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Abstract – Precise Point Positioning with GPS and/or Galileo is
becoming increasingly popular as it does not need any measurements
from a reference station. However, the resolution of the integer am-
biguities of the periodic carrier phases requires precise and accurate
estimates of satellite phase biases. This paper describes a new method
for the estimation of the receiver and satellites phase biases on all
frequencies. It uses a geometry-free approach with a Kalman filter
and sequentially fixes the undifferenced integer ambiguities. Several
steps are performed to improve the reliability of ambiguity fixing, e.g.
the fixing decision over a time-window and the use of both statistical
information from the Kalman filter and the actual deviation between
the float and nearest integer numbers. The proposed method is applied
to dual-frequency L1/L2 GPS measurements from 11 SAPOS stations
in Bavaria to analyze the stability of the satellite phase biases. The
long time span of 24 hours involves several rises and settings of
satellites and, thus, requires parameter mappings and trackings within
the estimation. The observed satellite biases vary by only 3 cm over
5 hours, and the receiver phase biases are even more stable.
Keywords – phase biases, Kalman filter, stability

I. INTRODUCTION

The positioning of a kinematic receiver in real-time with
centimeter-level positioning accuracy can currently only be
achieved in differential mode, i.e. a relative positioning of two
receivers. Double difference measurements between a pair of
satellites and a pair of receivers are performed to eliminate the
receiver and satellite biases and, thus, to simplify the resolution
of the carrier phase ambiguities.

However, this double differencing requires the exchange of
the complete set of measurements, which is a major drawback
and a strong motivation for precise point positioning. A pre-
requisite for resolution of undifferenced integer ambiguities is
the knowledge of satellite phase and code biases. Today, the
International GNSS Services (IGS) [1] is providing differential
P1/C1 code biases, which are computed on the basis of the
ionosphere-free linear combination in the course of a global
GNSS clock analysis [2] [3].

Ge et al. [4], Gabor and Nerem [5] and Laurichesse and
Mercier [6] estimated the L1 and L2 phase biases by com-
bining the fractional bias term of the Melbourne-Wübbena
combination [7] and the joint bias/ambiguity term of the
geometry-preserving, ionosphere-free phase-only combination.
The obtained pseudo-phase biases enable an unbiased estima-
tion of the L1 and L2 integer ambiguities. However, these
phase biases also include a weighted combination of code
biases on both frequencies. It is shown in [8] that these L1/
L2 pseudo-phase biases correspond to a geometry-preserving,

ionosphere-free narrowlane combination with a wavelength of
only 10.7 cm. There does not exist any geometry-preserving,
ionosphere-free combination with the applicability of these
biases and a larger wavelength than 10.7 cm.

This paper provides a new method for the estimation of
undifferenced and non-combined satellite phase biases with a
Kalman filter. Section II includes a general model for undif-
ferenced measurements and a parameter mapping to obtain
a full rank equation system. In section III, the estimation
of satellite phase biases with a Kalman filter and sequential
integer ambiguity resolution is described. The method is
applied to real GPS measurements from 11 stations of the
German SAPOS network in section IV.

II. MEASUREMENT MODEL AND PARAMETER MAPPING

A. Measurement Model

A very general model shall be used for the undifferenced
carrier phase and code measurements on frequencym, receiver
r, satellite k and time t:

λ1ϕ
k

1,r(t) = gkr (t)− Ik1,r(t) + λ1N
k

1,r

+ β1,r + βk1 + εk1,r(t)

λ2ϕ
k

2,r(t) = gkr (t)− q212I
k

1,r(t) + λ2N
k

2,r

+ β2,r + βk2 + εk2,r(t)

ρk1,r(t) = gkr (t) + Ik1,r(t) + b1,r + bk1 + ηk1,r(t)

ρk2,r(t) = gkr (t) + q212I
k

1,r(t) + b2,r + bk2 + ηk2,r(t), (1)

where:

λmϕ
k
m,r: carrier phase measurement,

ρkm,r: code measurement,
gkr : geometry term,
Ikm,r: ionospheric slant delay,
Nk

m,r ∈ Z: integer ambiguity,
βm,r: receiver phase bias,
βkm: satellite phase bias,
bm,r: receiver code bias,
bkm: satellite code bias,
εkm,r: phase noise,
ηkm,r: code noise,

and q12 = f1/f2 is the frequency ratio. The multipath errors
are included in the phase and code noise.
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The geometry term gkr (t) is composed of all non-dispersive
terms including the range ||xr−xk||, the receiver and satellite
clock offsets cδτr, cδτk , and tropospheric delays T k

r , i.e.

gkr (t) = ||xr − xk(t−Δτkr (t))||+ T k

r (t)

+c
(
δτr(t)− δτk(t−Δτkr (t))

)
, (2)

where Δτkr (t) is the signal travel time from satellite k to
receiver r. The treatment of gkr (t) as a single term makes
the phase bias estimation robust against orbital errors and
tropospheric modeling errors.

B. Parameter Mapping

The system of equations of (1) is rank-deficient, i.e. it is
not possible to directly estimate all gkr , Ik1,r, βm,r, βkm and
Nk

m,r. Therefore, a set of mappings is applied to remove rank
deficiency of the system as described by Henkel et al. in [8].

1. Mapping of code biases

First, the code biases are combined with the geometry and
ionospheric terms, i.e.

g̃kr (t) = gkr (t)+bgr +bgk , Ĩk1,r(t) = Ik1,r(t)+bIr +bIk , (3)

with bgr = −
b2,r−q

2
12b1,r

q2
12
−1

and bIr =
b1,r−b2,r

q2
12
−1

. The satellite
dependant biases bgk and bIk are obtained by replacing the
lower index r in bgr and bIr by an upper index k. The phase
biases shall be changed accordingly to compensate for the
terms mapped to the geometry and ionospheric parameters,
i.e.

β̃1,r = β1,r − bgr + q211bIr , β̃k1 = βk1 − bgk + q211bIk

β̃2,r = β2,r − bgr + q212bIr , β̃k2 = βk2 − bgk + q212bIk . (4)

2. Mapping of one satellite phase bias

Secondly, one of the satellite phase biases on each frequency
is mapped to the receiver phase biases, i.e.

˜̃
β1,r = β̃1,r + β̃11 ,

˜̃
βk1 = β̃k1 − β̃11

˜̃
β2,r = β̃2,r + β̃12 ,

˜̃
βk2 = β̃k2 − β̃12 , (5)

where the first satellite has been chosen as reference satellite.
There exists some degrees of freedom for the choice of this
best mapping.

3. Mapping of a subset of ambiguities

In a last step, a subset of ambiguities is absorbed by phase
biases and ambiguities, so that the equation system of (1) is
transformed to a full rank system, i.e.

˜̃̃
βr =

˜̃
βr +

∑

Ni∈Nsub

ci,rNi, Ñk

r = Nk

r +
∑

Ni∈Nsub

cki,rNi,

˜̃̃
βk =

˜̃
βk +

∑

Ni∈Nsub

ckiNi, (6)

where the subset is denoted by Nsub and ci,r, cki and cki,r
denote the coefficients generated by Gaussian elimination as
described by Wen in [9].

III. SATELLITE PHASE BIAS ESTIMATION

WITH A KALMAN FILTER

A Kalman filter is optimal for processes with a linear
behavior over time. Since the geometry in equation (2) con-
tains an elliptical orbit for GPS satellites, a rough estimate
of the range is computed from the known position of the
reference station and the broadcast satellite ephemerids, and
then subtracted from the measurements to remove the non-
linearity to a substantial amount (except for the clock offsets):

Δρkm,r(t) = ρkm,r(t)− ‖x̂r − x̂
k(t−Δτ̂kr (t))‖

λmΔϕk

m,r(t) = λmϕ
k

m,r(t)− ‖x̂r − x̂k(t−Δτ̂kr (t))‖. (7)

The bias estimation is then based on these ”differenced”
measurements, which are sampled at time t = nT , i.e. the
continuous time t shall be replaced from now on by a discrete
index n. The ”differential” geometry term in (7) can be well
modeled by a random walk process for the differential range
acceleration, i.e. the following state space model is proposed:

Δg̃kr,n = Δg̃kr,n−1+ΔtΔ˙̃gkr,n−1+
1

2
Δt2Δ¨̃gkr,n−1+wgk

r,n
, (8)

where Δt denotes the time interval between consecutive states,
and wgk

r

(t) ∼ N (0, σ2w
gk
r

) denotes the process noise to model
accelerations.

The slant ionospheric delays, receiver and satellite phase
biases shall also be modeled by a random walk process, while
the ambiguities are assumed to be constant over time.

The system of equations (1) can be solved with a Kalman
filter after the parameter mapping. The phase and code mea-
surements are combined in vector notation as

zn =
[
λ1ΔϕT

1,n, λ2ΔϕT
2,n,ΔρT1,n,ΔρT2,n

]T
= Hnxn + vn,

(9)
where the Hn matrix can be obtained from Equations (1),
(3), (5) and (6) and the state vector xn includes the geometry
term, the first and second order derivatives of geometry terms,
the ionospheric slant delays, the receiver and satellite phase
biases and the integer ambiguities, i.e.

xn =

[
Δg̃Tn , Δ˙̃gTn , Δ¨̃gTn , Ĩ

T

n ,
˜̃̃
βT
rec,

˜̃̃
βT
sat, Ñ

T
]T

, (10)

and the measurement noise vn follows a Gaussian distribution
N (0,ΣR). The state transition model for xn is given by:

xn = Φn−1xn−1 +wn−1, (11)

with the process noise wn ∼ N (0,ΣQ). The state estimates
and their covariance matrix are predicted as

x̂−
n = Φn−1x̂

+
n−1

P−

n = Φn−1P
+
n−1Φ

T
n−1 +ΣQ,n−1, (12)

and updated by the new measurements at epoch n [10], i.e.

x̂+
n = x̂−n +Kn(zn −Hnx̂

−

n )

Kn = P−

nH
T
n (HnP

−

nH
T
n +ΣR)

−1

P+
n = (I −KnHn)P

−

n , (13)

with Φn being the state transition matrix.
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A. Sequential Ambiguity Fixing

In this work, a new fixing decision criterion is introduced:
The float ambiguities are fixed to integer numbers only if the
offsets between float and integer numbers are below a certain
threshold during a time window, i.e.

Tp∑

i=1

f(N̂+,k

m,r,n−i
) ≤ Tp · w, (14)

where

f(N̂+,k

m,r,n−i
) =

{
1 if

∣
∣
∣N̂+,k

m,r,n−i
− [N̂+,k

m,r,n−i
]
∣
∣
∣ > eth

0 else.
,

(15)
with Tp denoting the length of the time window in which
the convergence of the ambiguities is observed, w being the
probability (allowing some outliers), and eth being the error
threshold. In the implementation, the parameters Tp, w and
eth are chosen to be respectively 600 epochs, 0.95, and 0.08
cycles. A motivation for this fixing criterion is given by Fig.
1: The float ambiguity estimate first varies around −20 (due to
multipath) before converging to the true integer number −22.
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Fig. 1. The convergence behavior of one ambiguity estimate on L1. The
ambiguity estimate might be fixed to the integer −20 after 20 minutes.
However, the ambiguity converges to −22 within the next 30 minutes, and
then remains very stable inside the threshold of 0.08 cycles (orange horizontal
lines) for 10 minutes.

B. Rising and Setting Satellite

Since the bias estimation needs a network of receivers over
a period of several hours, rising and setting satellites have to
be considered during the Kalman filtering, so that the bias
estimates can be observed for an arbitrary long time period.
For a setting satellite at one receiver, the visibility of this
satellite at other receivers has an impact on the parameter
mapping. If a setting satellite is invisible at only some of
the receivers, the measurements on the vanishing links do
not exist any more, which means the corresponding rows of
the H matrix should be deleted, so do the relevant states

Δg̃,Δ˙̃g,Δ¨̃g, and Ĩ . However, the corresponding satellite bias
shall be still kept to be estimated because the other receivers
could still ”see” that satellite. In this case, the estimation of
that satellite bias could become worse because of a decreasing
number of measurements from that satellite.

If a setting satellite moves out of the sight of all receivers,
not only the measurements from that satellite but also the
satellite bias along with the relevant states Δg̃,Δ˙̃g,Δ¨̃g, and Ĩ

should be eliminated. Moreover, if the setting satellite was
the mapped reference satellite in Equation (5), the bias of
another visible satellite has to be mapped into the other biases
to keep the full rank of H . If the ambiguities of a setting
satellite were already mapped to other ambiguities in section
II, an additional parameter mapping is required at the setting
epoch. These mappings are continuously tracked to observe
the stability over time.

For the rising case, new links between receivers and the
rising satellites come up. Therefore, the state vector is ex-

tended by the new states of Δg̃, Δ˙̃g, Δ¨̃g, Ĩ, ˜̃
β and Ñ . If

the rising satellites are only rising at some of the receivers,
which means the measurements from that satellite increase,
the satellite biases do not have to be initialized any more. In
the other case, the new satellite phase biases are initialized,
i.e. a least-squares estimation of the ranges, slant ionospheric
delays, and new combined ambiguity/ bias terms is performed
with measurements of at least three epochs.

TABLE I
REFERENCE STATIONS OF SAPOS NETWORK IN BAVARIA, GERMANY.

ID 0261 0265 0268 0269 0272 0273

φ [
◦
] 48.568 48.429 49.737 47.602 47.868 48.042

λ [
◦
] 13.443 12.933 10.162 10.416 12.107 10.494

ID 0274 0281 0285 0286 0292

φ [
◦
] 48.453 49.512 47.509 48.936 47.559

λ [
◦
] 10.279 12.546 11.143 13.564 9.708
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Fig. 2. Absolute satellite phase bias estimates of PRN 24.
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IV. RESULTS

In this section, dual frequency GPS measurements from
11 SAPOS (Satellitenpositionierungsdienst der deutschen Lan-
desvermessung) stations in Bavaria, Germany, are processed
from 24 hours of March 14, 2011. All stations are using the
same type of Trimble receivers. Their coordinates are listed
in Tab. I. The process noise standard deviations were set to
σwgr

= 1 m for the range and to σwI
= 1 cm for the

slant ionospheric delay. Fig. 2 - 5 show the stability of the
obtained satellite and receiver phase bias estimates over several
hours. The temporal variations of the converged bias estimates
are around 3 cm, and show a high correlation between both
frequencies.
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Fig. 3. Absolute satellite phase bias estimates of PRN 10.
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Fig. 4. Absolute receiver phase bias estimates on L1.
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Fig. 5. Absolute receiver phase bias estimates on L2.

V. CONCLUSION

A new method for the reliable estimation of receiver and
satellite phase biases was presented in this paper. A Kalman
filter has been used in the approach to estimate the phase
biases, while the integer ambiguities were fixed sequentially
and reliably due to a new fixing decision criterion over a
time-window. The method has been applied to real GPS
measurements taken from the SAPOS network in Bavaria to
analyze the stability of the phase biases. The results have
shown 3 cm variation over 5 hours of the observed satellite
phase biases and even less variation for the receiver phase
biases. Future work will focus on the stability and repeatability
of the satellite phase biases for days using a global network.
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