Institut fiir Informatik

Technische Universitiat Miinchen

Interactive Visualization
Techniques for Large-Scale

Particle Simulations

Roland Fraedrich

Vollstindiger Abdruck der von der Fakultit fiir Informatik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. M. Gerndt
Priifer der Dissertation: Univ.-Prof. Dr. R. Westermann
Univ.-Prof. Dr. A. Kolb, Universitit Siegen

Die Dissertation wurde am 19.01.2012 bei der Technischen Universitiat Miinchen
eingereicht und durch die Fakultit fiir Informatik am 20.03.2012 angenommen.

To Eva

Abstract

Particle-based simulation techniques such as smoothed particle hydrodynamics (SPH)
have gained much attention due to their ability to avoid a fixed discretization of the sim-
ulation domain. Especially in the field of astrophysics, such simulations have emerged
as an indispensable instrument to gain insight into the structure formation process of
the Universe and to prove or contradict hypotheses on its matter distribution. For large
data sets with up to several billions of particles, the amount of data exceeds the capa-
bilities of conventional visualization techniques and thus an interactive visual analysis
is not feasible.

In this thesis, I investigate scalability limitations in the visualization of such large-
scale particle-based simulations and I present methods to allow the rendering of billion-
particle data sets at interactive rates on current PC architectures. For this purpose, I de-
velop a hierarchical multi-resolution particle representation that minimizes the amount
of data required for rendering while preserving sub-pixel accuracy and visually contin-
uous levels of detail. For a fast selection and access of the data, an efficient out-of-core
and in-core data management is employed and I present techniques to exploit the ca-
pabilities of current graphics accelerators to enable interactive visual data exploration.
Furthermore, I introduce a novel volume rendering pipeline for efficient high-quality
visualization of particle data allowing for rendering options such as direct volume ren-
dering and isosurface rendering. Finally, I present a new hierarchical space-time data
structure for particle sets, which allows for a scale-space analysis of structural forma-
tion processes in the simulated fields. I demonstrate the quality and performance of
my methods for the rendering of fluid and gas dynamics SPH simulations consisting of
millions to billions of particles.

Zusammenfassung

Partikelbasierte Simulationverfahren wie Smoothed Particle Hydrodynamics (SPH) ha-
ben aufgrund ihrer Fahigkeit eine feste Diskretisierung zu vermeiden, erhohte Aufmerk-
samkeit erlangt. Insbesondere in der Astrophysik haben sich derartige Simulationen als
unentbehrliches Hilfsmittel erwiesen, um Einsicht in die Strukturformierungsprozesse
des Universums zu gewinnen und Hypothesen iiber dessen Materieverteilung zu be-
weisen oder diese zu widerlegen. Fiir groe Datensétze mit bis zu mehreren Milliarden
Partikeln iibersteigt die Datenmenge die Kapazititen konventioneller Visualisierungs-
techniken und eine interaktive visuelle Analyse ist nicht durchfiihrbar.

In dieser Arbeit untersuche ich die Grenzen der Skalierbarkeit in der Visualisierung
von solchen groflen partikelbasierten Simulationen und présentiere Methoden, die das
Rendern von Datensiitzen mit Milliarden von Partikeln in interaktiven Frameraten auf
heutigen PC-Architekturen erlauben. Zu diesem Zweck entwickle ich eine hierar-
chische Datenreprésentation, die die zu rendernde Datenmenge minimiert und gleich-
zeitig eine Subpixel-Genauigkeit und ein visuell kontinuierliches Detaillevel sicher-
stellt. Um eine schnelle Auswahl und einen raschen Zugriff auf die Daten zu er-
moglichen, verwende ich ein effizientes out-of-core und in-core Datenmanagement.
Zudem prisentiere ich Methoden, um unter Ausnutzung der Fahigkeiten heutiger Gra-
fikbeschleuniger eine interaktive visuelle Exploration der Daten zu ermoglichen. Ich
stelle insbesondere eine neuartige Volume Rendering Pipeline zur effizienten und hoch-
wertigen Visualisierung von Partikeldaten vor, die Rendering-Verfahren wie eine di-
rekte Volumenvisualisierung und das Rendern von Isoflachen erlaubt. AbschlieBend
présentiere ich eine neue hierarchische Raum-Zeit-Datenstruktur fiir Partikeldaten, wel-
che eine Scale-Space-Analyse von strukturellen Formierungsprozessen in der Simula-
tion erlaubt. Ich zeige die Qualitit und Leistungsfihigkeit meiner Methoden fiir das
Rendern von SPH-Simulationen aus der Fluid- und Gasdynamik mit Millionen bis Mil-
liarden Partikeln.

1ii

Acknowledgements

I gratefully acknowledge the support of all of the people who made this thesis possi-
ble. First and foremost, I would like to thank my advisor Prof. Dr. Riidiger Wester-
mann. Having read several papers from his group during my studies at the Friedrich-
Alexander-Universitit Erlangen-Nuremberg, his Computer Graphics and Visualization
Group had become the prime address for me to pursue research in the field of scientific
visualization. I am very grateful for the opportunity to work with him, for his supervi-
sion, his time commitment, and the numerous discussions. This thesis certainly would
not have been possible without him.

I would like to thank the co-authors that have contributed to the journal articles that
are part of this thesis, in particular Stefan Auer and Dr. Jens Schneider. I have enjoyed
working with them. Furthermore, I am thankful to all of my current and former col-
leagues that have always been open for discussions: Dr. Kai Biirger, Shunting Cao,
Matthédus Chajdas, Christian Dick, Raymund Fiilop, Dr. Joachim Georgii, Stefan Her-
tel, Dr. Polina Kondratieva, Prof. Dr. Martin Kraus, Prof. Dr. Jens Kriiger, Hans-Georg
Menz, Tobias Pfaffelmoser, Marc Rautenhaus, Florian Reichl, Dr. Thomas Schiwietz,
Marc Treib, Mikael Vaaraniemi, and Jun Wu.

I had contact to several great scientists at the Max-Planck-Institute for Astrophysics:
Volker Springel, Gerard Lemson, Markus Rampp, Klaus Reuter, Riidiger Pakmor and
Fritz Ropke. Thank you very much for giving me insight into the field of astro-
physics and for providing the cosmological datasets. I also would like to thank Matthias
Teschner for providing the fluid dynamic data sets that have been used in this thesis.

Furthermore, I would like to thank Prof. Dr. Giinther Greiner, Prof. Dr. Marc Stam-
minger and all my former colleagues from the Computer Graphics Chair in Erlangen.
You have drawn my interest towards computer graphics and visualization, and being
part of your group was a wonderful experience.

Finally, I am enormously thankful to my wife, parents, family, and friends for giving
me all the support I needed during the last years.

Contents

[_Abstract

[Zusammenfassung|

[Acknowledgements|

[List of Figures|

[List of Tables|

(1__Introduction|
(1. Objective|
(1.2 Challenges|.

2.1~ Memory Hierarchy of Desktop Computers|

[2.2 Programmable Graphics Hardware|

3 Background|

[3.1 The Visualization Pipeline|
[3.2 Smoothed Particle Hydrodynamics (SPH)|
B3.2.1 Theoretical Foundations|
[3.2.2 Smoothing Kernels|

(3.3 Principal Component Analysis|

vii

iii

xi

xiii

viii CONTENTS
3.4 Vector Quantization| 26
[3.5 Volume Rendering| 27

[3.5.1 Volume Rendering Integral 28
[3.5.2 Compositing] L 29
[3.5.3 Opacity Correction| 29

4 lassificationlo L 29

4 Scalable Rendering of Large-Scale Cosmological Data Sets | 31
4.1 Introductionl 31
M2 Contributionl 32
43 Related Workl 34
4.4 The Millenntum Run| o oo 35
4.5 Cosmological Particle Visualization| 35
4.6 Challenges|. 38
4.7 DataRepresentation|., 38

@4.7.1 Multi-Resolution Hierarchy| 39
K72 Level-of-Detail Selectionl 40
4.’7.3 Particle Thinning| 40

4. 7.4 Attribute Compression| 42

4.8 Memory Management{. 43
M81 DiskTransfed 44
4.8.2 Prefetching and Caching| 45

49 Rendering| L 45
4.9.1 Particle Projection| 46

2 Performance I ntheGPUo o o000 46

{4.10 Resultsand Analysis| oo, 48
4.10.1 Data Representation| 48
4.10.2 Attribute Compression| 49
4.10.3 Performance Measurementsl 50

MIT Discussionl. 53
412 Conclusionl 55
cient High-Quality Volume Rendering o at 57
0.1 Introductionl 57
5.2 Contributionl 58
B3 RelatedWorkl 61

CONTENTS

[5.5 Data Resamplingl

[5.5.1 Hierarchical Particle Representation|

[5.5.2 Hierarchy Traversal|.
[5.5.3 GPU Particle Slicing|
[3.6 Rendering
[5.7 Implementation Issues| . . .
[5.7.1 Gnd Partitioning| . .
[5.7.2 Occlusion Culling| .

[6.3.2 Particle Merging| . .
[6.3.3 Hierarchy Generation|
[6.3.4 Data Structures| . . .
6.4 Rendering
[6.4.1 User Interaction|. . .

[6.4.2 Implementation Detaals|.

[6.6 Application to Non-Cosmological Data Sets|

[6.6.1 SPH Fluid Dynamics|

[6.6.2 Unsteady Vector Fields|

[7__Conclusion|

Bibliography|

ix

64
65
66
66
67
69
69
70
71
75
79
81

83
84
87
88
88
90
91
93
95
96
99
100
102
103
104
106

107

109

CONTENTS

List of Figures

2.1 Ilustration of the memory hierarchy on desktop computers.|. 10
[2.2 Illustration of the graphics pipeline.| 15
[3.1 The Visualization Pipeline.| 20
3.2 Plots of the kernel functions and their first directional derivatives). . . . 24
“.1 Visualizations of the Millennium Simulation at different scales.|. 37
4.2 Three nodes in the multi-resolution particle hierarchy,|. 40
4.3 Resolution-dependent particle merging.| 41
4.4 Histogram of the three particle quantities.| 42

4.5 Average relative error of particle quantities depending on codebook size.| 43

4.6 Illustration of the relation between the particle octree and the page tree.| 44

4.7 Perspective correction for the integration through a spherical particle.| . 47
4.8 Comparison of 8 bit- and 16 bit-VQ for the attribute compression.| . . . 50
4.9 Performance and memory statistics for a Millennium flight through.| . . 51
4.10 Comparison of image quality with and without presence acceleration.| . 53
.11 Average frame rates for different viewport resolutions.| 54
[5.1 Dafferent rendering options for perspective grid ray casting. 59

[5.2 Order-dependent particle splatting versus perspective grid ray casting,| . 60

[5.3 Mapping from texture space into the perspective grid in view space.| . . 62
[5.4 Bottom-up construction of the particle LOD-hierarchy.| 65
[5.5 Particle resamplingonthe GPU.| 67
[5.6 Gradient computation 1n the perspective grnid.| 68
[5.7 Ilustration of view-aligned slabs to partition the perspective grid.[. . . . 69
[5.8 Ilustration of occlusion culling.| 70
[5.9 Images of data sets used 1n our experiments.| 72

[5.10 Resampling to perspective grids of different resolutions.| 74

X1

Xii

LIST OF FIGURES

[5.11T Order-independent splatting versus perspective grid ray casting.| 76
[5.12 Screen-space depth splatting versus a perspective grid 1sosurface.|. . . . 77
[5.13 Comparison to texture-based volume rendering of a cartesian grid.| . . . 78
[5.14 Layered 2D splatting versus perspective grid ray casting.| 80
[5.15 Various details of the SNIaEjecta and the Millennium data set.| 82
[6.1 'Trajectories of our space-time hierarchy for the Aquarius dataset| . . . 86
[6.2 Visualization of pathlines in combination with volume rendering.|. . . . 87
(6.3 TIllustration of our space-time hierarchy for particle trajectories.| 89
[6.4 Illustration of a PCA split for the splitting of clusters.| 93
(6.5 Illustration of the data structures of our space-time hierarchy.| 94
[6.6 Example of a trajectory discontinuity and a fixed connection.| 95
(6.7 Fixed LOD in comparison to a view-dependent LOD.| 96
[6.8 Examples for visualizing tracked particle subsets.| 98
[6.9 Animated highlights to improve the impression of particle motions.|. . . 99
[6.10 Three levels of detail from the WDMerger space-time hierarchy,| 102
[6.11 Volume rendering versus motion visualization and combined rendering.| 103

6.12

Examples for using motion visualization 1n the field of fluid dynamics.| . 104

6.13

Space-time hierarchy of particle traces within unsteady vector fields.| . . 105

List of Tables

.1 Statistics for each level of the particle multi-resolution hierarchy.|. . . . 49
[5.1 Data sets used in our experiments.| 71
[5.2 Performance statistics for resampling and rendering in milliseconds. . . 73
[6.1 Data sets used in our expertments.| 100
[6.2 Statistics for the space-time hierarchies of the experimental data sets.|. . 101

xiii

Xiv LIST OF TABLES

Chapter 1

Introduction

Numerical simulations have become an important instrument in science and industry.
Capable of providing detailed insights into natural phenomena and complex physical
processes, they are of particular importance in cases where physical experiments are
expensive, time-consuming, or when information is hard or impossible to measure.
A prominent example is the field of astrophysics, where—compared to the age and
size of the universe—all physical measurements constitute only a local snapshot of
space and time, and where phenomena such as black holes and dark matter can only
be observed in an indirect manner. Here, numerical methods contribute significantly
to the investigation of physical processes and the validation of hypotheses, and they
enable insight into the universe that can not be obtained by other means.

In the past decades, particle-based simulation techniques have received increased
attention due to their ability to avoid a fixed discretization of the simulation domain.
The concept of these methods is that the computational elements carrying physical
quantities are free to move and interact with each other based on application-specific
governing equations. Particle-based methods benefit from their spatial adaptivity, flex-
ible deformability, and free boundaries. One of the oldest and best-established tech-
niques is smoothed particle hydrodynamics (SPH). It was developed simultaneously by
Lucy [Luc77] and Gingold and Monaghan [GM77]] in 1977 in the astrophysical do-
main. Since its introduction, SPH has been subject to continuous improvement and
has proven successful in the simulation of phenomena on many orders of magnitude,
ranging from micro-scale to astronomical scale. Today, SPH is extensively used to
investigate various cosmological processes such as stellar collisions, supernovae, and
the evolution of the universe. Furthermore, it was successfully adapted to other fields
of research including quasi-incompressible fluids, heat conduction, shock simulations,
and fractures of brittle solids.

2 CHAPTER 1. INTRODUCTION

For the analysis of numerical simulations, an important role is taken by scientific
visualization [HE11]]. Due to the perceptual and cognitive abilities of humans, scientists
can gain insights from a visual representation much faster and in a much wider extent
than from results that are derived from mathematical models and statistical analyses.
Moreover, statistical approaches are restricted to aspects of interest that are known in
advance and that can be described in a mathematical manner to allow for computational
evaluations or a data-driven feature search. Visualizing the data, on the other hand,
moves scientists into the center of the exploration process and incorporates their skills
and experience to recognize and visually analyze remarkable features, anomalies, and
complex processes.

However, for many particle-based simulations an interactive visual analysis nowa-
days is not feasible. The primary reason for this is that visualizing particle-based sim-
ulations is a complex task that typically requires the interpolation of quantities from
an unordered set of data. This is especially challenging as today’s simulations are per-
formed at ever increasing scales. The resulting amount of data demands sophisticated
visualization algorithms that are able to process data that can not be held in-core. One
pertinent example from the field of astrophysics is the Millennium Run [SWJ™05], in
which 10 billion particles were used to simulate the evolution of the universe. Since
its computation in 2005, the Millennium Run has been subject to ongoing research that
has resulted in more than four hundred scientific publications so fa| However, visual-
izations of the data set have only been available to offline rendering, requiring several
minutes for a single image and multiple hours for rendered animations. Accordingly,
a visual data analysis has been severely limited. Even for much smaller data sets con-
taining hundreds of thousands of particles, interactive visualization techniques have
only been feasible based on simple render modes using points or textured sprites. For
high-quality volume rendering, on the other hand, the visualization of such data is also
restricted to offline processing.

1.1 Objective

The objective of this thesis is to overcome the present restrictions in the visual explo-
ration of particle-based simulations by developing interactive visualization techniques
that are specifically designed with respect to the scalability to large-scale data sets.
With the term “large-scale” we refer to data sets that are too large to be interactively
rendered with existing visualization methods and which often exceed the capacity of

'A list can be found at http: //www.mpa-garching.mpg.de/millennium/,

http://www.mpa-garching.mpg.de/millennium/

1.2. CHALLENGES 3

the graphics memory or even the main memory. In particular, we focus on smoothed
particle hydrodynamics, which is one of the most important and most frequently used
particle-based simulations. Handling orders of magnitude of many billions of particles,
it has been used to perform several of the largest simulations to present time.

The most important, yet conflicting goals for an effective visual data analysis of
large-scale data are visualization quality and rendering performance. Particular ques-
tions investigated in this thesis are whether it is feasible to perform interactive visual-
izations of the largest of today’s SPH simulations and which quality penalties have to be
accepted to achieve this. We will further investigate the maximum number of particles
for which high-quality volume rendering can be provided at interactive frame rates as
well as the rendering times that can be achieved for visualizing billion-particle data sets
in such a visualization mode. In addition, we pursue the question how structural forma-
tion processes and particle motions can be effectively visualized in these data sets. To
account for the technical facilities of scientists analyzing such simulations, we partic-
ularly focus on algorithms for the application on desktop computers that are equipped
with commodity graphics cards.

1.2 Challenges

For an effective visual data analysis, interactivity is of crucial importance due to multi-
ple reasons. Changing the viewing perspective is essential for understanding the three-
dimensional shape of structures of interest. The camera movement enhances the depth
perception due to motion parallax and allows the user to react if points of interest are
occluded. Interactive modifications of data-dependent viewing parameters such as iso-
values and transfer functions help the user to gain deeper insights by revealing or em-
phasizing structures or properties of interest. For time-dependent data sets, animations
support the understanding of dynamic processes. Interaction in the time domain allows
the user to focus on particular periods of time, to adapt the playback speed to his need,
or to pause the animation in order to spatially investigate a specific time step. Finally,
interactive visualizations are important for real-time simulations, which have gained
much attention in the recent years. Here, rendering techniques are required that pro-
vide an instant visualization and that can be used to interact with the simulation in a
computational steering environment.

The development of interactive visualization techniques in recent years was greatly
influenced by the technical evolution of dedicated graphics hardware. Driven by the
demand for more realistic 3D graphics in computer games, graphics processing units

4 CHAPTER 1. INTRODUCTION

(GPUs) have evolved from devices that were limited to rasterization based on a fixed-
function pipeline architecture to powerful and freely programmable processors that per-
mit the implementation of a vast variety of algorithms. Yet, the efficiency of GPU-based
rendering techniques heavily depends on an algorithm’s suitability for an implementa-
tion on the underlying parallel streaming architecture. Furthermore, the limited video
memory and bandwidth restrictions regarding the geometry and rasterization through-
put often turn out to be significant bottlenecks when visualization algorithms are ap-
plied to large-scale data sets.

Unfortunately, these constraints particularly affect interactive visualizations of SPH
data due to multiple reasons. The flexibility that makes particle-based methods supe-
rior in terms of adaptability and memory demands during the simulation makes the
rendering of the particle sets much more complicated. Visualization of SPH data re-
quires the reconstruction of a continuous scalar field at the sampling points using a
kernel-based interpolation scheme, for which all particles contributing to the particular
sampling point need to be determined. Even if these search operations are supported by
space partitioning data structures, this interpolation is extremely expensive and difficult
to implement and accelerate on GPUs. Therefore, interactive visualizations so far have
been restricted either to simplified rendering techniques avoiding kernel interpolations,
or to high quality volume rendering of particle sets with an upper limit of a few ten
thousand elements [OKK10].

Today, many simulations contain millions to billions of particles and, thus, exceed
this limit by far. Furthermore, researchers aim at performing ever larger simulations
to increase accuracy and size of the simulated domain. This process is supported by
the growing computational power of super computers, which is still exponentially in-
creasing in correspondence with Moore’s law [Moo635, IDeB04]. For such large-scale
data sets, it is obvious that the challenge of an interactive visualization goes beyond
the rendering itself as it requires the treatment of data that vastly exceeds the capacities
of dedicated graphics memory and main memory. To significantly reduce the amount
of data to be rendered, multi-resolution representations and data compression schemes
can be employed. However, these methods must be carefully chosen to avoid any neg-
ative impact on the visualization quality. Furthermore, the largest data sets will still re-
quire an out-of-core processing and the streaming of data from storage devices, which
should not affect the visual exploration of the data set. In comparison to stored particle
data, ad-hoc visualizations for interactive particle simulations are even more challeng-
ing since the applied rendering algorithms can not rely on expensive pre-computations.
Instead, spatial acceleration schemes must either utilize existing space partitioning data

1.3. CONTRIBUTION 5

structures that are part of the simulation, or be highly efficient to be performed during
rendering, for example by exploiting the coherence of the particle distribution between
successive frames.

Another challenge is the visual analysis of dynamic processes within time-dependent
SPH data sets. In cosmological simulations, processes such as the building of matter
clusters and the formation of stars, galaxies, and halos are of particular interest. How-
ever, cosmological data sets contain a rather fuzzy matter distribution in which motion
is very hard to perceive. This makes it very difficult to identify formation and splitting
processes of particle clusters by only visualizing the matter distribution along the time
domain via animations. One approach to reveal motion within SPH data is the rendering
of particle traces, as known from pathlines within unsteady vector fields. However, for
data sets containing millions of elements, the practicability of this approach is limited
due to occlusion and visual cluttering, as well as by the geometry throughput of modern
GPUs. Moreover, by solely following individual particles on the simulation level, it is
very difficult to analyze cluster formations and splits in particle distributions. There-
fore, sophisticated techniques are required that deal with these problems and allow for
an efficient visual data analysis of large-scale particle flows.

1.3 Contribution

In this thesis, we address the described issues and present rendering techniques for the
interactive visualization of large-scale particle distributions and their formation pro-
cesses on desktop computers. To handle these data sets, we develop a hierarchical,
visually continuous particle representation. We apply compression schemes that drasti-
cally reduce the amount of data that is transferred and rendered. These are designed to
support a very efficient decoding during rendering and preserve a very high accuracy.
We employ efficient data management algorithms to optimize the data transfer from
secondary memory to the GPU’s video memory such that bandwidth limitations and
latencies are hidden from the user as far as possible.

We further introduce a new efficient volume rendering pipeline on commodity graph-
ics cards that eliminates existing restrictions for the interactive visualization for SPH
data. This technique utilizes a novel data structure, called the perspective grid. This
structure allows an efficient reconstruction of a continuous data field along the view-
ing rays of classical ray casting based on a GPU-based voxelization of particles into a
volumetric texture. By employing an adaptive sampling width that results in an almost
isotropic sampling rate in view space, we can adjust the resampling effort according

6 CHAPTER 1. INTRODUCTION

to the contribution on the rendered image. The resampling into the perspective grid is
optimally suited for the combination with a hierarchical particle representation, which
further increases rendering performance and helps to avoid aliasing artifacts. It is im-
portant to note, however, that our visualization approach is also highly efficient without
a multi-resolution representation and can be directly coupled with GPU-based simula-
tions. As with other texture-based volume rendering techniques, the perspective grid
allows isosurface ray casting, high-quality volume renderings with arbitrary transfer
functions, and mixed rendering options using both techniques. Combined with our effi-
cient data management techniques, we demonstrate that our rendering approach enables
an interactive exploration of million-particle data sets at high quality. Furthermore, we
present simplified render algorithms that can be used to visualize the largest of today’s
data sets containing many billions of particles at interactive rates.

Finally, we introduce a new space-time hierarchy to visually analyze motions and
clustering processes within time-dependent particle distributions. By clustering parti-
cles with coherent traces at various scales, our hierarchy can illustrate dynamic pro-
cesses of large-scale data sets by minimizing the problems of occlusion and visual
cluttering. Furthermore, it helps to reveal cluster mergers and splits within the data
field. Regions of interest can be identified and emphasized by adapting the size and
color of trajectories based on cluster properties, or by tracking interactively selected
particle subsets. Besides this motion visualization, the space-time hierarchy can serve
as hierarchical data representation for high-quality volume rendering of scalar fields.
This allows to render the motion paths in the context of the matter distribution without
the need for an additional particle representation.

1.4 Outline

The remainder of this thesis is structured as follows. Chapter 2] introduces technical
constraints for rendering large-scale data sets on current PC architectures. In particular,
we describe the memory hierarchy that needs to be considered and give a brief overview
on the functionality and programmability of modern GPUs. Chapter [3| reviews ele-
mentary methods on which our work is based and describes existing techniques that
we apply in subsequent chapters, including SPH, principle component analysis, vector
quantization, and volume rendering. This chapter contains no scientific contribution
but provides the reader with the fundamental background to understand and implement
the algorithms presented in this work.

1.5. LIST OF PUBLICATIONS 7

In Chapter] we investigate scalability limitations for large-scale data sets and we
present techniques such as a multi-resolution particle hierarchy that enable a visual ex-
ploration of the Millennium Run on current PC architectures. To provide an interactive
exploration, we apply and optimize an order-independent rendering scheme. Chapter[5]
introduces the perspective grid as a new resampling data structure and demonstrates its
use for an interactive high-quality visualization of SPH data sets containing millions of
particles. For cosmological billion-particle data sets, we discuss a simplification of the
visualization approach that allows renderings at a few frames per second with only mi-
nor quality penalties. In Chapter|[6 we focus on the visualization of dynamic processes
within SPH simulations and we introduce a novel space-time hierarchy that allows a
scale-space analysis of particle motions within large-scale particle sets. We demon-
strate the effectiveness of our method by applying it to particle sets with many millions
of elements. The thesis is concluded with a summary of the proposed techniques and
an outlook on future work.

1.5 List of Publications

The Chapters [] to 6] include research results that were published during the creation of
this thesis in the following peer-reviewed articles:

1. R. Fraedrich, J. Schneider, and R. Westermann, Exploring the Millenium Run -
Scalable Rendering of Large-scale Cosmological Datasets, IEEE Transactions on
Visualization and Computer Graphics 15 (2009), no. 6, 1251-1258 [ESWQ9].

2. R. Fraedrich, S. Auer, and R. Westermann, Efficient High-quality Volume Ren-
dering of SPH Data, IEEE Transactions on Visualization and Computer Graphics
16 (2010), no. 6, 1533-1540 [FAW10].

3. R. Fraedrich and R. Westermann, Motion visualization of particle simulations,
IS&T/SPIE Conference on Visualization and Data Analysis (VDA 2012), 2012,
82940Q-1-12 [FW12].

CHAPTER 1. INTRODUCTION

Chapter 2

Hardware Considerations

In this chapter, we provide the reader with the essential knowledge about today’s PC
and GPU architectures and their limitations regarding the visualization of large-scale
particle data sets. Such particle sets can contain hundreds of GB of data, which by far
exceeds the capacities of the main memory and the local video memory. Thus, it is
necessary to stream the visible portions of the data from secondary storage to the video
memory during the visual exploration process. This streaming is affected by hardware
restrictions including bandwidth limitations and latency issues, which must be consid-
ered in the data management. Section [2.T|reviews these constraints within the involved
memory hierarchy. Furthermore, interactive visualization of large-scale data sets poses
a challenge for even the most recent generations of GPUs due to the enormous geome-
try and rasterization load that results from rendering millions of particles. To minimize
this workload it is important to effectively exploit the capabilities of the GPU’s stream-
ing architecture and their programmability. Section gives an introduction to the
programmable rendering pipeline as exposed through the Direct3D 10 API. Both sec-
tions should help readers that are not entirely familiar with the according architectures
in understanding the algorithm and design choices of the subsequent chapters.

2.1 Memory Hierarchy of Desktop Computers

Today, high-performance visualization on desktop computers is not possible without
graphics hardware that has its own dedicated video memory. On such systems the
memory hierarchy that needs to be considered for the visualization of large-scale data
sets contains three levels (see Figure[2.T). At the bottom of the hierarchy are secondary
storage devices, which are used to permanently store the data sets. For rendering, the
visible part of the data set needs to be transferred to the GPU’s video memory at the top

9

10 CHAPTER 2. HARDWARE CONSIDERATIONS

PCl Express 2.0 x16 Bandwidth: 6.4 GB/s

Primary Storage

(DDR3-SDRAM)
Capacity: 8 GB, Bandwidth: 21 GB/s, Latency: 10 ns

Serial ATA revision 3.0 Bandwidth: 600 MB/s

Secondary Storage
(Hard Disc Drive)

Capacity: 2 TB, Bandwidth: 100 MB/s, Latency: 7 ms

Figure 2.1: Illustration of the memory hierarchy that is relevant for the interactive visualization
of large-scale data sets on desktop computers. Memory capacities, latencies, and bandwidth
limitations are given for an exemplary middle-class PC equipped with a single 2 TB hard disc,
a Dual-Channel DDR3 SDRAM at 1333 MHz and an NVIDIA GeForce 560 Ti graphics card.

of the memory hierarchy. Located between these layers is the main memory, to which
the data needs to be loaded before sending it to the GPU. Each memory level is limited
in capacity and its data access is restricted to the maximum transfer rate and by the
latency, which is the time delay between initializing a data transfer and the actual start
of the transmission. Subsequently, we review these constraints for the distinct memory
levels as well as the throughput limitations of the connecting transmission channels.

Secondary Storage

Hard disk drives (HDD) are most commonly used for secondary storage on desktop
computers. Typically, PCs can be equipped with multiple internal plus additional exter-
nal hard drives, with each possessing a capacity of up to 3 TB (as of 2011). HDDs store
data on radial tracks of magnetic disks, which rotate at high speed with up to 15,000
rpm. The data is read and written using a head that needs to be moved to access the in-
dividual tracks. Due to mechanical limitations of the disc rotation and head movement,
HDDs with large capacities have usually a latency between 4 and 9 ms, which is a very
long time period in modern computing. The data transfer rate depends on the rotational
speed of the disks and additionally varies according to the position of the track to be
read, but the sustained transfer rate of large HDDs is typically around 100 MB/s. This

2.1. MEMORY HIERARCHY OF DESKTOP COMPUTERS 11

transfer rate can be increased using a Redundant Array of Independent Disks (RAID)
in which multiple HDDs are combined into a logical unit. By reading data from sev-
eral hard discs in parallel, for example via block-level striping (RAID 0) or mirroring
(RAID 1), the data throughput can be increased up to the same factor as number of
disks are combined.

With their increasing size, solid-state drives (SSD) have rapidly gained market share
in the recent years due to some advantages over classical HDDs. Most importantly,
SSDs posses a much lower latency (< 0.1 ms) and a considerably better transfer rate
(up to 500 MB/s) since the data is stored on non-volatile memory chips exclusive of any
mechanical parts. However, due to the restricted size of up to 600 GB and significantly
higher costs (> 1 Euro per GB), they are currently no general alternative for the storage
of large-scale data sets.

Besides internal and external hard drives, data can also be read from other comput-
ers or dedicated network attached storage (NAS) devices within local area networks,
e.g. via Gigabit Ethernet that transfers data at a rate of one gigabit per second (= 125
MBY/s). Thus, data can also be streamed via Ethernet at transfer rates that are com-
parable to local storage devices. This is especially beneficial for very large data sets
exceeding the limit of local storage devices or if the data set needs to be accessed from
multiple workstations.

Data transfer between secondary and primary storage

Data between secondary storage devices and main memory is transferred in units of
pages, which contain 4096 Byte on most of today’s systems. Accordingly, the maxi-
mum possible transfer rate of hard disks can only be achieved if the data of entire pages
are required. Reading smaller amounts of data can significantly decrease the effective
transfer rate and should therefore be avoided. For the data transfer to main memory,
HDDs operate on high-speed serial interfaces such as Serial ATA (SATA), which has
a transfer rate of 6 Gbit/s in the current standard (SATA revision 3.0). Since the clock
signal is transmitted using the same pins based on a 8b/10b encoding, in which 8 bits
of data are transferred using a 10-bit signal, the theoretical maximum data throughput
is 600 MB/s. Accordingly, the transmission bandwidth lies clearly above the transfer
rate of HDDs and represents no bottleneck for the memory hierarchy.

12 CHAPTER 2. HARDWARE CONSIDERATIONS

Primary Storage

Today, PCs are usually equipped with 4 to 16 GB of main memory, even though main-
boards exist that support RAM with a size up to 128 GB. The most common memory
interface is DDR3-SDRAM, which has a data access latency in the order of 10 ns. The
transfer rate depends on the clock speed and on the number of channels of communi-
cation between main memory and the memory controller, but the theoretical limit is
typically around 20 GB/s.

CPU-GPU memory transfer

From main memory, the data is transfered to the GPU’s local video memory via the
PCI Express (PCle) bus. In the current standard (PCI Express 2.0 x16) the raw transfer
rate is 8 GB/s in each direction. Like SATA, PCI Express employs a 8b/10b encoding
scheme, which reduces the theoretical peak data throughput to 6.4 GB/s. In practice,
however, the actual effective transfer does typically not exceed 2.5 GB/s.

GPU video memory

State of the art graphics cards usually have a dedicated video memory of size 1024 to
2560 MB for the consumer market and up to 6 GB for the high end market. GPU’s
possess a very high memory bandwidth of more than 100 GB/s. Memory latencies
are below a nanosecond and are additionally hidden by sophisticated thread scheduling
strategies.

2.2 Programmable Graphics Hardware

The primary purpose of GPUs is to support rasterization-based rendering [AMHO02]
that transfers three-dimensional geometric primitives such as point, lines, or triangles
into a two-dimensional raster image. Since the rasterization process can be divided into
a series of steps which need to be performed for up to millions of primitives, GPUs are
designed as massively parallel processors based on the stream processing paradigm. In
a streaming architecture, a large ordered set of data (referred to as stream) is processed
by running the same series of operations (referred to as kernel) on each item. Usually,
each kernel performs only a small set of operations on the stream whereas complex
tasks are accomplished by serializing multiple kernels in a fixed order with the output of
one kernel being the input of the subsequent one. Since the output of a kernel is defined
to depend solely on the input, kernel computations can be efficiently parallelized by

2.2. PROGRAMMABLE GRAPHICS HARDWARE 13

using processors that are based on the Single Instruction Multiple Data (SIMD) and
Single Instruction Multiple Threads (SIMTﬂ paradigms comprising multiple proces-
sing elements that perform the same operations on distinct data simultaneously.

The first graphics cards that included the entire rasterization pipeline were presented
in 1999. These GPUs implemented the pipeline in a fixed-function architecture with
some kernels being configurable to a small extent. Driven by the demand of more
realistic 3D graphics in computer games, both the computational power as well as the
level of programmability was steadily increased since then. The kernels performing
the vertex and fragment processing became freely programmable, new kernels such as
the geometry stage were introduced, and with the introduction of unified shaders the
programming of and the data access within the kernels were unified.

In addition, GPUs are no longer pure graphics devices but have evolved to parallel
processors for general purpose computing (referred to as GPGPUE[), that are freely pro-
grammable in C-like programming languages such as NVIDIA’s CUDA, Microsoft’s
DirectCompute, or OpenCL, which is developed by the Khronos Group. For graphics
programming, two cross-platform APIs can be used for writing graphics applications
that are supported by state of the art GPUs: DirectX of Microsoft and OpenGL, which
was initially developed by Silicon Graphics Inc. (SGI) and which is now managed by
the Khronos Group. Both APIs follow a very similar rendering pipeline, in which
shaders are programmable in a C-like shading language such as HLSL for DirectX and
GLSL for OpenGL.

In the following sections, we will introduce the fundamental concepts of the render-
ing pipeline based on the Shader Model 4.0, which is the minimum programming model
required for the implementation of the techniques presented in this thesis. For consis-
tency reasons we will describe the pipeline according to the design and terminology
of the DirectX 10 API, which was used for the validation of all algorithms within this
thesis. It should be noted, however, that all implementations are directly transferable to
OpenGL.

2.2.1 Data Structures

On GPUs, data can be stored in the dedicated video memory using several kinds of
data structures, which differ in their representation, data access, and usage. The most
important data structures are:

!The term SIMT was introduced by NVIDIA, but modern GPUs of other vendors build upon very similar archi-
tectures.
2General Purpose Computation on Graphics Processing Units

14 CHAPTER 2. HARDWARE CONSIDERATIONS

* Vertex Buffers: Vertex buffers are used to store attributes that are given per ver-
tex for a geometric object or per point for singular primitives such as SPH par-
ticles. Each attribute is stored as a tupel with up to four components. Typical
attributes for vertices are the position, colors, normals, and texture coordinates.
In case of SPH rendering, the attributes store the quantities of each particle such
as its position, velocity, smoothing length, and mass.

* Index Buffer: Instead of rendering the vertices in the order given by the vertex
buffer, an index buffer can be used to define the order of processing. The index
buffer stores references into a vertex buffer as a list of integers. This indirection is
especially useful for meshes to avoid storing duplicates of vertices that are shared
by multiple polygons. Furthermore, it can be used to define a subset of vertices
to be drawn instead of the whole vertex list.

* Texture Resources: Texture resources (or short textures) are one-, two- or three-
dimensional arrays of elements that can consist of up to four components. The
texture elements are called texels (short for texture elements) in 1D and 2D, and
voxels (derived from volume elements) in 3D. When reading from textures sam-
plers can be used to filter the data, e.g. via linear interpolation. In addition,
mipmaps are extensions of 1D or 2D textures that augment the original texture by
a pyramid of filtered versions of reduced size.

2.2.2 The Rendering Pipeline

Figure [2.2] depicts the rendering pipeline according to Direct3D 10 and the Shader
Model 4.0. The whole pipeline contains several stages that are assembled in a fixed
order. Stages marked as blue are configurable based on specific state objects and stages
marked as red are fully programmable. In the following, we will briefly describe the
individual stages. For more detailed information, we refer the reader to [Bly06] and
[Mic10].

* Input Assembler Stages: The first stage of the rendering pipeline is the input
assembler, which creates the initial vertices of the primitives that are sent through
the pipeline. Vertex attributes can be read from one or more vertex buffers. Via
the primitive topology the programmer defines if the individual vertices should
be interpreted as individual points, lines, or triangles, or as strips of the latter
two primitive types. The vertex buffers can either be read sequentially, or an
index buffer can be bound that specifies the order of the vertices to be created.

2.2. PROGRAMMABLE GRAPHICS HARDWARE 15

Vertex Buffer, Index Buffer

Input Assembler Stage brimitive Topology

Textures

Vertex Shader Stage

Textures

Geometry Shader Stage GPU Video Memory

Buffers
Textures

Stream Output Stage State Objects

Rasterizer State

Rasterizer Stage

Textures

Pixel Shader Stage

Depth-Stencil State

Pixel Shader Stage
Blend State

Textures

Figure 2.2: Illustration of the graphics pipeline.

Furthermore, instanced rendering can be used to replicate each primitive a fixed
number of times. In addition to the user-given vertex attributes, the assembled
primitive data can be augmented by system-generated properties including vertex,
primitive, and instance IDs.

Vertex Shader Stage: Each assembled vertex is send to the programmable vertex
shader stage, which operates on them by modifying, adding, or removing vertex
attributes. Typical modifications include linear transformations of the vertex po-
sition from object space into the view or clip space. Furthermore, textures can be
accessed to alter existing or to add further attributes.

Geometry Shader (optional): The geometry shader operates on individual prim-
itives (i.e. points, line segments, or triangles) and has access to all of its vertices.
It can produce none, one, or multiple primitives as output. Hence, existing primi-

16

CHAPTER 2. HARDWARE CONSIDERATIONS

tives can be removed, its vertices can be manipulated, or additional primitives can
be generated. Furthermore, the primitive type of the output stream can differ from
the one of the input stream. This can be used to expand point primitives to trian-
gles that are used as textured sprites or to extrude line segments to tubes. In cases
where the render target is a volumetric texture or a texture array, the programmer
can additionally specify the target slice into which each primitive is rendered.
Geometry shaders are optional and should be avoided unless their functionality is
required or particularly beneficial, since their usage causes performance penalties.

Stream Output Stage: Subsequent to the geometry shader, vertex information
of the data stream can be written into a buffer of the GPU’s video memory. This
buffer can be used as vertex buffer or texture resource for a subsequent render
pass, or its data can be read back into the main memory to extract information
required by the application. The stream output can be used as an alternative to
streaming the data to the rasterization stage or in parallel to it.

Rasterization Stage: In the rasterization stage, all primitives are clipped against
the view frustum and all vertex positions are transformed from homogeneous clip
space into screen space, i.e. coordinates are now given according to the viewport
on the screen. Afterwards, either for the whole polygon (solid fill mode) or its
edges (wireframe mode) so called fragments are generated for all covered pix-
els. For each of these fragments, an interpolation unit interpolates all attributes
that are demanded by the subsequent pixel shader stage according to a specified
interpolation scheme, which in most cases is linear interpolation with perspective
correction.

Pixel Shader Stage: The pixel shader is evoked for each fragment generated by
the rasterizer and is used to determine the fragment’s color or other values that are
written into the render target. This stage operates on the interpolated vertex at-
tributes and has access to all texture resources in GPU memory. Typical per-pixel
computations are texturing and lighting. In addition, the depth of each fragment
can be modified or the fragment can be discarded from further processing.

Output Merger Stage: The output merger stage merges the fragment’s values
with those stored at the same location in the render target. It can be configured
via two state objects: the depth-stencil state and the blend state. For opaque ge-
ometry, the depth-stencil state is typically configured such that the depth value of
the fragment must be smaller than the current depth of the regarding pixel. Other-

2.2. PROGRAMMABLE GRAPHICS HARDWARE 17

wise the fragment is discarded. During rendering the writing of depth values can
either be enabled (i.e. the values in the depth buffer are automatically updated to
the closest fragment) or disabled (e.g. for the rendering of transparent fragments).
If stencil operations are discarded and the depth value is not modified in the pixel
shader stage, the depth test can be moved forward to the end of the rasterization
stage, which is called early-z test. By this means, the discarded fragments need
not to be processed in the pixel shader stage, which can lead to a significant per-
formance gain due to the reduced fragment load. The blend state, on the other
hand, specifies how fragments are blended with the existing pixels in the render
target. Typical operations are to overwrite the value, to add the new value, or
to composite both values by using alpha blending (see Section [3.5.2). The render
target can either be the frame buffer that is displayed on the screen or an offscreen
buffer, which can be used as input for a subsequent render pass or which is read
back to main memory to pass information to the application.

18

CHAPTER 2. HARDWARE CONSIDERATIONS

Chapter 3
Background

This chapter provides an overview on methods that are used in the subsequent chapters.
We introduce the visualization pipeline as a paradigm for the scientific visualization
of data and explain the general workflow for the rendering of large-scale SPH data
sets. With respect to the order within the pipeline, we introduce SPH (see Section 3.2,
principal component analysis including its use for cluster analysis (see Section [3.3),
describe data compression based on vector quantization (see Section [3.4), and review
relevant issues regarding direct volume rendering (see Section 3.5).

3.1 The Visualization Pipeline

The visualization pipeline is a conceptual description of the processing of data from
its acquisition to a visual representation. Most commonly, the pipeline is divided into
four stages (depicted in red in Figure [3.1). The visualization process starts with the
collection of data. In scientific visualizations, the two most important data sources are
sensors and numerical simulations. In our application the data originates from SPH
simulations, which is a Lagrangian method to simulate fluid and gas dynamic effects.
Section [3.2] gives an introduction to SPH and discusses all necessary aspects regarding
its visualization.

The kind of raw data resulting from data acquisition depends on the acquisition
method. In case of SPH, the simulated fluid is defined by a set of discrete particles and
their attributes. For dynamic data sets the particles are stored at discrete time steps. To
allow interpolation between these time steps, the time-to-time coherence of SPH data
is usually stored implicitly given by the order of the particles or explicitly based on
particle IDs.

19

20 CHAPTER 3. BACKGROUND

) N
a.1t.a. > . > - Visualization
Acquisition Data

- A s Rendering ; Visualization
Mapping Representation Rendering (image, video)

Figure 3.1: The visualization pipeline: Beginning with the acquisition, the data (green) is
processed in four consecutive processing steps (red) to obtain a final visual representation.

The second step in the visualization pipeline is the filtering stage. It reduces the
acquired information and outputs only that data that is required for visualization. This
includes methods that are applied in a preprocess in order to save computational effort
during runtime, for example interpolations and approximations of the data (e.g. for the
generation of a multi-resolution representation) and data format conversion including
data compression. In case of SPH, a multi-resolution hierarchy can be created based
on cluster analysis algorithms. One such approach is built upon principal component
analysis, which is described in Section [3.3] A brief review of vector quantization for
the purpose of data compression is presented in Section [3.4 The filtering stage also
comprises parts that need to be performed during rendering, as they depend on camera
position and user settings. This includes clipping and culling techniques to discard data
that is either not visible or should explicitly excluded from visualization.

For particle data, the output of the filtering stage is a set of particles to be rendered
for a specific camera position and specific viewing properties. Next, the data has to
be mapped to a graphical representation that can be visualized by modern graphic de-
vices. This is performed during the mapping stage. SPH particles, for example, may
be mapped to points or textured sprites, and their trajectories can be rendered as lines
or tubes. With respect to the continuous scalar field that is defined by SPH (see Section
[3.2.1)), a more sophisticated approach is to reconstruct a volumetric data representation
of this field that can be visualized using direct volume rendering (see Section[3.3). As
part of the mapping stage, color and opacity of the primitives or the volumetric repre-
sentation must be determined, which is usually done via a transfer function based on
the physical quantities of the scientific data. Finally, the rendering stage projects and
composes the graphical primitives to an image that is presented to the user. Depending
on the visualization approach, the processing of subsequent stages can be tightly linked.

3.2. SMOOTHED PARTICLE HYDRODYNAMICS (SPH) 21

A prominent example is the close relation between the mapping and rendering stage in
direct volume ray casting.

3.2 Smoothed Particle Hydrodynamics (SPH)

This section reviews the fundamentals of SPH and briefly describes aspects that are re-
lated to visualization purposes. For a more detailed overview, especially on simulation
issues, we refer to the comprehensible summary papers by Monaghan [Mon92, Mon05]]
and the textbook by Liu and Liu [LLO3].

3.2.1 Theoretical Foundations

At the core of SPH is the integral interpolant that defines the interpolation of any quan-
tity Ay at a position r based on the values of A at all data points within a certain domain
of interest:

Ap(r) = / AW (x — v/, B)dr, G.1)

where dr’ is a differential volume element and W is the smoothing kernel, which has
an area of influence that is defined by the smoothing length h. The kernel function is

defined to be normalized to unity, i.e.

/W(r —r' h)dr' =1,
and the limit of 1/ should be the Dirac delta function ¢ as h approaches zero

oo r=r

0 r#r

h—0

lim W(r —r',h)dr' =(r — 1) = {

Please note that the kernel function is typically radially symmetric in practice. For this
reason, it is frequently written in the form W (|r — 1’|, h) in literature.

If the fluid is discretized into a set of small mass elements, the integral in Equation
is approximated by a summation over these particles and the differential volume is
replaced by the finite volume of the individual elements V}

Ar(r) = As(r) =) AW(r —ru,) Vi,
b

22 CHAPTER 3. BACKGROUND

where A, is the particle’s value of quantity A, 7, is the particle’s position, and h;, is the
particle’s smoothing length. Since density is defined as mass per unit volume (p, =
my/V4), we can transform the previous equation to obtain the summation interpolant

A
As(r) =) mbp—:W(r — 1y,). (3.2)
b

As can be seen, the interpolation for any quantity A is defined as the weighted average
over the particles, where the influence of each particle depends on its mass, density,
and the weight according to the kernel function, which itself depends on the distance of
the particle and its kernel size. For the case that the interpolant is used to estimate the
density at any point r, Equation simplifies to

p(r) = Z mpyW (r — 11, hy),
b

which illustrates that the mass of each particle is smoothed over the particle’s area of
influence according to the kernel function. Besides the interpolation of quantities, the
summation interpolant can also be used to analytically obtain their spatial derivative
given a differentiable kernel function:

A
VA,(r) = mbp—bVW(r —rp, hy) (3.3)
b b

Generally the smoothing kernel can have infinite support. In practice, however, a
compact support is used, i.e.

Wi(r—1',h)=0 if ||[v —1'|| > kh, (3.4

where « is a constant defining the limit of a particle’s spatial influence as a factor of
the smoothing length. For kernels with compact support the sum of Equation can
be restricted to those particles that cover the sampling point r with their smoothing ker-
nel. This can lead to enormous computational savings, provided that the participating
particles can be efficiently determined.

Especially for SPH simulations that contain large density inhomogeneities as in
many cosmological simulations, the smoothing length of individual particles is often
adapted in space and time. Typically h; is chosen such that each kernel contains a
constant mass for the estimated density or such that the number of particles inside

3.2. SMOOTHED PARTICLE HYDRODYNAMICS (SPH) 23

this volume remains relatively constant. Within high density regions the adaption of
the smoothing length significantly increases the local resolution of the simulation and
additionally decreases the computational costs for interpolation since less particles con-
tribute to a sampling point.

Based on the SPH formulation the governing equations for the motion of hydrody-
namics, which are a given in a system of partial differential equations, can be trans-
formed into a set of ordinary differential equations, which can be solved via time inte-
gration. In addition, gravitational algorithms that are known from N-body simulations
can be efficiently integrated to simulate the self-gravity in cosmological applications
[HK89]. Details on the simulation code that has been used to produce the astrophysical
data sets presented in this thesis can be found in [SprO5]. The two-way coupling of
fluids and rigid-bodies as shown in the fluid dynamics data sets that are used in our
experimental results is described in [BTTQ9].

3.2.2 Smoothing Kernels

Depending on the area of application and the fluid to be simulated, different smoothing
kernels are used. In the remainder of this thesis, we will present visualization results
for two different kinds of data sets: astrophysical simulations and fluid dynamics. In all
astrophysical simulations the cubic spline-kernel was used for particles with varying
smoothing length h. Writing ¢ = |r| /h, this kernel is defined as

1

1—6q2§6q3, 0<q¢<3;

Waptine (r,h) = —5 4 2(1=q)", 5<¢<1

) q>1
It has the gradient
18 —2¢+3¢% 0<q<3
r

VWSine 7h:_'_ —(1— 2 1< <1

pl (l') |r| 7Th4 (Q)a 2_(1_

) q>1

for |r| > 0 and zero otherwise. For all fluid dynamics simulations the poly6-kernel was
applied:

Wpolyﬁ (I', h)

315 (h?—=r%)3, 0<r<h
~ 647h?

0, otherwise

24 CHAPTER 3. BACKGROUND

where r = |r|. Its gradient is given by

VWooiys(r,h) = —1

" 3927hY

945 (2 =r%)?2, 0<r<h
0, otherwise

Figure shows both kernels and their gradients for a smoothing length of h = 2.
In the given formulas, both kernels are defined such that x = 1 (see Formula , i.e.
that a particle has no influence for a distance greater than their smoothing length.

035

| NV W optine (1,2)] — [V Woons(r,2)] —
03 | VV'\/)/irw(raz) —] 031 VVpolyﬁ(rsz) —]
025 r 1 025 r
02 1 02 F
0.15 1 0.15
0.1 1 0.1
0.05 1 0.05
0 L L L O L L L
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Ir| Ir|
(a) Spline-Kernel (b) Poly6-Kernel

Figure 3.2: Plots of the kernel functions (thick red lines) and the absolute values of their di-
rectional derivatives with respect to r (thin blue lines) for kernels with a smoothing length of
h=2.

3.3 Principal Component Analysis

Principal component analysis (PCA) [Pea01], also known as Hotelling transform [[Hot33]]
or Karhunen-Lo¢eve transformation [Kard7, Loe46], is a linear transformation of a set of
possibly correlated variables to a set of uncorrelated variables, which are called princi-
pal components. These principal components are defined such that the first component
represents the direction of maximum variance within the data, and all further compo-
nents correspond to the remaining maximum variance that is orthogonal to all previous
ones.

One application of PCA is hierarchical cluster analysis [Jol02]. Here, PCA can be
used to steer an divisive algorithm that iteratively splits clusters into two subclusters
according to the direction of maximum variance. The splitting plane is defined by the
centroid of the cluster and the first principal component as normal. This binary division

3.3. PRINCIPAL COMPONENT ANALYSIS 25

is repeated for the subcluster with the highest variance until a stop criterion is met.
Usually this criterion is either a certain number of subclusters that has to be created or
a maximum distortion threshold allowed in the resulting partitions.

More formally, let ; € X C R" be a data set of n-dimensional variables and let
P() be a priority queue that stores mutually exclusive subsets P; C X with the priority
given by the subsets distortion ;. For our applications, we measure the distortion as
the euclidean distance to the centroid of the subset:

1
Dj=—=> (z—1;)°, (3.5)
1P|

:EEPJ'

where the subset’s centroid 7; is defined as
_ 1
Tj= == x.
TP 2
Given a minimal number of subclusters n or a maximum distortion threshold p as
stop criterion, the partitioning is performed as follows:
1. Add X as single partition into P()

2. Remove the partition F; with the largest distortion from the priority queue.

3. Calculate the covariance matrix:

C=> (v—z)(x—=)"

J?EP]'

4. Calculate the maximum principal component, which is the eigenvector e,,,, of
the absolute largest eigenvalue A, of C'.

5. Assign all elements of x € P; to one of the new groups P, and F; according to:

Pi={z € Bl {(x ~) enus) > 0}

Py ={x € Pj[((z = 7)), maz) < 0}

6. Calculate the residual distortions of P, and F;, and add these partitions into the
priority queue.

7. Proceed with step 2 if the size of P() is smaller than n or if the distortion of the
top of P(Q) is greater than p.

26 CHAPTER 3. BACKGROUND

Since the covariance matrix C' is real, symmetric, and positive definite we deter-
mine the greatest eigenvalue/eigenvector pair in step [4] by performing the Housholder
reduction to reduce C' to a tridiagonal form, followed by applying the QL algorithm
with implicit shifts [PVTEO2].

3.4 Vector Quantization

Vector quantization is a lossy data compression technique that maps a set of vectors
x = {1, x9,...,x,} to a smaller set of N vectors called code vectors or code words,
which as a whole build a codebook C' = {y;|i = 1,..., N}. Typically, = and y; are
defined in R™. During encoding a quantizer maps a vector into an index of the codebook
by determining the entry that leads to the smallest error

q(m) =1, 6(x7y1) < 5(x7yj) V] € [17N]7

where §(z, y;) is some kind of distortion measure, e.g. the squared Euclidean distance
(see Equation [3.5] on page [25). The dequantizer, on the other hand, replaces the entry
by the according codeword, i.e. d(i) = y;. Vector quantization is computationally
asymmetric, since the encoding, which requires the building of a codebook or at least
finding the best representing code word, is much more complex than the decoding,
which can be implemented via a single fetch into a lookup table.

The average distortion induced by the vector quantization for an input set X is given
by

If a codebook is not given a priori, finding an optimal codebook for a given input set is
a non-linear data fitting problem. The most common approach to design a codebook is
the Linde-Buzo-Gray (LBG) algorithm [LBG80], which is a generalization of Lloyd’s
algorithm [LIo82]| that is also known as Voronoi relaxation in the context of centroidal
Voronoi diagrams. The LBG-algorithm requires an initial codebook C' and a training
set X, for which the codebook is optimized. As stop criteria, a maximal number of
iterations k,,,, and a minimal relative improvement e of the average distortion with
respect to the previous iteration can be defined. Then the algorithm proceeds as follows:

1. Initialize £ = 0 and D¢, = 00

2. Divide X into N disjunct groups such that each group S; contains those vectors

3.5. VOLUME RENDERING 27

of the training set that are closest to the code word y;:

S = {a | d(w.ys) < dla,y;) i< j ¥j€C)

3. Calculate the average distortion of the training set with regard to the current code-

book: N
Dcurr - % Z Z 5(«%‘7 yz)

=0 z€S;

4, 1f Berev—Dewrr ¢ op | > Kmaz» StOp.

curr

5. Set Dyrey = Deyyr and replace each code word y; by the centroid of the partition

Sil 1
CEIPY

T€S;

6. Increment k and go to step 2.

Due to the computational expense of each iteration step, which is dominated by
the nearest neighbor search in step [2| and the fact that the LBG-algorithm converges
towards a local minimum, the initial codebook has a strong influence on the runtime of
the LBG algorithm and the quality of the resulting codebook. In our implementation
we utilize the PCA-based binary split algorithm (see Section[3.3) to generate the initial
codebook, which has proven to result in a high fidelity codebook by applying only a
few LBG iterations within our experiments. Our approach builds upon the work of
Schneider, who efficiently applied vector quantization in a wide range of visualization
applications [SWO03|, [KSWO03, [KSW06, ISTT10]. Detailed information on this topic
can be found in the books of Sayood [Say00] and Gersho and Gray [GG91].

3.5 Volume Rendering

From the mathematical point of view, the SPH interpolation scheme defines a con-
tinuous three-dimensional field for each scalar quantity carried by the particles. The
two most common options to visualize volumetric scalar fields are the rendering of
isosurfaces and direct volume rendering. An isosurface is a three-dimensional repre-
sentation of a surface that contains all points in space where a scalar value is equal to
a certain isovalue. Such a surface is usually rendered either by extracting a polygo-
nal representation, e.g. based on the Marching Cubes algorithm [LC87], or by casting

28 CHAPTER 3. BACKGROUND

rays through the volume for which the intersection with the isosurface is determined
[Lev88l, PMST99]]. Direct volume rendering, on the other hand, treats the volumet-
ric scalar field as participating media interacting with rays of light. This requires the
mapping of the scalar field to optical quantities such as color and opacity, which can
be integrated along the line of sight. The subsequent sections give a brief introduction
to volume rendering with focus on the aspects that are important for the remainder of
this thesis. Thorough overviews on volume rendering can be found in the textbooks by
Johnson and Hansen [JHO4]| and Engel et al. [EHK™06].

3.5.1 Volume Rendering Integral

Direct volume rendering is based on the physical theory describing the radiation field
in a participating medium, which involves emission, absorption, and scattering of light.
Due to its complexity scattering of light is typically neglected for volume rendering,
leading to a simplified emission-absorption model [KvH84], which defines the light
intensity along a line of sight of length L as

L
I= / c(s) 7(s) e o 7 A (3.6)
0

where 7(s) is the opacity per unit length at position s, ¢(s) is the light emission per
unit length at s as non-associated color, i.e. ¢(s) is not pre-multiplied by the opacity,
and the exponential term represents the absorption between s and the eye. A numerical
approximation of the equation of radiative transfer is commonly derived by calculating
a Riemann sum for n segments of length As = L/n and by approximating the expo-
nential extinction coefficient by the first two elements of its Taylor series expansion:

n

I = Z c(iAs) T(iAs) As H e~ TUAS) As

~ Zc(iAs) 7(iAs) As H(l —7(jAs) As)
= Zc(iAs) a(iAs) H(1 — a(jAs)). (3.7)

where a(iAs) = 7(iAs) As is the opacity.

3.5. VOLUME RENDERING 29

3.5.2 Compositing

For rendering purposes, the discretized volume rendering equation (Equation is
computed iteratively using a compositing scheme that is sequentially applied to the dis-
cretized segments. In this thesis, we apply front-to-back compositing using the under-
operator [PD84]]:

Ciy1 — Ci+ (1= A4) cip1 i
Aipr — A+ (1= A;) a4y,

where ¢ and « are the color and opacity of the individual segments, and C' and A hold
the accumulated quantities along the viewing ray, initiated with Ay = 0 and Cj as
black.

3.5.3 Opacity Correction

Instead of using equidistant segments it can be beneficial to locally adapt the sampling
width for the discretization. In this case, the opacities for the segments need to be
adjusted in order to result in the same degree of extinction per unit length. Since the
overall extinction for a ray of length L through a homogeneous material has to be
identical when using a segment width of At instead of As, we get the identity

|

>
e

(1 —ay)at = (1 — ag)2s.

Solving for o yields the corrected opacity

ar=1— (1 —)t

for a segment of size At with an opacity « that is defined per unit length As.

3.5.4 Classification

For the visualization of physical quantities, a mapping to the optical properties emis-
sion and absorption is required. This process is termed classification and the mapping
function itself is called transfer function. In direct volume rendering, classification is
the most important instrument for visualizing and analyzing data since it defines which
portions of a data set are visible and how the physical quantities are encoded in col-
ors. Typically, the transfer function is defined via a user-interface and the changes are
directly applied to the rendered image to allow an immediate feedback. Yet, the spec-

30 CHAPTER 3. BACKGROUND

ification of an appropriate transfer function revealing the features of interest is often a
challenging and time-consuming task [PLBT01]]. Flexibility and usability further de-
pend on the number of quantities that are used to determine the optical properties. A
one-dimensional transfer function determines this mapping as a function of a single
scalar value. In two-dimensional transfer functions, the optical quantities are defined
based on two different quantities. This allows more sophisticated mappings but is also
more difficult to adjust due to the increase in degrees of freedom

During the work on this thesis, a simplified two-dimensional transfer function has
proven to be effective and easy to adjust. In this function, the pixel’s brightness is
defined by the density and opacity and the hue is determined with regard to the temper-
ature (or any other additional quantity), e.g. by mapping it to a rainbow color map. Due
to their high dynamic range in the data sets, both physical quantities are scaled logarith-
mically prior to the mapping to enhance the differences of small values. A meaningful
and user-friendly classification is already possible by a linear mapping of the two quan-
tities within a user-defined value range (compare the images of the Millennium Run
in Chapters {4 and [5). For more sophisticated visualizations, we have implemented a
one-dimensional transfer function editor that allows the user to define the mapping of
density to brightness and opacity as a piece-wise linear function, which can be config-
ured based on control points. Such a transfer function has been used in the all volume
renderings of the Merger and the Ejecta data sets of Chapters [5and 6]

It should be noted that throughout this thesis, we have applied volume rendering
based on post-classification, yielding high-quality visualizations with high-frequent
transfer functions in our experiments as can be seen in Figure [5.15] on page [82] If
required, however, pre-integrated volume rendering [Kra0O8] could be easily integrated
into our rendering approach as well.

Chapter 4

Scalable Rendering of Large-Scale
Cosmological Data Sets

In this chapter we investigate scalability limitations in the visualization of large-scale
particle-based cosmological simulations, and we present methods to reduce these lim-
itations on current PC architectures. To minimize the amount of data to be streamed
from disk to the graphics subsystem, we propose a visually continuous level-of-detail
(LOD) particle representation based on a hierarchical quantization scheme for particle
coordinates and rules for generating coarse particle distributions. Given the maximum
world space error per level, our LOD selection technique guarantees a specified sub-
pixel screen space error during rendering. A brick-based page-tree allows to further
reduce the number of disk seek operations to be performed. Additional particle quanti-
ties including density, velocity dispersion, and radius are compressed at no visible loss
by using vector quantization of logarithmically encoded floating point values. Fine-
grain view-frustum culling and presence acceleration in a geometry shader significantly
reduce the required geometry throughput on the GPU. We validate the quality and scal-
ability of our method by presenting visualizations of a particle-based cosmological dark
matter simulation exceeding 10 billion elements.

4.1 Introduction

Particle-based cosmological simulations play an eminent role in reproducing the large-
scale structure of the Universe. Today, the dark matter distribution has been numerically
simulated with as much as billions of particles and the results of these simulations
have to be analyzed for a better understanding of the structure formation process in the

Universe.
31

32 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

One of the most popular simulations is the Millennium Run, where more than 10
billion particles have been used to trace the evolution of the matter distribution in a cu-
bic region of the Universe with over 2 billion light-years on a side, resulting in terabytes
of stored output. The simulation required 28 machine days at 0.2 Tflops using 1 Tbyte
RAM. By comparing the simulation results to large observational surveys, the physi-
cal processes underlying the buildup of real galaxies and black holes can be clarified.
Especially by analyzing the substructure in simulated halos and subhalos, the hope is
to prove or contradict recent claims and hypotheses on the matter distribution in the
Universe.

By today, for the largest available cosmological simulations an interactive visual
analysis is not feasible. The exploration is mainly performed via database queries,
data mining techniques, and visualizations of vastly reduced subsets of the full data
set. However, it can be perceived that an even stronger awareness of the importance of
interactive visualization techniques for data exploration is growing in the community.
An important reason is that especially for cosmological data it is difficult to judge in
advance which information in the vast amount of stored output is scientifically rele-
vant. This makes it difficult to apply fully automatic analysis techniques, which typ-
ically need a precise specification of the structures to search for. In consequence, the
community increasingly tries to put experts and their capabilities into the center of the
exploration process, to support them by visualization tools that can effectively exploit
the human’s perceptual and cognitive abilities, and to let them interactively guide the
search process.

To achieve interactive visualizations of cosmological particle simulations as large as
the Millennium Run, we have to consider scalability with respect to the size of the data
in the whole visualization process. Taking into account the massive amount of particles
to be visualized, a major challenge in cosmological visualization today is to maintain
interactive frame rates for data sets that vastly exceed the available main memory. Since
the number of primitives to be sent to the GPU for rendering is significantly increasing
as well, the visualization performance is strongly limited by bandwidth restrictions. In
addition, even on recent high-end graphics accelerators, particle rendering induces a
geometry throughput and rasterization load that considerably limits the performance.

4.2 Contribution

The primary focus of this chapter is to address scalability limitations in the visualization
of very large cosmological particle simulations and to investigate how far one can reach

4.2. CONTRIBUTION 33

on recent PC architectures by reducing these limitations. The methods we propose are
based on encoding particle positions and attributes in a tree data structure. The data
structure stores partitions of the underlying domain at increasing resolution, with the
sub-domains in each partition being quantized uniformly using 8 bit per coordinate
component. The partitions are recursively refined up to the spatial resolution of the
simulation.

To reduce the number of particles at each resolution level, particles in a given quan-
tization bin are merged if the rendering of the resulting particle at this level does not
introduce a visible error. By this means, we build a level-of-detail representation that
allows both reducing aliasing artifacts and the number of rendered primitives. In com-
bination with a page-tree that stores a number of adjacent sub-domains in one contigu-
ous memory block, memory bandwidth and the number of disk seek operations can be
reduced considerably.

In addition to their coordinate, particles in cosmological simulations carry floating
point attributes such as mass density, velocity dispersion, and radius, which signifi-
cantly increase the data to be stored and transferred. To address this problem, we em-
ploy a vector quantization scheme after the attributes have been scaled logarithmically.
Since the quantized data can be decoded efficiently on the GPU, we are able to trade
CPU-GPU data transfer for GPU processing, resulting in three times faster streaming
of large particle sets from disk into GPU memory.

Regardless of these efforts, geometry throughput and rasterization of particle splats
on the GPU still remain critical bottlenecks for interactive visualizations. To further
reduce this problem we propose techniques to discard particles from the rendering pro-
cess as early as possible by fine-grain view-frustum culling and presence acceleration.
The latter approach takes advantage of the fact that it is not necessary to render many
particles in regions with small contributions to the final image. These problems as
well as ideas for further optimizations are addressed in the discussion at the end of this
chapter.

The remainder of this chapter is organized as follows: In the next section we review
previous work that is related to ours. An overview of the Millennium Simulation and
the visualization technique we employ are given in Sections[d.4]and4.5] Subsequently,
we present the components of the proposed scalable rendering pipeline and discuss
our strategies for data representation (Section4.7), memory management (Section 4.8§)),
and rendering (Section [4.9). In Section [4.10] we analyze the different components of
our method and the framework as a whole. We conclude the chapter with a discussion
and summary of this chapter.

34 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

4.3 Related Work

Today, interactive data visualization is established as a key technology for the explo-
ration of large and complex-structured data sets as they arise in almost all areas of
science and engineering. There is a vast body of literature related to visual data analy-
sis that we will not attempt to overview here, however [JHO4, MIM™06] discuss many
related issues and provide useful references on these subjects.

Recent work on the visualization of astronomical data include the development
of infrastructures for high-performance computing environments [BDG 04, KCP*02,
ONO97], volume rendering techniques for the visualization of star formation and plan-
etary nebulae [LHM ™07, NJBO7], GPU-assisted ray casting for hybrid data consist-
ing of volumetric fields and point sets [KAHOQ7], methods for visualizing uncertainty
in large-scale astrophysical environments [LELHO7], and the comparison of different
simulations by comparative visualization [AHH™06].

Other approaches underline the importance of user-tailored visualization and inter-
action techniques in the field of astrophysics, including the development of scalable
WIM (world-in-miniature) user interfaces that facilitate travel and wayfinding at large
spatial scales [LFHO6], and user-controlled interaction that supports multiple abstrac-
tion views of galaxy clusters and the selection of structures in spatial sub-domains
[MQFO06, RREO6].

For particle data from cosmological simulations, software rendering [DRGIOS8, [Pr107,
HenO8§] is still most commonly used for visual data analysis. Efficient multi-resolution
point splatting techniques based on spatial subdivision schemes have been proposed in
[HEO3, HLEO4, SSLOS|]. However, the size of today’s simulations demands scalable
out-of-core rendering approaches, which support these visualization techniques by ef-
ficient data management and transfer [CE97]. Woodring et al. suggest to solve this
problem via stratified random sampling of the particle distribution [WAF™11].

To cope with this ever increasing amount of data to be visualized, parallel visual-
ization systems [BDG"04, [KCP"02, FCDM™11], and infrastructures for visual data
mining in distributed data sources [CBBT05] have been proposed. These system in-
clude mechanisms for data handling, querying, and interaction.

4.4. THE MILLENNIUM RUN 35

4.4 The Millennium Run

The goal of the Millennium Simulation Projectﬂ is to investigate the evolution of the
Universe based on a Lambda-Cold Dark Matter (ACDM) model of the accelerating
expansion of the universe. For this purpose, the growth of dark matter structure was
traced from redshift = = 127 to the present by using an N-body/SPH-simulation in
which the collisionless dark matter fluid was represented by a set of discrete point
particles. With a total number of 21603 ~ 10'° particles, distributed in a periodic box
of 2.23 billion light years and with the accuracy of an effective resolution of 100.0007,
this is one of the largest particle-based simulations ever performed. For a detailed
description of the numerical code used to compute the Millennium N-body simulation
as well as the scientific results of the Millennium Project let us refer to the work by
Springel et al. [SprO5, ISWJ™05].

In order to investigate the time-dependent dark matter distribution, the intermediate
results of the simulation have been stored in 64 snapshots. In addition to its own 3D
single-precision floating point coordinates, each particle in a snapshot carries additional
physical quantities such as an adaptive smoothing radius, density, and velocity disper-
sion, each of which is encoded in one single-precision floating point value. For a single
snapshot this results in a total amount of memory of 225 GB.

4.5 Cosmological Particle Visualization

The technique we propose visualizes the dark matter distribution in 3D space. Direct
volume rendering based on the emission-absorption model is well suited to reveal the
fuzzy structures of evolving dark matter clusters and filaments in the data set. This is
performed by casting rays through the volume, which are sampled at discrete positions.
However, in case of SPH data, for each sample point an SPH kernel interpolation needs
to be performed. This interpolation depends on all particles that cover the point with
their kernel (see Section [3.2). Unfortunately, even when using acceleration structures
such as kD-trees, the extensive search operations required to access the contributing
particles can by no means be fast enough to support interactive visualizations of a data
set containing billions of particles.

For this reason, we follow a visualization approach for cosmological particle data
that i1s commonly used for offline visualizations of large-scale data sets such as the
Millennium Simulation [SWVT08|]. In contrast to classical volume ray casting, this

"http://www.mpa-garching.mpg.de/galform/virgo/millennium/

36 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

technique neglects the absorption term, so that the emission-absorption model reduces
to a simplified emission-only model. In this visualization approach, the brightness b of
each pixel depends on the squared dark matter density that is integrated along the lines

of sight
P:/ﬁ@% 4.1)
and this integral is mapped logarithmically into brightness to increase the contrast of
the image
~ log(P/Prin)
B log(Pmaac/Pmm) ’

where P,,;, and P,,,, are user-defined extreme values that define the mapping from
black to full brightness. The color hue, on the other hand, is derived from the dark
matter velocity dispersion, which is the spread of velocities of stars or galaxies in a
cluster and that is weighted with the squared dark matter density and averaged along
the lines of sight:

S— % / o (1) (1) . 42)

The resulting value is encoded into the color hue using a special transfer function that
emphasizes regions of high dispersion. In analogy to the behavior of light, the density
is adapted to fall off as the square of its distance to the viewer and an additional fall-off
is typically applied to fade-out the density field beyond some depth of interest. Figure
M4.1] shows some images of the Millennium Simulation at different scales, which have
been generated by this approach.

The important benefit of this rendering approach is that due to neglecting the ab-
sorption term the intensities along a viewing ray can be accumulated independent of
the depth order. Thus, instead of performing expensive kernel interpolations for each
sampling point, the integrals can be evaluated on a per-particle basis. This can be
efficiently implemented on GPUs by splatting the density footprint of the individual
particles on the image plane.

It is obvious that without absorption, depth perception gets lost and can only be
revealed via motion parallax when translating the camera. However, the order-indepen-
dent integration benefits from the sparse nature of cosmological data sets that typically
contain only a small number of clusters and filaments surrounded by large void regions.
Hence, the emission-only model has been shown to produce visualizations that are
similar to those generated by an emission-absorption model and that also allow for an
effective visual analysis of the data. A comparison of the order-independent approach
to high-quality volume rendering can be found in Chapter [5]

4.5. COSMOLOGICAL PARTICLE VISUALIZATION 37

Figure 4.1: Visualizations of the Millennium Simulation with more than 10 billion particles at
different scales and a screen space error below one pixel. On a 1200x800 viewport the average
frame rate is 11 fps.

38 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

4.6 Challenges

Challenges of developing a cosmological visualization technique capable of dealing
with data as large as the Millennium Simulation not only encompass the rendering.
The key requirement of such a system is scalability throughout the entire visualization
pipeline, including the streaming of the data from the hard disk to the graphics proces-
sor. The major constraints in this pipeline are memory and bandwidth limitations, disk
access latency, and the geometry and rasterization throughput on current graphics hard-
ware. According to these constraints, an efficient cosmological visualization technique
has to be built on the following components:

* A data representation that minimizes the amount of data to be transferred and
rendered while preserving visual quality.

* An efficient out-of-core and in-core data management to quickly select and access
the relevant data.

* A rendering scheme that can effectively exploit the capabilities of current graphics
accelerators to enable interactive visual data exploration.

4.7 Data Representation

Visualization techniques for large-scale data sets are usually built upon two major com-
ponents: a multi-resolution representation of the data and an application-specific com-
pression scheme. For the design of these components several aspects have to be con-
sidered. To preserve visual quality, it is of essential importance to know about the
maximum error that is induced in each level of detail. Accordingly, there must be some
kind of measurement or a conservative approximation of this error during the gener-
ation of the multi-resolution hierarchy. Furthermore, the compression scheme should
not only yield a high compression ratio, but the decoding also needs to be efficiently
implementable on GPUs to support a high rendering performance. Finally, our data
representation should be designed such that it scales well for data sets that are even
larger than the Millennium Run.

Due to these considerations, some common approaches are not applicable for our
purpose. One example is hierarchical data encoding, which can yield very high com-
pression ratios by storing the data of each resolution level relative to the next-coarser
level. Accordingly, all lower resolution levels need to be accessed during rendering, for
which a series of expensive dependent texture lookups needs to be performed. Hence,

4.7. DATA REPRESENTATION 39

the performance heavily depends on the number of multi-resolution levels and scalabil-
ity is not ensured.

Instead, our multi-resolution representation is stored in an octree-based data struc-
ture, that is the entire simulation domain is recursively divided into eight equally sized
sub-domains. For each sub-space, the particles are discretized into regular grids of size
2563. Each particle is placed at the center of its discretization bin. Within each of these
cells, particles are merged if the difference is not perceivable during rendering (see Sec-
tion 4.7.3). In the current application, we refine the octree up to the spatial resolution
of the simulation, i.e. to an effective grid size of 128K®, which requires 10 levels of de-
tail. The finest level represents the full simulation with all individual particles. Due to
the octree-based data structure, accessing the finest level of detail exhibits O(log,(N))
complexity, with /V being the grid size corresponding to the maximum refinement level.
The position of each particle within a node is quantized uniformly using 8 bit per co-
ordinate component. Furthermore, additional particle attributes are compressed using
vector quantization (see Section[4.7.4). In addition to a high compression ratio, we will
show that no difference to uncompressed attributes can be perceived during rendering.
Thus, the error of each level of detail can be solely derived from the quantization of the
particle positions.

4.7.1 Multi-Resolution Hierarchy

The multi-resolution hierarchy is constructed bottom-up in a preprocess, i.e., the origi-
nal particle data is stored in the nodes at the finest level of the tree. At coarser hierarchy
levels, particles from the next finer level are either merged, copied, or omitted depend-
ing on their radius of influence and their density. The particular LOD-construction
method we employ is described in Section Figure shows three nodes of the
multi-resolution hierarchy, each of which represents a part of the region encoded in the
previous node at increasing resolution.

As the entire data set with a size of 225 GB is much too large to be processed at
once, we split the spatial domain into 8% blocks to fit the corresponding data into main
memory. For each block we compute the respective subtree of the octree in parallel.
Upon completion of this process all subtrees are merged into a single octree, which is
then re-organized into a page tree to accommodate faster data access. The construction
of this page tree is discussed in Section 4.8.1]

40 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

Figure 4.2: Three nodes in the multi-resolution particle hierarchy with increasing resolution
from from left to right.

4.7.2 Level-of-Detail Selection

Given the size q of the quantization cells at a particular LOD, the maximum world space
error that is introduced by quantizing particle coordinates to cell centers is 6 = v/3-¢ /2.
During rendering a strategy is required to select those octree nodes that result in a sub-
pixel error on the screen, and, thus, yield a visually continuous LOD rendering that is
lossless wrt. the current image resolution.

Given the world space error 9, the vertical screen resolution 7es,, and the vertical
field of view fouvy, we can determine the minimum distance d,,;, to the viewer as of

which a node can be rendered before it has to be refined:
0 -res,

dmin == .
2 - tan (fovy/2) ’

Here, 7 < 1 1s the maximum allowed screen-space error in pixels. To maintain this error
during rendering, each node that is closer to the viewer than d.,;, has to be replaced by
its 8 children.

4.7.3 Particle Thinning

The LOD-selection strategy tries to always render octree nodes for which the size of the
projected cells is approximately equal or less than one pixel. Taking this into account,
particles can be classified with respect to the number of pixels they would cover if they
were rendered at a particular level: points cover at most one pixel and sprites cover
more than one pixel.

4.7. DATA REPRESENTATION 41

Since all points in the same quantization bin will eventually fall into the same pixel
on the screen, they can be merged to one single point (see Figure 4.3). To determine
the dark matter density and velocity dispersion of this point wrt. to the individual con-
tributions, the densities are accumulated according to Formula [4.1] and the velocity
dispersion of the point is calculated as the weighted average with regard to Formula
4.2i

Sprites in one cell, on the other hand, can only be merged without visual loss if the
differences of their radii h; and h; is not perceivable during rendering (see Figure [4.3).
For this purpose, we use the fusion criterion |h; — h;|/q < €, where € is a sufficiently
small number. If this condition is not fulfilled, the particles are stored separately at the
respective level. Note that due to the local coherence of smoothing lengths in a SPH
simulation, almost identical radii within one cell are very likely to occur, particularly at
finer resolution levels.

® |+ |- + [+ [0

%ﬁ_)%ﬁ_)

(a) (b)

Figure 4.3: Resolution-dependent particle merging: (a) Particles with a radius less than the cell
size are merged into one single point primitive. (b) Particles covering more than one pixel can
only be merged if their radii are equal. (c) Otherwise, they can not be combined in a meaningful
way.

In order to further decrease the number of particles per node, we introduce a rule for
discarding particles depending on their density contribution. Subsequently, we refer to
this neglection of particles as presence acceleration. Based on d,;, and the quadratic

density fall-off, the projected squared dark matter density of a particle on the screen can
2

be computed as P, = p?/d? ;. Together with the minimum density for color coding
Pin, we discard a particle if n - P; < Pp;,. Here, n can be interpreted as the maximum
number of discarded particles whose sum of projected squared densities is smaller than
Pin- These particles do not have any influence on the final image.

The easiest way to find a reasonable value for n is to simulate the criterion on the
GPU and to experiment with different values. As an objective criterion, the scene can

be rendered with and without the threshold in order to compute the image difference.

42 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

This procedure can be repeated for a certain number of different views or while flying
through the data set until a good threshold is found.

4.7.4 Attribute Compression

In addition to their coordinates, the particles stored in the multi-resolution represen-
tation carry floating point attributes such as dark matter density, velocity dispersion,
and radius. Due to the nature of the simulation these properties are stochastically de-
pendent. To reduce the memory required to store these attributes we employ a vector
quantization scheme after the attributes have been scaled non-linearly.

As can be seen in the histogram in Figure [4.4] all three parameters have a high
dynamic range. A standard vector quantizer, however, is designed to minimize the sum
of squared errors. This is problematic because the same absolute distance between each
data point and its respective quantization point is thus deemed acceptable by the vector
quantizer.

100 F

T T
smoothing radius
velocity dispersion
dark matter density

10

%

0.1

0.01

0.001 ‘ ‘ ‘
0 200 400 600 800 1000

1024-bin semi-logscale Histogram

Figure 4.4: Histogram of the three particle quantities. For each quantity, we split the range of
values in 1024 equal intervals and count the number of occurences of a parameter value in each
interval. Full ranges are [6.73 - 10747 2.11] (smoothing radius), [8.80 - 1072, 4.84 - 108] (dark
matter density) and [2.26, 1.46 - 107] (velocity dispersion).

Especially with regard to the logarithmic color coding of squared dark matter den-
sity and velocitiy dispersion during rendering, it is a much better choice for the quan-
tizer design to minimize the relative error, because large absolute errors are not accept-
able for small values. For exponentially distributed samples with a large number of
small values and a few number of large values, vector quantization is known to lead to
a very high sample distribution for large values, whereas the majority of small values
is represented at a very poor resolution. It is apparent that quantizing logarithms of
values reduces this imbalance and drastically decreases relative errors, albeit at the cost

4.8. MEMORY MANAGEMENT 43

of increasing the sum of squared errors with respect to the original values. By loga-
rithmizing (base 2) each component of the 3D data points prior to quantization we can
reduce the maximum relative error from 3.63 - 103°% to about 540% (average relative
error from 3.63 - 103°% to 13%) for an 8 Bit per 3D vector quantization. Note that this
does not affect the coding efficiency, since it is sufficient to exponentiate the codebook
entries prior to decoding. Also note that changing the base of the logarithm allows a
further trade-off between minimization of squared errors and relative errors.

Figure {4.5] presents the resulting distortion induced by vector quantization using
codebooks of varying size. As will be shown in the results, by using an 8 bit index with
an average relative error of 13% we can already generate images which can hardly be
distinguished from those that have been generated using the original data. By increasing
the bit depth to 12 or 16 bit, the error can be reduced to 5% or 2% respectively.

14 B vefocity disf)ersion g
dark matter density
12 smoothing radius 7

ok N\ |

avg. rel. error [%]

8
6
4
2

8 9 10 11 12 13 14 15 16
Rate [bits/vector]

Figure 4.5: Average relative error introduced by vector quantization of particle quantities with
varying bit depth.

Each level of detail has a different distribution of particle attributes. Accordingly,
we generate a separate lookup table for each resolution level to improve fidelity. Since
the quantized data can be decoded efficiently on the GPU by means of texture lookups,
we can trade CPU-GPU data transfer for GPU processing, resulting in three times faster
streaming. For details of the vector quantization we refer to Section [3.4]

4.8 Memory Management

In every frame, the octree is traversed in a top-down fashion on the CPU to determine
the nodes that have to be rendered. Of these, those nodes that are not residing in main
memory have to be read from disk. During tree traversal, the minimum distance cri-
terion (see Section is used to determine the LOD for the current view, and once

44 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

a node has been determined the traversal in the current sub-tree can be stopped. In
addition, view frustum culling is applied to discard those subtrees that are not visible.

Even though frame-to-frame coherence significantly reduces the amount of data to
be read from disk, for very large data sets and high-resolution display systems there
is still a vast amount of data that has to be streamed from disk to CPU memory in
an interactive visual exploration session. In the following we describe a number of
mechanisms to hide the data streaming from the user as far as possible.

4.8.1 Disk Transfer

To reduce the number of disk seek operations and thus to increase the data throughput
from disk to main memory, in each octree level the nodes having the same parent are
packed together and stored as a single data block on disk. We refer to these collections
as pages and treat them as one entity in terms of storage and transfer. If a page size is
below a given minimum size, additional nodes below those stored in the page are added
in a breadth-first manner. Since a page typically contains more data than is required
in a particular view, the minimum page size has to be chosen such as to yield a good
balance between performance and main memory usage. In our experiments, a page size
of 3 MB turned out to be a good trade-off. Figure {.6|illustrates the relation between
a tree data structure and pages in this data structure. As can be seen, the pages itself
represent a tree data structure, which we refer to as page tree.

Figure 4.6: Illustration of the relation between the tree data structure (left) and the page tree
(right), which stores a number of nodes belonging to the same parent node.

The page tree is stored on disk and dynamically loaded into main memory during
runtime. To determine whether the data of a page is required for rendering, it is suffi-
cient to check the distance criterion for the parent of the page since it has a smaller d;,
than all of its descendants. According to the movements of the viewer, the page tree is

4.9. RENDERING 45

dynamically built top-down and destroyed bottom-up within main memory, such that a
maximum amount of data can be re-used in every frame. Simultaneously, the octree is
built and destroyed by adding and removing the nodes contained in these pages. Note
that nodes only store pointer to the respective data blocks in the page tree, so that the
data is not stored twice in main memory.

4.8.2 Prefetching and Caching

For hiding disk access latency, we use asynchronous I/O combined with a prefetching
scheme to load pages that might be required in upcoming frames. We load all nodes
having a distance to the camera deam < dmin + dprefetch, resulting in a sphere-shaped
prefetching region that supports arbitrary rotations. As has been shown by Ng et al.
[NNTT05], although the use of a sphere-shaped region increases the overall memory
requirement, when moving along the line of sight the amount of data to be read from
disk is only marginally increased. The prefetching scheme loads every page that might
be required after a camera translation of length dpefetcn. In order to hide disk access
latency, this distance is chosen such that the time for loading the largest page is less than
the time for moving the camera to the position where the node is required for rendering.

When flying through the data set, there will eventually be pages, which are not
required in main memory anymore because the corresponding pages have fallen outside
the prefetching region. However, as long as enough main memory is available we do
not remove the data but move it into a least-recently-used (LRU) cache. Hence, a page
can be reused without any additional cost until the memory is required by another page.

4.9 Rendering

To render the particles stored in the set of selected octree nodes, they are copied into
vertex array buffers on the GPU. These buffers are then rendered as described below. To
optimize the resource management on the GPU, we avoid time-consuming creation and
deletion of resources per node by using buddy memory allocation [Knu97]]. This means
that a set of vertex buffers of a size that it is sufficient for every node is allocated, and
these buffers are split recursively into equally sized pieces if less memory is required.
If the data in refined blocks is not used anymore, the blocks are merged again to be
available for larger vertex arrays. Like the LRU caching scheme used on the CPU, the
data corresponding to nodes that are not required anymore are kept in graphics memory
until they have to be paged out due to resource shortage.

46 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

The rendering approach is realized in two passes. In the first pass, the particles are
projected onto the screen in order to accumulate the squared dark matter density and
the density-weighted velocity dispersion along the lines of sight. The result is stored in
a render target that is bound as a texture resource in the second pass. In this pass, the
pixels final colors are computed by using the accumulated values as texture coordinates
into a precomputed 2D color transfer function.

Due to our multi-resolution representation, the particle coordinates of a node are
encoded according to their discretization within the corresponding sub-domain. By
using the size of the node as scale factor and its position as translation vector, we can
decode them into spatial coordinates. The particle attributes are looked up from the
quantization codebook.

4.9.1 Particle Projection

The particle projection onto the screen is performed by splatting. Particles that are
classified as points are simply rendered as point primitives. For sprites, we use a ge-
ometry shader to expand each particle to a face that has to be large enough to cover
the projected area of the particle’s smoothing kernel. We use faces perpendicular to
the vector from the camera’s origin to the particle center since under this projection a
sphere is mapped to a circle. In contrast, on screen-aligned faces a sphere would be
projected to an ellipse, for which it is much harder to compute a minimum covering
face. In case of a camera-oriented face, this distortion is automatically handled by the
GPU in the projection transformation. The size of the projected circle r is computed as
r = hd/\/d®> — h2, where h is the smoothing radius and d the distance to the camera
(see Figure [d.7).

Via texture coordinates the relative distance of each vertex of the face to the par-
ticle center is stored as vertex attribute, which is interpolated on a per-fragment basis
during rasterization. In a pixel shader, we have to perspectively correct the interpolated
distance ' in order to retrieve the minimum distance s = 7/ \/14—T2/d2 of the respec-
tive line of sight to the particle center (see Figure [4.7). Now, s can be either used for
computing the line integral through the smoothing kernel on the fly or to look-up the
precomputed integral value from a one-dimensional texture map.

4.9.2 Performance Issues on the GPU

Regardless of our efforts to minimize the number of rendered particles, the geometry
throughput and rasterization of particle splats on the GPU still remain critical bottle-

4.9. RENDERING 47

(a) (b)

Figure 4.7: Perspective correction for line of sight integration through a spherical particle. (a)
Instead of using the smoothing length h as splat extend, the projective extent r at the distance
d of the particle center is computed first. (b) During fragment shading the closest distance s
from the line of sight to the particle center is determined based on 7 and d (given as fragment
attributes). s is then used to determine the line integral through the particle.

necks for interactive visualizations. We further reduce these problem by discarding par-
ticles from the rendering process as early as possible in order to forgo the unnecessary
expanding of splats and to reduce the number of primitives that are further processed
and rasterized.

For this purpose we employ fine-grain view-frustum culling and in addition, we
reapply presence acceleration that has been introduced in Section|4.7.3]on a per-particle
basis. The impact of the latter technique is especially profitable, since we fade-out the
densities at the end of our viewing distance. Thus, there is usually a significant number
of particles that drop below the density threshold and can therefore be discarded.

In addition to the number of particles, the choice of the proxy geometry for render-
ing point sprites has a considerable impact on the rendering performance as well. Using
equilateral triangles instead of quads cuts the number of primitives into halves and sig-
nificantly increases the geometry throughput, even though the area for rasterization is
enlarged by a factor of 3v/3/4.

Finally, rendering multiple fragments to the same screen location in a rapid succes-
sion leads to a considerable lack of performance. To minimize this effect, we create a
random order for rendering the particles within an octree node by shuffling the particle
data during the fusion of the partial octrees at the end of our preprocessing (see Section

4.7.1).

48 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

4.10 Results and Analysis

We have implemented our visualization framework in C++ using DirectX 10 and HLSL
for rendering. Our experiments have been carried out on a standard PC equipped with
an Intel Core 2 Quad Q9450 2.66 GHz processor, 4 GB of RAM, and a NVIDIA
GeForce GTX 280 with 1024 MB video memory and PCI Express 2.0 x16. The data
was stored on a striped RAID 0 consisting of two ATA Hitachi HDS72101 hard disks.
In all of our experiments we have quantized the particle attributes using 8 bit per com-
ponent, and we have selected a maximum allowed screen space error of 0.8 pixels.

4.10.1 Data Representation

The original data set has a total size of 225 GB, including particle density, radius of in-
fluence, and velocity dispersion. The generation of the multi-resolution hierarchy, the
quantization of particle attributes, and the creation of the page tree took roughly 5:20
hours. In comparison to the simulation itself, which took 28 machine days on a super-
computer, and the fact that rendering movies of the data set in software takes several
hours as well, this duration is rather small. In fact, a major part of the processing time
is spent on data I/Cﬂ To avoid this overhead, the preprocessing could directly be per-
formed on the super-computer before recording the snapshot of the running simulation.
In addition, this would allow to significantly accelerate the preprocess by exploiting
the parallelizability of the LOD generation and by utilizing the space partitioning data
structures and the optimized neighborhood search of the underlying simulation.

The final octree has 10 LODs, with the coordinates of the particles in one node
being quantized uniformly using 8 bits per component. Thus, at the finest LOD a
uniform spatial resolution of 128K? is achieved, which is even slightly higher than the
resolution (100, 000%) at which the simulation has been performed. To validate our
visualization approach with respect to speed and quality we have created two data sets,
the first one using 8 bits to quantize particle quantities and the other one using 16 bits.
This results in an overall compression rate of 6 : 1 and 4.8 : 1, respectively, for the
particle data. The respective page-trees are 159 GB and 198 GB in size.

Table [4.1] shows detailed statistics for the multi-resolution particle hierarchy. Level
0 represents the finest LOD and contains all particles of the simulation. With increasing
level, the number of particles are successively reduced due to particle thinning as pro-
posed in Section[d.7.3] At finer LODs the effect is rather minor, which is not surprising

’Due to the limited main memory, we need to read and write more than 735 GB of data. Assuming an average
transfer rate of 100 MB/s, the data I/O would require more than 2 hours.

4.10. RESULTS AND ANALYSIS 49

due to the conservative approach we use. With increasing LOD, however, the reduction
between two consecutive levels increases up to 91%.

Table 4.1: Statistics for each level of the particle multi-resolution hierarchy. Merged shows the
number of merged particles from level n — 1 to level n. Skipped gives the number of particles
which have been skipped at level n due to presence acceleration, but which may contribute to
a merged particle at level n + 1. Sprites and Points show the number of sprites and points,
respectively, with their sum being listed in Particles. Average gives the average number of
particles per node.

Level Merged Skipped Sprites Points Particles Average
9 1149203 319 196 713 663 0 5443448 5443 448 5443 448
8 1389651438 1335618568 0 15741862 15741862 1967732
7 1270473711 2700351 786 6324410 34335672 40 660 082 635313
6 1231730796 3551487 161 403 898 837 56 099 581 459998 418 898 434
5 1278797785 3197259 628 1992911560 53045187 2045 956 747 499 501
4 1284656859 2135299112 4343694323 43020725 4386715048 133 871
3 1111595593 1082261354 6692845763 31563902 6724409 665 25651
2 736 830 482 319788 817 8574537356 23940 439 8598 477 795 4100
1 422 598 906 0 9655097094 0 9655097 094 575
0 0 0 10077 696 000 0 10077 696 000 75

In comparison to the total number of particles, the fraction that is represented as
points is marginal up to level 7. In fact, this number is considerably larger, but since
the points are typically part of very dense regions their number is reduced significantly
by the proposed particle thinning strategy. While the total number of particles de-
creases for ever coarser LODs, the average number of particles per node is steadily
increasing due to the decreasing number of nodes. In addition, on larger scales the
data is distributed more uniformly across the nodes, resulting in a higher fill rate of the
quantization bins. According to the increasing average number of particles per node,
on levels 4 and higher the amount of memory required to store the particles exceeds the
selected page size. Therefore, the collection of several nodes into one page does only
occur on the four finest LODs.

4.10.2 Attribute Compression

In Figure {.8] we compare the quality that can be achieved by vector quantization of
particle attributes using 8 bits and 16 bits per component. In both cases the differences
to the original data can hardly be noticed, and they are only recognizable by investi-
gating a magnified area in the data. To give an objective measure of the difference,
we computed the Euclidean distance of all pixels in the RGB color space for multiple
views. The histogram of the difference between the 8 bits compressed data and the

50 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

original data backs up the visual impression by an average error of 2.0 in color space,
where 255 corresponds to full intensity. With regard to the compression rate of 12 : 1,
a high fidelity can be achieved. Comparing the 16 bit data set with the uncompressed
version, the difference is not even visible in the zoomed area so that the images can be
regarded as visually equivalent. The analysis of the histogram proves that the images
are not identical, but with an average error of 0.2 these differences are negligible.

(a) (b) (©)

Figure 4.8: The quality of vector quantization using 8 bit (a) and 16 bit (b) for the compression
of particle attributes is compared. On the right, the data was visualized using the original
floating point attribute values. Close-up views are used to emphasize the quality of vector
quantization. For the compressed data, the histogram of the color differences to the original
image are shown below the close-up views.

4.10.3 Performance Measurements

To analyze the impact of the various parts of our visualization approach on its perfor-
mance, we have measured memory consumption, data transfer rates, geometry through-
put, and rendering performance during a straight flight at constant velocity through the
Millennium Simulation. The velocity was 12.76 million light years per second at a side
length of the cubic simulation domain of 2.23 billion light years. The results are shown
in Figure 4.9] By using a straight path, the amount of data in the spherical prefetching
region that can be re-used in every frame is minimized. The particle data was rendered
onto a 1200x 800 viewport.

4.10. RESULTS AND ANALYSIS 51

T T
225 RAM Memory Usage (GB) -

| | | |
T T
150 HD -> RAM Transfer (MB) -

N - N Y [ERAYAR N1
T

T T
300 Video Memory Usage (MB) .

T T T
75 RAM -> GPU Transfer (MB) .

T T T
45 | Rendered Million Particles -

T T
450 F Million Particles/sec

S0 2 SN //'/ N\ /\,,/1\ -

00—

20 i i i i

T
15 fps —~— o

1 1 1 1
20 40 60 80
Time in Seconds

Figure 4.9: Performance measurements and memory statistics for a flight through the Millen-
nium data set. Memory and bandwidth requirements are not at the system limits. Geometry
throughput on the GPU effectively limits the performance when rendering onto a 1200x 800
viewport.

As can be seen in the uppermost plot, the main memory consumption is more or
less constant around 1.5 GB. This is due to the prefetching scheme, which effectively
hides variations in bandwidth requirements that are imposed by spatial variations of the
particle densities. In the hard disk transfer rate in the second plot these variations are
much more apparent, which is in particular caused by a large number of parallel 1/0
requests. However, with a maximum of about 105 MB/s we are still far away from
the maximum data throughput of the striped RAID 0, which is above 200 MB/s. Most
of the time, the transfer rate is below 60 MB/s. Hence, the sustained transfer rate of
today’s standard hard disks is absolutely sufficient for data streaming. Note that even
if the used disk system would not be able to achieve the required peak rate, this would
probably not result in a loss of detail since the measured transfer is only caused by data
prefetching.

The third plot in Figure .9 shows the amount of graphics memory that is required
for rendering. With an average size of 202 MB and a maximum size of 246 MB,

52 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

the memory requirements are remarkably low. In addition, with a CPU-GPU transfer
rate of at most 35 MB/s we are far below the bandwidth that is available on current
graphics hardware. In combination with the proposed prefetching scheme, the data to
be rendered is resident in main memory when it is needed and can directly be streamed
to the GPU.

The lower three plots of Figure 4.9show the performance measurements for render-
ing. Overall, an average frame rate of 10.5 fps is achieved, with a minimum and maxi-
mum of 7.7 and 15.0 fps, respectively. To analyze the effectiveness of the proposed data
reduction strategies, we have tried to render the same flight without applying particle
thinning and presence acceleration, yielding an average frame rate of 1.63 fps.

Regarding geometry throughput, we achieve a peak performance of 394 million par-
ticles per second, with 280 million particles per second in average. This is interesting,
because the theoretical maximum of our target architecture is at roughly 300 million
triangles per second. Due to fine-grain view frustum culling and presence acceleration,
however, the number of effectively rendered sprites is significantly below the number
given in the diagram. Based on benchmarks we can state that the maximal throughput
of our rendering approach is in fact about 220 million sprites per second, where the
loss in performance is introduced by the geometry shader. This throughput is further
reduced when rendering very dense regions. Despite our multi-resolution strategy, an
overdraw of more than 2000 is not unusual in the current application, clearly indicating
that rasterization becomes the rendering bottleneck.

Figure [4.10]illustrates this problem and the effect of the density based culling strat-
egy proposed in Section 4.9.2] The bottom pictures give information about the frag-
ment overdraw for rendering with both culling techniques enabled (left) and without
these techniques (right), leading to the same visual output (top image). The color cod-
ing ranges from an overdraw of O (black), 500 (magenta) to 3000 (red) with a linear
interpolation of the color’s hue for the values between 500 and 3000. Obviously, the
number of pixels with a high overdraw as well as the maximum overdraw of fragments
is much lower in the left image. Combined with GPU view frustum culling this re-
sults in a performance gain of 236%, yielding 10.4 fps instead of 4.4 fps. The culling
techniques for themselves achieve frame rates of 9.2 (view frustum culling) and 4.7 fps
(density-based culling).

Figure . TT]illustrates the scalability of our system with regard to the viewport reso-
lution. We attribute this scalability to the presence acceleration scheme, as it effectively
prevents the geometry load from scaling linearly with screen resolution. Consequently,
the drop in performance is mainly due to the increased fragment load, which—due to
the use of a geometry shader—scales more gracefully.

4.11. DISCUSSION 53

Figure 4.10: Top: Comparison of image quality with (left) and without (right) presence acceler-
ation. The rendering performance for rendering the full image is 10.4 fps with the acceleration
enabled and 4.4 fps if not. Bottom: Pixel overdraw in the full image for the compared rendering
options. Hue encodes the overdraw from black (0 fragments) over magenta (500 fragments) to
red (3000 fragments).

4.11 Discussion

The results presented in the previous section have proven the capability of our proposed
techniques to render data sets with billions of particles at interactive frame rates on
common PC hardware. By quantizing particle coordinates into a regular spatial grid
and by using vector quantization to compress particle attributes, compression rates of
up to 6 : 1 are achieved at very high fidelity. By employing an octree-based multi-
resolution hierarchy, the amount of data to be transferred and rendered is considerably
reduced. Based on an efficient memory management the streaming of data from hard
disk to the video memory is completely hidden from the user for continuous camera
movements. The measurements in Figure {.9] clearly demonstrate the scalability of

54 CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

18

T T T T T T
Average frame rates for different screen resolutions
16 1

14 -

10 | 800x600 i

L 1024x768 i

152u864 o
X
- 1440x1080 ;56051200 1

0.5 0.75 1 1.25 1.5 1.75 2
MPixels

Figure 4.11: Average frame rate and standard deviation for rendering the Millennium Simula-
tion data at different viewport resolutions.

the framework, allowing for the interactive rendering of much larger data sets than the
Millennium Run.

The bottleneck in the rendering of large particle data turns out to be the geometry
throughput on recent GPUs as well as the overdraw at high density regions. Despite
their highly parallel streaming architecture, the massive geometry load induced by the
rendered particles lets the GPU become the limiting performance factor. To overcome
this limitation, one possible solution is to reduce the number of rendered particles by
using alternative rendering primitives. For instance, recent findings in the context of
GPU-based terrain rendering [DKWQ9] show significant advantages of ray casting over
rasterization for the rendering of high-resolution polygonal terrains, where the polygons
are approximately one pixel in size. The reason is that ray casting can effectively ex-
ploit the regular grid structure underlying such fields and avoids pixel overdraw, while
the performance of rasterization is limited by the polygon throughput on the GPU.
Similar to this approach, we have experimented to resample regions exhibiting a high
particle density into volumetric textures, and to render the data set by means of a hybrid
scheme using volume ray casting and particle rasterization. Indeed, experiments with
high density regions of the Millennium Run revealed that ray casting can outperform
particle splatting up to a factor of 6. However, efficient ray casting is only possible for
uncompressed volume data. As a consequence, replacing a significant amount of parti-
cle data by a volumetric representation, would clearly exceed the memory capabilities

4.12. CONCLUSION 55

of today’s graphics hardware and is therefore no alternative for such large-scale data
sets today.

4.12 Conclusion

In this chapter, we have presented a scalable approach for the interactive visualization
of large cosmological particle data on recent PC architectures. By quantizing particles
into a multi-resolution octree structure and introducing rules for particle merging and
deletion when no visual error is implied, we can significantly reduce the amount of data
while maintaining a user-defined screen space error. Combined with an out-of-core and
in-core data management to efficiently access the data and optimized particle splatting
we are able to visualize one time-step of the Millennium Run exceeding 10 billion
particles at interactive frame rates. To our best knowledge, this is the first approach that
is able to interactively visualize particle data of this size.

One drawback of our approach is that depth perception gets lost according to the
order-independent rendering scheme. The subsequent chapter shows how high-quality
visualization approaches such as direct volume rendering and isosurface ray casting
can be efficiently performed on GPUs. Using the data management strategies of this
chapter and an adapted particle hierarchy, we apply this technique to large-scale SPH
data sets including the Millennium Run.

56

CHAPTER 4. SCALABLE RENDERING OF LARGE-SCALE DATA SETS

Chapter 5

Efficient High-Quality Volume
Rendering of SPH Data

High-quality volume rendering of SPH data requires a complex order-dependent resam-
pling of particle quantities along the view rays. In this chapter we present an efficient
approach to perform this task using a novel view-space discretization of the simulation
domain. Our method draws upon recent work on GPU-based particle voxelization for
the efficient resampling of particles into uniform grids. We propose a new technique
that leverages a perspective grid to adaptively discretize the view-volume, giving rise
to a continuous level-of-detail sampling structure and reducing memory requirements
compared to a uniform grid. The perspective grid can be combined with a pre-computed
level-of-detail representation of the particle set, which additionally allows to effectively
reduce the amount of primitives to be processed at run-time, or can be used for an effi-
cient ad-hoc visualization for particles sets including GPU-based SPH simulations. We
demonstrate the quality and performance of our method for the rendering of fluid and
gas dynamics SPH simulations consisting of many millions of particles.

5.1 Introduction

Particle-based simulation techniques such as Smoothed Particle Hydrodynamics (SPH)
have gained much attention due to their ability to avoid a fixed discretization of the
simulation domain. By using an adaptive spatial data structure for particles, the memory
requirements of particle-based methods depend only on the size of the fluid domain, but

57

58 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

not on the size of the simulation domain. This makes the simulation less demanding
on memory but substantially increases the computational load due to a more complex
procedure to resolve particle adjacencies.

This limitation also becomes crucial in the rendering of a discrete SPH particle
set, which, in general, means reconstructing a volume-covering and continuous density
field from this set. To reconstruct a continuous least squares approximation, at every
domain point a weighted average of the particle densities contributing to this point has
to be computed. This can either be done by resampling and blending the densities onto
a grid and using cell-wise interpolation, or instead by directly integrating along the rays
of sight through the SPH kernels.

The first approach does not require particles to be processed in any specific order
and results in a view-independent volume representation. This representation can be
rendered efficiently using standard volume rendering techniques. For example, 3D
texture-based volume rendering can be used if the reconstruction is onto a uniform
grid. On the other hand, the approach requires a fixed discretization of the simulation
domain, with a resolution that is high enough to capture all simulated details. Thus, it
takes away much of the advantage of particle-based simulation techniques.

The second approach can leverage the same adaptive data structure as the simu-
lation itself, but it is view-dependent and comes at high computational and memory
access load to integrate particle quantities in the correct visibility order along the view
rays. Due to these limitations, to the best of our knowledge the use of this approach
is currently restricted to off-line visualizations [ACPOS8, IDRGIOS|] or to data sets of
restricted size [OKK10].

5.2 Contribution

In this work we introduce a new volume rendering pipeline for SPH data on desktop
PCs. This pipeline can efficiently render a continuous density field—or any other scalar
quantity—that is given by a discrete SPH particle set. It employs 3D texture-based vol-
ume rendering on the GPU and therefore provides different rendering options including
direct volume rendering and isosurface rendering. Some examples are shown in Figure

Similar to previous approaches for the rendering of SPH data the particle quanti-
ties are resampled onto a regular 3D grid. In contrast, however, the grid is not fixed
to the simulation domain but to the view volume. Thus, it moves with the viewer and
discretizes only the visible space, i.e., the view frustum, in front of it. A further dif-

5.2. CONTRIBUTION 59

Figure 5.1: A novel technique for order-dependent volume rendering of SPH data is presented.
It provides rendering options such as (a) direct volume rendering, (b) isosurface rendering, and
(c) mixed modes, and it renders data sets consisting of millions of particles at high quality and
speed: (a) 42M @ 0.1 fps, (b) 2.2M @ 4.5 fps, and (c) 2M @ 1.7 fps, on a 1024 x 1024 viewport.

ference is that the grid is not uniform but adaptively discretizes the visible domain.
The grid resembles a classical ray-tracing grid which fans out with increasing distance
from the view plane [APB87], but it has a spacing between the grid vertices along the
view rays that increases exponentially. Thus, the grid results in an adaptive sampling
of the view frustum with decreasing sampling rate along the viewing direction. We will
subsequently call this grid the perspective grid.

The advantage of the perspective grid is twofold: Firstly, by adjusting the sampling
distance along the viewing direction a nearly isotropic sampling rate in view space can
be enforced. In contrast to a uniform sampling this significantly reduces the number of
sample points. Secondly, the perspective grid can be combined effectively with a hier-
archical particle representation, in which sets of particles at one level are represented
by one enlarged particle at the next coarser level. By always selecting the level of detail
with respect to the current sampling rate, the number of particles to be resampled can

60 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

be reduced substantially. It is clear, on the other hand, that the view-dependent volume
representation has to be recomputed in every frame.

To render the SPH data efficiently, we store the perspective grid in a 3D texture on
the GPU and use texture-based volume ray casting. To correctly resample the parti-
cle quantities into this texture, we derive the transformation that maps a Cartesian grid
onto the corresponding perspective grid and consider this transformation in the resam-
pling step. Resampling is entirely performed on the GPU to exploit memory bandwidth
and computation parallelism. In the Cartesian grid, perspectively correct gradients are
computed to simulate shading and lighting effects.

Since our approach reconstructs the continuous scalar field from the discrete particle
samples and renders this field via ray casting, high-quality visualizations using arbitrary
transfer functions can be generated. Especially compared to particle splatting, which
projects each particle’s reconstruction function separately to form a 2D pre-shaded foot-
print, vastly different image quality can be achieved. Figure[5.2]demonstrates this effect
for a SPH data set in which the reconstruction functions from different particles over-
lap. The particle extents in this data set differ about a factor of 1400. While splatting
(a) can only render a coarse approximation to this data, volume ray casting (b) gener-
ates a smooth continuous image of the discrete particle set and can reveal fine details
of surface structures via additional isosurfaces (c).

Figure 5.2: Order-dependent particle splatting (a) results in vastly different visualizations than
volume ray casting (b) or hybrid rendering with isosurfaces (c). Splatting approaches cannot
accurately represent high-frequency color and opacity transfer functions and have difficulties in
revealing surface-like structures in the data.

5.3. RELATED WORK 61

5.3 Related Work

Particle-based simulation techniques such as SPH have been studied extensively over
the last years. There is a vast body of literature related to this field and a comprehensive
review is beyond the scope of this thesis. However, Monaghan [Mon0S]], Miiller et
al. [MCGO3]], and Adams et al. [APKGO7] discuss the basic principles underlying such
techniques and provide many useful algorithmic and implementation specific details.

Only very little work has been reported on the efficient rendering of SPH data.
Most commonly this task is reduced to rendering isosurfaces in the continuous 3D
density field derived from the discrete set of particles. This can be accomplished by
resampling particle quantities into a proxy grid [CSI09, INJBO7]], and by using direct
volume ray casting [DCHS88|| or isosurface extraction [LC87]. Schindler et al. have
extended the Marching Cubes algorithm on a virtual grid to extract the isosurface of
SPH data [SEWP11]]. Zhu and Bridson use a correction term for the density before the
reconstruction, leading to smoother surfaces [ZB0S5]. GPU-based particle slicing has
been introduced by Kolb and Cuntz using multiple render targets [KCOS] and was ex-
tended to an indexed scattering approach by Harada et al. [HKKO7a]. An efficient GPU
technique for resampling particle quantities directly into 3D uniform grids has been
presented in [ZSPOS]]. For isosurface rendering, resampling can be restricted to the sur-
face boundaries [YHKOQ9]. If a uniform proxy grid is used, high resolution is required
to capture all details, but GPU-based volume rendering approaches can be employed to
achieve high speed [DZTS08, KWO03]]. Jang et al. accelerate the neighboring search for
direct SPH interpolations on the GPU by a BSP tree data structure [JESP10]. Orthmann
et al. present optimized GPU-based volume ray casting using efficient caching strate-
gies for multi-resolution SPH particles [OKK10]. Parallel to our work, Falk et al. have
developed a similar volume rendering technique that is based on an iterative splatting
of metaballs into a moving stack of equidistant slices [FGE10].

In order to avoid the exhaustive memory consumption of a proxy grid, isosurfaces
can be rendered directly, for example, by evaluating ray-particle intersections on the
GPU [KSNO8, ZSP08|]. Gribble et al. performed direct ray-sphere intersections on
the CPU using a grid-based acceleration structure [GIKT07]. An isosurface extraction
technique that works directly on the particle set was introduced by [RBOS]. Rosenthal
et al. generate a surfel representation of the isosurface from the discrete particle set
[RRLO7]]. A high-quality yet time-consuming surface-fitting approach using level-sets
was presented in [RLOS].

62 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

Splatting of transparent particle sprites for volumetric astrophysical SPH data is
presented in Chapter 4] along with a review of related work. Visualization systems for
SPH data, including rendering options such as splatting or slicing and providing appli-
cation specific mechanisms to interact with and analyze particle data were discussed in
[BGM ™07, BGMO08, EGMO04, [Pri07, WKMO05].

Recently, screen-space approaches for rendering isosurfaces in SPH data have gained
much attention due to their efficiency. Adams et al. render particles as spheres and blend
the contributions in the overlap regions [ALDO6]. Miiller et al. reconstruct a triangle
mesh in screen space from visible surface fragments that are generated via rasteriza-
tion [MSDQ7]. The method was improved by [CSQ9, vdLGS09] to generate smooth
surfaces and to avoid an explicit triangulation.

5.4 Perspective Grid

The perspective grid is used to resample the particle data inside the view volume. It
is a structured grid that partitions the view frustum into & x [X m oblique subfrusta.
Figure [5.3|right) illustrates this grid, which has the specific property that the sampling
rate along z is the same as along = and y. Optimally, k£ and [correspond to the viewport
resolution but it is also possible to choose a smaller grid size in order to reduce the
number of samples.

The perspective grid is stored on the GPU in a 3D texture map (see Figure[S.3(left)).
In the resampling process, the 3D texture map is used as a render target and resampled
quantities are scattered to this target using accumulative blend. To perform the resam-
pling efficiently on the GPU, a mapping of a point r' = (2, 4/, 2’) from 3D texture
space to a point r = (x, ¥, z) in view space and vice versa is required. In the following,
we will derive this mapping and describe how to exploit it in the resampling process.

3D Texture Space View Space

Figure 5.3: The Cartesian grid in texture space (left) transforms onto the perspective grid in
view space (right) under the mapping s. The grid has the same sampling rate along x and y
(pzy(2)) as along z (p.(z)). We assume that the viewer is looking along the positive z-axis.

5.4. PERSPECTIVE GRID 63

Perspective Grid Mapping

Let us denote by s (r') = (s, (2/,2"), s, (¥/,2'), s, (2')) the mapping we are looking
for, and let us note that the sampling rate p,,(2) along = and y is given by the term
z -2 - tan(fov,/2)/res,, where fouv, is the vertical field of view and res, the vertical
resolution of the viewport. The mapping of " and 3/’ in texture coordinates to = and y
in view space is simply the inverse view-space to screen-space transformation:

2.

sz(x/,z/):(- —1>~sz(z')-tan(f0vy/2)

and for s, (v, 2'), respectively. The mapping s, of 2/ € [0,m] in texture space to
z € [n, f] in view space (n and f are the near and far plane) needs some further expla-

nations.

ds(2')
dz’

is sampled uniformly with distance 1. Since p.(z) is supposed to be equal to p,,(z),

We observe that the sampling rate along z, p,(z), is equal to % = , since 2’

we obtain: as. ()
, s, (%
(2)=0"s, = , 5.1
p() =05 () = S 5.1)
where o = 222U/ 4n4 > has been replaced by s, (2’) in the second term. This

resy

differential equation is solved by any s, (2’) of the form
5 () = a-bIm

Since 2z’ € [0, m] is mapped to z € [n, f], and by setting ¢ = 1, s, (2') equates to

Z'/m
s.(Z)=mn- (z) : (5.2)

It’s inverse is
1) — . /)

In (f/n)
Note that this corresponds to the transformation derived in [SD02, WSP04] to equally
distribute the aliasing error in perspective shadow map parameterizations. This map-
ping is only correct, however, on the z axis. On every other view ray the sampling rate
is larger, since all of them perform the same z sampling in world space. In the extreme

case, which is along the edges of the frustum, the sampling rate scales by the factor

) ()

64 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

We must further determine the number of sample points m along the z-axis for a
given range [n... f]. By inserting equation [5.2]into[5.1]and solving for m, we obtain

Finally, to account for the increasing sampling distance towards the frustum boundaries,
and thus to provide the appropriate sampling in the whole frustum, m must be scaled
by .

5.5 Data Resampling

To resample the particle data to the perspective grid, for every particle the grid vertices
within the support of the particle’s smoothing kernel have to be determined and the data
is interpolated according to the kernel function (see Section [3.2)):

A

Alr) =my - — - W(|r —], hy).

Pj
Here, A(r) is the resampled data at position r, and m;, p;, r'j, and A; are the particle’s
mass, density, position, and data value, respectively. W is the kernel function with a
support /; that can vary from particle to particle. The interpolated value A(r) is added
to the corresponding texel in the 3D texture map.

One key to an efficient and high-quality resampling of large particle sets is the use
of a multi-resolution particle representation [FSWO09, HEO3, HLEO4]. In such a rep-
resentation the particle set is encoded at different levels of detail by merging subsets
consisting of smaller particles into one larger particle. The hierarchical particle repre-
sentation allows pruning particles that are too small to be reconstructed at the required
sampling rate. Thus, aliasing artifacts can be avoided and the number of particles to be
processed can be reduced.

It is important to note, however, that resampling into the perspective grid is highly
beneficial even without a multi-resolution particle representation, e.g. for an ad-hoc
visualization of a GPU-based SPH simulation [HKKO7b, |(GSSP10]. Compared to the
resampling into a uniform grid, the perspective grid effectively reduces the number
of samples and thus the memory requirements as well as the SPH interpolations to
be performed. A performance comparison between rendering particle data with and
without a multi-resolution representation can be found in Section [5.8]

5.5. DATA RESAMPLING 65

5.5.1 Hierarchical Particle Representation

Our pre-computed multi-resolution particle representation is organized in an adaptive
octree data structure similar to the one proposed in Chapter 4, In particular, for large
particle sets and high spatial resolution of the simulation we employ the same regular
domain partition to allow for the construction of the particle hierarchy in parts. In
addition, for the Millennium gas dynamics simulation we scale each particle component
logarithmically and compress the data using vector quantization. Spherical pre-fetching
regions are realized on the GPU and the CPU to exploit frame-to-frame coherence and
thus reduce memory access latencies.

In contrast, however, we use different rules for merging particles to account for
the three dimensional particle reconstruction. These rules build upon the resampling
operators presented in [DC99, HHKOS]| for adaptive SPH simulations.

Ve —~

(o) LOD n+1 (o))
D2 ~—

AN L e

e LOD n @)

Figure 5.4: Bottom-up construction of the particle LOD-hierarchy. Particles are copied to the
next coarser level until their diameter falls below the grid sampling (left). Particles falling below
the grid sampling are merged and eventually enlarged to the grid spacing (right).

Starting with a uniform grid at the resolution at which the simulation has been per-
formed, particles in contiguous blocks of 22 cells are merged into a single particle. The
volume of this particle is the sum of the volumes of the merged ones, and the scalar
quantities of the merged particles are averaged into this particle according to their mass
contribution. The merging process is illustrated in Figure [5.4] This process is recur-
sively repeated until a user-given resolution level is reached. In the merging process, at
a particular level only particles with a radius less than the cell size on the next coarser
level are merged. If the radius of a new particle falls below this size, it is increased to
this size and its density is decreased proportionally to reflect the volume increase. All
other particles are copied to the coarser level to guarantee a consistent representation
of the particle field at all levels of detail.

66 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

5.5.2 Hierarchy Traversal

In every frame, of all particles those to be resampled at the current view have to be
determined. This is done by traversing the particle hierarchy top-down on the CPU and
pruning those nodes which do not overlap the view-frustum. For the remaining nodes,
depending on the shortest distance of the node to the viewer the highest sampling rate of
the particles in this node is computed. The traversal is stopped once the minimum size
of the particles falls below this sampling rate, i.e., when sampling the particles into the
grid would result in aliasing. The particles are then packed into vertex and associated
attribute arrays, and they are sent to the GPU for resampling.

5.5.3 GPU Particle Slicing

GPU voxelization of particles into a 3D texture map work similar to the approach pre-
sented in [ZSPO8]. For each particle a single vertex—positioned at the particle center
and attributed by the particle quantity to be resampled—is sent to the GPU and passed
to the geometry shader. The geometry shader computes the first (s,,;,) and the last
(Smaz) 2D texture slice that is covered by the particle as

-1

Smin = ’VSZ (Zcenter — h) — 05—‘,
Smaz = LS;l(Zcenter + h) — O5J

Here, h is the particle’s smoothing length, which can vary from particle to particle.

The shader spawns S, — Smin + 1 equilateral triangles from this vertex, one for
each slice i € {Smin, -, Smaz }- The triangles are centered at the particle position and
oriented orthogonal to the viewing direction. For the i-th triangle, it’s depth 2 + 0.5
in texture space is transformed to view space as z; = s,(¢ + 0.5). The size of each
triangle is chosen such that its inner circle is equal to the circular cross section between
the sphere of radius h centered at the particle position and the slice z;. Figure
illustrates this process. For every triangle vertex the distance vector to the particle
center is determined and assigned as vertex attribute. Finally, the triangle is rendered
into slice ¢ of the 3D texture map using the standard perspective projection.

During triangle rasterization the distance vectors are interpolated and its length is
used in a pixel shader to test whether the corresponding texel is inside or outside the
particle’s kernel support. For fragments that are inside, the kernel function is evaluated
using the interpolated distance vector and the smoothing length h, and the computed
quantity is blended into the render target. Otherwise, the fragment is discarded.

5.6. RENDERING 67

Smin Smax

Figure 5.5: Particle resampling on the GPU. As many proxy triangles as there are slices over-
lapped by a particle are rendered. Triangles are scaled to cover the particle-slice cross-sections.

Even though the triangles for all covered slices can be spawned by a single geometry
shader pass, this proceeding causes significant performance drawbacks due to the large
size of the shader program and the high varying number of triangles to be created.
Instead it is much more efficient to employ instanced rendering with each instance j
creating the jth triangle of the corresponding particle. Accordingly, the number of
instances must match the maximum number of covered slices of all particles within a
single draw call. For particles with less slices, no geometry is created for the additional
instances. The instanced rendering approach benefits from the less complex shader to
be executed and from the increased synchronization of execution paths among different
particles.

5.6 Rendering

Once the particle quantities have been resampled to the perspective grid, the data can be
rendered in turn on the GPU using texture-based volume ray casting. This enables using
different rendering options such as isosurface rendering or direct volume rendering
simultaneously at very high speed. The major difference to classical texture-based ray
casting is in the kind of grid that is rendered. Usually, the data is given on a Cartesian
grid in world space and has to be interpolated tri-linearly at the sample points along the
rays. The data in the perspective grid, on the other hand, is already at the positions in
view space where a sample is placed during ray casting. Consequently, the data values
in the 3D texture map that stores the perspective grid can be directly accumulated in
front-to-back order along the 2’ coordinate axis in texture space after mapping them to
color and opacity based on a user-defined transfer functions. In our implementation we
use a two-dimensional transfer function with post-classification as described in Section

68 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

[3.5.4] To account for the varying sampling distances, opacity correction of the samples
has to be performed (see Section[3.5.3).

For simulating local illumination effects we compute the gradient of the resampled
particle quantity. A gradient’s x and y components can be approximated directly via
central differences along =’ and v/, respectively. However, due to the perspective dis-
tortion of the resampling grid, an offset along the z’-coordinate axis in texture space
does not correspond to an offset along the z-coordinate axis in view space. Thus, the
texel center, (x},y;, z;), is first transformed to view space, (zy, Y, 2), and the positions
of the two points (zy, ¥, 2 + A) and (x4, ys, 2; — /) are transformed back to texture
space. Here, /A denotes the distance between the current and the previous slice in view
space. Hence the gradient of the sampled field f at a texel position (z}, ¥}, 2;) in texture
space is computed as

[+ Loy, 2) — f (2 — 1y, 2)
flsa (st @y) +A)) = f (52 (s (3,9, 21) — D))

As can be seen, computing a gradient’s z component requires interpolating in tex-
ture space. 3D texture mapping hardware on the GPU supports tri-linear interpolation,
which is not exact in our scenario due to the frustum-shaped cells underlying the texture
grid. In order to investigate the error that is made by a central differences approxima-
tion, we compared the gradients with the ground truth, which requires to interpolate the
gradients of the participating particles at the found intersection points (see Formula[3.3]
on page [22)). Figure[5.6] however, indicates the differences in the resulting illumination
are marginal. We thus apply hardware-supported tri-linear interpolation throughout this

work.

Figure 5.6: Gradient computation in the perspective grid: (a) Central differences with trilinear
interpolation in texture space, (b) spatial derivative obtained via SPH kernel interpolation.

5.7. IMPLEMENTATION ISSUES 69

5.7 Implementation Issues

5.7.1 Grid Partitioning

Due to the limited amount of graphics memory on the GPU, it is not possible in general
to store the entire perspective grid on the GPU. For this reason we partition the perspec-
tive grid into a number of view-aligned slabs of size k X | X m, each of which is small
enough to fit into the graphics memory (see Figure[5.7)). In this division we consider an
overlap between slabs as well as at the slab boundaries to allow for a consistent gradient
computation. In front-to-back order the slabs are processed as described.

Figure 5.7: If the perspective grid does not fit into GPU memory, it is partitioned into view-
aligned slabs (illustrated by different colors) which are resampled and rendered in front-to-back
order.

In order to reduce the overall workload on the GPU, for every slab only the parti-
cles contributing to this slab are resampled into the respective sub-grid. For a multi-
resolution hierarchy, this can be accomplished by rendering for every slab only the
overlapping nodes. Fine grain view-frustum culling can be additionally applied within
the geometry shader. For an ad-hoc visualization of SPH simulations where no LOD
hierarchy is available, this approach can also be applied based on any other kind of
spatial subdivision schemes that are employed to accelerate the neighborhood search.
If no such structure is available, the overlapping particles for each slab can alternatively
be determined by a binning pass on the particle set. This can be done by creating key-
value pairs for all particles, where the values are the particle ids and the keys identify
the slabs covered by each particle. Sorting for the keys gives an index list, which is
then used for indexed rendering.

70 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

5.7.2 Occlusion Culling

To minimize the number of rendered particles on the GPU, we employ a hierarchical
opacity-buffer similar to the hierarchical depth-buffer proposed in [GKMO93|]. After
each or every n-th slab we store the accumulated opacity in a separate texture. This tex-
ture is converted into a boolean mipmap to encode ever larger areas that are completely
opaque. At ever coarser mipmap levels, a texel is set to 1 (opaque) only if all covered
texels in the previous finer level are 1 (see Figure [5.8). By employing bilinear texture
interpolation, 4 child texels can be tested with one texture lookup. The algorithm takes
care of non-power-of-two textures as described in [GHO3]].

Frame Buffer Occlusion Culling Mip Map
]
.f .
LODO LOD 1 LOD 2

Figure 5.8: Illustration of our occlusion culling approach. Based on the frame buffer, we create
a boolean mipmap that encodes completely opaque areas (marked as red). By choosing the
finest mipmap level, in which the diameter of the projected bounding sphere is below texel
width, a single texture lookup with trilinear interpolation can be used to verify whether entire
octree nodes or single particles are occluded (yellow points) or not (cyan points).

The mipmap is used to discard all nodes, and further on all particles, which are
covered completely by opaque structures in front of them. This is done by constructing
a screen space bounding circle for each node and each particle. We choose to sample
the first mipmap level in which the circle diameter is below texel width. By sampling
at the circle center using bilinear interpolation, all four texels that are possibly covered
by the circle can be analyzed at once. If the interpolated value is 1, we can be sure that
the bounding circle covers only occluded mipmap texels so that the object can be safely
discarded.

In the render pass for creating the boolean mipmap for the finest level, we addi-
tionally enable depth writes to set the depth values of all occluded particles to the near
plane. This allows us to employ the early z-test to additionally discard occluded frag-
ments in the resampling pass and to avoid ray traversal in occluded areas during the
rendering pass.

5.8. RESULTS AND DISCUSSION 71

5.8 Results and Discussion

To demonstrate the efficiency and quality of our approach we render SPH simulation
data from fluid dynamics and astrophysics (see Figure [5.9). Table [5.1] gives specific
information on these data sets. Particle positions and quantities are encoded in 32 bit
and 16 bit floating point values, respectively.

Table 5.1: Data sets used in our experiments.

Data set Time steps | # Particles Quantities
Flume 2209 110-83,275 Density
LWMO 604 2,575,500 Density
LWSB 1232 3,232,000 Density
WDMerger 84 2,000,000 Density + Temp.
SNIaEjecta 99 8,745,571 Density + Temp.
Millennium Run 1 42,081,574 | Density + Vel. Disp.

The first three data sets simulate fluid dynamics. WDMerger simulates the merger
of two white dwarf stars. SNIaEjecta simulates the impact of a supernova ejecta on a
companion star. The Millenium data set contains one time step of a simulation of the
evolution of the universe. The poly6-kernel was used in all fluid dynamics simulations
with constant h for each data set and the cubic spline-kernel with adaptive smoothing

length for the astrophysical simulations. The kernels and their gradients are described
in Section [3.2.2]

Performance

Table [5.2] shows the times required for resampling and rendering the data sets. Timings
were performed on a 2.4 GHz Core 2 Duo processor and an NVIDIA GTX 280 graphics
card with 1024 MB local video memory. The viewing parameters were selected such
that the entire set of particles is within the view volume. Successive time steps of
time-varying particle sets are streamed consecutively to the GPU. Upload times are
not included in the given timings. For the Millennium Run, the given timings and the
number of rendered particles in Tables[5.T]and[5.2]are averages over a continuous flight
through the data.

As can be seen, resampling induces a high workload on the GPU and thus vastly
dominates the overall performance. Especially for rendering the astrophysics data,
which is represented by many particles with very large smoothing kernels, resampling
causes a significant performance bottleneck. 3D texture-based volume ray casting, on
the other hand, only contributes marginally—below 10%—to the overall time.

72 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

Figure 5.9: The data sets we have used in our experiments (see Table[5.1] for more informa-
tion). SPH fluid simulations (1st column, from top to bottom): Large Wave Moving Obstacles
(LWMO), Large Wave Static Boundaries (LWSB), and Flume. Gas dynamics simulations (2nd
column, from top to bottom): Millennium Run, SNIaEjecta, and WDMerger.

5.8. RESULTS AND DISCUSSION 73

The high quality of our approach can be seen in Figure showing the SNIaE-
jecta data set and the Millennium Run from different perspectives and with varying
transfer functions. Please note that no sampling artifacts are visible which is particu-
larly worth mentioning as we applied high frequent transfer functions to reveal the thin
surfaces in all images of the left column and the bottom image of the right column.

Table 5.2: Performance statistics for resampling and rendering in milliseconds. The viewport
resolution is 5122, with a corresponding resolution of the perspective grid. Timings for a 10242
viewport and corresponding grid resolution are given in brackets.

Data set Grid Resolution Resampling | Rendering Total
Flume 5122 x 364 (10242 x 728) 6 (38) 43 (76) 49 (114)
LWMO 5122 x 544 (10242 x 1088) | 87 (549) 65 (127) | 152 (676)
LWSB 5122 x 664 (10242 x 1328) | 135(804) | 79 (178) | 214 (982)
WDMerger | 5122x292 (10242 x 584) | 642 (1492) | 40 (81) | 682 (1573)
SNIaEjecta | 5122x396 (10242 x 792) | 1560 (4574) | 49 (100) | 1609 (4674)
Millennium | 5122 x 480 (10242 x 960) | 2267 (7771) | 83 (162) | 2350 (7933)

Multi-Resolution Hierarchy

The quality of our multi-resolution hierarchy is illustrated in Figure [5.10] It shows
the LWSB and the SNIaEjecta data set resampled to grids of different resolutions with
a corresponding node selection from the LOD hierarchy. The particle hierarchy pre-
serves the basic structures in the data, at the same time providing an effective anti-
aliasing structure. Compared to the first image the number of rendered particles de-
creases from 3.2M over 2.1M and 0.7M down to 0.3M particles for the LWSB data set,
and from 8.7M over 4.6M and 3.3M down to 1.4M particles for the SNIaEjecta data
set. On a 10242 viewport the total rendering time decreases by a factor of 4.2/10/27
and 2.9/8.2/19, respectively. This also demonstrates that interpolation between grid
samples can be used to decouple the resolutions for resampling and ray casting, which
allows to find a good trade-off between image quality and rendering speed.

Direct Particle Visualization

To test the rendering performance for ad-hoc visualizations we rendered the LWSB and
SNIaEjecta data sets without a pre-computed multi-resolution hierarchy or the help
of other space partitioning data structures. To minimize the geometry load, we have
applied an efficient parallel radix-sort pass [SHG09] using CUDA to determine the

74 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

10242 x 1324

AT \g

1282 x 184 1282 x 116

Figure 5.10: Resampling to perspective grids of different resolutions with corresponding level
of detail at a fixed viewport of 10242, Isosurface rendering of the LWSB data set (top row) and
volume rendering of the ejecta data set (bottom row) at different grid resolutions.

5.9. COMPARISON TO OTHER TECHNIQUES 75

overlapping particles for each slab as described in Section[5.7.1] For settings equivalent
to those in Table the average rendering speed on a 5122 viewport was 285 ms for
the LWSB data set and 2116 ms for SNIaEjecta. The sorting pass took 12 ms and 18
ms, repecitvely, which is marginal compared to the whole rendering time. Compared
to rendering with our multi-resolution hierarchy, the performance drawback is around
33% and it is obvious that this performance lack will further increase for larger data
sets until a rendering without a LOD representation is not feasible. For example, the
top right image in Figure [5.9] showing the Millennium Run would require 607 million
particles instead of 48 million particles to be rendered without such a hierarchy, which
would exceed by far the video memory and processing capabilities of modern GPUs.

Occlusion Culling

The performance gain due to occlusion culling depends on the depth complexity and
the opacity of the rendered data. The effect becomes apparent if many particles are
completely occluded. For example, in the scene shown in Figure [5.6] occlusion culling
leads to performance gain of about 68%. In Figure [5.10] (left column) an increase of
only 5% could be observed due to low depth complexity. In Figure [5.15] (left column
row, middle image) the gain was only 17% due of high transparency. In extreme close-
ups where most particles are occluded, however, we measured an overall performance
gain of up to factor 8.

5.9 Comparison to Other Techniques

Finally, we have compared our rendering approach to existing techniques that are com-
monly used for the visualization of SPH data.

Order-independent Splatting

The images in Figure[5.1T|have been rendered based on the order-independent emission-
only model presented in Chapter[d](a) and using perspective grid volume rendering with
the emission-absorption model (b). As expected, the volume rendering gives a good
depth impression of the data set, which is entirely missing in the left image. This dif-
ference becomes especially apparent for long viewing distances as used in Figure[5.11]
Regarding performance it is no surprise that the depth-independent 2D splatting yields
a much higher frame rate (8.1 fps) than the 3D reconstruction using the perspective grid
(0.1 fps). In order to exploit the benefits of both approaches, Section [5.10] discusses a

76 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

hybrid technique that is suited for the efficient rendering of very large data sets as the
Millennium Run.

(a) (b)

Figure 5.11: Comparison of (a) order-independent splatting as described in Chapter[4 (8.1 fps)
and (b) our perspective-grid ray casting technique (0.1 fps) for rendering 35 million particles of
the Millennium Run at a 10242 viewport.

Order-dependent Splatting

Another common technique for rendering SPH data is order-independent splatting. To
compare quality and performance, we performed the particle sorting on the GPU using
an optimized sort routine, which required less than 5% of the overall rendering time.
Rendering the WDMerger data set (Figure was performed at 7.85 fps. Our
technique, on the other hand, required 1.7 fps (Figure [5.2(b)), but achieves a much
better quality.

Screen-space Techniques

In a third experiment we compared our approach to screen-space methods for the vi-
sualization of isosurfaces in SPH data. Such methods first render particles as spheres
in an arbitrary order to obtain the visible surface parts and then generate a smooth sur-
face from the resulting depth buffer imprint. Figure shows the resulting image
after the first pass for the LWMO data set. This image was generated at 12.5 fps. Fig-
ure [5.12(b)|demonstrates an isosurface reconstructed by our approach. This image was

5.9. COMPARISON TO OTHER TECHNIQUES 77

rendered at 5.75 fps, and, thus, only requires about twice the time of screen-space meth-
ods. Given that our method provides high-quality isosurface and volume rendering, this
seems to be a reasonable compromise.

Figure 5.12: Sphere rendering of the particle’s support radius versus perspective grid-based
isosurface extraction. Screen-space techniques smooth the surface given by the depth buffer
imprint of the left image, while our approach on the right directly reconstructs any given iso-
surface.

Volume Rendering of a Cartesian Grid

Another alternative to visualize SPH data is to resample the continuous scalar field
given by the SPH particles onto a cartesian grid, which can then be rendered efficiently
on the GPU using texture-based volume rendering [KW03, [DZTS08]]. The rendering
quality of this approach depends on the resolution of the fixed discretization, which
should be large enough to capture all important details. However, high-resolution vol-
umes require a huge amount of memory as the data increases by a factor of 8 when
doubling the sampling rate. This poses a problem since conventional volume render-
ing techniques provide efficient rendering only for data sets that fit into video memory,
which indirectly limits the maximal resolution of the data set.

For a comparison of this approach to our perspective grid technique, we have created
a volumetric data representation for a single time step of the SNIaEjecta data set. To
account for the restricted video memory on GPUs, we focused on the density field

78 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

only and quantized the resampled floating point values into 16 bit. We dismissed a
further compression to 8-bit as it leads to significant quantization artifacts. For the
resampling of the data, we chose a resolution of 880 x 784 x 736. This results in a
data volume of size 969 MB and is small enough to fit into the video memory of our
target architecture, which has a capacity of 1024 MB. To reduce sampling artifacts, we
calculated the value for each voxel by averaging 42 regularly distributed samples within
the represented subdomain.

For rendering, we used texture-based volume ray casting and applied empty space
skipping and early ray termination to optimize performance. Figure [5.13] shows an
isosurface rendered with the perspective grid approach (a) in comparison to the texture-
based rendering of the volumetric data set (b) for a zoom into the data set. As can
be seen, Figure[5.13(b)| contains significant artifacts and topological differences, which
clearly illustrates that the volumetric resolution of the precomputed volume is not large
enough for an adequate sampling of the density field. Regarding rendering perfor-
mance, on the other hand, texture-based volume rendering is significantly faster (26.6
fps) than the perspective grid approach (0.2 fps) on a 10242 viewport. The large perfor-
mance drawback of the perspective grid approach is due to the resampling that needs
to be performed in every frame. However, the higher performance is of little value
considering the clear quality penalties in the given example.

Figure 5.13: Comparison of (a) our perspective grid approach (8.7 million particles @ 0.2 fps)
with (b) texture-based volume rendering of a resampled cartesian grid of resolution 880 x 784 x
736 (26.6 fps) for rendering an isosurface on a 10242 viewport.

5.10. EFFICIENT APPROXIMATION FOR VERY LARGE DATA SETS 79

Yet, there are sophisticated visualization systems that are able to render massive
volumetric data sets in an out-of-core fashion based on a volumetric level-of-detail rep-
resentation [LHJ99, (GMIOS]. Accordingly, more accurate volumetric data sets might
be created that can be rendered with such techniques. However, even when using a
multi-resolution hierarchy, the portions to be rendered will hardly fit into video mem-
ory of common GPUs for considerable viewports. Furthermore, already a volume of
resolution 40962 results in 128 GB of raw data and the size can significantly increase by
the additional acceleration structures. Thus, bandwidth limitations will heavily impact
the visual exploration process of such a data set.

In contrast, the particle data comprises only 200 MB per time stelﬂ which is far
away from those restrictions. Accordingly, our approach scales significantly better with
increasing size of the data as has been shown at the example of the Millennium Simula-
tion. This benefit is not only important for the rendering of large-scale particle sets, but
becomes crucial when time-dependent data needs to be explored. Here, quick access
to a large number of time steps is required, which can only be provided by a memory-
friendly particle representation.

5.10 Efficient Approximation for Very Large Data Sets

As shown in the previous section, our approach allows interactive rendering for data sets
containing millions of particles. In addition, the rendering performance can be further
increased by choosing a grid resolution that is half the size of the viewport, which has
shown to have only marginally impacts on the rendering quality for million-particle
data sets (see Figure [5.10)). For even larger data such as the Millennium Run, however,
an interactive exploration is unfeasible due to the enormous geometry and rasterization
load. To make matters worse, grids of reduced resolution have a much more severe
impact than for the other data sets used in our experiments, since the high density
regions that are of primary interest are often composed of particles around pixel size.
Accordingly, these structures would be significantly blurred by using low-resolution
grids.

Depth-independent 2D splatting as described in Chapter[d] on the other hand, yields
interactive frame rates but lacks any depth information (see Figure [5.11). The main
reason for the performance difference is the reduced geometry and rasterization load
when particles are resampled in 2D instead of in 3D. To exploit this performance gain,
we suggest to substitute the 3D voxelization for a 2D projection as described in Section

!containing 6 floating point values to store the particle’s position, smoothing length, mass and temperature.

80 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

4.9] which is written into the z-slice that is nearest to the particle center. Accordingly,
the result for each slice corresponds to the order-independent integration presented in
the previous chapter. Subsequently, we apply the volume rendering pass, which finally
blends the slices in a front-to-back order to approximate the depth information. Fur-
thermore, the performance can be improved by using a significantly smaller number of
z-slices within the perspective grid.

Figure [5.14 compares the result of this layered splatting scheme using 124 z-slices
(a) with the high-quality rendering using the perspective grid technique, which requires
775 slices for an appropriate sampling (b). Even though the hybrid algorithm neglects
the order within each slice, the differences of the images are only marginal. The primary
reason is that due to the nature of the simulation and the applied color coding scheme,
the local ordering is less significant since there are only few areas with high opacities
and different colors in which changes in the particle order become apparent. The global
order of larger low-density regions and smaller high density regions, on the other hand,
is largely preserved. Even though the quality is very similar to the volume rendering
approach, the performance is only about three times slower than the order-independent
rendering scheme described in Chapter] This difference in performance is due to the
additional ray casting pass that is required to blend the different layers, the overhead
of rendering into a volumetric render target, as well as the high effectiveness of the
presence acceleration for order-independent splatting.

(@ (b)

Figure 5.14: Comparison of (a) the layered 2D splatting approximation (with 124 z-slices @
2.3 fps) with (b) perspective volume ray casting (with 775 z-slices @ 0.1 fps) for the Millennium
Run with 39 million visible particles at a 1200 x 900 viewport and with an corresponding slice
resolution.

5.11. CONCLUSION AND FUTURE WORK 81

One drawback of the approach is that particles are mapped to different depth slices
during camera motions, which can result in a slight flickering on the screen. However,
in our experiments these artifacts were hardly noticeable when we used at least one
sixth of the number of depth slices that would be required for an isotropic sampling.

5.11 Conclusion and Future Work

By eliminating the need for either using a uniform discretization of the fluid domain
or for performing time-consuming search operations, we have overcome an essential
limitation in the rendering of SPH data. We have introduced the perspective grid as an
adaptive high-resolution discretization of the view volume, and we have shown how to
efficiently resample particle quantities to this grid by using multi-resolution hierarchies
for particle sets and by exploiting the GPU. Since the perspective grid places sample
points along the view rays, resampled quantities can be rendered directly using 3D tex-
ture mapping. This enables integrating volumetric effects into SPH rendering, such as
volumetric emission and absorption, and using direct volume rendering and isosurface
rendering in combination.

To the best of our knowledge, for the first time we have shown that order-dependent
resampling of million-particle SPH data can be performed at almost interactive rates.
Compared to screen-space approaches for the rendering of isosurfaces in SPH data, our
technique is only slightly slower but achieves higher quality. Furthermore, we have
presented a simplified rendering technique that allows to efficiently visualize billion-
particle data sets such as the Millennium Run in a high quality.

The proposed view-dependent discretization also has its limitation. Since resam-
pling the fluid domain is restricted to the view volume, only parts of the fluid within
this volume can be considered in the simulation of secondary effects including reflec-
tions or refractions. Especially in animations this can result in shimmering due to
frame-to-frame incoherence.

For the future, it would be interesting to pursue research on filtering techniques for
data given on a perspective grid. Since even with some improvements isosurfaces in
SPH data tend to look bumpy and can not adequately resolve flat structures, curvature-
based smoothing as proposed in [vdLGS09] could be considered on the grid.

82 CHAPTER 5. EFFICIENT HIGH-QUALITY VOLUME RENDERING OF SPH DATA

Figure 5.15: Different transter functions and camera settings reveal various details of the SNI-
aEjecta (left column) and the Millennium data set (right column).

Chapter 6

Motion Visualization in Large Particle
Simulations

Interactive visualization of large particle sets is required to analyze the complicated
structures and formation processes in astrophysical particle simulations. While some
research has been done on the development of visualization techniques for steady parti-
cle fields, only very few approaches have been proposed to interactively visualize large
time-varying fields and their dynamics. Particle trajectories are known to visualize dy-
namic processes over time, but due to occlusion and visual cluttering such techniques
have only been reported for very small particle sets so far. In this chapter we present a
novel technique to solve these problems, and we demonstrate the potential of our ap-
proach for the visual exploration of large astrophysical particle sequences. We present
a new hierarchical space-time data structure for particle sets which allows for a scale-
space analysis of trajectories in the simulated fields. In combination with visualization
techniques that adapt to the respective scales, clusters of particles with homogeneous
motion as well as separation and merging regions can be identified effectively. The ad-
ditional use of mapping functions to modulate the color and size of trajectories allows
emphasizing various particle properties including direction, speed, or particle-specific
attributes such as temperature. Furthermore, tracking of interactively selected particle
subsets permits the user to focus on structures of interest. We validate the effectiveness
of our technique using multiple data sets that contain many millions of particles.

83

84 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

6.1 Introduction

For the visual analysis of unsteady flow fields, particle-based approaches, such as in-
teractively seeding and tracking massless particles and constructing pathlines showing
their motion, are a well-established class of techniques. In contrast to pure particle vi-
sualization, where particles are rendered as individual graphical primitives, these char-
acteristic lines allow for an improved understanding of complicated motion patterns.
This is because pathlines can depict the time history of the position of a particle in one
image, at the same time providing additional exploration possibilities. For instance,
geometric properties of the graphical objects used to render these lines can be modified
according to the intrinsic flow properties. In this way local structures in the domain can
be revealed quite effectively.

Characteristic flow lines are usually computed by seeding massless particles into
the flow domain and using numerical techniques to integrate these particles through
space based on the underlying flow field. For the visualization of grid-based Eulerian
simulations, where the fluid velocities are observed at locations that are fixed in space,
numerical integration requires the interpolation of velocities from these locations to
progress a particle in space and time. In Lagrangian particle simulations, for instance
Smoothed Particle Hydrodynamics (SPH), where individual fluid material volumes are
carried with the flow, the quantities given at the discrete set of particles are smoothed
using some kernel function to obtain a continuum.

Accordingly, in Lagrangian particle simulations of fluids, the features of the entire
physical system can also be obtained by tracing the motion of the simulated mate-
rial volumes itself. This motion is defined by the underlying physical model, and it
describes the dynamics of particles that carry a mass, which is smoothed over a cer-
tain volume around the particle. Accordingly, the mass transport within the simulated
domain is completely described by the motion of the entire particle set, which is not
guaranteed for the tracing of massless particles. It is worth noting, however, that the
simulated particles behave slightly different than massless particles, since they interact
with neighboring particles through a repelling force that represents the material pres-
sure and gravitational effects. Mathematically this means that the smooth function that
results from the kernel interpolation is usually not equal to the particle quantities at the
particle positions, yet this function will generally not be too far from these values. Con-
sequently, the trajectories of SPH particle will be close to the trajectories of massless
particles seeded into the continuous vector field given by the discrete particle set, but
they will not exactly coincide with these trajectories.

6.1. INTRODUCTION 85

In this work we address the problem of interactively exploring the motion paths of
particles in astrophysical simulations via visualization. The time-dependent data se-
quences we explore are comprised of sets of particles that were simulated using cosmo-
logical N-body/SPH simulations. In these simulation, the motion of a large number of
particles under their own self-gravity is followed using Newton’s equations of motion.
Each sequence shows the evolution of a set of particles over time, with the particles
being represented by their position as well as the physical quantities they carry, such as
mass, temperature, and volume.

At first glance, the given problem seems to be easy. By simply connecting corre-
sponding particles in adjacent time steps via line segments or higher order curves, and
by rendering the so constructed pathlines via computer graphics techniques, the motion
paths of each particle over time can be visualized. However, in practice this approach
is of limited use due to the following reasons: Firstly, the visualization of pathlines
does not allow for a (relative) analysis of the particles’ velocities. Secondly, by solely
following individual particles on the simulation level, it is very difficult to analyze clus-
ter formations and splits in the particle distributions. Thirdly, since the simulations we
address are comprised of many millions of particles, occlusion effects and visual clut-
ter thereof prohibit an effective visualization in terms of revealing the relevant motion
structures. Furthermore, the massive amount of geometry that has to be rendered for
visualizing the pathlines of all particles can easily exceed the capacities of even the
most powerful graphics accelerators.

To overcome these limitations we propose a novel space-time hierarchy for repre-
senting time-dependent particle distributions at different scales. Based on this hierar-
chy, we present interactive visualization techniques for depicting the motion paths of
single particles as well as coherent particle clusters. In addition to the direction, we
can show the motion velocity along these paths via animated color maps or geometry
structures that move according to the velocity. In particular, this chapter makes the
following specific contributions:

* A space-time hierarchy for particle sets.
* A level-of-detail approach for the visualization of particle motions via pathlines.

* Enhancement of regions of interest via user-defined mapping functions to modu-
late the appearance of trajectories according to cluster properties or via interactive
selection and tracking of particle subsets.

86 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

Once the space-time hierarchy has been built on the CPU in a pre-process, the vi-
sualization runs entirely on the GPU and provides interactive rates even for high res-
olution particle sequences. In combination with in-core and out-of-core strategies to
stream particle sets that are too large to fit into GPU memory, rates of more than 40
frames per second can be achieved for time-varying data sets consisting of millions of
particles.

The space-time hierarchy can be used for representing the mass flow on differ-
ent levels of detail, giving rise to an effective analysis of physical processes such
as colliding and merging mass structures (see Figure [6.1). Furthermore, it enables
level-of-detail visualizations of particle trajectories to reduce the amount of graphi-
cal primitives to be rendered. Notably the performed clustering can more generally
be used to create a time-dependent multi-resolution hierarchy of the particle field, by
merging particles according to the resampling operators presented for adaptive SPH
simulations[DC99, I APKGO7]]. This hierarchy can then be used to combine visualiza-
tions of particle trajectories with multi-resolution visualizations of the particle density
field, or any other quantity carried by the particles as presented in Chapter[5|(see Figure

Figure 6.1: Our approach allows to classify the motion dynamics of particle-based simulations
based on directional information of particle flows at multiple scales and can be used to analyze
formation processes in astrophysical particle simulations, such as the merging of particles into
clusters. The left image shows a coarse level of detail for the Aquarius data set, which contains
of 18.5 million particles, and the other two images are close-ups on particle mergers at finer
resolutions. All images were taken on a 1440 x 900 viewport at more than 600 fps.

The remainder of this chapter is organized as follows. In the next section we review
previous work that is related to ours. The proposed space-time hierarchy for particle
sets is introduced in Section [6.3] Section [6.4] presents the scale-dependent mapping

6.2. RELATED WORK 87

(b)

Figure 6.2: The proposed space-time hierarchy can not only be used for the motion visual-
ization of particle clusters via pathlines but can also serve as a time-dependent level-of-detail
representation of particle distributions. Accordingly, the motion visualization can be directly
coupled with volume visualizations of the scalar fields as proposed in Chapter[3 The images
show three different astrophysical data sets: (a) WDMerger, (b) Aquarius, and (c) SNlaEjecta.

techniques we propose to effectively visualize motion clusters in these sets. In Section
[6.5] we evaluate the effectiveness of our approach for the visual analysis of particle
simulations, and we analyze the performance of our approach. Finally, we give an
outlook on further applications for our technique, followed by a brief summary of the
work presented in this chapter.

6.2 Related Work

Particle-based visualization techniques have been studied extensively over the last years,
mainly in the context of flow visualization. There is a vast body of literature related to
this field and a comprehensive review is beyond the scope of this thesis. However,
Post et al. [PVH"02], Laramee and Hauser [LHO3]|, and McLoughlin et al. [MLP"10]
discuss the basic principles underlying such techniques and provide many useful algo-
rithmic and implementation specific details.

Only very little work has been reported on the application of flow visualization tech-
niques for visualizing time-varying particle data. Most commonly, such sequences are
rendered by visualizing the continuous scalar fields represented by the particle quanti-
ties in succession and revealing the motion dynamics via the evolution of the so con-
structed fields. Exemplary visualization techniques are the order-independent splatting
scheme and rendering based on the perspective grid that are presented in Chapters [
and 5] where we have also discussed related work in this field.

88 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

To the best of our knowledge, only very few approaches have explicitly addressed
the efficient visualization of particle pathways in particle based simulations. In the
work of Schindler et al. [SEBP09|] the focus was on the visualization of vortex core
lines in flow fields given by SPH simulations. One major contribution was that all com-
putations were performed directly on the SPH representation to achieve high quality
and consistency with this representation.

Our work is inspired by multi-scale techniques for time-varying scalar fields, as
proposed, for instance, in [Wes95| [LPD*02, (WS09b, WS09a]. Underlying these ap-
proaches is some form of multi-resolution representation to classify distribution char-
acteristics in space as well as temporal motion characteristics. Even though we do not
explicitly encode the particles’ motion trajectories at different time scales, by perform-
ing motion-based clustering in combination with trajectory visualization a very similar
analysis of temporal activities in particle data is achieved.

6.3 Space-Time Hierarchy

Our construction of a space-time hierarchy for time-dependent particle data is related to
clustering methods for vector fields [GPR™04, TvW99, GPR ™00, HWHI99, MLDO03]]
in that it considers similar merging criteria for clustering particles. In contrast to these
techniques, however, our objective is not to approximate a given flow field by a sparse
set of vector samples, but to hierarchically describe the distribution and flow of mass
over time that is represented by the motion of individual particles. For this purpose,
we introduce an estimate for the error in this transport when approximating a particle
by a cluster. This error estimate is used as a metric to guide the hierarchical clustering
of the particles in the initial time step, and to track splits and mergers of clusters over
time (see Figure[6.3). The constructed space-time structure encodes the particle sets of
all time steps hierarchically. This hierarchy is stored in a spatially-adaptive octree data
structure, attributed by additional information to keep track of the clusters’ evolutions
over time.

6.3.1 Error Estimation

Since at the core of our method is the merging of particles into clusters and the splitting
of clusters once their particles start to diverge, a criterion is required to steer these
operations. The criterion we propose is based on the error between the trajectory of a
particle and the trajectory of the cluster into which this particle should be merged, or
which contains this particle and should be split.

6.3. SPACE-TIME HIERARCHY 89

LOD O ol LoD 1 LOD 2
S // /
) / /// //13/ //’/
I o o B e = yd
. o~ ‘/’/‘/ _/v o\‘ — 77%),;/2’?; T / \ 777’.,—{—;7 e
. o = — e %

Lo = ~

Figure 6.3: Illustration of our space-time hierarchy for particle trajectories with 3 time steps
and for 3 levels of detail.

To generate a smooth trajectory from one particle’s position at time step ¢ to its
position at time step ¢ + 1 we interpolate smoothly between these two positions using a
cubic Hermite spline:

r(t) = (26532 +1) 10 + (- 262 +1) - v +
(=263 + 3¢%) - pli) 4+ (87 — %) - v, (6.1)

Here, ré) and r,

respectively, v;(,) and v,

(41 are the particle’s positions at the current and the next time step,

() are the corresponding tangents, ¢ € [0, 1] is the interpo-
lation factor, and r is the interpolated position. The tangents are given by the particle

velocities.

When we merge a particle into a cluster, we essentially replace the particle trajectory
by the trajectory of that cluster. The trajectory of a cluster is also computed as a Hermite
spline from adjacent cluster positions. Let us assume that a cluster has control points

() (i+1) (%) (i+1)

r/ and r "’ and tangents v/ and v . Then, the error function expressing the

spatial deviation between the particle trajectory and the cluster trajectory is given by

ety = || @ -3+ 1)) — @)+ (2 — 22+)(vE) — v +
(- 2t3—|—3t2)((i+1) rz(fﬂ))—l—(t tQ)((i+1) VH—I) H

The maximum of this function is used to decide whether merging a particle yields
an acceptable approximation of its trajectory or not. To avoid calculating the maxi-
mum, we derive an upper bound € for the maximum and use this bound as a reasonable
estimate. Based on the observations that the sum of the weights of the control point
positions always evaluates to 1 and the maximum weight of each tangent is 4/27, the

90 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

following bound is obtained:

~ i i+1 i 4 i+1) i
& = max(|le¢ = x| lré™ = e I) o (E = vl VE™ = v).

6.3.2 Particle Merging

Based on the error estimate that has been derived for quantifying the maximum distance
between trajectories, we now describe how this estimate is used to guide our clustering
process, and how the properties of a cluster based on the particles contained in this
cluster are obtained. For the latter, we apply the resampling operators for adaptive SPH
simulations [APKGO7, IDC99], which require the volume of the cluster to be the sum
of the volumes of the merged particles, while any other vector or scalar quantity is
averaged according to the particles’ mass contributions.

Due to this definition, a cluster’s position rg) and velocity vg) are not constant over
time, but they have to be updated whenever a new particle is integrated. Accordingly,
in a merging operation it is not sufficient to test whether a particle can be merged into
a cluster, but it also has to be verified that after merging the particle and updating
the cluster all particles contained in it are still well represented with respect to the
error estimate. Instead of computing the error estimate separately for every particle
of a cluster, we use a conservative estimation of the maximum error of the cluster
members. The basic idea is to memorize a former position and velocity of the cluster
along with the maximum error of the particles with respect to these values. As long as
the difference between the former representation and the new cluster properties, plus the
memorized maximum error does not exceed the permitted error threshold, the merging
of the particle is valid.

) and VC) be some former position and velocity of a cluster C'.

More formally, let r
In correspondence to the error estimate ¢, where the estimated error for each represented
particle depends only on the error regarding the position within one of the involved
time steps, we separately memorize the maximal errors of all particles in the cluster
that result from considering these two options, the positional error of the previous time

step (i — 1)

i i i 4 i NG i
o) = max (e = x4 51 (I8 =g 11+ 9 =11 e ©)

6.3. SPACE-TIME HIERARCHY 91

and that of the current time step (7)
5(1‘) _ - (7) () 4 (i-1) (i—1) ~ (1) (i) C
¢ =max {|[tc — 7|l + o ([lver 7 = vl Ve = vplll) | peC)

Here, C" denotes the cluster that contains particle p at time (i — 1). Given a new cluster

())

center r;’ and velocity Vg that would result from merging an additional particle, the

new maximum error within the cluster is estimated by
% % % ~(4 7 ~ (7
¢ =max(0¢), 08 + |lr¢) —2¢|[) + - llve v

where the additional error regarding the position influences 6g) but not Gg), since the
latter considers only the positional error within the previous time step, and the error
with respect to the velocity is added to both error terms. If this estimate is below the
maximum permitted error, the particle can be merged with the cluster. Otherwise, we
reset f‘g) and \78) to rg) and vg), and determine the new maximum error terms 99 and
5g) to recalculate €. If the error still exceeds the threshold, no merging is performed.
Otherwise, the particle is integrated into the cluster. For performance reasons, the up-
date of Hg) and 5g) are skipped when the values are close to the maximum permitted
error. Nevertheless, particles may still be inserted if the update of rg) and Vg) is small
enough so that ¢’ does not exceed the threshold.

If clusters are built by merging clusters, which have already been formed at a finer
level of detail and which already introduce errors with respect to position and direction,
we adapt the calculation of Qg) and 52) such that we add the maximal errors within such
a cluster Géi) and (5,@ to the respective error estimates.

6.3.3 Hierarchy Generation

Based on the proposed particle merging strategy, the particle space-time hierarchy can
now be constructed. The hierarchy is comprised of one adaptive octree per time step,
each of which is created in a bottom-up fashion. In the hierarchy of each time step, the
particles are clustered consecutively up to a maximum error for the given level. The
maximum permitted error for the root level is defined by the user, and according to the
octree data structure it is halved for each additional level of detail. Additionally, we
store the particle trajectories that map the clusters of one time step to the clusters of the
next time step.

92 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

Initial Time Step

At the first time step, we start by storing the original particles at the leaves of the octree.
Afterwards, we successively pass all particles to the next coarser level. For each particle
that is inserted we look for potential merging candidates and add each pair of particles
that can be merged into a priority queue that is ordered according to our error estimate.
To accelerate the neighbor search, we organize the particles within each octree node in a
uniform grid with a spacing that corresponds to the error threshold of the specific level.
Thus, at most 27 of such bins have to be searched to find the candidate pairs. When
all particles are inserted into the current level, we successively merge the particle pair
with the smallest distance according to our error estimate. For each merger, the octree
as well as the priority queue are updated accordingly. This process is repeated using
the next candidate pair until the priority queue is empty. Note that in the special case of
the initial time step there are no trajectory to be represented, but just the starting points
of trajectory in space and time. Accordingly, the error terms regarding the position and
velocity of the previous time step are set to zero.

Subsequent Time Steps

For all successive time steps, we again begin by storing the particles into the leaf nodes
of the octree. Then, however, we do not proceed by passing particles from one level to
the next coarser one, but we try to merge particles into the clusters of the previous time
step for all levels of detail. If due to a merging operation the error estimate is violated
for a cluster, it is iteratively split into sub-clusters until the merging criterion is met.
These sub-clusters are then inserted into the respective level of the octree. As before,
we search for merging candidates within the neighborhood and add each mergeable
pair into the priority queue. After insertion of all clusters, we successively merge the
clusters as before until the priority queue is empty. Note that by propagating the cluster
information to the next time step, we preserve continuity over time and accelerate the
merging process by reducing the number of neighboring particles that have to be tested.

The splitting of clusters needs some further explanations. As mentioned before,
we start by calculating the error estimate for all particles a cluster is comprised of, in
order to verify whether the cluster will remain unchanged. If a cluster has to be split,
it is separated into sub-clusters by iteratively applying a PCA-based split algorithm
[PGKO02, LGK™01]. That is, we determine the optimal splitting plane by computing
the centroid of the particles’ positions and the largest eigenvector of the auto-covariance

6.3. SPACE-TIME HIERARCHY 93

matrix as surface normal (see Figure [6.4). Since we aim at minimizing the error esti-
mate at the current time step, the PCA split is performed in the 6-dimensional error
space that is given by the particle positions and velocities, where the latter vector is
scaled by 4/27 according to Equation If the merging criterion is still violated
within a newly formed sub-cluster, it is split as well.

In addition to the clusters that are build for the distinct time steps, we store the
trajectories that result from the propagation of the clusters over time including cluster
splits and mergers. Each trajectory consists of the cluster indices that define its start
and end points within the successive time steps as well as the mass and radius of the
represented cluster.

(a) (b)

Figure 6.4: For the splitting of a cluster that violates the merging rule in the successive time
step (a), we apply a PCA split to build subclusters (b).

6.3.4 Data Structures

The described preprocess results in one adaptive octree per time step, including parti-
cle and cluster data as well as the cluster trajectories representing the particle motion
between successive time steps. The octrees serve as data structures to hierarchically
represent the spatial distribution of particles at the discrete set of time steps. We now
augment the octrees with additional information to efficiently determine for a node the
spatial region that is traversed by the particles stored at this node between the current
and the next time step, yielding a continuous space-time partitioning data structure. Ac-
cordingly, successive nodes must contain the data that is required for the interpolation
of particle trajectories within the enclosed space and time. This is usually true for most
clusters but not for those that have left the domain of a node within the represented

94 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

time. To allow for the interpolation between successive nodes, we insert a cluster copy
of the end point of such particles into the successor of the starting point’s node and
adapt the bounding box of the node accordingly. Such an update is also required if a
particle or cluster leaves the domain temporarily.

For each node of the space-time hierarchy, we finally store three data structures. The
cluster list contains the clusters built at the distinct time steps and stores any quantity
that is interpolated between two time steps including the control points for the spline
interpolation. The trajectory list, on the other hand, represents the information of the
actual flow of mass between successive time steps, including the amount of mass itself,
the radius of the cluster, and, most importantly, references to the control points of the
trajectory. These are given by the indices in the cluster lists of the octree node and
its successor (see Figure [6.5)). The trajectory list is sorted by the cluster index of the
first control point to allow for an efficient tracking of particles (see Section [6.4.1)). To
further support the tracking of particles, for each cluster copy we store the node ID and
cluster list index of the original cluster in a copy list.

On the finest level of detail, which contains the individual particles of the simula-
tion, merging and splitting of particles does not occur and the trajectory list has the
same entries as the cluster list of the same time step. Thus, the index within the trajec-
tory list into this cluster list is redundant and does not need to be stored.

Cluster list Trajectory list Cluster list Trajectory list
pos | vel | ... idx1 | ... | idx2 pos | vel | .. idx1 | ... | idx2
node ¢ i | e 0 || 0 |) | |0] 0
42
e | | 1 | 0 e | | 1 1
. e
(Copy list Copy list
§ ‘node‘id Merger de | id
Ly Cpy | mode | 1 Cluster copy
(empty) [spiit | [0| 42 |1|—
nzge < Cluster list Trajectory list Cluster list rajectory list
pos | vel | .. idxl | ... | idx2 pos | vel ..1/ idxl | ... | idx2
~ No [-] o 7 1 || 0 [F—
NS B S .
~
t + time
ty [

Figure 6.5: Illustration of the data structures of our space-time hierarchy. The clusters of each
time step are stored in a cluster list. The trajectory list contains the propagation of clusters over
time with idx1 and idx2 referencing the end points for interpolation. The copy list helps to track
clusters that left the domain of the octree node at this time step. In this illustration the copy list
entry denotes that one particle moves from node 43 to node 42 between the time steps t,, and

b1

6.4. RENDERING 95

Since the mass is given per trajectory, mergers and splits can lead to discontinuities
during rendering when the size of the trajectories is chosen dependent on their mass
(see Figure . To avoid this, we additionally store for each cluster in the cluster
list the maximum mass of all outgoing trajectories and adapt the size of the ingoing
trajectories close to the merger or split (see Figure [6.6(b)).

(a) (b)

Figure 6.6: (a) Discontinuities of trajectories at mergers and splits can arise when the size
of each trajectory depends on the cluster’s mass. (b) By storing the maximum mass of the
subsequent trajectories the size can be adapted at the connection.

6.4 Rendering

The interpolation of clusters between successive time steps and the rendering of cluster
trajectories is entirely performed on the GPU. Therefore, the data of all visible octree
nodes are transferred to the GPU’s local memory. The trajectory list of each octree
node is bound as a vertex buffer and the cluster lists of this and the successive time
step are bound as buffer resources. Based on the indices given per vertex, the position
and tangents of the trajectories’ end points can be accessed, and they are then used
to interpolate the cluster’s position and velocity by cubic Hermite splines. The mass
and (if required) the radius of the cluster are given per vertex. Particle trajectories are
approximated by piecewise linear segments that are adaptively refined in the geometry
shader by interpolating intermediate spline positions. To give a better impression of the
shape and direction of the trajectory, the line can additionally be extruded to a tube or

arrow.

96 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

6.4.1 User Interaction

Especially in large SPH simulations with many millions of particles, a scientist needs
to be able to efficiently guide the exploration process and focus on the structures of
interest. For this purpose, the visualization of the time-space hierarchy can be enriched
with additional features to graphically emphasize certain regions or properties.

LOD Selection

Rendering is performed for all visible octree nodes and for all successive time steps that
are covered by the current trajectory, i.e., all time steps that are required for rendering
the trajectory. Since this data contains clusters and trajectories at different resolution
levels, a mechanism is provided that allows the user to manually select a specific level
of detail for the entire data set. By interactively switching between different levels of
detail while navigating through space and time, a quite effective exploration of particle
trajectories is already possible.

() (b)

Figure 6.7: (a) Fixed LOD (46 tps) in comparison to a (b) view-dependent LOD (65 fps) on a
1440 900 viewport.

A drawback of this approach is that choosing a fine level of detail for a close-up
view into a certain region can lead to very unpleasant visual clutter further away from
the viewer (see Figure [6.7(a)). As an alternative, the octree nodes can be rendered
automatically at the coarsest level of detail that maintains a given screen space error.
This error is given by the error that is caused by replacing particles by the cluster in
the current node (see Section [6.3.1]), and the distance of this node to the viewer. Thus,
the particle trajectories near the camera are automatically visualized in more detail,

6.4. RENDERING 97

whereas the particle motions far away from the camera are represented via few, but
larger clusters. This leads to good perception of the particle flow in the entire view
frustum (see Figure [6.7(b)).

One drawback of an adaptive LOD selection is that discontinuities might be visible
for particle trajectories that run through neighboring octree nodes with different levels
of detail, and which correspondingly do not share control points between these levels.
In practice, however, we measured that less than 0.2 % visible trajectories showed such
discontinuities, and since they appear at the borders between different levels of detail,
usually they show up only in the background.

Besides a view-dependent LOD, the appropriate level of detail might also be chosen
as part of focus & context techniques, which allow a high detailed insight in a user-
defined focus region while preserving context information of the surrounding space via
a low-resolution visualization.

Tracking of Particles

An important feature requested by astrophysicists is the possibility to define a specific
set of particles and to track the position of only these particles over time. The selection
itself can be performed via picking of one or more trajectories on the screen, based on
a user-defined region of interest (e.g. a bounding box), or the cluster of interest can
be retrieved from a pre-computed cluster catalogue. For the picking of clusters, we
write the time step, the ID of the octree node as well as the index of the trajectory to an
off-screen render target in order to identify the corresponding cluster of each trajectory
on the screen. In case of an interactive spatial selection, we render the particles of all
octree nodes that intersect the region of interest. For all particles within this region, the
octree’s node ID as well as the trajectory list index is written to a stream output buffer
and read back to main memory.

The indices of the selected trajectories are stored in tracking lists of the correspond-
ing octree nodes. To propagate the cluster selection over time, we determine the cluster
list indices of the trajectory end points in the successive time step on the CPU. Based
on these cluster indices, we further determine the corresponding trajectory list indices
by a binary search and add the selected indices to the node’s tracking list. Duplicates
that result from the merging of particles can be discarded by using a set data struc-
ture for the tracking list. The tracking of clusters which leave the domain of an octree
node is propagated to the corresponding octree node within the same time step by us-
ing the copy list (see Section [6.3.4). For typical selections with up to a few thousand
of particles, the propagation on the CPU has no perceivable impact on the rendering

98 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

performance. If needed, however, the Propagation could be performed in an additional
thread or parallelized on the GPU.

The trajectories of the selected particles can be exclusively visualized by using the
tracking list as index list for rendering (see Figure [6.8)). As an alternative, the particles
and their trajectories can be rendered together with the unselected data, but highlighted,
e.g. by color. We realize this feature by tagging the selected entries of the trajectory
lists using the sign bit of the mass property.

(b)

Figure 6.8: Examples for user defined tracking of particles showing a cross section of the
SNIaEjecta data set (a), user-selected clusters over 30 time steps in the WDMerger data set (b)
and a subset of the aquarius data set (c). The colors of the trajectories represent the cluster’s
velocities (a) and temperature (b/c).

Trajectory Appearance

Another possibility to highlight a certain set of sub-clusters is to modulate the appear-
ance of the trajectories according to certain cluster properties. In our standard setting,
the size of the trajectory is set such that the area of the cross-section represents the
mass of the according cluster. To avoid extreme differences in size for coarser LODs,
the user can set a maximum mass threshold to clamp the radius of the trajectories. On
the other hand, the trajectories of small clusters can disappear when their diameter falls
below the pixel size. To preserve these trajectories the user can define a minimum mass
threshold for which cluster trajectories are automatically enlarged to pixel size. On
the contrary, if the user wants to focus on the primary motions within the data field,
trajectories of clusters below a certain number of particles may also be discarded.

The color of the trajectories can be determined by using arbitrary cluster proper-
ties, such as direction, velocity, mass, or data-specific attributes such as temperature as

6.4. RENDERING 99

input for a color map. Thus, the visualization can be enhanced by emphasizing the dif-
ferences of cluster trajectories (see Figure[6.8)). To enhance the time and velocity along
the trajectories, we have integrated animations via highlights or additional geometric
primitives with the speed being configurable by the user (see Figure[6.9).

Figure 6.9: Animated highlights (a) or additional geometric primitives (b) repeatedly running
along the trajectories can be used to improve the impression of motion along a fixed time period.

6.4.2 Implementation Details

We have implemented the presented technique using C++ and DirectX 10. To optimize
the data management on the CPU, we have used asynchronous I/O in combination with
prefetching of octree nodes in space and time. When nodes are streamed into main
memory, they are doubly linked along the time domain. By this means, the octrees of
the required time steps can be traversed collectively in order to gather the octree nodes
required for rendering. View frustum culling is used to omit invisible parts of the data
set. On the GPU, we have implemented buddy memory allocation [Knu97] to avoid
time-consuming creation and deletion of resources per node. For the rendering of tra-
jectories as spheres with tails, we have adapted the approach of Merhof et al. [MSE™06]
to approximate tubes by a hybrid rendering of triangle stripes and point sprites. Fur-
thermore, we added black halos with a size of 1 pixel around the trajectories to enable
a better differentiation of the clusters. For more complex trajectory heads such as a
cone, we pre-compute a sprite texture atlas with a set of views of the geometry under
different rotations [GGS02, KKKWO05] . By rendering the appropriate point sprite in-
stead of the original geometry, the vertex load can be significantly reduced. To avoid
artifacts for intersecting trajectories, we additionally adapt the depth value of each pixel
according to the depth print within the sprite atlas and by approximating the depth off-
set for the trajectories. Volume rendering of the SPH data for the hybrid visualization
was implemented using perspective grid ray casting as proposed in Chapter 5]

100 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

6.5 Results

Our experiments have been carried out on a standard PC equipped with an Intel Core
2 Quad Q9450 2.66 GHz processor, 8 GB of RAM, and a NVIDIA GeForce GTX 480
with 1.5 GB video memory and PCI Express 2.0 x16. We demonstrate the efficiency
of our approach for three different astrophysical particle simulations. WDMerger sim-
ulates the merger of a white dwarf binary system. SNlaEjecta simulates the impact of
a supernova ejecta on a companion star. The Aquarius data set simulates the evolution
of a MilkyWay-sized dark matter halo from shortly after the big bang to the present.
In all of these simulations, each particle has a size of 40 Byte containing a unique ID,
position and velocity, as well as additional floating point attributes, such as smoothing
length, mass, and temperature. Table[6.1] gives detailed information about the data sets.

Table 6.1: Data sets used in our experiments.

Data set ‘ Time steps ‘ # Particles ‘ Data size
WDMerger 84 2,000,000 6.3 GB
SNIaEjecta 49 8,745,571 | 16.0 GB
Aquarius 25 18,535,972 | 17.3 GB

Space-Time Hierarchy

For each of the three data sets, we created the proposed space-time hierarchy with 6
levels of detail. This preprocess took 34 minutes for WDMerger, 101 minutes for SNIa-
Ejecta and 115 minutes for the Aquarius data set. Table|6.2 gives information about the
number of particles and cluster copies per level, averaged over all time steps, and shows
the amount of data required to store each level of detail and the entire hierarchical
data representation. Compared to the original data, the data size increases by about
39% in average and the memory overhead of all low-resolution levels did not exceed
3 GB. Accordingly, without the finest level it is possible to load the entire hierarchy
including all time steps into main memory. Thus, no expensive disk I/O is required
when navigating through space and time, or between different levels of detail.

Figure [6.10| shows the trajectories of the WDMerger data set at three levels of de-
tail. As can be seen, the motion within the data is well preserved while the number of
trajectories is significantly reduced. Moreover, the original particle trajectories result
in a high degree of occlusion that obscures the flow of mass further inside the data set.
Our scale-space approach permits the user to analyze the dynamics within the data by

6.5. RESULTS

101

Table 6.2: Number of clusters and copy clusters per level as averages over all time steps as well
as the total amount of data for the distinct levels and for the entire space-time hierarchy.

WDMerger (8,7 GB) SNIaEjecta (22.3 GB)

Level || # Clusters | # Copy Cl. | Total size || # Clusters | # Copy Cl. Total size
5 2,029 0 7 MB 1,495 0 4 MB
4 4,627 378 18 MB 11,443 782 28 MB
3 14,698 801 58 MB 64,606 3,532 155 MB
2 56,527 2,570 225 MB 282,963 24,529 685 MB
1 201,310 10,876 796 MB 844,435 195,037 | 2,185 MB
0 2,000,000 356,804 | 7,850 MB || 8,745,571 | 1,375,428 | 19,782 MB

Aquarius (24.1 GB)
Level | # Clusters | # Copy CL. Total size
5 533 0 2 MB
4 2,549 95 3MB
3 18,233 1087 20 MB
2 135,009 17,649 162 MB
1 846,592 215,892 | 1,120 MB
0 18,535,972 | 5,936,997 | 23,408 MB

selecting an appropriate abstraction levels. Thus, flows that are marginal within the
data set are attenuated and the primary motion structure is revealed.

The movement of longer time intervals is usually visualized for smaller groups of
clusters since the problem of occlusion and visual cluttering naturally increases with
the length of the rendered trajectories (compare Figure[6.8(b)). Note, however, that this
reduction is only motivated by a better visual impression. Regarding rendering perfor-
mance and video memory requirements, the worst case of our experiment{] was 46 fps
and 9 MB (Figure[6.7(a)), respectively, which is far away from the theoretical through-
put of modern GPUs. It is self-evident, that for large data sets occlusions and visual
cluttering will impose more severe limitations than rendering throughput. Accordingly,
our visualization approach should scale very well with the size of the data set given that
a reasonable number and length of trajectories is chosen.

Combination with Volume Rendering

Especially when focusing on the major particle directions at coarse resolution levels
of the proposed space-time hierarchy, detailed information about the underlying mass

'except the counter-example for occlusion and visual cluttering in Figure[6.10(a)

102 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

Figure 6.10: Three levels of detail from our space-time hierarchy, color coded according to the
cluster’s temperature: (a) 2M particles rendered on a 1440x 900 viewport at 3.1 1ps, (b) 5.6K
@ 563 tps, and (c) 1.1K @ 704 fps.

distribution gets lost (see Figure [6.11(b)). Ray casting the density field, on the other
hand, can effectively reveal this distribution in one single time step, but has problems in
showing the dynamics with respect to the directional transport (see Figure[6.11(a)). By
combining volume rendering of scalar particle quantities with the rendering of space-
time trajectories, both drawbacks can be addressed (see Figure[6.11(c)).

6.6 Application to Non-Cosmological Data Sets

Even though the space-time hierarchy has been developed with the primary focus on
astrophysical n-body simulations, it can be applied to any other kinds of SPH simula-
tions or arbitrary time-dependent particle sets as well. Beyond that, such motion paths
do not have to be part of the data to be analyzed as long as there is a possibility to
determine them in an intermediate processing step. One well-known example is the
field of steady and unsteady vector fields, where pathlines are created by advecting
massless particles via time integration. To demonstrate that our approach can be used
to effectively visualize the motion within such applications, we exemplary employ our
space-time hierarchy on SPH data from the field of fluid dynamics and on unsteady
vector fields.

6.6. APPLICATION TO NON-COSMOLOGICAL DATA SETS 103

(a) (b)

Figure 6.11: Comparison of (a) volume rendering of the density field (1.5 fps), (b) motion
visualization (900 fps), and (c) a hybrid rendering using both techniques (1.5 fps). All images
were rendered on a 1440x 900 viewport.

6.6.1 SPH Fluid Dynamics

As already shown in Chapter [5] one application of SPH is the simulation of quasi-
incompressible fluids. Accordingly, mergers and splits of particle clusters can not occur
in contrast to the collisionless n-body simulations that have been used in the preced-
ing experiments. Nevertheless, the space-time hierarchy allows to abstract the flow
motions within the simulated fluid by joining neighboring particles with similar flow
directions. By this means, different motions can be better distinguished and—as in the
astrophysical data sets—the motions inside the fluid can be revealed by resolving the
problems of occlusion and visual cluttering. Note that in contrast to simply rendering
the trajectories of a random particle subset, our approach guarantees to arrange the tra-
jectories at almost regular distances, which are automatically refined in turbulent areas.
Furthermore, the space time-hierarchy ensures that all motions—even those of single
particle sprinkles—are included in the motion visualization.

Figure [6.12] shows images of fluid dynamics data sets that were rendered with our
approach. For the rendering of the fluid’s surface, which serves as an important context
information, we have implemented scale-invariant shading [Kra05]. To improve the
depth perception of the underlying trajectories, the fluid can be additionally rendered
as participating medium with a constant opacity and color (see Figure [6.12(a)).

104 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

(@) (b)

Figure 6.12: (a) A top view on a fluid simulation showing the water surface in combination
with the underlying flow directions and vortices. To improve the depth perception, the fluid
is rendered with a constant opacity to attenuate deeper trajectories. (b) Cut through a fluid
simulation revealing the flow within a breaking wave. The number of trajectories in both images
is about 5% of the original number of particles.

6.6.2 Unsteady Vector Fields

Particle tracing is a widely used technique to reveal flow characteristics within steady
and unsteady vector fields. In analogy to large-scale particle simulations such as SPH,
the differentiation of the distinct flow pattern does often require a large number of
particles, which on the other hand limits the visual perception due to the problems
of occlusion and visual cluttering. Accordingly, scientific effort has been made to
minimize the number of particle trajectories while preserving distinct flow patterns
within the data. In case of stationary vector fields, various techniques have been de-
veloped to solve this problem by applying cluster algorithms to discern distinct motion
patterns, which can then be visualized by a reasonable number of characteristic lines
MLDO3]. For unsteady flow fields, on the other
hand, research has focused more on focus-and-context techniques, which reduce the
density and appearance of particles or characteristic trajectories depending on a user-
defined focus-region or specific flow properties MTHGO3].
Since our approach builds upon algorithms that are similar to the clustering techniques
for stationary vector fields, our method can be seen as an extension of these techniques
to time-dependent data sets.

The basic idea for applying the motion-hierarchy to vector fields is to seed and

trace particles within a domain of interest and to store their positions and velocities that
result from time integration. As for particle tracing in general, care must be taken that

6.6. APPLICATION TO NON-COSMOLOGICAL DATA SETS 105

the number of seeded particles is large enough to capture all features of interest. Yet, in
conventional particle tracing applications a trade-off must be found between accuracy
and density, since a larger number of particles increases the problems of occlusion and
visual cluttering. This problem becomes particular problematic for data that contains a
high degree of divergence, leading to a non-uniform distribution of the seeded particles
over time. Given that a sufficient number of particles has been traced, our space-time
hierarchy solves this problem since converging particles are automatically thinned out
and diverging clusters are split apart.

To illustrate the effectiveness of our technique, we traced one million particles in
a sub-domain of the JHU turbulence data set [PBLMO07, LPW708], which contains
1024 time steps for 10243 nodes, and created a space-time hierarchy for the resulting
trajectories. Figure [6.13] presents the motion hierarchy at three levels of detail. As can
be seen, our approach allows to abstract the distinct flow characteristics at different
granularities by visualizing almost regularly spaced trajectories, even when particles
move together or drift apart. However, these benefits of our space-time hierarchy comes
at the costs of an additional preprocessing step. Accordingly, it is obvious that our
approach is not competitive regarding the flexibility of interactive GPU-based particle
tracing. Yet, our approach can be advantageous if the particle tracing itself has to be
performed in an offline process, e.g. due to the size of the data set, or if an adaptive
coarsening and refinement of trajectories is explicitly desired.

Figure 6.13: Three different levels of detail of our space-time hierarchy that is based on the
tracing of one million particles in the unsteady vector field of the JHU turbulence data set.

106 CHAPTER 6. MOTION VISUALIZATION IN LARGE PARTICLE SIMULATIONS

6.7 Conclusion and Future Work

We have introduced a hierarchical space-time data structure for time-dependent particle
sets that allows to analyze the flow of mass by rendering cluster trajectories at differ-
ent scales. By choosing an appropriate level of detail, occlusion and visual clutter can
be effectively avoided and the distinct motion patterns within the simulated data field
can be revealed. To focus on regions of interest, arbitrary mapping function can be
specified to modulate the appearance of the trajectories based on any particle quantity.
Furthermore, sets of clusters can be interactively selected for exclusive rendering or
visual highlighting. Combining the rendering of dynamic trajectories with other ren-
dering techniques such as volume ray casting enables to analyze both, the shape of the
density field and the underlying flow dynamics at a glance.

To the best of our knowledge, for the first time a scale-space analysis can be applied
to the characteristic flows within arbitrary particle sets containing many millions of
elements. We offer a new opportunity to visually explore the result of numerical particle
simulations and to effectively visualize the dynamics of particle sets in static images.
An interesting aspect for future work is to integrate focus-and-context strategies into our
motion visualization. This would allow to locally adapt the level of detail according to

regions or features of interest.

Chapter 7

Conclusion

In this thesis, we have presented scalable techniques to visualize large-scale particle
simulations on commodity desktop PCs. The presented methods allow for interactive
out-of-core rendering of SPH data sets whose size vastly exceeds the video memory
capacities of modern graphics accelerators.

Our approach builds upon a novel particle representation that is based on a visually
continuous multi-resolution hierarchy. The levels of detail of this data structure are
constructed by applying merge and elimination operations to the particle set. This
significantly reduces the number of particles to be rendered without impact on visual
quality. Sophisticated data management and compression techniques allow for fast
data access and transfer from secondary storage. We have introduced a resampling
data structure, the perspective grid, that enables a high-quality, yet efficient volume ray
casting of the addressed particle sets. In accordance with the divergence of viewing
rays emanating from the camera, the perspective grid uses an adaptive sampling width
that increases exponentially with distance to the view plane. Resampling is performed
by using GPU-based voxelization. The samples are stored in a volumetric texture,
which can be efficiently rendered by texture-based volume rendering techniques. We
have furthermore presented a space-time hierarchy that addresses the need of scientists
to analyze complex formation processes in cosmological simulations. The hierarchy
enables the visualization of motion patterns at various scales by clustering adjacent
particles of coherent motion. This provides the user with a means to select a level of
detail appropriate for the size of a feature of interest.

Owing to adaptivity and the level-of-detail strategy, our methods scale well with
increasing particle numbers. This significantly improves the exploration of large-scale
particle sets. In contrast, existing visualization techniques are restricted either in inter-
activity (due to a high processing load) or rendering quality (due to required filtering

107

108 CHAPTER 7. CONCLUSION

of the data). With our approach particle sets containing millions of elements can be
rendered in high quality at interactive frame rates. To the best of our knowledge, we
are the first to show that this is feasible. To furthermore enable an effective visual data
exploration for particle numbers on the order of billions of elements, we have presented
alternative rendering techniques. By applying these methods to the Millennium Simula-
tion, we have demonstrated that even the largest of today’s data sets can be interactively
explored on current PC architectures.

There are a number of topics for research building upon our work. Additional tools,
for example probes to examine quantities in a region of interest, can be directly inte-
grated into our visualization approach. Furthermore, our algorithms can be adapted
to GPU clusters for the rendering on high resolution display walls or can be imple-
mented on render clusters that provide remote visualization services. The latter issue is
of particular interest since many scientists do not have local access to lage-scale data
sets.

Even though the presented methods have been developed and evaluated with focus
on SPH, many concepts and algorithms can be transferred to other particle-based sim-
ulations. The presented data compression and data management strategies are useful
for a wide range of out-of-core applications. The multi-resolution particle hierarchy
can be adapted to other particle data sets based on data-specific filtering and merging
strategies. The proposed space-time hierarchy is a concept to analyze motion within
any kind of particle sets. Finally, the perspective grid data structure can in general
be used to effectively resample a continuous scalar field that is defined as the sum of
per-particle functions, such as metaballs.

In conclusion, the work presented in this thesis has resulted in powerful instruments
for scientists visually exploring and analyzing SPH data. By introducing interactivity to
the visualization of large particle data sets, our techniques overcome severe limitations
of available methods. Noting that, despite the focus on SPH, our methods can readily be
applied to further types of particle data sets, we have thus provided a solid contribution
to the further advancement of the visualization of particle-based simulations.

Bibliography

[ACPO8]

[AHHT06]

[ALDO6]

[AMHO2]

[APB87]

[APKGO7]

[BDG'04]

[BGMT07]

[BGMOS]

[BKKWO08]

[Bly06]

Gabriel Altay, Rupert A. C. Croft, and Inti Pelupessy, SPHRAY: a smoothed particle hy-
drodynamics ray tracer for radiative transfer, Monthly Notices of the Royal Astronomical
Society 386 (2008), 1931-1946.

James Ahrens, Katrin Heitmann, Salman Habib, Lee Ankeny, Patrick McCormick, Jeff
Inman, Ryan Armstrong, and Kwan liu Ma, Quantitative and Comparative Visualization
Applied to Cosmological Simulations, Journal of Physics Conference Series 46 (2006),
526-534.

Bart Adams, Toon Lenaerts, and Philip Dutre, Particle splatting: Interactive rendering of
particle-based simulation data, Technical report cw 453, Katholieke Universiteit Leuven,
2006.

Tomas Akenine-Moller and Eric Haines, Real time rendering: Second edition, A K Peters,
Ltd., 2002.

Bruno Arnaldi, Thierry Priol, and Kadi Bouatouch, A new space subdivision method for

ray tracing csg modelled scenes, The Visual Computer 3 (1987), no. 2, 98-108.

Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas, Adaptively sampled
particle fluids, ACM Transactions on Graphics 26 (2007), no. 3, 48-54.

Ken Brodlie, David Duce, Julian Gallop, Musbah Sagar, Jeremy Walton, and Jason Wood,
Visualization in grid computing environments, Proceedings of the IEEE Visualization
(Washington, DC, USA), IEEE Computer Society, 2004, pp. 155-162.

John Biddiscombe, Berk Geveci, Ken Martin, Kenneth Moreland, and David Thompson,
Time dependent processing in a parallel pipeline architecture, IEEE Transactions on Vi-
sualization and Computer Graphics 13 (2007), no. 6, 1376-1383.

John Biddiscombe, David Graham, and Pierre Maruzewski, Visualization and analysis of
SPH data, ERCOFTAC Bulletin 76 (2008), 9—-12.

Kai Biirger, Polina Kondratieva, Jens Kriiger, and Riidiger Westermann, Importance-
driven particle techniques for flow visualization, Proceedings of the IEEE VGTC Pacific
Visualization Symposium, 2008.

David Blythe, The direct3d 10 system, ACM Transactions on Graphics 25 (2006), 724—
734.

109

110

[BTTO9]

[CBBT05]

[CE97]

[CS09]

[CSI09]

[DC99]

[DCHS8]

[DeB04]

[DKW09]

[DRGIO8]

[DZTSO08]

[EGM04]

[EHK06]

[FAW10]

BIBLIOGRAPHY

Markus Becker, Hendrik Tessendorf, and Matthias Teschner, Direct forcing for lagrangian
rigid-fluid coupling, IEEE Transactions on Visualization and Computer Graphics 15
(2009), no. 3, 493-503.

Henry R. Childs, Eric Brugger, Kathleen S. Bonnell, Jeremy S. Meredith, Mark Miller,
Brad Whitlock, and Nelson Max, A Contract Based System For Large Data Visualization.,
Proceedings of the IEEE Visualization, IEEE Computer Society, 2005, pp. 190-198.

Michael Cox and David Ellsworth, Application-controlled Demand Paging for Out-of-core
Visualization, Proceedings of the IEEE Visualization (Los Alamitos, CA, USA), IEEE
Computer Society Press, 1997, pp. 235-244.

Hilko Cords and Oliver G. Staadt, Interactive screen-space surface rendering of dynamic
particle clouds, Journal of Graphics, GPU, and Game Tools 14 (2009), no. 3, 1-19.

Deukhyun Cha, Sungjin Son, and Insung Ihm, Gpu-assisted high quality particle render-
ing, Computer Graphics Forum 28 (2009), no. 4, 1247-1255.

Mathieu Desbrun and Marie-Paule Cani, Space-time adaptive simulation of highly de-
formable substances, Tech. Report 3829, INRIA, BP 105 - 78153 Le Chesnay Cedex -
France, December 1999.

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan, Volume rendering, SIGGRAPH
’88: Proceedings of the 15th annual conference on Computer graphics and interactive
techniques, 1988, pp. 65-74.

Eric. P DeBenedictis, Will moore’s law be sufficient?, Proceedings of the ACM/IEEE con-
ference on supercomputing, 2004, pp. 45-56.

Christian Dick, Jens Kriiger, and Riidiger Westermann, GPU ray-casting for scalable ter-
rain rendering, Proceedings of Eurographics 2009 - Areas Papers, Eurographics, 2009,
pp- 43-50.

Klaus Dolag, Martin Reinecke, Claudio Gheller, and Silvani Imboden, Splotch: visualizing
cosmological simulations, New Journal of Physics 10 (2008), no. 12, 125006.

Christopher Dyken, Gernot Ziegler, Christian Theobalt, and Hans-Peter Seidel, High-
speed marching cubes using histopyramids, Computer Graphics Forum 27 (2008), no. 8,
2028-2039.

David Ellsworth, Bryan Green, and Patrick Moran, Interactive terascale particle visual-
ization, Proceedings of the IEEE Visualization (Washington, DC, USA), IEEE Computer
Society, 2004, pp. 353-360.

Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and Daniel
Weiskopf, Real-Time Volume Graphics, A K Peters, Ltd., 2006.

Roland Fraedrich, Stefan Auer, and Rudiger Westermann, Efficient high-quality volume
rendering of sph data, IEEE Transactions on Visualization and Computer Graphics 16
(2010), 1533-1540.

BIBLIOGRAPHY 111

[FCDM™11] Yu Feng, Rupert A. C. Croft, Tiziana Di Matteo, Nishikanta Khandai, Randy Sargent, Illah

[FG98]

[FGE10]

[FSW09]

[FW12]

[GGI1]

[GGS02]

[GHO3]

[GIK107]

[GKM93]

[GMT77]

[GMIO8]

[GPR100]

[GPRT04]

Nourbakhsh, Paul Dille, Chris Bartley, Volker Springel, Anirban Jana, and Jeffrey Gardner,
Terapixel imaging of cosmological simulations, The Astrophysical Journal Supplement
Series 197 (2011), no. 2, 18.

Anton Fuhrmann and Eduard Groller, Real-time techniques for 3d flow visualization, Pro-
ceedings of the IEEE Visualization *98, 1998, pp. 305-312.

Martin Falk, Sebastian Grottel, and Thomas Ertl, Interactive image-space volume visu-
alization for dynamic particle simulations, Proceedings of The Annual SIGRAD Confer-
ence, 2010, pp. 35-43.

Roland Fraedrich, Jens Schneider, and Riidiger Westermann, Exploring the Millenium Run

- scalable rendering of large-scale cosmological datasets, IEEE Transactions on Visual-
ization and Computer Graphics 15 (2009), no. 6, 1251-1258.

Roland Fraedrich and Riidiger Westermann, Motion visualization of particle simulations,
IS&T/SPIE Conference on Visualization and Data Analysis (VDA 2012), 2012.

Allen Gersho and Robert M. Gray, Vector quantization and signal compression, Kluwer
Academic Publishers, Norwell, MA, USA, 1991.

Stefan Guthe, Stefan Gumhold, and Wolfgang StraBer, Interactive visualization of volu-
metric vector fields using texture based particles, Proceedings of WSCG, 2002.

Stefan Guthe and Paul Heckbert, Non-power-of-two mipmap creation, Tech. Report TR-
01838-001, NVIDIA Corporation, 2003.

Christiaan P. Gribble, Thiago Ize, Andrew Kensler, Ingo Wald, and Steven G. Parker,
A coherent grid traversal approach to visualizing particle-based simulation data, IEEE
Transactions on Visualization and Computer Graphics 13 (2007), no. 4, 758-768.

Ned Greene, Michael Kass, and Gavin Miller, Hierarchical z-buffer visibility, Proceedings
of the 20th annual Conference on Computer Graphics and Interactive Techniques, 1993,
pp- 231-238.

Robert A. Gingold and Joe J. Monaghan, Smoothed particle hydrodynamics - theory and
application to non-spherical stars, Monthly Notices of the Royal Astronomical Society
181 (1977), 375-3809.

Enrico Gobbetti, Fabio Marton, and José Antonio Iglesias Guitidn, A single-pass GPU ray
casting framework for interactive out-of-core rendering of massive volumetric datasets,
The Visual Computer 24 (2008), no. 7-9, 797-806.

Harald Garcke, Tobias Preusser, Martin Rumpf, Alexandru Telea, Ulrich Weikard, and
Jarke van Wijk, A continuous clustering method for vector fields, Proceedings of the IEEE
Visualization 2000, 2000.

Michael Griebel, Tobias Preusser, Martin Rumpf, Marc Alexander Schweitzer, and
Alexandru. Telea, Flow field clustering via algebraic multigrid, Proceedings of the IEEE
Visualization, 2004, pp. 35-42.

112

[GSSP10]

[HEO3]

[HenO8]

[HF11]

[HHKO8]

[HK89]

[HKKO7a]

[HKKO7b]

[HLEO4]

[Hot33]

[HWHJ99]

[JFSP10]

[JHO4]

[Jol02]

[JST*10]

BIBLIOGRAPHY

Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and Renato Pajarola, In-
teractive SPH simulation and rendering on the GPU, Proceedings ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2010, pp. 55-64.

Matthias Hopf and Thomas Ertl, Hierarchical splatting of scattered data, Proceedings of
the IEEE Visualization, 2003, pp. 433-440.

Amy Henderson, ParaView Guide, A Parallel Visualization Application. Kitware Inc.,
2008.

Amr Hassan and Christopher J. Fluke, Scientific visualization in astronomy: Towards the

petascale astronomy era, Computing Research Repository arXiv:1102.5123 (2011).

Woosuck Hong, Donald H. House, and John Keyser, Adaptive particles for incompressible
fluid simulation, The Visual Computer 24 (2008), no. 7, 535-543.

Lars Hernquist and Neal Katz, TREESPH-A unification of SPH with the hierarchical tree
method, The Astrophysical Journal Supplement Series 70 (1989), 419-446.

Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi, Sliced data structure for
particle-based simulations on gpus, Proc. of the 5th international conference on Computer
graphics and interactive techniques in Australia and Southeast Asia (New York, NY, USA),
GRAPHITE ’07, ACM, 2007, pp. 55-62.

, Smoothed particle hydrodynamics on GPUs, Computer Graphics International,
2007, pp. 63-70.

Matthias Hopf, Michael Luttenberger, and Thomas Ertl, Hierarchical Splatting of Scat-
tered 4D Data, IEEE Computer Graphics and Applications 24 (2004), no. 4, 64—72.

Harold Hotelling, Analysis of a complex of statistical variables into principal components,
Journal of Educational Psychology 24 (1933), no. 6, 417-441.

Bjoern Heckel, Gunther Weber, Bernd Hamann, and Kenneth 1. Joy, Construction of vector
field hierarchies, Proceedings of the IEEE Visualization, 1999, pp. 19-25.

Yun Jang, Raphael Fuchs, Benjamin Schindler, and Ronny Peikert, Volumetric evaluation
of meshless data from smoothed particle hydrodynamics simulations, Proceedings of the
Volume Graphics 2010, 2010, pp. 45-52.

Christopher Johnson and Charles Hansen, Visualization Handbook, Academic Press, Inc.,
Orlando, FL, USA, 2004.

Ian T. Jolliffe, Principal component analysis, 2 ed., Springer, 2002.

Won-Ki Jeong, Jens Schneider, Stephen G. Turney, Beverly E. Faulkner-Jones, Dominik
Meyer, Ruediger Westermann, R. Clay Reid, Jeff Lichtman, and Hanspeter Pfister, Interac-
tive histology of large-scale biomedical image stacks, IEEE Transactions on Visualization
and Computer Graphics (2010).

BIBLIOGRAPHY 113

[KAHO7]

[Kar47]

[KCO05]

[KCP*02]

[KKKWO5]

[Knu97]

[Kra05]

[Kra08]

[KSNO8]

[KSWO5]

[KSWO06]

[KvH84]

[KWO03]

[LBGS80]

[LC87]

[Lev88]

Ralf Kihler, Tom Abel, and Hans-Christian Hege, Simultaneous gpu-assisted raycasting
of unstructured point sets and volumetric grid data, Proceedings of the IEEE/EG Interna-
tional Symposium on Volume Graphics, 2007, pp. 49 — 56.

Kari Karhunen, Uber lineare methoden in der wahrscheinlickheitsrechnung., Annales

Academiae Scientiarum Fennicae, Series A, 37 (1947), 1-79.

Andreas Kolb and Nicolas Cuntz, Dynamic particle coupling for GPU-based fluid simu-
lation, Proceedings of the Symposium on Simulation Technique, 2005, pp. 722-727.

Ralf Kéhler, Donna Cox, Robert Patterson, Stuart Levy, Hans-Christian Hege, and Tom
Abel, Rendering The First Star in The Universe - A Case Study, Proceedings of the IEEE
Visualization (Robert J. Moorhead, Markus Gross, and Kenneth 1. Joy, eds.), IEEE Com-
puter Society, IEEE Computer Society Press, October/November 2002, pp. 537-540.

Jens Kriiger, Peter Kipfer, Polina Kondratieva, and Riidiger Westermann, A particle system
for interactive visualization of 3D flows, IEEE Transactions on Visualization and Com-
puter Graphics 11 (2005), no. 6, 744-756.

Donald E. Knuth, The art of computer programming. volume 1 (second ed.), ch. Funda-
mental Algorithms, pp. 435455, Addison-Wesley, 1997.

Martin Kraus, Scale-invariant volume rendering, Proceedings of the IEEE Visualization,
2005, pp. 295-302.

, Pre-integrated volume rendering for multi-dimensional transfer functions,
IEEE/EG Symposium on Volume and Point-based Graphics (2008), 2008, pp. 97-104.

Yoshihiro Kanamori, Zoltan Szego, and Tomoyuki Nishita, GPU-based fast ray casting
for a large number of metaballs, Computer Graphics Forum 27 (2008), no. 2, 351-360.

Jens Kriiger, Jens Schneider, and Riidiger Westermann, Duodecim - a structure for point

scan compression and rendering, Proceedings of the Symposium on Point-Based Graphics
2005, 2005.

, Compression and rendering of iso-surfaces and point sampled geometry, The
Visual Computer 22 (2006), no. 8, 517-530.

James T. Kajiya and Brian P. von Herzen, Ray Tracing Volume Densities, SIGGRAPH
Comput. Graph. 18 (1984), no. 3, 165-174.

Jens Kriiger and Riidiger Westermann, Acceleration techniques for GPU-based volume
rendering, Proceedings of the IEEE Visualization, 2003, pp. 38—43.

Yoseph Linde, Andres Buzo, and Robert M. Gray, An algorithm for vector quantizer de-
sign, IEEE Transactions on Communications 28 (1980), no. 1, 84-95.

William E. Lorensen and Harvey E. Cline, Marching cubes: A high resolution 3D surface
construction algorithm, SIGGRAPH Comput. Graph. 21 (1987), no. 4, 163—169.

Marc Levoy, Display of surfaces from volume data, IEEE Computer Graphics and Appli-
cations 8 (1988), 29-37.

114

[LFHO6]

[LFLHO7]

[LGO8]

[LGK'01]

[LHOS]

[LHI99]

[LHM*07]

[LLO3]

[L1o82]

[Loc46]

[LPD+02]

[LPW08]

[Luc77]

BIBLIOGRAPHY

Yinggang Li, Chi-Wing Fu, and Andrew Hanson, Scalable WIM: Effective Exploration in
Large-scale Astrophysical Environments, IEEE Transactions on Visualization and Com-
puter Graphics 12 (2006), no. 5, 1005-1012.

Hongwei Li, Chi-Wing Fu, Yinggang Li, and Andrew Hanson, Visualizing Large-Scale
Uncertainty in Astrophysical Data, IEEE Transactions on Visualization and Computer
Graphics 13 (2007), no. 6, 1640-1647.

Helwig Loffelmann and Eduard Groller, Enhancing the visualization of characteristic
structures in dynamical systems, Proceedings of Eurographics Workshop on Visualization
in Scientific Computing, Springer-Verlag, Eurographics, 1998, pp. 59-68.

Hendrik P. A. Lensch, Michael Goesele, Jan Kautz, Wolfgang Heidrich, and Hans-Peter
Seidel, Image-based reconstruction of spatially varying materials, Proceedings of the 12th
EG Workshop on Rendering Techniques, 2001, pp. 103-114.

Robert S. Laramee and Helwig Hauser, Geometric flow visualization techniques for cfd
simulation data, Proceedings of the 21st spring conference on Computer graphics (New
York, NY, USA), SCCG *05, ACM, 2005, pp. 221-224.

Eric LaMar, Bernd Hamann, and Kenneth I. Joy, Multiresolution techniques for interactive
texture-based volume visualization, Proceedings of the IEEE Visualization, 1999, pp. 355—
361.

Andrei Lintu, Lars Hoffman, Marcus A. Magnor, Hendrik P. A. Lensch, and Hans-Peter
Seidel, 3D Reconstruction of Reflection Nebulae from a Single Image, Proceedings of the
Vision, Modeling, and Visualization Conference, 2007, pp. 109-116.

Gui-Rong Liu and Mou-Bing Liu, Smoothed particle hydrodynamics: a meshfree particle
method, World Scientific, 2003.

Stuart P. Lloyd, Least squares quantization in pcm., IEEE Transactions on Information
Theory 28 (1982), no. 2, 129-136.

Michel Loeve, Fonctions aléatoires du second ordre, Revue Scientifique 84 (1946), 195—
206.

Lars Linsen, Valerio Pascucci, Mark A. Duchaineau, Bernd Hamann, and Kenneth I. Joy,
Hierarchical representation of time-varying volume data with "4th-root-of-2" subdivision
and quadrilinear b-spline wavelets, Proceedings of the Pacific Conference on Computer
Graphics and Applications, 2002, pp. 346-355.

Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi
Chen, Alexander Szalay, and Gregory Eyink, A public turbulence database cluster and
applications to study lagrangian evolution of velocity increments in turbulence, Journal of
Turbulence 9 (2008), no. 31, 1-29.

Leon B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astro-
nomical Journal 82 (1977), 1013-1024.

BIBLIOGRAPHY 115

[MCGO03]

[Mic10]

[MIM106]

[MLDO5]

[MLP+10]

[Mon92]

[Mon05]
[Moo65]

[MQF06]

[MSD07]

[MSE*06]

[MTHGO3]

[NJBO7]

[NNT*05]

Matthias Miiller, David Charypar, and Markus Gross, Particle-based fluid simulation for
interactive applications, Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, 2003, pp. 154-159.

Microsoft, Windows directx graphics documentation (part of the directx software develop-
ment kit), June 2010.

Tamara Munzner, Chris Johnson, Robert Moorhead, Hanspeter Pfister, Penny Rheingans,
and Terry S. Yoo, NIH-NSF Visualization Research Challenges Report Summary, IEEE
Computer Graphics and Applications 26 (2006), no. 2, 20-24.

Alexander McKenzie, Santiago V. Lombeyda, and Mathieu Desbrun, Vector field analysis
and visualization through variational clustering, Proceedings of the EuroVis (Ken Brodlie,
David J. Duke, and Kenneth I. Joy, eds.), Eurographics Association, 2005, pp. 29-35.

Tony McLoughlin, Robert S. Laramee, Ronald Peikert, Frits H. Post, and Min Chen, Over
Two Decades of Integration-Based, Geometric Flow Visualization, Computer Graphics
Forum 29 (2010), no. 6, 1807-1829.

Joe J. Monaghan, Smoothed particle hydrodynamics, Annual review of astronomy and
astrophysics 30 (1992), 543-574.

, Smoothed particle hydrodynamics, Rep. Prog. Phys. 68 (2005), 1703-1758.

Gordon E. Moore, Cramming more components onto integrated circuits, Electronics 38
(1965), no. 8, 114-117.

Jameson Miller, Cory Quammen, and Matthew Fleenor, Interactive Visualization of Inter-
cluster Galaxy Structures in the Horologium-Reticulum Supercluster, IEEE Transactions
on Visualization and Computer Graphics 12 (2006), no. 5, 1149-1156.

Matthias Miiller, Simon Schirm, and Stephan Duthaler, Screen space meshes, Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2007, pp. 9—
15.

Dorit Merhof, Markus Sonntag, Frank Enders, Christopher Nimsky, Peter Hastreiter, and
Guenther Greiner, Hybrid visualization for white matter tracts using triangle strips and
point sprites, IEEE Transactions on Visualization and Computer Graphics 12 (2006),
1181-1188.

Oliver Mattausch, Thomas TheuBl, Helwig Hauser, and Eduard Gréller, Strategies for in-
teractive exploration of 3d flow using evenly-spaced illuminated streamlines, Proceedings

of the spring conference on Computer graphics, SCCG *03, 2003, pp. 213-222.

Paul Arthur Navrétil, Jarrett L. Johnson, and Volker Bromm, Visualization of Cosmologi-
cal Particle-Based Datasets, IEEE Transactions on Visualization and Computer Graphics,
Nov/Dec 2007.

Chu-Ming Ng, Cam-Thach Nguyen, Dinh-Nguyen Tran, Tiow-Seng Tan, and Shin-We

Yeow, Analyzing Pre-fetching in Large-scale Visual Simulation, Computer Graphics Inter-
national Conference 0 (2005), 100-107.

116

[OKK10]

[ON97]

[PBLMO7]

[PD84]

[Peal1]

[PGKO02]

[PLB101]

[PMS199]

[Pri07]

[PVH*02]

[PVTF02]

[RBO8]

[RLOS]

BIBLIOGRAPHY

Jens Orthmann, Maik Keller, and Andreas Kolb, Topology-caching for dynamic particle
volume raycasting, Proceedings of the Vision, Modeling and Visualization Conference,
Eurographics Ass., 2010, pp. 147-154.

Jeremiah P. Ostriker and Michael L. Norman, Cosmology of the Early Universe Viewed
Through the New Infrastructure, Commun. ACM 40 (1997), no. 11, 84-94.

Eric Perlman, Randal Burns, Yi Li, and Charles Meneveau, Data exploration of turbu-
lence simulations using a database cluster, Proceedings of the ACM/IEEE conference on
Supercomputing, 2007, pp. 23:1-23:11.

Thomas Porter and Tom Duff, Compositing digital images, SIGGRAPH Comput. Graph.
18 (1984), 253-259.

Karl Pearson, On lines and planes of closest fit to systems of points in space., Philosophical
Magazine 2 (1901), no. 11, 559-572.

Mark Pauly, Markus Gross, and Leif P. Kobbelt, Efficient simplification of point-sampled
surfaces, Proceedings of the IEEE Visualization (Washington, DC, USA), VIS *02, IEEE
Computer Society, 2002, pp. 163-170.

Hanspeter Pfister, Bill Lorensen, Chandrajit Bajaj, Gordon Kindlmann, Will Schroeder,
Lisa Sobierajski Avila, Ken Martin, Raghu Machiraju, and Jinho Lee, The transfer function
bake-off, IEEE Computer Graphics and Applications 21 (2001), 16-22.

Steven Parker, Martin Martin, Peter-Pike Sloan, Peter Shirley, Brian Smits, and Charles
Hansen, Interactive ray tracing, Symposium on Interactive 3D Computer Graphics, 1999,
pp. 119-126.

Daniel J. Price, Splash: An interactive visualisation tool for smoothed particle hydro-
dynamics simulations, Publications of the Astronomical Society of Australia 24 (2007),
159-173.

Frits H. Post, Benjamin Vrolijk, Helwig Hauser, Robert S. Laramee, and Helmut Doleisch,
Feature extraction and visualisation of flow fields, Eurographics 2002 STAR (Dieter Fell-
ner and Roberto Scopigno, eds.), Eurographics Association, Saarbriicken Germany, 2002,
pp- 69-100.

William H. Press, William T. Vetterling, Saul A. Teukolsky, and Brian P. Flannery, Nu-
merical recipes in c++: The art of scientific computing, ch. Eigensystems, pp. 474486,
Cambridge University Press, New York, USA, 2002.

Ilya D. Rosenberg and Ken Birdwell, Real-time particle isosurface extraction, Proceedings

of the Symposium on Interactive 3D Graphics and Games, 2008, pp. 35-43.

Paul Rosenthal and Lars Linsen, Smooth surface extraction from unstructured point-based
volume data using PDEs, IEEE Transactions on Visualization and Computer Graphics 14
(2008), no. 6, 1531-1546.

BIBLIOGRAPHY 117

[RREO06]

[RRLO7]

[Say00]

[SDO02]

[SFBP09]

[SFWPI11]

[SHGO09]

[Spr05]

[SSLO8]

[SWO03]

[SWIT05]

[SWVT08]

[TvW99]

Alexander Rosiuta, Guido Reina, and Thomas Ertl, Flexible Interaction with Large Point-

Based Datasets, Theory and Practice of Computer Graphics 06, 2006.

Paul Rosenthal, Stephan Rosswog, and Lars Linsen, Direct surface extraction from
smoothed particle hydrodynamics simulation data, Proceedings of the High-End Visu-
alization Workshop, 2007.

Khalid Sayood, Introduction to data compression, 2 ed., Morgan Kaufmann Publishers,
San Francisco, CA, USA, 2000.

Marc Stamminger and George Drettakis, Perspective shadow maps, SIGGRAPH *02: Pro-
ceedings of the 29th annual Conference on Computer Graphics and Interactive Techniques,
2002, pp. 557-562.

Benjamin Schindler, Raphael Fuchs, John Biddiscombe, and Ronald Peikert, Predictor-
corrector schemes for visualization ofsmoothed particle hydrodynamics data, IEEE Trans-
actions on Visualization and Computer Graphics 15 (2009), 1243—-1250.

Benjamin Schindler, Raphael Fuchs, Jiirgen Waser, and Ronald Peikert, Marching Correc-
tors — Fast and Precise Polygonal Isosurfaces of SPH Data, Proc. 6th SPHERIC workshop
(T. Rung and C. Ulrich, eds.), 2011, pp. 125-132.

Nadathur Satish, Mark Harris, and Michael Garland, Designing efficient sorting algo-
rithms for manycore gpus, Proceedings of the IEEE International Symposium on Paral-
lel&Distributed Processing, 2009, pp. 1-10.

Volker Springel, The Cosmological Simulation Code GADGET-2, Monthly Notices of the
Royal Astronomical Society 364 (2005), no. 4, 1105-1134.

Tamas Szalay, Volker Springel, and Gerard Lemson, GPU-Based Interactive Visual-
ization of Billion Point Cosmological Simulations, Computing Research Repository
arXiv:0811.2055 (2008).

Jens Schneider and Riidiger Westermann, Compression domain volume rendering, Pro-
ceedings of the IEEE Visualization, 2003, pp. 293-300.

Volker Springel, Simon D. M. White, Adrian Jenkins, Carlos S. Frenk, Naoki Yoshida,
Liang Gao, Julio Navarro, Robert Thacker, Darren Croton, John Helly, John A. Peacock,
Shaun Cole, Peter Thomas, Hugh Couchman, August Evrard, Joerg Colberg, and Frazer
Pearce, Simulating the Joint Evolution of Quasars, Galaxies and their Large-scale Distri-
bution, Nature 435 (2005), 629-636.

Volker Springel, Jie Wang, Mark Vogelsberger, Aaron Ludlow, Adrian Jenkins, Amina
Helmi, Julio F. Navarro, Carlos S. Frenk, and Simon D. M. White, The Aquarius Project:
The Subhalos of Galactic Halos, Monthly Notices of the Royal Astronomical Society 391
(2008), 1685-1711.

Alexandru Telea and Jarke J. van Wijk, Simplified representation of vector fields, Proceed-
ings of the IEEE Visualization, 1999.

118

[vdLGS09]

[WAFT11]

[Wes95]

[WKMO5]

[WS09a]

[WS09b]

[WSP04]

[YHKO09]

[ZBO5]

[ZSPO§]

BIBLIOGRAPHY

Wiadimir J. van der Laan, Simon Green, and Miguel Sainz, Screen space fluid render-
ing with curvature flow, Proceedings of the Symposium on Interactive 3D Graphics and
Games, 2009, pp. 91-98.

Jonathan Woodring, James P. Ahrens, J. Figg, Joanne Wendelberger, Salman Habib, and
Katrin Heitmann, In-situ sampling of a large-scale particle simulation for interactive vi-

sualization and analysis, Computer Graphics Forum 30 (2011), no. 3, 1151-1160.

Ruediger Westermann, Compression domain rendering of time-resolved volume data, Pro-
ceedings of the IEEE Visualization Conference, 1995, pp. 168—-175.

Rick Walker, Peter Kenny, and Jingqi Miao, Visualization of smoothed particle hydrody-
namics for astrophysics, Theory and Practice of Computer Graphics 2005 (University of
Kent, UK) (Louise Lever and Mary McDerby, eds.), Eurographics Association, June 2005,
pp- 133-138.

Jonathan Woodring and Han-Wei Shen, Multiscale time activity data exploration via tem-
poral clustering visualization spreadsheet, IEEE Transactions on Visualization and Com-
puter Graphics 15 (2009), no. 1, 123-137.

Jonathan Woodring and Han-Wei Shen, Semi-automatic time-series transfer functions via
temporal clustering and sequencing, Computer Graphics Forum 28 (2009), no. 3, 791-
798.

Michael Wimmer, Daniel Scherzer, and Werner Purgathofer, Light space perspective
shadow maps, Rendering Techniques 2004 (Proceedings Eurographics Symposium on
Rendering), 2004, pp. 143-151.

Ren Yasuda, Takahiro Harada, and Yoichiro Kawaguchi, Fast rendering of particle-based
fluid by utilizing simulation data, Proceedings of Eurographics 2009 - Short Papers (Mu-
nich, Germany) (Pierre Alliez and Marcus Magnor, eds.), Eurographics Association, 2009,
pp. 61-64.

Yongning Zhu and Robert Bridson, Animating sand as a fluid, SIGGRAPH *05: ACM
SIGGRAPH 2005 Papers, 2005, pp. 965-972.

Yanci Zhang, Barbara Solenthaler, and Renato Pajarola, Adaptive sampling and rendering
of fluids on the GPU, Symposium on Point-Based Graphics, 2008, pp. 137-146.

	Abstract
	Zusammenfassung
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Objective
	Challenges
	Contribution
	Outline
	List of Publications

	Hardware Considerations
	Memory Hierarchy of Desktop Computers
	Programmable Graphics Hardware
	Data Structures
	The Rendering Pipeline

	Background
	The Visualization Pipeline
	Smoothed Particle Hydrodynamics (SPH)
	Theoretical Foundations
	Smoothing Kernels

	Principal Component Analysis
	Vector Quantization
	Volume Rendering
	Volume Rendering Integral
	Compositing
	Opacity Correction
	Classification

	Scalable Rendering of Large-Scale Cosmological Data Sets
	Introduction
	Contribution
	Related Work
	The Millennium Run
	Cosmological Particle Visualization
	Challenges
	Data Representation
	Multi-Resolution Hierarchy
	Level-of-Detail Selection
	Particle Thinning
	Attribute Compression

	Memory Management
	Disk Transfer
	Prefetching and Caching

	Rendering
	Particle Projection
	Performance Issues on the GPU

	Results and Analysis
	Data Representation
	Attribute Compression
	Performance Measurements

	Discussion
	Conclusion

	Efficient High-Quality Volume Rendering of SPH Data
	Introduction
	Contribution
	Related Work
	Perspective Grid
	Data Resampling
	Hierarchical Particle Representation
	Hierarchy Traversal
	GPU Particle Slicing

	Rendering
	Implementation Issues
	Grid Partitioning
	Occlusion Culling

	Results and Discussion
	Comparison to Other Techniques
	Efficient Approximation for Very Large Data Sets
	Conclusion and Future Work

	Motion Visualization in Large Particle Simulations
	Introduction
	Related Work
	Space-Time Hierarchy
	Error Estimation
	Particle Merging
	Hierarchy Generation
	Data Structures

	Rendering
	User Interaction
	Implementation Details

	Results
	Application to Non-Cosmological Data Sets
	SPH Fluid Dynamics
	Unsteady Vector Fields

	Conclusion and Future Work

	Conclusion
	Bibliography

