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Abstract – Earth observation uses a large number of Low Earth
Orbiting (LEO) satellites (ca. 400). The increasing resolution of
their instruments has inflated the data volumes that need to be
transmitted. The low altitudes limit the contact times, which is
challenging both with respect to the data volumes and delay until
data can be transmitted. Geostationary satellite (GEO) relaying is
thus a promising alternative. In order to allow pre-compensation of
Doppler Shift at the LEO side and to synchronize the transmission
from the LEOs to the GEO, the positions and relative velocities
of the satellites have to be known. LEOs can be positioned today
with centimetre accuracy by GPS. GEOs orbit on higher altitudes
than GPS satellites and therefore face problems using GPS signals.
Conventional methods allow GEO positioning from ground with
accuracies in the km range. In this paper, a new concept of GEO
precise positioning using communication channels of LEO satellites
is presented. Simulations show that Kalman filtered pseudoranges
lead to positioning errors in cm range. A new method based on
Newton algorithm allows to determine the Keplerian parameters and
their linear drifts in order to predict the GEO position.
Keywords – Orbit determination, GEO satellite, Positioning

I. INTRODUCTION

Conventional data download from Low Earth Orbit (LEO)
satellites via a direct link can only be performed when the
satellite appears in the ground station antenna’s field of view.
Depending on the orbit and location of the ground station,
this can lead to large delays between gain of data on the
LEO satellite and transmission to earth. This problem can
be solved by using geostationary data relays. The American
Tracking and Data Relay Satellite System (TDRSS) [2] and
the recently developed European Data Relay Satellite (EDRS)
[3] are examples for such approaches. An alternative concept
is currently designed under the lead of the German Aerospace
Centre (DLR) in the GeReLEO project. Thereby a multibeam
array antenna consisting of approximately 400 single spot
beams serves as receiving antenna for LEO signals (see also
[4], [5]). In order to avoid interference on neighbouring spot
beams, the LEO channels are separated by a Frequency Divi-
sion Multiple Access (FDMA) scheme. If two or more signals
from different LEO satellites are simultaneously passing the
same spot beam, an additional Time Division Multiple Access
(TDMA) scheme is foreseen as a baseline for alternating
transmission. Due to the relative movement of GEO and LEO
satellites, Doppler Shift occurs and has to be compensated for.
This can be done for example directly on the LEO satellite
by adjustment of the local oscillator. Therefore, the exact
LEO and GEO position and velocity has to be known. The
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Fig. 1. LEO satellites can be positioned with GPS achieving centimetre
accuracy. The transmission of signals from LEO satellites to a GEO satellite
allows the precise determination of the GEO position.

LEO position easily can be determined with the help of
GPS, where an accuracy in position of a few centimetres
can be reached [6]. The GEO position so far is determined
via ranging and ground station tracking and only leads to
accuracies in the km range [7]. The estimated worst case error
after Doppler Shift compensation based on these conditions
can be calculated to ±60 Hz. This could be tremendously
improved by precise positioning of the geostationary satellite.
Additionally synchronization becomes easier and the timing
of switching from one spot beam to the neighbouring one
can be defined more accurate by knowledge about the GEO
precise position. Therefore a new concept of GEO positioning
is presented in this paper based on communication signals of
the LEO satellites.

II. POSITIONING CONCEPT FOR A GEO DATA RELAY

The geostationary data relay developed in the GeReLEO
project is meant to receive Ka band signals from up to 12
LEO satellites simultaneously and forward them to ground.
Today LEO positions can be determined on board the LEO
satellites in real time with accuracies of a few centimetres
according to [6]. The concept is now to use the LEO satellites
as ”navigation satellites” for precise GEO positioning. Thereby
the LEO satellites are foreseen to transmit navigation signals
containing their position to the GEO satellite at certain time
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slots between the communication data. On board the GEO
satellite this information is used to estimate its position. This
concept faces different conditions compared to positioning
of receivers on ground with the help of Global Navigation
Satellite Systems (GNSS) like GPS:
Some of the main sources for positioning errors are not
present along the LEO-GEO links, like tropospheric effects
and multipath from ground reflections. Other errors are much
weaker, like the delay induced by ionosphere which thins out
in density above 600 km - a typical LEO altitude. Additionally,
the Ka band signals at around 27 GHz are delayed less by a
factor of ∼ 300 than GPS signals at around 1.5 GHz due to
the 1/f2 frequency dependency. In the GeReLEO project, the
LEO satellites are assumed to transmit via a 30 cm reflector
antenna with a power of 30 W and the signals are received
on the LEO side with a 120 cm reflector antenna. This leads
to a high antenna gain at both the transmitter and receiver
side. However, the free space loss of the LEO/GEO-system
is significantly stronger than for GPS based positioning on
Earth due to the increased distance and higher frequency.
Nevertheless, link-budget calculations show a large C/N0 of
77 dB-Hz at 36 MHz leading to a Cramer-Rao Bound [8] of
around 1 mm.

A. Estimation of Keplerian elements and drifts with Newton
algorithm and coordinate transformation

The basic concept foresees to estimate the GEO position
on board the GEO satellite. This position data can then
be broadcasted to the LEO satellites where it is used to
perform the Doppler pre-compensation by detuning their local
oscillators. An update of the GEO position at high frequency,
e.g. several times per second, leads to an extensive overhead
in LEO telecommand link allocation. As these links typically
only allow a few kbit/s methods have to be found to predict
the GEO position on board the LEO satellites for a certain
period of time. The conventional way of describing satellite
movement is to provide the Keplerian orbit parameters (i.e.
a semi-major axis, e eccentricity, i inclination, Ω RAAN, ω
perigee and ν true anomaly) for the trajectory. However, a
Kepler orbit always underlies certain perturbations based on
solar radiation pressure, gravity anomalies due to the Moon
or other planets and also changes in the Earth gravity field at
inclined orbits. Good determination of all these effects leads
to highly realistic orbit models like presented in [1]. Such
parameter estimation however is very complex and therefore
not suited to run on simple LEO on-board processors.
For short term prediction of satellite positions in the time range
of maybe one hour we want to propose an alternative concept.
Fig. 2 shows a functional diagram for a new algorithm to
estimate the GEO position as well as the Keplerian parameters
and linear drifts of the GEO orbit. In detail it works as follows:

The GEO satellite orbit is estimated based on the measured
pseudoranges from K LEO satellites to the GEO satellite.
These pseudoranges are modelled as

[
ρ1, . . . , ρK

]T
= zt = Htxt + vt, (1)
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Fig. 2. Functional diagram for estimation of Keplerian parameters and their
linear drifts for GEO orbits.

where Ht includes the unit vectors pointing from the LEOs
to the GEO, vt ∼ (0,Σv) is the measurement noise and xt
is the state vector that is defined as

xt =

⎡

⎢
⎢
⎣

rt
cδτt
ṙt
cδτ̇t

⎤

⎥
⎥
⎦ , (2)

with the position rt and velocity ṙt of the GEO satellite in
the ECEF coordinate system. The relative movement of the
GEO w.r.t. a fixed point on Earth is significantly smaller than
in the case of GPS, which enables the use of a linear state
space model for the satellite movement, i.e.

xt+1 = Φtxt +wt, (3)

with the state transition matrix Φt and the white Gaussian pro-
cess noise wt ∼ (0,Σw). The GEO position and velocity are
estimated with a Kalman filter, which consists of alternating
state predictions and updates:

x̂−

t = Φtx̂
+
t

x̂+
t = x̂−

t +Kt

(
zt −Htx̂

−

t

)
. (4)

Thereby, Kt = P
x̂
−

t

HT

t

(
HtP

x̂
−

t

HT

t +Σv

)
−1

represents
the Kalman gain. The a posteriori position and velocity
estimates are then be transformed into osculating Keplerian
parameters, i.e.

{rt, ṙt} ⇒ I(t) ∈ {a(t), e(t), i(t),Ω(t), ω(t), ν(t)} . (5)
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In a third step, the drifts of the Keplerian parameters are
estimated as

ˆ̇I =
1

T
(I(t+ T )− I(t)) with period T. (6)

These drifts are treated as constant from now on. The time-
independent Keplerian parameters are finally estimated such
that the squared deviation between the a posteriori position
estimates of (4) and the calculated position based on the
unknown Keplerian parameters is minimized, i.e.

min
a,e,i,Ω,ω

(

C =

T∑

t=1

‖r̂
+
t − r (a, e, i,Ω, ω, t) ‖

)

(7)

This minimization is performed iteratively with the Newton
algorithm, where the Keplerian parameter estimates in step
n ∈ {1, . . . , N − 1} are given by
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â
ê

î
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with the Hessian matrix

H =
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Note that the true anomaly is not included in the state vector
due to its non-linear behaviour over time. However, it is still
required to estimate the other 5 Keplerian parameters.

There are two further aspects that shall be addressed: First,
the initialization of the Newton method was performed with
the so-called osculating elements of (5). Secondly, the different
orders of magnitude of the Keplerian parameters lead to an ill-
conditioned Hessian matrix. This motivates the use of a block
inversion of (9):

H−1 =

[
· ·

·
(
H22 −H21H

−1
11 H12

)
−1

]

(10)

for the following partitioning:

H =

[
H11 H12

H21 H22

]
with H11 =

∂2C

∂a2
. (11)

As we are still just possessing the primary osculating true
anomaly we also want to improve its estimation. At first the
converged Keplerian estimates of (8) are used to estimate the
time dependent eccentric anomaly:

Ê(N)(t) = acos

(
1

êN
·

(
1−

‖r+t ‖

âN

))
, (12)

which allows us then to determine the true anomaly νN (t):

ν̂(N)(t) = atan

(√
1− (ê(N))2 · sin(Ê(N))

cos(Ê(N))− ê(N)

)

. (13)

This ν̂(N)(t) now has an improved accuracy and, therefore,
motivates a reapplication of the Newton algorithm as given
by (8). As a consequence, the Newton algorithm and the
estimation of the true anomaly are performed in alternating
sequence until the change in all Keplerian parameters becomes
negligible. In this work, the number of sequences is denoted
by M as shown in Fig. 2.

B. Orbit Models for GEO and LEO satellites

In these simulations the LEO orbits have been modelled
as Keplerian orbits. With a standard propagator the time
dependent positions of 12 randomly chosen LEO satellites
have been calculated using their Keplerian parameters derived
from a database of Analytical Graphics, Inc. (see also Table
I). Also the GEO orbit has been modelled as a Keplerian
orbit with additional linear perturbations in inclination and
RAAN. The Keplerian parameters of the geosynchronous
ARTEMIS satellite have been used for a realistic scenario.

a [km] e · 10
2

i [deg] Ω [deg] ω [deg] M0 [deg]
7076.18 0.18662 98.3026 48.5885 76.8817 58.8934
7077.05 0.04436 97.9070 280.9800 287.3030 69.0252
6935.16 0.12237 35.4695 49.9273 80.0589 34.8614
6978.65 0.18093 98.1511 136.7620 335.0610 133.2550
7077.06 0.08194 97.9199 281.5070 278.7750 73.2186
7042.13 0.10100 97.9906 101.9120 76.2754 272.9050
7079.74 0.66173 72.0629 65.5132 55.0826 227.0020
7063.34 0.06704 98.0737 336.9370 82.8137 260.9120
6962.12 0.13497 2.0161 85.4328 234.5930 241.6420
6957.87 0.23378 98.0508 6.8177 126.0040 132.9780
7165.35 0.11368 98.6307 48.5850 136.3890 274.1530
7008.66 0.16296 97.9848 129.3020 150.6080 242.2400

42166.30 0.03877 8.9267 298.1700 61.0706 326.2190

TABLE I
INPUT KEPLERIAN PARAMETERS FOR 12 LEO SATELLITES AND 1 GEO

SATELLITE (BOTTOM LINE) USED DURING OUR SIMULATIONS.

III. RESULTS

A communication link between the LEO and GEO satellites
has been simulated for a carrier frequency of f0 = 26 GHz,
a BPSK modulation, a bandwidth of 36 MHz, and a carrier-
to-noise power ratio of C/N0 = 77 dB-Hz, which leads to a
Cramer-Rao bound [8] of approximately 1 mm. The process
noises of the GEO position and clock were assumed to be
white Gaussian noise with standard deviations of 1 cm.

Fig. 3 shows that the proposed method allows to estimate
the position of a GEO data relay with a Kalman filter with
centimetre accuracy. This position error is several orders of
magnitude smaller than the currently achievable accuracy [7]
although the Cramer-Rao bound is significantly amplified due
to the poor geometry. Moreover, the positioning error also
includes process noise for perturbations of an ideal GEO orbit.

Fig. 4 shows the difference between the osculating and true
Keplerian elements. The linear perturbations of the Keplerian
elements (here: inclination and RAAN) transfer to harmonic
perturbations in the estimated osculating elements. However,
the Newton algorithm in combination with the true anomaly
estimation leads to a convergent method of iterations (Fig. 5).
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Fig. 3. Estimation of GEO position with a Kalman filter enables centimetre
accuracy: The position error arises from the measurement error being heavily
amplified by the poor geometry as well as from the process noise describing
the perturbations of an ideal GEO orbit.
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Fig. 4. Difference between osculating and true Keplerian elements: The
linear perturbations of the Keplerian elements (here: inclination and RAAN)
transfer to harmonic perturbations in the estimated osculating elements.

IV. CONCLUSION

The aim of our method presented in this paper was to give
an accurate GEO position estimation and prediction possibility
with the help of LEO satellites. In order to additionally
allow position propagation, the Keplerian orbit parameters and
their linear perturbations were determined. The new concept
consists of two steps to estimate the Keplerian parameters:
the first step includes a Newton algorithm to estimate all
Keplerian parameters except for the true anomaly, which is
determined in the second step. Both steps were applied in
an alternating manner until convergence was achieved. The
different orders of magnitude of the semi-major axis and the
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Fig. 5. Convergent behaviour of Keplerian parameter estimation: The
alternating application of the Newton algorithm and true anomaly estimation
leads to an absolute convergence of the final Keplerian parameter estimation.

other Keplerian elements lead to an ill-conditioned Hessian
matrix. This numerical problem was efficiently solved by
applying a block inversion of the Hessian matrix.

This concept should enable the positioning of a geostation-
ary data relay with a sufficiently high accuracy in order to
allow a Doppler pre-compensation on-board the LEO satel-
lites. Future steps will consist of including further orbital
perturbations and of testing the algorithm with real data.
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