICAL 
MODELS W ITH MONTE-CARLO 
SIMULATIONS 

6.1 SIMULATION PARAMETERS 

For the validation of the former analytical models the 
parameters described in Table 1 have been considered. 

Categ. Parameter Value Comment 
Filter Bandwidth, 

β 
40.92 MHz  

AGC Recovery 
Time 1µs <RT<1s  

ADC bits 8  

Blanking 
Threshold σ²< BTH²<σ²+10 dB 

Reference is 
thermal noise 

power 
ADC sampling 
frequency, fs 

40.92 MHz Nyquist 

Receiver 

Integration time T = 1ms  
Waveform BPSK(5) 

Code Length L = 5115 
Galileo E6-like 

signals 

Code Type Random 
Indiv. code per   

Monte-Carlo run 

Nav. 
Signal 

Received Power Pl = -158.5 dBW Ant. output port. 
Thermal 
Noise 

PSD, N0 -201.5 dBW/Hz  

Pulse Duration PD = 27 µs  
Peak Power Pp = -110 dBW Ant. output port. Pulsed 

Signal Pulse Repetition 
Frequency 

1KHz <PRF<4KHz  

Table 1: Parameters used for the validation 

Based on the proposed parameters, the SNIR in absence 
of any pulsed interfering signal, without blanker and 
having infinite front-end bandwidth at the receiver equals 
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6.2 RESULTS  

•••• Validation for the periods without pulses 
First the model is validated in absence of a pulse (thermal 
noise and navigation signal only). For this purpose, the 
analytical expressions (15) and (16) for the mean and 
variance of the correlator outputs have been directly 
included into equation (8). Figure 7 shows the variations 
of the SNR degradations as function of the blanking 
threshold. Here both analytical models and simulations 
results are shown (the intervals of confidence for the 
SNIR obtained with simulations are also represented) 

 

Figure 7: SNIR Degradation without pulse with blanking 
threshold 

As expected it can be verified that when the blanking 
threshold is set too low, the corresponding percentiles of 
the noise distribution are suppressed, which impacts 
strongly the SNR. It can also be stated that a very good 
match exists between results of the Monte-Carlo 
simulations and the analytical models. 

•••• Validation of Relationship between SSC and WCC 

In this section it is proposed to provide one simple 
example of calculation of WCC, and to verify the 
relationship between the SSC and the WCC (Eq. (24)). 
For this purpose the simple case of two BPSK signals 
with same waveform duration (1µs) is considered. This 
would be the case of a pulsed pseudolite signal using a 
BPSK chip modulation which would interfere with the 
reception of a navigation signal using a BPSK too. The 
following figure illustrates how equation (23) is applied in 
this specific scenario to generate the WCC as function of 
the delay τs,p. 

The last figure shows that the average of the WCC over 
the propagation time τs,p is 2/3. Application of equation 
(24) leads to SSCBSPK,BPSK = 10*log10(2/3 � 1/Tc) = 
-61.8 dB.Hz-1, which is a value that can be also be 
recovered by the application of equation (20). 



 
Figure 8: WCC and SCC for BPSK-BPSK case 

As a conclusion Eq. (24) can be verified and therefore the 
SCC effectively represents the time average, w.r.t. the 
propagation times, of the WCC over one chip duration.  

•••• Validation of SNIR model with pulses 

In this section the SNIR model is validated when 
considering the presence of a pulse. Here the 
segmentation of the coherent integration time T is applied 
which leads to a combination of the mean and variance 
for both sub-intervals with and without pulses (see Eq. 
(14)). The PRF is set to 1 KHz (all other pulse parameters 
are listed in Table 1). Furthermore, two AGC types have 
been considered: the first one is a fast AGC using a 
recovery time of 1µs, much smaller than the pulse 
duration of 27 µs. The second uses a recovery time of 
1ms and can be considered as a slow AGC. Figure 9 
shows the corresponding variations of the SNIR 
degradations w.r.t. a nominal SNIR of 13 dB.  

 
 

Figure 9: SNIR Degradation with pulse and blanking for 
slow and fast AGC. PRF = 1KHz. Pp=-110 dBW 

- For a fast AGC, the noise samples in the intervals 
without pulse have a nominal distribution that would 
be observed for a scenario considering only navigation 
signals (Goff=1/σ²) and the amplitude of the pulse, 
once compressed corresponds to the 1-σ percentile of 
the noise distribution (see Figure 5). Hence, the 
application of a blanker for pulse suppression can not 
be done without “scarifying” noise samples containing 
the navigation signals. This is the reason why the 
SNIR degradations are especially large for low 
blanking thresholds. When the threshold becomes 
larger (>5 dB) these degradations reduce, before 
converging to an asymptote representative of the 
effects of the non-blanked (but still compressed) pulse 
onto the SNIR, as given by Eq. (30): 

- For a slow AGC the pulse and noise samples are 
compressed with the same gain Gon=Goff. Therefore 
the pulse still emerges from the thermal noise (see 
Figure 6) and it is possible to effectively suppress it 
when setting the blanking threshold appropriately. 
Now, if the blanking threshold is too high, the pulses 
are not blanked and will impact the SNIR. Eq. (28) 
now applies. When the blanking threshold decreases 
and reaches the pulse amplitude (~6dB on Figure 9) 
the pulse is suppressed. So the SNIR degradation is 
minimal and given by Eq. (29). Now, if the blanking 
threshold is further reduced, a similar effect as for the 
fast AGC occurs: the noise samples are blanked and 
the SNIR degradation increases again. 

6.3 AGC DYNAMIC AND PULSE DURATION 
The former simulations have been repeated for different 
values of the recovery time, varying between 1µs and 1s. 
Figure 10 shows the corresponding SNIR degradations.  

 
Figure 10: SNIR Degradation for Slow and Fast AGC 

Two typical behaviors can be recognized on this figure: 

- For recovery times smaller than the pulse duration, the 
SNIR variations are very close (0.5 dB disparity) and 
can all be explained in a similar way to the curve in 
Figure 9. A deeper analysis shows that this behavior 
occurs as long as RT<PD/2. 

Increasing RT 



- Similarly, SNIR variations are very close for slow 
AGC which corresponds to RT > 4 PD. Explanations 
similar to those of  Figure 9 can be proposed again. 

- In between (PD/2<RT<4 PD) a transition zone 
shows an SNR degradation around 4 to 6 dB 
independent of the blanking threshold. 

Hence, an AGC can be described as fast or slow only 
when comparing the pulse duration to the recovery time. 
It must be noted that the bounds PD/2 and 4 PD are only 
applicable for the proposed AGC implementation. Other 
implementations might provide other bounds, but this 
general trend should be preserved. 

Finally, by choosing a recovery time having the same 
order of magnitude as the pulse duration, the averaged 
SNIR degradations are the largest when compared to the 
slow or fast AGC situations. The SNIR does not benefit 
from the slow or fast AGC advantages, but takes only the 
corresponding drawbacks. Figure 3 illustrated perfectly 
this property. 

7 IMPACT OF SPREADING CODES AND 
CODE/PULSE SYNCHRONY 

7.1 RANDOMNESS PROPERTIES 
In [10], three main criteria, called Golomb’s postulates, 
are proposed to measure the randomness of pseudo-
random codes. These are 

- Balance property: the number of 1’s in every period of 
a sequence s differs from the number of 0’s by at most 
one. 

- Two-levels auto-correlation property: s is a sequence 
with a 2-level auto-correlation function (ACF): 

ACF(k) = 1, if k=0, and ACF(k) =-1/N if k≠0 

- Run property: a run of s is a subsequence consisting of 
only 0’s or 1’s which are neither preceded nor 
succeeded by the same symbol. The length of a run, 
called Lrun, is the number of consecutive identical 
symbols (for example ‘10001’ is a run of length 3). A 
run of successive 0’s is called a gap while a run of 
successive 1’s is called a block. For a code, the runs 
follow a specific distribution which depends on their 
length, Lrun. 

In [8] the application of the Golomb’s postulates to 
spreading code families used for several navigation 
systems (Galileo, GPS, QZSS) enabled to identify some 
(minor) discrepancies. For example, 

- One GPS-CA code (PRN 25) shows a run of 16 
consecutive 1’s between the 967th and 982th chips. 

- One E5b-I code (PRN 45) shows a run of 25 
consecutive 0’s between the 6705th and 6729th chips. 

7.2 IDENTIFICATION OF PULSE/CODE RUN 
SYNCHRONY 

The former investigations have shown that relatively long 
sequences of consecutive and identical chips exist in the 
spreading codes. Because, 20 GPS CA code of 1ms 
duration are repeated within one data bit, it means that a 
small but non-negligible match exists between this 

repetitive code sequence and a stream of periodical pulses 
synchronized to the run locations. In case of the GPS CA 
code (PRN25) pulse sequences with PRF ~1 KHz and 
pulse duration ~16µs would be critical. Figure 13 shows 
such a code run / pulse synchrony for the GPS CA (PRN-
25) during the first millisecond. 

 
Figure 11: GPS-CA (PRN 25)-Pulse Alignment 

A similar synchrony can be created for the E5b-I 
(PRN45) codes (now over a duration of 2.5µs). 

 
Figure 12: Galileo E5b-I (PRN 45)-Pulse Alignment 

These two examples highlight a match between run and 
pulse sequences, when considering one pulse per primary 
code period of 1ms. It is now proposed to extend this 
investigation in a more systematical way by considering 
several pulses per code period. Indeed, it might also 
happen that K runs of same length Lrun repeat periodically 
in one code duration. In terms of integrated energy during 
the correlation process, this would be equivalent to a 
single run of duration K.Lrun. Furthermore, even if runs 
are not exactly of the same length but occur at periodical 
locations in the codes, again a good match with the 
periodic pulse sequence could appear.  
Therefore, the systematic search consisted to characterize 
the pulsed sequences with a mask, pPD,PS(t), defined with 
two parameters: its pulse duration, PD, and its pulse 
spacing, PS, such that PRF = 1/(PD+PS). 

 
Figure 13: Param. for Code /Pulse Synchrony Analysis 

Pulse 
 Spacing 

1/PRF pPD,PS(t) 

Pulse 
 Duration 



This mask takes the values +1/0 values and is correlated 
with the spreading code sequence, ck(t) using the +1/-1 
voltage notation, over the code period. Note that if 1/PRF 
is smaller than the code period, pPD,PS(t) is repeated until 
reaching the corresponding code duration (leading to 

)(~
, tp PSPD ). This correlation function depends on PD, PS 

and the delay between the pulse and the code, τs,p, as 
shown in the following equation: 
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Note that it is supposed that the pulse duration is an 
integer number of chips (sufficient for the proposed pulse-
run investigation). 

The maximum of this correlation function over all delays, 
τs,p, while keeping PD and PS fixed, is retained to measure 
the degree of matching between the pulse sequences and 
the periodical runs. 

The following figure shows the corresponding correlation 
maxima for the specific case of the GPS CA (PRN 25) 
sequences. Here the pulse duration varied between 1 chip 
(~1µs) and 100 chips (~100µs). 

 
Figure 14: Pulse/Code Run correlation for the GPS-CA 

(PRN 25) 

It can be observed that even if the corresponding 
correlation does not take large values (maximum at 5%), 
some specific PD/PS combinations lead to pulse 
sequences similar to the code ones. Furthermore, the 
better matches occur for small PS values. Now, because 
most of the pulsed interference affecting GNSS receivers 
have a PRF smaller than 5 KHz, it means that the effects 
of code run / pulse synchrony should be analysed 
primarily for pulse spacing larger than about 200 chips. 

A “cut” of the corresponding mesh figure is proposed for 
a pulse duration of 100 µs (~100 chips). 

 
Figure 15: Pulse/Code Run correlation for the GPS-CA 

(PRN 25)- PD = 100 chips 
It can be verified that some of the peaks take the form of a 
sinc² shape (see PS of 920 chips). This characteristic 
should be further analysed in more detail. 

7.3 IMPACT OF CODE-RUN/PULSE SYNCHRONY 
ON SNIR 

Because the pulse sequence is synchronized with the 
primary code, no variability in the correlation output has 
to be expected but rather an additional DC component. 
This DC component will add to the contribution of the 
received signal at the correlator and might therefore bias 
the SNIR estimator of equation (8). 

It is now proposed to verify with Monte-Carlo simulations 
if the code run / pulse synchrony will effectively affect 
the SNIR as anticipated. For this purpose, it is proposed to 
align the pulse and the corresponding run to cover a worst 
case situation. 

Here the special case of the GPS CA code (PRN 25) will 
be considered for illustration. The following table shows 
the corresponding characteristics. 

 
Chip 
 Rate 

[MCps]

Run 
Length 
 [Chip]  

PRF 
[KHz] 

PS 
[µµµµs] 

PD 
[µµµµs] 

GPS-CA (PRN 25) 1 16  1 ~1007 ~16 
Table 2: Parameters used for pulse synchrony 

As far as the parameters for the receiver are concerned, a 
fast AGC with a recovery time of 1µs (much smaller than 
the proposed pulse durations) has been applied. The peak 
power is kept to -110 dBW. Furthermore, no blanker is 
applied for such a fast AGC (see section 5.5). 

Figure 16 shows the SNIR as function of the PRF when 
considering either random codes (black curve) of 1023 
chip length, or the GPS CA PRN-25 when the code runs 
and the pulses are synchronized (blue curve). 

PD = 16µµµµs 
PRF = 1KHz 



 
Figure 16: SNIR for random code (L=1023) and the GPS 

CA (PRN 25) for Code Run / Synchrony 

The former figure shows effectively that when the pulses 
are synchronised with the code runs an obvious increase 
of SNIR appears. This situation occurs for a PRF of 
1 KHz. As soon as the PRF deviates from this value the 
corresponding abnormal behaviour can not be observed 
and the SNIR follows the one obtained with random 
codes (other peaks at 600Hz and 1400Hz are also visible 
which certainly correspond to other code run/ pulse 
synchronies). 

The artefact of the SNIR is now justified. As explained, 
the code run / pulse synchrony leads to an additional DC 
component which is proportional to the pulse amplitude 
once compressed and to the pulse duty cycle. Therefore 
the general expression for the mean of the correlator 
output becomes (no navigation signal contribution): 
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For a fast AGC, the SNIR given by Eq. (30) becomes 
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For the specific case of the GPS CA code PRN 25, which 
shows a run of length Lrun =16,  PDC = Lrun/T =1.56%, 
and σ²=β�N0. Application of the former equation leads to 
an SNIR of 17.2 dB or equivalently an improvement of 
4.8 dB w.r.t the case of random codes. This value is very 
close to the one observed on Figure 16. 
In order to consolidate the corresponding interpretation it 
is proposed to inverse the sign of the pulse, which is 
equivalent to an angle phasing of π, between the satellite 
and the pulse signals (eq. (1)). The red curve on Figure 16 
shows the corresponding SNIR behaviour. Due to the sign 
inversion, the numerator of the SNIR (Eq. (34)) becomes 

2).).PDC1(( σPDCPs −− . In that case the numerical 

application leads to an SNIR of 0.8 dB or equivalently a 
reduction of 11.6 dB w.r.t the case of random codes. This 
value is close to the one observed on Figure 16 which 
consolidates the corresponding justification. 
An analogy is now proposed between the spectral lines of 
the real navigation signal PSD and the code runs. Indeed 
both characteristics are the consequence of the non pure 
randomness of the codes. For pure random codes, the 

smooth PSD of navigation signal using a BPSK waveform 
should follows a {fc�sinc²(f/fc)} function, where fc is the 
chip rate. However, for pseudo-random codes the PSD 
will be composed of spectral lines spaced with the inverse 
of the code periodicity. In [14] it is shown that the 
deviations of these spectral line amplitudes w.r.t. the 
sinc²(f) envelop can reach up to 10 dB, depending on the 
signal and code type. Figure 17 shows an example of the 
first four lines, spaced by 1 KHz in the special case of a 
GPS CA, as well as the envelop PSD, represented with a 
yellow line. Note that due to the data modulation each 
spectral line is replaced by a {fd�sinc²(f/fd)} function, fd 
being the data rate equal to 50 bps. 

 
Figure 17: PSD and close-in for the GPS CA PRN-1 

showing the spectral lines 
If a narrowband or a CW interferer is tuned to the 
corresponding spectral line frequencies the degradations 
of the SNIR are much higher than for other carrier 
frequencies. This increase of the vulnerability of the 
navigation signal to narrow band interferences, caused by 
the non-randomness of the codes can be thus revealed by 
the analysis in the frequency domain. The current paper 
has just shown that a similar increase of the navigation 
signal sensitivity against pulsed signals could also be 
highlighted when analysing the code characteristics (code 
runs, balance) in the time domain. Hence both domains 
can be considered as complementary to highlight possible 
weaknesses of the navigation signals against interferers. 
Note that it would be interesting to verify if the 
frequencies corresponding to the periodical runs can be 
related to a specific excesses of spectral lines w.r.t. ideal 
smooth PSD. Indeed, in case of a spreading code 
including a periodic run sequence, the spectral line 
corresponding to the run periodicity is expected to exceed 
the smooth PSD of a truly random code. 

It is important to note that the unexpected artefacts in 
SNIR are observed when both navigation and pulsed 
signals have the same phase. Now, the Doppler will 
certainly help reducing the corresponding effects by 
letting this phase vary over the different integrations. 
Similarly the pulse modulation (+1/-1) will also attenuate 
the average SNIR estimated over several coherent 
integrations. Nevertheless, some abnormal variations 
should remain in the SNIR for specific PRF. 



7.4 SCENARIO OF CODE/PULSE SYNCHRONY 
AND RECOMMENDATIONS  

Different scenarios can consequently lead to unexpected 
SNIR behaviors when code runs and pulses are 
synchronized. Again the condition is that the relative 
dynamic of the pulse transmitter and navigation signal 
source is low over a time period corresponding to several 
integration periods. This would be the case for: 

- a navigation signal transmitted by a geostationary 
satellite, and pulsed interferer or a pseudolite. 

- a navigation signal transmitted by pseudolite and 
again pulsed interferer or another pseudolite signal. 

It is clear that other conditions related to the receiver 
front-end are also necessary to magnify the corresponding 
effects. This would be the case of a receiver equipped 
with a fast AGC (RT smaller than PD) or a receiver which 
is not equipped with a blanker and operates in saturation 
in presence of the pulsed interferer. Typical receivers not 
equipped with blanker could belong to the category of the 
mass market receivers, for example. Furthermore, the 
receiver should have a slow dynamic too. 

8 CONCLUSION AND WAY FORWARD 

The outcomes of this paper are manifolds:  

- It proposed refined analytical models for the SNIR in 
presence of pulsed interferences, which better account 
for the blanking threshold value and the dynamic of 
the AGC regulation w.r.t. to the pulse duration. Here 
two main behaviors have been distinguished: a fast 
one (resp. slow) when the recovery time is 
significantly smaller (resp. larger) than the pulse 
duration. 

- It showed that using a slow AGC usually leads to 
better performances because the pulsed signals still 
emerge from the thermal noise after AGC regulation 
which authorizes their suppression with the blanker. 
The use of a blanker for a fast AGC does not provide 
significant benefits. Now the AGC itself could serve 
as mitigation method by compressing the pulse. It is 
also recommended to avoid an intermediary zone 
when the pulse duration and recovery time are similar. 

- It highlighted that the Spectral Separation Coefficient 
(SSC) could be used when the difference in 
propagation times between the navigation signal 
source and the receiver on a one side, and between the 
pulse emitter and the receiver varied sufficiently over 
several integration periods on the other side. For a 
fixed configuration, the Waveform Convolution 
Coefficient (WCC) should be used. Finally, it was 
demonstrated that the WCC and SCC were closely 
related. 

- It showed that in the special cases when subsets of 
identical chips, called runs, and pulses were 
synchronized during several integrations, artifacts in 
the SNIR could appear. In that situation the impact of 
the pulses onto the SNIR can not be modeled by a 
random contribution but by a constant which impacts 
the SNIR. This is especially true for receivers using 

fast AGC. The amplitude and sign of the 
corresponding variations depends on the pulse 
duration and the phasing between the navigation and 
pulse signals. Pulse modulation and non-zero Doppler 
will certainly reduce these artifacts without 
completely suppressing them. Such SNIR abnormal 
behaviors could be encountered when using either 
navigation signals transmitted by geostationary 
satellites or pseudolites. Hence, the runs increase the 
sensitivity of the navigation signal to periodical 
pulses, in the same way that the deviations of spectral 
lines w.r.t. the smooth PSD, applicable to pure random 
codes, increase the sensitivity to narrow band (CW) 
interfering signals. 

As a way forward to this study, the following aspects 
could be further covered: 

- The operational mode of a receiver working in 
saturation should be considered. This situation applies 
mainly for scenario involving pseudolite signals which 
usually lead the ADC in clipping. SNIR models 
similar to those of equations (11) and (10) could be 
developed when accounting additionally the AGC 
dynamic. 

- The proposed refined models could be extended to 
pulses showing non-constant amplitude during the 
pulse duration (chirps signals for example). 
Nevertheless, the models proposed in this paper and 
applied for pulses with constant amplitude could 
already provide the worst case situations w.r.t. other 
pulses. 

- The effects of quantization and filtering should also be 
accounted. Indeed, for the derivation of SNIR models 
it was always assumed that the quantization losses are 
negligible. However, for a slow AGC it can be shown 
that the compression of the navigation signals should 
increase the corresponding quantization losses. Here a 
similar approach to this applied in [11] could be 
followed. 

- The refined SNIR models could be applied for 
dimensioning pseudolite systems. Here the results on 
the code/pulse synchrony could be taken into account 
for the selection of spreading codes for pseudolites 
which should show as less runs as possible.  

- The investigations regarding the code run/pulse 
synchrony could be pursued, in order to verify if the 
SNIR artifacts really represents a marginal 
phenomenon or have to be taken into account more 
seriously (similarly to the receiver sensitivity against 
by CW interferers), at least for dedicated applications. 
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APPENDIX A – DERIVATION OF SNIR IN 
PRESENCE OF THERMAL NOISE ONLY 

The objective of this appendix is to derive the SNIR when 
the received signal is the combination of the thermal noise 
and the navigation signal only (no pulse is considered in 
eq. (1)). In that case, the signal power at AGC input is 
dominated by the thermal noise power which yields to a 
constant AGC gain, G(t) = Goff 

The expressions for the mean and for the variance of the 
correlator output are now derived. 

Expression for the Mean of the Correlator Output 
The mean of the correlator outputs is given by: 
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Where x(t) is the received signal at ADC output and cs(t) 
is the replica. Here, 
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Based on the fact that fB(�) is odd and n(t) has a 
symmetric distribution, the following equations hold : 
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Using the definition for the distribution of the noise n(t) 
yields: 
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Assuming that BTHoff <<sPG , Taylor expansions can 

be used at first order to derive the following expression: 
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Since E[x(t)cs(t)] is not dependent on time t, it can be 
finally deduced that:   
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Expression for the Variance of the Correlator Output 

The variance of the correlator outputs is given by: 
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cs(t) is independent of cs(u) when t and u do not belong to 
the same chip interval. Denoting by Ic(t) the chip interval 
containing t: ∃ m1 ∈ Z, t∈[m1Tc, (m1+1)Tc]. In the 
following the integration interval is split into two 
complementary intervals to derive E[C²]: 

• interval where t and u are not on the same chip 
interval , i.e. t fixed and u∉Ic(t)  

• interval where t and u are on the same chip interval , 
i.e. t fixed and u∈Ic(t)  



4444444 34444444 21

4444444 84444444 76

2

)(][0,
2

1

)(][0,
2

2

)()()()(
1

            

)()()()(
1

=][

Term

ss

tcIuTt

Term

ss

tcIuTt

off

dudtuctcuxtx
T

dudtuctcuxtx
T

C














+















∫∫

∫∫

∈∈

∉∈

E

EE
 

 (42) 
Each of the terms Term1 and Term2 is now derived. 

1) Derivation of the Term1  

Since t and u do not belong to the same chip interval, the 
double integral can be split into a product of integrals 
depending on t and u, and Term1 can be reduced to: 
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2) Derivation of the Term2 

Since cl takes either 1 or -1 and fB(�) is odd then:  
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The fact that the sampling frequency equals the Nyquist 
one (β=fs) enables to consider the noise samples n(t) and 
n(u) as independent when taken at two different instants. 
Therefore the correlation function E[n(t).n(u)] = σ².δ(t-u) 

After several steps, the following expression is 
established: 
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 3) Final result for the variance 

Finally, from the previous expressions, the variance of the 
correlator output can be deduced: 
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Since BTHoff <<sPG , it is possible to use again a 

Taylor expansion at first order. Therefore 
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Because this term does not depend on t:  
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Expression for the SNIR of the Correlator Output 

Injecting equations (40) and (48) into (8) yields   
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APPENDIX B – DERIVATION OF SNIR IN 
PRESENCE OF PULSED SIGNALS 

The objective of this appendix is to derive the SNIR in a 
time interval when the received signal is dominated by the 
pulsed signal, with peak power Pp. In this situation the 
AGC gain G(t) is approximately constant: G(t)≈Gon 
during that time interval. Two effects will contribute to 
the variance of the correlator output. The first one is the 
variance caused by the noise samples suppressed by the 
blanker. The second one is the variance caused by the 
pulsed signals if it is not blanked. For the mean only the 
effect of the noise samples will be considered.  

The following expression gives the expression of the 
blanker input (effect of ADC is neglected), showing the 
navigation and the predominant pulse signals. 
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Expressions of the mean and variance due to the noise 
contribution (in presence of a pulsed signal) 

Because the amplitude of the navigation signal is much 
lower than this of the pulse, the current situation can be 
compared to the previous one (“low-power signals only”). 
Now the interval in which the noise samples are not 

blanked becomes  ]BTH ,BTH[ p
on

p
on PGPG ±±−  

instead of ]BTH,BTH[− . 

The same methodology for the derivation of the mean and 
variance of the correlator output in presence of a pulse is 
therefore applied. Furthermore, the condition which 
enables to apply the Taylor expansion becomes:  

s
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p
on PGPG >>−BTH  

In that case the contribution of the mean and average of 
the noise only are given by the two following equations: 
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Expressions of the variance due to the pulsed signals 

In addition, the pulsed signal will also impact the variance 
of the correlator output. For this purpose either the 
Waveform Convolution Coefficient (WCC) or Spectreal 
Separation Coefficient (SSC) are used, depending on the 
relative dynamic between the navigation signal and 
pulsed transmitters. This contribution to the variance 
equals: 
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See section 5.4 for the applicability of the coefficient Kcc 
which is either the WCC or the SSC. 

Expression for the SNIR of the Correlator Output 

Injecting equations (51), (52) and (53) into (8) yields   
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APPENDIX C – EXPRESSION OF THE 
WAVEFORM CONVOLUTION COEFFICIENT 
The objective of this appendix is to derive the expression 
of the variance caused by an interfering pulsed signal 
whose source can be considered as static w.r.t. to the 
navigation signal source, and supposing a minimal 
dynamic at receiver. 

The corresponding variance can be expressed by: 
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The following model for the pulsed signal will be 
considered: 
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Herein Tp represents the pulse duration, pp(t) the pulse 

waveform and p
nc the pulse value taking either +1 or -1 

with equal probability when the pulse exists during the 
sub-intervals [n�Tp, (n+1)�Tp] and 0 in the other cases. 
Furthermore, τs,p is the difference in propagation times 
between the navigation signal source and the receiver on a 
one side, and the pulsed signal source and the receiver on 
the other side. Here τs,p is considered as fixed. 

Equation (55) is first derived in the situation when the 
chip duration equals the pulse duration (Tc=Tp). Then the 
property [ ] ',','' mmnn

s
m

s
m

p
n

p
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the randomness of the codes and of the pulse values 
([A.11] and [A.10]), enables to demonstrate that:  
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With the fact that ps is zero out of [0, Tc], the following 
expresion applies:  
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For symetrical waveforms such that ( ) ( )p
pp Ttptp +−=  

and ( ) ( )c
ss Ttptp +−= , it is derived:  
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The Waveform Convolution Coefficient, WCC(τs,p), 
function of τs,p, is then defined by:  
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In the general case when Tp is different from Tc, one has 
to extend the support of the waveforms for the pulse and 
the chip to the longest duration of both.  Supposing Tc 
smaller than Tp, the support of the chip waverform should 
be extended over Tc by filling the corresponding 
waveform with zeros where it was not previously defined. 
Hence both waveforms will have the same time support. 
One is simply zero padded. Then a similar approach can 
be followed as previously. The WCC expression becomes 
now (here it is supposed that Tp is multiple of Tc): 
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Finally:  
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APPENDIX D – CLOSED-FORM EXPRESSIONS 
OF THE SNIR FOR HIGH BLANKING 
THRESHOLDS 
This appendix provides the closed-form expressions for 
the SNIR when considering that the blanking threshold is 
not used. Here no sample is blanked and the following 
simplifications can be used: 
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Simplified Mean and Variance expressions 
Applying the former simplifications enables to deduce the 
different contributions to the mean and variance to the 
partial correlations. 

- The contribution to the mean and variance caused by 
the thermal noise in absence of pulses (Eq. (15) and 
(16)) becomes 

sPGCE offoff ][ ≈  (64) 
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β
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- The contribution to the mean and variance caused by 
the thermal noise in presence of pulses (Eq. (18) and 
(19)) becomes 

sPGCE onon ][ ≈  (66) 
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- The contribution to the mean and variance caused by 
the interfering pulse signals (Eq. (25)) becomes 
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Expression for the SNIR for a slow AGC 

For a slow AGC ( GPGG p =+== .PDC1 2
offon σ ) it is 

possible to introduce the former simplified expressions 
for the mean and variance into Eq. (27) which yields: 
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Including these expressions in Eq. (8) and neglecting the 
quantization losses during the pulse yields 
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Expression for the SNIR for a fast AGC 

For a fast AGC ( p
on PG 1≈  and Goff =1/σ) it is possible 

to introduce again the former simplified expressions for 
the mean and variance into Eq. (27) which yields: 

p

s
s

P

P
PCE ⋅+⋅−= PDC

1
)PDC1(][

σ
 (72) 








 ⋅+⋅⋅⋅+−= CC
c

p
K

T

T

PT
PDC

T
PDCC 2111

)1(]var[ σ
ββ

 (73) 

Including these expressions in Eq. (8) yields 
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Considering that the AGC gain compressed the navigation 
signals and thermal noise during the pulse in such a way 
that they do not influence neither the mean nor the 
variance of the partial correlation during pulse yields. 
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