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ABSTRACT

In any radio navigation and radio communication system,
receivers can be equipped with multiple antennas. By prop-
erly weighting and combining the different antenna signals
after A/D conversion the wanted signals can be amplified
and interfering signals suppressed (digital beamforming).
But through the process of beamforming the information
about the relative signal delays between the antenna ele-
ments is lost. In a multiantenna receiver the signals form
multiple antennas are weighted and combined only after
the phase discriminators (i.e. error detectors). This al-
lows an estimation of the receiver platform attitude in par-
allel with the usual signal tracking. Due to the nonlin-
ear relationship between the measurements and the attitude
parametrization the problem of attitude estimation in the

multiantenna tracking is non convex. A global convergence
is achieved by combining a divergence detection together
with a reinitialization scheme. Although the multiantenna
tracking combines the measurements of multiple antennas
in digital domain, it is inherently different from traditional
digtial beamforming. The price the receiver has to pay for
the attitude estimation is a reduced capability of amplifying
and suppressing directive signals. But still a suppression of
interfering signals is achieved. Simulation results indicate a
fast convergence of the loop in parallel with a robust track-
ing lock. It can be concluded that multiantenna tracking is
a valuable tool for jointly estimating the receiver platform
and tracking the satellite signals without the need for sev-
eral receivers.

1 INTRODUCTION

The navigation signals received from satellites are so weak
that they are drowned in the receiver’s thermal noise. There-
fore the processing of such signals is susceptible to inter-
fering signals from many kinds of terrestrial sources. The
sources may be both intentionally or uninentionally cor-
rupting the satellite navigation signals.

There exist techniques to cope with RF interference and
very low power received signals in practically all stages of
the receiver. Among them are frontend filter optimization
[1], pulse blanking in time or frequency domain [2], multi-
sensor fusion [3], vector tracking [4], digital beamforming
[5], Kalman filtering [6], etc. Most of these techniques can
be applied independent of each other.

In this paper the focus is on vector tracking and digital
beamforming. In the latter the receiver picks up the satellite
signals with more than one antenna. The relative phasing of
the antenna elements can be digitally chosen such that the
wanted signals sum up constructively. In this way the an-
tenna gain can be enhanced for the satellite signal whereas
interferences coming from other directions are attenuated
[7]. Thus the sensitivity w.r.t. noise is improved.



Multisatellite tracking algorithms – also called vector track-
ing – exploit the spatial correlation between the received
satellite signals in the carrier- and code-phase tracking. This
allows a compensation of short signal outages on a few
satellites [8]. Especially coherent multisatellite tracking al-
gorithms show promising results, even for standalone posi-
tioning [9].

A direct combination of multisatellite tracking and beam-
forming with multiple antennas is straight-forward as the
beamforming is transparent for any later processing stages
in the receiver. But the computation of the optimal relative
phasing between the antenna elements is typically compu-
tation intensive. Additionally when combining the signals
from the different antennas before the tracking, the infor-
mation about their relative position is lost. But this in-
formation can be used to determine the spatial orientation
of the receiver platform (platform attitude), given the posi-
tions of the antenna elements on the platform are known.

Therefore the objective of this paper is to derive a mul-
tisatellite multiantenna tracking algorithm. The paper fo-
cuses on the inherent determination of the receiver platform
attitude inside a multisatellite tracking loop.

The paper is organized as follows: The notation that is used
throughout the paper is introduced in the following section
2. The derivation of the algorithm is split into three parts:
the derivation of the process model, its application to a lin-
ear filter, and finally the inclusion of measurements in the
filter. In section 6 the convergence of the derived algorithm
is analyzed, followed by a comparison of the multiantenna
multisatellite tracking with a traditional digital beamform-
ing. Section 8 presents simulation results before the paper
is concluded in section 9.

2 NOTATION

The notation used in this paper mainly follows the notation
of [3]. It is repeated here for clarification. Most of the
important quantities are also illustrated in Fig. 1.

xe,ye,ze the orthogonal axes of the cartesian e-frame. The
Earth-centered Earth-fixed frame (abbreviated ECEF-
or e-frame) has its origin in the center of the earth, its
z-axis points in the direction of the earth’s axis of ro-
tation and the x-axis points towards the intersection
of the equator and the zero meridian.

xn,yn,zn the orthogonal axes of the cartesian n-frame. The
origin of the local navigation frame (short n-frame)
is the reference point of the receiver’s platform. The
x- and y-axes point towards north and east.

xb,yb,zb the orthogonal axes of the cartesian b-frame. The

Fig. 1. Spatial vectors used throughout the text.

body-frame (short b-frame) has its origin in the ref-
erence point of the receiver’s platform. Its axes may
be chosen arbitrarily but are attached to the platform.

�r een = �r eeb the position of the receiver’s reference point, de-
scribed in the e-frame.

�r eek the position of the k-th satellite, described in the e-
frame.

�e ekn = �e ekb the directional vector pointing from satellite k
to the receiver platform’s reference point, described
in the e-frame:

�e ekn =
�r een − �r eek
‖�r een − �r eek‖

.

�a bbp = �a bnp the position of the p-th antenna element w.r.t.
to the origin of the body-frame (or equivalently the
navigation-frame), described in the b-frame.

�a ·�b = �a T�b the dot-product between two vectors of the
same dimension.

φnb, θnb, ψnb roll, pitch and yaw angles (also known as the
three Euler angles) describing the attitude of the re-
ceiver’s platform, i.e. the rotation between the b- and
the n-frame.

Rnb the rotation matrix from the b- to the n-frame, com-
posed by the Euler angles, such that

�a nbp = Rnb�a
b
bp.

q the quaternion describing the same rotation as the three
Euler angles. It is defined as

q =

(
q
q4

)
=

(
�erot. sin(γ/2)
cos(γ/2),

)

where �erot. denotes the rotational axis and γ the ro-
tation angle. In principle the quaternion q also needs
two indices to denote between which two reference



frames it relates. But for notational brevity this is
omitted. Therefore, whenever the rotation (either Eu-
ler angles, rotational matrix or quaternion) has no in-
dices, then it corresponds to the rotation from the b-
frame to the n-frame, i.e. qnb .

q1 ⊗ q2 the quaternion product between the quaternions q 1
and q2.

[ω×] the skew-symmetric matrix of the 3 × 1 vector ω,
defined as

[ω×] =

⎛
⎝ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞
⎠ .

δt, δtk the clock offset of the receiver and the k-th satellite
w.r.t. system time.

E [X ] the expected value of the random variable X .

∂ϕ the vector consisting of the process ϕ(t) and all its
time-derivatives up to an order n− 1:

∂ϕ =

⎛
⎜⎜⎜⎜⎝

ϕ(t)
ϕ̇(t)

...
∂n−1ϕ(t)

∂tn−1

⎞
⎟⎟⎟⎟⎠

3 SYSTEM DYNAMIC MODEL

In this section the basic equations describing the dynamic
behavior of the whole system are derived. A state-space
notation will be used throughout the derivation. Basically
the receiver motion, the receiver’s clock offset, the platform
attitude and the carrier-phases of the received signal have
to be described.

3.1 Receiver Motion

In derivations for multisatellite tracking algorithms usually
all receiver movements are described in the e-frame as it
is convenient for most of the involved computations [4].
But in principle any coordinate frame could be used for the
descriptions of the receiver position and movements. To
later on allow a straight-forward extension to also include
inertial sensors, the receiver motion is described in the local
navigation- or n-frame, as proposed e.g. in [3]. The six
components describing receiver position and velocity are
thus1: latitude (ϕ), longitude (λ), height (h), all w.r.t. the
earth’s reference ellipsoid. Furthermore, velocity in north-,
east- and down-direction, i.e. vn, ve, vd.

1Receiver position is short for the receiver’s reference point position.

The state-space model requires the determination of the
time-derivative of the six described parameters w.r.t. time,
expressed in terms of themselves. The derivatives can be
found in any text-book discussing inertial navigation, e.g.
[3]: ⎛

⎜⎜⎜⎜⎝
ϕ̇

λ̇

ḣ

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

vn
Rn(ϕ) + h

ve
(Re(ϕ) + h) cos(ϕ)

−vd

⎞
⎟⎟⎟⎟⎟⎠ , (1)

with Rn(ϕ) =
Re(1− ε2)(

1− ε2 sin2(ϕ)
)3/2 , (2)

and Re(ϕ) =
Re√

1− ε2 sin2(ϕ)
. (3)

The eccentricity of the earth’s ellipsoid is denoted by ε.
When employing a second order model for the motion of
the receiver, like it’s done in this paper, the derivative of
the velocity components are set to consist simply of the
process noise, i.e. ⎛

⎝v̇nv̇e
v̇d

⎞
⎠ =

⎛
⎝wv,nwv,e
wv,d

⎞
⎠ = �w n

v,en, (4)

with E [wv,i(t)wv,i(t
′)] = σ2

v,iδ(t− t′),

where i ∈ {n, e, d} and δ(x) the Dirac delta function.

3.2 Receiver Clock

The clock bias of the receiver (w.r.t. system time) can be
modeled by an nδ-th order random walk, e.g. [10]:⎛
⎜⎜⎜⎜⎜⎝

cδ̇t

cδ̈t
...

∂nδcδt

∂tnδ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

cδt

cδ̇t
...

∂nδ−1cδt

∂tnδ−1

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝
0
0
...
1

⎞
⎟⎟⎟⎠wcδ,

with E [wcδ(t)wcδ(t
′)] = σ2

cδδ(t− t′). Actually other noise
processes could be included as well, to better model the os-
cillator noise [10]. In the present derivation this is omitted
for notational brevity.

3.3 Receiver Attitude

Like already introduced above, the attitude of the receiver
can be described in several ways, including Euler angles,



rotation vectors or quaternions to only name a few (e.g.
[11]). In this paper the description of the attitude using
quaternions is applied, following [12] and [13].

The time-derivative of the quaternion can be related to the
rotation rate ωbnb (or short just ω), e.g. [14]:

q̇ =
1

2
Ω
(
ωbnb
)
q, with Ω(ω) =

(− [ω×] ω
−ωT 0

)
. (5)

Similarly like in the previous section the velocity, the an-
gular velocity of the receiver’s platform (w.r.t. the local
navigation frame) is described by a white noise process:

ω̇bnb =

⎛
⎝wω,1wω,2
wω,3

⎞
⎠ = �wω ,

again with E [wω,i(t)wω,i(t
′)] = σ2

ω,iδ(t − t′), where i ∈
{1, 2, 3}.

3.4 Carrier-Phase of the Received Signals

It was shown that as a first step to multisatellite carrier-
tracking, the carrier-phase processes of the received sig-
nals have to be defined [8]. In contrast to the derivations
in [8] the model here has to take into account the differ-
ent antenna elements. The transmitted carrier is simply the
nominal carrier plus the clock offset in the satellite, i.e.

sk(t) = cos
(
ωc(t+ δtk)

)
,

where ωc denotes the (nominal) carrier frequency and δtk

the clock offset of the k-th satellite. The carrier from the
k-th satellite received by the p-th antenna element is just
the delayed version of the transmitted one, i.e.

rkp(t) = sk
(
t− τkp − τp

)
= cos

(
ωc(t+ δtk − τkp − τp)︸ ︷︷ ︸

ϕk
p

)
,

with τkp the propagation delay and τp an antenna-element
specific constant delay (e.g. due to differences in cable
lengths). The propagation delay τ kp can be further expressed
using the satellite position, �r nek , the position vector of the
p-th antenna element �r nep and the receiver’s clock bias δt:

τkp =
1

c

∥∥�r nep − �r nek
∥∥+ δt.

This leads to the definition of the carrier-phaseϕkp(t) of the
received signal2:

ϕkp(t) = ωc(t− τp)− 2π

λ

(∥∥�r nep − �r nek
∥∥+ (cδt− cδtk

) )
≈ ωc(t− τp)− 2π

λ

(
�e nkn · (�r nep − �r nek

)
+
(
cδt− cδtk

) )
.

Above the wavelength of the carrier is denoted by the sym-
bol λ. The second step is only approximately equal since
the used unit vector doesn’t point to the particular antenna
element but to the reference point of the antenna. But as
long as the distances between the antenna elements are con-
siderably smaller than the distance between the receiver
and the satellite, it’s a very good approximation.

Since the position of the p-th antenna on the receiver’s plat-
form is known, the above equation can be rewritten using

�r nep = �r nen + �r nnp = �r nen +Rnb�a
b
bp = �r nen +Rnb (q)�a

b
bp.

And thus it can be easily seen that carrier-phase of the k-th
satellite signal, picked up by the p-th antenna element con-
sists of a general receiver- and an antenna element-specific
part:

ϕkp(t) ≈ ωct− 2π

λ

(
�e nkn · (�r nen +Rnb�a

b
bp − �r nek

)
+
(
cδt− cδtk

))− ωcτp

= ωct+
2π

λ

(
�e nkn · �r nek + cδtk

)− 2π

λ
(�e nkn · �r nen + cδt)︸ ︷︷ ︸

ϕk(t)

−2π

λ
�e nknR

n
b�a

b
bp︸ ︷︷ ︸

ψk
p(t)

− ωcτp︸︷︷︸
−βp(t)

.

As was done for the other processes, the carrier-phase can
be written in terms of a state-space model, consisting of
the derivatives of the process itself. Care has to be taken
at this stage since it directly translates to the estimator later
on. One could actually relate the derivatives of the carrier-
phase to all involved processes like the receiver position
and clock, platform attitude and antenna element bias. But
this would only exploit the statistical correlation between
all carrier-phase processes and not give access to the esti-
mated quantities themselves. Therefore only the satellite-
specific part and the element bias is modeled by a state-
space model, the remainder directly relates to the attitude,

2For simplicity additional components in the propagation delay like
the troposphere or ionosphere are neglected in this derivation. But an
extension to also include them is straightforward.



which shall be estimated:

∂ϕk =

⎛
⎜⎜⎜⎜⎝

ϕ̇k

ϕ̈k

...
∂nϕk

∂tn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ϕk

ϕ̇k

...
∂n−1ϕk

∂tn−1

⎞
⎟⎟⎟⎟⎠

− 2π

λ

⎛
⎜⎜⎜⎜⎜⎝

0 0

(�e ekn)
T

0
0 0
...

...
0 1

⎞
⎟⎟⎟⎟⎟⎠
(
�w n
v,en

wδ

)

+
2π

λ

⎛
⎜⎜⎜⎝

0 0

(�e ekn)
T

1
0 0
...

...

⎞
⎟⎟⎟⎠
(
�̈r eek

cδ̈t
k

)
(6)

The antenna-element delay βp is modeled as a bias and thus
constant. It’s state-space description simply reads

β̇p = wβp .

4 FILTERING

The process model derived in the previous section can now
be used to drive a filter. In the present setup a Kalman
filter is employed. The process of the receiver motion and
platform attitude have a nonlinear model, a linearization is
thus needed in those cases. A straightforward linearization
about the current estimate can be obtained by formulating
the filter as an error-state filter. This means that instead
of the actual quantities themselves, the filter estimates the
difference between the true values and their estimates.

For a state-vector x and a non-linear dynamic model f(x)
the error-state filter can be easily derived as follows (w the
process noise):

ẋ = f(x) +Gw (7)

≈ f(x̂) +
∂f(x̂)

∂x
(x− x̂) +Gw. (8)

If x̂ is the filter’s estimate of the state-vector x then it can
be rewritten as a (nonlinear) process as well:

˙̂x = f(x̂). (9)

Of course the filter does not add noise and therefore the
second term in Eq. (7) has to be omitted in the model of
the estimate. Plugging Eq. (8) into Eq. (9) the error-state
process model is found:

with Δx = x− x̂:

Δẋ =
∂f(x̂)

∂x
Δx+Gw.

It can easily be seen that the above steps can also be applied
if the process model is linear, which is e.g. the case for the
carrier-phase ϕk .

4.1 Receiver Motion

The process model for the receiver motion, outlined in sec-
tion 3.1, can now be linearized to find the error-state pro-
cess model. A description of the receiver position using
longitude, latitude and height is disadvantageous in terms
of numerical stability, therefore the position offset is trans-
lated to an east- and north-error [15]:

Δrn ≈
(
Rn(ϕ̂) + ĥ

)
Δϕ,

Δre ≈
(
Re(ϕ̂) + ĥ

)
cos(ϕ̂)Δλ,

with the functions Rn(.) and Re(.) as already defined in
Eqs. (2) and (3). Compiling Eqs. (1) and (4) with the above
two definitions results in(

Δ�̇r nen
Δ�̇v nen

)
=

(
Fr I3
03,3 03,3

)(
Δ�r nen
Δ�v nen

)
+

(
03,3
I3

)
�w n
v,en,

with Fr =

⎛
⎜⎝

0 0 v̂n
Rn(ϕ̂)+ĥ

v̂e tan(ϕ̂)

Rn(ϕ̂)+ĥ
0 v̂e

Re(ϕ̂)+ĥ

0 0 0

⎞
⎟⎠ ,

In the identity matrix of dimension n× n and 0m,n an all-
zeros matrix of dimension m× n.

4.2 Attitude

It was already mentioned above that in this derivation the
quaternion attitude representation is used. The lineariza-
tion of the process model for an error-state filter is not
straightforward for the attitude, because of the nature of
the quaternion. The quaternion representation of the atti-
tude is overdetermined (due to its four parameters, but only
three spatial rotation axes). To be valid it must always be
of unit length. A basic linearization doesn’t take this con-
dition into account. The problem could be solved, like in
[13], by applying a small-angle approximation and only es-
timating the first three components of the error-quaternion
and choosing the fourth such that unit length results.

The solution applied in this paper follows [12], where the
error-quaternion is parametrized by the three-components
vector α:

Δq =
1√

4 + ‖α‖2
(
α
2

)
.

The true rotation matrix can now be written to be composed
of the estimated quaternion q̂ and the error quaternion Δq:

R(q) = R(Δq ⊗ q̂) = R(Δq)R(q̂) ⇒ Δq = q ⊗ q̂−1,



where q̂−1 denotes the inverse quaternion of q̂. What re-
mains is the computation of the derivative of vector α. In a
first step the derivative of the error-quaternion Δq is deter-
mined:

Δq̇ =
∂

∂t

(
q ⊗ q̂−1

)
= q̇ ⊗ q̂−1 + q ⊗ ∂q̂−1

∂t

=
1

2
Ω(ω)q ⊗ q̂−1 − q ⊗ q̂−1 ⊗ ˙̂q ⊗ q̂−1.

In the last step Eq. (5) was used together with the identity

∂q−1

∂t
= −q−1 ⊗ q̇ ⊗ q−1.

With some further simplifying steps it can be shown that

Δq̇ =
1

2

(− [(ω + ω̂)×] ω − ω̂
−(ω − ω̂T ) 0

)
Δq. (10)

It can easily be seen that α = 2Δq/Δq4. And so

α̇ = 2
Δq̇Δq4 −ΔqΔq̇4

Δq24
.

With Eq. (10) the above derivative can be expressed in terms
of α, Δω and ω̂ only:

α̇ = −1

2
[Δω×]α− [ω̂×]α+Δω +

1

4

(
ΔωTα

)
α.

Due to the first and fourth summand the above equation
is nonlinear. It has to be linearized as well, like already
shown for the receiver motion. Since α parametrizes the
error quaternion such that when α equals zero q = q̂, it
is evident that the linearization takes place around α = 0.
And so the linearized error-state process model for the atti-
tude part is found to read3

(
α̇
Δω̇

)
≈
(− [ω̂×] I3

03,3 03,3

)(
α
Δω

)
+

(
03,3
I3

)
wω.

4.3 Carrier-Phase of the Received Signals

In the case of the carrier-phase also an error-state filtering
approach is applied. In this case not because of the non-
linearity of the process model but instead due to the avail-
ability of error-measurements. It will be derived in the next
section that the carrier-phase measurements can be directly
related to the carrier-phase error-state.

In addition to the process noise the error-state of the carrier-
phase also has a control signal as input. The control signal

3As explained further above, the angular rate ω actually possesses in-
dices ωb

nb. They are omitted for notational simplicity.

originates from the model of the NCO which offers typ-
ically a steering of the carrier-phase and carrier-frequency
of the local replica (i.e. synonym for estimate of the carrier-
phase and its first derivative):

∂Δϕ̇k = Fϕ,n∂Δϕ
k +Bϕuϕk +Gϕwϕk ,

where Fϕ,n is a block-matrix consisting of all-zeros matri-
ces and an identity matrix

Fϕ,n =

(
0n−1,1 In−1

0 01,n−1

)
like already used in Eq. (6). The control input matrixBϕ is
defined like in [8]. The input uϕk is computed such that the
local carrier replica stays synchronized with the received
signal. Typically a linear controller is employed:

uϕk = −Lϕ∂Δϕk.
More information about how to compute Lϕ can be found
in any textbook on control theory or short in [9].

4.4 State-Vector

The first steps outlined above allow now to compile a rea-
sonable state-vector for the desired application. The state-
vector x is setup to consist of the error-state in the position
and velocity of the receiver, the receiver’s clock (and its
derivatives), the attitude error and the corresponding angu-
lar rate error, the antenna element bias errors and finally the
carrier-phase errors:

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δ�r nen
Δ�v nen
α

Δωbnb
∂cΔδt
Δβ1

...
ΔβP
∂Δϕ1

...
∂ΔϕK

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

5 MEASUREMENTS

What finally remains to implement the filter is the descrip-
tion of how the measurements relate to the state-vector, de-
fined in Eq. (11). In spread spectrum systems two measure-
ments can be used, which are the carrier-phase and code-
phase discriminator outputs. Both measurements contain
the projection of the vector to the antenna elements onto
the line-of-sight vector. This is first derived followed by
further explanations about the measurements.



5.1 Projection of a Rotated Vector

In the relationship between the code- and carrier-phase mea-
surements and the state-vector, the projection of the antenna-
element vector�a bnp onto the line-of-sight link to the satellite
shows up. In a first step this projection is derived. For any
given vectors �a and �b of dimension 3 × 1, the difference
between true and estimated projection reads

ΔP (�a ,�b ) = �a ·R(q)�b − �a · R(q̂)�b
= �a TR(q)�b − �a TR(q̂)�b .

Like previously the true quaternion can be defined as the
product of an error quaternionΔq and the estimated quater-
nion q̂:

ΔP (�a ,�b ) = �a T
(
R(Δq)− I3

)
R(q̂)�b .

Applying the definition of the rotation matrix for a quater-
nion and the parametrization of Δq by the vector α, it’s
easy to show that

R(Δq)− I3 =
1

4 + ‖α‖2
(
− 2 ‖α‖2 I3

+ 2ααT − 4 [α×]
)
.

By using the Binet-Cauchy identity the projection can fi-
nally be found as

ΔP (�a ,�b ) =
1

4 + αTα

(
2αT [�a×]

[
R(q̂)�b ×

]
α

+ 4�a T
[
R(q̂)�b ×

]
α
)
.

Clearly the above equation is quadratic due to the first sum-
mand. A linearization can be thus performed for the mea-
surement equation as well. Of course, it’s again reasonable
to linearize around α = 0:

ΔP (�a ,�b ) ≈ ΔP (�a ,�b )
∣∣∣
α=0

+
(
∇αΔP (�a ,�b )

∣∣∣
α=0

)
α

= �a T
[
R(q̂)�b ×

]
α. (12)

5.1.1 Time-Derivative

Since the attitude is typically modeled as a second order
process, the derivative of the above projection needs to be
evaluated as well. Assuming that the two vectors �a and �b
are constant over time, only the derivative of the rotation
matrix needs to be considered:

ΔṖ (�a ,�b ) = �a T
(
Ṙ(q) − Ṙ(q̂)

)
�b .

The derivative can be expressed in terms of the rotation
matrix itself and the skew matrix of the rotation rate vector
[15]:

ΔṖ (�a ,�b ) = �a T
(
R(q) [ω×]−R(q̂) [ω̂×]

)
�b .

By noting that ω = Δω+ω̂ the above derivative can further
be expanded into

ΔṖ (�a ,�b ) = �a T
(
R(q) [Δω×] +R(q) [ω̂×]

−R(q̂) [ω̂×]
)
�b .

A similar linearization like in the derivation for Eq. (12)
can be applied to result in

ΔṖ (�a ,�b ) ≈ �a T
[
R(q̂) [ω̂×]�b ×

]
α

− �a TR(q̂)
[
�b ×
]
Δω. (13)

5.2 Code-Phase

The code-phase discriminator returns for a particular satel-
lite signal the difference between the code-phase of the re-
ceived signal and the local replica:

Dk
τ,p ≈ cτkp − cτ̂kp + vkτ,p.

The time-index is neglected here to shorten the notation.
Above τkp denotes the code-phase of the signal received
from satellite k by the p-th antenna element. Similarly
τ̂kp denotes the code-phase of the local replica for the cor-
responding signal. The measurement noise is denoted by
vkτ,p. With this notation the code-phase τ kp is equivalent to
the propagation delay:

Dk
τ,p ≈

∥∥�r nep − �r nek
∥∥+ c

(
δt− δtk

)
−
∥∥∥�̂r nep − �r nek

∥∥∥− c
(
δ̂t− δtk

)
+ vkτ,p

≈ �̂e nkn ·
(
�r nep − �̂r nep

)
+ c

(
δt− δ̂t

)
+ vkτ,p

= �̂e nkn · (Δ�r nen + [Rnb (Δq)− I3]R
n
b (q̂)�a

b
np

)
+ cΔδt+ vkτ,p

The summand containing the rotation matrix Rn
b can be re-

placed by the linearization derived in the previous section,
Eq. (12):

Dk
τ,p ≈ �̂e nkn ·Δ�r nen + �̂e nkn · [Rnb (q̂)�a bnp×]+ cΔδt+ vkτ,p.

Whenever the wavelength of the spreading code is consid-
erably larger than the distance between the antenna ele-
ments, i.e. ‖�a bnp−�a bnp′‖ � c/fcode ∀p, p′, then the second
summand could be neglected. This would imply that the
information about the attitude is only determined from the
carrier-phase measurements.

5.3 Carrier-Phase

It was shown in [6] that the carrier-phase discriminator out-
puts the average carrier-phase error over the correlation in-



terval:

Dk
ϕ,p ≈ Δϕkp + vkϕ,p (14)

= Δϕk +Δψkp +Δβp + vkϕ,p

= Δϕk +
T

2
Δϕ̇k +

T 2

6
Δϕ̈k . . .

+Δψkp +
T

2
Δψ̇kp + . . .+Δβp + vkϕ,p

The attitude part, described by the Δψkp -terms can be sim-
plified using the results of Eq. (12) and (13):

Δψkp = −2π

λ
�̂e nkn · [Rnb (q̂)�a bnp×]α,

Δψ̇kp = −2π

λ

(
�̂e nkn · [(Rnb (q̂) [ω̂bnb×]�a bnp)×]α

− �̂e nkn ·Rnb (q̂)
[
�a bnp×

]
Δω
)
.

Since the attitude is modeled as a second order process,
only the terms up to the first derivative are considered. Fi-
nally the relationship between the satellite-dependent part
ϕk and the state-vector can be found in [8].

6 CONVERGENCE

In the previous sections 3, 4 and 5 the basic state-space
model was derived. It is ready to be implemented by any
linear filtering algorithm. For example the Kalman filter
tries to find the optimal solution for the above model in
terms of maximum likelihood.

Due to the linearization in the attitude computations, the
filter may not converge to the true solution. This is best il-
lustrated in Fig. 2. The cost function given by the squared
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Fig. 2. Cost function J = ‖y − ŷ‖2, given all variables are
known except the first two components of the quaternion
(q1, q2).

norm between the carrier-phase measurements and their
corresponding estimates is plotted for erroneous first and
second component of the quaternion q, i.e. q̂1 and q̂2. The
white space outside the unit circle is simply the area for
which a valid quaternion could not be found and thus has
to be neglected in the plot. The true quaternion was the
identity quaternion, i.e. q1 = q2 = 0. It can be seen that
the cost function is not convex and thus whenever the filter
is initialized with a quaternion not being close to the true
one, the filter may not converge to the true solution.

Thus it is important to be able to detect whether or not the
filter has converged to the global optimum. A way how to
detect a wrong convergence is proposed in the next section.

6.1 Convergence Test

The major convergence problem emerges from the attitude
determination. Since in a typical setup the distances be-
tween the antenna elements is considerably smaller than
the length of a chip of the spreading code, the focus here is
put to the carrier-phase measurements.

Previously it was shown that the carrier-phase measure-
ments can be related to the state-vector, see Eq. (14). This
relationship is generally nonlinear

Dϕ =
(
D1
ϕ,1, D2

ϕ,1, . . . , DK
ϕ,P

)T
= Hϕ(x) + vϕ,

with E [vϕ] = 0 and E [vϕvTϕ ] = R.

The filter’s estimate of the measurement vector correpsond-
ingly reads

D̂ϕ = Hϕ(x̂).

Thus the measurement residual can be linearly approxi-
mated:

ΔDϕ = Dϕ − D̂ϕ

≈ Hϕ(x̂) +∇xHϕ(x̂)(x − x̂)−H(x̂) + vϕ

= ∇xHϕ(x̂)(x− x̂) + vϕ.

The gradients have already been evaluated in the previous
section, in which the measurements were introduced (sec-
tion 5). Since the state estimation error e = x − x̂ is ap-
proximately Gaussian distributed, the carrier-phase resid-
ual ΔDϕ = Dϕ − D̂ϕ is also approximately Gaussian dis-
tributed with mean

E [ΔDϕ] ≈ E [∇Hϕ(x̂)e] + E [vϕ] = 0 (15)

and covariance

cov [ΔDϕ] ≈ E
[
(∇Hϕ(x̂)e + vϕ) (∇Hϕ(x̂)e+ vϕ)

T
]

= ∇Hϕ(x̂)PH
T
ϕ (x̂) +R, (16)



with P = E [eeT ] the state estimation error covariance ma-
trix, as used e.g. in the Kalman filter. Therefore if the filter
has converged to the true state, the state estimation error is
thus zero-mean:

ΔDϕ ∼ N (
0, ∇Hϕ(x̂)P∇HT

ϕ (x̂) +R
)
.

Therefore the normalized sum of squared errors is proposed
to test whether or not the filter has converged to the true
attitude:

ΔDϕ,norm. =
(∇Hϕ(x̂)P∇HT

ϕ (x̂) +R
)− 1

2ΔDϕ (17)

⇒ WSSEϕ = ‖ΔDϕ,norm.‖2 ∼ χ2
(KP ).

Above the square-root of a matrix is defined asA− 1
2A− 1

2 =
A−1, which could be obtained e.g. by an eigenvalue de-
composition.

Since by definition the additive measurement noise vϕ is
zero-mean, Eq. (15) requires that

∇Hϕ(x̂) E [e] = 0.

This equation can only be fulfilled if E [e] ∈ Ker (∇Hϕ(x̂)).
The trivial solution, i.e. E [e] = 0 is, of course, the targeted
correct solution, i.e. convergence to the global optimum. It
can be noted that4 [16]

since ∇Hϕ(x̂) : (KP )× (3 + 3 + P + nK)

dim (Ker (∇Hϕ(x̂))) =

(3 + 3 + P + nK)− rank (∇Hϕ(x̂)) .

But the rank of a matrix cannot be larger than the number
of rows or the number of columns. Therefore the rank of
the matrix ∇Hϕ(x̂) is

rank (∇Hϕ(x̂)) ≤ min (KP, 3 + 3 + P + nK) .

For a typical case with a 2 × 2 antenna array (i.e. P = 4),
when at least five satellites are visible (i.e. K ≥ 5), then

rank (∇Hϕ(x̂)) ≤ 3 + 3 + P + nK.

In a non-degenerate configuration, the above inequality re-
duces to equality. Consequently the dimension of the ker-
nel of ∇Hϕ(x̂) is zero and as such Eq. (15) has only the
trivial solution. This means that the norm of the weighted
residuals is χ2-distributed if and only if the global opti-
mum has been found. Thus the binary decision whether or
not the global optimum is reached is proposed as

decide global optimum iff

WSSEϕ < χ2
1−s(KP ) at

significance level s.

4without loss of generality for this short analysis the position and clock
bias of the receiver are neglected, as they are mainly determined by the
code-phase measurements (which are not considered in this convergence
discussion).
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Fig. 3. Test statistic (WSSE), simulations vs. theory.

An exemplary illustration of the above test is shown in
Fig. 3. What can be seen is an excellent fit of the WSSE
distribution for the global optimum. Furthermore a con-
vergence to a wrong attitude solution leads to a substantial
offset in the distribution and can clearly be identified by the
described test.

Of course, the appropriate normalization of the residuals
in Eq. (17) is a crucial step in the decision. An accurate
estimation of the measurement and state estimation error
covariance matrix is needed, i.e. R and P respectively. It
was shown that especially the estimation of the latter is dif-
ficult due to the unknown or potentially unprecise model of
the process noise [17]. There exist a few approaches which
allow an online determination of the state estimation error
covariance matrix. For more details consider the overview
in [18].

6.2 Reinitialization

Together with a test of convergence, a scheme for reini-
tializing the attitude solution is needed. A brute-force grid
search is inefficient in this case. Therefore an exemplary
reinitialization scheme is proposed here to result in a fast
and reliable convergence to the true attitude.

The initial attitude description is defined by the rotation
axis and a corresponding angle of rotation. The rotation
axis alternately points from the origin towards the vertices
of a cube centered at (0, 0, 0)T :

�erot.,m =
1√
3

⎛
⎜⎝ (−1)�m

2 �
(−1)�m

2 �+� k
4 �

(−1)m

⎞
⎟⎠ , for m = 0, 1, . . . , 7.

The rotation angle is defined as fractions of 2π:

ζi,	 = 2π

(
1

2i+1
+

�

2i

)
, � = 0, 1, . . . , 2i − 1.



And so the initial quaternion reads

qi,	,m =

(
�erot.,m sin(ζi,	/2)

cos(ζi,	/2)

)
,

with the indices i = 0, 1, 2, . . ., � = 0, 1, . . . , 2i − 1 and
m = 0, 1, . . . , 7. The first initial quaternion is q0,0,0. When-
ever convergence is not achieved, the next is tested. In this
way convergence is achieved with only a few reinitializa-
tions (simulations indicate on average five).

7 COMPARISON WITH DIGITAL
BEAMFORMING

Traditionally a multiantenna receiver exploits the spatial
degrees of freedom by applying beamforming to the sig-
nals received by the different antenna elements. In the mul-
tiantenna multisatellite tracking receiver, the spatial corre-
lation is also exploited, but differently. In this section the
two approaches are compared.

One central task of the GNSS receiver is to measure carrier-
phases and pseudoranges. Since the carrier-phase estima-
tion is usually more sensitive to noise, its performance is
analyzed in the comparison of the two multiantenna signal
processing approaches.

For the comparison the signal received at the p-th antenna
element is composed of three parts:

skp(t) the wanted signal from satellite k, impacting with
power Ck, azimuth and elevation angles Ak and Ek.

np,0(t) a white thermal noise with spectral density N0 un-
correlated among the antenna elements.

np,d(t) a directive white noise, with spectral density Nd,
with azimuth angle Ad and elevation angle Ed.

In the numerical examples a planar 2 × 2 antenna array is
used, as illustrated in Fig. 8.

7.1 Digital Beamforming Receiver

Prior to beamforming, the received signals from the differ-
ent antenna elements are mixed to baseband. For one spe-
cific time-instant t the baseband samples from all P anten-
nas (y1(t), . . . , yP (t)) are stacked into one complex-valued
vector, which is multiplied with the Hermitian transpose of
the steering vector w:

y(t) = wH

⎛
⎜⎜⎜⎝
y1(t)
y2(t)

...
yP (t)

⎞
⎟⎟⎟⎠ ,

with wH = (w∗
1 , w

∗
2 , . . . , w

∗
P ). The baseband signal y(t)

is then processed by the receiver using standard tracking
loops. This procedure is graphically illustrated in Fig. 4. A

Fig. 4. Digital beamforming in GNSS.

large amount of literature is dedicated to the calculation of
the steering vector w [7]. It can be chosen to optimize the
receiver performance for the different received signals. For
example the weights could be chosen such that the gain
for the satellite signal is highest. Or such that interfering
signals are best suppressed.

The baseband signal y(t) is finally correlated in the track-
ing loops with a local replica of the spreading code. Sub-
sequently the correlation result is processed in the carrier-
phase discriminator5. In [19] it was shown that the amount
of noise contained in the discriminator output directly re-
lates to the tracking performance of the receiver. Therefore
the variance of the discriminator output is considered as the
figure of merit for the comparison.

For a particular satellite azimuth and elevation angle, Fig. 5
shows the variance of the discriminator output (in locked
state) for a deterministic beamforming, where the antenna
is directed towards the satellite. It can be seen from the il-
lustration that the antenna pattern has its maximum where
the satellite is located. This means that the satellite signal
is amplified. Furthermore directive noise is strongly atten-
uated when its indicent angle is not close to the one of the
satellite signal. Of course, the weights could be computed
in many different ways. But since the multiantenna track-
ing receiver is striving after a correlation where the local
replica perfectly matches the received signals, a compari-
son with the above described deterministic beamforming is
considered to be fair.

7.2 Multiantenna Tracking

It was already described above that the multiantenna track-
ing receiver correlates the signals from every antenna el-
ement individually with local replicas. Consequently for
every antenna element and every satellite signal one dis-
criminator is employed. Later on when the phase-offset is
estimated – be it in a multisatellite tracking loop or not –
the discriminators are combined, according to the Kalman

5also called error detector.



Fig. 5. Variance of the carrier-phase error estimate Δϕ̂ in a
beamforming receiver. The satellite has azimuth and el-
evation angles of Ak = −67◦, Ek = 36◦ respectively,
C/N0 = 45dB-Hz, Nd = N0 + 15dB.

gain. If one satellite signal is received with approximately
the same signal-to-noise ratio at every antenna element,
then the Kalman gain will be equal for every measurement.
And since the estimated phase-offset has to result, the Kalman
gain for the projection of the discriminators to the phase-
offset is consequently 1/P (P the number of antenna ele-
ments). This sequence is illustrated in Fig. 6.

Fig. 6. Processing chain for the multiantenna tracking receiver.

The block diagram depicts the difference to the traditional
multiantenna receiver which applies digital beamforming.
Of course, the benefit from the combination of the discrim-
inators is the additional possibility to inherently estimate
the platform attitude. On the other hand, the drawback is
the low flexibility and potential for suppressing interfering
signals. This can also be seen from Fig. 7, where the same
scenario as in Fig. 5 was evaluated.

Again the maximum is reached for the direction of the satel-
lite which is obvious. But the maximum is not as high as
in the case of beam-forming which stems from the fact that
the discriminator is a nonlinear operation in the additive
noise. And therefore the exchange of summation and dis-
rimination is not possible.

Fig. 7. Variance of the carrier-phase error estimate Δϕ̂ in a mul-
tiantenna tracking receiver. The satellite has azimuth and
elevation angles of Ak = −67◦, Ek = 36◦ respectively,
C/N0 = 45dB-Hz, Nd = N0 + 15dB.

8 SIMULATION RESULTS

The derived multiantenna multisatellite tracking algorithm
could be tested with real measurement data or with simula-
tions. To solely analyze the novel algorithm and for a proof
of concept simulations were used. In this way all effects
that do not directly relate to the algorithm under test could
be avoided. In the simulation IF samples were generated
for a planar 2 × 2 antenna array, as illustrated in Fig. 8. A

Fig. 8. Antenna array configuration.

similar simulation program was used like documented in
[20]. It was extended to additionally simulate multiple an-
tennas. In the simulations no atmospheric effects and no
multipath propagation were considered.

A constellation with seven satellites was simulated, where
the satellite signals were received with 45 dB−Hz. The
two-sided frontend passband bandwidth was 4MHz, the
number of bits in the quantization 4.

8.1 Attitude

The novelty of the multiatenna multisatellite tracking is
the inherent estimation of the platform attitude. This is
analyzed in Fig. 9. The upper figure shows that the al-
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Fig. 9. Analysis of the estimated platform attitude.

gorithm can perfectly track the platform attitude, whereas
Fig. 9(b) indicates a fast convergence of the attitude estima-
tion. The attitude was initialized wrong by Δφnb = 15◦,
Δθnb = −14◦, Δψnb = 26◦, but still the attitude solution
converged in less than a second.

8.2 Carrier-Phase Tracking

It is important that the multiantenna tracking does not im-
pair the actual carrier-phase tracking. More precisely the
tracking of the carrier-phase as measured at the reference
point on the receiver’s platform. For the setup used in
the simulation studies, shown in Fig. 8 the first antenna is
placed at the origin of the body-frame. Therefore the mea-
sured carrier-phase equals the one obtained by a receiver
only connected to this antenna.

The comparison of this measured carrier-phase with the
true one is shown in Fig. 10. It can be seen that only a
few seconds are needed until a robust lock is achieved.
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Fig. 10. Carrier-phase measurement error for the first antenna.

8.3 Positioning

It was shown in [9] that in a multisatellite tracking loop
with position estimation, the inclusion of the carrier-phase
results in a sort of position smoothing. Since in the simu-
lation four antennas were considered, the smoothing has a
large time-constant and therefore needs much time to set-
tle. This is illustrated in Fig. 11. It takes some 15 seconds
until the position estimation converged to the true one.
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9 CONCLUSION

The analysis of the carrier-phases of the satellite signals
measured by multiple antennas shows that the phases can
be split up into three parts: a satellite-specific part (the
same for all antennas), an antenna-satellite specific part,
and an antenna bias. Those three parts can directly be re-
lated to the carrier-phase discriminator measurements. Spe-
cific attention is drawn to the second part as it contains in-
formation about the receiver platform orientation, or atti-
tude. It can be concluded that when the signals from the



antennas are combined after correlation and discrimination
– in contrast to digital beamforming, where the antenna sig-
nals are directly combined after A/D conversion – the atti-
tude of the platform can be estimated inside the tracking
loop. The drawback of this approach, as compared to digi-
tal beamforming, is the reduced ability to suppress interfer-
ence and enhance satellite signals. But still a large gain is
achieved by exploiting the spatial correlation among the re-
ceived satellite signals in a coherent multisatellite tracking
loop.
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