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Introduction

Systems in biology, physics and other sciences are frequently modelled by evolutionary
partial di�erential equations (PDEs). Many equations arising from mathematical physics
were extensively studied and are yet well-understood (see [69] or [42]). Within the past
decades, great interest arose in the modelling of biological systems and in new classes of
PDEs emerging from this �eld. Analysing the behaviour of these models often requires
new mathematical tools and ideas since the standard theory does not apply. A famous
example is the chemotaxis system (see [44]), which describes the dynamics of a bacterial
population in a spatial domain. The population follows the gradient of a chemotactic agent
that is produced by the population itself and moves towards regions where substrate con-
centrations are higher. This problem attracted many mathematicians and deep analytical
results were established.
Our focus lies on mathematical models that are formulated as systems of non-linear

parabolic PDEs. We aim at studying the qualitative behaviour of solutions by using meth-
ods from the theory of dynamical systems. Each particular problem requires to choose
appropriate function spaces and to prove the existence, uniqueness and continuous depen-
dence of solutions on initial data. Once the well-posedness of the model is established,
the time evolution of the system can be described in terms of semigroups acting in in�nite
dimensional spaces, or by evolution processes in the non-autonomous context. The central
motivation for our analysis are systems of quasi-linear parabolic PDEs arising in the math-
ematical modelling of bio�lms. The models describe the growth of spatially heterogeneous
bacterial bio�lm communities and are formulated as highly irregular density-dependent
reaction-di�usion equations. The governing equations for the biomass density exhibit two
degenerate di�usion e�ects simultaneously, which lead to di�culties in the analysis. Many
interesting mathematical questions arise since standard methods are not applicable and
new tools have to be applied to establish the well-posedness of the models.
Apart from proving the well-posedness of concrete mathematical models we are interested

in the qualitative behaviour of solutions. As in the models for the growth of bio�lms in
most biological applications the solutions describe non-negative quantities. It is therefore
essential for the mathematical model that solutions emanating from non-negative initial
data remain non-negative as long as they exists. Models that do not guarantee the posi-
tivity of solutions are not valid or break down for small values of the solution. Motivated
by the models describing the growth of bacterial bio�lm communities we are particularly
interested in systems of quasi-linear parabolic PDEs.
Another important qualitative aspect is the longtime behaviour of solutions. When we

consider a system of competing species it is an interesting problem if and which species will
persist, will become extinct or whether multiple species will coexist after transient states of
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Introduction

the system have passed. Since we are dealing with models that are formulated as systems of
PDEs the phase space of the generated dynamical system is in�nite dimensional. However,
the longtime dynamics can often be reduced to the dynamics on the global attractor. The
global attractor is an invariant, compact subset of the initially in�nite dimensional space
which attracts all solutions. The theory of attractors is well established in the context
of autonomous systems (see [5], [69] or [42]). However, time-dependent coe�cients in the
equations or random e�ects are signi�cant in various cases. In biological applications the
model parameters frequently depend on the life cycle of the involved species or daily or
seasonal changes in its behaviour. In other cases random �uctuations of the environment
should be taken into account. This leads to non-autonomous or random dynamical sys-
tems. The longtime behaviour and notion of attractors in the non-autonomous setting is
far more complex, not yet very well understood and currently an active �eld of research.

Overview

The thesis consists of three major parts. Mathematical models for the growth of bacterial
bio�lms are addressed in the �rst chapter. The main result is the well-posedness of a
mathematical model which describes a communication mechanism used by cells in growing
bio�lms to coordinate behaviour in groups. In Chapter 2 we formulate necessary and suf-
�cient conditions for the positivity of solutions of systems of parabolic PDEs. Our results
yield criteria for the positivity of solutions, which are easy to verify and allow to validate
mathematical models. First, deterministic systems are considered and then stochastic per-
turbations of semi-linear parabolic systems. Chapter 3 is devoted to exponential attractors
of in�nite dimensional dynamical systems placing emphasis on non-autonomous problems.
The central result is the construction of pullback exponential attractors for time continuous
evolution processes in Banach spaces. Parts of the thesis are contained in the articles [10],
[18], [31], [34] and [68].

Chapter 1

Mathematical Modelling of Bio�lms

Bio�lms are dense aggregations of microbial cells encased in a slimy extracellular matrix
forming on biotic or abiotic surfaces in aqueous surroundings and play an important role
in various �elds. They are bene�cially used in environmental engineering technologies, if
they form on implants and natural surfaces in the human body they can provoke bacterial
infections, and biofouling of industrial equipment can cause severe economic defects for
the industry. Mathematical models of bio�lms have been studied for several decades.
They range from traditional one-dimensional models describing bio�lms as homogeneous
�at layers, to more recent two- and three-dimensional bio�lm models that account for the
spatial heterogeneity of bio�lm communities. We study deterministic continuum models
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Introduction

on the meso-scale (50µm − 1mm), the actual bio�lm length scale. The bio�lm as well as
the aqueous surroundings are assumed to be continua.
The prototype of the models we address is a deterministic multidimensional bio�lm

growth model, which was �rst proposed in [24]. The model describes the growth of a
bacterial bio�lm community consisting of only one species, and is formulated as a highly
non-linear reaction-di�usion system for the volume fraction occupied by biomass M and
the concentration of the growth-controlling substrate S,

∂tS = dS∆S − k1
SM

k2 + S
, (0.1)

∂tM = dO · (DM(M)OM) + k3
MS

k2 + S
− k4M.

The main di�culty is to model the spatial spreading mechanism of biomass: Expansion
occurs locally only where and when the biomass density approaches values close to the
maximal possible cell density, and bio�lm and liquid surroundings are separated by a
sharp interface. While the substrate concentration satis�es a standard semi-linear parabolic
equation, the spatial spreading of biomass is described by the density-dependent di�usion
operator

O · (DM(M)OM) = O · ( Ma

(1−M)b
OM),

where a, b ≥ 1. The di�usion coe�cient exhibits a polynomial degeneracy which is well-
known from the porous medium equation and shows super di�usion. Both non-linear
di�usion e�ects are necessary to re�ect the experimentally observed characteristic growth
behaviour of bio�lms, and the highly irregular structure causes di�culties in the mathe-
matical analysis. The single-species single-substrate model was mathematically analysed
in [30], and the well-posedness of the model was established. Moreover, it was shown that
the generated semigroup possesses a global attractor.
Various applications require to take further bio�lm processes into account and to distin-

guish between multiple biomass components. The prototype bio�lm model was therefore
extended to reaction-di�usion systems involving several types of biomass and multiple dis-
solved substrates. The model introduced in [21] describes the di�usive resistance of bio�lms
against the penetration by antibiotics. In [45] an amensalistic bio�lm control system was
modelled, where a bene�cial bio�lm controls the growth of a pathogenic bio�lm. The
structure of the governing equations of the multi-species models di�ers essentially from
the mono-species model, and the analytical results for the prototype model could not be
carried over to the more involved multi-species case. In both articles, the model behaviour
was studied numerically and the existence of solutions was established. The question of
uniqueness of solutions, however, remained unanswered in both cases (see [21] and [45]).
Recently, another multi-component bio�lm model was proposed, that describes quorum-

sensing in growing bio�lm communities (see [40]). Quorum-sensing is a cell-cell commu-
nication mechanism used by bacteria to coordinate behaviour in groups. The model was
studied by numerical experiments, but analytical aspects were not addressed. It com-
prises a similar structure as the previous multi-component models [21] and [45], and is
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formulated as a non-linear reaction-di�usion system for the volume fractions occupied by
up-regulated and down-regulated biomass, X and Y , the concentration of the growth lim-
iting substrate S and the concentration of the signalling molecule A, which regulates the
process of quorum-sensing,

∂tS = dS∆S − k1
SM

k2 + S
,

∂tA = dA∆A− γA+ αX + (α + β)Y, (0.2)

∂tX = dO · (DM(M)OX) + k3
XS

k2 + S
− k4X − k5A

mX + k5Y,

∂tY = dO · (DM(M)OY ) + k3
Y S

k2 + S
− k4Y + k5A

mX − k5Y,

where M = X + Y denotes the volume fraction of the total biomass. Compared to the
previous multicomponent models the particularity of the quorum-sensing model is that
adding the governing equations for the involved biomass components we recover exactly
the mono-species bio�lm model (0.1). Taking advantage of the known results for the
prototype model we are able to prove the existence and uniqueness of solutions and its
continuous dependence on initial data. The main result in Chapter 1 is the well-posedness
of the quorum-sensing model and formulated in Theorem 1.4.

Theorem. There exists a unique weak solution of the quorum-sensing model (0.2), and
the solution depends continuously on the initial data.

In particular, it is the �rst time the uniqueness of solutions is established for multi-species
reaction-di�usion models that extend the single-species bio�lm model (0.1). Moreover, we
improve previous regularity results for the solutions.

Chapter 2

Verifying Mathematical Models

The models for the growth of bacterial bio�lm populations in Chapter 1 are formulated as
systems of quasi-linear parabolic PDEs. The solutions describe the densities of biomass
components and the concentrations of dissolved substrates and consequently, non-negative
quantities. This is indeed the case in various applications modelled by convection-di�usion-
reaction equations since the solutions of biological, physical or chemical models typically
represent population densities, pressure, temperature or concentrations of nutrients and
chemicals. Thus, it is an important property of the mathematical model that solutions
emanating from non-negative initial data remain non-negative as long as they exist. Mod-
els that do not preserve the positivity of solutions are not valid. For scalar parabolic equa-
tions the non-negativity of solutions emanating from non-negative initial data is a direct
consequence of the maximum principle. However, for systems of equations the maximum
principle is not valid.
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A general criterion for the positivity of solutions of semi-linear systems of reaction-
di�usion-convection equations was formulated in [23]. Explicit necessary and su�cient
conditions were obtained, that are easy to verify, and allow to validate mathematical
models. Motivated by the class of PDEs arising in the modelling of bio�lms we aim at
generalizing the previous result for systems of quasi-linear reaction-di�usion-convection
equations. For semi-linear systems, the di�usion and convection matrices are necessarily
diagonal, while the quasi-linear case is essentially di�erent. Here, cross-di�usion and cross-
convection terms are allowed, however, the matrices are of a very particular form. For
quasi-linear systems of the form∂tu1

.

.

.

∂tuk

 =

a11(u) · · · a1k(u)
.

.

.

.

.

.

ak1(u) · · · akk(u)


∆u1

.

.

.

∆uk

+
n∑
l=1

γ
l
11(u) · · · γl1k(u)

.

.

.

.

.

.

γlk1(u) · · · γlkk(u)


∂xlu1

.

.

.

∂xluk

+

f1(u)
.

.

.

fk(u)


we obtain the following positivity criterion (see Theorem 2.3 in Chapter 2).

Theorem. The system of quasi-linear parabolic equations preserves positivity if and only
if the interaction term f satis�es

fi(y1, . . . , 0︸︷︷︸
i

, . . . , yk) ≥ 0 for y ∈ Rk, y ≥ 0, (0.3)

and the di�usion and convection matrices ful�l

aij(y1, . . . , 0︸︷︷︸
i

, . . . , yk) = γlij(y1, . . . , 0︸︷︷︸
i

, . . . , yk) = 0 for y ∈ Rk, y ≥ 0

for all i 6= j, 1 ≤ i, j ≤ k and 1 ≤ l ≤ n.

The theorem characterizes the class of quasi-linear parabolic systems that preserve the
positivity of solutions and yields explicit necessary and su�cient conditions that are easy
to verify in applications. In particular, the conditions on the matrices a and γ enforce a
particular form of the matrices and we observe that if one component of the solution ap-
proaches zero, all cross-di�usion and cross-convection terms in the corresponding equation
need to vanish. From the positivity criteria for semi-linear and quasi-linear parabolic sys-
tems we derive necessary and su�cient conditions for the validity of comparison theorems.
For quasi-linear systems it is remarkable that the conditions for the validity of comparison
principles are signi�cantly stronger than the conditions for the positivity of solutions. In
fact, all di�usion and convection matrices are necessarily diagonal and no cross-di�usion
or cross-convection terms can appear.

The second part of Chapter 2 addresses stochastic perturbations of deterministic systems.
Our aim is to characterize the class of stochastic perturbations that preserve the positivity
property of deterministic systems of parabolic PDEs. Even for scalar ordinary di�erential
equations (ODEs) it is well-known that additive noise destroys the positivity of solutions
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while perturbations by a linear multiplicative noise preserve the positivity property of the
unperturbed deterministic problem.
We interpret the stochastic di�erential equations in the sense of Itô and consider stochas-

tic perturbations of semi-linear parabolic systems of the form

du1
...
duk

 =


−A

1u1
...

−Akuk

+

f1(u)
...

fk(u)


 dt+

∞∑
j=1

qj

g
1
j (u)
...

gkj (u)

 dW i
t , (0.4)

where Ai, i = 1, . . . , k, are linear elliptic di�erential operators of second order. We denote
the system of stochastic PDEs by (f, g), and the corresponding unperturbed deterministic
system by (f, 0). By the deterministic positivity criterion for semi-linear systems we con-
clude that the unperturbed system (f, 0) preserves the positivity of solutions if and only
if the interaction function f satis�es Property (0.3).
To study the systems of stochastic partial di�erential equations (SPDEs) we consider

smooth random approximations, since random equations can be interpreted pathwise and
allow to apply deterministic methods. The approximations lead to a family of non-
autonomous PDEs, and the solutions of the random approximations converge in expec-
tation to the solution of a modi�ed stochastic system. However, the original and the
modi�ed stochastic system are related through an explicit transformation. This allows to
construct an auxiliary stochastic system (F, g) such that the solutions of the associated
random approximations (Fε,ω, 0) converge to the solution of the original stochastic system
(f, g). Using the deterministic result we derive necessary and su�cient conditions for the
positivity of solutions of the random approximations. These conditions are explicit and
preserved when passing to the limit. Moreover, they are invariant under the transformation
relating the original and the modi�ed stochastic system, which implies that the solutions
of the stochastic system (f, g) preserve positivity. Finally, we observe that the solutions of
the random approximations (fε,ω, 0) associated to the stochastic system (f, g) converge to
the solution of the original stochastic system if it is interpreted in the sense of Stratonovich.
Our results are therefore valid independent of the choice of interpretation, and we obtain
the following positivity criterion for stochastic systems (see Theorem 2.10 in Chapter 2).

Theorem. Let (f, g) be a system of stochastic PDEs and (Fε,ω, 0) be the family of random
approximations such that its solutions converge to the solution of the stochastic system
(f, g). The solutions of the family of random approximations (Fε,ω, 0) preserve positiv-
ity if and only if the interaction function f satis�es Condition (0.3), and the stochastic
perturbation ful�ls

gij(y1, . . . , 0︸︷︷︸
i

, . . . , ym) = 0 for y ∈ Rk, y ≥ 0,

for all j ∈ N, i = 1, . . . , k.
These conditions imply that the stochastic system (f, g) preserves positivity for both Itô's

and Stratonovich's interpretation.
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If one component of the solution approaches zero, the stochastic perturbations in the
corresponding equation need to vanish. Otherwise, the positivity of solutions cannot be
guaranteed. In the particular case of scalar equations we recover the fact that positivity
is preserved under perturbations by multiplicative noise while additive noise destroys the
positivity of solutions.

Chapter 3

Exponential Attractors of In�nite Dimensional Dynamical Systems

Systems of parabolic PDEs generate in�nite dimensional dynamical systems, and the time
evolution of autonomous systems can be described in terms of semigroups. A semigroup
in a metric space X is a family of continuous operators S(t) : X → X, t ≥ 0, that satis�es
the properties

S(t)S(s) = S(t+ s) t, s ≥ 0,

S(0) = Id.

An important qualitative aspect is the behaviour of the system after transient states have
passed. In many cases the longtime dynamics of semigroups is reduced to the dynamics
on the global attractor. The global attractor is a compact, invariant subset of the phase
space that attracts all solutions, and for large times the states of the system are well-
approximated by the states within the global attractor. The global attractor is unique and
the minimal closed subset that attracts all bounded sets of the phase space. Moreover, for
various equations it was shown that the fractal dimension of the global attractor is �nite
(see [69] or [12]). When time tends to in�nity the initially in�nite dimensional dynamics
is then in a certain sense reduced to �nite dimensions.
The rate of convergence however can be arbitrarily slow, and the global attractor is

generally not stable under perturbations. To overcome these drawbacks, the notion of
an exponential attractor was introduced in [26] proposing to consider a larger set, which
contains the global attractor, is still �nite dimensional and attracts all bounded subsets at
an exponential rate. Exponential attractors are only semi-invariant under the action of the
semigroup and consequently, not unique. The construction of exponential attractors in [26]
was developed for semigroups acting in Hilbert spaces. In [33] an alternative method and
explicit algorithm for the construction of exponential attractors was proposed for discrete
semigroups in Banach spaces. The construction essentially uses a smoothing or regularizing
property of the semigroup and is the basis of our results. In the �rst part of Chapter 3
we recall the construction of exponential attractors for semigroups and generalize previous
results.
While the theory of global and exponential attractors of autonomous dynamical systems

is well-established, its counterpart in the non-autonomous setting is less developed and less
understood. The solutions of non-autonomous problems do not only depend on the elapsed
time, but also on the starting time. The rule of time evolution of non-autonomous systems
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is therefore described by a two-parameter family of operators. An evolution process is a
family of continuous operators U(t, s) : X → X, t ≥ s, such that

U(t, s)U(s, r) = U(t, r) t ≥ s ≥ r,

U(t, t) = Id t ∈ R.

Di�erent concepts were proposed to extend the de�nition of global attractors of semigroups
to the non-autonomous setting. We focus on the notion of pullback attractors which proved
to be a useful tool to study the longtime dynamics of evolution processes.
Global non-autonomous attractors have the same drawbacks as global attractors of semi-

groups, which motivates to consider non-autonomous exponential attractors. The construc-
tion of autonomous exponential attractors was extended in [32] to discrete non-autonomous
problems by using the concept of forwards attractors. Recently, the method was modi�ed
considering the pullback approach and the construction was generalized for time continu-
ous evolution processes in [19] and [49]. The methods in [19] and [49] are similar, require
strong regularity assumptions for the process and restrictive assumptions with respect to
the pullback attraction. We modify the construction, generalize it for asymptotically com-
pact processes and consider, instead of a �xed bounded pullback absorbing set, a family of
time-dependent absorbing sets. This leads to exponential pullback attractors that are not
necessarily uniformly bounded in the past, which is important when considering random
attractors or unbounded non-autonomous terms in the equation. Theorem 3.10 contains
the central result of Chapter 3.

Theorem. Let {U(t, s)| t ≥ s} be a Lipschitz continuous evolution process in the Banach
space V , and W be a normed space such that the embedding V ↪→↪→ W is compact and
dense. We assume U = C+S, where the family of operators C is a strict contraction in V ,
and S satis�es the smoothing property with respect to the spaces V and W . If there exists
a semi-invariant family of bounded pullback absorbing sets for the evolution process U , the
absorbing times are bounded in the past and the diameter of the absorbing sets grows at
most sub-exponentially in the past, then there exists a pullback exponential attractor, and
the fractal dimension of its sections is uniformly bounded.

We also discuss the consequences of our construction when applied to autonomous evolu-
tion processes. For time continuous semigroups the method does not yield an exponential
attractor in the strict sense but leads to a slightly weaker concept.
The existence of pullback exponential attractors implies the existence of the global pull-

back attractor and its �nite dimensionality. We remark that the �nite fractal dimension
of pullback attractors that are unbounded in the past was an open problem (see [49] and
[50]). In the �nal section of Chapter 3 we consider applications for our theoretical results
and obtain an example for an unbounded pullback attractor of �nite fractal dimension.
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1. Mathematical Modelling of

Bio�lms

The dominant mode of microbial life in aquatic ecosystems are bio�lm communities rather
than planktonic cultures ([6]). Bio�lms are dense aggregations of microbial cells encased
in a slimy extracellular matrix forming on biotic or abiotic surfaces (called substrata)
in aqueous surroundings. Such multicellular communities are a very successful life form
and able to tolerate harmful environmental impacts that would eradicate free �oating
individual cells ([16], [57]). Whenever environmental conditions allow for bacterial growth,
microbial cells can attach to a substratum and switch to a sessile life form. They start to
grow and divide and produce a gel-like layer of extracellular polymeric substances (EPS)
often forming complex spatial structures (see Figure 1.1). The self-produced EPS yields
protection and allows survival in hostile environments. For example, the mechanisms of
antibiotic resistance in bio�lm cultures are essentially di�erent from those of free swimming
cells, which makes it di�cult to eradicate bacterial bio�lm infections. The EPS retards
di�usion of antibiotics and the antibiotic agents fail to penetrate into the inner cores of
the bio�lm ([16], [57], [21]).

Figure 1.1.: The Formation of Bio�lms (Montana State University, Center for Bio�lm En-
gineering, 1995.)

Bio�lms play an important role in various �elds. They are bene�cially used in envi-
ronmental engineering technologies for groundwater protection and wastewater treatment.
However, in most occurrences bio�lm formations have negative e�ects. If they form on
implants and natural surfaces in the human body they can provoke bacterial infections
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such as dental caries and otitis media ([16]). Bio�lm contamination can lead to health
risks in food processing environments, and biofouling of industrial equipment or ships can
cause severe economic defects for the industry ([21], [68]).
Mathematical models of bio�lms have been studied for several decades. They range

from traditional one-dimensional models that describe bio�lms as homogeneous �at lay-
ers, to more recent two- and three-dimensional bio�lm models that account for the spatial
heterogeneity of bio�lm communities. A variety of mathematical modelling concepts has
been suggested, including discrete stochastic particle based models and deterministic con-
tinuum models, that are based on the description of the mechanical properties of bio�lms
([25], [68]). We are concerned with the latter, where bio�lm and liquid surroundings are
assumed to be continua, and its time evolution is governed by deterministic partial dif-
ferential equations. The �rst continuum model [72] was a one-dimensional bio�lm growth
model and essentially based on the assumption of the bio�lm as a homogeneous �at layer.
Such models serve well for engineering applications on the macro-scale (larger than 1cm)
are however not capable to predict the often highly irregular spatial structure of microbial
populations and the behaviour of bio�lms on the meso-scale (between 50µm and 1mm),
the actual length scale of mature bio�lms ([25]). Bio�lms can form mushroom-like caps
and contain clusters and channels, where substrates can circulate. Cells in di�erent regions
of the bio�lm live in diverse micro-environments and exhibit di�ering behaviour ([16]).
To capture the spatial heterogeneity of bio�lms a higher dimensional bio�lm growth

model was proposed in [24], which is based on the interpretation of a bio�lm as a continuous,
spatially structured microbial population. The essential di�culty is the modelling of the
spatial spreading mechanism of biomass. The following characteristics of bio�lms have
been observed in experiments ([24]):

(i) The biomass density is bounded by a known maximum value.

(ii) Spatial spreading only takes place where the local biomass density approaches values
close to its maximum possible value. In regions where the biomass density is low
spatial spreading does not occur.

(iii) Bio�lm and aqueous surroundings are separated by a sharp interface.

The mathematical model is formulated as a system of highly non-linear reaction-di�usion
equations for the biomass density and concentration of a growth limiting nutrient and is
the prototype of the bio�lm models we discuss in this chapter. While the substrate concen-
tration satis�es a standard semi-linear reaction-di�usion equation the governing equation
for the biomass density exhibits two non-linear di�usion e�ects. The biomass di�usion
coe�cient degenerates like the porous medium equation and shows super di�usion, which
causes di�culties in the mathematical analysis of the model. It was shown by numerical
experiments that the model is capable to predict the heterogeneous spatial structure of
bio�lms and is in good agreement with experimental �ndings ([24]). In [30] and [28] the
model was studied analytically. In particular, the existence and uniqueness of solutions
could be established.
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1.1. Prototype Bio�lm Growth Model

The prototype single-species single-substrate model was extended to model bio�lms
which consist of several types of biomass and account for multiple dissolved substrates.
The model introduced in [21] describes the di�usive resistance of bio�lms against the pen-
etration by antibiotics. In [45] an amensalistic bio�lm control system was modelled, where
a bene�cial bio�lm controls the growth of a pathogenic bio�lm. In both articles, existence
proofs for the solutions were given, and numerical studies were presented. The structure of
the governing equations of the multi-species models is similar, however, it di�ers essentially
from the mono-species model. The analytical results for the prototype model could not
all be carried over to the more involved multi-species case. For example, the question of
uniqueness of solutions remained unanswered in [21] and [45]. Recently, in [40] another
multi-component bio�lm model was proposed, which combines the prototype model [24]
with the mathematical model of quorum-sensing for suspended populations [55]. Quorum-
sensing is a cell-cell communication mechanism used by bacteria to coordinate behaviour in
groups. The model behaviour was studied by numerical experiments in [40], but analytical
questions were not addressed. Compared to the previous multicomponent bio�lm mod-
els, the particularity of the quorum-sensing model is, that adding the governing equations
for the involved biomass components we recover exactly the mono-species bio�lm model.
Taking advantage of the known results for the prototype model we are able to prove the
existence and uniqueness of solutions of the quorum-sensing model and the continuous de-
pendence of solutions on initial data. It is the �rst time that a uniqueness result is obtained
for multi-species reaction-di�usion models of bio�lms that extend the single-species model
[24].
In Section 1.1 we introduce the prototype bio�lm growth model and summarize known

analytical results. Multi-component bio�lm models are addressed in Section 1.2. We �rst
mention multi-species models that were studied analytically and recall previous existence
results for the solutions. In Section 1.2.2 we present the quorum-sensing model, which is
the central subject of this chapter. The main result is the proof of the well-posedness of
the model, that we establish in Section 1.3. The existence proof is based on ideas and
concepts that were applied for the models [21] and [45], but we obtain stronger regularity
results for the solutions. The new approach allows us to show the uniqueness of solutions,
which remained open for all previous multi-component models. In Section 1.3.4 we present
numerical simulations to illustrate the model behaviour.

1.1. Prototype Bio�lm Growth Model

1.1.1. Mathematical Model

The multi-dimensional bio�lm growth model (see [24] and [30]) is formulated as a non-
linear reaction-di�usion system for the biomass density and the concentration of the growth
controlling nutrient in a bounded domain Ω ⊂ Rn, where n ∈ {1, 2, 3}. The boundary of
the domain ∂Ω is piecewise smooth. In dimensionless form the substrate concentration S is
scaled with respect to the bulk concentration, and the biomass density is normalized with
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Figure 1.2.: Bio�lm Domain

respect to the maximal bound for the cell density. Consequently, the dependent model
variable M represents the volume fraction occupied by biomass. The EPS is implicitly
taken into account, in the sense that the biomass volume fraction M describes the sum of
biomass and EPS assuming that their volume ratio is constant. Both unknown functions
depend on the spatial variable x ∈ Ω and time t ≥ 0, and satisfy the parabolic system

∂tS = dS∆S − k1
SM

k2 + S
in QT ,

∂tM = dO · (DM(M)OM) + k3
SM

k2 + S
− k4M in QT , (1.1)

M |∂Ω = 0, S|∂Ω = 1 on ∂Ω× [0, T ],

M |t=0 = M0, S|t=0 = S0 in Ω× {0},

where T > 0 and QT := Ω×]0, T [ is the parabolic cylinder. Furthermore, ∆ denotes the
Laplace operator and O the gradient operator with respect to the spatial variable x. The
constants d, dS and k2 are positive, and k1, k3 and k4 are non-negative.
The solid region occupied by the bio�lm as well as the liquid surroundings are assumed to

be continua. The actual bio�lm is described by the region Ω2(t) := {x ∈ Ω | M(x, t) > 0},
and the liquid area by Ω1(t) := {x ∈ Ω | M(x, t) = 0}. The substratum, on which the
bio�lm grows, is part of the boundary ∂Ω as illustrated in Figure 1.2.
Biomass is produced due to the consumption of nutrients. This process is described by

the Monod interaction functions

k3
SM

k2 + S
and − k1

SM

k2 + S
,

where k3 denotes the maximum speci�c growth rate, and k2 is the Monod half saturation
constant. The constant k1 is the maximum speci�c consumption rate. Natural cell death
is also included in the model and described by the lysis rate k4 in the equation for the
biomass fraction.
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While the nutrient is dissolved in the domain and the substrate concentration S satis-
�es a standard semi-linear reaction-di�usion equation, the spatial spreading of biomass is
determined by the density-dependent di�usion coe�cient

DM(M) =
Ma

(1−M)b
a, b ≥ 1.

The biomass motility constant d > 0 is small compared to the di�usion coe�cient dS of
the dissolved substrate, which re�ects that the cells are to some extent immobilized in
the EPS matrix. Accumulation of biomass leads to spatial expansion of the bio�lm. We
observe that the biomass di�usion coe�cient vanishes when the total biomass approaches
zero and blows up when the biomass density tends to its maximum value. The polynomial
degeneracyMa is well-known from the porous medium equation and guarantees that spatial
spreading is negligible for low values of M . Moreover, it yields the separation of bio�lm
and liquid phase, that is, a �nite speed of interface propagation. Spreading of biomass
only takes place when and where the biomass fraction takes values close to its maximal
possible value. For M = 1 instantaneous spreading occurs, which is known as the e�ect
of super di�usion. The singularity at M = 1 ensures the maximal bound for the biomass
density. Since biomass is produced as long as nutrients are available, this upper bound
cannot be guaranteed by the growth terms alone. In fact, both non-linear di�usion e�ects
are required to describe spatial expansion of bio�lms. The degeneracy Ma alone does not
yield the maximum bound for the cell density, while the singularity (1 −M)−b does not
guarantee the separation of bio�lm and liquid region by a sharp interface.

1.1.2. Analytical Results

A solution theory for System (1.1) was developed in [30]. Owing to the normalization we
require that the initial data ful�l S0,M0 ∈ L∞(Ω) and

0 ≤ S0 ≤ 1, 0 ≤M0 ≤ 1 a.e. in Ω. (1.2)

The corresponding solutions S(t) := S(·, t;S0) and M(t) := M(·, t;M0) should certainly
satisfy the same bounds for t > 0. We summarize all relevant properties of the solutions
of the mono-species model, which will later be needed to prove the well-posedness of the
quorum-sensing model. The following theorem states the existence and regularity results
for the solutions (see Theorem 3.1 in [30]).

Theorem 1.1. We assume the initial data satis�es
S0 ∈ L∞(Ω) ∩H1(Ω), S0|∂Ω = 1,

M0 ∈ L∞(Ω), F (M0) ∈ H1
0 (Ω), ‖M0‖L∞(Ω) < 1,

0 ≤ S0 ≤ 1, 0 ≤M0 a.e. in Ω,

(1.3)

where the function F (v) :=
∫ v

0
za

(1−z)bdz, for 0 ≤ v < 1. Then, there exists a unique solution

(S,M) satisfying System (1.1) in the sense of distributions, and the solution belongs to the
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class 
M,S ∈ L∞(Ω× R+) ∩ C(R+;L2(Ω)),

F (M), S ∈ L∞(R+;H1(Ω)) ∩ C(R+;L2(Ω)),

‖M‖L∞(Ω×R+) < 1,

0 ≤ S,M ≤ 1 a.e. in Ω× R+.

(1.4)

Furthermore, the following estimates hold

‖S(t)‖2
H1(Ω) + ‖F (M(t))‖2

H1(Ω) ≤ C(‖S0‖2
H1(Ω) + ‖F (M0)‖2

H1(Ω) + 1),

‖S(t)‖2
H1(Ω) + ‖∂tS(t)‖2

H−1(Ω) + ‖F (M(t))‖2
H1(Ω) + ‖M(t)‖2

Hs(Ω) + ‖∂tM(t)‖2
H−1(Ω)

≤ C(1 +
1

tκ
),

for t > 0 and some constants C ≥ 0, 0 < s < 1
a+1

and κ ≥ 1. The constants are
independent of the initial data (S0,M0).

Moreover, it was shown that the solutions of System (1.1) are L1(Ω)-Lipschitz continuous
with respect to initial data. The following result recalls Theorem 3.2 in [30].

Proposition 1.1. Let (S,M) and (S̃, M̃) be two solutions of System (1.1) corresponding

to initial data (S0,M0), (S̃0, M̃0) respectively, and the initial data satisfy the assumptions
of the previous theorem. Then, the following estimate holds

‖S(t)− S̃(t)‖L1(Ω) + ‖M(t)− M̃(t)‖L1(Ω) ≤ e(k1+k2+k3)t
(
‖S0 − S̃0‖L1(Ω) + ‖M0 − M̃0‖L1(Ω)

)
for t ≥ 0. In particular, the solution is unique within the class (1.4).

The solution of the original system is obtained as the limit of solutions of regular ap-
proximations. For small ε > 0 we de�ne the non-degenerate auxiliary system for the
single-species model (1.1) by

∂tS = dS∆S − k1
SM

k2 + S
in QT ,

∂tM = dO · (Dε,M(M)OM) + k3
SM

k2 + S
− k4M in QT , (1.5)

M |∂Ω = 0, S|∂Ω = 1 on ∂Ω× [0, T ],

M |t=0 = M0, S|t=0 = S0 in Ω× {0},

where the regularized di�usion coe�cient is de�ned as

Dε,M(z) :=


εa z < 0

(z+ε)a

(1−z)b z ≤ 1− ε
1
εb

z ≥ 1− ε.
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For every (su�ciently small) ε > 0 the auxiliary system (1.5) is regular parabolic and
possesses a unique smooth solution (Sε,Mε). The solutions are uniformly bounded with
respect to the regularization parameter ε > 0, and if the initial data satis�es the assump-
tions of Theorem 1.1, the approximate solutions Mε are separated from the singularity
(see Proposition 1 and Proposition 6 in [30]). We summarize the auxiliary results in the
following proposition.

Proposition 1.2. If the initial data (S0,M0) satis�es the assumptions of Theorem 1.1 and

‖M0‖L∞(Ω) = 1− δ for some 0 < δ < 1,

then, there exists 0 < η < 1 such that for all su�ciently small ε > 0 the solutions (Sε,Mε)
of the non-degenerate approximations (1.5) satisfy

‖Mε(t)‖L∞(Ω) ≤ 1− η for t ≥ 0,

where the constant η depends on δ and Ω only and is independent of ε > 0. Furthermore,
the substrate concentrations are uniformly bounded,

0 ≤ Sε ≤ 1 in Ω× R+.

Proposition 1.2 remains valid for the solution (S,M) of the original system (1.1), which
is the limit of the solutions of the regular approximations in Cloc(R+;L2(Ω)) when ε tends
to zero,

Sε → S, Mε →M strongly in Cloc(R+;L2(Ω)).

Consequently, the biomass density does not attain the singularity as long as the initial
concentration does not take this value. For further details and all proofs we refer to [30].

1.2. Multicomponent Bio�lm Models

1.2.1. Antibiotic Disinfection of Bio�lms

The prototype bio�lm growth model presented in the previous section was extended to
incorporate further bio�lm processes. This requires to distinguish di�erent types of biomass
and to include governing equations for multiple biomass fractions and several dissolved
substrates in the model. We discuss in this section multi-species models, that were studied
analytically.
The �rst multi-species multi-substrate generalization of the prototype model (1.1) was

suggested in [23]. In [21] existence results for the solutions were established and numer-
ical simulations were presented. The model describes a growing bio�lm community and
its disinfection by antimicrobial agents. The dependent model variables are the volume
fraction occupied by active biomass X, the volume fraction occupied by inert biomass Y ,
the concentration of the dissolved oxygen S, which controls the growth of the biomass, and
the concentration of the antimicrobial agent B, which regulates the disinfection process.
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As previously, the EPS is implicitly taken into account and we denote the total biomass
fraction by M := X + Y . In dimensionless form the model is represented by the parabolic
system

∂tS = dS∆S − k1
SX

k2 + S
in QT ,

∂tB = dB∆B − ζ1BX in QT , (1.6)

∂tX = dO · (DM(M)OX) + k3
SX

k2 + S
− k4X − ζ2BX in QT ,

∂tY = dO · (DM(M)OY ) + ζ2BX in QT ,

where we use the same notations as in Section 1.1.1. The additional constants ζ1 and ζ2 are
positive, and dB > 0 denotes the di�usion coe�cient of the antimicrobial agent. Apart from
the di�usion of the dissolved substrates and the growth and spatial spreading of biomass
the mechanism of disinfection is included in the model. During this process antibiotic
agents are consumed and active biomass is directly converted into inert biomass, which
is determined by the disinfection parameters ζ1 and ζ2. In the absence of antimicrobial
agents and inert biomass, the model reduces to the single species bio�lm growth model
(1.1).
In the article [21] the following boundary and initial values were assumed for the depen-

dent model variables

X|∂Ω = 0, Y |∂Ω = 0, S|∂Ω = Sr, B|∂Ω = Br on ∂Ω× [0, T ],

X|t=0 = X0, Y |t=0 = Y0, S|t=0 = S0, B|t=0 = B0 in Ω× {0}.

The non-negative functions Br and Sr belong to the class L∞(∂Ω), and the initial data
satisfy X0, Y0, S0, B0 ∈ L∞(Ω),

0 ≤ X0, 0 ≤ Y0, 0 ≤ B0, 0 ≤ S0 ≤ 1 a.e. in Ω,

‖X0 + Y0‖L∞(Ω) < 1.

De�nition 1.1. We call the vector of functions (S,B,X, Y ) a solution of System (1.6), if

S(·, t), B(·, t), X(·, t), Y (·, t) ∈ L∞(Ω) t ≥ 0,

and it satis�es System (1.6) in distributional sense.

The following theorem yields the existence of solutions (see Theorem 2.3 in [21]).

Theorem 1.2. If the initial data satis�es the stated assumptions, System (1.6) possesses
a global solution in the sense of De�nition 1.1, and the solution belongs to the space

S,B,X, Y ∈ L∞(Ω× R+).
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The solution is obtained as the limit of solutions of non-degenerate approximations for
System (1.6). The regular parabolic auxiliary systems are the systems, where the di�usion
coe�cient DM in the equations for the biomass fractions is replaced by the regularized
di�usion coe�cient Dε,M , which was de�ned in Section 1.1.2.
The model of an amensalistic bio�lm control system [45] possesses a very similar structure

as the model of antibiotic disinfection. The existence of solutions in the sense of De�nition
1.1 was established by similar methods (see Theorem 3.3 in [45]). Since the pattern of the
multi-component bio�lm models is essentially di�erent from the prototype model, and the
equations are strongly coupled through the di�usion operators, the known results for the
single-species model could not be carried over. The behaviour of the solutions was studied
by numerical simulations in [21] and [45], but further analytical results were not obtained.
In particular, the question of uniqueness of solutions remained unanswered in both cases.

1.2.2. Quorum-Sensing in Patchy Bio�lm Communities

In this section we introduce a multicomponent bio�lm model, which takes the process of
quorum-sensing into account. The mechanism and bene�t of quorum-sensing is not yet
very well-understood, and there exist di�erent biological theories and interpretations (see
[43], [59]). It is currently an active �eld of research in experimental microbiology as well
as in mathematical and theoretical biology, primarily for planktonic bacterial populations
but also in the context of bio�lms. Quorum-sensing is a cell-cell communication mecha-
nism used by bacteria to coordinate gene expression and behaviour in groups. Bacteria
constantly produce low amounts of signalling molecules that are released into the envi-
ronment. Accumulation of autoinducers triggers a response by the cells and since the
producing cells respond to their own signals the molecules are also called autoinducers
([55], [43]). When the concentration of autoinducers locally passes a certain threshold, the
cells are rapidly induced, and switch from a so-called down-regulated to an up-regulated
state. In an up-regulated state they typically produce the signalling molecule at a highly
increased rate ([40]).
The quorum-sensing model was originally proposed in [40], where in numerical sim-

ulations the contribution of environmental hydrodynamics to the transport of signalling
molecules and its e�ect on inter-colony communication and up-regulation was studied. An-
alytical aspects of the model were not addressed. It extends the prototype bio�lm growth
model and combines it with a model for quorum-sensing in planktonic cultures, which was
suggested in [55].
A mathematical description of quorum-sensing in bio�lms requires to distinguish two

types of bacteria, the up-regulated and the down-regulated cells, and to include a mech-
anism provoking cells to switch between these two states. The dependent model variable
X denotes the volume fraction occupied by down-regulated biomass and Y the volume
fraction occupied by up-regulated biomass, where the EPS is implicitly taken into account.
The dependent variable A re�ects the concentration of the signalling molecule, and S the
concentration of the growth controlling substrate. In dimensionless form the model is
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represented by the parabolic system

∂tS = dS∆S − k1
SM

k2 + S
in QT ,

∂tA = dA∆A− γA+ αX + (α + β)Y in QT , (1.7)

∂tX = dO · (DM(M)OX) + k3
XS

k2 + S
− k4X − k5A

mX + k5Y in QT ,

∂tY = dO · (DM(M)OY ) + k3
Y S

k2 + S
− k4Y + k5A

mX − k5Y in QT ,

where we use the same notations as in Section 1.1.1 (see [40] and [68]). The constants dA
and γ are positive, m ≥ 1 and α, β and k5 are non-negative. The total biomass fraction
M = X+Y denotes the volume fraction occupied by up-regulated or down-regulated cells.
Since the biomass components are normalized with respect to the physically maximal

possible cell density, the total biomass fraction should satisfy M = X + Y ≤ 1 in QT .
The actual bio�lm is described by the region Ω2(t) := {x ∈ Ω| M(x, t) > 0}, and the
liquid surroundings by the region Ω1(t) := {x ∈ Ω| M(x, t) = 0}. The autoinducer
concentration A is normalized with respect to the threshold concentration for induction,
and consequently, induction occurs locally in the bio�lm if A reaches approximately 1 from
below. If the concentration A locally decreases from a value larger than 1 to a value below
1, down-regulation at constant rate k5 will dominate. Finally, the substrate concentration
S is normalized with respect to a characteristic value for the system, such as the nutrient
concentration at the boundary of the domain.
Under the hypothesis that induction switches the cells between down- and up-regulated

states without changing their growth behaviour we can assume that the spatial spreading of
both biomass fractions is described by the same di�usion operator. The biomass motility
constant d > 0 is small compared to the di�usion coe�cients dS > 0 and dA > 0 of
the dissolved substrates. Apart from the spatial spreading of biomass and the di�usive
transport of signalling molecules and nutrients the following processes are included in the
model:

• Up-regulated and down-regulated biomass is produced due to the consumption of
nutrients. This mechanism is described by Monod reaction terms, where the constant
k3 re�ects the maximum speci�c growth rate, and k2 the Monod half saturation
constant. The constant k1 is the maximum speci�c consumption rate.

• Natural cell death is included in the model and described by the lysis rate k4. This ef-
fect can be dominant compared to cell growth, if the substrate concentration becomes
su�ciently low.

• The signalling molecules decay abiotically at rate γ.

• Due to an increase of the autoinducer concentration A down-regulated cells are con-
verted into up-regulated cells at rate k5A

m. In applications for the degree of poly-
merization m we typically take values 2 < m < 3 (see [40] and [68]). Up-regulated
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1.3. Well-Posedness of the Quorum-Sensing Model

cells are converted back into down-regulated cells at constant rate k5. If the molecule
concentration A < 1 the latter e�ect dominates, if A > 1 up-regulation is super-
linear.

• Finally, down-regulated cells produce the signalling molecule at rate α, while up-
regulated cells produce it at the increased rate α+ β, where β is one order of magni-
tude larger than α. For technical reasons, we require in the analysis α+ β > γ; that
is, the signalling molecule production rate of the up-regulated cells is higher than the
abiotic decay rate. This is not a severe model restriction; if the opposite was true no
noteworthy accumulation of signalling molecules could take place.

In the following section we specify initial and boundary values for the biomass fractions
and substrate concentrations to complete the model (1.8) and prove the well-posedness of
the mathematical model.

1.3. Well-Posedness of the Quorum-Sensing Model

Compared to previous multicomponent bio�lm models, the particularity of the quorum
sensing model is, that adding the governing equations for the biomass fractions of up- and
down-regulated cells we recover exactly the mono-species bio�lm model. Taking advantage
of the results for the single-species model we are able to prove the existence and uniqueness
of solutions of the quorum-sensing model and the continuous dependence of solutions on
initial data. It is the �rst time that a uniqueness result is obtained for multi-species
di�usion-reaction models of bio�lms that extend the prototype model [24]. The proof
of the existence of solutions is based on the non-degenerate approximations developed in
[30] and the methods applied in [21] and [45]. However, the approach we present in the
following is di�erent and leads to a uniqueness result for the solutions.

1.3.1. Preliminaries

For technical reasons we study the model in the auxiliary form

∂tS = dS∆S − k1
SM

k2 + S
in QT ,

∂tA = dA∆A− γA+ αX + (α + β)Y in QT , (1.8)

∂tX = dO · (DM(M)OX) + k3
XS

k2 + S
− k4X − k5|A|mX + k5|Y | in QT ,

∂tY = dO · (DM(M)OY ) + k3
Y S

k2 + S
− k4Y + k5|A|mX − k5|Y | in QT .

If the solutions of System (1.8) are non-negative, they are also solutions of System (1.7).
On the other hand, non-negative solutions of System (1.7) solve System (1.8). After non-
negativity of the solutions of System (1.8) is shown we can therefore remove the absolute
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value | · | from the �rst and second equation of System (1.8) and obtain the original model
(1.7).
For the biomass components X and Y and the concentration of the signalling molecule A

we assume homogeneous Dirichlet boundary conditions, and constant Dirichlet conditions
for the nutrient concentration S,

X|∂Ω = Y |∂Ω = A|∂Ω = 0 on ∂Ω× [0, T ], (1.9)

S|∂Ω = 1 on ∂Ω× [0, T ].

If the bio�lm is contained in the inner region of the domain, away from the boundary ∂Ω,
this situation describes a growing bio�lm in the absence of a substratum. Such bio�lms
are often called microbial �ocs. The boundary conditions imposed on the concentration of
nutrients re�ect a constant unlimited nutrient supply at the boundary of the considered
domain. Similarly, keeping A equal to zero at the boundary enforces a removal of au-
toinducers from the domain. These are speci�c boundary conditions, primarily chosen for
convenience. The solution theory we develop in the following sections carries over to more
general boundary values, which are relevant and often more appropriate for applications.
The initial data for the model variables are given by

X|t=0 = X0, Y |t=0 = Y0, S|t=0 = S0, A|t=0 = A0 in Ω, (1.10)

where S0, X0, Y0, A0 ∈ L∞(Ω) satisfy the compatibility conditions and

‖X0 + Y0‖L∞(Ω) < 1, (1.11)

0 ≤ S0 ≤ 1, 0 ≤ A0 ≤ 1, 0 ≤ X0, 0 ≤ Y0 a.e. in Ω.

In fact, in most relevant applications the initial autoinducer concentration A0 is identically
zero.

De�nition 1.2. We call the vector-valued function (S,A,X, Y ) a solution of System
(1.8) corresponding to the boundary and initial data (1.9) and (1.10), if its components
belong to the class

X, Y,A, S ∈ C([0, T ];L2(Ω)) ∩ L∞(QT ),

A, S ∈ L2((0, T );H1(Ω)),

DM(M)OX, DM(M)OY ∈ L2((0, T );L2(Ω;Rn))

for any T > 0, and satisfy System (1.8) in distributional sense.

To be more precise, if (S,A,X, Y ) is a solution according to De�nition 1.2, then the
equality∫

Ω

X(x, T )ϕ(x)dx−
∫

Ω

X0(x)ϕ(x)dx = −d
∫
QT

DM(M(x, t))OX(x, t) · Oϕ(x)dtdx

+

∫
QT

(
k3
X(x, t)S(x, t)

k2 + S(x, t)
− k4X(x, t)− k5|A(x, t)|mX(x, t) + k5|Y (x, t)|

)
ϕ(x)dtdx
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holds for all test-functions ϕ ∈ C∞0 (Ω) and almost every T > 0. The determining equations
for the other components of the solution are de�ned analogously.
Compared to other multi-component bio�lm models such as [21] and [45], the particular-

ity of the quorum-sensing model (1.8) is, that we recover the single-species bio�lm growth
model for the total biomass fraction M and the nutrient concentration S. Indeed, adding
the equations for the biomass fractions X and Y in System (1.8) leads to

∂tS = dS∆S − k1
SM

k2 + S
in QT , (1.12)

∂tM = dO · (DM(M)OM) + k3
SM

k2 + S
− k4M in QT ,

with initial and boundary values

M |∂Ω = 0, S|∂Ω = 1 on ∂Ω× [0, T ],

M |t=0 = M0 = X0 + Y0, S|t=0 = S0 in Ω× {0},

which is exactly the prototype bio�lm growth model discussed in Section 1.1. Consequently,
the substrate concentration S and the total biomass density M can be regarded as known
functions, and the original system (1.8) reduces to a system of equations for the biomass
fraction X and the concentration of the quorum-sensing signaling molecule A,

∂tX = dO · (DOX) + k3
XS

k2 + S
− k4X − k5|A|mX + k5(M −X) in QT ,

∂tA = dA∆A− γA+ αX + (α + β)(M −X) in QT ,

where the di�usion coe�cient of the biomass fraction is de�ned by

D(x, t) :=
(M(x, t))a

(1−M(x, t))b
(x, t) ∈ QT .

In the reduction we used the positivity of the biomass component Y , which will be proved
in Section 1.3.3. We rewrite this non-autonomous semi-linear system with bounded coe�-
cients as

∂tX = dO · (DOX) + gX − k5|A|mX + h in QT , (1.13)

∂tA = dA∆A− γA− βX + l in QT ,

where the interaction terms are given by the known functions

g(x, t) := k3
S(x, t)

k2 + S(x, t)
− k4 − k5,

h(x, t) := k5M(x, t) ≥ 0,

l(x, t) := (α + β)M(x, t) ≥ 0.
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All coe�cient functions are bounded, g, h, l ∈ L∞(Ω×R+), and the di�usion coe�cient
D is non-negative and bounded by Theorem 1.1. Indeed, if the initial density of the total
biomass satis�es ‖M0‖L∞(Ω) < 1 − δ for some 0 < δ < 1, then there exists a constant
0 < η < 1 such that

0 ≤M(x, t) ≤ 1− η for almost every (x, t) ∈ Ω× R+.

Consequently, it follows the estimate

0 ≤ D(x, t) =
(M(x, t))a

(1−M(x, t))b
≤ 1

(1−M(x, t))b
≤ 1

ηb
,

which shows that the di�usion coe�cient D is non-negative and satis�es D ∈ L∞(Ω×R+).

1.3.2. Uniqueness

In this paragraph we prove the uniqueness and L2(Ω)-Lipschitz-continuity of solutions with
respect to initial data of the semi-linear parabolic system (1.13), which degenerates when
the total biomass density M approaches zero.

Theorem 1.3. Let the initial data (S0, A0, X0, Y0) satisfy X0, Y0, A0 ∈ H1
0 (Ω), S0 ∈ H1(Ω)

such that S0|∂Ω = 1, and

0 ≤ S0, X0, Y0, A0 ≤ 1 a.e. in Ω,

‖X0 + Y0‖L∞(Ω) < 1.

Then, there exists at most one non-negative solution (X,A) of the reduced System (1.13)
within the class of solutions considered in De�nition 1.2.

Proof. We assume that (X,A) and (X̃, Ã) are two such solutions corresponding to initial
data (X0, A0), and de�ne the di�erences u := X − X̃ and v := A− Ã. Then, v belongs to
the space L2((0, T );H1

0 (Ω)), u satis�es DM(M(·, t))Ou(·, t) ∈ L2(Ω;Rn) for almost every
t ∈ (0, T ] and ∂tu, ∂tv ∈ L2((0, T );H−1(Ω)) for every T > 0. Moreover, the functions u
and v satisfy the system

∂tu = dO · (DOu) + gu− k5(AmX − ÃmX̃) in QT ,

∂tv = dA∆v − γv − βu in QT ,

with zero initial and boundary conditions

v|t=0 = u|t=0 = 0 in Ω× {0},
u|∂Ω = v|∂Ω = 0 on ∂Ω× [0, T ].

If we formally multiply the second equation by v and integrate over Ω, we obtain the
estimate

1

2

d

dt
‖v(·, t)‖2

L2(Ω) = −dA‖Ov(·, t)‖2
L2(Ω;Rn) − γ‖v(·, t)‖2

L2(Ω) − β
〈
u(·, t), v(·, t)

〉
L2(Ω)

≤ −γ‖v(·, t)‖2
L2(Ω) − β

〈
u(·, t), v(·, t)

〉
L2(Ω)

,
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where we used the positivity of dA. Moreover, multiplying the �rst equation by u and
integrating over Ω yields

1

2

d

dt
‖u(·, t)‖2

L2(Ω) = −d
〈
D(x, t)Ou(·, t),Ou(·, t)

〉
L2(Ω;Rn)

+

∫
Ω

g(x, t)|u(x, t)|2dx

−k5

∫
Ω

[Am(x, t)X(x, t)− Ãm(x, t)X̃(x, t)]u(x, t)dx.

In order to estimate the last integral we observe

AmX − ÃmX̃ = Amu+ X̃(Am − Ãm) = Amu+ vX̃m

∫ 1

0

(sA+ (1− s)Ã)m−1ds.

Since D, A and X̃ are non-negative we obtain

1

2

d

dt
‖u(·, t)‖2

L2(Ω) ≤
∫

Ω

g(x, t)|u(t, x)|2dx+ k5

∫
Ω

Am(x, t)u2(x, t)dx

+ k5

∫
Ω

X̃(x, t)v(x, t)u(x, t)m

∫ 1

0

(sA(x, t) + (1− s)Ã(x, t))m−1dsdx

≤ C1‖u(·, t)‖2
L2(Ω) + C2

〈
u(·, t), v(·, t)

〉
L2(Ω)

,

for some constants C1, C2 ≥ 0. Here, we used that the functions A, Ã, X̃ and g belong
to the class L∞(QT ). Adding both inequalities and using the Cauchy-Schwarz inequality
yields

d

dt

(
‖u(., t)‖2

L2(Ω) + ‖v(., t)‖2
L2(Ω)

)
≤ C3

(
‖u(., t)‖2

L2(Ω) + ‖v(., t)‖2
L2(Ω)

)
, (1.14)

for some constant C3 ≥ 0. Invoking Gronwall's Lemma and using the initial conditions
u|t=0 = v|t=0 = 0, we conclude ‖u(·, t)‖L2(Ω) = ‖v(·, t)‖L2(Ω) = 0 for all t ∈ [0, T ].

We remark that the proof of Theorem 1.3 implies the Lipschitz-continuity of the solutions
of System (1.13) with respect to initial data in the norm of L2(Ω)× L2(Ω).

Corollary 1.1. Let (X,A) and (X̃, Ã) be two solutions of System (1.13) within the class

of the previous theorem that correspond to initial data (X0, A0) and (X̃0, Ã0) respectively.
Then, the following estimate holds

‖X(·, t)− X̃(·, t)‖2
L2(Ω) + ‖A(·, t)− Ã(·, t)‖2

L2(Ω) ≤ eCt
(
‖X0 − X̃0‖2

L2(Ω) + ‖A0 − Ã0‖2
L2(Ω)

)
,

for some constant C ≥ 0.

Proof. The estimate follows immediately from Inequality (1.14) in the proof of Theorem
1.3 and Gronwall's Lemma.

The proof of the well-posedness of the original system (1.8) reduces to show the well-
posedness of the semi-linear system (1.13). We formally obtained the uniqueness of solu-
tions of the quorum-sensing model, the existence of solutions within the class of De�nition
1.2 will be addressed in the following paragraph.
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1.3.3. Existence

To prove the existence of solutions of the original system we consider non-degenerate
auxiliary systems, and show that the solutions of the auxiliary systems converge to the
solution of the degenerate problem when the regularization parameter tends to zero. The
ideas are based on the method developed in [30] for the mono-species model and the
strategy applied in [21] and [45] to prove the existence of solutions of multi-species bio�lm
models. For small ε > 0 we de�ne the non-degenerate approximation of System (1.8) by

∂tS = dS∆S − k1
SM

k2 + S
in QT ,

∂tA = dA∆A− γA+ αX + (α + β)Y in QT , (1.15)

∂tX = dO · (Dε,M(M)OX) + k3
XS

k2 + S
− k4X − k5|A|mX + k5|Y | in QT ,

∂tY = dO · (Dε,M(M)OY ) + k3
Y S

k2 + S
− k4Y + k5|A|mX − k5|Y | in QT ,

where the regularized di�usion coe�cient is de�ned by

Dε,M(z) :=


εa z < 0

(z+ε)a

(1−z)b z ≤ 1− ε
1
εb

z ≥ 1− ε

(see Section 1.1.2). Furthermore, we assume the initial data is regular and smooth; namely,
that it belongs to the class

S0 ∈ L∞(Ω) ∩H1(Ω), S0|∂Ω = 1, A0 ∈ L∞(Ω) ∩H1
0 (Ω),

M0 = X0 + Y0 ∈ L∞(Ω), X0, Y0, F (M0) ∈ H1
0 (Ω), ‖M0‖L∞(Ω) < 1, (1.16)

0 ≤ X0, 0 ≤ Y0, 0 ≤ S0 ≤ 1, 0 ≤ A0 ≤ 1 a.e. in Ω,

where the function

F (z) :=

∫ z

0

za

(1− z)b
dz for 0 ≤ z < 1.

Adding the equations for the biomass components X and Y of System (1.15) we recover
the non-degenerate auxiliary system for the single-species model

∂tS = dS∆S − k1
SM

k2 + S
in QT , (1.17)

∂tM = dO · (Dε,M(M)OM) + k3
MS

k2 + S
− k4M in QT .

We recall that for every (su�ciently small) ε > 0 there exists a unique solution (Sε,Mε) of
System (1.17), and the solutions are uniformly bounded with respect to the regularization
parameter ε > 0. Moreover, if the initial data belong to the class (1.16), the solution Mε
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is separated from the singularity. To be more precise, there exists a constant η ∈ (0, 1),
which is independent of ε > 0, such that Mε < 1 − η holds in QT (see Proposition 1.2 in
Section 1.1.2). Hence, we may regard Mε = Xε + Yε and Sε as known functions, and it
su�ces to prove the existence of solutions of the semi-linear parabolic problem

∂tX = dO · (DεOX) + gεX − k5|A|mX + hε in QT ,

∂tA = dA∆A− γA− βX + lε in QT , (1.18)

X|∂Ω = 0, A|∂Ω = 0 on ∂Ω× [0, T ],

X|t=0 = X0, A|t=0 = A0 in Ω× {0}.

The di�usion coe�cient for the biomass fraction is de�ned as Dε(x, t) := Dε,M(Mε(x, t)),
and the interaction functions are given by

gε(x, t) := k3
Sε(x, t)

k2 + Sε(x, t)
− k4 − k5,

hε(x, t) := k5Mε(x, t) ≥ 0,

lε(x, t) := (α + β)Mε(x, t) ≥ 0,

for (x, t) ∈ QT , where (Mε, Sε) denotes the solution of the non-degenerate approximation
(1.17). In the reduction to the semi-linear system (1.18) we have already used the positivity
of the biomass component Yε, which will be proved in the following lemma. To abbreviate
notations we introduce the reaction terms f ε1 and f ε2,

f ε1(x, t,X(x, t), A(x, t)) := gε(x, t)X(x, t)− k5|A(x, t)|mX(x, t) + hε(x, t),

f ε2(x, t,X(x, t), A(x, t)) := −γA(x, t)− βX(x, t) + lε(x, t).

First, we show that all components of the solutions of the non-degenerate approximations
are non-negative and bounded.

Lemma 1.1. The components of the solution (Sε, Aε, Xε, Yε) of the auxiliary system (1.15)
are non-negative and belong to the class L∞(QT ).

Proof. The substrate concentration Sε and the total biomass densityMε = Xε+Yε are non-
negative and bounded by 1 according to Proposition 1.2. We will show that the components
Xε, Yε and Aε are non-negative. Since Xε + Yε = Mε ≤ 1 in QT this immediately implies
the boundedness of the biomass fractions Xε and Yε. The boundedness of the molecule
concentration Aε then follows by a comparison theorem for scalar parabolic equations
(see Theorem 10.1 in [67]). Indeed, by the hypothesis on the constants α, β and γ the
constant Amax := α+β

γ
> 1 is a supersolution for Aε. It satis�es Amax|∂Ω ≥ 0 = Aε|∂Ω,

Amax|t=0 ≥ A0 = Aε|t=0 and

∂tAmax − dA∆Amax + γAmax − αXε − (α + β)Yε = γAmax − αXε − (α + β)Yε

≥ γAmax − α− β = 0,
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where we used the assumption α + β > γ in Section 1.2.2.
Consequently, it remains to prove that the biomass fractions Xε, Yε and the autoinducer

concentration Aε are non-negative. To show the non-negativity of the biomass fraction of
down-regulated cells we again apply a comparison theorem for parabolic equations. The
constant X̃ = 0 is a subsolution for the component Xε. Indeed, it satis�es Xε|∂Ω ≥ 0 =

X̃|∂Ω, X0 = Xε|t=0 ≥ 0 = X̃|t=0 and

∂tX̃ − dO · (Dε,M(Mε)OX̃)− k3
X̃Sε
k2 + Sε

+ k4X̃ + k5|Aε|mX̃ − k5|Yε| = −k5|Yε| ≤ 0.

By the same arguments and owing to the positivity of Xε, the constant solution Ỹ = 0
is a subsolution for Yε, so we conclude Yε ≥ 0. Finally follows Aε ≥ 0, by comparing
with the subsolution Ã = 0 for the molecule concentration Aε, and using the fact that the
components Xε and Yε are non-negative.

Having established the positivity and uniform boundedness of the solutions we are in a
position to prove the existence of solutions of the reduced system (1.18). To this end we
treat the region, where the total biomass density becomes small, and its complement in
QT separately. The solution (S,M) of the single-species model is obtained as the limit of
the solutions (Sε,Mε) of the non-degenerate approximations

S = lim
ε→0

Sε, M = lim
ε→0

Mε in C([0, T ];L2(Ω)),

where T > 0 is arbitrary (see Section 1.1.2). For some δ ∈ (0, 1) we de�ne the domains

Qδ,T := {(x, t) ∈ QT | M(t, x) < δ}

and Qc
δ,T := QT \ Qδ,T . We note that both sets are open due to the Hölder-continuity of

the solution M (see [21]).

Lemma 1.2. We assume the initial data belongs to the class (1.16). Then, for all su�-
ciently small ε > 0 there exists a unique solution (Aε, Xε) of the auxiliary system (1.18)
satisfying

Xε, Aε ∈ L2((0, T );H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) ∩ L∞(QT ),

∂tXε, ∂tAε ∈ L2((0, T );H−1(Ω)).

Moreover, the solutions are uniformly bounded with respect to the regularization parameter
ε > 0, and satisfy the estimates

max
t∈[0,T ]

‖Xε(·, t)‖L2(Ω) + ‖Xε‖L2((0,T );H1
0 (Ω)) + ‖∂tXε‖L2((0,T );H−1(Ω)) ≤ C4,ε

(
1 + ‖X0‖L2(Ω)

)
,

max
t∈[0,T ]

‖Aε(·, t)‖L2(Ω) + ‖Aε‖L2((0,T );H1
0 (Ω)) + ‖∂tAε‖L2((0,T );H−1(Ω)) ≤ C5(1 + ‖A0‖L2(Ω)),
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for t > 0 and some constants C4,ε, C5 ≥ 0, where the constant C5 is independent of ε > 0.
The solutions are Hölder-continuous

Xε ∈ Cαε,
αε
2 (QT ), Aε ∈ Cα,α

2 (QT ),

where constants αε and α are positive. The Hölder exponent αε depends on the parameter ε,
the data and uniform bound of the approximate solutions only, the constant α is independent
of ε > 0.
Finally, restricted to the domain Qc

δ,T the solutions Xε satisfy all estimates uniformly.
To be more precise, the constant C4,ε in the inequality above and the Hölder exponent αε are

independent of ε > 0 for the family of approximate solutions {X̃ε}, where X̃ε := Xε|Qcδ,T .

Proof. If the initial dataM0 and S0 belong to the class (1.16) the total biomass densityMε

satis�es Mε < 1− η in QT for some η ∈ (0, 1), and the constant η is independent of ε > 0.
This implies that the di�usion coe�cient Dε is positive and uniformly bounded from above
by a constant independent of ε. Indeed, for all ε < η we obtain

εa ≤ Dε(Mε(x, t)) =
(Mε(x, t) + ε)a

(1−Mε(x, t))b
≤ (1− η + ε)a

(1− (1− η))b
≤ 1

ηb
in QT ,

which shows that Dε ∈ L∞(QT ) and Dε is strictly positive. Hence, for all su�ciently
small ε > 0 the semi-linear auxiliary system (1.18) is regular and uniformly parabolic.
The functions gε, hε, lε, Aε and Xε are uniformly bounded with respect to the regularization
parameter ε > 0 by Lemma 1.1, which implies that the interaction functions f ε1 and f ε2
are uniformly bounded in QT . By standard arguments (Galerkin approximations) follows
the existence and uniqueness of the approximate solutions (Xε, Aε), the solutions belong
to the class stated in the lemma and satisfy the given estimates (see Section 11.1 in [63]).
Moreover, the Hölder-continuity of solutions follows from Theorem 10.1, Chapter III in
[48].
Due to the uniform boundedness of the approximate solutions the component Aε satis�es

the parabolic equation
∂tAε − dA∆Aε = −γAε +Hε,

where the function Hε is uniformly bounded, ‖Hε‖L∞(QT ) ≤ c for some constant c ≥ 0
which is independent of ε > 0. Hence, the constants in the estimates for the component
Aε can be chosen independently of the regularization parameter ε > 0.
Finally, if ε > 0 is su�ciently small, thenMε ≥ δ

2
holds in the region Qc

δ,T . Consequently,
the di�usion coe�cient restricted to the domain Qc

δ,T is uniformly bounded from above and
below by a positive constant which is independent of ε > 0,(

δ

2

)a
≤ (

δ

2
+ ε)a ≤ Dε(x, t) =

(Mε(x, t) + ε)a

(1−Mε(x, t))b
≤ 1

ηb
in Qc

δ,T .

Solutions of non-degenerate parabolic equations of second order with coe�cients in L∞(Ω)
satisfy the estimates stated in the lemma, and the bounds are determined in terms of the
coe�cients of the equation (see [48], Chapter V). Consequently, the estimates in the region
Qc
δ,T are uniform and do not dependent on ε > 0.
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1. Mathematical Modelling of Bio�lms

We will use this lemma to pass to the limit in the region Qc
δ,T . To pass to the limit in

the region Qδ,T requires further uniform estimates for the family of approximate solutions.

Lemma 1.3. If ε > 0 is su�ciently small, the product
√
DεOXε is uniformly bounded in

L2(QT ;Rn), and the approximate solutions satisfy Xε(·, t) ∈ Hs(Ω) for some s > 0 and
almost every t ∈ [0, T ]. Moreover, there exists ε0 > 0 such that

‖Xε‖L2((0,T );Hs(Ω)) ≤ C for all 0 < ε < ε0,

where the constant C ≥ 0 is independent of the regularization parameter ε > 0.

Proof. Multiplying the �rst equation of System (1.18) by Xε and integrating over Ω we
obtain

1

2

d

dt
‖Xε(·, t)‖2

L2(Ω) + d
〈
Dε(·, t)OXε(·, t),OXε(·, t)

〉
L2(Ω;Rn)

=

∫
Ω

Xε(x, t)f
ε
1 (x, t,Xε(x, t), Aε(x, t)) dx ≤ C6,

for some constant C6 ≥ 0. Due to Lemma 1.1 the constant C6 is independent of ε > 0. If
we integrate this inequality from 0 to T > 0 it follows the �rst statement of the lemma.
Furthermore, for su�ciently small ε > 0 we observe Xε ≤ Mε ≤ 1 − η in QT and

consequently,

Xa
ε (x, t) ≤ Dε,M(Xε(x, t)) =

(Xε(x, t) + ε)a

(1−Xε(x, t))b
≤ (Mε(x, t) + ε)a

(1− (Mε(x, t)))b
= Dε,M(Mε(x, t)) in QT .

This implies the estimate∫
Ω

Xa
ε (x, t)‖OXε(x, t)‖2dx ≤

∫
Ω

Dε,M(Mε(x, t))‖OXε(x, t)‖2dx ≤ C7,

for some constant C7 ≥ 0, which is independent of the regularization parameter ε > 0. This
shows thatX

a
2
ε (·, t)OXε(·, t) ∈ L2(Ω;Rn) or equivalently, X

a
2

+1
ε (t) ∈ H1(Ω) for almost every

t ∈]0, T ]. Finally, if a function satis�es ϕβ ∈ H1(Ω) for some β > 1, then ϕ ∈ W s,2β(Ω)
holds for all s ≤ 1

β
(see Appendix B). This implies that Xε(·, t) ∈ W s,2(a

2
+1)(Ω) for

s ≤ 1
a
2

+1
. Since the domain Ω is bounded and a ≥ 1 the embedding W s,2+a(Ω) ↪→ Hs(Ω)

is continuous and we obtain Xε(·, t) ∈ Hs(Ω) for some positive s > 0. In particular,
the family of approximate solutions {Xε}ε>0 is uniformly bounded in the Hilbert space
L2((0, T );Hs(Ω)).

Lemma 1.4. There exist functions

X∗ ∈ L∞(QT ) ∩ L2((0, T );Hs(Ω))

A∗ ∈ L∞(QT ) ∩ L2((0, T );H1
0 (Ω))
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1.3. Well-Posedness of the Quorum-Sensing Model

and a sequence (εk)k∈N tending to zero for k →∞, such that the solutions of the auxiliary
systems (1.18) converge weakly

Xεk ⇀ X∗, Aεk ⇀ A∗

in L2((0, T );Hs(Ω)), and L2((0, T );H1
0 (Ω)) respectively, and strongly

Xεk → X∗, Aεk → A∗

in C([0, T ];L2(Ω)) when k tends to in�nity.

Proof. We prove the convergence and existence of the limit for the biomass fraction X∗,
the arguments are similar for the molecule concentration A∗. By Lemma 1.3 and for
su�ciently small ε > 0 the family of approximate solutions {Xε}ε>0 is uniformly bounded
in the Hilbert space L2((0, T );Hs(Ω)) for some s > 0. Consequently, there exists an
element X∗ ∈ L2((0, T );Hs(Ω)) and a sequence (εk)k∈N tending to zero for k → ∞ such
that the sequence (Xεk)k∈N converges weakly to X∗ in L2((0, T );Hs(Ω)).
Furthermore, Lemma 1.3 implies that the product

√
DεOXε is uniformly bounded in

L2(QT ;Rn), and the di�usion coe�cient satis�es Dε ∈ L∞(QT ). Consequently, we obtain

‖DεOXε‖2
L2(QT ;Rn) ≤ ‖Dε‖L∞(QT )‖

√
DεOXε‖2

L2(QT ;Rn) ≤ c,

for some constant c ≥ 0 which is independent of ε > 0. This proves the uniform bounded-
ness of the derivative ∂tXε in L2((0, T );H−1(Ω)).
By Theorem 1.5, Chapter II in [12] now follows the strong convergence of the sequence

of approximate solutions in the space C([0, T ];L2(Ω)).

It remains to show that the limits of the approximate solutions yield the solution of the
degenerate problem.

Theorem 1.4. The limits X∗ and A∗ of the solutions of the non-degenerate approximations
in Lemma 1.4 are the unique weak solutions of the reduced system (1.13). In particular,
there exists a unique solution of the quorum-sensing model (1.8) in the sense of De�nition
1.2.

Proof. We show that we can pass to the limit ε→ 0 in the distributional formulation of the
non-degenerate auxiliary system (1.18). We only prove the convergence for the biomass
fraction X∗ since the arguments are the same or simplify for the molecule concentration
A∗. The functions Xε are weak solutions of the auxiliary systems (1.18). Consequently,
the equality∫

Ω

Xε(x, T )ϕ(x)dx−
∫

Ω

X0(x)ϕ(x)dx

= −d
∫
QT

Dε(x, t)OXε(x, t) · Oϕ(x)dtdx+

∫
QT

f ε1(x, t, Aε(x, t), Xε(x, t))ϕ(x)dtdx
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1. Mathematical Modelling of Bio�lms

is satis�ed for all test-functions ϕ ∈ C∞0 (Ω) and almost every T > 0. By Lemma 1.1 the
family of approximate solutions is uniformly bounded in L∞(QT ) and we can immediately
pass to the limit in all integrals, except for the di�usion term. Hence, it remains to show
the convergence of the term∫

QT

Dε(x, t)OXε(x, t) · Oϕ(x)dtdx =

∫
QT

Dε,M(Mε(x, t))OXε(x, t) · Oϕ(x)dtdx

→
∫
QT

DM(M(x, t))OX(x, t) · Oϕ(x)dtdx,

when the regularization parameter ε tends to zero. Note that the integrals are well-de�ned
by Lemma 1.3. We split the di�erence and treat the domains Qδ,T and Qc

δ,T separately. To
this end we de�ne

Rε := Iε + Jε :=

∫
Qδ,T

(
Dε(x, t)OXε(x, t)−DM(M(x, t))OX(x, t)

)
· Oϕ(x)dtdx

+

∫
Qcδ,T

(
Dε(x, t)OXε(x, t)−DM(M(x, t))OX(x, t)

)
· Oϕ(x)dtdx,

which does not depend on the parameter δ > 0, and show that the term Rε vanishes when
ε tends to zero. To estimate the integral Jε we express the di�erence in the following way

DεOXε −DM(M)OX = (Dε,M(Mε)−DM(M))OXε +DM(M) (OXε − OX) .

For the �rst term in the integral we obtain∣∣〈(Dε,M(Mε)−DM(M))OXε,Oϕ
〉
L2(Qcδ,T ;Rn)

∣∣
≤ ‖Dε,M(Mε)−DM(M)‖L∞(Qcδ,T )

∣∣〈OXε,Oϕ〉L2(Qcδ,T ;Rn)

∣∣
≤ ‖Dε,M(Mε)−DM(M)‖L∞(Qcδ,T )‖Oϕ‖L2(Qcδ,T ;Rn)‖OXε‖L2(Qcδ,T ;Rn)

≤ C8‖Dε,M(Mε)−DM(M)‖L∞(Qcδ,T )

for some constant C8 ≥ 0. Here, we used the Cauchy-Schwarz inequality and the uniform
boundedness of the family of approximate solutions {Xε}ε>0, when restricted to the domain
Qc
δ,T in the norm induced by L2((0, T );H1

0 (Ω)) (see Lemma 1.2). The family of solutionsMε

of the non-degenerate approximations of the single-species model is uniformly bounded in
the Hölder space C α̃, α̃

2 (QT ) for some α̃ > 0 (see [21]), which implies the strong convergence
in the space C(QT ). Furthermore, the solutions of the auxiliary systems satisfy the uniform
estimateMε ≤ 1−η in QT , and we conclude thatM ≤ 1−η in QT . On the interval [0, 1−η]
the truncated function Dε,M : [0, 1− η]→ R converges uniformly to the function DM when
ε tends to zero. Therefore, splitting the remaining term

‖Dε,M(Mε)−DM(M)‖L∞(Qcδ,T )

≤‖Dε,M(Mε)−Dε,M(M)‖L∞(Qcδ,T ) + ‖Dε,M(M)−DM(M)‖L∞(Qcδ,T )
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1.3. Well-Posedness of the Quorum-Sensing Model

we see that it vanishes when ε tends to zero.
Finally, the convergence of the second integral in Jε〈

DM(M)Oϕ,OXε − OX∗
〉
L2(Qcδ,T ;Rn)

is an immediate consequence of Lemma 1.2. Indeed, restricted to the domain Qc
δ,T the fam-

ily of approximate solutions is uniformly bounded in the norm induced by L2((0, T );H1
0 (Ω)),

which implies weak convergence in this space. Since the di�usion coe�cient DM(M) be-
longs to L∞(QT ) by Proposition 1.5, the product DM(M)Oϕ de�nes an element in the
dual space and implies the convergence of the integral. Summarizing the above estimates
we conclude that for every µ > 0 there exists an ε0 > 0, which is independent of δ, such
that the term |Jε| < µ for all ε < ε0.
It remains to estimate the integral Iε. We recall that the domain Qδ,T was de�ned as

the subset of QT where the total biomass density M < δ. As Mε converges strongly to M
in C(QT ) there exists ε1 > 0 such that the approximate solutions Mε < 2δ in Qδ,T for all
ε < ε1. For su�ciently small ε > 0 we conclude

Dε(x, t) = Dε,M(Mε(x, t)) =
(Mε(x, t) + ε)a

(1−Mε(x, t))b
≤ (3δ)a

(1− 2δ)b

for all (x, t) ∈ Qδ,T .
Furthermore, the product

√
DεOXε is uniformly bounded in L2(QT ;Rn) by Lemma 1.3,

which allows us to use Hölder's inequality to estimate the integral∣∣∣ ∫
Qδ,T

Dε(x, t)OXε(x, t) · Oϕ(x)dtdx
∣∣∣ ≤ ∥∥√DεOXε

∥∥
L2(QT ;Rn)

∥∥√DεOϕ∥∥L2(Qδ,T ;Rn)

≤ C9

(∫
Qδ,T

Dε(x, t)‖Oϕ(x)‖2dtdx

) 1
2

≤ C9
(3δ)

a
2

(1− 2δ)
b
2

‖ϕ‖2
L2((0,T );H1(Ω)),

where the constant C9 ≥ 0. Estimating the second integral of Iε in the same way we obtain

|Iε| ≤
∫
Qδ,T

∣∣Dε(x, t)OXε(x, t) · Oϕ(x)
∣∣dtdx+

∫
Qδ,T

∣∣DM(M(x, t))OX(x, t) · Oϕ(x)
∣∣dtdx

≤ C10
(3δ)

a
2

(1− 2δ)
b
2

,

for some constant C10 ≥ 0.
To conclude the proof of the theorem let µ > 0 be arbitrary. We �rst choose δ > 0 and

a corresponding ε1 > 0 such that
|Iε| <

µ

2
for all ε < ε1. According to the �rst part of the proof there exists ε0 > 0, which does not
dependent on δ > 0, such that

|Jε| <
µ

2
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1. Mathematical Modelling of Bio�lms

for all ε < ε0. Consequently, we obtain

|Rε| ≤ |Iε|+ |Jε| < µ

for all ε < min{ε0, ε1}. This proves that the limit (X,A) is a solution of the reduced
system (1.13), and the uniqueness of the solution follows by Theorem 1.3. The existence
and uniqueness of solutions of the original system (1.8) now follows from the existence and
uniqueness of the solution (S,M) of the single species model.

Similar as in [30], the proof of the well-posedness of the quorum-sensing model can be
extended to less regular initial data and other boundary conditions for the solutions. The
boundary conditions for the dissolved substrates S and A, which describe mechanisms of
substrate replenishment and autoinducer removal are thereby rather uncritical. For the
biomass volume fractions X and Y the results carry over as long as the values remain
below the threshold singularity. This is the case if X + Y < 1 is speci�ed on some part of
the boundary (see [30]).

1.3.4. Numerical Simulations

In this section we present numerical simulations by H. Eberl to illustrate the model be-
haviour. The model parameters correspond to a bio�lm colony of Pseudomonas putida,
the formation of the bio�lm is controlled by carbon as the growth limiting substrate and
the signalling molecules are Acyl Homoserine Lactones (AHL). For a detailed description
of the data and the numerical experiments we refer to [68].

Microbial �ocs

Bio�lms in the absence of a substratum are aften called microbial �ocs. Such bacterial ag-
gregates enclosed by an EPS matrix are used in the industry for waste water treatment and
also observed in natural settings ([59]). The �rst simulation re�ects the Dirichlet bound-
ary conditions (1.9). Initially, down-regulated biomass is only located in a heterogeneous
region Ω2(0) in the center of the domain, no up-regulated biomass and no AHL is assumed
to be in the system. The substrate concentration is everywhere in Ω at the same level as
on the boundary,

A0 = Y0 ≡ 0, S0 ≡ 1 in Ω,

X0 > 0 in Ω2(0), X0 = 0 in Ω1(0).

This situation describes a heterogeneous microbial �oc of down-regulated cells in the middle
of the domain. In Figure 1.3 the development and process of up-regulation of the microbial
�oc is shown. The bio�lm is represented by the ratio of down-regulated biomass to overall
biomass, Z = X/(X + Y ) in the bio�lm region Ω2(t), while Z = 0 in the aqueous phase
Ω1(t). Moreover, the iso-concentration lines for the autoinducer A are coded in greyscale.
When the simulation starts the �oc is formed by three overlapping circles in the center

of the domain. Nutrients are available everywhere, the biomass in the system increases and
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1.3. Well-Posedness of the Quorum-Sensing Model

(a) t = 1.0 (b) t = 2.5

(c) t = 4.0 (d) t = 4.3

(e) t = 4.8 (f) t = 6.5

Figure 1.3.: Development and Up-Regulation of a Microbial Floc under Homogeneous
Dirichlet Conditions for the Autoinducers: Shown are for selected times the
fraction of down-regulated biomass, Z := X/(X +Y ), and isolines of the AHL
concentration ([68]).
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starts to expand where the biomass density locally reaches values close to 1. At time t = 4
the shape of the �oc is almost spherical and we observe a small amount of up-regulated
cells in the core of the �oc . On the boundary the autoninducer concentration is kept at
the constant level A|∂Ω = 0. The highest concentrations are always found in the center of
the �oc, from where the molecules di�use towards the boundary of the domain. At time
t = 4.3 we note the onset of major up-regulation, and in the later snapshots the �oc is
everywhere dominated by up-regulated biomass. The highest fractions of down-regulated
cells can be found in the outer-most layers.
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Figure 1.4.: Simulation of Quorum Sensing in a Microbial Floc: Plotted is the time evolu-
tion of Xtotal, Ytotal and Atotal for homogeneous Dirichlet conditions (left) and
for homogeneous Neumann conditions (right) for the autoinducer concentra-
tion ([68]).

The the total amount of biomass fractions and autoinducers relative to the size of the
domain |Ω| are plotted in the left panel of Figure 1.4,

Xtotal(t) =
1

|Ω|

∫
Ω

X(x, t)dx, Ytotal(t) =
1

|Ω|

∫
Ω

Y (x, t)dx, Atotal(t) =
1

|Ω|

∫
Ω

A(x, t)dx.

The switch from a down- to an up-regulated system happens instantaneously, afterwards
the bio�lm develops at an unchanged rate and is now dominated by up-regulated cells.
The corresponding results of a simulation, where homogeneous Neumann conditions for
the autoinducer concentration are assumed, ∂νA|∂Ω = 0, are plotted in the second panel.
Here, ∂ν denotes the outward unit normal vector on the boundary of the domain. In this
setting autoinducers cannot leave the domain, accumulate faster and very high autoinducer
concentrations are attained. The onset of quorum-sensing occurs signi�cantly earlier than
under Dirichlet conditions, and soon after induction occurs, all biomass in the system is up-
regulated. This illustrates that not only the number of cells in the system a�ects the process
of up-regulation but also external mass transfer; namely, the removal of autoinducers from
the system.
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1.3. Well-Posedness of the Quorum-Sensing Model

Under homogeneous Dirichlet boundary conditions for the autoinducer concentration
signi�cantly more biomass is produced before we observe the onset of up-regulation, and
autoinducers accumulate slower. The slow increase of down-regulated biomass at approx-
imately t ≈ 7 is a boundary e�ect. The biomass in the system grows, which leads to
lower substrate concentrations and higher AHL concentrations. Since the �oc expands the
bio�lm/water interface approaches the boundary of the domain. The boundary conditions
enforce that the �ux of AHL out of the system and the �ux of substrates into the system
increases. Consequently, the up-regulation process of the �oc is slower and the unlimited
nutrient supply promotes the growth of down-regulated biomass in the outer layers.

Bio�lms

The second simulation illustrates the process of quorum-sensing in a growing bio�lm com-
munity in a rectangular domain.
The substratum is the bottom boundary of the domain. It is impermeable to biomass,

substrate and AHL, which is re�ected by homogeneous Neumann boundary conditions.
Also at the lateral boundaries homogeneous Neumann conditions are assumed for all de-
pendent variables. Through the top boundary Γ the growth limiting substrate S is added to
the system and the autoinducer AHL removed, which is described by the Robin boundary
conditions (

S + λ∂νS
)∣∣

Γ
= 1,

(
A+ λ∂νA

)∣∣
Γ

= 0,

where the constant λ is positive. For both biomass fractions homogeneous Dirichlet con-
ditions are assumed at the top boundary. Down-regulated biomass is placed initially in
small pockets on the substratum. No up-regulated cells and no AHL are in the system,
and the substrate concentration takes the bulk concentration value everywhere,

A0 ≡ 0, Y0 ≡ 0, S0 ≡ 1 in Ω,

X0 > 0 in Ω2(0), X0 = 0 in Ω1(0).

Figure 1.5 shows the development of the bio�lm and the process of up-regulation. As in
the previous simulation, the bio�lm is represented by the ratio of down-regulated to total
biomass. When the simulation starts nutrients are available everywhere, the biomass starts
growing, and expansion occurs locally when and where the biomass density approaches val-
ues close to 1. At time t = 8.50 the two middle colonies merged. The AHL concentrations
are largest in the inner layers of the bio�lm colonies and the signalling molecules di�use
from the bio�lm colonies into to the aqueous phase.
Induction starts at approximately t = 9.24 in the clustered region, where more bacteria

are concentrated, and AHL concentrations are higher. First, bacteria in the inner layers
become up-regulated. The fraction of up-regulated cells, and the concentration of autoin-
ducers in the smaller isolated colony on the right are lower. This causes a �ux of AHL
towards the single colony and consequently, the up-regulation pattern in this nearly hemi-
spherical colony is not symmetric. At time t = 9.28 the average AHL concentration in
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(a) t = 7.00 (b) t = 8.50

(c) t = 9.24 (d) t = 9.28

(e) t = 9.78 (f) t = 11.28

Figure 1.5.: Development and Up-Regulation of a Bio�lm Colony: Shown are for selected
times the fraction of down-regulated biomass, Z := X/(X + Y ), and isolines
of the AHL concentration ([68]).
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Figure 1.6.: Simulation of Quorum Sensing in a Bio�lm Colony: Plotted is the time evolu-
tion of Xtotal, Ytotal and Atotal ([68]).

the domain reaches the threshold value, but the di�erence in the process of up-regulation
between the clustered neighbouring colonies and the isolated colony is still clearly observ-
able. In the next snapshot the AHL concentration is everywhere in the domain above the
switching threshold, and the center colonies merged with the colony on the left. Only
a small fraction of cells in the bio�lm colonies is still down-regulated. Finally, at time
t = 11.28 the colonies consist almost entirely of up-regulated cells.
The overall time evolution of the bio�lm is summarized in Figure 1.6, where the lumped

quantities Xtotal, Ytotal and Atotal are plotted. Initially, the bio�lm shows exponential
growth. Approximately at time t ≈ 9 su�cient AHL has accumulated to induce up-
regulation, and the switch from a mainly down-regulated bio�lm to a bio�lm dominated
by up-regulated cells is almost immediate. This results in a drastic jump in the AHL
accumulation. Afterwards the population continues to grow and consists of an almost
entirely up-regulated bio�lm.

Interpretation

Many features and processes in bacterial cells are regulated by autoinducer signalling, but
the mechanisms and its ecological rule are still not yet very well-understood. Autoinducer
signalling is used to regulate the expression of speci�c sets of genes. It is often related with
the switching from one life-strategy to another, a�ects virulence factors and therefore the
pathogenic potential of bio�lms ([43], [6], [59]). Moreover, experimental �ndings support
the hypothesis that autoinducers are required for the formation of bio�lms, cause cell
aggregation and a�ect the structure of a developing bio�lm community ([59]). A better
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understanding of the underlying mechanisms is desirable to develop methods that allow to
manipulate the behaviour of bacterial bio�lms or to eradicate them.
Quorum-sensing in the strict sense is commonly characterized as a mechanism by which

the cells measure the local density of the population to react accordingly for group bene�ts.
The related concept of di�usion-sensing supports the hypothesis that single cells explore
the local environmental conditions. Namely, if mass transfer is su�ciently limited for the
secretion of molecules ([43]).
The simulations in Figure 1.5 illustrate that the spatial arrangement of cell colonies has

a signi�cant impact on the process of up-regulation in a growing bio�lm. The switching
behavior in one colony can be a�ected by the size and location of the other colonies.
Comparing the development and up-regulation process of the microbial �oc in Figure 1.4
under di�erent boundary conditions we observe that also environmental conditions play
an important role. The purely di�usive transport of autoinducers can a�ect the onset of
switching greatly. Therefore, the numerical simulations indicate that spatial e�ects are
crucial in the process of quorum-sensing and support the recent hypothesis of e�ciency-
sensing ([43], [68]). It aims that cells measure a combination of cell-densities, mass-transfer
properties and the spatial distribution of cells.

1.4. Concluding Remarks

Only few analytical results were obtained for the mathematical models describing the
growth of spatially heterogeneous bio�lm communities. A solution theory for the prototype
model was developed in [30], and the existence of the global attractor of the generated
semigroup was shown. The global attractor was further studied in [28]. Not all results could
be carried over to the more involved models that account for multiple biomass components
and several dissolved substrates. In particular, the question of uniqueness of solutions
remained open for the models [21] and [45]. The quorum-sensing model is the �rst of
the multi-species bio�lm models for which a uniqueness result could be established (see
Theorem 1.4). Our approach to show the well-posedness is di�erent from the approach
applied in [30] for the single-species model. We expect that the solution theory developed
in Section 1.3 extends to other multi-component bio�lm models, and that the uniqueness
of solutions can be proved for the models [21] and [45] by similar arguments.
The longtime behaviour of solutions and the existence of attractors has not yet been

analysed for multi-species bio�lm models and is an interesting problem. The setting and
the phase space of the generated semigroup is di�erent from the single-species model.
Another important and biologically relevant aspect is the extension of the models to allow

for time-dependent interaction functions. For particular applications it can be important
to take daily changes or changes in the life cycle of the bacteria into account, which leads
to time-dependent coe�cients in the equations. Under appropriate assumptions on the
non-autonomous functions the solution theory carries over to such models. However, non-
autonomous reaction terms can lead to interesting e�ects in the longtime dynamics, and
the attractors can be essentially more complex (see Chapter 3).
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Including Di�usion, Transport and

Interaction

The solutions of many systems of convection-di�usion-reaction equations arising in biol-
ogy, physics or engineering describe quantities such as population densities, pressure or
concentrations of nutrients and chemicals. Consequently, a natural property to require is
positivity of the solutions. Models that do not guarantee positivity are not valid or break
down for small values of the solution. Moreover, showing that a particular model does not
preserve positivity often leads to a better understanding of the model and its limitations
([29], [34]). In this chapter we address systems of parabolic PDEs and analyse whether
solutions originating from non-negative initial data remain non-negative as long as they
exist. In other words, we study the invariance of the positive cone for the model under
consideration.
For scalar parabolic equations the non-negativity of solutions emanating from non-

negative initial data is a direct consequence of the maximum principle (see [62] or [51]).
However, for systems of equations the maximum principle is not valid. In the particular
case of monotone systems the situation resembles the case of scalar equations. Su�cient
conditions for preserving the positive cone can be found in [66] (Chapter 7). Further, a
general result for the �ow invariance of regions of the phase-space is known as the Nagumo-
Brezis Theorem ([60], Theorem 4.2). It is formulated for abstract di�erential equations in
Banach spaces and states that the tangential condition ([60], p. 70) is necessary and suf-
�cient for the �ow invariance of a certain region. One could apply this result to study
the invariance of the positive cone but it provides abstract conditions that are di�cult to
verify in general, and does not yield an explicit characterization of the class of di�erential
operators that satisfy the tangential condition. For systems of ordinary di�erential equa-
tions, in fact, the tangential condition allows to formulate explicit conditions for the �ow
invariance of the positive cone ([60], Corollary 4.2).
An explicit characterization of the class of parabolic systems that preserve the posi-

tivity of solutions is important since it provides the modeller with a tool, which is easy
to verify, to approach the question of the positive invariance of the model. Necessary
and su�cient conditions for the positivity of solutions of systems of semi-linear reaction-
di�usion-convection equations were formulated in [29]. They are not obtained by applying
the tangential condition for this particular class of operators, the proof is based on a direct
approach to derive conditions for the positivity of solutions. Since an increasing number of
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mathematical models exhibit density-dependent di�usion terms our aim is to extend the
previous result to quasi-linear parabolic systems. Moreover, we apply the positivity criteria
to deduce necessary and su�cient conditions for the validity of comparison principles for
semi-linear and for quasi-linear systems.
The second part of this chapter is devoted to stochastic perturbations of deterministic

parabolic systems which play an important role in the modelling of a variety of phenom-
ena in physics and biology. We seek an explicit characterization of the class of stochastic
perturbations that preserve the invariance of the positive cone of the unperturbed deter-
ministic model. For stochastic scalar ODEs it is well-known that additive noise destroys
the positivity of solutions while the positivity property is preserved under perturbations by
a linear multiplicative noise. Our main result for systems of stochastic PDEs resembles this
observation. To study the positivity property of stochastic systems we construct a fam-
ily of random PDEs such that its solutions converge in expectation to the solution of the
stochastic system. We formulate necessary and su�cient conditions for the positivity of the
solutions of the family of random approximations. The positivity of the random approx-
imations then implies the positivity of the solutions of the stochastic system. Moreover,
we show that the positivity is preserved for both, Itô's and Stratonovich's interpretation
of stochastic di�erential equations.
For stochastic perturbations of systems of ODEs the classical Nagumo-Brezis Theorem

was generalized in [53]. The tangential condition was formulated in the stochastic setting
and shown that it is necessary and su�cient for the invariance of regions of the phase space.
The result is valid for Itô's and for Stratonovich's interpretation (see [53], Theorem 1). As
its deterministic counterpart the tangential condition is formulated in an abstract form and
has to be veri�ed for each particular problem. We cannot apply this criterion to analyse
the invariance of the positive cone for systems of stochastic PDEs but it allows to deduce
explicit necessary and su�cient conditions for the positivity of solutions of systems of
stochastic ODEs. Su�cient conditions for the validity of comparison principles for systems
of stochastic ODEs can be found in [14] (Theorem 6.4.1), which imply su�cient conditions
for the positivity of solutions. The proof uses a conjugacy between stochastic and random
di�erential equations, but cannot be applied for systems of stochastic PDEs. For stochastic
perturbations of a single scalar parabolic PDE explicit necessary and su�cient conditions
for the positivity of solutions of the stochastic system were proved in [47] (Corollary 2.6 and
Theorem 2.9). The proof is not based on random approximations. We apply results from
the deterministic theory and formulate necessary and su�cient conditions for the invariance
of the positive cone for the random approximations, which yield su�cient conditions for
the positivity of the solutions of the stochastic system. To show that these conditions are
also necessary presumably requires di�erent techniques.
The outline of this chapter is as follows. In Section 2.1 we recall the positivity criterion

obtained in [29] for systems of semi-linear parabolic PDEs before we derive necessary and
su�cient conditions for the positivity of solutions of systems of quasi-linear convection-
di�usion-reaction-equations. It turns out that for semi-linear systems, the di�usion and
convection matrices are necessarily diagonal, while the quasi-linear case is essentially di�er-
ent. Here, cross-di�usion and -convection terms are allowed, however, the matrices are of a
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very particular form. As a consequence of the positivity criteria we deduce necessary and
su�cient conditions for the validity of comparison principles for solutions of semi-linear
and quasi-linear systems in Section 2.2. In Section 2.3 we present several applications and
consider quasi-linear systems arising in the modelling of biological systems.
The second part of the chapter is devoted to stochastic perturbations of deterministic

systems. In Section 2.4 we motivate our results and consider simple examples where a di-
rect transformation relates the stochastic system with a family of random equations. In the
general case, where such a simple transformation is not applicable, we study the stochastic
problem by considering smooth random approximations since random equations can be
interpreted pathwise and allow to apply deterministic methods. We recall an approxima-
tion theorem for stochastic perturbations of semi-linear parabolic systems in Section 2.5.1.
The solutions of the random approximations do not converge to the solution of the original
system but to the solution of a modi�ed stochastic system. However, the relation is explicit
and it is possible to construct a family of random approximations such that its solutions
converge to the solution of the original stochastic system. The main result is formulated in
Section 2.5.2 and yields necessary and su�cient conditions for the positivity of solutions of
the random approximations. The conditions ensure that the stochastic system preserves
positivity. Moreover, the conditions are invariant under the transformation relating the
original system and the auxiliary system, and the transformation coincides with the rela-
tion connecting Itô's and Stratonovich's interpretation of stochastic di�erential equations.
Consequently, the positivity of solutions is guaranteed, independent of the choice of in-
terpretation. As a consequence of the positivity criterion we formulate conditions for the
validity of comparison principles for stochastic systems in Section 2.5.3. In Section 2.5.4
we consider an application and verify the positivity property of a stochastic model.

2.1. Positivity Criteria for Deterministic Systems

2.1.1. Semi-Linear Systems

In this section we recall the positivity criterion obtained in [29] for systems of semi-linear
parabolic equations. It yields explicit necessary and su�cient conditions for the positivity
of solutions of semi-linear convection-di�usion-reaction equations of the form

∂tu = a ·∆u− γ ·Du+ f(u) Ω× (0, T ),

u|∂Ω = 0 ∂Ω× [0, T ], (2.1)

u|t=0 = u0 Ω× {0},

where u = (u1, . . . , uk) : Ω× [0, T ]→ Rk, k ∈ N, is a vector-valued function of the spatial
variable x ∈ Ω and time t ∈ [0, T ]. Here, Ω ⊂ Rn, n ∈ N, denotes a bounded domain with
boundary ∂Ω and T > 0.
The di�usion matrix a = (aij)1≤i,j,≤k has constant coe�cients aij ∈ R and

a is positive de�nite. (2.2)
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The convection term is de�ned by

γ ·Du :=
n∑
l=1

γl · ∂xlu,

where γl = (γlij)1≤i,j≤k, 1 ≤ l ≤ n, are matrices with constant coe�cients γlij ∈ R. The
partial derivatives ∂t and ∂xl , 1 ≤ l ≤ n, as well as the Laplace operator ∆ = ∆x are
applied componentwise to the vector-valued function u. Moreover, we assume that the
interaction function f = (f1, . . . , fk) is continuously di�erentiable,

f ∈ C1(Rk;Rk). (2.3)

We will formulate explicit conditions on the matrices a and γl, 1 ≤ l ≤ n, and the
interaction function f such that the solutions of System (2.1) preserve positivity.
Let Lp(Ω;Rk), where 1 ≤ p ≤ ∞, be the space of vector-valued functions u : Ω → Rk

such that the components ui ∈ Lp(Ω), 1 ≤ i ≤ k. The scalar product in the Hilbert space
L2(Ω;Rk) is de�ned by

〈u, v〉L2(Ω;Rk) :=
k∑
i=1

〈ui, vi〉L2(Ω) u, v ∈ L2(Ω;Rk).

For vectors y ∈ Rk we write y ≥ 0 if the inequality is satis�ed componentwise,

yi ≥ 0 for all 1 ≤ i ≤ k,

and denote all non-negative vectors by Rk
+ := {y ∈ Rk| y ≥ 0}.

De�nition 2.1. The positive cone in L2(Ω;Rk) is the set

K+ :=
{
u ∈ L2(Ω;Rk)

∣∣ u ≥ 0 a.e. in Ω
}
.

Moreover, we say that System (2.1) ful�ls the positivity property if for every initial data
u0 ∈ K+ the corresponding solution u( · , · ;u0) : Ω× [0, tmax]→ Rk satis�es

u(·, t;u0) ∈ K+ for t ∈ [0, tmax],

where tmax > 0 and [0, tmax] denotes the maximal existence interval of the solution.

Our aim is not to study the well-posedness of the initial-/boundary value problem (2.1),
we are interested in the qualitative behaviour of solutions. Therefore, in the sequel we
assume that for every initial data u0 ∈ K+ there exists a unique solution of System (2.1),
and the solution satis�es L∞-estimates,

u(·, t;u0) ∈ L∞(Ω;Rk) for t ∈ [0, tmax]. (2.4)

Su�cient conditions on the data and the coe�cients of the equations that justify this
assumption can be found in [48]. The following theorem characterizes the class of semi-
linear systems (2.1) that satisfy the positivity property.
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Theorem 2.1. Let the assumptions (2.2) - (2.4) be ful�lled and the initial data u0 ∈ K+

satisfy the compatibility conditions. Then, System (2.1) possesses the positivity property,
if and only if the matrices a and γ are diagonal, and the interaction function satis�es

fi(y) ≥ 0 for all y ∈ Rk
+ such that yi = 0, (2.5)

where 1 ≤ i ≤ k.

For the proof of Theorem 2.1 we refer to [29] and [34].

De�nition 2.2. We say that the function f : Rk → Rk ful�ls the positivity condition if
its components satisfy the inequalities (2.5) in Theorem 2.1.

In the spatially homogeneous case, for systems of ODEs Theorem 2.1 is equivalent to the
tangential condition for the invariance of the positive cone. In this case, explicit conditions
for the positivity of solutions can be derived from the Nagumo-Brezis Theorem (see [60]
or [71]). For the proof of the following criterion we refer to [60], Corollary 4.2.

Theorem 2.2. Let f : Rk → Rk ful�l the hypothesis (2.3) and u0 ∈ Rk. Then, the system
of ODEs

d

dt
u = f(u), (2.6)

u|t=0 = u0,

where u = (u1, . . . , uk) : R+ → Rk, satis�es the positivity property if and only if the
function f satis�es the positivity condition.

Theorem 2.1 states that a given system of ODEs which satis�es the positivity property
will preserve this property when di�usion and convection e�ects are taken into account if
and only if no cross-di�usion and no cross-convection terms are present.

2.1.2. Quasi-Linear Systems

An increasing number of models exhibits density-dependent di�usion and convection terms.
To study the positivity property of these models we generalize Theorem 2.1 for systems of
quasi-linear parabolic equations of the form

∂tu = a(u) ·∆u− γ(u) ·Du+ f(u) Ω× (0, T ),

u|∂Ω = 0 ∂Ω× [0, T ], (2.7)

u|t=0 = u0 Ω× {0},

where we use the notations of the previous section.
We assume the di�usion matrix a(u) = (aij(u))1≤i,j,≤k is density-dependent with contin-

uously di�erentiable coe�cient functions aij : Rk → R and a(u) is positive de�nite,

yTa(u)y ≥ µ for all u, y ∈ Rk, y 6= 0, (2.8)
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where the constant µ > 0 and yT denotes the transposed vector. The convection term is
given by

γ(u) ·Du :=
n∑
l=1

γl(u) · ∂xlu,

where the coe�cient functions γlij : Rk → R of the matrices γl(u) = (γlij(u))1≤i,j≤k are
continuously di�erentiable, 1 ≤ l ≤ n. Moreover, we suppose the interaction function
f = (f1, . . . , fk) is continuously di�erentiable,

f ∈ C1(Rk;Rk). (2.9)

Since we are interested in the qualitative behaviour of solutions we assume that for any
non-negative initial data u0 ∈ K+ there exists a unique solution of System (2.7), and the
solution and its derivatives with respect to x satisfy L∞-estimates,

u(·, t;u0), ∂xlu(·, t;u0) ∈ L∞(Ω;Rk) t ∈ [0, tmax], (2.10)

for all 1 ≤ l ≤ n, where [0, tmax] denotes the maximal existence interval of the solution.
The following theorem yields explicit conditions on the matrix functions a and γl and the

interaction term f that are necessary and su�cient for the positivity property of System
(2.7).

Theorem 2.3. Let the conditions (2.8) - (2.10) be ful�lled, and the initial data u0 ∈
K+ satisfy the compatibility assumptions. Moreover, we assume that the second partial
derivatives of the functions aij for i 6= j, 1 ≤ i, j ≤ k, exist and belong to the space
L∞loc(Rk). Then, System (2.7) satis�es the positivity property, if and only if the interaction
term f satis�es the positivity condition and the matrices a and γl ful�l

aij(y) = γlij(y) = 0 for all y ∈ Rk
+ such that yi = 0, (2.11)

where i 6= j, 1 ≤ i, j ≤ k and 1 ≤ l ≤ n.

The conditions (2.11) on the di�usion and convection matrices in Theorem 2.3 imply
that the matrices can be represented in the form

a(u) =



a11(u) u1A12(u) u1A13(u) · · · u1A1k(u)
u2A21(u) a22(u) u2A23(u) · · · u2A2k(u)

...
...

...
...

ukAk1(u) ukAk2(u) ukAk3(u) · · · akk(u)



γl(u) =



γl11(u) u1Γl12(u) u1Γl13(u) · · · u1Γl1k(u)
u2Γl21(u) γl22(u) u2Γl23(u) · · · u2Γl2k(u)

...
...

...
...

ukΓ
l
k1(u) ukΓ

l
k2(u) ukΓ

l
k3(u) · · · γlkk(u)


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with bounded functions Aij(u) and Γlij(u), i 6= j, 1 ≤ l ≤ n.

Proof. Necessity: We assume the solution u = u( · , · ;u0) : Ω × [0, tmax] → Rk corre-
sponding to initial data u0 ∈ K+ remains non-negative for t > 0 and prove the necessity
of the stated conditions. In the following we make formal calculations, for its validity we
refer to [48]. Taking smooth initial data u0 and an arbitrary function v ∈ K+, which is
orthogonal to u0 in L2(Ω;Rk), we obtain〈

∂tu|t=0, v
〉
L2(Ω;Rk)

=
〈

lim
t→0+

u( · , t;u0)− u0

t
, v
〉
L2(Ω;Rk)

= lim
t→0+

〈u( · , t;u0)

t
, v
〉
L2(Ω;Rk)

− lim
t→0+

〈u0

t
, v
〉
L2(Ω;Rk)

= lim
t→0+

〈u( · , t;u0)

t
, v
〉
L2(Ω;Rk)

≥ 0,

where we used the orthogonality of u0 and v as well as the hypothesis u( · , t;u0) ∈ K+ for
t > 0, and t→ 0+ denotes the derivative from the right. We remark that for the particular
initial data u0 that we will choose in the sequel there always exists an orthogonal element
v ∈ K+. On the other hand, since u is the solution of System (2.7) corresponding to initial
data u0, we observe〈

∂tu|t=0, v
〉
L2(Ω;Rk)

=
〈
a(u0) ·∆u0 − γ(u0) ·Du0 + f(u0), v

〉
L2(Ω;Rk)

≥ 0. (2.12)

In particular, for �xed i ∈ {1, . . . , k} choosing the functions u0 = (ũ1, . . . , 0︸︷︷︸
i

, . . . , ũk) and

v = (0, . . . , ṽ︸︷︷︸
i

, . . . , 0) with u0, v ∈ K+ leads to the scalar inequality

〈 k∑
j=1,j 6=i

aij(u0)∆ũj −
n∑
l=1

k∑
j=1,j 6=i

γlij(u0)∂xlũj + fi(u0), ṽ
〉
L2(Ω)

≥ 0.

Since this inequality holds for arbitrary non-negative ṽ ∈ L2(Ω), we obtain the pointwise
estimate

k∑
j=1,j 6=i

aij(u0)∆ũj −
n∑
l=1

k∑
j=1,j 6=i

γlij(u0)∂xlũj + fi(u0) ≥ 0 a.e. in Ω. (2.13)

This implies the conditions on the di�usion and convection matrices,

aij(ũ1, . . . , 0︸︷︷︸
i

, . . . , ũk) = γlij(ũ1, . . . , 0︸︷︷︸
i

, . . . , ũk) = 0 ũj ≥ 0, j 6= i,

for all 1 ≤ j ≤ k, and 1 ≤ l ≤ n (see Lemma 2.1 below).
From Inequality (2.13) now follows that the components of the interaction term satisfy

fi(ũ1, . . . , 0︸︷︷︸
i

, . . . , ũk) ≥ 0 ũj ≥ 0, j 6= i,
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for all 1 ≤ i, j ≤ k.
Su�ciency: We show that the stated conditions on a, γ and f ensure that the solution
u = u( · , · ;u0) corresponding to initial data u0 ∈ K+ remains non-negative. First, we
assume that the properties (2.11) and the positivity condition (2.5) are satis�ed for all
y ∈ Rk such that yi = 0. The system of equations then takes the form

∂tui = aii(u)∆ui +
k∑

j=1,j 6=i

uiAij(u)∆uj −
n∑
l=1

γlii(u)∂xlui −
n∑
l=1

k∑
j=1,j 6=i

uiΓ
l
ij(u)∂xluj + fi(u),

for 1 ≤ i ≤ k, where the functions Aij,Γlij : Rk → R are de�ned by

Aij(y) :=

∫ 1

0

∂iaij(y1, . . . , syi, . . . , yk)ds y ∈ Rk,

Γlij(y) :=

∫ 1

0

∂iγ
l
ij(y1, . . . , syi, . . . , yk)ds y ∈ Rk.

For a function u ∈ L2(Ω) we denote its positive and negative part by u+ := max{u, 0}
and u− := max{−u, 0}, respectively, and obtain the representation u = u+ − u−. Its
absolute value is given by |u| = u+ +u−. By the de�nition immediately follows u− u+ = 0.
Furthermore, if u ∈ H1(Ω), then also its positive and negative part, u+, u− ∈ H1(Ω), and

∂xlu− =

{
−∂xlu u < 0

0 u ≥ 0
∂xlu+ =

{
∂xlu u > 0

0 u ≤ 0

for all 1 ≤ l ≤ n (cf. [41]). This implies

(∂xlu+)u− = u+ ∂xlu− = (∂xlu+) ∂xmu− = 0 1 ≤ l,m ≤ n.

In order to prove the positivity of the solution u corresponding to initial data u0 ∈ K+

we show that (u0)i− = 0 implies ui− := (ui( · , t;u0))− = 0 for t > 0 and all 1 ≤ i ≤ k.
Multiplying the i-th equation by the negative part ui− and integrating over Ω yields

〈∂tui, ui−〉L2(Ω) = 〈aii(u)∆ui, ui−〉L2(Ω) +
k∑

j=1,j 6=i

〈uiAij(u)∆uj, ui−〉L2(Ω)

−
n∑
l=1

〈γlii(u)∂xlui, ui−〉L2(Ω) −
n∑
l=1

k∑
j=1,j 6=i

〈uiΓlij(u)∂xluj, ui−〉L2(Ω)

+〈fi(u), ui−〉L2(Ω).

We observe that the left-hand side of the equation can be written as

〈∂tui, ui−〉L2(Ω) = −〈∂tui−, ui−〉L2(Ω) = −1

2
∂t‖ui−‖2

L2(Ω).
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Taking into account the homogeneous Dirichlet boundary conditions we obtain for the �rst
term on the right-hand side of the equation

〈aii(u)∆ui, ui−〉L2(Ω) = −〈aii(u)∆ui−, ui−〉L2(Ω) = 〈O(aii(u)ui−),Oui−〉L2(Ω;Rn)

= 〈aii(u)Oui−,Oui−〉L2(Ω;Rn) +
k∑
j=1

〈∂jaii(u)ui−Ouj,Oui−〉L2(Ω;Rn).

We further estimate the second integral by

∣∣ k∑
j=1

〈∂jaii(u)ui−Ouj,Oui−〉L2(Ω;Rn)

∣∣ ≤ C1

n∑
l=1

〈|∂xlui−|, ui−〉L2(Ω),

for some constant C1 ≥ 0. Here, we used the hypothesis (2.10) and the regularity assump-
tion aii ∈ C1(Rk;R). For the second di�usion term we obtain

∣∣〈 k∑
j=1,j 6=i

uiAij(u)∆uj, ui−
〉
L2(Ω)

∣∣
=

∣∣− k∑
j=1,j 6=i

〈
ui−Aij(u)∆uj, ui−

〉
L2(Ω)

∣∣ ≤ k∑
j=1,j 6=i

∣∣〈O(Aij(u)(ui−)2
)
,Ouj

〉
L2(Ω;Rn)

∣∣
≤

k∑
j=1,j 6=i

(∣∣〈2Aij(u)ui−Oui−,Ouj
〉
L2(Ω;Rn)

∣∣+
k∑

m=1

∣∣〈∂mAij(u)(ui−)2Oum,Ouj
〉
L2(Ω;Rn)

∣∣)
≤ C2

n∑
l=1

〈|∂xlui−|, ui−〉L2(Ω) + C3‖ui−‖2
L2(Ω),

for some constants C2, C3 ≥ 0. As before, we used the assumption (2.10) and that the
second partial derivatives of the functions aij belong to L∞loc(Ω). Similarly, we derive an
estimate for the convection terms

∣∣− n∑
l=1

〈γlii(u)∂xlui, ui−〉L2(Ω) −
n∑
l=1

k∑
j=1,j 6=i

〈uiΓlij(u)∂xluj, ui−〉L2(Ω)

∣∣
≤

n∑
l=1

(
〈|γlii(u)∂xlui−|, ui−〉L2(Ω) +

k∑
j=1,j 6=i

〈|Γlij(u)∂xluj|ui−, ui−〉L2(Ω)

)
≤ C4

n∑
l=1

〈|∂xlui−|, ui−〉L2(Ω) + C5‖ui−‖2
L2(Ω),

for some constants C4, C5 ≥ 0. Here, we used that the coe�cient functions γlij ∈ C1(Rk;R),
1 ≤ i, j ≤ k, 1 ≤ l ≤ n, and the hypothesis (2.10). To estimate the interaction term we
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use that f ∈ C1(Rk;Rk), which leads to

fi(u1, . . . , uk) = fi(u1, . . . , 0︸︷︷︸
i

, . . . , uk) + ui

∫ 1

0

∂ifi(u1, . . . , sui, . . . , uk)ds

= fi(u1, . . . , 0︸︷︷︸
i

, . . . , uk) + ui Fi(u1, . . . , uk),

where the function Fi : Rk → R is bounded. This representation yields

〈fi(u), ui−〉L2(Ω) = 〈fi(u1, . . . , 0︸︷︷︸
i

, . . . , uk), ui−〉L2(Ω) + 〈uiFi(u1, . . . , uk), ui−〉L2(Ω)

= 〈fi(u1, . . . , 0︸︷︷︸
i

, . . . , uk), ui−〉L2(Ω) − 〈Fi(u1, . . . , uk)ui−, ui−〉L2(Ω).

Summing up all terms we obtain

1

2
∂t‖ui−‖2

L2(Ω) + 〈aii(u)Oui−,Oui−〉L2(Ω;Rn) ≤ C6

n∑
l=1

〈|∂xlui−|, ui−〉L2(Ω) + C7‖ui−‖2
L2(Ω)

−〈fi(u1, . . . , 0︸︷︷︸
i

, . . . , uk), ui−〉L2(Ω),

for some constants C6, C7 ≥ 0.
To estimate the mixed terms we use Young's inequality. Namely, for every ε > 0 there

exists a constant Cε ≥ 0 such that

n∑
l=1

〈|∂xlui−|, ui−〉L2(Ω) ≤ ε‖Oui−‖2
L2(Ω;Rn) + Cε‖ui−‖2

L2(Ω).

If we choose ε > 0 su�ciently small and take Hypothesis (2.8) into account, it follows

∂t‖ui−‖2
L2(Ω) ≤ C8‖ui−‖2

L2(Ω) − 2〈fi(u1, . . . , 0︸︷︷︸
i

, . . . , uk), ui−〉L2(Ω),

for some constant C8 ≥ 0. Since in the beginning we assumed that fi(y) ≥ 0 for all y ∈ Rk

such that yi = 0, 1 ≤ i ≤ k, we obtain the estimate

∂t‖ui−‖2
L2(Ω) ≤ C8‖ui−‖2

L2(Ω).

By Gronwall's Lemma and the initial condition (u0)i− = 0 follows ‖ui−‖L2(Ω) = 0.
It remains to justify our initial assumptions. To this end we consider the modi�ed system

∂tû = â(û) ·∆û− γ̂(û) ·Dû+ f̂(û) Ω× (0, T ),

û|∂Ω = 0 ∂Ω× [0, T ],

û|t=0 = u0 Ω× {0},
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where the function f̂ : Rk → Rk is given by

f̂i(y) = fi(|y1|, . . . , 0︸︷︷︸
i

, . . . , |yk|) + yiFi(y) y ∈ Rk,

and the function Fi was de�ned as

Fi(y1, . . . , yk) :=

∫ 1

0

∂ifi(y1, . . . , syi, . . . , yk)ds y ∈ Rk.

The modi�ed di�usion and convection matrices are given by

γ̂lij(y1, . . . , yk) := γlij(|y1|, . . . , 0︸︷︷︸
i

. . . , |yk|) + yiΓ
l
ij(y) y ∈ Rk,

âij(y1, . . . , yk) := aij(|y1|, . . . , 0︸︷︷︸
i

, . . . , |yk|) + yiAij(y) y ∈ Rk,

for 1 ≤ i, j ≤ k, 1 ≤ l ≤ n. Following the same arguments we conclude that the solution
û of the modi�ed system remains non-negative. However, if the function û is non-negative
we can remove the absolute values, and û is a solution of the original system

∂tu = a(u) ·∆u− γ(u) ·Du+ f(u) Ω× (0, T ),

u|∂Ω = 0 ∂Ω× [0, T ],

u|t=0 = u0 Ω× {0}.

By the uniqueness of solutions corresponding to initial data u0 follows that u = û, which
implies u( · , t;u0) ∈ K+ for t > 0, and concludes the proof of the theorem.

Lemma 2.1. Let j 6= i, 1 ≤ i, j ≤ k, and 1 ≤ l ≤ n. We assume the hypothesis of Theorem
2.3 are satis�ed. If the pointwise inequality

k∑
j=1,j 6=i

aij(ũ)∆ũj −
n∑
l=1

k∑
j=1,j 6=i

γlij(ũ)∂xlũj + fi(ũ) ≥ 0

is valid for every initial data ũ = (ũ1, . . . , 0︸︷︷︸
i

, . . . , ũk) ∈ K+, then

aij(y) = γlij(y) = 0 for all y ∈ Rk
+ such that yi = 0.

Proof. We argue by contradiction and suppose that there exists y ∈ Rk
+ such that yi =

0 and aij(y) 6= 0. First, we assume that yj > 0. Let x0 ∈ Ω and Ux0 be an open
neighbourhood of x0 that is compactly contained in Ω.
If aij(y) > 0 we de�ne the function ũ : Ω→ Rk by

ũm(x) :=


ym m 6= i,m 6= j

yje
− 1
ε
‖x−x0‖2 m = j

0 m = i

for x ∈ Ux0 ,
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where 1 ≤ m ≤ k, and extend it to a smooth non-negative function on Ω that vanishes on
the boundary. Computing the derivatives we observe

Oũj(x) = −2

ε
yj(x− x0)e−

1
ε
‖x−x0‖2 ,

∆ũj(x) = −2

ε
yje
− 1
ε
‖x−x0‖2 +

4

ε2
yj‖x− x0‖2e−

1
ε
‖x−x0‖2 ,

for x ∈ Ux0 , and consequently,

∂xlũm(x0) = 0,

∆ũm(x0) =

{
−2
ε
yj m = j

0 m 6= j

for all 1 ≤ m ≤ k, 1 ≤ l ≤ n. Since ε > 0 can be chosen arbitrarily small, the inequality
(2.13) is violated in the point x0 ∈ Ω.
On the other hand, if aij(y) < 0, we de�ne the function ũ : Ω→ Rk by

ũm(x) :=


ym m 6= i,m 6= j

yj(e
− 1
ε
‖x−x0‖2 + 1

ε2
‖x− x0‖2) m = j

0 m = i

for x ∈ Ux0 ,

where 1 ≤ m ≤ k, and extend it to a smooth non-negative function on Ω that vanishes on
the boundary. Computing the derivatives we observe

Oũj(x) = yj
(
− 2

ε
(x− x0)e−

1
ε
‖x−x0‖2 +

2

ε2
(x− x0)

)
,

∆ũj(x) = yj
(
− 2

ε
e−

1
ε
‖x−x0‖2 +

4

ε2
‖x− x0‖2e−

1
ε
‖x−x0‖2 +

2

ε2
)
,

for all x ∈ Ux0 , and consequently,

∂xlũm(x0) = 0,

∆ũm(x0) =

{
yj

2
ε
(1
ε
− 1) m = j

0 m 6= j,

for all 1 ≤ m ≤ k, 1 ≤ l ≤ n. If we choose ε > 0 su�ciently small the inequality (2.13) is
violated in the point x0 ∈ Ω.
It remains to consider the case that the function aij : Rk → R is identically zero on the

set {y ∈ Rk
+| yi = 0, yj > 0}. By the continuity of aij then follows aij(y) = 0 for all y ∈ Rk

+

such that yi = yj = 0. This concludes the proof for the conditions on the di�usion matrix.
To derive the assumptions on the convection terms we again argue by contradiction

and suppose that there exists y ∈ Rk
+ such that yi = 0 and γlij(y) 6= 0. Without loss of

generality we assume that yj > 0. Otherwise, the claim follows by the continuity of the
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function γlij in the same way as for the di�usion matrix. Let x0 ∈ Ω and Ux0 be an open
neighbourhood of x0 which is compactly contained in Ω.
If γlij(y) > 0 we de�ne the function ũ : Ω→ Rk

+ by

ũm(x) :=


ym m 6= i,m 6= j

yj(1 + sin(xl−(x0)l
ε

)) m = j

0 m = i

for x ∈ Ux0 ,

for 1 ≤ m ≤ k, and extend it to a smooth non-negative function on Ω that vanishes on the
boundary. Computing the derivatives we observe

∂xlũj(x) =
1

ε
yj cos(

xl − (x0)l
ε

),

∂2
xl
ũj(x) = − 1

ε2
yj sin(

xl − (x0)l
ε

),

for all x ∈ Ux0 , and consequently,

∂xlũm(x0) =

{
1
ε
yj m = j

0 m 6= j,

∆ũm(x0) = 0,

for all 1 ≤ m ≤ k. Choosing ε > 0 su�ciently small the inequality (2.13) is violated in the
point x0 ∈ Ω.
Otherwise, if γlij(y) < 0, we de�ne the function ũ : Ω→ Rk

+ by

ũm(x) :=


ym m 6= i,m 6= j

yj(1− sin(xl−(x0)l
ε

) m = j

0 m = i

for x ∈ Ux0 ,

for all 1 ≤ m ≤ k, and extend it to a smooth non-negative function on Ω that vanishes on
the boundary. In this case we obtain

∂xlũm(x0) =

{
−1
ε
yj m = j

0 m 6= j,

∆ũm(x0) = 0,

for all m 6= i, 1 ≤ m ≤ k. Choosing ε > 0 su�ciently small leads to a contradiction to
Inequality (2.13) in the point x0 ∈ Ω.

The conditions on the di�usion and convection matrices that are necessary and su�-
cient for the positivity of solutions of semi-linear and quasi-linear systems are essentially
di�erent. We illustrate the results considering a simple example.
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Example 2.1. For k = 3 and γ ≡ 0 the semi-linear system (2.1) takes the form

∂tu1 = a11∆u1 + a12∆u2 + a13∆u3 + f1(u),

∂tu2 = a21∆u1 + a22∆u2 + a23∆u3 + f2(u), (2.14)

∂tu3 = a31∆u1 + a32∆u2 + a33∆u3 + f3(u).

If the assumptions of Theorem 2.1 are satis�ed, System (2.14) satis�es the positivity prop-
erty if and only if

f1(0, y, z) ≥ 0, f2(y, 0, z) ≥ 0, f3(y, z, 0) ≥ 0 for all y ≥ 0, z ≥ 0, (2.15)

and the matrix a = (aij)1≤i,j≤3 is diagonal. Consequently, all cross-di�usion terms are zero
and the system is of the form

∂tu1 = a11∆u1 + f1(u),

∂tu2 = a22∆u2 + f2(u),

∂tu3 = a33∆u3 + f3(u).

The quasi-linear system (2.7) for k = 3 and γ ≡ 0 takes the form

∂tu1 = a11(u)∆u1 + a12(u)∆u2 + a13(u)∆u3 + f1(u),

∂tu2 = a21(u)∆u1 + a22(u)∆u2 + a23(u)∆u3 + f2(u), (2.16)

∂tu3 = a31(u)∆u1 + a32(u)∆u2 + a33(u)∆u3 + f3(u).

If the assumptions of Theorem 2.3 are satis�ed, System (2.16) satis�es the positivity prop-
erty if and only if the interaction function possesses the property (2.15) and

aij(y) = 0 for all y ∈ R3
+ such that yi = 0,

for all i 6= j, 1 ≤ i, j ≤ 3. This implies that System (2.16) can be represented as

∂tu1 = a11(u) ∆u1 + u1A12(u)∆u2 + u1A13(u)∆u3 + f1(u),

∂tu2 = u2A21(u)∆u1 + a22(u) ∆u2 + u2A23(u)∆u3 + f2(u),

∂tu3 = u3A31(u)∆u1 + u3A32(u)∆u2 + a33(u) ∆u3 + f3(u),

where the functions Aij, i 6= j, were de�ned in the proof of Theorem 2.3.
Summarizing we observe that cross-di�usion terms destroy the positivity property of semi-

linear systems. They may appear in the quasi-linear case, but are necessarily of a very
particular form. Namely, if one component of the solution approaches zero, the cross-
di�usion terms in the corresponding equation need to vanish.

2.2. Comparison Principles for Deterministic Systems

We apply the positivity criteria of the previous section to derive necessary and su�cient
conditions for the validity of comparison theorems for the solutions of semi-linear and
quasi-linear parabolic systems.
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2.2.1. Semi-Linear Systems

For vectors y and z in Rk we write y ≥ z if the inequality holds componentwise,

yi ≥ zi for all 1 ≤ i ≤ k.

De�nition 2.3. We de�ne the (partial) order relation 4 on the space of vector-valued
functions L2(Ω;Rk) by

u 4 v if v − u ∈ K+,

where u, v ∈ L2(Ω;Rk).
Furthermore, we call System (2.7) (or System (2.1)) order preserving with respect

to the order relation 4 if for every initial data u0, v0 ∈ L2(Ω;Rk) such that u0 4 v0 the
corresponding solutions satisfy

u( · ; t, u0) 4 v( · ; t, u0) for t > 0,

as long as both solutions exists.

Theorem 2.4. Under the assumptions of Theorem 2.1, System (2.1) is order preserving
with respect to 4 if and only if the matrices a and γ are diagonal, and the reaction term f
satis�es

fi(y) ≥ fi(z) for all y, z ∈ Rk such that y ≥ z, yi = zi, (2.17)

for all 1 ≤ i ≤ k.

De�nition 2.4. We call the function f : Rk → Rk quasi-monotone if it satis�es Property
(2.17) in Theorem 2.4.

Sketch of the proof. Let u0 and v0 be given initial data such that u0 < v0. We prove
that the order relation is preserved by the corresponding solutions u and v, if and only if
the matrices a and γ are diagonal, and the reaction term ful�lls the stated monotonicity
conditions. De�ning the di�erence of the solutions w := u− v it satis�es the system

∂tw = a ·∆w − γ ·Dw + f(u)− f(v) Ω× (0, T ),

w|∂Ω = 0 ∂Ω× [0, T ], (2.18)

w|t=0 = w0 Ω× {0},

where w0 := u0 − v0 ∈ K+. Moreover, System (2.1) is order preserving with respect to 4
if and only if System (2.18) satis�es the positivity property.
Necessity: We only indicate the ideas and refer to the proof of Theorem 2.6 for details.
Let the index i ∈ {1, . . . , k} be �xed. If the solutions preserve the order relation we follow
similar arguments as in the proof of the positivity criterion and obtain the scalar inequality

k∑
j=1,j 6=i

aij∆(ũj − ṽj)−
n∑
l=1

k∑
j=1,j 6=i

γlij∂xl(ũj − ṽj) + fi(u0)− fi(v0) ≥ 0,
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for every u0 = (ũ1, . . . , ũk) and v0 = (ṽ1, . . . , ṽk) such that u0 < v0 and ũi = ṽi. It follows
that the o�-diagonal coe�cients of the matrices a and γl, 1 ≤ l ≤ n, are identically zero
(see Lemma 2.2) and the interaction function is quasi-monotone.
Su�ciency: The su�ciency of the stated conditions can be shown as in the proof of
Theorem 2.6. The arguments for semi-linear systems simplify.

Next, we analyse conditions on the interaction function ensuring that System (2.1) is
order-preserving with respect to an arbitrary order relation.

De�nition 2.5. To de�ne the order relation % on Rk let σ1 and σ2 be disjoint sets such
that σ1 ∪ σ2 = {1, . . . , k}. For vectors y and z in Rk we write y % z if{

yj ≥ zj for j ∈ σ1

yj ≤ zj for j ∈ σ2.

For vector-valued functions u and v in L2(Ω;Rk) we use the same notation and write u % v
if the inequalities u % v hold pointwise a.e. in Ω.

Theorem 2.5. Under the hypothesis of Theorem 2.1 the semi-linear system (2.1) is order
preserving with respect to - if and only if the matrices a and γ are diagonal, and the
interaction term f satis�es

fi(y) ≤ fi(z) if i ∈ σ1,

fi(y) ≥ fi(z) if i ∈ σ2,

for all y, z ∈ Rk such that y - z and yi = zi, where 1 ≤ i ≤ k.

Proof. Let u0 and v0 be given initial data and assume u0 % v0. We prove that the order %
is preserved by the corresponding solutions u and v, if and only if the matrices a and γ are
diagonal, and the reaction term f ful�ls the stated conditions. De�ning the function w by

wi :=

{
ui − vi if i ∈ σ1

−(ui − vi) if i ∈ σ2,

it satis�es the system

∂tw = ã ·∆w − γ̃ ·Dw + F (u, v) Ω× (0, T ),

w|∂Ω = 0 ∂Ω× [0, T ], (2.19)

w|t=0 = w0 Ω× {0},

with initial data w0 ∈ K+. The function F is de�ned by

Fi(u, v) :=

{
fi(u)− fi(v) if i ∈ σ1

−(fi(u)− fi(v)) if i ∈ σ2,
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the di�usion matrix ã is given by

ãij :=

{
aij if i, j ∈ σ1 or i, j ∈ σ2

−aij otherwise,

and the convection matrices γ̃l are de�ned by

γ̃lij :=

{
γlij if i, j ∈ σ1 or i, j ∈ σ2

−γlij otherwise,

for all 1 ≤ l ≤ n and 1 ≤ i, j ≤ k. We observe that System (2.1) is order preserving
with respect to % if and only if System (2.19) satis�es the positivity property. It follws as
in Theorem 2.4 that the matrices a and γl are diagonal, 1 ≤ l ≤ n, and the function F
satis�es

Fi(y, z) ≥ 0 for all y, z ∈ Rk such that w = y − z ∈ Rk
+ and wi = 0,

for 1 ≤ i ≤ k. Consequently, by the de�nition of the function F we obtain{
fi(y)− fi(z) ≥ 0 if i ∈ σ1

−
(
fi(y)− fi(z)

)
≥ 0 if i ∈ σ2

for all y, z ∈ Rk such that yi = zi, y % z.

2.2.2. Quasi-Linear Systems

In this subsection we analyse the validity of comparison principles for quasi-linear systems.
Owing to the stronger coupling of the equations we cannot deduce the results directly from
the positivity criterion like in the semi-linear case. Indeed, allowing for comparison be-
tween arbitrary solutions, and not only with the zero solution, leads to essentially stronger
conditions for the di�usion and convection matrices.

Theorem 2.6. In addition to the hypothesis of Theorem 2.3 we assume that the partial
derivatives of second order of the diagonal coe�cient functions aii exist and belong to the
space L∞loc(Rk) for all 1 ≤ i ≤ k. Then, the quasi-linear system (2.7) is order preserving
with respect to 4 if and only if the matrices a and γl are diagonal, the coe�cient functions
aii and γ

l
ii depend on the component ui of the solution only, for all 1 ≤ i ≤ k, 1 ≤ l ≤ n,

and the interaction term f is quasi-monotone.

Proof. Let u0 and v0 be given initial data such that u0 < v0. We show that the order < is
preserved by the corresponding solutions u and v, if and only if a, γ and f ful�l the stated
conditions. De�ning the di�erence of the solutions w := u− v it satis�es the system

∂tw = a(u) ·∆u− a(v) ·∆v − γ(u) ·Du+ γ(v) ·Dv + f(u)− f(v) Ω× (0, T ),

w|∂Ω = 0 ∂Ω× [0, T ], (2.20)

w|t=0 = w0 Ω× {0},
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where the initial data w0 := u0 − v0 ∈ K+.
Necessity: We assume that the solutions u and v preserve the order relation <, which
is equivalent to the positivity property of System (2.20). Following the arguments in the
�rst part of the proof of Theorem 2.3 leads to the scalar inequality〈
a(u0) ·∆u0 − a(v0) ·∆v0 − γ(u0) ·Du0 + γ(v0) ·Dv0 + f(u0)− f(v0), ϕ

〉
L2(Ω;Rk)

≥ 0,

where ϕ is an arbitrary function in K+ which is orthogonal to w0 in L2(Ω;Rk). Let
the index i ∈ {1, . . . , k} be �xed. Choosing smooth functions u0 = (ũ1, . . . , ũk) and
v0 = (ṽ1, . . . , ṽk) such that u0 < v0, ũi = ṽi, and ϕ = (0, . . . , ϕ̃︸︷︷︸

i

, . . . , 0), where ϕ̃ ∈ L2(Ω)

is an arbitrary non-negative function, the functions w0 and ϕ are orthogonal in L2(Ω;Rk).
By the inequality above we obtain the pointwise estimate

k∑
j=1,j 6=i

(aij(u0)∆ũj − aij(v0)∆ṽj) + (aii(u0)− aii(v0))∆ũi (2.21)

−
n∑
l=1

k∑
j=1,j 6=i

(γlij(u0)∂xlũj + γlij(v0)∂xl ṽj) +
n∑
l=1

(γii(u0)− γii(v0))∂xlũi + fi(u0)− fi(v0) ≥ 0

in Ω. It follows that the coe�cient functions aij and γlij are identically zero, for all 1 ≤
l ≤ n, 1 ≤ j ≤ k, i 6= j, and the diagonal coe�cient functions satisfy{

aii(y) = aii(z)

γlii(y) = γlii(z)
for all y, z ∈ Rk such that y ≥ z, yi = zi,

where 1 ≤ l ≤ n (see Lemma 2.2 below). This implies that the functions aii and γlii depend
on the component ui of the solution only. Using these relations we conclude from Inequality
(2.21) the monotonicity conditions for the interaction term,

fi(y) ≥ fi(z) for all y, z ∈ Rk such that y ≥ z, yi = zi,

where 1 ≤ i ≤ k.
Su�ciency: Under the stated assumptions on a, γ and f , System (2.20) takes the form

∂twi = aii(u)∆ui − aii(v)∆vi −
n∑
l=1

(
γlii(u)∂xlui − γlii(v)∂xlvi

)
+ fi(u)− fi(v),

w|∂Ω = 0, (2.22)

w|t=0 = w0,

for 1 ≤ i ≤ k, where the initial data w0 ∈ K+. To show the positivity property of this
system we prove for the solution w = w( · , t;w0) that the initial assumption (w0)i− = 0
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implies wi− = 0 for t > 0 and all 1 ≤ i ≤ k. First, we assume that the quasi-monotonicity
condition (2.17) is satis�ed for all y, z ∈ Rk such that yi = zi. The assumptions on the
functions aii lead to the equality

aii(v) =

∫ 1

0

d

ds
aii(v1, . . . , svi + (1− s)ui, . . . , vk)ds+ aii(v1, . . . , ui, . . . , vk)

= (vi − ui)
∫ 1

0

∂iaii(v1, . . . , svi + (1− s)ui, . . . , vk)ds+ aii(u1, . . . , ui, . . . , uk)

= (vi − ui)Ãii(u, v) + aii(u),

for all 1 ≤ i ≤ k, where the function Ãii is bounded. Hence, we obtain

aii(u)∆ui − aii(v)∆vi = aii(u)∆wi + wiÃii(u, v)∆vi

and, using an analogous representation for the functions γlii follows

γlii(u)∂xlui − γlii(v)∂xlvi = γlii(u)∂xlwi + wi

∫ 1

0

∂iγ
l
ii(v1, . . . , svi + (1− s)ui, . . . , vk)ds∂xlvi

= γlii(u)∂xlwi + wiΓ̃
l
ii(u, v)∂xlvi,

for all 1 ≤ l ≤ n, 1 ≤ i ≤ k, where the function Γ̃lii is bounded. Multiplying the i-th
equation by the negative part wi− and integrating over Ω yields

−∂t‖wi−‖2
L2(Ω) = −〈aii(u)∆wi−, wi−〉L2(Ω) − 〈wi−Ãii(u, v)∆vi, wi−〉L2(Ω)

+
n∑
l=1

(
〈γlii(u)∂xlwi−, wi−〉L2(Ω) + 〈wi−Γ̃lii(u, v)∂xlvi, wi−〉L2(Ω)

)
+〈fi(u)− fi(v), wi−〉L2(Ω).

Taking into account the homogeneous Dirichlet boundary conditions we derive for the �rst
di�usion term

−〈aii(u)∆wi−, wi−〉L2(Ω) = 〈O
(
aii(u)wi−

)
,Owi−〉L2(Ω;Rn)

= 〈aii(u)Owi−,Owi−〉L2(Ω;Rn) +
k∑
j=1

〈wi−∂jaii(u)Ouj,Owi−〉L2(Ω;Rn).

We further estimate the second integral by

∣∣ k∑
j=1

〈wi−∂jaii(u)Ouj,Owi−〉L2(Ω;Rn)

∣∣ ≤ c1

n∑
l=1

〈|∂xlwi−|, wi−〉L2(Ω),

57



2. Verifying Mathematical Models

for some constant c1 ≥ 0. Here, we used the hypothesis (2.10) and that the function
aii ∈ C1(Rk;R), 1 ≤ i ≤ k. For the second di�usion term we obtain∣∣− 〈wi−Ãii(u, v)∆vi, wi−

〉
L2(Ω)

∣∣ =
∣∣2〈wi−Ãii(u, v)Ovi,Owi−

〉
L2(Ω;Rn)

∣∣
+
∣∣〈(wi−)2O(Ãii(u, v)),Ovi

〉
L2(Ω;Rn)

∣∣
≤ c2

n∑
l=1

〈|∂xlwi−|, wi−〉L2(Ω) + c3‖wi−‖2
L2(Ω),

for some constants c2, c3 ≥ 0. Again, we used the hypothesis (2.10) and the regularity
assumptions on the functions aii, 1 ≤ i ≤ k. In a similar way we estimate the convection
terms

∣∣ n∑
l=1

(
〈γlii(u)∂xlwi−, wi−〉L2(Ω) + 〈wi−Γ̃lii(u, v)∂xlvi, wi−〉L2(Ω)

)∣∣
≤ c4

n∑
l=1

〈|∂xlwi−|, wi−〉L2(Ω) + c5‖wi−‖2
L2(Ω),

for some constants c4, c5 ≥ 0. Finally, we observe

fi(u)− fi(v) =fi(u)− fi(v1, . . . , ui, . . . , vk) + wi

∫ 1

0

∂ifi(v1, . . . , svi + (1− s)ui, . . . , vk)ds

=fi(u)− fi(v1, . . . , ui, . . . , vk) + wiFi(u, v).

This representation yields an estimate for the remaining integral,

− 〈fi(u)− fi(v), wi−〉L2(Ω)

= − 〈fi(u1, . . . , uk)− fi(v1, . . . , ui, . . . , vk), wi−〉L2(Ω) + 〈wi−Fi(u, v), wi−〉L2(Ω)

≤
∣∣〈wi−Fi(u, v), wi−〉L2(Ω)

∣∣ ≤ c6 ‖wi−‖2
L2(Ω),

for some constant c6 ≥ 0. Here, we used our initial assumption that the quasi-monotonicity
condition (2.17) is satis�es for all y, z ∈ Rk such that yi = zi. Summing up the terms and
estimating all mixed integrals of the form

∑n
l=1〈|∂xlwi−|, wi−〉L2(Ω) by Young's inequality

we conclude

∂t‖wi−‖2
L2(Ω) ≤ c7‖wi−‖2

L2(Ω),

for some constant c7 ≥ 0. By Gronwall's lemma and the hypothesis (w0)i− = 0 follows
wi− = 0, which proves that System (2.22) satis�es the positivity property. Finally, System
(2.22) satis�es the positivity property if and only if System (2.7) is order preserving with
respect to the order relation 4.
It remains to justify our initial assumption on the interaction function. To this end we
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consider the modi�ed system

∂tŵi = aii(u)∆ui − aii(v)∆vi −
n∑
l=1

(
γlii(u)∂xlui − γlii(v)∂xlvi

)
+ F̂i(u, v),

ŵ|∂Ω = 0,

ŵ|t=0 = w0,

where the function F̂ : Rk × Rk → R is given by

F̂i(y, z) := fi(ỹ1, . . . , ỹk)− fi(z̃1, . . . , yi, . . . , z̃k) + (yi − zi)Fi(y, z).

The function Fi was de�ned above and

ỹj :=

{
yj if yj ≥ zj

−yj if yj ≤ zj
z̃j :=

{
zj if yj ≥ zj

−zj if yj ≤ zj
for all 1 ≤ j ≤ k, y, z ∈ Rk.

Following the same arguments we conclude that the function ŵ remains non-negative.
However, if the solution ŵ is non-negative it satis�es the original system (2.22) and, by
the uniqueness of solutions follows ŵ = w.

Lemma 2.2. Let j 6= i, 1 ≤ i, j ≤ k, and 1 ≤ l ≤ n. We assume the hypothesis of Theorem
2.6 are satis�ed, and the pointwise inequality

k∑
j=1,j 6=i

(
aij(ũ)∆ũj − aij(ṽ)∆ṽj

)
+
(
aii(ũ)− aii(ṽ)

)
∆ũi

−
n∑
l=1

k∑
j=1,j 6=i

(
γlij(ũ)∂xlũj + γlij(ṽ)∂xl ṽj

)
+

n∑
l=1

(
γii(ũ)− γii(ṽ)

)
∂xlũi + fi(ũ)− fi(ṽ) ≥ 0

is valid in Ω for every initial data ũ = (ũ1, . . . , ũk) and ṽ = (ṽ1, . . . , ṽk) such that ũ < ṽ and
ũi = ṽi. Then, the coe�cient functions aij and γ

l
ij are identically zero, and the diagonal

coe�cient functions aii and γ
l
ii depend on the component ui of the solution only.

Proof. We argue by contradiction and suppose that the function aij is not identically zero.
Then, there exists y ∈ Rk such that aij(y) 6= 0, and without loss of generality we can
assume that yj > 0. Let x0 ∈ Ω and Ux0 be an open neighbourhood of x0 that is compactly
contained in Ω.
If aij(y) > 0 we de�ne the function ũ : Ω→ Rk by

ũm(x) :=

{
ym m 6= j

yje
− 1
ε
‖x−x0‖2 m = j

for x ∈ Ux0 ,

where 1 ≤ m ≤ k, and extend it to a smooth function on Ω that vanishes on the boundary
and such that the component ũj is non-negative in Ω. Furthermore, we de�ne

ṽm(x) :=

{
ũm(x) m 6= j

0 m = j
for x ∈ Ω.
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Certainly, the functions satisfy ũ < ṽ and ũi = ṽi. Computing the derivatives and evalu-
ating the functions in the point x0 ∈ Ω we observe

∂xlũm(x0) = 0,

∆ũm(x0) =

{
−2
ε
yj m = j

0 m 6= j,

∂xl ṽm(x0) = ∆ṽm(x0) = 0,

for all 1 ≤ m ≤ k, 1 ≤ l ≤ n. Since ε > 0 can be chosen arbitrarily small, the inequality
(2.21) is violated in the point x0 ∈ Ω.
On the other hand, if aij(y) < 0, we de�ne the function ũ : Ω→ Rk by

ũm(x) :=

{
ym m 6= j

yj(e
− 1
ε
‖x−x0‖2 + 1

ε2
‖x− x0‖2) m = j

for x ∈ Ux0 ,

where 1 ≤ m ≤ k, and extend it to a smooth function on Ω that vanishes on the boundary
and such that ũj is non-negative in Ω. As before, if we de�ne the function ṽ by

ṽm(x) :=

{
ũm(x) m 6= j

0 m = j
for x ∈ Ω,

then the functions satisfy ũ < ṽ and ũi = ṽi. Evaluating the derivatives in the point x0 we
obtain

∂xlũm(x0) = 0,

∆ũm(x0) =

{
yj

2
ε
(1
ε
− 1) m = j

0 m 6= j,

∂xl ṽm(x0) = ∆ṽm(x0) = 0,

for all 1 ≤ m ≤ k, 1 ≤ l ≤ n. If we choose ε > 0 su�ciently small the inequality (2.21) is
violated in the point x0 ∈ Ω, which proves that the function aij is identically zero.
Next, we assume that there exist y, z ∈ Rk such that y ≥ z, yi = zi, and aii(y) 6= aii(z).

Without loss of generality we assume that yi = zi > 0. If the di�erence aii(y)− aii(z) > 0
we de�ne the function

ũm(x) :=

{
ym m 6= i

yie
− 1
ε
‖x−x0‖2 m = i

for x ∈ Ux0 ,

where 1 ≤ m ≤ k, and extend it to a smooth function on Ω that vanishes on the boundary.
Furthermore, we de�ne the function ṽ : Ω→ Rk by

ṽm(x) :=

{
zm m 6= i

ũi(x) m = i
for x ∈ Ux0 ,
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where 1 ≤ m ≤ k, and extended to a smooth function on Ω that vanishes on the boundary
and such that the relations ũ < ṽ and ũi = ṽi are valid. Computing the derivatives in the
point x0 we obtain

∂xlũm(x0) = ∂xl ṽm(x0) = 0,

∆ũm(x0) = ∆ṽm(x0) =

{
−yj 2

ε
m = j

0 m 6= j,

for all 1 ≤ m ≤ k, 1 ≤ l ≤ n. Consequently, choosing ε > 0 su�ciently small leads to a
contradiction to Inequality (2.21) in the point x0.
Similarly, if aii(y)− aii(z) < 0, we de�ne

ũm(x) :=

{
ym m 6= i

yj(e
− 1
ε
‖x−x0‖2 + 1

ε2
‖x− x0‖2) m = i

for x ∈ Ux0 ,

where 1 ≤ m ≤ k, and extend it to a smooth function on Ω that vanishes on the boundary.
We de�ne the function ṽ : Ω→ Rk by

ṽm(x) :=

{
zm m 6= i

ũm(x) m = i
for x ∈ Ux0 ,

where 1 ≤ m ≤ k, and extend it to a smooth function on Ω that vanishes on the boundary
and such that the relations ũ < ṽ and ṽi = ũi are satis�ed. If we compute the derivatives
in the point x0 we obtain

∂xlũm(x0) = ∂xl ṽm(x0) = 0,

∆ũm(x0) = ∆ṽm(x0) =

{
yj

2
ε
(1
ε
− 1) m = j

0 m 6= j,

for all 1 ≤ m ≤ k, 1 ≤ l ≤ n. Choosing ε > 0 su�ciently small this leads to a contradiction
to the inequality (2.21) in the point x0.
In a similar way follow the conditions for the convection matrices. Here, we may use

the functions constructed in the second part of the proof of Lemma 2.1 to derive the
conclusions.

A direct consequence of Theorem 2.6 is a criterion for the validity of comparison princi-
ples with respect to an arbitrary order relation.

Theorem 2.7. In addition to the hypothesis of Theorem 2.3 we assume that the partial
derivatives of second order of the diagonal coe�cient functions aii exist and belong to the
space L∞loc(Rk) for all 1 ≤ i ≤ k. Then, System (2.7) is order preserving with respect to -
if and only if the matrices a and γl are diagonal, the coe�cient functions aii and γ

l
ii depend
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on the component ui of the solution only for all 1 ≤ i ≤ k, 1 ≤ l ≤ n, and the interaction
term satis�es{

fi(y) ≤ fi(z) if i ∈ σ1

fi(y) ≥ fi(z) if i ∈ σ2

for all y, z ∈ Rk such that yi = zi, y - z,

for 1 ≤ i ≤ k.

Proof. Let u0 and v0 be given initial data such that u0 % v0. We show that the order is
preserved by the corresponding solutions u and v, if and only if a, γ and f ful�ll the stated
conditions. De�ning the function w by

wi :=

{
ui − vi if i ∈ σ1

−(ui − vi) if i ∈ σ2

it satis�es the system

∂tw = ã(u) ·∆u− ã(v) ·∆v − γ̃(u) ·Du+ γ̃(v) ·Dv + F̃ (u, v),

w|∂Ω = 0, (2.23)

w|t=0 = w0,

where w0 ∈ K+, and the function F̃ is given by

F̃i(u, v) :=

{
fi(u)− fi(v) i ∈ σ1

−(fi(u)− fi(v)) i ∈ σ2,

for 1 ≤ i ≤ k. The coe�cient functions of the di�usion matrix ã are given by

ãij(u) :=

{
aij(u) if j ∈ σ1

−aij(u) if j ∈ σ2,

and the convection terms are de�ned by

γ̃lij(u) :=

{
γlij(u) if j ∈ σ1

−γlij(u) if j ∈ σ2,

for all 1 ≤ i, j ≤ k and 1 ≤ l ≤ n. In the proof of Theorem 2.6 we veri�ed that System
(2.23) satis�es the positivity property if and only if the matrices a and γl are diagonal, and
the functions aii and γlii depend on the component ui of the solution only, for 1 ≤ l ≤ n,
1 ≤ i ≤ k. Furthermore, the interaction term satis�es

F̃i(y, z) ≥ 0 for all y, z ∈ Rk such that yi = zi, y ≥ z.

By the de�nition of the function F̃ follow the stated monotonicity conditions for the func-
tion f . Finally, the positivity property of System (2.23) is equivalent to the statement
that System (2.7) is order-preserving with respect to -, which concludes the proof of the
Theorem.
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We recall Example 2.1 to illustrate the results and to compare the conditions that are
necessary and su�cient for the positivity of solutions and the validity of comparison prin-
ciples, respectively.

Example 2.2. If the hypothesis of Theorem 2.4 are satis�ed the semi-linear system (2.14)
is order-preserving with respect to the order relation 4 if and only if the di�usion matrix
is diagonal, and the interaction function is quasi-monotone,

f1(w, y, z) ≥ f1(w, ỹ, z̃),

f2(y, w, z) ≥ f2(ỹ, w, z̃),

f3(y, z, w) ≥ f3(ỹ, z̃, w)

for all y ≥ ỹ, z ≥ z̃, w ∈ R. (2.24)

Next, we assume the quasi-linear system (2.16) satis�es the assumptions of Theorem 2.6.
Then, the system is order-preserving with respect to 4 if and only if the interaction function
possesses the property (2.24), the di�usion matrix is diagonal and the coe�cient functions
aii depend on the component ui of the solution only, for 1 ≤ i ≤ 3. This implies that the
quasi-linear system takes the form

∂tu1 = a11(u1) ∆u1 + f1(u),

∂tu2 = a22(u2) ∆u2 + f2(u),

∂tu3 = a33(u3) ∆u3 + f3(u).

We observe that in the semi-linear case the conditions on the di�usion terms are the
same for the positivity property of the system and for the validity of comparison theorems.
Quasi-linear systems that satisfy the positivity property may exhibit cross-di�usion terms
of a particular form (see Example 2.1). However, if we allow for comparison between
arbitrary solutions the di�usion matrix is necessarily diagonal, and the diagonal coe�cient
functions aii are functions of the component ui of the solution only.

2.3. Generalizations and Applications

The proof of the positivity criteria can be generalized in various directions. For simplicity
we formulated the results for quasi-linear and semi-linear systems of the form (2.1) and
(2.7), respectively. We applied the method in [31] to an in�nite system of semi-linear
parabolic equations. Moreover, the results remain valid for equations in heterogeneous
media, where the coe�cient functions and the interaction function depend on the spatial
variable, and for time-dependent interaction terms. The results can also be generalized for
arbitrary elliptic di�erential operators of second order and for many degenerate parabolic
systems. Before we apply the positivity criterion to verify the positivity property of mathe-
matical models we extend Theorem 2.1 and Theorem 2.3 for di�erent boundary conditions
for the solution, which are often more relevant in applications. For further generalizations
we refer to [31], [34] and Section 2.4.3.
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2.3.1. Other Boundary Values

Inhomogeneous Dirichlet Boundary Conditions

In the sequel we assume the domain Ω is su�ciently regular such that the divergence
theorem holds and the solutions are smooth solutions. Let g : ∂Ω → Rk be a continu-
ous, componentwise non-negative function. We suppose the solutions of System (2.1) and
System (2.7) satisfy the inhomogeneous Dirichlet boundary conditions

u
∣∣
∂Ω

= g on ∂Ω× [0, T ], (2.25)

where g = (g1, . . . , gk). The non-negativity of the function g is a natural and necessary
assumption if we require that the systems satisfy the positivity property. We show that the
proof of the su�ciency of the stated conditions in Theoram 2.1 and Theorem 2.3 remains
valid. The boundary conditions are used when we multiply the equations by the negative
part of the solution and integrate the di�usion terms by parts. Assuming the Dirichlet
boundary conditions (2.25) we obtain in the semi-linear case

〈ai∆ui−, ui−〉L2(Ω) =

∫
∂Ω

ai(
∂

∂ν
ui−)ui−dS − ai‖Oui−‖2

L2(Ω;Rn) = −ai‖Oui−‖2
L2(Ω;Rn),

for 1 ≤ i ≤ k, where ∂
∂ν

denotes the outward-pointing unit normal derivative on the
boundary and

∫
∂Ω
dS the boundary integral. Since the solution takes non-negative values

on the boundary, ui−|∂Ω = gi− = 0, the boundary integral is zero. Consequently, the proof
of Theorem 2.1 continues as in the case of homogeneous Dirichlet conditions.
The same applies to quasi-linear systems, where we obtain two additional boundary

integrals, one for the diagonal coe�cient functions

〈aii(u)∆ui−, ui−〉L2(Ω) =

∫
∂Ω

aii(u)(
∂

∂ν
ui−)ui−dS − 〈aii(u)Oui−,Oui−〉L2(Ω;Rn)

= −〈aii(u)Oui−,Oui−〉L2(Ω;Rn),

and one for the cross-di�usion terms

k∑
j=1,j 6=i

〈
ui−Aij(u)∆uj, ui−

〉
L2(Ω)

=
k∑

j=1,j 6=i

∫
∂Ω

Aij(u)(
∂

∂ν
uj)(ui−)2dS

−
k∑

j=1,j 6=i

〈
O(Aij(u)(ui−)2),Ouj

〉
L2(Ω;Rn)

=−
k∑

j=1,j 6=i

〈
O(Aij(u)(ui−)2),Ouj

〉
L2(Ω;Rn)

,

for 1 ≤ i ≤ k (see the proof of Theorem 2.3). Since the the function g is non-negative,
ui− |∂Ω= gi− = 0, both boundary integrals vanish, and the proof of Theorem 2.3 remains
unchanged.
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Homogeneous Neumann Boundary Conditions

Next, we assume the solutions of System (2.1) or System (2.7) satisfy homogeneous Neu-
mann boundary conditions,

∂

∂ν
u
∣∣
∂Ω

= 0 on ∂Ω× [0, T ]. (2.26)

This re�ects the situation that the boundary of the domain is impermeable and substrates
cannot leave the system. Using the representation ∂

∂ν
ui = ∂

∂ν
ui+ − ∂

∂ν
ui− the boundary

conditions (2.26) imply that

∂

∂ν
ui+
∣∣
∂Ω

=
∂

∂ν
ui−
∣∣
∂Ω

on ∂Ω× [0, T ],

for 1 ≤ i ≤ k. For the boundary integral in the semi-linear case follows∫
∂Ω

ai(
∂

∂ν
ui−)ui−dS =

∫
∂Ω

ai(
∂

∂ν
ui+)ui−dS = 0,

since the supports of the positive part and the negative part of ui are disjoint. The same
applies to the �rst boundary integral that we obtain for quasi-linear systems,∫

∂Ω

aii(u)(
∂

∂ν
ui−)ui−dS =

∫
∂Ω

aii(u)(
∂

∂ν
ui+)ui−dS = 0.

Moreover, the boundary conditions (2.26) immediately imply that the boundary integrals
for the cross-di�usion terms vanish,

k∑
j=1,j 6=i

∫
∂Ω

Aij(u)(
∂

∂ν
uj)(ui−)2dS = 0,

for all 1 ≤ i ≤ k.
Certainly, the boundary values for the components of the solutions need not necessarily

be of the same type. We could impose homogeneous Neumann boundary conditions for
some components of the solution and non-negative Dirichlet boundary conditions for the
other components, which leaves the arguments unchanged.

2.3.2. Positivity Property of Deterministic Models

In this section we present examples of quasi-linear models that satisfy the positivity prop-
erty. For applications formulated as semi-linear systems of reaction-di�usion equations we
refer to [29], [66] and [69].

65



2. Verifying Mathematical Models

Chemotaxis

The Keller-Segel Model describes the dynamics of a population in a spatial domain Ω fol-
lowing the gradient of a chemotactic agent, which is produced by the population itself. The
following system of parabolic PDEs is based on the Keller-Segel model and was analysed
in [44],

∂tu = ∆u− χO · (uOv) Ω× (0,∞),

∂tv = ∆v − (u− 1) Ω× (0,∞), (2.27)
∂u

∂ν
=
∂u

∂ν
= 0 ∂Ω× (0,∞),

u(·, 0) = u0, v(·, 0) = v0 Ω× {0},

where u denotes the population density and v the concentration of the chemotactic agent.
Furthermore, χ > 0 is a positive constant and Ω ⊂ R2 is a bounded domain with C1-
boundary. The initial data u0, v0 ∈ C1(Ω;R), are non-negative and satisfy the boundary
conditions.
Rewriting the �rst equation in the form

∂tu = ∆u− χ(Ou · Ov + u∆v)

we note that the cross-di�usion term is of the form required by Theorem 2.3. The proof
of Theorem 2.3 extends to systems of the form (2.27). Indeed, assuming boundedness of
the solutions and their derivatives we multiply the �rst equation by the negative part u−,
integrate over Ω and obtain

− d

dt
‖u−‖2

L2(Ω) = ‖Ou−‖2
L2(Ω;R2) − χ〈u−Ov,Ou−〉L2(Ω;R2).

Young's inequality implies that for every ε > 0 there exists a constant Cε ≥ 0 such that∣∣χ〈u−Ov,Ou−〉L2(Ω;R2)

∣∣ ≤ ε‖Ou−‖2
L2(Ω;R2) + Cε‖u−‖2

L2(Ω).

Consequently, if we choose ε > 0 su�ciently small follows

d

dt
‖u−‖2

L2(Ω) ≤ c‖u−‖2
L2(Ω),

for some constant c ≥ 0, and the proof of Theorem 2.3 stays valid. Since in Section 2.3.1
we extended the proof for homogeneous Neumann boundary conditions we conclude that
the density u remains non-negative.
Furthermore, if the population density u is bounded by 1 the interaction function

f(u, v) := −(u− 1) in the second equation satis�es

f(u, 0) = −(u− 1) ≥ 0 for 0 ≤ u ≤ 1.

In this case, Theorem 2.3 implies that System (2.27) satis�es the positivity property.
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Prototype Bio�lm Growth Model

Next, we illustrate that the method applied in the proof Theorem 2.3 can also be used to
verify the positivity property of degenerate parabolic equations such as the bio�lm models
discussed in Chapter 1.
We recall that the solution of the prototype bio�lm growth model (1.1) is obtained as

the limit of the solutions (Sε,Mε) of the non-degenerate approximations

∂tSε = dS∆Sε − k1
SεMε

k2 + Sε
Ω× (0, T ),

∂tMε = dO · (Dε,M(Mε)OMε) + k3
SεMε

k2 + Sε
− k4Mε Ω× (0, T ), (2.28)

Mε|∂Ω = 0, Sε|∂Ω = 1 ∂Ω× [0, T ],

Mε|t=0 = M0, Sε|t=0 = S0 Ω× {0},

where the regularized di�usion coe�cient is given by

Dε,M(z) :=


εa z < 0

(z+ε)a

(1−z)b 0 ≤ z ≤ 1− ε
1
εb

z ≥ 1− ε.

We assume the initial data (S0,M0) are smooth, non-negative and satisfy the compatibility
conditions. It was shown that for every su�ciently small ε > 0 the auxiliary system (2.28)
possesses a unique solution (Sε,Mε), and the solutions Sε and Mε are uniformly bounded
by 1 (see Section 1.1.2).
The positivity of the substrate concentration follows from Theorem 2.1, since no cross-

di�usion terms are present, and the interaction function satis�es f1(0, z) = 0 for all z ∈ R,
where

f1(y, z) := −k1
yz

k2 + y
(y, z) ∈ R2.

Furthermore, the reaction function in the second equation ful�ls the positivity condition
since f2(y, 0) = 0 for all y ∈ R, where

f2(y, z) := k3
yz

k2 + y
− k4z (y, z) ∈ R2.

If we formally multiply the equation for the biomass density by the negative part Mε− and
integrate over Ω we obtain

−∂t‖Mε−‖2
L2(Ω) =d〈Dε,M(M)OMε−,OMε−〉L2(Ω;Rn) − 〈k3

SεMε−

k2 + Sε
,Mε−〉L2(Ω) + k4‖Mε−‖2

L2(Ω).

Since the regularized di�usion coe�cient Dε,M(Mε) is strictly positive in Ω× (0, T ) follows
the estimate

∂t‖Mε−‖2
L2(Ω) ≤ C‖Mε−‖2

L2(Ω),
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for some constant C ≥ 0, which implies the non-negativity of the biomass fraction Mε.
The solutions (Sε,Mε) of the non-degenerate approximations converge to the solution

(S,M) of the original system (1.1). It follows that the solution (S,M) remains non-negative
and we conclude that the bio�lm model satis�es the positivity property.

Quorum-Sensing in Bio�lm Communities

Finally, we analyse the positivity property of the quorum-sensing model. The model was
studied in Section 1.3 and is formulated as the system of quasi-linear reaction-di�usion
equations

∂tS = dS∆S − k1
SM

k2 + S
Ω× (0, T ),

∂tA = dA∆A− γA+ αX + (α + β)Y Ω× (0, T ), (2.29)

∂tX = dO · (DM(M)OX) + k3
XS

k2 + S
− k4X − k5A

mX + k5Y Ω× (0, T ),

∂tY = dO · (DM(M)OY ) + k3
Y S

k2 + S
− k4Y + k5A

mX − k5Y Ω× (0, T ),

where the biomass di�usion coe�cient is de�ned by

DM(M) =
Ma

(1−M)b
,

and M := X + Y denotes the volume fraction of the total biomass. The solutions take the
initial and boundary values

X|∂Ω = 0, Y |∂Ω = 0, A|∂Ω = 0, S|∂Ω = 1 ∂Ω× [0, T ],

X|t=0 = X0, Y |t=0 = Y0, S|t=0 = S0, A|t=0 = A0 Ω× {0}.

The solution of System (2.29) is obtained as the limit of the solutions of the non-
degenerate approximations (see Section 1.3.3). To verify the positivity property of the
model it su�ces to check the positivity condition for the reaction terms. Indeed, the
arguments applied in the previous example for the mono-species model justify that the
method in the proof of Theorem 2.3 extends to the non-degenerate approximations for the
quorum-sensing model. The interaction function f : R4 → R4 is given by

f1(u, v, w, z) = −k1
u(w + z)

k2 + u
,

f2(u, v, w, z) = −γv + αw + (α + β)z,

f3(u, v, w, z) = k3
uw

k2 + u
− k4w − k5v

mw + k5z,

f4(u, v, w, z) = k3
uz

k2 + u
− k4z + k5v

mw − k5z,
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for (u, v, w, z) ∈ R4, and we easily verify the positivity condition,

f1(0, v, w, z) = 0 v ≥ 0, w ≥ 0, z ≥ 0,

f2(u, 0, w, z) = αw + (α + β)z ≥ 0, u ≥ 0, w ≥ 0, z ≥ 0,

f3(u, v, 0, z) = k5z ≥ 0, u ≥ 0, v ≥ 0, z ≥ 0,

f4(u, v, w, 0) = k5v
mw ≥ 0, u ≥ 0, v ≥ 0, w ≥ 0.

2.4. Stochastic Perturbations of Deterministic Systems

In the following sections we analyse the positivity property of parabolic systems under
stochastic perturbations. We are interested in an explicit characterization of the the class
of stochastic perturbations that preserve the positivity property of deterministic systems
since it allows to specify admissible models in applications where the solutions describe
non-negative quantities.
In the context of stochastic di�erential equations we use the triple (Ω,F ,P) to denote

the probability space. This should not lead to confusion with previous notations, where
we used the symbol Ω to represent the spatial domain. Whenever we address stochastic
PDEs we denote the spatial domain by O instead of Ω.

2.4.1. Motivation: Additive Versus Multiplicative Noise

To motivate our results we discuss the positivity of solutions in two simple examples of
stochastic ODEs. Let {Wt, t ∈ R+} = {Wt(ω), t ∈ R+}ω∈Ω be a scalar real-valued Wiener
process, (Ω,F ,P) be the canonical Wiener space and dWt denote the corresponding Itô
di�erential. To indicate Stratonovich's interpretation of stochastic di�erential equations
we use the notation ◦ dWt (see [14] or [56]).
Let u : R+ → R be the solution of the deterministic ODE

du

dt
= 0, (2.30)

u|t=0 = u0,

where u0 ∈ R+. The initial value problem certainly satis�es the positivity property. Indeed,
the solution of (2.30) is the constant function u(t;u0) = u0, which is non-negative for t > 0
if and only if the initial data u0 is non-negative. However, if we perturb the system by
additive noise,

du = 0 dt+ dWt, (2.31)

u|t=0 = u0,

the positivity is not preserved by the solutions of the perturbed stochastic system.
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Proposition 2.1. We assume the initial data u0 ∈ R+. Then, there exists t∗ > 0 such
that the solution u of System (2.31) satis�es u(t∗, ω;u0) < 0 for almost every ω ∈ Ω. This
is also valid for Stratonovic's interpretation of the stochastic di�erential equation (2.31).

Proof. For additive noise Itô's and Stratonovich's interpretation of the stochastic di�eren-
tial equation (2.31) lead to the same integral equation (see [56], Section 5.1). The solution
of the stochastic di�erential equation is the process

u(t, ω;u0) = u(0) +

∫ t

0

dWs = u0 +Wt(ω)−W0(ω) = u0 +Wt(ω),

where we used that the Wiener process satis�es W0(ω) = 0, ω ∈ Ω. The law of iterated
logarithm states that

lim inf
t→∞

Wt√
2t log log t

= −1 P-almost surely

(see [56], Theorem 5.1.2). Consequently, there exists an increasing sequence {tn}n∈N in
R+, limn→∞ tn =∞, such that

lim
n→∞

Wtn√
2tn log log tn

= −1 P-almost surely.

For su�ciently large N0 ∈ N follows

Wtn(ω) < −1

2

√
2tn log log tn for P-almost every ω ∈ Ω,

for all n ≥ N0, which proves that the sequence Wtn → −∞ P-almost surely when n tends
to in�nity. We conclude that the solution satis�es u(tn, ω;u0) < 0 for P-almost every ω ∈ Ω
if n is su�ciently large.

Instead of additive noise we consider the perturbation of the initial value problem (2.30)
by a linear, multiplicative noise of the form

du = 0 dt+ αu ◦ dWt, (2.32)

u|t=0 = u0,

where the constant α ∈ R. For convenience we use Stratonovich's interpretation of the
stochastic di�erential equation since in this case ordinary chain rule formulas apply under a
change of variables (see [56], Section 3.3). The solution u : R+×Ω→ R of the Statonovich
di�erential equation (2.32) is the stochastic process

u(t, ω;u0) = u0e
αWt(ω).

We observe that, independent of the sign of α ∈ R, the stochastic initial value problem
(2.32) satis�es the positivity property. The same is valid when we interpret the stochastic
di�erential equation (2.32) in the sense of Itô.
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Proposition 2.2. The stochastic problem (2.32) satis�es the positivity property indepen-
dent of the choice of Itô's or Stratonovich's interpretation.

Proof. It remains to prove the statement for Itô's interpretation of the stochastic di�erential
equation. There is an explicit formula relating the integral equations obtained through Itô's
and Stratonovich's interpretation (see [56], Section 3.3). Namely, the Itô equation

du = 0 dt+ αu dWt,

is equivalent to the following Stratonovich equation

du = (0− α2

2
u)dt+ αu ◦ dWt,

which can be solved explicitly. The transformation v(t, ω) := e−αWt(ω)u(t, ω) leads to the
ordinary di�erential equation

dv = (−α
2

2
v)dt,

v|t=0 = u0.

Its solution is the function v(t, ω) = u0e
−α

2

2
t, and we obtain as solution of the original

problem

u(t, ω;u0) = u0e
−(α

2

2
t−αWt(ω)).

If the initial data u0 is non-negative, the solution remains non-negative for t > 0 indepen-
dent of the sign of α. This shows that System (2.32) satis�es the positivity property for
both Itô's and Stratonovich's interpretation.

This �rst example illustrates that additive noise destroys the positivity property of de-
terministic equations while the positivity property is preserved under perturbations by a
linear, multiplicative noise.
Next, we analyse systems of stochastic ODEs. Since additive noise destroys the positivity

property we consider perturbations by a linear, multiplicative noise in each component. Let
T > 0 and (u, v, w) : [0, T ]×Ω→ R3 be the solution of the system of Stratonovic equations

du = f1(u, v, w)dt+ α1u ◦ dWt,

dv = f2(u, v, w)dt+ α2v ◦ dWt, (2.33)

dw = f3(u, v, w)dt+ α3w ◦ dWt,

(u, v, w)|t=0 = (u0, v0, w0),

where the constants α1, α2, α3 ∈ R, the initial data (u0, v0, w0) ∈ R3
+, and the interaction

function f = (f1, f2, f3) : R3 → R3 is continuously di�erentiable. We apply an analogous
transformation as in the previous example. To be more precise, de�ning the functions

ũ(t, ω) := e−α1Wt(ω)u(t, ω), ṽ(t, ω) := e−α2Wt(ω)v(t, ω),

w̃(t, ω) := e−α3Wt(ω)w(t, ω)
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leads to the family of random equations

dũ

dt
= e−α1Wtf1(eα1Wtũ, eα2Wt ṽ, eα3Wtw̃),

dṽ

dt
= e−α2Wtf2(eα1Wtũ, eα2Wt ṽ, eα3Wtw̃), (2.34)

dw̃

dt
= e−α3Wtf3(eα1Wtũ, eα2Wt ṽ, eα3Wtw̃).

Random equations can be interpreted pathwise and studied by deterministic methods.
The deterministic positivity criteria can be generalized for non-autonomous equations (see
Section 2.4.3), and we conclude that for �xed ω ∈ Ω the solutions of System (2.34) preserve
positivity if and only if the interaction terms

F ω
i (t, x, y, z) := e−αiWt(ω)fi(e

α1Wt(ω)x, eα2Wt(ω)y, eα3Wt(ω)z) i = 1, 2, 3,

satisfy
F ω

1 (t, 0, y, z) ≥ 0, F ω
2 (t, x, 0, z) ≥ 0, F ω

3 (t, x, y, 0) ≥ 0

for all t ∈ [0, T ] and x, y, z ≥ 0. We observe that this is the case if and only if the original
reaction function satis�es the positivity condition,

f1(0, y, z) ≥ 0, f2(x, 0, z) ≥ 0, f3(x, y, 0) ≥ 0 for all x, y, z ≥ 0.

Consequently, the positivity property of the unperturbed deterministic system is equivalent
to the positivity property of the random system (2.34) and of the system of Stratonovic
equations (2.33).
Finally, we discuss the positivity property of the stochastic system (2.33) when it is

interpreted in the sense of Itô. The system of Itô equations is equivalent to the system of
Stratonovich equations

du = (f1(u, v, w)− α2
1

2
u)dt+ α1u ◦ dWt,

dv = (f2(u, v, w)− α2
2

2
v)dt+ α2v ◦ dWt, (2.35)

dw = (f3(u, v, w)− α2
3

2
w)dt+ α3w ◦ dWt,

(u, v, w)|t=0 = (u0, v0, w0),

and the previous transformations lead to the random system

dũ

dt
= −α

2
1

2
ũ+ e−α1Wtf1(eα1Wtũ, eα2Wt ṽ, eα3Wtw̃),

dṽ

dt
= −α

2
2

2
ṽ + e−α2Wtf2(eα1Wtũ, eα2Wt ṽ, eα3Wtw̃), (2.36)

dũ

dt
= −α

2
3

2
ũ+ e−α3Wtf3(eα1Wtũ, eα2Wt ṽ, eα3Wtw̃).
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By the deterministic positivity criterion for non-autonomous equations we conclude that for
�xed ω ∈ Ω the solutions of System (2.36) preserve positivity if and only if the interaction
term satis�es

F̃ ω
1 (t, 0, y, z) ≥ 0, F̃ ω

2 (t, x, 0, z) ≥ 0, F̃ ω
3 (t, x, y, 0) ≥ 0

for all t ∈ [0, T ] and x, y, z ≥ 0. Here, the modi�ed interaction function F̃ is de�ned by

F̃ ω
1 (t, x, y, z) := F ω

1 (t, x, y, z)− α2
1

2
x, F̃ ω

2 (t, x, y, z) := F ω
2 (t, x, y, z)− α2

2

2
y,

F̃ ω
3 (t, x, y, z) := F ω

3 (t, x, y, z)− α2
3

2
z.

Owing to the particular form of the additional term we obtain when we apply Itô's in-
terpretation the interaction function F̃ ω = (F̃ ω

1 , F̃
ω
2 , F̃

ω
3 ) satis�es the positivity condition

if and only if the function F ω = (F ω
1 , F

ω
2 , F

ω
3 ) ful�ls the positivity condition. This in

turn is equivalent to the positivity condition for the interaction function f = (f1, f2, f3)
of the unperturbed deterministic system. We summarize our discussion in the following
proposition.

Proposition 2.3. The stochastic system of Stratonovich equations (2.33) satis�es the pos-
itivity property if and only if the corresponding system of Itô equations ful�ls the positivity
property. Furthermore, this is valid if and only if the unperturbed deterministic system
satis�es the positivity property.

The positivity condition for the interaction function f , which is necessary and su�cient
for the positivity property of the unperturbed deterministic system, is equivalent to the
positivity condition for the functions F ω and F̃ ω. Consequently, stochastic perturbations by
a linear, multiplicative noise do not a�ect the qualitative behaviour of solutions with respect
to positivity, independent of the choice of interpretation. This is valid owing to the explicit
relation between the equations corresponding to Itô's and Stratonovich's interpretation,
and the particular transformation that leads to the family of random equations. The
conditions for the positivity property of the unperturbed deterministic system are invariant
under all these transformations.
In general, the qualitative behaviour of solutions of stochastic di�erential equations de-

pends on the choice of interpretation. We refer to [56], Example 5.1.1, which illustrates that
the asymptotic behaviour of solutions of stochastic di�erential equations can be essentially
di�erent for Itô's and for Stratonovic's interpretation.
Our aim is to study stochastic perturbations of systems of parabolic PDEs, that we

interpret in the sense of Itô. To analyse the general case, where we cannot apply such
a simple transformation which directly leads to systems of random PDEs, we consider
smooth random approximations of the stochastic systems. An approximation theorem ob-
tained in [15] for stochastic perturbations of semi-linear parabolic equations allows us to
construct a family of random equations such that its solutions converge in expectation to
the solution of the stochastic system. We formulate necessary and su�cient conditions
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for the positivity property and for the validity of comparison theorems for the family of
random approximations and prove that the property is preserved by the stochastic sys-
tem, independent of the choice of Itô's or Stratonovich's interpretation. In other words,
for the class of stochastic systems we consider the qualitative behaviour of solutions re-
garding positivity and the validity of comparison principles is independent of the choice of
interpretation.

2.4.2. Stochastic Perturbations of Semi-Linear Parabolic Systems

We consider systems of semi-linear parabolic equations under stochastic perturbations of
the form

dul(x, t) =
(
−

m∑
i=1

Ali(x,D)ui(x, t) + f l(x, t, u(x, t))
)
dt+

∞∑
i=1

qig
l
i(x, t, u(x, t))dW i

t ,

(2.37)

where 1 ≤ l ≤ m, m ∈ N, and the solution u = (u1, . . . , um) is a vector-valued process.
Furthermore, x ∈ O denotes the spatial variable and t ∈ [0, T ] the time variable, where
O ⊂ Rn, n ∈ N, is a bounded domain and T > 0. The linear di�erential operators
Ali are of second order and elliptic. Moreover, {W i

t , t ∈ R+}i∈N is a family of mutually
independent standard scalar Wiener processes on the canonical Wiener space (Ω,F ,P),
and dW i

t denotes the corresponding Itô di�erential. The non-negative parameters qi are
normalization factors. We assume the solution satis�es the boundary conditions(

δlul + (1− δl)
∂

∂ν
ul
)∣∣
∂O = 0 ∂O × [0, T ],

where ∂
∂ν

denotes the outward normal derivative on the boundary ∂O and δl ∈ {0, 1}, for
1 ≤ l ≤ m. Finally, the initial values of the solution are given by

u|t=0 = u0 O × {0},

where the deterministic function u0 : O → Rm.
We denote the system of Itô equations (2.37) by (A, f, g), and the corresponding un-

perturbed deterministic system by (A, f, 0). We aim at deriving explicit conditions on the
coe�cient functions of the di�erential operator A and the functions f and g to ensure that
System (2.37) satis�es the positivity property. To this end we consider smooth random
approximations of the stochastic problem since random equations can be interpreted path-
wise and allow to apply deterministic methods. The random approximations, however,
lead to a family of non-autonomous parabolic equations. In the next section we therefore
generalize the deterministic positivity criterion for semi-linear systems (Theorem 2.1) for
non-autonomous parabolic systems of the form (A, f, 0). We show that the deterministic
system (A, f, 0) satis�es the positivity property if and only if the di�erential operators are
diagonal, and the interaction function satis�es the non-autonomous positivity property.
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Consequently, it su�ces to consider stochastic systems with diagonal di�erential opera-
tors of the form

dul(x, t) =
(
−Al(x,D)ul(x, t) + f l(x, t, u(x, t))

)
dt+

∞∑
i=1

qig
l
i(x, t, u(x, t))dW i

t , (2.38)

where 1 ≤ l ≤ m. We denote the system of stochastic PDEs (2.38) by (f, g), and the
corresponding unperturbed deterministic system by (f, 0). To analyse the stochastic prob-
lem (f, g) with diagonal di�erential operators we apply a Wong-Zakaï type approximation
theorem obtained in [15], which yields a family of random approximations (fε,ω, 0) for the
stochastic system. The solutions of the random approximations do not converge to the
solution of the original system, but to the solution of a modi�ed stochastic system. There-
fore, we �rst construct an auxiliary stochastic system (F, g) such that the solutions of
the corresponding random approximations (Fε,ω, 0) converge to the solution of our original
problem (f, g). We apply the deterministic results to derive explicit necessary and su�-
cient conditions for the positivity property and for the validity of comparison theorems
for the random systems (Fε,ω, 0). Moreover, the conditions are preserved when taking the
limit and are invariant under the transformation relating the original and the modi�ed
system. This observation allows us to formulate explicit conditions on the stochastic per-
turbation g and interaction function f that ensure the positivity property or the validity
of comparison theorems for the stochastic system (f, g). Furthermore, the solution of the
modi�ed stochastic system coincides with the solution of the original stochastic system
when we interpret it in the sense of Stratonovich. Our criteria are therefore independent
of the choice of interpretation.

2.4.3. A Positivity Criterion for Non-Autonomous Deterministic

Systems

Since the Wong-Zakaï approximations lead to a family of non-autonomous parabolic sys-
tems we generalize the deterministic positivity criterion for non-autonomous interaction
functions and moreover, we allow for arbitrary linear elliptic di�erential operators of sec-
ond order. We consider semi-linear parabolic systems of the form

∂tul(x, t) = −
m∑
i=1

Ali(x,D)ui(x, t) + f l(x, t, u(x, t)) O × (0, T ), (2.39)

where 1 ≤ l ≤ m, O ⊂ Rn is a bounded domain with smooth boundary ∂O and the
function u = (u1, . . . , um). The solution satis�es the boundary and initial conditions

(
δlul + (1− δl)

∂

∂ν
ul
)∣∣
∂O = 0 ∂O × [0, T ], (2.40)

u|t=0 = u0 O × {0}, (2.41)
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where 1 ≤ l ≤ m, and the initial data u0 : O → Rm satis�es the compatibility conditions.
The di�erential operators Ali(x,D) are de�ned by

Ali(x,D) = −
n∑

k,j=1

ailkj(x)∂xk∂xj +
n∑
k=1

ailk (x)∂xk for x ∈ O, i, l = 1, . . . ,m,

where we omit the zero-order terms. Analysing the positivity property of semi-linear
parabolic systems it seems more natural to absorb these terms in the interaction function
f .
We assume the coe�cient functions satisfy ailkj = ailjk, and the operators are uniformly

elliptic,

µ|ζ|2 ≤
n∑

k,j=1

ailkj(x)ζkζj for all x ∈ O, ζ ∈ Rn, i, l = 1, . . . ,m. (2.42)

Moreover, all coe�cient functions of the operator A are continuously di�erentiable and
bounded in the domain O.
The interaction functions f l are continuously di�erentiable with respect to u and we

suppose that

f l and ∂uf
l are bounded on O × [0, T ]× Rm for bounded values of u, (2.43)

where 1 ≤ l ≤ m.
Finally, we assume that for every initial data u0 ∈ K+ there exists a unique solution of

System (2.39), and for t > 0 the solution satis�es L∞-estimates,

u(·, t;u0) ∈ L∞(O;Rm) for t ∈ [0, tmax], (2.44)

where [0, tmax] denotes the maximal existence interval of the solution.
The following theorem generalizes Theorem 2.1 for semi-linear parabolic systems of the

form (2.39). The proof of the su�ciency of the stated conditions also follows from the
results by H. Amann (see [2] and [15]), but the method we apply in our proof is di�erent.

Theorem 2.8. Let the hypothesis (2.42) -(2.44) be satis�ed and the initial data u0 ∈ K+ be
smooth and ful�l the compatibility conditions. Then, System (2.39) satis�es the positivity
property if and only if for all 1 ≤ j, k ≤ n the matrices

(
ailkj
)

1≤i,l≤m and
(
ailk
)

1≤i,l≤m are

diagonal, and the components of the reaction term satisfy

f l(x, t, y) ≥ 0, for x ∈ O, t ∈ [0, tmax] and y ∈ Rm
+ such that yl = 0, (2.45)

for all 1 ≤ l ≤ m.

Proof. We rewrite System (2.39) in the form

∂tu(x, t) =
n∑

k,j=1

akj(x)∂xk∂xju(x, t)−
n∑
k=1

ak(x)∂xku(x, t) + f(x, t, u(x, t)), (2.46)
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where the matrices akj and ak are de�ned by

akj(x) =

 a11
kj(x) · · · a1m

kj (x)
...

. . .
...

am1
kj (x) · · · ammkj (x)

 , ak(x) =

 a11
k (x) · · · a1m

k (x)
...

. . .
...

am1
k (x) · · · ammk (x)

 ,

and all derivatives in System (2.46) are applied componentwise to the vector-valued func-
tion u = (u1, . . . , um).
Necessity: We assume the solution u( · , · ;u0) : O × [0, tmax] → Rm corresponding to
initial data u0 ∈ K+ remains non-negative for t > 0 and prove the necessity of the stated
conditions. To this end we follow the arguments in the proof of Theorem 2.3. Taking
smooth initial data u0 and an arbitrary function v ∈ K+, that is orthogonal to u0 in
L2(O;Rm), we conclude

〈
∂tu|t=0, v

〉
L2(O;Rm)

=
〈 n∑
k,j=1

akj( · )∂xk∂xju0 −
n∑
k=1

ak( · )∂xku0, v
〉
L2(O;Rm)

+
〈
f( · , 0, u0), v

〉
L2(O;Rm)

≥ 0. (2.47)

Let i, l ∈ {1, . . . ,m} such that i 6= l. If we choose the functions u0 = (0, . . . , ũ︸︷︷︸
l

, . . . , 0)

and v = (0, . . . , ṽ︸︷︷︸
i

, . . . , 0) with u0, v ∈ K+ follows the scalar inequality

∫
O

( n∑
k,j=1

ailkj(x)∂xk∂xj ũ(x)−
n∑
k=1

ailk (x)∂xk ũ(x) + f i(x, 0, u0(x))
)
ṽ(x) dx ≥ 0.

Since the inequality holds for an arbitrary non-negative function ṽ ∈ L2(O), we obtain the
pointwise estimate

n∑
k,j=1

ailkj(x)∂xk∂xj ũ(x)−
n∑
k=1

ailk (x)∂xk ũ(x) + f i(x, 0, u0(x)) ≥ 0

almost everywhere in O. This implies that the coe�cient functions of the di�erential
operator are zero,

ailkj(x) = ailk (x) = 0 x ∈ O,

for 1 ≤ i, l ≤ m, i 6= l (see the proof of Lemma 2.1), and shows that the matrices akj
and ak are necessarily diagonal for all 1 ≤ j, k ≤ n. Next, we choose the functions
u0 = (u1, . . . , 0︸︷︷︸

i

, . . . , um) and v = (0, . . . , ṽ︸︷︷︸
i

, . . . , 0) such that u0, v ∈ K+ and conclude

from Inequality (2.47)

f i(x, 0, ũ1, . . . , 0︸︷︷︸
i

, . . . ũm) ≥ 0 for ũ1, . . . ũm ≥ 0, x ∈ O,
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for all 1 ≤ i ≤ m.
It remains to show that this property is satis�ed for t > 0. If the solution remains

strictly positive for t > 0 we do not obtain an additional assumption. Otherwise, if for
some time t0 > 0 the solution approaches a boundary point of the positive cone K+,
then there exists an index 1 ≤ i ≤ m such that the component ui|t=t0 = 0. Choosing
the function v = (0, . . . , ṽ︸︷︷︸

i

, . . . , 0) with arbitrary non-negative ṽ, it is orthogonal to the

solution u( · , t0;u0) in L2(O;Rm). Consequently, we obtain

〈
∂tu|t=t0 , v

〉
L2(O;Rm)

=
〈

lim
t→(t0)+

ui( · , t;u0)− ui( · , t0;u0)

t− t0
, ṽ
〉
L2(O)

= lim
t→(t0)+

〈ui( · , t;u0)

t− t0
, ṽ
〉
L2(O)

− lim
t→(t0)+

〈ui( · , t0;u0)

t− t0
, ṽ
〉
L2(O)

= lim
t→(t0)+

〈ui( · , t;u0)

t− t0
, ṽ
〉
L2(O)

≥ 0,

where t → (t0)+ denotes the limit from the right. We used that at time t = t0 the
component ui|t=t0 = 0 and the positivity of the solution u( · , t;u0) ∈ K+ for t > 0. On the
other hand, u is a solution of the initial value problem, which implies

〈
∂tu|t=t0 , v

〉
L2(O;Rm)

=
〈 n∑
k,j=1

akj( · )∂xk∂xju|t=t0 −
n∑
k=1

ak( · )∂xku|t=t0 , v
〉
L2(O;Rm)

+
〈
f( · , t0, u|t=t0), v

〉
L2(O;Rm)

≥ 0.

We argue as before and use the diagonality of the matrices akj and ak to obtain the
pointwise inequality

f i(x, t0, ũ1|t=t0 , . . . , 0︸︷︷︸
i

, . . . , ũm|t=t0) ≥ 0

almost everywhere in O. This implies the positivity condition for the interaction function
and concludes the proof of the necessity of the stated conditions.
Su�ciency: We assume the stated conditions are satis�ed and denote the diagonal coef-
�cient functions of the di�erential operators by alkj := allkj, a

l
k := allk , for 1 ≤ k, j ≤ n. The

system of equations then takes the form

∂tul(x, t) =
n∑

k,j=1

alkj(x)∂xk∂xjul(x, t)−
n∑
k=1

alk(x)∂xkul(x, t) + f l(x, t, u(x, t)), (2.48)

where 1 ≤ l ≤ m. We follow the strategy in the proof of Theorem 2.3 and multiply the
l-th equation of System (2.48) by the negative part ul− = (u(·, t))l−. Integrating over the
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domain O we obtain

−1

2
∂t‖ul−‖2

L2(O) =
〈
∂tul, ul−

〉
L2(O)

=
〈 n∑
k,j=1

alkj( · )∂xk∂xjul, ul−
〉
L2(O)

−
〈 n∑
k=1

alk( · )∂xkul, ul−
〉
L2(O)

+
〈
f l( · , t, u), ul−

〉
L2(O)

.

Without loss of generality we assume that all components of the solution satisfy homoge-
neous Dirichlet boundary conditions (for homogeneous Neumann boundary conditions we
refer to Section 2.3.1). For the �rst term on the right hand side of the equation we obtain

〈 n∑
k,j=1

alkj( · )∂xk∂xjul, ul−
〉
L2(O)

= −
〈 n∑
k,j=1

alkj( · )∂xk∂xjul−, ul−
〉
L2(O)

=
〈 n∑
k,j=1

alkj( · )∂xjul−, ∂xkul−
〉
L2(O)

+
〈 n∑
k,j=1

∂xka
l
kj( · )∂xjul−, ul−

〉
L2(O)

.

By Young's inequality follow the estimates

∣∣〈 n∑
k,j=1

∂xka
l
kj( · )∂xjul−, ul−

〉
L2(O)

∣∣ ≤ ε‖Oul−‖2
L2(O;Rm) + Cε,1‖ul−‖2

L2(O),

for some constant Cε,1 ≥ 0, and

∣∣〈 n∑
k=1

alk( · )∂xkul−, ul−
〉
L2(O)

∣∣ ≤ ε‖Oul−‖2
L2(O;Rm) + Cε,2‖ul−‖2

L2(O),

for some Cε,2 ≥ 0. Like in the proof of Theorem 2.3 we represent the interaction term by

f l(x, t, u) = f l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) + ulF
l(x, t, u),

for l = 1, . . . ,m, where the functions F l are bounded. Then, using the uniform parabolicity
assumption (2.42) and collecting all terms we obtain

1

2
∂t‖ul−‖2

L2(O) + µ‖Oul−‖2
L2(O;Rm) ≤

1

2
∂t‖ul−‖2

L2(O) +
〈 n∑
k,j=1

alkj(·)∂xjul−, ∂xkul−
〉
L2(O)

≤
∣∣∣〈 n∑

k,j=1

∂xka
l
kj(·)∂xjul−, ul−

〉
L2(O)

+
〈 n∑
k=1

alk(·)∂xkul−, ul−
〉
L2(O)

∣∣
−
〈
f l(·, t, u1, . . . , 0︸︷︷︸

l

, . . . , um), ul−
〉
L2(O)

+
〈
ul−, F

l(·, t, u)ul−
〉
L2(O)

≤2ε‖Oul−‖2
L2(O;Rm) + (Cε,1 + Cε,2 + C)‖ul−‖2

L2(O) −
〈
f l(·, t, u1, . . . , 0, . . . , um), ul−

〉
L2(O)

,
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for some constant C ≥ 0. We assume the interaction function satis�es the positivity
condition (2.5) for all y ∈ Rm such that yl = 0. Choosing ε > 0 su�ciently small then
follows the estimate

∂t‖ul−‖2
L2(O) ≤ c‖ul−‖2

L2(O),

for some constant c ≥ 0. By Gronwall's Lemma and the initial assumption (u0)l− = 0 we
conclude that ul−(·, t;u0) = 0 almost everywhere in O for t > 0. The assumption on the
interaction function can be justi�ed as in the proof of Theorem 2.3.

This generalizes the semi-linear positivity criterion for systems with arbitrary elliptic
second order di�erential operators and non-autonomous interaction functions. Since the
deterministic system (2.46) satis�es the positivity property if and only if the di�erential
operators are diagonal it su�ces to consider stochastic perturbations of semi-linear systems
of the form (2.38).

2.5. Stochastic Systems: Positivity Property and

Comparison Principles

To study the stochastic system (f, g) we construct a family of random equations such that
its solutions converge in expectation to the solution of the stochastic problem. We use
the deterministic results to formulate criteria for the positivity property and validity of
comparison theorems for the family of random PDEs, which then imply the corresponding
property of the stochastic system.

2.5.1. Random Approximations of Stochastic Systems

E. Wong and M. Zakaï ([73],[74]) studied the relation between ordinary and stochastic
di�erential equations and introduced a smooth approximation of the Brownian motion
to approximate stochastic integrals by ordinary integrals. In this way, they obtain an
approximation of the stochastic di�erential equation by a family of random di�erential
equations. However, when the smoothing parameter tends to zero the random solutions
do not converge to the solution of the original stochastic problem, but to the solution of
a modi�ed one. The appearing correction term is called Wong-Zakaï correction term. The
Wong-Zakaï approximation theorem was generalized in various directions. In this section,
we brie�y recall the main result in [15] about a Wong-Zakaï-type approximation theorem
for stochastic systems of semi-linear parabolic PDEs, which is applicable for the class of
systems we consider.
In the sequel we analyse stochastic systems (f, g) of the form (2.38) and assume that

the functions glj : O × [0, T ]× R→ R are continuously di�erentiable and are bounded for
bounded values of the solution, where j ∈ N, l = 1, . . . ,m.
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Predictable Approximation of the Wiener Process

A general notion of a smooth predictable approximation of the Wiener process is given in
[15], De�nition 4.1. In the following, we will take the main example in this article as a
de�nition (see [15], Proposition 4.2).
Let {Wt, t ∈ R+} be a standard scalar Wiener process on the probability space (Ω,F ,P)

with �ltration {Ft, t ∈ R+}. The smooth predictable approximation of the Wiener
process {Wt, t ∈ R+} is the family of random processes {Wε(t), t ∈ R+}ε>0 de�ned by

Wε(t) =

∫ ∞
0

φε(t− τ)Wτdτ,

where φε(t) = 1
ε
φ( t

ε
), and φ : R→ R is a function with the properties

φ ∈ C1(R), suppφ ⊂ [0, 1],

∫ 1

0

φ(t)dt = 1.

We will need the following result (see [15], p.1442), which states that the derivative of
the smooth predictable approximation Wε, denoted by Ẇε, can be written as a stochastic
integral of the form

Ẇε(t) =

∫ t

t−ε
φε(t− τ)dWτ , t ≥ ε. (2.49)

As a consequence, the process Ẇε is Gaussian.

Smoothing of Itô's Problem and Random Systems

Using the family of smooth predictable approximations {W j
ε (t), t ∈ R+}ε>0,j∈N of the family

of Wiener processes {W j
t , t ∈ R+}j∈N the predictable smoothing of Itô's problem (2.38) is

the family of random equations

dul(x, t) =
(
−Al(x,D)ul(x, t)+f l(x, t, u(x, t))

)
dt+

( ∞∑
j=1

qjgj(x, t, u(x, t))Ẇ j
ε (t)

)
dt, (2.50)

where 1 ≤ l ≤ m. In our notation, this leads to the following de�nition.

De�nition 2.6. The smooth random approximation of the stochastic system (f, g)
with respect to the smooth predictable approximation {Wε(t), t ∈ R+}ε>0 is the family of
random PDEs (fε,ω, 0), where

f lε,ω(x, t, u(x, t)) = f l(x, t, u(x, t)) +
∞∑
j=1

qjg
l
j(x, t, u(x, t))Ẇ j

ε (t) ε > 0.
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Wong-Zakaï Approximation Theorem

Following the approach in [15] we consider mild solutions of the stochastic system of PDEs
(f, g).

De�nition 2.7. A random function u(x, t, ω) = (u1(x, t, ω), . . . , um(x, t, ω)) is called a
mild solution of the stochastic problem (f, g) in the space H1

B(O;Rm) on the interval
[0, T ], if u ∈ C([0, T ];L2(O × Ω)) is a predictable process such that∫ T

0

E ‖ u(t) ‖2
H1(O;Rm) dt <∞,

where u(t) = u(·, t, ·), and satis�es the integral equation

u(t) = S(t)u0 +

∫ t

0

S(t− τ)f(τ, u(τ))dτ +
∞∑
j=1

qj

∫ t

0

S(t− τ)gj(τ, u(τ))dW j
τ , (2.51)

where we assume that all integrals in (2.51) exist.

In De�nition 2.7 the operator E denotes the mean value operator on (Ω,F ,P) and
the family {S(t), t ∈ R+} the analytic semigroup in L2(O;Rm) generated by the linear
operator A with domain

H2
B(O;Rm) := {u ∈ H2(O;Rm) |u satis�es the boundary conditions (2.40)}.

Here, B indicates the boundary operator and

Hk(O;Rm) := {u ∈ L2(O) |Dαul ∈ L2(O) for all |α| ≤ k, l = 1, . . . ,m}.

For further details we refer to [15] and [2].

De�nition 2.8. Let (f, g) be a stochastic system of PDEs and u be its mild solution. We
say that the mild solutions uε of a family of random PDEs (Fε,ω, 0) converge to the mild
solution of the stochastic system (f, g) if

lim
ε→0

∫ T

0

E ‖ u(t)− uε(t) ‖2
H1(O;Rm) dt = 0.

The main result in [15] is the following approximation theorem (Theorem 4.3, [15]).

Theorem 2.9. Assume that the stated assumptions on the operator A and the functions f
and g are satis�ed. Moreover, let

∑∞
j=1 qj <∞, the initial data u0 ∈ C2(O;Rm) satisfy the

compatibility conditions, be F0-measurable and E‖u0‖rC2(O;Rm) < ∞ for some r > 8. We

assume the associated system of random PDEs (fε,ω, 0) has a mild solution uε belonging to
the class C([0, T ];Lr(Ω;Xα,p)) for all 0 ≤ α < 1 and p > 1, and for this solution there
exists a constant c ≥ 0 independent of ε > 0 such that

sup
t∈[0,T ]

E ‖ uε ‖rLp(O;Rm)≤ c for all p > 1.
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Then, the mild solutions uε converge to a solution ucor of the corrected stochastic system
of PDEs (fcor, g) when ε tends to zero, where

f lcor = f l +
1

2

∞∑
j=1

q2
j

m∑
i=1

gij
∂glj
∂ui

for l = 1, . . .m.

The spaces Xα,p denote the fractional power spaces associated to the operator A. For
further details we refer to [15].

2.5.2. A Positivity Criterion for Stochastic Systems

We aim at analysing the qualitative behaviour of the solutions of the stochastic system
(f, g). Hence, in the sequel we assume that a unique solution of the stochastic initial value
problem (2.38) exists, and the solutions of the random approximations converge to the
solution of the modi�ed stochastic system (fcor, g) (see Theorem 2.9). Su�cient conditions
for the existence and uniqueness of solutions can be found in the article [15]. Since the
solutions of the random approximations do not converge to the solution of the original
system we construct an auxiliary stochastic system as follows:

• Let (F, g) be a given stochastic system. The corresponding family of random approx-
imations (Fε,ω, 0), ε > 0, ω ∈ Ω is explicit, depends on the de�nition of the smooth
approximation {Wε(t), t ∈ R+} of the Wiener process {Wt, t ∈ R+}, and is given by

F l
ε,ω = F l +

∞∑
j=1

qjg
l
jẆ

j
ε l = 1, . . . ,m.

• Theorem 2.9 states that the solutions of the random systems converge in expectation
to the solution of the modi�ed stochastic system (Fcor, g), where

F l
cor = F l +

1

2

∞∑
j=1

q2
j

m∑
i=1

gij
∂glj
∂ui

l = 1, . . . ,m.

• To analyse the stochastic system (f, g) we therefore construct an auxiliary system
(F, g) such that the solutions of the associated system of random PDEs (Fε,ω, 0)
converge to the solutions of our original system (f, g).

• We then use the deterministic positivity criterion to derive necessary and su�-
cient conditions for the positivity property of the family of random approximations
(Fε,ω, 0). Finally, we show that this property is preserved by the transformation re-
lating the original system and the modi�ed system and by passing to the limit when
the smoothing parameter ε goes to zero.
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Let (f, g) be a system of stochastic PDEs. If we de�ne the auxiliary stochastic system
(F, g) by

F l = f l − 1

2

∞∑
j=1

q2
j

(
g1
j

∂glj
∂u1

+ · · ·+ gmj
∂glj
um

)
l = 1, . . . ,m,

the solutions of the associated family of random PDEs (Fε,ω, 0) converge in expectation to
the solution of the original stochastic system (f, g).
Motivated by Theorem 2.8 we extend the de�nition of the positivity condition for non-

autonomous problems.

De�nition 2.9. We say that the function

f : O × [0, T ]× Rm → Rm, f(x, t, y) = (f 1(x, t, y), . . . , fm(x, t, y)),

satis�es the positivity condition if it satis�es Property (2.5) in Theorem 2.8 for all
t ∈ [0, T ].

The following lemma will be essential for the proof of the stochastic positivity criterion.

Lemma 2.3. Let (f, g) be a given stochastic system of PDEs. We assume that the functions
glj are twice continuously di�erentiable with respect to u and satisfy

glj(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) = 0 x ∈ O, t > 0, uk ≥ 0, (2.52)

for all j ∈ N and k, l = 1, . . . ,m. Then, the following statements are equivalent:

(a) The function f satis�es the positivity condition.

(b) The modi�ed function F satis�es the positivity condition.

(c) The associated random functions Fε,ω satisfy the positivity condition for all ε > 0 and
ω ∈ Ω.

Proof. The proof is a simple computation. Let j ∈ N and 1 ≤ l ≤ m. Since the function
glj is continuously di�erentiable with respect to ul and satis�es Property (2.52) we can
represent it in the form glj(x, t, u) = ulG

l
j(x, t, u), where the function Gl

j is continuously
di�erentiable. For the sum appearing in the Wong-Zakaï correction term we obtain

m∑
i=1

gij
∂glj
∂ui

=
m∑
i=1

gij
∂(ulG

l
j)

∂ui
=
∑
i 6=l

gijul
∂Gl

j

∂ui
+ glj

∂(ulG
l
j)

∂ul
,

which leads to an associated function F of the form

F l = f l − 1

2

∞∑
j=1

q2
j

m∑
i=1

gij
∂glj
∂ui

= f l − 1

2

∞∑
j=1

q2
j

(∑
i 6=l

gijul
∂Gl

j

∂ui
+ glj

∂(ulG
l
j)

∂ul

)
.
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Due to the hypothesis (2.52) we note that the modi�ed function F satis�es the positivity
condition if and only if the interaction function f satis�es the positivity condition since all
correction terms vanish if the component ul of the solution is zero. Finally, the associated
system of random PDEs (Fε,ω, 0) is given by

F l
ε,ω = F l +

∞∑
j=1

qjg
l
jẆ

j
ε .

The assumption (2.52) therefore implies that

F l
ε,ω(x, t, u1, . . . , 0︸︷︷︸

l

, . . . , um) = F l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um)

= f l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um),

which concludes the proof of the lemma.

Applying Lemma 2.3 we derive necessary and su�cient conditions for the positivity
property of the random approximations.

Theorem 2.10. Let (f, g) be a system of stochastic PDEs and (Fε,ω, 0) be the associated
family of random approximations. We assume that the functions glj are twice continuously
di�erentiable with respect to u, for all j ∈ N and l = 1, . . . ,m. Then, the family of random
approximations (Fε,ω, 0) satis�es the positivity property for all ω ∈ Ω and (su�ciently
small) ε > 0 if and only if f satis�es the positivity condition and the stochastic perturbation
g ful�ls Condition (2.52). In this case, the stochastic system of Itô equations (f, g) satis�es
the positivity property.

Proof. Su�ciency: By assumption, the interaction function f satis�es the positivity
condition. Moreover, since the stochastic perturbation ful�ls Property (2.52), Lemma 2.3
implies the positivity condition for the family of random functions Fε,ω, where ω ∈ Ω and
ε > 0. We apply the deterministic positivity criterion (Theorem 2.8) to conclude that
the solutions of the random approximations are non-negative. Finally, the Wong-Zakaï
approximation theorem states that the solutions of the random approximations (Fε,ω, 0)
converge in expectation to the solution of the stochastic system (f, g), which implies that
the stochastic system (f, g) satis�es the positivity property.
Necessity: We assume the family of random PDEs (Fε,ω, 0) satis�es the positivity prop-
erty. By Theorem 2.8 this is equivalent to the positivity condition for the random functions
F l
ε,ω,

F l
ε,ω(x, t, ũ) = F l(x, t, ũ) +

∞∑
j=1

qjg
l
j(x, t, ũ)Ẇ j

ε (t) ≥ 0 x ∈ O, t > 0, (2.53)

where ũ ∈ Rm
+ , such that ũl = 0, for l = 1, . . . ,m. The derivative of the smooth approxima-

tions {Wε(t), t ∈ R+} of the Wiener process can be represented as the stochastic integral
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(2.49) and takes arbitrary values. If we assume the function glj
∣∣
ul=0

is not identically zero,
then for su�ciently small ε > 0 Inequality (2.53) is violated almost surely. This proves
the necessity of the condition on the stochastic perturbation. If Property (2.52) holds, the
positivity condition for the family of random approximations is equivalent to the positivity
condition for the interaction function f by Lemma 2.3.

The same result is valid if we apply Stratonovich's interpretation of stochastic di�erential
equations. In other words, the positivity property of solutions of the stochastic system is
independent of the choice of interpretation.

Corollary 2.1. Let (f, g) be a system of stochastic Itô PDEs. We assume the hypothesis
of Theorem 2.10 are satis�ed and the family of random approximations (Fε,ω, 0) satis-
�es the positivity property. Then, the stochastic system (f, g)Strat obtained when we use
Stratonovich's interpretation of the stochastic di�erential equations satis�es the positivity
property.

Proof. The Wong-Zakaï correction term coincides with the transformation relating Ito's
and Stratonovich's interpretation of the stochastic system (see [70], Section 6.1). Conse-
quently, the solutions of the random approximations (fε,ω, 0) converge to the solution of
the given stochastic system, when interpreted in the sense of Stratonovich. The corollary
is therefore an immediate consequence of Theorem 2.10 and Lemma 2.3.

The intuitive interpretation of the condition on the stochastic perturbation is the fol-
lowing: In the critical case, when one component of the solution approaches zero, the
stochastic perturbation needs to vanish. Otherwise, the positivity of the solution cannot
be guaranteed. For scalar stochastic ODEs this resembles our observation in Section 2.4.1
that additive noise destroys the positivity property of the deterministic system while the
positivity property is preserved under perturbations by a linear multiplicative noise.

2.5.3. Comparison Principles for Stochastic Systems

As a direct consequence of the positivity criterion we obtain necessary and su�cient con-
ditions for the random approximations to satisfy comparison principles. We extend the
de�nition of quasi-monotonicity for non-autonomous interaction functions.

De�nition 2.10. We call the function f : O × [0, T ]×Rm → Rm quasi-monotone, if it
satis�es

f l(x, t, y) ≤ f l(x, t, z)

for all x ∈ O, t ∈ ×[0, T ] and all y, z ∈ Rm such that y ≤ z and yl = zl, where 1 ≤ l ≤ m.

Theorem 2.11. Let (f, g) be a system of stochastic Itô PDEs, (Fε,ω, 0) be the associated
family of random approximations and the hypothesis of Theorem 2.10 be satis�ed. Then,
the family of random approximations (Fε,ω, 0) is order preserving with respect to the order
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relation 4 if and only if the interaction function f is quasi-monotone, and the functions
glj depend on the component ul of the solution only,

glj(x, t, u1, . . . , um) = glj(x, t, ul) for all j ∈ N, 1 ≤ l ≤ m.

In this case, the stochastic system (f, g) is order preserving with respect to 4.

Proof. Let u0 and v0 be given initial data such that u0 < v0. Applying Theorem 2.10
we derive necessary and su�cient conditions to ensure that the order is preserved by the
solutions of the associated random approximations. Since the di�erential operator A is
linear, the di�erence w := u− v is a solution of the stochastic system (f̃ , g̃) where

f̃ l(x, t, w) := f l(x, t, u)− f l(x, t, v) and g̃lj(x, t, w) := glj(x, t, u)− glj(x, t, v)

for j ∈ N, 1 ≤ l ≤ m. Furthermore, by the de�nition of the function w the family of random
approximations (Fε,ω, 0) corresponding to the original system (f, g) is order preserving with
respect to 4 if and only if the random approximations (F̃ε,ω, 0) associated to the stochastic
system (f̃ , g̃) satisfy the positivity property.
Theorem 2.10 yields necessary and su�cient conditions for the latter. Namely, the

random family (F̃ε,ω, 0) satis�es the positivity property if and only if the function f̃ satis�es
the positivity condition and the stochastic perturbation ful�ls

g̃lj(x, t, w1, . . . , wl−1, 0, wl+1, . . . , wm) = 0 x ∈ O, t > 0, wk ≥ 0,

for all j ∈ N and 1 ≤ k, l ≤ m. This is equivalent to the condition

g̃lj(x, t, y) = glj(x, t, z) for all y, z ∈ Rm such that yl = zl, y ≥ z,

and x ∈ O, t > 0. Consequently, the functions glj depend on the component ul of the solu-
tion only. The positivity condition for the function f̃ is equivalent to the quasi-monotonicity
of the original interaction term f .
By Theorem 2.9 the solutions of the associated random family (Fε,ω, 0) converge in

expectation to the solution of the original system (f, g), which proves that the order is
preserved by the solutions of the stochastic system.

It is well-known in the deterministic theory of PDEs that the quasi-monotonicity of the
interaction function f ensures that the system (f, 0) is order preserving (see [66]). The
conditions on the functions glj in the previous theorem guarantee the persistence of this
property under stochastic perturbations. Theorem 5.6 in [15] yields su�cient conditions for
the validity of comparison principles for stochastic systems of the form (f, g). We show in
Theorem 2.11 that these conditions are also necessary to ensure that the family of random
approximations is order preserving.
Moreover, the conditions for the validity of comparison principles for the random ap-

proximations imply that the stochastic system is order preserving when it is interpreted in
the sense of Stratonovich.
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Corollary 2.2. Let (f, g) be a system of stochastic Itô PDEs. We assume the hypothesis
of Theorem 2.10 are satis�ed and the associated family of random approximations is order
preserving with respect to the order relation 4. Then, the stochastic system (f, g)Strat we
obtain when we apply Stratonovich's interpretation of stochastic di�erential equations is
order preserving with respect to 4.

Proof. Theorem 2.11 implies that the stochastic perturbations glj, j ∈ N, l = 1, . . . ,m,
depend on the component ul of the solution only. In this case it is easy to verify that the
following statements are equivalent:

(a) The function f is quasi-monotone.

(b) The associated random functions fε,ω are quasi-monotone, where ε > 0 and ω ∈ Ω.

(c) The modi�ed function F is quasi-monotone.

(d) The associated random functions Fε,ω are quasi-monotone, where ε > 0 and ω ∈ Ω.

The solutions of the random approximations (fε,ω, 0) converge to the solution of the given
stochastic system, when interpreted in the sense of Stratonovich. Hence, the statement of
the corollary is an immediate consequence of Theorem 2.11 and the equivalence relations
(a)-(d).

Like in the deterministic case we immediately obtain necessary and su�cient conditions
for the random family (Fε,ω, 0) to satisfy comparison principles with respect to an arbitrary
order relation in Rm.

Corollary 2.3. Let (f, g) be a system of stochastic PDEs and the hypothesis of Theorem
2.10 be satis�ed. Then, the associated family of random approximations (Fε,ω, 0) is order
preserving with respect to the order relation % if and only if{

f l(x, t, y) ≥ f l(x, t, z) l ∈ σ1

f l(x, t, y) ≤ f l(x, t, z) l ∈ σ2,

for x ∈ O, t > 0 and all y, z ∈ Rm such that y % z and yl = zl, and the functions glj depend
on the component ul of the solution only,

glj(x, t, u1, . . . , um) = glj(x, t, ul) for all j ∈ N, 1 ≤ l ≤ m.

In this case, the stochastic system (f, g) is order preserving with respect to the order relation
% for both Itô's and Stratonovich's interpretation.

Proof. We de�ne the function

wj :=

{
uj − vj if j ∈ σ1

vj − uj if j ∈ σ2.
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Then, w is a solution of the stochastic system (f̃ , g̃), where

f̃ l(x, t, w) :=

{
f l(x, t, u)− f l(x, t, v) if j ∈ σ1

f l(x, t, v)− f l(x, t, u) if j ∈ σ2,

g̃l(x, t, w) :=

{
gl(x, t, u)− gl(x, t, v) if j ∈ σ1

gl(x, t, v)− gl(x, t, u) if j ∈ σ2.

The solutions of the random approximations (Fε,ω, 0) of the stochastic system (f, g) are
order preserving with respect to the order relation % if and only if the family of random
approximations (F̃ε,ω, 0) corresponding to the stochastic system (f̃ , g̃) satis�es the positivity
property. Like in the proof of Theorem 2.11 we conclude that the random family associated
to the system (f̃ , g̃) satis�es the positivity property if and only if the functions g̃lj depend
on the component ul of the solution only and the interaction term f̃ ful�ls the positivity
condition. This is equivalent to the conditions on the functions g and f stated in the
theorem.
The solutions of the random approximations (Fε,ω, 0) are order preserving with respect

to the order relation % and converge to the solution of the stochastic system (f, g), which
implies that the solutions of the system of Itô equations (f, g) preserve the order relation %.
The result for the solutions of the stochastic system (f, g)Strat when we apply Stratonovich's
interpretation of stochastic di�erential equations follows from the proof of Corollary 2.2.

For the validity of comparison principles, the critical situation occurs when one compo-
nent of the solutions u and v approaches the same value. Then, the other components of
the solution should have no in�uence on the intensity of the stochastic perturbation, and
the stochastic perturbations in the corresponding equation necessarily coincide.

2.5.4. Verifying Stochastic Models

We apply our results to verify the positivity property of a deterministic predator-prey
system under stochastic perturbations that was discussed as a sample application in [4]
(Section 5). The deterministic model is formulated as reaction-di�usion system for the
predator u and the prey v in a bounded spatial domain O ⊂ R3 with smooth boundary
∂O,

∂tu = ∆u− β1

(∣∣v
u

∣∣)u+ cβ2

(∣∣v
u

∣∣)v,
∂tv = ∆v +

[
γ − β2

(∣∣v
u

∣∣)]v, (2.54)

∂

∂ν
u|∂O = 0,

∂

∂ν
v|∂O = 0,

(u, v)|t=0 = (u0, v0),
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where the constants c and γ are positive and the functions β1, β2 : R+ → R+ are smooth and
non-negative. We observe that the interaction function satis�es the positivity condition
and no cross-di�usion terms are present. Consequently, the deterministic model (2.54)
preserves the positivity of solutions by Theorem 2.1.
The model includes a certain uncertainty since it is impossible to determine the exact

model parameters γ, β1 and β2 ([4]). One possibility to take this into account is to add
noise, which leads to the following stochastic model

du =
{

∆u− β1

(∣∣v
u

∣∣)u+ cβ2

(∣∣v
u

∣∣)v}dt+ udWt, (2.55)

dv =
{

∆v +
[
γ − β2

(∣∣v
u

∣∣)]v}dt+ vdWt,

where {Wt, t ∈ R+} denotes a standard scalar Wiener process and dWt the corresponding
Itô di�erential (see [4]). If one component of the solution approaches zero the stochas-
tic perturbation in the corresponding equation vanishes. Theorem 2.10, Theorem 2.1 and
the positivity condition of the deterministic interaction function therefore imply that the
stochastic system (2.55) satis�es the positivity property. Moreover, this is valid inde-
pendent of the choice of Itô's or Stratonovich's interpretation of stochastic di�erential
equations.

2.6. Concluding Remarks

We formulated general criteria for the positivity of solutions of semi-linear and quasi-linear
parabolic systems and for stochastic perturbations of semi-linear systems.
The Wong-Zakaï approximation theorem proved in [15] allowed us to study the stochastic

systems by considering smooth random approximations. Our results for non-autonomous
deterministic systems yield necessary and su�cient conditions for the family of random
approximations, which imply the positivity property of the original stochastic system. Ini-
tially, we were hoping to obtain a stronger result. Namely, that the conditions in Theorem
2.10 are also necessary for the positivity property of the stochastic system. The di�culty
is that we cannot directly deduce the positivity of the random approximations from the
positivity of the solution of the stochastic system. To show the necessity for the stochastic
system presumably requires di�erent methods or stronger assumptions on the solution. For
scalar parabolic equations the necessity was shown in [47], but the proof is not based on
random approximations.
For systems of stochastic ODEs we can derive explicit necessary and su�cient conditions

for the positivity property from an abstract result obtained in [53], which generalizes the
Nagumo-Brezis Theorem and the tangential condition for stochastic systems of ODEs. The
conditions on the stochastic perturbations we obtain in this particular case coincide with
the conditions formulated in Theorem 2.10.
Another interesting problem which is important in numerical simulations are criteria

for the positivity of solutions of discrete systems. We expect that the method applied
in the proof of the deterministic positivity criterion (Theorem 2.3) can be used to derive
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explicit necessary and su�cient conditions for the positivity of solutions of �nite di�erence
schemes.
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3. Exponential Attractors of In�nite

Dimensional Dynamical Systems

The longtime behaviour of solutions of various dissipative evolution equations arising in
mathematical physics, biology and other sciences can be studied in terms of attractors of
the generated semigroup, which acts in in�nite dimensional phase spaces ([5], [42], [69]).
To illustrate the ideas we consider the Cauchy problem for a semi-linear heat equation in
a smooth bounded domain Ω ⊂ Rn, n ∈ N,

∂tu(x, t) = ∆u(x, t) + f(u(x, t)) Ω× (0, T ),

u|∂Ω(x, t) = 0 ∂Ω× [0, T ], (3.1)

u(x, 0) = u0(x) Ω× {0},

where T > 0, ∂Ω denotes the boundary of the domain Ω and u is a scalar function depending
on the spatial variable x ∈ Ω and the time variable t ∈ [0, T ]. Under appropriate conditions
on the reaction function f and for a suitably chosen Banach space of functions V there exists
for every initial data u0 ∈ V a unique solution u of the initial-/boundary-value problem
(3.1) taking values in V ; that is, the solution u(·, t) ∈ V for all t ∈ [0, T ]. Moreover, if the
solution exists globally and depends continuously on the initial data, the time evolution of
the system can be described in terms of a semigroup acting in the Banach space V . For
t ≥ 0 we de�ne the operator T (t) : V → V by

T (t)u0 := u(·, t),

where u(·, t) ∈ V is the unique global solution of (3.1) corresponding to initial data u0 ∈ V .
The operator T (t), t > 0, maps a given initial state u0 of the system to the state of the
system at time t after starting, and the family of operators {T (t)| t ≥ 0} satis�es the
properties of a semigroup in V .
An important mathematical question is the qualitative behaviour of the system when

time tends to in�nity. In the modelling of population dynamics for instance we are inter-
ested whether the involved species will persist or become extinct in the far future, after
transient states of the system have passed. The longtime dynamics of dissipative systems
can often be described by the dynamics on the global attractor. The global attractor is
a compact, invariant subset of the phase space, which attracts all solutions and hence,
captures all relevant limit dynamics of the system. For large times the dynamics in the
initially in�nite dimensional phase space is reduced to a small (compact) subset, and the
states of the system are well-approximated by the states of the system within the attractor.
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The global attractor is unique, minimal within the family of closed subsets that attract
all bounded sets and the maximal bounded invariant subset of the phase space. Moreover,
it was shown in many cases that the dimension of the global attractor is �nite ([12], [26],
[69]).
However, the rate of convergence to the attractor is generally unknown, it can be ar-

bitrarily slow, and the global attractor is in general not stable under perturbations. To
overcome these drawbacks the concept of an exponential attractor was introduced ([26]).
Exponential attractors are larger subsets of the phase space, contain the global attrac-
tor, attract all bounded subsets at an exponential rate and are still �nite dimensional.
The main obstacle of exponential attractors is that they are only semi-invariant under the
action of the semigroup and therefore not unique.
While the theory of attractors of semigroups is well-established and well-understood its

counterpart in the non-autonomous setting is less understood and far more complex ([8],
[50]). Let us again consider the Cauchy problem for a semi-linear heat equation, however
with time-dependent reaction function f ,

∂tu(x, t) = ∆u(x, t) + f(t, u(x, t)) Ω× (s, T ),

u|∂Ω(x, t) = 0 ∂Ω× [s, T ], (3.2)

u(x, s) = us(x) Ω× {s},

where s ∈ R and T > s. Under appropriate conditions on the reaction function f and for
a suitably chosen Banach space of functions V , there exists for every initial data us ∈ V
and initial time s ∈ R a unique solution u taking values in V ; that is, u(·, t) ∈ V for all
t ∈ [s, T ]. Moreover, we assume the solution exists globally and depends continuously on
the initial data. Di�erent from autonomous problems, where the solution at time t > s
only depends on the elapsed time after starting t − s, the solution of non-autonomous
problems also depends on the initial time s ∈ R. The rule of time evolution of the system
is then described in terms of a two-parameter family of operators acting in the Banach
space V . For s ∈ R and t > s we de�ne the operator U(t, s) : V → V by

U(t, s)us := u(·, t) t ≥ s,

where u(·, t) ∈ V is the unique global solution of (3.2) corresponding to initial data us ∈ V
and initial time s ∈ R. The operator U(t, s), t > s, maps a given initial state us at initial
time s ∈ R to the state of the system at a later time t > s, and the family of operators
{U(t, s)| t, s ∈ R, t ≥ s} satis�es the properties of an evolution process in V .
The �rst attempt to extend the notion of global attractors for evolution processes was

the concept of uniform attractors ([12]). Uniform attractors are �xed compact subsets of
the phase space that attract all solutions uniformly with respect to the initial time. It is a
suitable concept for certain classes of non-autonomous terms or for small non-autonomous
perturbations of autonomous problems. To capture more general non-autonomous func-
tions, however, requires to weaken the notion of convergence. This leads to the de�nition
of forwards and pullback global attractors, which comprise of families of time-dependent
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subsets of the phase space that attract all solutions in forwards or pullback sense, respec-
tively ([11]). Since global non-autonomous attractors have the same favourable properties
and drawbacks as global attractors of semigroups, it is of interest to extend the concept
of exponential attractors for evolution processes ([19], [49]). Our aim is to analyse the
existence of pullback exponential attractors.
The outline of this chapter is as follows. In Section 3.1.1 we introduce basic concepts

and recall a general existence theorem for global attractors of semigroups. Section 3.1.2 is
devoted to the dimension of attractors, and we summarize properties of the fractal dimen-
sion that we frequently use in the subsequent sections. We de�ne exponential attractors of
semigroups in Section 3.1.3 and give an overview of previous existence results. In Section
3.1.4 we present an algorithm for the construction of exponential attractors for asymptot-
ically compact semigroups in Banach spaces. Properties of the exponential attractor are
discussed in Section 3.1.5.
The second part of Chapter 3 is devoted to non-autonomous attractors. We introduce

evolutions processes and recall di�erent notions of non-autonomous attractors in Section
3.2.1. In the sequel we use the concept of pullback convergence. We recall an existence
result for global pullback attractors and summarize previous results regarding pullback
exponential attractors in Section 3.2.2. The main result of this chapter is a new construc-
tion of pullback exponential attractors for asymptotically compact evolution processes in
Banach spaces and is formulated in Section 3.2.3. In Section 3.2.4 we analyse properties
of the pullback exponential attractor. Finally, applications are addressed in Section 3.2.5,
where we consider initial value problems for a non-autonomous Chafee-Infante equation
and a non-autonomous damped wave equation.

3.1. Autonomous Evolution Equations

3.1.1. Semigroups and Global Attractors

We study the longtime behaviour of evolutionary PDEs by using concepts from the theory
of dynamical systems. Namely, we analyse the existence of attractors for the generated
semigroup (or evolution process) in in�nite dimensional phase spaces.
In the sequel we use the letter T to denote R or Z and de�ne T+ := {t ∈ T| t ≥ 0}.

De�nition 3.1. Let T (t) : X → X, t ∈ T+, be operators in a metric space (X, dX). We
call the family {T (t)| t ∈ T+} a semigroup in X if it satis�es the properties

T (t) ◦ T (s) = T (t+ s) for t, s ∈ T+,

T (0) = Id,

(t, x) 7→ T (t)x is continuous from T+ ×X → X,

where ◦ denotes the composition of operators and Id the identity operator in X.
If T = R we call {T (t)| t ∈ R+} a time continuous semigroup and for T = Z a

discrete semigroup in X.
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We are interested in the behaviour of the system when time tends to in�nity. The
limiting dynamics is in many cases reduced to the dynamics on the global attractor, which
is a compact invariant set that attracts all bounded subsets of the phase space.

De�nition 3.2. The set A ⊂ X is the global attractor for the semigroup {T (t)| t ∈ T+}
if A is a non-empty, compact subset of X and strictly invariant under the action of the
semigroup, T (t)A = A for all t ∈ T+. Moreover, A attracts every bounded subset D ⊂ X,

lim
t→∞

distH(T (t)D,A) = 0.

Here, distH(·, ·) denotes the Hausdor� semi-distance in X,

distH(A,B) := sup
a∈A

dX(a,B) = sup
a∈A

inf
b∈B

dX(a, b) for subsets A,B ⊂ X.

The global attractor is unique, the minimal closed set that attracts all bounded subsets
and the maximal bounded invariant subset of the phase space. To show that semigroups
generated by non-linear PDEs possess a global attractor, one generally derives a priori
estimates to prove the existence of a bounded absorbing or attracting set for the semigroup.

De�nition 3.3. We call the subset B ⊂ X an absorbing set (attracting set) for the
semigroup {T (t)| t ∈ T+}, if all trajectories emanating from a bounded set eventually enter
the set B (a neighbourhood of the set B) and remain within it for all later times. To be
more precise, for every bounded set D ⊂ X there exists TD ∈ T+ such that

T (t)D ⊂ B for all t ≥ TD(
lim
t→∞

distH(T (t)D,B) = 0 for every bounded subset D ⊂ X
)
.

If a semigroup possesses a compact attracting set follows the existence of the global
attractor (see [12], Theorem II.3.1). Here and in the sequel, A denotes the closure of a
subset A ⊂ X.

Theorem 3.1. Let {T (t)| t ∈ T+} be a semigroup in a complete metric space X, and
K ⊂ X be a compact attracting set. Then, the global attractor for the semigroup exists and
coincides with the ω-limit set of K,

A = ω(K),

where ω(K) :=
⋂
s∈T+

⋃
t≥s S(t)K.

The converse statement of Theorem 3.1 is certainly also true and we observe: A semi-
group {T (t)| t ∈ T+} in a complete metric space X possesses a global attractor if and only
if there exists a compact attracting set for the semigroup.
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3.1.2. On the Dimension of Attractors

The existence of global attractors was established for semigroups generated by many dis-
sipative evolution equations, and in most cases it was shown that the attractor is �nite
dimensional (see [5], [12], [69]). In general, the global attractor is a complex object and
possibly fractal. The most commonly used concepts of dimension in the theory of in�-
nite dimensional dynamical systems are the Hausdor� dimension and the fractal (or upper
box-counting) dimension.

De�nition 3.4. Let (X, dX) be a complete metric space and A ⊂ X be a precompact subset.
For positive ρ > 0 and ε > 0 we de�ne

µH(A, ρ, ε) := inf{
∑
i∈I

rρi | I �nite},

where the in�mum is taken over all �nite coverings of the set A by balls with radii ri ≤ ε,
i ∈ I. The Hausdor� dimension dimX

H (A) of the set A in X is de�ned as the in�mum
over all ρ > 0 such that

µH(A, ρ) := lim
ε→0

µH(A, ρ, ε) = 0.

Moreover, the fractal dimension of the set A is de�ned as

dimX
f (A) := lim

ε→0

ln(NX
ε (A))

ln(1
ε
)

,

where NX
ε (A), ε > 0, denotes the minimal number of balls in the metric space X with

radius ε and centres in A needed to cover the set A. The number NX
ε (A) is often called

the (Kolmogorov) ε-entropy of the set A.

If it is clear from the context in which space X we measure the dimension we will
frequently omit the superscript X. The fractal dimension is an upper bound for the
Hausdor� dimension of precompact sets, but these notions do not coincide in general (see
for instance [26]). For reasons we explain in the sequel we use the fractal dimension as a
measure for the size of exponential attractors. For some evolution equations it was shown
that the dimension of the global attractor is in�nite (see [12], [37]). In this case, the
Kolmogorov ε-entropy turned out to be a useful concept to estimate the complexity of
the attractor. It was �rst introduced in [46] and measures the massiveness of precompact
subsets of metric spaces in terms of the order of growth of the minimal number of ε-balls
needed to cover the set when ε > 0 tends to zero.
In the following proposition we summarize properties of the fractal dimension that we

frequently use in the next sections. For the proof we refer to [38], Section 3.2.

Proposition 3.1. Let (X, dX) be a complete metric space and A,B ⊂ X be precompact
subsets. The fractal dimension satis�es the following properties:

(i) Monotonicity: If A ⊂ B, then

dimX
f (A) ≤ dimX

f (B).
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(ii) Finite stability:
dimX

f (A ∪B) = max{dimX
f (A), dimX

f (B)}.

(iii) Fractal dimension of the closure:

dimX
f (A) = dimX

f (A).

(iv) If (Y, dY ) is another complete metric space and the mapping F : X → Y is Hölder
continuous in A,

dY (F (x), F (y)) ≤ C(dX(x, y))θ for all x, y ∈ A,

where the constant C ≥ 0 and 0 < θ ≤ 1, then

dimY
f (F (A)) ≤ 1

θ
dimX

f (A).

In particular, for Lipschitz continuous maps F : X → Y we obtain

dimY
f (F (A)) ≤ dimX

f (A).

Furthermore, the fractal dimension is an upper bound for the Hausdor� dimension,

dimX
H (A) ≤ dimX

f (A).

We remark that the Hausdor� dimension of every countable set is zero, which is not
valid for the fractal dimension. Moreover, the Hausdor� dimension is countably stable,
while the fractal dimension is only �nitely stable.
If the existence and �nite dimensionality of the global attractor is known the longtime

behaviour of the semigroup is reduced to a �nite dimensional subset of the phase space.
To study the dynamics on the attractor by known methods from the theory of �nite di-
mensional dynamical systems it is necessary to project the attractor onto subsets of the
Euclidean space. Almost every projection of a compact subset A of a Banach space with
�nite fractal dimension dimf(A) = d onto subspaces of dimension greater than 2d is in-
jective. Mañé has stated this result in [52] for subsets of �nite Hausdor� dimension. His
proof is however not applicable for arbitrary subsets A of �nite Hausdor� dimension, since
he uses the fact that the Hausdor� dimension of the set of di�erences

A− A := {x− y | x, y ∈ A}

is �nite, which is not valid in general (see [64]). Indeed, in the appendix of [65] a countable
compact subset of Rm is constructed such that no projection onto the Euclidean space Rn,
where n < m, is injective. This counterexample was extended in [7] for in�nite dimensional
spaces, where a countable compact subset (of zero Hausdor� dimension) is constructed
such that no injective linear mapping into an Euclidean space Rn, n ∈ N, exists. The
fractal dimension however possesses the property that dimf(A) < ∞ implies for the set
of di�erences dimf(A − A) ≤ 2dimf(A) and consequently, Mané's proof of the embedding
theorem is valid for subsets of Banach spaces with �nite fractal dimension. His result
was further generalized and the Hölder continuity of the inverse of Mañé's projection was
shown. For Hilbert spaces the embedding theorem was proved in [26] (Appendix A):
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Theorem 3.2. Let A be a compact subset of a Hilbert space H with �nite fractal dimension
dimf(A) = d. Then, for any integer k > 2d the set of projections L : V → Rk admits a Gδ

dense subset consisting of projections that are injective on the set A.

A generalization of the result for Banach spaces and the proof of the Hölder continuity
of the inverse of Mañé's projection can be found in [64] (Theorem 5.1).
Di�erent methods were developed to show the �nite dimensionality of attractors of semi-

groups and to derive upper bounds for their dimension (see [69], [9]). The construction of
exponential attractors which we present in the sequel is one way of proving the existence
and �nite dimensionality of global attractors, but provides only rough estimates for the
fractal dimension. Essentially better bounds are obtained by using Lyaponov exponents
(see [69], Section V.2). However, this method is restricted to semigroups acting in Hilbert
spaces and requires the di�erentiability of the semigroup.

3.1.3. Exponential Attractors of Semigroups

Global attractors have all the mentioned favourable properties, in various applications
however we encounter di�culties. We consider two simple examples which illustrate the
drawbacks.

Example 3.1. The solution of the scalar ODE

d

dt
x(t) = −

(
x(t)

)2
t ∈ R+,

x(0) = x0 x0 ∈ R,

is the function x : R+ → R, t 7→ x0
1+tx0

. When time t tends to in�nity all solutions converge
to zero, and the global attractor A consists of the singleton set {0}. The rate of convergence
to the attractor however is like 1

t
.

Example 3.2. The scalar ODE

d

dt
x(t) = −x(t)

(
x(t)− 1

)2
t ∈ R+,

x(0) = x0 x0 ∈ R,

possesses two equilibria, the stable equilibrium {0} and the unstable equilibrium {1}. The
global attractor of the generated semigroup is the closed interval connecting these points,
A = {[0, 1]}.
However, if we perturb the equation by an arbitrarily small parameter ε > 0, the perturbed

problem

d

dt
x(t) = −x(t)

(
x(t)− 1

)2 − ε t ∈ R+,

x(0) = x0 x0 ∈ R,
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possesses only one equilibrium {yε} ∈ R. Furthermore, all solutions converge to the equi-
librium point {yε} when time t goes to in�nity, and the global attractor of the perturbed
system is reduced to a single point, Aε = {yε}.

These examples indicate the major drawbacks of global attractors: The rate of con-
vergence to the attractor is in general unknown and can be arbitrarily slow. Moreover,
global attractors are generally not stable under perturbations and may completely change
its structure under an arbitrarily small perturbation of the system. To overcome these
drawbacks we may consider larger sets instead, which contain the global attractor, are still
�nite dimensional, attract all bounded sets at a fast rate and are therefore more robust
under perturbations. Comparing with the concept of global attractors this requires to
weaken the strict invariance property of the attracting set.
A �rst approach in that direction was to embed the global attractor into a �nite-

dimensional manifold.

De�nition 3.5. Let {T (t)| t ∈ T+} be a semigroup in a separable Hilbert space H. The
subset M ⊂ H is an inertial manifold for the semigroup {T (t)| t ∈ T+} if M is

(i) a �nite dimensional Lipschitz manifold,

(ii) positively semi-invariant, T (t)M ⊂M for all t ∈ T+, and

(iii) attracts all bounded subsets exponentially; that is, there exists a constant ω > 0 such
that

lim
t→∞

eωtdistH(T (t)D,M) = 0 for all bounded sets D ⊂ H.

Inertial manifolds were introduced in [39], and are semi-invariant Lipschitz manifolds
that exponentially attract all bounded subsets of the phase space. They are stable under
perturbations and allow to describe the longtime dynamics of the semigroup in terms of
a �nite system of ODEs. Inertial manifolds are de�ned and constructed for semigroups
acting in Hilbert spaces and all known methods are based on a so-called spectral gap
condition. However, various counterexamples were presented illustrating that the spectral
gap condition is a restrictive assumption (see [26]).
Owing to these obstacles exponential attractors were proposed in [26], which are more

general and less regular objects. In particular, their construction is not based on the
spectral gap condition.

De�nition 3.6. Let {T (t)| t ∈ T+} be a semigroup in a metric space (X, dX). We call
the non-empty compact subset M ⊂ X an exponential attractor for the semigroup
{T (t)| t ∈ T+} ifM is

(i) of �nite fractal dimension, dimf(M) <∞,

(ii) semi-invariant, T (t)M⊂M for all t ∈ T+, and
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(iii) attracts all bounded subsets exponentially; that is, there exists a constant ω > 0 such
that

lim
t→∞

eωtdistH(T (t)D,M) = 0 for every bounded subset D ⊂ X.

Thanks to the exponential rate of attraction exponential attractors are more robust
under perturbations ([26], [32], [35]). Furthermore, if a semigroup possesses an exponential
attractor, Theorem 3.1 implies that the global attractor A is contained in the exponential
attractorM and given by its ω-limit set, A = ω(M). An immediate consequence of the
existence of an exponential attractor is therefore the existence and �nite-dimensionality
of the global attractor. However, exponential attractors are only semi-invariant under the
action of the semigroup and consequently not unique. Indeed, if M is an exponential
attractor for the semigroup {T (t)| t ∈ T+}, then any iterate T (t)M is also an exponential
attractor, for t ∈ T+.
The �rst existence proof and method for the construction of exponential attractors was

developed for semigroups acting in Hilbert spaces (see [26]). It is based on the so-called
squeezing property of the semigroup and essentially uses the Hilbert structure of the phase
space. Since Zorn's Lemma is applied the proof is non-constructive. Moreover, the ex-
istence of a compact absorbing set for the semigroup is a priori assumed, which ensures
the existence of the global attractor. The exponential attractor is constructed by adding
to the global attractor an appropriate semi-invariant subset of the phase space such that
all trajectories emanating from bounded sets are attracted exponentially fast. The main
di�culty in the construction is to control the fractal dimension of the added set.
Later, the construction of exponential attractors was extended to semigroups acting in

Banach spaces in [22]. The proof is based on the covering method developed in [52] to show
the �nite fractal dimension of negatively invariant sets under maps that are continuously
di�erentiable and such that the derivative is the sum of a compact map and a contraction.
This covering method was further developed and applied in several cases to prove the
�nite dimensionality of global attractors (see [9]). The construction of the exponential
attractor in [22] is based on the method and ideas in [26]. It requires the di�erentiability
of the semigroup, the existence of the global attractor is a priori known and the proof is
non-constructive.
In [33] an alternative method and explicit algorithm for the construction of exponential

attractors was proposed for discrete semigroups acting in Banach spaces. It is based on
the compact embedding of the phase space into an auxiliary normed space and uses the
regularizing or smoothing property of the semigroup with respect to these spaces. The
rate of convergence and the bound on the fractal dimension of the exponential attractor
can explicitly be estimated in terms of the entropy properties of this embedding. This
approach is the basis of our results. The method for the construction of discrete exponential
attractors for semigroups in [33] was further developed in [32] and also extended for discrete
non-autonomous problems. Furthermore, in [13], based on the results in [33], exponential
attractors for time-continuous semigroups were constructed and estimates for the fractal
dimension of global and exponential attractors established. The construction of exponential
attractors we present in the following section generalizes the results in [33], [32] and [13]
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for semigroups, and we improve the bounds on the fractal dimension of the attractors.

3.1.4. Existence Results for Exponential Attractors

We �rst construct exponential attractors for discrete asymptotically compact semigroups
and derive bounds on their fractal dimension before we extend the construction for time
continuous semigroups. Compared to former work (see [33], [32], [13]) we modify the set-
ting and construction and consider semigroups that are asymptotically compact in the
stronger space. Previous settings and results are discussed in Section 3.1.5. For continuous
semigroups an additional regularity property in time is required to obtain �nite dimen-
sional exponential attractors. Exponential attractors for continuous semigroups were also
obtained in [13], however under less general assumptions, and in [19] as a corollary of the
non-autonomous construction. Our results in the time continuous case generalize the pre-
vious results and improve the estimates on the fractal dimension of the attractors in [13]
and [19].
The construction of exponential attractors is based on the compact embedding of the

phase space into an auxiliary normed space and a certain smoothing or regularizing prop-
erty of the semigroup with respect to these spaces.
Let {T (t)| t ∈ T+} be a semigroup in a Banach space (V, ‖ · ‖V ).

(H0) We assume (W, ‖ · ‖W ) is another normed space such that the embedding V ↪→↪→ W
is dense, compact and

‖v‖W ≤ µ‖v‖V for all v ∈ V,

where the constant µ > 0.

Moreover, we suppose that the semigroup possesses a bounded absorbing set and sat-
is�es the smoothing property asymptotically. Namely, the semigroup can eventually be
represented as a sum T = S + C, where S satis�es the smoothing property and C is a
contraction in V . To be more precise, let {T (t)| t ∈ T+} be a semigroup in V such that
T (t) = S(t) +C(t), where {S(t)| t ∈ T+} and {C(t)| t ∈ T+} are families of operators that
satisfy the properties:

(S1) There exists a bounded absorbing set B ⊂ V for the semigroup {T (t)| t ∈ T+}; that
is, for all bounded subsets D ⊂ V there exists TD ∈ T+ such that

T (t)D ⊂ B for all t ≥ TD.

(S2) The family {S(t)| t ∈ T+} satis�es the smoothing property within the absorbing set:
There exists t̃ ∈ T+\{0} such that

‖S(t̃)u− S(t̃)v‖V ≤ κ‖u− v‖W u, v ∈ B,

for some constant κ > 0.
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(S3) The family {C(t)| t ∈ T+} is a family of contractions within the absorbing set:

‖C(t̃)u− C(t̃)v‖V ≤ λ‖u− v‖V u, v ∈ B,

where the constant 0 ≤ λ < 1
2
.

The smoothing property implies that the operator S(t̃) : V → V is compact. We do not
require that the families of operators {S(t)| t ∈ T+} and {C(t)| t ∈ T+} are semigroups,
but remark that in applications the family of contractions {C(t)| t ∈ T+} often forms a
semigroup in V (see Section 3.2.5).
The following lemma shows that the smoothing time t̃ in (S2) and the absorbing time TB

in (S1) corresponding to the absorbing set B can be arbitrary. Previously, it was assumed
that these times coincide (and are equal to 1). Moreover, if the family {C(t)| t ∈ T+}
satis�es the properties of a semigroup we show that it su�ces that the operators are
eventually strict contractions with contraction constant λ < 1 .

Lemma 3.1. (i) If {T (t)| t ∈ T+} is a semigroup in the Banach space V such that

Property (S1) is satis�ed, then there exists a bounded absorbing set B̃ which is pos-
itively semi-invariant and Properties (S2) and (S3) are valid when B is replaced by

B̃.

(ii) We can replace Assumptions (S2) and (S3) by the following:

(S̃2) The family {S(t)| t ∈ T+} satis�es the smoothing property within the absorbing
set: There exists t̃ ∈ T+\{0} such that for all t ≥ t̃

‖S(t)u− S(t)v‖V ≤ κt‖u− v‖W u, v ∈ B,

for some constant κt > 0.

(S̃3) The family {C(t)| t ∈ T+} forms a semigroup in V . Moreover, there exists
t̂ ∈ T+\{0} such that C(t)B ⊂ B for all t ≥ t̂, and the operators are strict
contractions within the absorbing set:

‖C(t̂)u− C(t̂)v‖V ≤ λ‖u− v‖V u, v ∈ B,

where the constant 0 ≤ λ < 1.

Proof. (i) If we de�ne
B̃ :=

⋃
s∈T+, 0≤s<TB

T (TB + s)B,

it is a bounded absorbing set for the semigroup which is positively semi-invariant. Indeed,
it is bounded since T (TB + s)B ⊂ B for all s ∈ T+, by Property (S1). Moreover, if
D ⊂ V is a bounded subset, Assumption (S1) implies that there exists TD ∈ T+ such that
T (t)D ⊂ B for all t ≥ TD, and we obtain

T (t)D = T (t− TD − TB)T (TB)T (TD)D ⊂ T (t− TD − TB)T (TB)B ⊂ B̃,
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for all t ≥ TD + TB. Finally, we observe

T (t)B̃ =
⋃

s∈T+, 0≤s<TB

T (t)T (TB + s)B =
⋃

s∈T+, 0≤s<TB

T (TB + s+ t)B ⊂ B̃,

for all t ∈ T+. Since the set B̃ ⊂ B Properties (S2) and (S3) are certainly satis�ed for all
u, v ∈ B̃.
(ii) We choose l ∈ N su�ciently large such that λl < 1

2
and lt̂ ≥ t̃. The semigroup property

and Assumption (S̃3) imply

‖C(lt̂)u− C(lt̂)v‖V ≤ λl‖u− v‖V for all u, v ∈ B.

If necessary, we replace the contraction time t̂ and smoothing time t̃ by t0 := lt̂. Then,
Hypothesis (S2) is satis�ed with smoothing constant κ := κt0 and Assumption (S3) holds
with contraction constant λ := λl < 1

2
.

The Discrete Case

We now consider discrete semigroups, where T = Z, and use the letter n instead of t
to denote discrete times n ∈ Z+. The following theorem yields an existence result for
exponential attractors of discrete semigroups in the Banach space V and estimates for the
fractal dimension of the exponential attractor.
In the sequel, we denote the ball of radius r > 0 and center a ∈ X in a metric space X

by BX
r (a).

Theorem 3.3. Let {T (n)| n ∈ Z+} be a discrete semigroup in the Banach space V and
the assumptions (H0), (S1), (S2) and (S3) be satis�ed with T = Z. Then, for every
ν ∈ (0, 1

2
− λ) there exists an exponential attractor M ≡ Mν in V for the semigroup

{T (n)| n ∈ Z+}, and its fractal dimension can be estimated by

dimV
f (Mν) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
,

where λ and κ are the smoothing and contraction constants in (S2) and (S3).

Proof. By Lemma 3.1 without loss of generality we can assume that the absorbing set B
is positively semi-invariant.
Step 1: Coverings of T (nñ)B
Let ν ∈ (0, 1

2
− λ) be �xed, R > 0 and v0 ∈ B be such that B ⊂ BV

R (v0). Moreover, we
choose elements w1, . . . wN ∈ V such that

BV
1 (0) ⊂

N⋃
i=1

BW
ν
κ

(wi),

where N := NW
ν
κ

(BV
1 (0)) (see De�nition 3.4). We de�ne the set W 0 := {v0} and construct

by induction in n ∈ N the family of sets W n with the following properties:
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(W1) W n ⊂ T (nñ)B ⊂ B,

(W2) ]W n ≤ Nn,

(W3) T (nñ)B ⊂
⋃
u∈Wn BV

(2(ν+λ))nR(u),

where ]A denotes the cardinality of the subset A ⊂ V .
To construct a covering of the image T (ñ)B we note that v ∈ BV

R (v0) implies

1

R
(v − v0) ∈ BV

1 (0) ⊂
N⋃
i=1

BW
ν
κ

(wi),

and consequently,

B ⊂ BV
R (v0) ⊂

N⋃
i=1

BW
R ν
κ
(Rwi + v0).

Due to the smoothing property (S2) we obtain

‖S(ñ)ũ− S(ñ)ṽ‖V ≤ κ‖ũ− ṽ‖W < 2νR

for all ũ, ṽ ∈ BW
R ν
κ
(Rwi + v0) ∩B, which yields the covering

S(ñ)B ⊂
N⋃
i=1

BV
2νR(zi),

with centres z1, . . . , zN ∈ S(ñ)B. In particular, there exist yi ∈ B such that zi = S(ñ)yi
for i = 1, . . . , N . The contraction property (S3) implies

‖C(ñ)u− C(ñ)yi‖V ≤ λ‖u− yi‖V < 2λR for all u ∈ B,

and we conclude
C(ñ)B ⊂ BV

2λR(C(ñ)yi) for all i = 1, . . . , N.

Finally, we obtain the desired covering

T (ñ)B =S(ñ)B + C(ñ)B ⊂
N⋃
i=1

(
BV

2νR(S(ñ)yi) +BV
2λR(C(ñ)yi)

)
⊂

N⋃
i=1

BV
2(ν+λ)R(T (ñ)yi),

with centres T (yi) ∈ T (ñ)B for 1 = 1, . . . , N . Denoting the set of centres by W 1 follows

T (ñ)B ⊂
⋃
u∈W 1

BV
2(ν+λ)R(u),

where the set W 1 ⊂ T (ñ)B ⊂ B and ]W 1 ≤ N .
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Let us assume the sets W l are already constructed for l ≤ n, which yields the covering

T (ñn)B ⊂
⋃

u∈Wn

BV
(2(ν+λ))nR(u).

To construct a covering of the iterate

T (ñ(n+ 1))B = T (ñ)T (ñn)B ⊂
⋃

u∈Wn

T (ñ)BV
(2(ν+λ))nR(u)

let u ∈ W n. We use the covering of the unit ball BV
1 (0) by ν

κ
-balls in the space W and the

smoothing property (S2) to conclude

S(ñ)
(
T (ñn)B ∩BV

(2(ν+λ))nR(u)
)
⊂ S(ñ)

(
T (ñn)B ∩

N⋃
i=1

BW
(2(ν+λ))nR ν

κ
((2(ν + λ))nRwi + u)

)
⊂

N⋃
i=1

BV
(2(ν+λ))n2νR(S(ñ)yui ),

for some yu1 , . . . , y
u
N ∈ S(ñ)(T (ñn)B ∩BV

(2(ν+λ))nR(u)). Furthermore, the contraction prop-
erty (S3) implies

C(ñ)
(
T (ñn)B ∩BV

(2(ν+λ))nR(u)
)
⊂ BV

(2(ν+λ))n2λR(C(ñ)yui ) for all i = 1, . . . , N.

This yields the covering

T (ñ)
(
T (ñn)B ∩BV

(2(ν+λ))nR(u)
)

=
(
S(ñ) + C(ñ)

) (
T (ñn)B ∩BV

(2(ν+λ))nR(u)
)

⊂
N⋃
i=1

(
BV

(2(ν+λ))n2νR(S(ñ)yui ) +BV
(2(ν+λ))n2λR(C(ñ)yui )

)
⊂

N⋃
i=1

BV
(2(ν+λ))n+1R(T (ñ)yui ),

with centres in the set T (ñ(n + 1))B. Constructing in the same way for all u ∈ W n such
a covering of BV

(2(λ+ν))nR(u) by balls of radius (2(ν + λ))n+1R in V we obtain a covering
of the image T (ñ(n + 1))B and denote the new set of centres by W n+1. We observe
]W n+1 ≤ N]W n ≤ Nn+1, by construction the set of centres W n+1 ⊂ T (ñ(n+ 1))B, and

T (ñ(n+ 1))B ⊂
⋃

u∈Wn+1

BV
(2(ν+λ))n+1R(u),

which proves the properties (W1)-(W3).
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Step 2: De�nition of the Exponential Attractor
To obtain a semi-invariant exponential attractor we set E0 := W 0 and iteratively de�ne
the sets En, n ∈ N, by

E1 := W 1 ∪ T (1)W 0 ∪ T (2)W 0 ∪ · · · ∪ T (ñ)W 0

E2 := W 2 ∪ T (1)W 1 ∪ · · · ∪ T (ñ)W 1 ∪ T (ñ+ 1)W 0 ∪ · · · ∪ T (2ñ)W 0

...

En := W n ∪ T (1)W n−1 ∪ · · · ∪ T (ñ)W n−1 ∪ · · · ∪ T (ñ(n− 1) + 1)W 0 ∪ · · · ∪ T (ñn)W 0

= W n ∪
n⋃
k=1

ñ⋃
l=1

T ((k − 1)ñ+ l)W n−k.

Since the absorbing set B is semi-invariant we observe

T (n)B ⊂ T (m)B for all n ≥ m,

and consequently, the sets En, n ∈ N, satisfy the properties:

(E1) E0 ⊂ B, En ⊂ T ((n− 1)ñ)B ⊂ B, T (1)En ⊂ En ∪ En+1,

(E2) ]En ≤ ñ(n+ 1)Nn,

(E3) T (nñ)B ⊂
⋃
u∈En B

V
(2(ν+λ))nR(u).

These relations are immediate consequences of the de�nition of the sets En, the properties
of the sets W n and the semi-invariance of the absorbing set B, and can be proved by
induction. Moreover, from the �rst relation follows T (k)En ⊂ En ∪En+1 ∪ · · · ∪En+k, for
all k ∈ N.
We �nally de�ne the set

M̃ :=
⋃
n∈N0

En

and show that it is a precompact exponential attractor for the semigroup.
Step 3: Semi-invariance, Precompactness and Finite dimensionality
By using Property (E1) we obtain

T (k)M̃ :=
⋃
n∈N0

T (k)En ⊂
⋃
n∈N0

(En ∪ · · · ∪ En+k) ⊂
⋃
n∈N0

En = M̃,

for all k ∈ N0, which proves the semi-invariance of M̃. Furthermore, by Property (E1)
and the semi-invariance of the absorbing set the sets En ⊂ T ((m − 1)ñ)B for all n ≥ m,
m ∈ N, and we conclude

M̃ =
m⋃
n=0

En ∪
∞⋃

n=m+1

En ⊂
m⋃
n=0

En ∪ T (mñ)B.

107



3. Exponential Attractors of In�nite Dimensional Dynamical Systems

Properties (E2) and (W3) now imply the estimate

](
m⋃
n=0

En) ≤ (m+ 1)]Em ≤ (m+ 1)2ñNm,

and the covering T (mñ)B ⊂
⋃
u∈Wm BV

(2(ν+λ))mR(u). For arbitrary ε > 0 we choose m
su�ciently large such that

(2(ν + λ))mR ≤ ε < (2(ν + λ))m−1R (3.3)

holds. An estimate for the number of ε-balls needed to cover the set M̃ is then given by

NV
ε (M̃) ≤ ](

m⋃
n=0

En) + ]Wm ≤ (m+ 1)2ñNm +Nm ≤ 2(m+ 1)2ñNm,

where we used Properties (W2) and (E2). This proves the precompactness of M̃ in V .
Furthermore, by Relation (3.3) follows

m <
ln 1

ε
+ lnR

ln 1
2(λ+ν)

+ 1 =
ln 1

ε

ln 1
2(λ+ν)

+ C,

for some constant C ≥ 0 depending on R, λ and ν, and we obtain for the fractal dimension
of the set M̃

dimV
f (M̃) = lim sup

ε→0

ln(NV
ε (M̃))

ln 1
ε

≤ lim sup
ε→0

ln(2) + 2 ln(m+ 1) + ln(ñ) +m ln(N)

ln 1
ε

≤ lim sup
ε→0

2 ln
( ln 1

ε

ln 1
2(λ+ν)

+ C + 1
)

+
( ln 1

ε

ln 1
2(λ+ν)

+ C
)

ln(N)

ln 1
ε

≤ log 1
2(ν+λ)

(N).

It remains to show that the set M̃ exponentially attracts all bounded subsets of V . By
Assumption (S1) there exists for every bounded set D ⊂ V an absorbing time nD ∈ Z+

such that T (n)D ⊂ B for all n ≥ nD. If we take n ≥ nD + ñ, then n = nD + ñk0 + k for
some k0, k ∈ Z+, where k0 > 0, and it follows

distVH(T (n)D,M̃) = distVH
(
T (k0ñ)T (nD + k)D,

∞⋃
n=0

En
)
≤ distVH(T (k0ñ)B,

∞⋃
n=0

En)

≤ distVH(T (k0ñ)B,W k0) ≤ (2(ν + λ))k0R = (2(ν + λ))
n−nD−k

ñ R = ce−ωn,

for some constant c ≥ 0, where ω := ln( 1
2(ν+λ)

)
1
ñ .
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Step 4: Compactness of the Exponential Attractor

Since V is a Banach space taking the closure M := M̃
‖·‖V

of the precompact subset M̃
we obtain a compact set in V . By Proposition 3.1 the fractal dimension of M coincides
with the fractal dimension of M̃,

dimV
f (M) = dimV

f (M̃
‖·‖V

) = dimV
f (M̃),

and is therefore bounded by the same value. Moreover, the exponential attraction property
ofM follows immediately, since the set M̃ exponentially attracts all bounded subsets of
V and M̃ ⊂ M. To show the semi-invariance ofM let k ∈ N0. By the continuity of the
semigroup (see De�nition 3.1) and the semi-invariance of the set M̃ we observe

T (k)M = T (k)M̃
‖·‖V
⊂ T (k)M̃

‖·‖V
⊂ M̃

‖·‖V
=M,

which shows that the setM is an exponential attractor for the semigroup {T (n)| n ∈ Z+}
and concludes the proof of the theorem.

The Time Continuous Case

We now consider time continuous semigroups, where T = R, and construct exponential
attractors in a standard way (see [26] or [13]). This requires an additional regularity
property in time of the semigroup. We later propose an alternative concept, so-called
pullback exponential attractors for time continuous semigroups (see Section 3.2.4). In the
discrete case they coincide with exponential attractors of semigroups and exist under more
general assumptions in the time continuous case.
Let {T (t)| t ∈ R+} be a continuous semigroup in the Banach space (V, ‖·‖V ). In addition

to the hypothesis (S1)-(S3) we assume Hölder continuity in time of the semigroup. We
remark that the interval where the semigroup is Hölder continuous is arbitrary.

(S4) The semigroup {T (t)| t ∈ R+} is Hölder continuous in time: There exist 0 ≤ t1 < t2
such that

‖T (s1)u− T (s2)u‖V ≤ ζ|s1 − s2|θ for all u ∈ B, s1, s2 ∈ [t1, t2],

for some constant ζ ≥ 0 and exponent 0 < θ ≤ 1.

The following theorem extends Theorem 3.3 for time continuous semigroups.

Theorem 3.4. We assume {T (t)| t ∈ R+} is a continuous semigroup in the Banach space
V and the properties (H0), (S1)-(S4) are satis�ed. Then, for any ν ∈ (0, 1

2
− λ) there

exists an exponential attractorM≡Mν for the semigroup {T (t)| t ∈ R+}, and its fractal
dimension is bounded by

dimV
f (Mν) ≤ 1

θ
+ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
,

where λ and κ denote the constants in Hypothesis (S2) and (S3) and θ is the Hölder
exponent in (S4).
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Proof. By Lemma 3.1 without loss of generality we can assume that the absorbing set is
positively semi-invariant.
Step 1: Construction of the Exponential Attractor
Let ν ∈ (0, 1

2
− λ) be �xed. The associated discrete semigroup {T̃ (n)| n ∈ Z+} de�ned by

T̃ (n) := T (nt̃), n ∈ Z+, satis�es the hypothesis of Theorem 3.3 with ñ = 1. An exponential
attractor Md for the semigroup {T̃ (n)| n ∈ Z+} can be constructed as in the proof of

Theorem 3.3. We recall that the exponential attractor was de�ned by Md = M̃d

‖·‖V
,

where
M̃d =

⋃
n∈N0

En,

and refer to the proof of Theorem 3.3 for the construction of the family of sets En, n ∈ N0.
To obtain an exponential attractor for the time continuous semigroup we choose k ∈ N

such that kt̃ ≥ t1 and de�neM := M̃
‖·‖V

, where

M̃ :=
⋃

t∈[kt̃,(k+1)t̃]

T (t)M̃d.

It su�ces to prove that the set M̃ is a precompact exponential attractor for the semigroup
{T (t)| t ∈ R+}. The proof can then be completed as in the discrete case by showing the
corresponding properties for the setM. First, we observe that

M̃ =
⋃

t∈[kt̃,(k+1)t̃]

T (t)M̃d =
⋃

t∈[kt̃,(k+1)t̃]

T (t)
⋃
n∈N0

En =
⋃
n∈N0

⋃
t∈[kt̃,(k+1)t̃]

T (t)En.

Step 2: Semi-invariance and Exponential Attraction Property
Let t ∈ R+ and s ∈ [kt̃, (k + 1)t̃] be arbitrary. Then, t+ s = (k + l)t̃+ s0, for some l ∈ N0

and s0 ∈ [0, t̃[. Using Property (E1) in the proof of Theorem 3.3 we conclude

T (t)
⋃
n∈N0

T (s)En =
⋃
n∈N0

T ((k + l)t̃+ s0)En ⊂
⋃
n∈N0

T (kt̃+ s0)En+l

⊂
⋃
n∈N0

⋃
t∈[kt̃,(k+1)t̃]

T (t)En = M̃.

Since s ∈ [kt̃, (k + 1)t̃] was arbitrary follows the semi-invariance of the set M̃.
To show the exponential attraction property we observe that the smoothing property

(S2), the contraction property (S3) and the continuous embedding (H0) imply

‖T (kt̃)u− T (kt̃)v‖V ≤ (µκ+ λ)k‖u− v‖V u, v ∈ B.

Let D ⊂ V be a bounded subset. By Assumption (S1) there exists TD ∈ T+ such that
T (t)D ⊂ B for all t ≥ TD. Moreover, if t ≥ TD + (k + 1)t̃, then t = TD + (k + l)t̃+ s0 for
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some l ∈ N and s0 ∈ [0, t̃[, and we conclude

distVH(T (t)D,M̃)) = distVH(T (t− TD − s0)T (TD + s0)D,
⋃

t∈[kt̃,(k+1)t̃[

T (t)
⋃
n∈N0

En)

≤ distVH(T (t− TD − s0)B,
⋃
n∈N0

T (kt̃)En)

≤ distVH
(
T ((k + l)t̃)B, T (kt̃)El

)
≤ (µκ+ λ)kdistVH(T (lt̃)B,El)

≤ (µκ+ λ)k(2(ν + λ))lR = (µκ+ λ)k(2(λ+ ν))
t−TD−s0

t̃
−kR = ce−ωt,

for some constant c ≥ 0 and ω := ln( 1
2(ν+λ)

)
1
t̃ .

Step 3: Precompactness and Finite Fractal Dimension
First, we observe that the semigroup {T (t)| t ∈ R+} is Hölder continuous in every interval
[t1 + lh, t1 + (l + 1)h], l ∈ N0, where h := t2 − t1,

‖T (s1)u− T (s2)u‖V ≤ ζ|s1 − s2|θ for all u ∈ B, s1, s2 ∈ [t1 + lh, t1 + (l + 1)h]. (3.4)

Indeed, let l ∈ N0 and s1, s2 ∈ [t1 + lh, t1 +(l+1)h]. Then, s1 = t1 + lh+r1, s2 = t1 + lh+r2

with r1, r2 ∈ [0, h], and by Assumption (S4) and the semi-invariance of the absorbing set
follows

‖T (s1)u− T (s2)u‖V = ‖T (t1 + r1) (T (lh)u)− T (t1 + r2) (T (lh)u) ‖V ≤ ζ|s1 − s2|θ

for all u ∈ B.
To prove the precompactness we show that for arbitrary ε > 0 the set M̃ can be covered

by a �nite number of ε-balls in V . Let m ∈ N and s ∈ [kt̃, (k + 1)t̃]. Then, the semi-
invariance of the absorbing set implies

T (s+ nt̃)B = T (mt̃)T ((n−m)t̃+ s)B ⊂ T (mt̃)B for all n ≥ m,

and we obtain

T (s)En ⊂ T (mt̃)B for all n ≥ m, s ∈ [kt̃, (k + 1)t̃],

where we used that the sets En ⊂ T (nt̃)B. Consequently, we observe

M̃ =
⋃

s∈[kt̃,(k+1)t̃]

T (s)
( m⋃
n=0

En ∪
∞⋃

n=m+1

En
)
⊂
( m⋃
n=0

⋃
s∈[kt̃,(k+1)t̃]

T (s)En
)
∪ T (mt̃)B,

for all m ∈ N. If we choose m ∈ N su�ciently large such that

(2(ν + λ))mR ≤ ε < (2(ν + λ))m−1R

holds, the ε-balls with centres in the set Wm yield a covering of the iterate T (mt̃)B,

T (mt̃)B ⊂
⋃

u∈Wm

BV
ε (u).
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We can estimate the number of ε-balls needed to cover the set M̃ therefore by

NV
ε (M̃) ≤ ]

( m⋃
n=0

⋃
s∈[kt̃,(k+1)t̃]

T (s)En
)

+ ]Wm ≤ ]
( m⋃
n=0

⋃
s∈[kt̃,(k+1)t̃]

T (s)En
)

+Nm,

where we used Property (W2) in the proof of Theorem 3.3. It remains to estimate the
number of ε-balls in V needed to cover the �nite union of curves

m⋃
n=0

⋃
s∈[kt̃,(k+1)t̃]

T (s)En =
⋃

s∈[kt̃,(k+1)t̃]

T (s)
m⋃
n=0

En =
⋃

s∈[kt̃,(k+1)t̃]

T (s)Ẽm

=
⋃
u∈Ẽm

⋃
s∈[kt̃,(k+1)t̃]

T (s)u =
⋃
u∈Ẽm

Tu([kt̃, (k + 1)t̃],

where the curves Tu : [kt̃, (k + 1)t̃]→ V are de�ned by Tu(s) := T (s)u for u ∈ Ẽm and the
set Ẽm :=

⋃m
n=0E

n. Property (E2) implies that

](Ẽm) = ](
m⋃
n=0

En) ≤ (m+ 1)]Em ≤ (m+ 1)2Nm.

Since we chose k ∈ N such that kt̃ ≥ t1, we can divide the interval [kt̃, (k + 1)t̃] into at
most p0 := b t̃

h
c+ 1 subintervals Ij, 1 ≤ j ≤ p0, of length less than or equal to h := t2 − t1,

where the semigroup satis�es the Hölder continuity property (3.4),

‖T (s1)u− T (s2)u‖V ≤ ζ|s1 − s2|θ for all s1, s2 ∈ Ij, u ∈ B.

Here and in the sequel, bxc denotes the largest integer less than or equal to x ∈ R. Let
u ∈ Ẽm. To construct an ε-covering of the image of the curve Tu([kt̃, (k+1)t̃]), if necessary,
we further subdivide the intervals Ij into intervals of length less than ( ε

2ζ
)
1
θ , and obtain at

most

p1 := bh(
2ζ

ε
)
1
θ c+ 1

such subintervals I ij, 1 ≤ i ≤ p1, for each interval Ij, 1 ≤ j ≤ p0. Choosing an arbitrary
point sij in each subinterval I ij follows

‖Tu(r1)− Tu(r2)‖V = ‖T (r1)u− T (sij)u‖V + ‖T (sij)u− T (r2)u‖V
≤ ζ(|r1 − sij|θ + |sij − r2|θ) < ε,

for all r1, r2 ∈ I ij, where 1 ≤ j ≤ p1, 1 ≤ i ≤ p0. Consequently, we obtain a covering of the
image of the curve Tu,

Tu([kt̃, (k + 1)t̃]) ⊂
p1⋃
j=1

p0⋃
i=1

BV
ε (T (sij)u).
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Constructing in the same way for all u ∈ Ẽm such an ε-cover of Tu([kt̃, (k + 1)t̃]) we
conclude

NV
ε (M̃) ≤ ]

( m⋃
n=0

⋃
s∈[kt̃,(k+1)t̃]

T (s)En
)

+ ]Wm ≤ ]
( ⋃
u∈Ẽm

Tu([kt̃, (k + 1)t̃])
)

+Nm

≤ p0p1(m+ 1)2Nm +Nm ≤ 2p0p1(m+ 1)2Nm ≤ 2p0(h(
2ζ

ε
)
1
θ + 1)(m+ 1)2Nm,

which proves the precompactness of the set M̃ in V .
The choice of m implies

m− 1 <
ln 1

ε
+ lnR

ln 1
2(ν+λ)

,

which allows to estimate the fractal dimension of M̃ in V ,

dimV
f (M̃) = lim sup

ε→0

ln(NV
ε (M̃))

ln 1
ε

≤ lim sup
ε→0

ln(2p0) + 2 ln(m+ 1) +m ln(N) + ln(h(2ζ
ε

)
1
θ + 1)

ln 1
ε

≤ log 1
2(ν+λ)

(N) +
1

θ
,

and concludes the proof of the theorem.

3.1.5. Consequences of the Construction and Properties of the

Exponential Attractor

An immediate consequence of the existence of exponential attractors is the existence and
�nite dimensionality of the global attractor. Moreover, the covering method applied in
the construction of exponential attractors can directly be used to estimate the fractal
dimension of the global attractor.

Theorem 3.5. Let {T (t)| t ∈ T+} be a semigroup in the Banach space V , where T = Z
or T = R, and the assumptions (H0) and (S1)-(S3) be satis�ed. Then, the global attractor
A of the semigroup {T (t)| t ∈ T+} exists, and its fractal dimension is bounded by

dimV
f (A) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
,

where ν ∈ (0, 1
2
− λ) is arbitrary.

Proof. Without loss of generality we can assume that the absorbing set is positively semi-
invariant.
If {T (t)| t ∈ Z+} is a discrete semigroup the statement follows immediately from Theo-

rem 3.3 and Theorem 3.1. Indeed, the exponential attractorMν constructed in the proof
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of Theorem 3.3 is a compact attracting set for the semigroup. Theorem 3.1 and the semi-
invariance of the exponential attractor imply A = ω(Mν) ⊂ Mν . The bound for the
fractal dimension of the global attractor now follows from Proposition 3.1.
If the semigroup {T (t)| t ∈ R+} is continuous we de�ne the associated discrete semigroup
{T̃ (n)| n ∈ Z+} by T̃ (n) := T (nt̃), n ∈ Z+. Theorem 3.3 implies the existence of the
exponential attractorMν

d for the semigroup {T̃ (n)| n ∈ Z+}, and the setMν
d is a compact

attracting set for the time continuous semigroup {T (t)| t ∈ R+}. Indeed, by Assumption
(S1) for every bounded set D ⊂ V there exists TD ∈ R+ such that T (t)D ⊂ B for all
t ≥ TD. Let t > TD + t̃, then t = kt̃ + TD + s0, for some k ∈ N and s0 ∈ [0, t̃[, and we
observe

distVH(T (t)D,M̃ν
d)) = distVH(T (kt̃)T (TD + s0)D,Mν

d) ≤ distVH(T (kt̃)B,Mν
d).

SinceMν
d is an exponential attractor for the discrete semigroup now follows the exponential

attraction property of the setMν
d for the time continuous semigroup.

Theorem 3.1 implies that the global attractor of the semigroup {T (t)| t ∈ R+} exists
and is given by the ω-limit set A = ω(Mν

d). By de�nition the global attractor is strictly
invariant. To derive an estimate for its fractal dimension we replace the absorbing set B
in the construction of the sets W n, n ∈ N0, in the proof of Theorem 3.3 by the global
attractor A and construct coverings of the iterates T (nt̃)A = A, where n ∈ N0. This leads
to a family of sets V n, n ∈ N0, that satis�es the following properties:

(V1) V n ⊂ T (nñ)A = A,

(V2) ]V n ≤ Nn,

(V3) A = T (nñ)A ⊂
⋃
u∈V n B

V
(2(ν+λ))nR(u),

where N := NW
ν
κ

(BV
1 (0)).

Let ε > 0. To estimate the number of ε-balls in V needed to cover the global attractor
A we choose m ∈ N su�ciently large such that the relation

(2(ν + λ))mR ≤ ε < (2(ν + λ))m−1R

holds. Property (V 3) then yields the covering

A ⊂
⋃

u∈Vm
BV
ε (u),

and ]V m ≤ Nm by Property (V 2). The estimate for the fractal dimension of the global
attractor now follows similarly as in the proof of Theorem 3.3,

dimV
f (A) = lim sup

ε→0

ln(NV
ε (A))

ln 1
ε

≤ lim sup
ε→0

m ln(N)

ln 1
ε

≤ log 1
2(ν+λ)

(N),

which concludes the proof of the theorem.
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Even for time continuous semigroups the properties (H0) and (S1)-(S3) imply the ex-
istence and �nite dimensionality of the global attractor, and the bound on its fractal
dimension is the same in the discrete and continuous case (see Theorem 3.5). The Hölder
continuity property (S4) is only needed for the construction of the time continuous expo-
nential attractor and not required to estimate the fractal dimension of the global attractor.
We propose to weaken the semi-invariance property of exponential attractors for time con-
tinuous semigroups and consider pullback exponential attractors in Section 3.2.4. This
avoids the arti�cial increase in the fractal dimension of the time continuous exponential
attractor.
In the following proposition we illustrate the relationship between global and exponential

attractors. For discrete semigroups the exponential attractor is obtained by adding to the
global attractor an appropriate countable set of points such that all bounded subsets of
the phase space are attracted exponentially fast (compare also with the construction of
exponential attractors in [26], Chapter 2).

Proposition 3.2. Let {T (n)| n ∈ Z+} be a discrete semigroup in the Banach space V
and the assumptions (H0) and (S1)-(S3) be satis�ed. Then, the exponential attractor of
Theorem 3.3 can be represented as

M = A ∪
⋃
n∈N0

En,

where A denotes the global attractor of the semigroup. We refer to the proof of Theorem
3.3 for the de�nition and construction of the family of sets En, n ∈ N0.
Consequently, the set A ∪

⋃
n∈N0

En is closed.

Proof. We de�ned the exponential attractor for the semigroup {T (n)| n ∈ Z+} in the proof
of Theorem 3.3 by

M =
⋃
n∈N0

En
‖·‖V

.

Consequently, the inclusion A ∪
⋃
n∈N0

En ⊂ M follows immediately from the fact that
any exponential attractorM contains the global attractor A.
It remains to prove the relationM⊂ A∪

⋃
n∈N0

En. Theorem 3.1 states that the global
attractor coincides with the ω-limit set of the exponential attractor, A = ω(M). Moreover,
the ω-limit set of a subset A ⊂ V can be characterized by

ω(A) =
{
x ∈ V | there exist sequences {tk}k∈N ⊂ Z+, lim

k→∞
tk =∞, {xk}k∈N ⊂ A

such that lim
k→∞

T (tk)xk = x
}

(see [69], Chapter I, Section 1.1). Let x ∈ M, then there exists a sequence {xk}k∈N in⋃
n∈N0

En such that limk→∞ xk = x in V . Furthermore, for every k ∈ N there exists nk ∈ N
such that xk ∈ Enk . If n0 := supk∈N{nk} < ∞ the sequence {xk}k∈N is contained in the
�nite set

⋃n0

n=0 E
n and consequently, the limit x ∈

⋃n0

n=0 E
n ⊂ A ∪

⋃
n∈N0

En.
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Otherwise, if supk∈N{nk} =∞, there exists a subsequence {nkl}l∈N such that liml→∞ nkl =
∞. By the de�nition of the sets En, n ∈ N, for every nkl there exist tkl ∈ Z+ and
xkl ∈

⋃
n∈N0

W n ⊂
⋃
n∈N0

En such that nkl = T (tkl)xkl . Moreover, liml→∞ tkl =∞, and we
conclude by the characterization of the ω-limit set that x ∈ ω(M) = A.

Remark 3.1. Let {T (n)| n ∈ Z+} be a discrete semigroup, the hypothesis of Theorem 3.3 be
satis�ed and A andMν be the corresponding global and exponential attractors. Proposition
3.2 implies that

⋃
n∈NE

n ∩ A is a countable dense subset of the global attractor.
Moreover, the Hausdor� dimensions of the global attractor A and exponential attractors
Mν coincide,

dimV
H(Mν) = dimV

H(A),

since the Hausdor� dimension of every countable set is zero (see Section 3.1.2). This
indicates that the Hausdor� dimension is not an appropriate measure to control the size
of exponential attractors. Requiring �nite Hausdor� dimension for the exponential attrac-
tor we could add an arbitrary countable semi-invariant set to the global attractor without
changing its dimension (see also [26], Chapter 7). The more points we add the faster is the
rate of convergence to the attractor. This is impossible is we require �nite fractal dimension
for the exponential attractor. In the proof of Theorem 3.3 it is essential in the construction
to control the number of points we add in each step, that is, the cardinality of the sets En,
n ∈ N0.

Exponential attractors of semigroups that are asymptotically compact in the space V
were not considered previously, except in [32] (Theorem 1.3), where the existence for dis-
crete semigroups was shown, but under di�erent and more restrictive assumptions which
are di�cult to verify in applications. We now discuss other settings for the semigroup to
recover and generalize former results. In the particular case that λ = 0 immediately follows
the existence of exponential attractors for semigroups that satisfy the smoothing property.
Moreover, we consider semigroups that are asymptotically compact in the weaker space W
and prove the existence of exponential attractors in the space W . These situations were
addressed previously (among others see [13], [19], [35], [32], [33]). In both cases, it su�ces
that the absorbing set is bounded in W and, if the semigroup is time continuous, that the
Hölder continuity is satis�ed with respect to the metric of W .

(S4)′ The semigroup {T (t)| t ∈ R+} is Hölder continuous in time: There exist 0 ≤ t1 < t2
such that

‖T (s1)u− T (s2)u‖W ≤ ζ|s1 − s2|θ for all s1, s2 ∈ [t1, t2], u ∈ B

for some constant ζ ≥ 0 and exponent 0 < θ ≤ 1.

The following corollary generalizes the results in [19] (Corollary 2.6), in [32] (Theorem
1.1), and in [13] (Corollary 2.9), and improves the estimates on the fractal dimension of
the attractor.
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Corollary 3.1. Let {S(t)| t ∈ T+} be a semigroup in the Banach space V and the as-
sumptions (H0) and (S2) be satis�ed. Moreover, we assume that Property (S1) holds with
{T (t)| t ∈ T+} replaced by {S(t)| t ∈ T+}, where it su�ces that the absorbing set is
bounded in the metric of W . If the semigroup is continuous, we additionally suppose that
it satis�es the Hölder continuity property (S4)′. Then, for any ν ∈ (0, 1

2
) there exists an

exponential attractorM≡Mν for the semigroup {S(t)| t ∈ T+}, and its fractal dimension
is bounded by

dimV
f (M) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
in the discrete case and by

dimV
f (M) ≤ 1

θ
+ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
in the time continuous case.
Moreover, the global attractor of the semigroup exists and an estimate for its fractal

dimension is given by

dimV
f (A) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
for both discrete and continuous semigroups. For the existence of the global attractor As-
sumption (S4)′ is not required.

Proof. If the absorbing set B is bounded in W the smoothing property (S2) implies that
the set S(t̃)B is a bounded absorbing set for the semigroup {S(t)| t ∈ T+} in V . For
discrete semigroups the corollary follows immediately from Theorem 3.3 and Theorem 3.5.
If the semigroup is time continuous and satis�es Assumption (S4)′ we observe

‖S(t̃+ s1)u− S(t̃+ s2)u‖V = ‖S(t̃)S(s1)u− S(t̃)S(s2)u‖V
≤ κ‖S(s1)u− S(s2)u‖W ≤ κζ|s1 − s2|θ

for all s1, s2 ∈ [t1, t2] and u ∈ B, where we used the smoothing property (S2). Conse-
quently, the semigroup {S(t)| t ∈ R+} is Hölder continuous with respect to the metric in
V and satis�es Property (S4) in the interval [t̃+ t1, t̃+ t2]. Theorem 3.4 and Theorem 3.5
now imply the statement of the corollary in the time continuous case.

The following theorem addresses attractors of asymptotically compact semigroups in the
weaker space W and generalizes Proposition 2.7 in [13] for time continuous semigroups. In
the discrete case we recover Proposition 1 in [33]. Such attractors are also called bi-space
attractors or (V,W )-attractors. To this end we replace the assumptions accordingly.

(S1)′ There exists a bounded absorbing set B ⊂ W for the semigroup {T (t)| t ∈ T+} in
W : For every bounded subset D ⊂ W there exists TD ∈ T+ such that

T (t)D ⊂ B for all t ≥ TD.
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(S3)′ The family {C(t)| t ∈ T+} is a contraction in W within the absorbing set:

‖C(t̃)u− C(t̃)v‖W ≤ λ‖u− v‖W for all u, v ∈ B,

for some constant 0 ≤ λ < 1
2
.

Theorem 3.6. Let {T (t)| t ∈ T+} be a semigroup in the Banach space W and the as-
sumptions (H0), (S1)′, (S2) and (S3)′ be satis�ed. In the time continuous case, T = R,
we additionally assume that the semigroup ful�ls the Hölder continuity assumption (S4)′.
Then, for any ν ∈ (0, 1

2
− λ) there exists an exponential attractor Mν ≡ M for the semi-

group {T (t)| t ∈ T+} in W , and its fractal dimension can be estimated by

dimW
f (M) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
in the discrete case and by

dimW
f (M) ≤ 1

θ
+ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
in the continuous case.
Moreover, the global attractor A of the semigroup exists, and its fractal dimension is

bounded by

dimW
f (A) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for both discrete and time continuous semigroups. The Hölder continuity (S4)′ of the
semigroup is not required for the existence of the global attractor.

Proof. Without loss of generality we can assume that the absorbing set is positively semi-
invariant.
We indicate how to adapt the covering method in the proof of Theorem 3.3 to the

di�erent setting. Let ν ∈ (0, 1
2
− λ) be �xed, R > 0 and v0 ∈ B such that B ⊂ BW

R (v0).
Moreover, we choose w1, . . . , wN such that

BV
1 (0) ⊂

N⋃
i=1

BW
ν
κ

(wi),

where N := NW
ν
κ

(BV
1 (0)). We construct by induction the family of sets W n, n ∈ N0, with

the following properties:

(W1) W n ⊂ T (nñ)B ⊂ B,

(W2) ]W n ≤ Nn,

(W3) T (nñ)B ⊂
⋃
u∈Wn BW

(2(ν+λ))nR(u).
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De�ning the set W 0 := {v0} the properties are certainly satis�ed for n = 0. We assume
the sets W l are already constructed for all l ≤ n, n ∈ N, which yields the covering

T (nñ)B ⊂
⋃

u∈Wn

BW
(2(ν+λ))nR(u).

To construct a covering of the iterate T ((n+ 1)ñ)B let u ∈ W n. The smoothing property
(S2) implies

‖S(ñ)u− S(ñ)v‖V ≤ κ‖u− v‖W < κ(2(ν + λ))nR for all v ∈ BW
(2(ν+λ))nR(u) ∩B,

and consequently,

S(ñ)
(
BW

(2(ν+λ))nR(u) ∩ T (nñ)B
)
⊂ BV

(2(ν+λ))nκR(u)

⊂
N⋃
i=1

BW
(2(ν+λ))nνR((2(ν + λ))nκRwi + S(ñ)u).

To shorten notations we de�ne yi := (2(ν + λ))nκRwi + S(ñ)u, where i = 1, . . . , N . The
contraction property (S3)′ yields

‖C(ñ)u− C(ñ)v‖W ≤ λ‖u− v‖W < λ(2(ν + λ))nR for all v ∈ BW
(2(ν+λ))nR(u) ∩B,

and consequently, we obtain the covering

T (ñ)
(
BW

(2(ν+λ))nR(u) ∩ T (nñ)B
)

=
(
S(ñ) + C(ñ)

)(
BW

(2(ν+λ))nR(u) ∩ T (nñ)B
)

⊂
N⋃
i=1

BW
(2(ν+λ))nνR(yi) ∪BW

(2(ν+λ))nλR(C(ñ)u)

⊂
N⋃
i=1

BW
(2(ν+λ))n(ν+λ)R(yi + C(ñ)u).

If necessary, doubling the radii of the balls we can choose centres within the set

T (ñ)
(
BW

(2(ν+λ))nR(u) ∩ T (nñ)B
)
⊂ T ((n+ 1)ñ)B.

We construct in the same way for every u ∈ W n such a covering of

T (ñ)
(
BW

(2(ν+λ))nR(u) ∩ T (nñ)B
)

by balls with radius (2(ν + λ))n+1R in W and denote the union of the new sets of centres
by W n+1. It follows

T ((n+ 1)ñ)B ⊂ T (ñ)
( ⋃
u∈Wn

BW
(2(ν+λ))nR(u) ∩ T (nñ)B

)
⊂

⋃
u∈Wn+1

BW
(2(ν+λ))n+1R(u),
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3. Exponential Attractors of In�nite Dimensional Dynamical Systems

by construction the set W n+1 ⊂ T ((n + 1)ñ)B, and ]W n+1 ≤ N]W n ≤ Nn+1. This
concludes the proof of the properties (W1)-(W3).
If the semigroup is discrete we set E0 := W 0 and de�ne the sets En, n ∈ N, iteratively

by En := W n ∪
⋃n
k=1

⋃ñ
l=1 T ((k − 1)ñ + l)W n−k. Exactly as in the proof of Theorem 3.3

follows that the setM = M̃
‖·‖W

, where

M̃ =
⋃
n∈N0

En,

is an exponential attractor for the semigroup {T (t)| t ∈ Z+} in W .
In the time continuous case we use the method above to construct the exponential

attractorMd for the associated discrete semigroup {T̃ (n)| n ∈ Z+}, where T̃ (n) := T (nt̃),

n ∈ Z+. We choose k ∈ N0 su�ciently large such that kt̃ ≥ t1, and de�neM := M̃
‖·‖W

,
where

M̃ :=
⋃

s∈[kt̃,(k+1)t̃]

T (s)Md.

Repeating the arguments in the proof of Theorem 3.4 implies that M is an exponential
attractor in W for the time continuous semigroup {T (t)| t ∈ R+}.
The existence of the global attractor A and the bound on its fractal dimension can

be shown as in the proof of Theorem 3.5, where the Hölder continuity (S4)′ was not
applied.

3.2. Non-Autonomous Evolution Equations

3.2.1. Evolution Processes and Non-Autonomous Global

Attractors

We now analyse the existence of exponential attractors in non-autonomous problems. Since
the solutions of non-autonomous initial value problems depend on both the elapsed time
after starting and the initial time, the rule of time evolution of the associated dynamical
system is described by a two-parameter family of operators. Here and in the sequel, (X, dX)
denotes a complete metric space and T = Z or T = R.

De�nition 3.7. The family {U(t, s)| t ≥ s}t,s∈T of operators U(t, s) : X → X is called an
evolution process in X if it satis�es the properties

U(t, s) ◦ U(s, r) = U(t, r) t ≥ s ≥ r,

U(t, t) = Id t ∈ T,
(t, s, x) 7→ U(t, s)x is continuous from T ×X → X,

where T := {(t, s) ∈ T× T | t ≥ s}.
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3.2. Non-Autonomous Evolution Equations

If the operators U(t, s), t ≥ s, depend only on the di�erence t− s,

U(t, s) = U(t− s, 0) for all t ≥ s, t, s ∈ T,

we call {U(t, s)| t ≥ s} an autonomous evolution process.

Moreover, if T = R the family of operators {U(t, s)| t ≥ s} is called a time continuous
evolution process and in the case T = Z a discrete evolution process.

Evolution processes extend the notion of semigroups. Indeed, if {T (t)| t ∈ T+} is a
semigroup in the metric space X, the operators U(t, s) := T (t − s), t ≥ s, form an
autonomous evolution process in X. Conversely, if the evolution process {U(t, s)| t ≥ s} is
autonomous, the operators T (t− s) := U(t, s), t ≥ s, satisfy the properties of a semigroup
in X.
While the theory of attractors of autonomous dynamical systems is well-established,

its counterpart in the non-autonomous setting is far more complex and less understood.
Di�erent concepts were proposed to generalize the notion of global attractors of semigroups
for evolution processes ([11], [12], [17]). One of the �rst attempts was to consider uniform
attractors. Uniform attractors of evolution processes are �xed compact sets that attract all
bounded subsets of the phase space uniformly with respect to initial time. This concept is
well adapted for certain classes of non-autonomous functions and for small non-autonomous
perturbations of autonomous problems (see [12] and [42]). However, for general non-
autonomous terms in the equation the notion of uniform attractors is not appropriate
what we illustrate in the following example.

Example 3.3. The solution of the non-autonomous ODE

d

dt
x(t) = −x(t) + t t > s,

x(s) = xs s ∈ R, xs ∈ R,

is the function x : [s,∞[→ R, x(t; s, xs) = (xs + 1− s)e−(t−s) + t− 1. Since every solution
becomes unbounded when time t tends to in�nity there does not exist a �xed bounded subset
of R that attracts all solutions.

On the other hand, the di�erence of two solutions satis�es the initial value problem

d

dt
x(t) = −(x(t)− y(t)) t > s,

x(s)− y(s) = xs − ys s ∈ R, xs, ys ∈ R,

and consequently, x(t; s, xs)− y(t; s, ys) = (xs − ys)e−(t−s) for t ≥ s. When time t tends to
in�nity all solutions approximate each other exponentially fast and converge to the solution
x̃ : R → R, x̃(t) = t− 1. Consequently, in spite of the fact that no bounded attracting set
exists the system satis�es a certain property of attraction.
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3. Exponential Attractors of In�nite Dimensional Dynamical Systems

To allow for more general non-autonomous terms in the equation, requires to weaken
the concept of uniform attractors, which leads to families of time-dependent sets instead
of a �xed bounded attracting set (for instance see [11] or [17]). In particular, the notion
of pullback attraction turned out to be useful to study the longtime dynamics of evolution
processes.

De�nition 3.8. The family of non-empty subsets {A(t)| t ∈ T} of X is called the (global)
pullback attractor of the evolution process {U(t, s)| t ≥ s} if the sets A(t) are com-
pact, for all t ∈ T, and the family {A(t)| t ∈ T} is strictly invariant,

U(t, s)A(s) = A(t) for all t ≥ s.

Moreover, it pullback attracts all bounded subsets of X; that is, for every bounded set
D ⊂ X and time t ∈ T

lim
s→∞

distH(U(t, t− s)D,A(t)) = 0,

and {A(t)| t ∈ T} is minimal within the families of closed subsets that pullback attract all
bounded subsets of X.

If an evolution process possesses the uniform attractor follows the existence of the pull-
back attractor. In particular, for certain classes of non-autonomous terms it was shown
that the the pullback attractor {A(t)| t ∈ T} re�ects the structure of the uniform attractor
Aun,

Aun =
⋃
t∈T

A(t)

(see [12], Theorem 6.2 in Chapter IV).
If we compare De�nition 3.8 with the de�nition of global attractors for semigroups the

minimality is an additional property which is needed to ensure uniqueness of the pullback
attractor since non-autonomous invariance is a weaker concept than the invariance of a
�xed set in the autonomous setting. This is illustrated the following example.

Example 3.4. The initial value problem

d

dt
x(t) = −x(t) t > s,

x(s) = xs s ∈ R, xs ∈ R,

generates an evolution process {U(t, s)| t ≥ s} in R, which is de�ned by the operators
U(t, s) : R→ R, xs 7→ xse

−(t−s), where t ≥ s. We observe that for every α > 0 the family
of compact sets {Aα(t)| t ∈ R}, where Aα(t) := [−αe−t, αe−t], is invariant and pullback
attracts all bounded subsets of R.

If we replace the pullback attraction in the De�nition 3.8 by forwards convergence; that
is, for every bounded subset D ⊂ X and t ∈ T

lim
s→∞

distH(U(t+ s, t)D,A(t+ s)) = 0,

122



3.2. Non-Autonomous Evolution Equations

the family {A(t)| t ∈ T} is called the forwards attractor for the evolution process
{U(t, s)| t ≥ s}. If the pullback (forwards) convergence to the attractor holds uniformly in
time t ∈ T, it implies the forwards (pullback) convergence and the attractors coincide. We
then call the family {A(t)| t ∈ T} a uniform forwards attractor or uniform pullback
attractor for the process. However, these concepts are not related in general (see [11]).
Some evolution processes possess the pullback but no forwards attractor and vice versa.
In other cases both attractors exists, but do not coincide. Finally, we remark that for
autonomous evolution processes the pullback convergence is equivalent to the forwards
convergence. In this case the pullback attractor coincides with the global attractor of the
associated semigroup.

Remark 3.2. The pullback attractor of the evolution process generated by the initial value
problem in Example 3.3 consists of the singleton sets A(t) = {t− 1}, t ∈ R. It is also the
forwards attractor of the evolution process.
Similarly, we observe that the pullback attracting family of compact non-autonomous sets
{Aα(t)| t ∈ R} in Example 3.4 attracts all bounded subsets of R in the forwards sense as
well. It illustrates that for the uniqueness of non-autonomous attractors it is necessity to
require the minimality property. The forwards attractor of the evolution process coincides
with the pullback attractor and consists of the singleton set {A(t)| t ∈ R} = {0}.

Figure 3.1.: Pullback and Forwards Attraction

Pullback attractors proved to be a useful concept to study the limiting dynamics of non-
autonomous systems in various applications. Comparing with forwards attraction pullback
attractors have the advantage that convergence to a �xed target is shown, not to a moving
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3. Exponential Attractors of In�nite Dimensional Dynamical Systems

target which is generally di�cult. However, to capture the complete asymptotic dynamics
of non-autonomous systems it is necessary to take both the forwards and the pullback
attraction into account. In a certain sense, the pullback attractor is related to the past of
the system while the forwards attractor re�ects the future limiting dynamics of the system.
The pullback limit does not signify going backwards in time, it is the limit when the initial
time tends to −∞ as illustrated in Figure 3.1. If we are interested in the states of a non-
autonomous system at a certain time t ∈ T, all trajectories that have started in the distant
past and have been evolving for a long time are well approximated by the states of the
system within the section A(t) of the pullback attractor. The future asymptotic behaviour
of the system however may be di�erent and is described by the forwards attractor.
Global pullback attractors have the same nice properties and drawbacks as global attrac-

tors of semigroups, which motivates to generalize the notion of autonomous exponential
attractors and to de�ne pullback exponential attractors for evolution processes (see [19]
and [49]). Like exponential attractors of semigroups pullback exponential attractors are
not unique.

De�nition 3.9. Let {U(t, s)| t ≥ s} be an evolution process in the metric space (X, dX).
We call the family of non-autonomous setsM = {M(t)| t ∈ T} a pullback exponential
attractor for the evolution process {U(t, s)| t ≥ s} if

(i) for all t ∈ T the subsetM(t) ⊂ X is non-empty and compact,

(ii) the familyM is positively semi-invariant; that is,

U(t, s)M(s) ⊂M(t) for all t ≥ s,

(iii) the fractal dimension of the sectionsM(t), t ∈ T, is uniformly bounded,

sup
t∈T
{dimX

f (M(t))} <∞,

(iv) andM exponentially pullback attracts all bounded subsets of X: There exists a posi-
tive constant ω > 0 such that for every bounded subset D ⊂ X and every t ∈ T

lim
s→∞

eωsdistH(U(t, t− s)D,M(t)) = 0.

The construction of exponential attractors for discrete semigroups in [33] was extended
for discrete non-autonomous problems by using the concept of forwards attractors in [32].
An explicit algorithm for discrete evolution processes that satisfy the smoothing property
was developed and in an application also a time continuous exponential attractor was con-
structed. Based on these results very recently, the construction was modi�ed considering
the pullback approach, and the algorithm was generalized for time continuous evolution
processes in [19] and [49]. The constructions are similar, require strong regularity assump-
tions on the process and restrictive assumptions with respect to the pullback attraction.
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3.2. Non-Autonomous Evolution Equations

In the following section we shortly summarize previous work before we present a di�erent
construction for time continuous pullback exponential attractors in Section 3.2.3. In [19]
and [49] the existence of a �xed bounded pullback absorbing set was assumed. This allows
the pullback attractor to be unbounded in the future, but it is always uniformly bounded in
the past. In this case the theory of global (and exponential) pullback attractors essentially
simpli�es, and similar results as in the autonomous case are valid (see Section 3.2.2).
We modify the construction, show the existence of pullback exponential attractors under

signi�cantly weaker hypothesis and obtain better estimates for the fractal dimension of the
sections of the attractor. Moreover, instead of a �xed bounded absorbing set we consider
a family of time-dependent absorbing sets which can even grow in the past, and obtain a
pullback exponential attractor with sections, that are not necessarily uniformly bounded
in the past. If the pullback exponential attractor exists, it contains the global pullback
attractor and immediately implies its existence and the �nite dimensionality of its sections.
Existence proofs for global pullback attractors of asymptotically compact processes often
require the boundedness of the global pullback attractor in the past (see [8]). Our main
theorem implies existence results for global pullback attractors. In particular, the �nite
dimensionality of pullback attractors that are not uniformly bounded in the past was an
open problem (see Section 1 in [49] or Remark 3.2 in [50]).

3.2.2. Previous Results: Existence of Global and Exponential

Pullback Attractors

Global Pullback Attractors

The following theorem characterizes the evolution processes possessing a global pullback
attractor and generalizes Theorem 3.1 for evolution processes. For its proof we refer to
[17].

Theorem 3.7. Let {U(t, s)| t ≥ s} be an evolution process in a complete metric space X.
Then, the following statements are equivalent:

(a) The evolution process {U(t, s)| t ≥ s} possesses a global pullback attractor.

(b) There exists a family of compact subsets {K(t)| t ∈ T} of X such that for all t ∈ T
the set K(t) pullback attracts all bounded subsets of X at time t.

Furthermore, the pullback global attractor is given by

A(t) =
⋃

D ⊂ X
bounded

ω(D, t) t ∈ T,

where ω(D, t) denotes the pullback ω-limit set of the set D ⊂ X at time instant t ∈ T.

The pullback ω-limit set of the subset D ⊂ X at time instant t ∈ T is de�ned by

ω(D, t) :=
⋂
r≥0

⋃
s≥r

U(t, t− s)D.
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Theorem 3.7 implies that if an evolution process possesses a pullback exponential attrac-
tor {M(t)| t ∈ T} immediately follows the existence of the global pullback attractor
{A(t)| t ∈ T}. Moreover, the global pullback attractor is contained in the pullback ex-
ponential attractor and possesses �nite dimensional sections. Indeed, by the minimality
property in De�nition 3.8 we conclude A(t) ⊂M(t), for all t ∈ T.
In applications the existence of global pullback attractors often follows from the existence

of bounded absorbing sets. For evolution processes that are not eventually compact it is
generally di�cult to apply Theorem 3.7 directly. To establish the existence of the global
pullback attractor in problems with asymptotically compact processes it is often assumed
that the process satis�es a stronger pullback absorbing property (see [8]).

De�nition 3.10. Let {U(t, s)| t ≥ s} be an evolution process in the metric space X. A
family of bounded subsets {B(t)| t ∈ T} in X is said to be strongly pullback absorbing
all bounded sets of X, if for every bounded set D ⊂ X and every s ≤ t there exits
TD,s ∈ T+ such that

U(s, s− r)D ⊂ B(t) for all r ≥ TD,s, s ≤ t.

Evolution processes possessing a family of bounded strongly pullback absorbing sets are
called pullback strongly bounded dissipative.

If the family of bounded subsets {B(t)| t ∈ T} is strongly pullback absorbing all bounded
sets, the absorbing set B(t) at a given time t ∈ T is also pullback absorbing for all earlier
times s ≤ t. Under this hypothesis the theory of pullback attractors simpli�es. For
instance, the minimality property in De�nition 3.8 is not needed to ensure the uniqueness of
the global pullback attractor. Moreover, if an evolution process is pullback asymptotically
compact and pullback strongly bounded dissipative follows the existence of the global
pullback attractor, and the sections of the attractor coincide with the pullback ω-limit sets
of the absorbing family (see [8]).

De�nition 3.11. An evolution process {U(t, s)| t ≥ s} in a metric space X is called
pullback asymptotically compact if for every time t ∈ T, every sequence {sn}n∈N ⊂ T+

and bounded sequence {xn}n∈N ⊂ X such that

lim
n→∞

sn =∞ and {S(t, t− sn)xn}n∈N is bounded ,

the sequence {S(t, t− sn)xn}n∈N possesses a convergent subsequence.

Theorem 3.8. We assume {U(t, s)| t ≥ s} is an evolution process in the complete metric
space X that is pullback asymptotically compact and pullback strongly bounded dissipative.
Then, the global pullback attractor {A(t)| t ∈ T} exists, for every t ∈ T the union

⋃
s≤tA(s)

is bounded and the global pullback attractor is given by

A(t) = ω(B(t), t) t ∈ T.
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This theorem extends the corresponding result for semigroups (Theorem 3.1). We ob-
serve that the global pullback attractor of strongly bounded dissipative processes is always
uniformly bounded in the past. To be more precise, for every time instant t ∈ T the union⋃

s≤t

A(s)

is bounded.

Exponential Pullback Attractors

In this subsection we shortly summarize the results in [19] and [49], where time continuous
pullback exponential attractors for evolution processes that satisfy the smoothing prop-
erty were constructed. Both articles are based on the construction of discrete forwards
exponential attractors in [32], modify the construction by using the pullback approach and
extend the algorithm for time continuous evolution processes.
In the following we assume T = R and {S(t, s)| t ≥ s} is an evolution process in the

Banach space (V, ‖ · ‖V ). The construction of exponential pullback attractors in [19] and
[49] is based on the compact embedding (H0) of the phase space into an auxiliary normed
space (W, ‖ · ‖W ) (see Section 3.1.4) and the smoothing property of the process. Moreover,
it was essential for the proof that the evolution process is strongly bounded dissipative. To
be more precise, for some t0 ∈ R the following assumptions were made:

(H1) There exists a bounded subset B ⊂ V , that uniformly pullback absorbs all bounded
sets of V for all t ≤ t0: For every bounded set D ⊂ V there exists an absorbing time
TD ≥ 0 such that ⋃

t≤t0

S(t, t− s)D ⊂ B for all s ≥ TD.

(H2) The evolution process {S(t, s)| t ≥ s} satis�es the smoothing property within the
absorbing set: There exists a constant κ > 0 such that

‖S(t, t− TB)u− S(t, t− TB)v‖V ≤ κ‖u− v‖W for all u, v ∈ B, t ≤ t0,

where TB > 0 denotes the absorbing time corresponding to the absorbing set B in
Hypothesis (H1).

(H3) The evolution process {S(t, s)| t ≥ s} is Lipschitz continuous in V : For every t ∈ R
and s ≤ t there exists a constant Lt,s ≥ 0 such that

‖S(t, s)u− S(t, s)v‖V ≤ Lt,s‖u− v‖V for all u, v ∈ B.

(H4) The evolution process is Hölder continuous in time with respect to the metric in W :
There exist constants ζ1, ζ2 ≥ 0 and exponents 0 < θ1, θ2 ≤ 1 such that

sup
t≤t0
‖S(t, t− TB)u− S(t− s, t− s− TB)u‖W ≤ ζ1s

θ1 for all s ∈ [0, TB],

sup
t≤t0
‖S(t, t− s1)u− S(t, t− s2)u‖W ≤ ζ2|s1 − s2|θ2 for all s1, s2 ∈ [TB, 2TB],
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for every u ∈ B.

Remark 3.3. 1. In Hypothesis (H1) it is not only assumed that the process is pullback
strongly bounded dissipative, but also that the absorbing time TD corresponding to a
bounded subset D ⊂ V is independent of the time instant t ≤ t0. This implies that
the pullback exponential attractor may be unbounded in the future, but it is always
uniformly bounded in the past, and the same applies to the global pullback attractor.
Namely, for every t ∈ R the unions⋃

s≤t

A(t) ⊂
⋃
s≤t

M(t)

are bounded. We generalize these uniform assumptions regarding the pullback absorb-
ing set in the next section.

2. It follows from the smoothing property (H2) that the process {S(t, s)| t ≥ s} is (even-
tually) compact. Furthermore, under the stated assumptions Theorem 3.8 implies the
existence of the global pullback attractor and

A(t) = ω(B, t) for all t ≤ t0.

By de�nition the global pullback attractor is invariant and we obtain

A(t) = S(t, t0)A(t0) for all t ≥ t0.

3. The Hölder continuity in time of the process was important for the construction of
time continuous pullback exponential attractors in [19] and [49] and is typical for
parabolic problems. However, it is a restrictive assumption and generally not satis-
�ed, for instance in hyperbolic problems. To apply the theory to evolution processes
generated by hyperbolic equations also requires to extend the construction for asymp-
totically compact processes (see Section 3.2.5).

4. The assumptions (H0)-(H4) are taken from the article [19]. The hypothesis in [49]
are very similar, but less general.

5. The absorbing time TB corresponding to the bounded absorbing set B in (H1), the
smoothing time in (H2) and the intervals, where the process is Hölder continuous co-
incide. This is not necessary for the construction of the pullback exponential attractor
as we proved in Section 3.1.4 for semigroups.

For further details and the proof of the following theorem we refer to [19] and [49].

Theorem 3.9. Let {S(t, s)| t ≥ s} be an evolution process in the Banach space V and
the assumptions (H0)-(H4) be satis�ed. Then, for every ν ∈ (0, 1

2
) there exists a pullback

exponential attractor {Mν(t)| t ∈ R}, and the fractal dimension of its sections is uniformly
bounded,

sup
t∈R

dimf(Mν(t)) ≤ max{ 1

θ1

,
1

θ2

}(1 + log 1
2ν

(1 + µκ)) + log 1
2ν

(
NW

ν
κ

(BV
1 (0))

)
.
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3.2.3. Existence Results for Pullback Exponential Attractors

In this section we present an algorithm for the construction of pullback exponential attrac-
tors which generalizes former results. In particular, we consider time-dependent pullback
absorbing sets which possibly grow in the past, extend the construction of pullback expo-
nential attractors for asymptotically compact processes and modify previous constructions
in the time continuous case. This leads to pullback exponential attractors with sections
that are not necessarily uniformly bounded in the past. Moreover, we prove the existence of
pullback exponential attractors for time continuous evolution processes under signi�cantly
weaker hypothesis and obtain better estimates for the fractal dimension of the attractor.
Let U = {U(t, s)| t ≥ s} be an evolution process in the Banach space (V, ‖·‖V ) and T = R

or T = Z. The construction of the pullback exponential attractor is based on the compact
embedding (H0) and the asymptotic smoothing property of the process. We assume the
process U can be represented as U = S + C, where {S(t, s)| t ≥ s} and {C(t, s)| t ≥ s}
are families of operators satisfying the following properties:

(H1) There exists a family of bounded subsets B(t) ⊂ V , t ∈ T, that pullback absorbs all
bounded subsets of V : For every bounded set D ⊂ V and every t ∈ T there exists a
pullback absorbing time TD,t ∈ T+ such that

U(t, t− s)D ⊂ B(t) for all s ≥ TD,t.

(H2) The family {S(t, s)| t ≥ s} satis�es the smoothing property within the absorbing
sets: There exists t̃ ∈ T+\{0} and a constant κ > 0 such that

‖S(t+ t̃, t)u− S(t+ t̃, t)v‖V ≤ κ‖u− v‖W for all u, v ∈ B(t), t ∈ T.

(H3) The family {C(t, s)| t ≥ s} is a contraction within the absorbing sets:

‖C(t+ t̃, t)u− C(t+ t̃, t)v‖V ≤ λ‖u− v‖V for all u, v ∈ B(t), t ∈ T,

where the contraction constant 0 ≤ λ < 1
2
.

(H4) The process {U(t, s)| t ≥ s} is Lipschitz continuous within the absorbing sets: For
all t ∈ T and t ≤ s ≤ t+ t̃ there exists a constant Lt,s > 0 such that

‖U(s, t)u− U(s, t)v‖V ≤ Lt,s‖u− v‖V for all u, v ∈ B(t), t ∈ T.

The construction of pullback exponential attractors requires to impose additional as-
sumptions on the pullback absorbing family in Hypothesis (H1).

(A1) The family of absorbing sets {B(t)| t ∈ T} is positively semi-invariant for the evolu-
tion process {U(t, s)| t ≥ s},

U(t, s)B(s) ⊂ B(t) for all t ≥ s, t, s ∈ T.

129



3. Exponential Attractors of In�nite Dimensional Dynamical Systems

(A2) For every bounded subset D ⊂ V and time t ∈ T the corresponding absorbing times
are bounded in the past: There exists TD,t ∈ T+ such that

U(s, s− r)D ⊂ B(s) for all s ≤ t, r ≥ TD,t.

The stated assumptions allow to construct pullback exponential attractors for the evo-
lution process {U(t, s)| t ≥ s}.

Theorem 3.10. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V and
the assumptions (H0), (H1)-(H4), (A1) and (A2) be satis�ed. Moreover, we assume that
the diameter of the family of absorbing sets {B(t)| t ∈ T} grows at most sub-exponentially
in the past. Then, for every ν ∈ (0, 1

2
− λ) there exists a pullback exponential attractor

{Mν(t)| t ∈ T} = {M(t)| t ∈ T} for the evolution process {U(t, s)| t ≥ s}, and the fractal
dimension of its sections is uniformly bounded by

dimV
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ T.

Remark 3.4. 1. The uniform pullback absorbing assumption (H1) in Section 3.2.2 im-
plies Hypothesis (H1), (A1) and (A2).

Indeed, let t0 ∈ T be arbitrary and B be the uniformly pullback absorbing set in
Assumption (H1). A family of bounded pullback absorbing sets is given by

B(t) :=

{⋃
s≥TB U(t, t− s)B for t ≤ t0

U(t, t0)B(t0) for t ≥ t0.

Moreover, the family {B(t)| t ∈ T+} is positively semi-invariant for the evolution
process {U(t, s)| t ≥ s}, and the absorbing times are bounded in the past as required
by Hypothesis (A2).

2. For our construction of time continuous pullback exponential attractors the Hölder
continuity in time (H4) of the evolution process is not needed. Moreover, we improve
the estimates on the fractal dimension in Theorem 3.9 and obtain the same bound
for the pullback exponential attractors of discrete and of time continuous evolution
processes.

3. We generalize Theorem 3.9 for evolution processes that are asymptotically compact
in the Banach space V . For evolution processes this setting was only considered in
[32] (Theorem 2.3), where forwards exponential attractors were constructed, but for
discrete processes and under hypothesis that are di�cult to verify in applications. In
[36] time continuous forwards exponential attractors for evolution processes that are
asymptotically compact in the weaker space W were constructed.

4. Time-dependent absorbing sets were also considered in [36]. However, it was assumed
that the diameter of the absorbing sets {B(t) t ∈ R} is uniformly bounded and the
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absorbing times are independent of the time instant. This implies that the union⋃
t∈TB(t) is a bounded pullback absorbing set for the evolution process and satis�es

the uniform hypothesis in Section 3.2.2. Furthermore, the aim of this article was not
to prove the existence of forwards exponential attractors in general, but knowing the
existence of the uniform attractor for the evolution process, to show the existence of
time-dependent forwards exponential attractors.

We remark that in applications the family of contraction operators often forms an evo-
lution process in V . In this case, and if the contraction property (H3) is globally satis�ed,
the smoothing time and the contraction time can be arbitrary, and it su�ces that the evo-
lution process C is a strict contraction. To be more precise we could replace Assumptions
(H2)-(H4) by the following:

(H̃2) The family {S(t, s)| t ≥ s} satis�es the following smoothing property within the
absorbing sets: There exists t̃ ∈ T+\{0} such that for all s ≥ t̃

‖S(t+ s, t)u− S(t+ s, t)v‖V ≤ κs‖u− v‖W for all u, v ∈ B(t), t ∈ T,

for some constant κs > 0.

(H̃3) The family {C(t, s)| t ≥ s} is an evolution process and a strict contraction in V :
There exists t̂ ∈ T+\{0} such that

‖C(t+ t̂, t)u− C(t+ t̂, t)v‖V ≤ λ‖u− v‖V for all u, v ∈ V, t ∈ T,

where the contraction constant 0 ≤ λ < 1.

(H̃4) The evolution process {U(t, s)| t ≥ s} satis�es the Lipschitz continuity in (H4) for
all t ∈ T and t ≤ s ≤ t+ t̂.

Indeed, let k ∈ N be such that λk < 1
2
and kt̂ ≥ t̃. Then, Property (H̃3) implies

‖C(t+ t̂k, t)u− C(t+ t̂k, t)v‖V ≤ λk‖u− v‖V for all u, v ∈ B(t), t ∈ T.

Furthermore, by the smoothing property (H̃2) follows

‖S(t+ t̂k, t)u− S(t+ t̂k, t)v‖V ≤ κ‖u− v‖W for all u, v ∈ B(t), t ∈ T,

where κ := κt̂k. Consequently, the assumptions (H2)-(H3) are satis�ed if we replace t̃ by
t̂k and the smoothing and contraction constants by λ̃ = λk and κ̃ = κt̂k.

The Discrete Case

First, we construct pullback exponential attractors for discrete evolution processes. We
assume T = Z and {U(n,m)| n ≥ m} is a discrete evolution process in the Banach
space V . Here and in the sequel, we use the letters n,m and k to denote discrete times
n,m, k ∈ Z. Without loss of generality we suppose that t̃ = ñ = 1 in the hypothesis (H2)
and (H3). The general case ñ ∈ N follows as in the proof of Theorem 3.3 for semigroups.
Properties (H0), (H2) and (H3) then imply that the discrete process {U(n,m)| n ≥ m} is
Lipschitz continuous and Assumption (H4) is automatically satis�ed.
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Theorem 3.11. Let {U(n,m)| n ≥ m} be a discrete evolution process in the Banach
space V , and the assumptions (H0), (H1)-(H3), (A1) and (A2) be satis�ed with ñ = 1.
Moreover, we assume that the diameter of the family of absorbing sets {B(k)| k ∈ Z}
grows at most sub-exponentially in the past. Then, for every ν ∈ (0, 1

2
− λ) there exists a

pullback exponential attractor {M(k)| k ∈ Z} = {Mν(k)| k ∈ Z} for the evolution process
{U(n,m)| n ≥ m}, and the fractal dimension of its sections is uniformly bounded by

dimV
f (M(k)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all k ∈ Z.

Proof. Step 1: Coverings of U(k, k − n)B(k − n)
Let ν ∈ (0, 1

2
− λ) be �xed, Rk > 0 and vk ∈ B(k) be such that B(k) ⊂ BV

Rk
(vk) for all

k ∈ Z. Moreover, we choose elements w1, . . . wN ∈ V such that

BV
1 (0) ⊂

N⋃
i=1

BW
ν
κ

(wi),

where N := NW
ν
κ

(BV
1 (0)). We de�ne the sets W 0(k) := {vk}, k ∈ Z, and construct by

induction in n ∈ N the family of time-dependent sets W n(k), n ∈ N, k ∈ Z that satis�es
the properties:

(W1) W n(k) ⊂ U(k, k − n)B(k − n) ⊂ B(k),

(W2) ]W n(k) ≤ Nn,

(W3) U(k, k − n)B(k − n) ⊂
⋃
u∈Wn(k) B

V
(2(ν+λ))nRk−n

(u),

for all k ∈ Z, n ∈ N0. To construct a covering of the image U(k, k− 1)B(k− 1), k ∈ Z, we
note that v ∈ BV

Rk−1
(vk−1) implies

1

Rk−1

(v − vk−1) ∈ BV
1 (0) ⊂

N⋃
i=1

BW
ν
κ

(wi)

and consequently,

BV
Rk−1

(vk−1) ⊂
N⋃
i=1

BW
Rk−1

ν
κ
(Rk−1wi + vk−1).

Using the smoothing property (H2) we obtain

‖S(k, k − 1)ũ− S(k, k − 1)ṽ‖V ≤ κ‖ũ− ṽ‖W < 2νRk−1

for all ũ, ṽ ∈ BW
Rk−1

ν
κ
(Rk−1wi + vk−1) ∩B(k − 1), which yields the covering

S(k, k − 1)
(
BV
Rk−1

(vk−1) ∩B(k − 1)
)
⊂

N⋃
i=1

BV
2νRk−1

(zi),
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for some z1, . . . , zN ∈ S(k, k−1)B(k−1). In particular, we can choose y1, . . . , yN ∈ B(k−1)
such that zi = S(k, k−1)yi, where i = 1, . . . , N . For u ∈ B(k−1) the contraction property
(H3) now implies

‖C(k, k − 1)u− C(k, k − 1)yi‖V ≤ λ‖u− yi‖V < 2λRk−1,

for all i = 1, . . . , N , and we conclude

C(k, k − 1)B(k − 1) ⊂ BV
2λRk−1

(C(k, k − 1)yi).

Finally, we obtain the covering

U(k, k − 1)B(k − 1) = (S(k, k − 1) + C(k, k − 1))B(k − 1)

⊂
N⋃
i=1

BV
2νRk−1

(
(S(k, k − 1)yi) ∪BV

2λRk−1
(C(k, k − 1)yi)

)
⊂

N⋃
i=1

BV
2(ν+λ)Rk−1

(U(k, k − 1)yi),

with centres U(k, k − 1)yi ∈ U(k, k − 1)B(k − 1), i = 1, . . . , N . Denoting the new set of
centres by W 1(k) follows

U(k, k − 1)B(k − 1) ⊂
⋃

u∈W 1(k)

BV
2(ν+λ)Rk−1

(u),

where the set W 1(k) ⊂ U(k, k − 1)B(k − 1) ⊂ B(k) and ]W 1(k) ≤ N .
Let us assume that the setsW l(k) are already constructed for all l ≤ n and k ∈ Z, which

yields the coverings

U(k, k − n)B(k − n) ⊂
⋃

u∈Wn(k)

BV
(2(ν+λ))nRk−n

(u) for k ∈ Z.

In order to construct a covering of

U(k, k − (n+ 1))B(k − (n+ 1)) = U(k, k − 1)U(k − 1, k − 1− n)B(k − 1− n)

⊂
⋃

u∈Wn(k−1)

U(k, k − 1)BV
(2(ν+λ))nRk−n−1

(u)

let u ∈ W n(k − 1). We proceed as before and use the covering of the unit ball BV
1 (0) by

ν
κ
-balls in W to conclude

BV
(2(ν+λ))nRk−1−n

(u) ⊂
N⋃
i=1

BW
(2(ν+λ))nRk−1−n

ν
κ
((2(ν + λ))nRk−1−nwi + u).
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By the smoothing property (H2) then follows

S(k, k − 1)
(
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

⊂
N⋃
i=1

BV
(2(ν+λ))n2νRk−1−n

(S(k, k − 1)yui ),

for some yu1 , . . . , y
u
N ∈ U(k − 1, k − 1 − n)B(k − 1 − n). Furthermore, the contraction

property (H3) implies

C(k, k − 1)
(
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

⊂ BV
(2(ν+λ))n2λRk−1−n

(C(k, k − 1)yui ),

for all i = 1, . . . , N . Consequently, we obtain the covering

U(k, k − 1)
(
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

=
(
S(k, k − 1) + C(k, k − 1)

) (
U(k − 1, k − 1− n)B(k − 1− n) ∩BV

(2(ν+λ))nRk−1−n
(u)
)

⊂
N⋃
i=1

(
BV

(2(ν+λ))n2νRk−1−n
(S(k, k − 1)yui ) +BV

(2(ν+λ))n2λRk−1−n
(C(k, k − 1)yui )

)
⊂

N⋃
i=1

BV
(2(ν+λ))n+1Rk−1−n

(
S(k, k − 1)yui + C(k, k − 1)yui

)
=

N⋃
i=1

BV
(2(ν+λ))n+1Rk−1−n

(
U(k, k − 1)yui

)
,

with centres U(k, k−1)yui ∈ U(k, k−1−n)B(k−1−n), for 1 = 1, . . . , N . Constructing in the
same way for every u ∈ W n(k−1) such a covering by balls with radius (2(ν+λ))n+1Rk−1−n
in V we obtain a covering of the set U(k, k − (n + 1))B(k − (n + 1)) and denote the new
set of centres by W n+1(k). This yields ]W n+1(k) ≤ N]W n(k− 1) ≤ Nn+1, by construction
the set of centres W n+1(k) ⊂ U(k, k − (n+ 1))B(k − (n+ 1)), and

U(k, k − (n+ 1))B(k − (n+ 1)) ⊂
⋃

u∈Wn+1(k)

BV
(2(ν+λ))n+1Rk−1−n

(u),

which concludes the proof of the properties (W1)-(W3).
Step 2: De�nition of the Pullback Exponential Attractor
We de�ne the sets E0(k) := W 0(k) for k ∈ Z, and set

En(k) := W n(k) ∪ U(k, k − 1)En−1(k − 1) for n ∈ N.

Then, the family of sets satis�es the properties:
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(E1) U(k, k − 1)En(k − 1) ⊂ En+1(k), En(k) ⊂ U(k, k − n)B(k − n) ⊂ B(k),

(E2) En(k) =
⋃n
l=0 U(k, k − l)W n−l(k − l), ]En(k) ≤

∑n
l=0N

l,

(E3) U(k, k − n)B(k − n) ⊂
⋃
u∈En(k) B

V
(2(ν+λ))nRk−n

(u),

for all n ∈ N0 and k ∈ Z. These relations are immediate consequences of the de�nition of
the sets En(k), the properties of the sets W n(k) and the semi-invariance of the absorbing
family {B(k)| k ∈ Z}, and can be proved by induction.
Using the family of sets En(k), n ∈ N0, k ∈ Z, we de�ne

M̃(k) :=
⋃
n∈N0

En(k) for all k ∈ Z,

and show that its closure {M(k)| k ∈ Z} := {M̃(k)
‖·‖V
| k ∈ Z} is a pullback exponential

attractor for the evolution process {U(n,m)| n ≥ m} in V .
Step 3: Semi-invariance of the Exponential Attractor
Primarily, we show that the family {M̃(k)| k ∈ Z} is positively semi-invariant. To this
end let l ∈ N0 and k ∈ Z. By Property (E1) we obtain

U(k+ l, k)M̃(k) :=
⋃
n∈N0

U(k+ l, k)En(k) ⊂
⋃
n∈N0

En+l(k+ l) ⊂
⋃
n∈N0

En(k+ l) = M̃(k+ l).

The continuity of the process {U(n,m)| n ≥ m} now implies the semi-invariance of the
family {M(k)| k ∈ Z},

U(k+l, k)M(k) = U(k+l, k)M̃(k)
‖·‖V
⊂ U(k + l, k)M̃(k)

‖·‖V
⊂ M̃(k + l)

‖·‖V
=M(k+l),

for all l ∈ N0 and k ∈ Z.
Step 4: Compactness and Finite Dimensionality of the Exponential Attractor
We �rst prove that the sets M̃(k) are non-empty, precompact and of �nite fractal dimension
in V , for all k ∈ Z. For every m ∈ N and n ≥ m we observe

En(k) ⊂ U(k, k − n)B(k − n) = U(k, k −m)U(k −m, k − n)B(k − n)

⊂ U(k, k −m)B(k −m),

where we used the semi-invariance of the absorbing sets. Consequently, we obtain

M̃(k) =
m⋃
n=0

En(k) ∪
∞⋃

n=m+1

En(k) ⊂
m⋃
n=0

En(k) ∪ U(k, k −m)B(k −m).

Let ε > 0. If we choose m ∈ N su�ciently large such that

(2(ν + λ))mRk−m ≤ ε < (2(ν + λ))m−1Rk−m+1
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holds, Property (W3) implies the covering

U(k, k −m)B(k −m) ⊂
⋃

u∈Wm(k)

BV
ε (u).

We can therefore estimate the number of ε-balls in V needed to cover the set M̃(k) by

NV
ε (M̃(k)) ≤ ](

m⋃
n=0

En(k)) + ]Wm(k) ≤ (m+ 1)]Em(k) +Nm

≤ (m+ 1)2Nm +Nm ≤ 2(m+ 1)2Nm,

for all k ∈ Z, where we used Properties (W2) and (E2). This proves the precompactness
of the sets M̃(k), k ∈ Z. Since V is a Banach space, taking the closure of the precompact

sets M̃(k) the subsetsM(k) := M̃(k)
‖·‖V

, k ∈ Z, are compact in V .
Finally, for the fractal dimension of the sets M̃(k) we obtain the estimate

dimV
f (M̃(k)) = lim sup

ε→0

ln(NV
ε (M̃(k)))

ln 1
ε

≤ lim sup
ε→0

ln(2) + 2 ln(m+ 1) +m ln(N)

ln 1
ε

≤ log 1
2(ν+λ)

(N),

where we used that the family of absorbing sets grows at most sub-exponentially in the
past. Proposition 3.1 implies that the fractal dimension of the family {M(k)| k ∈ Z} is
uniformly bounded by the same value,

dimV
f (M(k)) = dimV

f (M̃(k)
‖·‖V

) = dimV
f (M̃(k)) k ∈ Z.

Step 5: Pullback Exponential Attraction
It remains to show that the setM(k) exponentially pullback attracts all bounded subsets
of V at time k ∈ Z. Let D ⊂ V be bounded and k ∈ Z. By Assumptions (H1) and
(A2) there exists nD,k ∈ N such that U(l, l − n)D ⊂ B(l) for all n ≥ nD,k and l ≤ k. If
n ≥ nD,k + 1, then n = nD,k + n0 for some n0 ∈ N, and we conclude

distVH(U(k, k − n)D,M̃(k)) ≤ distVH(U(k, k − n0)U(k − n0, k − n0 − nD,k)D,
∞⋃
n=0

En(k))

≤ distVH(U(k, k − n0)B(k − n0),
∞⋃
n=0

En(k))

≤ distVH(U(k, k − n0)B(k − n0), En0(k))

≤ (2(ν + λ))n0Rk−n0 ≤ ce−ωn,
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for some constants c ≥ 0 and ω > 0. These estimates are valid since the family of pullback
absorbing sets grows at most sub-exponentially in the past. This proves that the set M̃(k)

exponentially pullback attracts the set D at time k ∈ Z. Since M̃(k) ⊂ M(k), for all
k ∈ Z, immediately follows the exponential pullback attraction property of the family
{M(k)| k ∈ Z}.
We have veri�ed all required properties in De�nition 3.9 which shows that {M(k)| k ∈ Z}

is a pullback exponential attractor for the evolution process {U(n,m)| n ≥ m} in V .

The Time Continuous Case

Using the results for discrete evolution processes we now construct pullback exponential
attractors for time continuous evolution processes in V and prove Theorem 3.10 for the
case T = R.

Proof of Theorem 3.10. Let T = R and {U(t, s)| t ≥ s} be a time continuous evolution pro-
cess satisfying the hypothesis of Theorem 3.10. We de�ne the associated discrete evolution
process {Ũ(n,m)| n ≥ m} by Ũ(n,m) := U(nt̃,mt̃) for all n ≥ m, n,m ∈ Z. The discrete
evolution process satis�es the hypothesis of Theorem 3.11, and we conclude that there
exists a pullback exponential attractor {Md(k)| k ∈ Z} for process {Ũ(n,m)| n ≥ m}. We
recall that the pullback exponential attractor was de�ned by

Md(k) = M̃d(k)
‖·‖V

=
⋃
n∈N0

En(k)
‖·‖V

,

and we refer to the proof of Theorem 3.11 for the de�nition of the sets En(k), k ∈ Z, n ∈ N0.
To obtain a pullback exponential attractor {M(t)| t ∈ R} for the time continuous process

we de�ne
M̃(t) := U(t, kt̃)M̃d(k) for t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

and take its closure M(t) := M̃(t)
‖·‖V

, t ∈ R. We observe that M(kt̃) = Md(k) for all
k ∈ Z.
By Proposition 3.1 follows for the fractal dimension of the sections of the time continuous

attractor

dimV
f (M(t)) = dimV

f (M̃(t)
‖·‖V

) = dimV
f (M̃(t)) = dimV

f (U(t, kt̃)M̃(kt̃))

≤ dimV
f (M̃(kt̃)) = dimV

f (M̃d(k)),

for all t ∈ [kt̃, (k+1)t̃[, k ∈ Z, where we used the Lipschitz-continuity (H4) of the evolution
process in the last estimate. Consequently, the bound for the fractal dimension in the time
continuous case coincides with the bound for discrete pullback exponential attractors.
To show the semi-invariance of the family {M(t)| t ∈ R} let t, s ∈ R such that t ≥ s.

Then, s = kt̃+ s1 and t = lt̃+ s2 for some k, l ∈ Z, k ≤ l and s1, s2 ∈ [0, t̃[.
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If l ≥ k + 1 we observe

U(t, s)M̃(s) = U(lt̃+ s2, kt̃+ s1)M̃(kt̃+ s1) = U(lt̃+ s2, kt̃+ s1)U(kt̃+ s1, kt̃)M̃(kt̃)

= U(lt̃+ s2, lt̃)U(lt̃, kt̃)M̃(kt̃) ⊂ U(lt̃+ s2, lt̃)M̃(lt̃) = M̃(lt̃+ s2) = M̃(t),

where we used the semi-invariance of the family {M̃(kt̃)| k ∈ Z} under the action of the
discrete process {Ũ(n,m)| n ≥ m}.
On the other hand, if l = k, then s = kt̃+ s1 and t = kt̃+ s2 for some s1, s2 ∈ [0, t̃[ and we
conclude

U(t, s)M̃(s) = U(kt̃+ s2, kt̃+ s1)M̃(kt̃+ s1) = U(kt̃+ s2, kt̃+ s1)U(kt̃+ s1, kt̃)M̃(kt̃)

= U(kt̃+ s2, kt̃)M̃(kt̃) = M̃(kt̃+ s2) = M̃(t).

The semi-invariance of the family {M(t)| t ∈ R} now follows by the continuity of the
process and the semi-invariance of the sets {M̃(t)| t ∈ R} as in the discrete case.
It remains to prove that the setM(t) exponentially pullback attracts all bounded subsets

of V at time t ∈ R. To this end let D ⊂ V be bounded, t ∈ R and TD,t ∈ R+ be
the corresponding pullback absorbing time in Assumption (A2). Then, t = kt̃ + s0 for
some k ∈ Z and s0 ∈ [0, t̃[. Moreover, we assume s ≥ TD,t + t̃ + s0, which implies
s = lt̃+ TD,t + s0 + s1, for some l ∈ N and s1 ∈ [0, t̃[. We observe

U(t, t− s)D = U(kt̃+ s0, (k − l)t̃− TD,t − s1)D

= U(t, kt̃)U(kt̃, (k − l)t̃)U((k − l)t̃, (k − l)t̃− TD,t − s1)D

⊂ U(t, kt̃)U(kt̃, (k − l)t̃)B((k − l)t̃),

and conclude

distVH
(
U(t, t− s)D,M(t)

)
= distVH

(
U(t, t− s)D,U(t, kt̃)M̃(kt̃)

‖·‖V )
≤ distVH

(
U(t, t− s)D,U(t, kt̃)M̃(kt̃)

)
≤ distVH

(
U(t, kt̃)U(kt̃, (k − l)t̃)B((k − l)t̃), U(t, kt̃)M̃(kt̃)

)
≤ Lt,kt̃distVH

(
U(kt̃, (k − l)t̃)B((k − l)t̃),M̃(kt̃)

)
≤ Lt,kt̃distVH

(
Ũ(k, k − l)B((k − l)t̃),M̃d(k)

)
,

where we used Hypothesis (H4), and Lt,kt̃ ≥ 0 denotes the corresponding Lipschitz con-
stant. Consequently, it follows from the proof of Theorem 3.11 that M(t) exponentially
pullback attracts the subset D ⊂ V at time t ∈ R.

3.2.4. Consequences of the Construction and Properties of the

Pullback Exponential Attractor

Consequences and Di�erent Settings

An immediate consequence of Theorem 3.10 is the existence and �nite dimensionality of
the global pullback attractor.
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Theorem 3.12. Let T = Z or T = R, {U(t, s)| t ≥ s} be an evolution process in the
Banach space V and the assumptions (H0), (H1)-(H3), (A1) and (A2) be satis�ed. More-
over, we assume that the diameter of the family of absorbing sets {B(t)| t ∈ T} grows at
most sub-exponentially in the past. Then, the global pullback attractor {A(t)| t ∈ T} of
the evolution process {U(t, s)| t ≥ s} exists, and the fractal dimension of its sections is
uniformly bounded by

dimV
f (A(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ T.

Proof. For discrete evolution processes the statements follow from Theorem 3.10, Proposi-
tion 3.1 and the minimality property of the global pullback attractor (see De�nition 3.8).
If T = R we de�ne the associated discrete evolution process {Ũ(n,m)| n ≥ m} by

Ũ(n,m) := U(nt̃,mt̃) for all n ≥ m, n,m ∈ Z. It satis�es the assumptions of Theorem
3.11, and we conclude that there exists a pullback exponential attractor {Md(k)| k ∈ Z}
for the discrete evolution process {Ũ(n,m)| n ≥ m}. We de�ne the sets

M′(t) := U(t, kt̃)Md(k) for t ∈ [kt̃, (k + 1)t̃[, k ∈ Z,

which impliesM′(kt̃) =Md(k) for all k ∈ Z. Since the operators U(t, s) : V → V , t ≥ s,
are continuous and the sectionsMd(k), k ∈ Z, are compact, {M′(t), | t ∈ R} is a family
of compact subsets of V . Moreover, it follows as in the proof of Theorem 3.10 that the
family {M′(t)| t ∈ R} pullback attracts all bounded subsets of V . By Theorem 3.7 we
conclude that the global pullback attractor {A(t)| t ∈ R} of the time continuous process
{U(t, s)| t ≥ s} exists, and the minimality property implies A(t) ⊂ M′(t) for all t ∈ R.
By Proposition 3.1 and Theorem 3.11 the fractal dimension of the discrete global pullback
attractor is uniformly bounded by

dimV
f (A(kt̃)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for k ∈ Z.

It remains to estimate the fractal dimension of the time continuous sections. To this
end let r ∈ R be arbitrary and the evolution process {Ur(t, s)| t ≥ s} be de�ned by
Ur(t, s) := U(t + r, s + r) for all t ≥ s, t, s ∈ R. The associated discrete evolution process
{Ur(n,m)| n ≥ m} is given by Ũr(n,m) := Ur(nt̃,mt̃) for all n ≥ m, n,m ∈ Z, and
satis�es the hypothesis of Theorem 3.11. Consequently, there exists a pullback exponential
attractor {Mr

d(k)| k ∈ Z} for the discrete evolution process {Ũr(n,m)| n ≥ m}, and the
fractal dimension of its sections satis�es the estimate stated in the theorem. We follow the
previous arguments to conclude the existence of the global pullback attractor {Ar(t)| t ∈ R}
for the time continuous evolution process {Ur(t, s)| t ≥ s} and observe that

Ar(t) = A(t+ r) for all t ∈ R.

Moreover, the fractal dimension of the discrete sections of the global pullback attractor is
uniformly bounded,

dimV
f (Ar(kt̃)) ≤ dimV

f (Mr
d(k)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all k ∈ Z.
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3. Exponential Attractors of In�nite Dimensional Dynamical Systems

Finally, since r ∈ R was arbitrary and

Ar(kt̃) = A(kt̃+ r) for all k ∈ Z,

follows the uniform bound for the fractal dimension of the time continuous global pullback
attractor {A(t)| t ∈ R}.

Remark 3.5. We remark that the Lipschitz continuity (H4), which is essential for the
construction of the time continuous pullback exponential attractor, is not required to es-
tablish the existence of the global pullback attractor and to derive estimates on its fractal
dimension (see the hypothesis in Theorem 3.12).

We now discuss di�erent settings for the evolution process. Theorem 3.10 in the partic-
ular case that λ = 0 yields the existence of exponential pullback attractors for evolution
processes that satisfy the smoothing property. It su�ces to assume that the family of
absorbing sets is bounded in the metric of W and, in the time continuous case, that the
evolution process is Lipschitz continuous in W . The following theorem generalizes the
previous results in [19] and [49], which were formulated in Theorem 3.9.

(H4)′ The evolution process {S(t, s)| t ≥ s} is Lipschitz continuous in W within the ab-
sorbing sets: For all t ∈ T and t < s ≤ t + t̃ there exists a constant Lt,s > 0 such
that

‖S(s, t)u− S(s, t)v‖W ≤ Lt,s‖u− v‖W for all u, v ∈ B(t), t ∈ T.

Corollary 3.2. Let T = Z or T = R, {S(t, s)| t ≥ s} be an evolution process in the Banach
space V and the assumptions (H0) and (H2) be satis�ed. We assume that Properties (H1),
(A1) and (A2) hold with {U(t, s)| t ≥ s} replaced by {S(t, s)| t ≥ s}, where it su�ces that
the absorbing family is bounded in the metric of W . Moreover, the diameter of the family
of absorbing sets {B(t)| t ∈ T} grows at most sub-exponentially in the past. If the evolution
process is time continuous we additionally assume that (H4) or (H4)′ is satis�ed. Then, for
any ν ∈ (0, 1

2
) there exists a pullback exponential attractor {M(t)| t ∈ T} = {Mν(t)| t ∈ T}

for the evolution process {S(t, s)| t ≥ s}, and the fractal dimension of its sections can be
estimated by

dimV
f (M(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ T.

Moreover, the evolution process {S(t, s)| t ≥ s} possesses a global pullback attractor and the
fractal dimension of its sections is uniformly bounded by the same value. For the existence
of the global pullback attractor, the hypothesis (H4) or (H4)′ are not required.

Proof. If the family of absorbing sets is bounded in the metric of W we de�ne the sets

B̃(t) := S(t, t− t̃)B(t− t̃) t ∈ T,

which are pullback absorbing and bounded in the space V by the smoothing property (H2).
In the discrete case, T = Z, the corollary is an immediate consequence of Theorem 3.11
and Theorem 3.12.
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If the evolution process is time continuous and Hypothesis (H4) is satis�ed the claim
follows from Theorem 3.10 and Theorem 3.12. The same applies in the case that T = R and
Property (H4)′ holds. Indeed, by the smoothing property (H2), the Lipschitz continuity
(H4)′ and the continuous embedding (H0) we observe

‖S(t+ t̃+ s, t)u− S(t+ t̃+ s, t)v‖V ≤ κ‖S(t+ s, t)u− S(t+ s, t)v‖W
≤ κLt,s‖u− v‖W ≤ κLt,sµ‖u− v‖V ,

for all u, v ∈ B(t), t ∈ R and s ∈ [0, t̃]. This proves the Lipschitz continuity of the evolution
process in the space V and the results remain valid.

We could also consider evolution processes that are asymptotically compact in the weaker
phase space W . This setting was addressed in [32] for discrete evolution processes and in
[36] for time continuous evolution processes, where forwards exponential attractors were
constructed.

(H1)′ The family of bounded subsets B(t) ⊂ W , t ∈ T, pullback absorbs all bounded
subsets of W : For every bounded set D ⊂ W and every t ∈ T there exists a pullback
absorbing time TD,t ∈ T+ such that

U(t, t− s)D ⊂ B(t) for all s ≥ TD,t.

(H3)′ The family {C(t, s)| t ≥ s} is a contraction in W within the absorbing sets:

‖C(t+ t̃, t)u− C(t+ t̃, t)v‖W ≤ λ‖u− v‖W for all u, v ∈ B(t), t ∈ T,

where the contraction constant 0 ≤ λ < 1
2
.

Theorem 3.13. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space W
and the assumptions (H0), (H1)′, (H2), (H3)′, (A1) and (A2) be satis�ed. Moreover, we
assume that the diameter of the family of absorbing sets {B(t)| t ∈ T} grows at most sub-
exponentially in the past. In the time continuous case, T = R, we additionally assume that
the process {U(t, s)| t ≥ s} satis�es the Lipschitz continuity property (H4)′. Then, for every
ν ∈ (0, 1

2
−λ) there exists a pullback exponential attractor {Mν(t)| t ∈ T} = {M(t)| t ∈ T}

for the evolution process {U(t, s)| t ≥ s} in W , and the fractal dimension of its sections
can be estimated by

dimW
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ T.

Furthermore, the global pullback attractor of the evolution process in W exists, and the
fractal dimension of its sections is uniformly bounded by the same value. For the existence
of the global pullback attractor, the assumption (H4)′ is not required.
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Proof. Generalizing the covering method in the proof of Theorem 3.6 for the non-autonomous
setting as done in the proof of Theorem 3.11 for asymptotically compact processes in the
phase space V yields discrete pullback exponential attractors inW . In the time continuous
case let {Md(k)| k ∈ Z} be the pullback exponential attractor for the associated discrete
evolution process. We de�ne the time continuous sections of the pullback exponential

attractor byM(t) = M̃(t)
‖·‖W

, where

M̃(t) := U(t, kt̃)M̃d(k) t ∈ [kt̃, (k + 1)t̃[, k ∈ Z.

Following the arguments in the proof of Theorem 3.10 we conclude that the family of
compact subsets {M(t)| t ∈ R} is a pullback exponential attractor for the time continuous
evolution process {U(t, s)| t ≥ s} in W .
The statements about the existence of the global pullback attractor follow as in the proof

of Theorem 3.12, where the Lipschitz continuity of the evolution process is not required.

Time Dependence of the Pullback Exponential Attractor and Forwards Attraction

Global pullback attractors are strictly invariant under the action of the evolution process,
and the time dependence of the process is directly inherited by the attractor. To be more
precise, let {U(t, s)| t ≥ s} be an evolution process in the Banach space V possessing a
global pullback attractor {A(t)| t ∈ T}. Then, the invariance property

U(t, s)A(s) = A(t) for all t ≥ s, t, s ∈ T,

immediately implies: If the evolution process is periodic, quasi-periodic or almost-periodic
the pullback attractor exhibits the same property.
We analyse the respective property of the pullback exponential attractors constructed

in Section 3.2.3. To this end we de�ne the group of time shift operators or temporal
translations acting on the space of evolution operators.

De�nition 3.12. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V . The
action of the group of time shift operators {Sr| r ∈ T} is de�ned by

SrU(t, s) := U(t+ r, s+ r) t ≥ s, t, s ∈ T,

where r ∈ T.

Since pullback exponential attractors are not unique we could certainly construct for
an evolution process U and the shifted process SrU , where r ∈ T, pullback exponential
attractorsMU andMSrU that do not satisfy the cocycle property

MU(t+ r) =MSrU(t) for all t, r ∈ T.

However, if {MU(t)| t ∈ T} is a pullback exponential attractor for the evolution process U
the translation of the attractor {MU(t+ r)| t ∈ T} yields a pullback exponential attractor
for the shifted process SrU , for every r ∈ T.
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Corollary 3.3. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V . We
assume that the hypothesis of Theorem 3.10 (or Theorem 3.11, if T = Z) are satis�ed and
denote by {MU(t)| t ∈ T} the pullback exponential attractor constructed in the proof of
Theorem 3.10 (Theorem 3.11). Then, for every r ∈ T the family {MU(t+ r)| t ∈ T} is a
pullback exponential attractor for the evolution process {SrU(t, s)| t ≥ s}, and the family
of attractors satis�es the cocycle property

MU(t+ r) =MSrU(t) for all t, r ∈ T.

In particular, if an evolution process is periodic, quasi-periodic or almost periodic the family
of pullback exponential attractors {MSrU(t)| t ∈ T}r∈T exhibits the same property.

Proof. Let r ∈ T and {MU(t)| t ∈ T} be the pullback exponential attractor for the
evolution process {U(t, s)| t ≥ s} constructed in the proof of Theorem 3.10, or Theorem
3.11 respectively. We de�ne the sets

MSrU(t) :=MU(t+ r) for all t ∈ T.

Then, the family {MSrU(t)| t ∈ T} is semi-invariant under the action of the evolution
process {SrU(t, s)| t ≥ s}. Moreover, the exponential pullback attraction property with
respect to the process {SrU(t, s)| t ≥ s}, the compactness of the sections and the uniform
bound for the fractal dimension immediately follow from the corresponding properties of
the family {MU(t)| t ∈ T}, which proves that {MSrU(t)| t ∈ T} is a pullback exponential
attractor for the shifted process.

Next, we formulate conditions such that the pullback exponential attractor also forwards
attracts all bounded subsets exponentially.

De�nition 3.13. Let {U(t, s)| t ≥ s} be an evolution process in a metric space (X, dX).
We call the family {M(t)| t ∈ T} a forwards exponential attractor for the evolution
process if it satis�es Properties (i)-(iii) in De�nition 3.9 and forwards exponentially attracts
all bounded subset of X: There exists a constant ω > 0 such that

lim
s→∞

eωsdistH(U(t+ s, t)D,M(t+ s)) = 0,

for every bounded set D ⊂ X and time t ∈ T.

Theorem 3.14. Let {U(t, s)| t ≥ s} be an evolution process in the Banach space V and
the assumptions of Theorem 3.10 (or Theorem 3.11, if T = Z) be satis�ed. Moreover, we
assume that the absorbing time corresponding to a bounded subset D ⊂ V in Hypothesis
(H1) is independent of the time instant t ∈ T. Then, the pullback exponential attractor
{M(t)| t ∈ T} in Theorem 3.10 (Theorem 3.11) is also a forwards exponential attractor
for the evolution process.
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Proof. It su�ces to show the forwards exponential attraction property of the pullback
exponential attractor {M(t)| t ∈ T}. If the absorbing time in Hypothesis (H1) is indepen-
dent of the time instant t ∈ T, the family {B(t)| t ∈ T} is also forwards absorbing for the
evolution process. Indeed, for a bounded subset D ⊂ V there exists a pullback absorbing
time TD ∈ T+ such that

U(t, t− s)D ⊂ B(t) for all s ≥ TD, t ∈ T,

which is equivalent to the forwards absorbing property

U(t+ s, t)D ⊂ B(t+ s) for all s ≥ TD, t ∈ T.

We recall that the pullback exponential attractor of the associated discrete evolution pro-
cess {Ũ(n,m)| n ≥ m}, where Ũ(n,m) := U(nt̃,mt̃), for all n ≥ m,n,m ∈ Z, was de�ned

asMd(k) = M̃d(k)
‖·‖V

, and

M̃d(k) =
⋃
n∈N0

En(k) for k ∈ Z

(see the proof of Theorem 3.11). We show that the family {M̃d(k)| k ∈ Z} is forwards
exponentially attracting for the discrete evolution process {Ũ(n,m)| n ≥ m}. Let D ⊂ V
be bounded, TD ∈ Z+ be the corresponding pullback absorbing time and k ∈ Z. If
n ≥ TD + 1, then n = TD + n0 for some n0 ∈ N, and we observe

distVH
(
Ũ(k + n, k)D,Md(k + n)

)
≤ distVH

(
Ũ(k + TD + n0, k + TD)U(k + TD, k)D,M̃d(k + n)

)
≤ distVH

(
Ũ(k + TD + n0, k + TD)B(k + TD),M̃d(k + n)

)
≤ distVH

(
Ũ(k + TD + n0, k + TD)B(k + TD), En0(k + n)

)
≤ distVH

(
Ũ(k̃, k̃ − n0)B(k̃ − n0), En0(k̃)

)
,

where k̃ = k+ n. Consequently, the forwards exponential attraction property follows from
the proof of Theorem 3.11.
For time continuous evolution processes the pullback exponential attractor was de�ned

byM(t) = M̃(t)
‖·‖V

, t ∈ R, where

M̃(t) := U(t, kt̃)M̃d(k) for t ∈ [kt̃, (k + 1)t̃[, k ∈ Z

(see the proof of Theorem 3.10). To show the forwards exponential attraction property of
the time continuous attractor let t ∈ R, D ⊂ V be a bounded subset and TD ∈ R+ be the
corresponding pullback absorbing time. If s ≥ TD + 2t̃, then s ≥ (l + 1)t̃ + TD for some
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l ∈ N, and t+ s = nt̃+ s0, for some n ∈ Z and s0 ∈ [0, t̃[. We obtain

distVH
(
U(t+ s, t)D,M(t+ s)) ≤ distVH(U(t+ s, t)D,M̃(t+ s)

)
= distVH

(
U(nt̃+ s0, nt̃)U(nt̃, t)D,U(nt̃+ s0, nt̃)M̃d(n)

)
≤ LdistVH

(
U(nt̃, t)D,M̃d(n)

)
≤ LdistVH

(
U(nt̃, (n− l)t̃)U((n− l)t̃, t)D,M̃d(n)

)
≤ LdistVH

(
U(nt̃, (n− l)t̃)B((n− l)t̃),M̃d(n)

)
= LdistVH

(
Ũ(n, (n− l))B((n− l)t̃),M̃d(n)

)
,

where we used the Lipschitz continuity (H4), and L ≥ 0 denotes the corresponding
Lipschitz constant. Now, it follows from the proof of Theorem 3.11 that the family
{M(t)| t ∈ R} exponentially forwards attracts all bounded subsets of V .

A Pullback Exponential Attractor for Time Continuous Semigroups

We now apply our results to autonomous evolution processes. In the discrete case we
recover the results we obtained in Section 3.1.4 for semigroups. They di�er, however, in
the time continuous case since the invariance of a family of subsets in the non-autonomous
setting is a weaker concept than the invariance of a �xed set under the action of a semigroup.
The previous construction of pullback exponential attractors for time continuous pro-

cesses in Theorem 3.9 is di�erent (see also [19] and [49]). To obtain the time continuous
attractor the union over a certain time interval of the image of the discrete attractor is
taken. It requires additional regularity properties in time of the evolution process and leads
to weaker estimates for the fractal dimension of the attractor. However, when applied to
time continuous semigroups the construction yields an exponential attractor according to
De�nition 3.6. In the proof of Theorem 3.10 we take the time evolution of the discrete
attractor instead and prove under signi�cantly weaker assumptions the existence of a pull-
back exponential attractor for time continuous evolution processes. If the assumptions of
Theorem 3.9 are satis�ed, our pullback exponential attractor is contained in the pullback
exponential attractor of Theorem 3.9. However, applying our method for autonomous time
continuous evolution processes does not lead to a �xed semi-invariant subset of the phase
space.
We therefore propose to consider pullback exponential attractors for time continuous

semigroups instead of exponential attractors in the strict sense. They coincide with ex-
ponential attractors in the discrete case, and pullback exponential attractors for time
continuous semigroups satisfy the same dimension estimates as exponential attractors of
discrete semigroups. In other words, weakening the semi-invariance property in the de�ni-
tion of exponential attractors we avoid the arti�cial increase in the fractal dimension of the
attractor (see Theorem 3.3 and Theorem 3.4 in Section 3.1.4). Moreover, the construction
does not require the Hölder continuity in time (S4) of the semigroup.
In the sequel let T = R and {U(t, s)| t ≥ s} be an autonomous time continuous evolution

process in the Banach space V . The family of operators T (t − s) := U(t − s, 0), where
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t ≥ s, t, s ∈ R, then forms a semigroup in V . We propose to weaken the semi-invariance
property of time continuous exponential attractors and to consider pullback exponential
attractors. For autonomous evolution processes De�nition 3.9 leads to the following:

De�nition 3.14. We call the family {M(t)| t ∈ R} a pullback exponential attractor
for the semigroup {T (t)| t ∈ R+} in V if there exists a constant 0 < a < ∞ such that
M(t) =M(a+ t) for all t ∈ R,

(i) the subsetsM(t) ⊂ V are non-empty and compact in V for all t ∈ R,

(ii) the family is positively semi-invariant,

T (t)M(s) ⊂M(t+ s) for all t ∈ R+, s ∈ R,

(iii) the fractal dimension of the setsM(t), t ∈ R, is uniformly bounded and

(iv) the family exponentially attracts all bounded subsets of V uniformly in time: There
exists a positive constant ω > 0 such that

lim
s→∞

sup
0≤t≤a

eωsdistVH(T (s)D,M(t)) = 0

for every bounded subset D ⊂ V .

The de�nition implies that the setMd =M(a) is an exponential attractor for the asso-
ciated discrete semigroup {T̃ (n)| n ∈ Z+}, where T̃ (n) := T (na) for all n ∈ Z+. Moreover,
any member of the family {M(t)| t ∈ R} satis�es the properties of an exponential attractor
of the semigroup {T (t)| t ∈ R+} except for the semi-invariance property.

Remark 3.6. If a semigroup possesses an exponential attractor it implies the existence of
the global attractor and its �nite dimensionality. The same applies to pullback exponential
attractors for time continuous semigroups: If the pullback exponential attractor exists any
member of the family {M(t)| t ∈ R} contains the global attractor of the semigroup and the
fractal dimension of the global attractor is �nite.

We assume the semigroup {T (t)| t ∈ R+} can be represented as T (t) = S(t) + C(t) for
all t ∈ R+, and the assumptions (S1)-(S3) in Section 3.1.4 are satis�ed. Instead of the
Hölder continuity in time (S4) we assume Lipschitz continuity of the semigroup.

(S4)′′ The semigroup {T (t)| t ∈ R+} is (eventually) Lipschitz continuous in V within the
absorbing set: There exists s0 ∈ R+ such that for all t ≥ s0

‖T (t)u− T (t)v‖V ≤ Lt‖u− v‖V for all u, v ∈ B,

for some constant Lt > 0.
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Theorem 3.15. Let {T (t)| t ∈ R+} be a semigroup in the Banach space V , and the
assumptions (H0), (S1)-(S3) and (S4)′′ be satis�ed. Then, for any ν ∈ (0, 1

2
− λ) there

exists a pullback exponential attractor {M(t)| t ∈ R} = {Mν(t)| t ∈ R} for the semigroup
{T (t)| t ∈ R+}, and the fractal dimension of its sections is uniformly bounded by

dimV
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Proof. By Lemma 3.1 without loss of generality we can assume that the absorbing set B
is positively semi-invariant. The family of operators {U(t, s)| t ≥ s} de�ned by U(t, s) :=
T (t− s) for all t ≥ s, t, s ∈ R, forms an autonomous evolution process in the Banach space
V . The evolution process {U(t, s)| t ≥ s} certainly satis�es the absorbing assumptions
(H1), (A1) and (A2) in Section 3.2.3, where the pullback absorbing sets B(t) = B for all
t ∈ R.
We apply the method in the proof of Theorem 3.10 and �rst construct a pullback

exponential attractor Md for the discrete evolution process {Ũ(n,m)| n ≥ m}, where
Ũ(n,m) := U(nt̃,mt̃) for all n ≥ m,n,m ∈ Z. For autonomous evolution processes the
family of sets En, n ∈ N0, is independent of time and consequently, according to De�nition
3.6 the set

Md = M̃d

‖·‖V
=
⋃
n∈N0

En
‖·‖V

is an exponential attractor for the associated discrete semigroup {T̃ (n)| n ∈ Z+}, where
T̃ (n) := T (nt̃), n ∈ Z+. Moreover, Theorem 3.11 implies that the fractal dimension of the
exponential attractor is bounded by

dimV
f (Md) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
.

We take the iterate T (s0)M̃d = U(s0, 0)M̃d and de�ne the time continuous pullback

exponential attractor for the evolution process {U(t, s)| t ≥ s} by M(t) := M̃(t)
‖·‖V

,
t ∈ R, where

M̃(t) := U(t, kt̃)U(s0, 0)M̃d = T (t− kt̃+ s0)M̃d for all t ∈ [kt̃, (k + 1)t̃[, k ∈ Z.

By Assumption (S4)′′ the semigroup is Lipschitz continuous within the absorbing set for
t ≥ s0. Proposition 3.1 therefore implies

dimV
f (M(t)) = dimV

f (M̃(t)) = dimV
f (T (t− kt̃+ s0)M̃d) ≤ dimV

f (M̃d),

for all t ∈ [kt̃, (k + 1)t̃[, k ∈ Z, which proves the uniform bound on the fractal dimension
of the family {M(t)| t ∈ R}. In Theorem 3.10 we showed that {M(t)| t ∈ R} is a pullback
exponential attractor for the autonomous evolution process {U(t, s)| t ≥ s}, which implies
that the family is a pullback exponential attractor for the time continuous semigroup
{T (t)| t ∈ R+}, and satis�es the properties in De�nition 3.14 with a = t̃.
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An immediate consequence is the existence of the global attractor and its �nite fractal
dimension.

Corollary 3.4. We assume the hypothesis of Theorem 3.15 are satis�ed. Then, the global
attractor A of the semigroup {T (t)| t ∈ R+} exists, is contained in any member of the
pullback exponential attractor {M(t)| t ∈ R}, and its fractal dimension is bounded by

dimV
f (A) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
.

Proof. It follows from the proof of Theorem 3.15 that the pullback exponential attractor
for the time continuous semigroup {T (t)| t ∈ R+} is a pullback exponential attractor for
the autonomous evolution process {U(t, s)| t ≥ s}, where U(t, s) := T (t−s), t ≥ s, t, s ∈ R.
Theorem 3.7 implies that the evolution process {U(t, s)| t ≥ s} possesses a global pullback
attractor {A(t)| t ∈ R}, and the global pullback attractor is contained in the pullback
exponential attractor, A(t) ⊂M(t) for all t ∈ R. Consequently, the fractal dimensions of
the sections of the global pullback attractor satisfy the uniform estimates in the Corollary.
Since the global pullback attractor {A(t)| t ∈ R} of the autonomous evolution process
{U(t, s)| t ≥ s} exists if and only if the associated semigroup {T (t)| t ∈ R+} possesses a
global attractor A and A(t) = A for all t ∈ R, the statement of the corollary follows from
Theorem 3.15.

Remark 3.7. We proved a stronger version of Corollary 3.4 in Section 3.1.5 (see Theo-
rem 3.5). However, if we apply Theorem 3.12 to autonomous time continuous evolution
processes we recover Theorem 3.5 about the existence and �nite dimensionality of global
attractors of semigroups, where the Lipschitz continuity of the semigroup (S4)′′ is not re-
quired.

If we apply Corollary 3.2 to autonomous evolution processes follows the existence of
pullback exponential attractors for time continuous semigroups that satisfy the smoothing
property.

Corollary 3.5. Let {S(t)| t ∈ R+} be a time continuous semigroup in the Banach space
V , and the properties (H0) and (S2) be satis�ed. Moreover, we assume that (S1) and (S4)′′

hold with {T (t)| t ∈ R+} replaced by {S(t)| t ∈ R+}. Here, it su�ces that the absorbing set
is bounded in the metric of W . Then, for any ν ∈ (0, 1

2
) there exists a pullback exponential

attractor {M(t)| t ∈ R} = {Mν(t)| t ∈ R} for the semigroup {S(t)| t ∈ R+}, and the
fractal dimension of its sections is uniformly bounded by

dimV
f (M(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Moreover, the semigroup possesses a global attractor A, it is contained in any member of
the exponential pullback attractor, A ⊂ M(t) for all t ∈ R, and its fractal dimension is
bounded by the same value. To show the existence of the global attractor and to derive the
estimate on its fractal dimension the Lipschitz continuity (S4)′′ of the semigroup is not
required.
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Proof. We apply Corollary 3.2 to autonomous evolution processes and argue as in the proof
of Corollary 3.4 to show the existence of the pullback exponential attractor {M(t)| t ∈ R}
for the semigroup {S(t)| t ∈ R+}. The statement about the global attractor for the
semigroup follows as in the proof of Corollary 3.4.

Finally, we formulate the result for semigroups that are asymptotically compact in the
weaker phase space W .

Theorem 3.16. Let {T (t)| t ∈ R+} be a semigroup in the Banach space W , and the
assumptions (H0) (S1)′, (S2) and (S3)′ be satis�ed. Moreover, we assume that the Lipschitz
continuity (S4)′′ holds with V replaced by W . Then, for any ν ∈ (0, 1

2
− λ) there exists

a pullback exponential attractor {Mν(t)| t ∈ R} = {M(t)| t ∈ R} for the semigroup
{T (t)| t ∈ R+} in W , and the fractal dimension of its sections is uniformly bounded by

dimW
f (M(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R.

Moreover, the semigroup possesses a global attractor A, it is contained in any member of
the exponential pullback attractor, A ⊂ M(t) for all t ∈ R, and its fractal dimension is
bounded by the same value. To show the existence of the global attractor and to derive the
estimate on its fractal dimension the Lipschitz continuity of the semigroup (S4)′′ in W is
not required.

Proof. We apply Theorem 3.13 to autonomous evolution processes. It follows as in the
proof of Corollary 3.4 that the pullback exponential attractor {M(t)| t ∈ R} in W for
the time continuous semigroup {T (t)| t ∈ R+} exists. Moreover, the existence and �-
nite dimensionality of the global attractor for the semigroup can be shown by the same
arguments, where the Lipschitz continuity of the semigroup is not required.

Remark 3.8. Let {T (t)| t ∈ R+} be a time continuous semigroup in the Banach space V
that possesses a pullback exponential attractor {M(t)| t ∈ R}. If the semigroup satis�es
the Hölder continuity property (S4), then

M :=
⋃
t∈R

M(t)

is an exponential attractor for the time continuous semigroup in the sense of De�nition 3.6
and coincides with the exponential attractor constructed in Section 3.1.4.

3.2.5. Applications

We now apply the theoretical results of the previous sections to show the existence of pull-
back exponential attractors for evolution processes generated by non-autonomous partial
di�erential equations.
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Non-Autonomous Chafee-Infante Equation

First, we analyse an initial value problem for a non-autonomous Chafee-Infante equation
and show the existence of a pullback exponential attractor for the generated evolution
process. In particular, we obtain an example for a �nite dimensional pullback attractor
which is unbounded in the past.
Let Ω ⊂ Rn, n ∈ N, be a bounded domain with smooth boundary ∂Ω and s ∈ R. We

consider the initial-/boundary value problem

∂

∂t
u(x, t) = 4u(x, t) + λu(x, t)− β(t)

(
u(x, t)

)3
x ∈ Ω, t > s,

u(x, t) = 0 x ∈ ∂Ω, t ≥ s, (3.5)

u(x, s) = us(x) x ∈ Ω,

where λ ∈ R, ∆ denotes the Laplace operator with respect to the spatial variable x ∈ Ω
and ∂

∂t
the partial derivative with respect to time t > s. The initial data us is a continuous

function that vanishes on the boundary, us ∈ C0(Ω). Moreover, we assume the non-
autonomous term β : R → R+ is strictly positive, continuously di�erentiable and satis�es
the properties

0 < sup
t∈R

β(t) ≤ β0, (3.6)

lim
t→−∞

β(t) = 0, (3.7)

sup
t∈R

|β′(t)|
β(t)

≤ β1, (3.8)

lim
t→−∞

eγt

β(t)
= 0 for all γ > 0, (3.9)

where the constants 0 < β0, β1 <∞. We consider the evolution process generated by (3.5)
in the phase space W := C0(Ω), where the norm in W is de�ned by

‖u‖W := max
x∈Ω
|u(x)| u ∈ W.

To show the existence of a positively semi-invariant family of absorbing sets we use the
method of lower and upper solutions (see [58], Chapter 2).

De�nition 3.15. A function u∗ ∈ C(Ω × [s,∞[) ∩ C2,1(Ω×]s,∞[) is called an upper
solution for (3.5) if it satis�es the inequalities

∂

∂t
u∗(x, t)−4u∗(x, t) ≥ λu∗(x, t)− β(t)

(
u∗(x, t)

)3
x ∈ Ω, t > s,

u∗(x, t) ≥ 0 x ∈ ∂Ω, t ≥ s, (3.10)

u∗(x, s) ≥ us(x) x ∈ Ω.

Analogously, the function u∗ ∈ C(Ω × [s,∞[) ∩ C2,1(Ω×]s,∞[) is a lower solution for
(3.5) if it satis�es the reversed inequalities in (3.10).
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Lemma 3.2. There exist constants a, b ≥ 0 such that the function c∗ : [s,∞[→ R+,

c∗(t) :=
a√
β(t)

+ b,

is an upper solution for (3.5) if the initial data satis�es us(x) ≤ c∗(s) for all x ∈ Ω.
If the initial function ful�ls us(x) ≥ −c∗(s) for all x ∈ Ω, the function c∗ : [s,∞[→ R,

c∗(t) := −c∗(t), is a lower solution for (3.5).

Proof. We de�ne c∗(t) := a√
β(t)

+ b, where the constants a, b ≥ 0 are chosen below, and

obtain

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3

= −a
2

β′(t)√
β(t)

3 − λ
( a√

β(t)
+ b
)

+ β(t)
( a√

β(t)
+ b
)3

= −a
2

β′(t)√
β(t)

3 − λ
( a√

β(t)
+ b
)

+
a3√
β(t)

+ b3β(t) + 3a2b+ 3
√
β(t)ab2

= −a
2

β′(t)√
β(t)

3 + (3a2b− λb) +
a√
β(t)

(a2 − λ) + b3β(t) + 3ab2
√
β(t)

=
a√
β(t)

(
− β

′(t)

2β(t)
+ b
√
β(t)(3a− λ

a
) + (a2 − λ) +

b3

a

√
β(t)

3
+ 3b2β(t)

)
.

Since β vanishes slowly,

sup
t∈R

|β′(t)|
β(t)

≤ β1 <∞,

there exist positive constants a, b > 0 such that

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3 ≥ 0,

which proves that the function c∗ is an upper solution for (3.5).
The non-linearity is odd with respect to u, which implies

∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3

=
∂

∂t

(
− c∗(t)

)
−4

(
− c∗(t)

)
− λ
(
− c∗(t)

)
+ β(t)

(
− c∗(t)

)3

= −
(
∂

∂t
c∗(t)−4c∗(t)− λc∗(t) + β(t)

(
c∗(t)

)3
)
.

Consequently, the function c∗ := −c∗ is a lower solution for (3.5) if the initial data satis�es
us(x) ≥ c∗(s) for all x ∈ Ω.
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The linear heat equation

∂

∂t
u(x, t) = 4u(x, t) x ∈ Ω, t > 0,

u(x, t) = 0 x ∈ ∂Ω, t ≥ 0, (3.11)

u(x, 0) = u0(x) x ∈ Ω,

generates an analytic semigroup in the Banach space W := (C0(Ω), ‖ · ‖W ) (see [54]). We
denote the semigroup corresponding to the linear problem (3.11) by {e∆t| t ∈ R+}, and
the associated fractional power spaces by Xα, α ≥ 0. The operators e∆t are linear and
bounded from W to Xα, and the operator norm ‖ · ‖L(W ;Xα) satis�es the estimate

‖e∆t‖L(W ;Xα) ≤
Cα
tα

for all t > 0, (3.12)

where the constant Cα ≥ 0. One can show that the semi-linear problem (3.5) generates an
evolution process {U(t, s)| t ≥ s} in the phase space W , where the operators are de�ned
by

U(t, s)us := u( · , t;us, s) t ≥ s,

and u( · , · ;us, s) : Ω × [s,∞[→ R denotes the unique solution of (3.11) corresponding to
initial data us ∈ C0(Ω) and initial time s ∈ R. Moreover, the evolution process satis�es
the variation of constants formula

U(t, s)us = e∆(t−s)us +

∫ t

s

e∆(t−τ)f(τ, U(τ, s)us))dτ.

For further details and the proof we refer to [54] and [61].
Lemma 3.2 and Theorem 4.1 in [58] imply the existence of a pullback absorbing family

of bounded semi-invariant subsets.

Proposition 3.3. The family of bounded subsets

B(t) :=
{
v ∈ W | ‖v‖W ≤ c∗(t)

}
t ∈ R,

is positively semi-invariant for the evolution process {U(t, s)| t ≥ s} generated by the initial
value problem (3.5) and pullback absorbs all bounded subsets of W .

Proof. Let s ∈ R and the initial data us ∈ W satisfy ‖us‖W ≤ c∗(s). Lemma 3.2 implies
that the functions c∗ and c∗ are upper and lower solutions for the initial-/boundary value
problem (3.5). By Theorem 4.1 in Chapter 2 of [58] follows that there exists a unique
classical solution u( · , · ;us, s) : Ω × [s,∞[→ R corresponding to the initial data us and
initial time s ∈ R, and the solution satis�es

c∗(t) ≤ u(x, t;us, s) ≤ c∗(t) for all x ∈ Ω, t ≥ s.

Consequently, the associated evolution process satis�es U(t, s)us ∈ B(t) for all us ∈ B(s)
and t ≥ s, which shows the semi-invariance of the family {B(t)| t ∈ R}.
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It remains to prove that the family {B(t)| t ∈ R} is pullback absorbing. To this end let
D ⊂ W be bounded and t ∈ R. Then, the set D ⊂ BW

R (0) if R > 0 is su�ciently large. By
Assumption (3.7) there exists t0 ∈ R such that R ≤ a

β(t)
for all t ≤ t0, and consequently,

D ⊂ B(t) for all t ≤ t0. Finally, we observe that the pullback absorbing time is bounded
in the past, TD,s ≤ t− t0 for all s ≤ t.

The following lemma states that the evolution process {U(t, s)| t ≥ s} satis�es the
smoothing property with respect to the Banach spaces V := C1

0(Ω) and W , where the
norm in V is de�ned by

‖u‖V := ‖u‖W +
n∑
j=1

‖ ∂u
∂xj
‖W .

Lemma 3.3. Let {U(t, s)| t ≥ s} be the evolution process generated by the initial value
problem (3.5). Then, there exists a positive constant κ > 0 such that

‖U(t+ 1, t)u− U(t+ 1, t)v‖V ≤ κ‖u− v‖W for all u, v ∈ B(t), t ∈ R.

Proof. Let s ∈ R and the initial data u, v ∈ B(s). We denote the corresponding solutions
by u(t) := U(t, s)u and v(t) := U(t, s)v, where t ≥ s. It was shown in [54] (Theorem
2.4) that the continuous embedding Xα ↪→ V exists for all α > 1

2
. Moreover, we use the

variation of constants formula and obtain

‖u(t)− v(t)‖V ≤ c‖u(t)− v(t)‖Xα

≤ c
(
‖e∆(t−s)(u− v)‖Xα +

∫ t

s

‖e∆(t−τ)(f(τ, u(τ)− f(τ, v(τ))‖Xαdτ
)

≤ c‖e∆(t−s)‖L(W ;Xα)‖u− v‖W

+ c

∫ t

s

‖e∆(t−τ)‖L(W ;Xα)‖f(τ, u(τ))− f(τ, v(τ))‖Wdτ,

where c ≥ 0 denotes the embedding constant. By Proposition 3.3 we conclude

‖f(τ, u(τ))− f(τ, v(τ))‖W
≤ λ‖u(τ)− v(τ)‖W + ‖β(τ)

(
u(τ)− v(τ)

)(
u(τ)2 + u(τ)v(τ) + v(τ)2

)
‖W

≤ λ‖u(τ)− v(τ)‖W + 2‖
(
u(τ)− v(τ)

)
β(τ)

(
u(τ)2 + v(τ)2

)
‖W

≤ λ‖u(τ)− v(τ)‖W + 4‖
(
u(τ)− v(τ)

)
β(τ)

( a√
β(τ)

+ b
)2‖W

≤ (λ+ C)‖u(τ)− v(τ)‖W , (3.13)

for some constant C ≥ 0, where we used Assumption (3.6) in the last estimate. The bound
on the operator norm (3.12) and the continuous embedding V ↪→ W imply

‖u(t)− v(t)‖V ≤ cCα

( 1

(t− s)α
‖u− w‖W + (λ+ C)

∫ t

s

1

(t− τ)α
‖u(τ)− v(τ)‖Wdτ

)
≤ cCα

( 1

(t− s)α
‖u− w‖W + (λ+ C)µ

∫ t

s

1

(t− τ)α
‖u(τ)− v(τ)‖V dτ

)
,
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where µ > 0 denotes the embedding constant. Finally, we set t = s+ 1 and

y(s+ 1) := ‖U(s+ 1, s)u− U(s+ 1, s)v‖V ,

which implies

y(s+ 1) ≤ cCα

(
‖u− v‖W + (λ+ C)µ

∫ s+1

s

1

(s+ 1− τ)α
y(τ)dτ

)
.

From a generalized Gronwall inequality (see Theorem 1.26 in [75]) we conclude

y(s+ 1) ≤ κ‖u− v‖W ,

for some constant κ > 0, which concludes the proof of the lemma.

Corollary 3.2 now implies the existence of a pullback exponential attractor in V for the
evolution process {U(t, s)| t ≥ s}.

Theorem 3.17. Let {U(t, s)| t ≥ s} be the evolution process in the Banach space W
generated by the initial-/boundary value problem (3.5). Moreover, we assume that the
non-autonomous term satis�es Properties (3.6)-(3.9). Then, for every ν ∈ (0, 1

2
) there

exists a pullback exponential attractor {Mν(t)| t ∈ R} in V for the evolution process
{U(t, s)| t ≥ s}, and the fractal dimension of its sections is uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2ν

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R,

where κ > 0 denotes the smoothing constant in Lemma 3.3. Furthermore, the global pull-
back attractor exists and is contained in the pullback exponential attractor.

Proof. The family of pullback absorbing sets {B(t)| t ∈ R} de�ned in Lemma 3.3 satis�es
the hypothesis (A1) and (A2) in Section 3.2.3. Since the diameter of the absorbing sets is
bounded by

‖B(t)‖W ≤ 2
( a√

β(t)
+ b
)

t ∈ R,

and the non-autonomous term satis�es Property (3.9), the absorbing sets grow at most
sub-exponentially in the past. Moreover, the embedding V ↪→↪→ W is compact, and the
smoothing property with respect to the spaces V and W was shown in Lemma 3.3. To
apply Corollary 3.2 it remains to verify the Lipschitz continuity of the evolution process.
The variation of constants formula implies

‖U(t, s)u− U(t, s)v‖W

≤ ‖e∆(t−s)(u− v)‖W +

∫ t

s

‖e∆(t−τ)
(
f(τ, U(τ, s)u)− f(τ, U(τ, s)v)

)
‖Wdτ

≤ C0‖u− v‖W + C0

∫ t

s

‖f(τ, U(τ, s)u)− f(τ, U(τ, s)v)‖Wdτ

≤ C0‖u− v‖W + C0(λ+ C)

∫ t

s

‖U(τ, s)u− U(τ, s)v‖Wdτ,
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for some constant C0 ≥ 0, where we used the estimate (3.13) in Lemma 3.3. By Gronwalls
Lemma follows the Lipschitz continuity of the evolution process in W .

Non-Autonomous Damped Wave Equation

The following initial value problem for the non-autonomous dissipative wave equation gen-
erates an evolution process that is asymptotically compact,

∂2

∂t2
u(x, t) + β(t)

∂

∂t
u(x, t) = ∆u(x, t) + f(u(x, t)) x ∈ Ω, t > s,

u(x, s) = us(x) x ∈ Ω, (3.14)
∂

∂t
u(x, s) = vs(x) x ∈ Ω,

u(x, t) = 0 x ∈ ∂Ω, t ≥ s,

where s ∈ R and Ω ⊂ Rn, n ∈ N, n ≥ 3, is a bounded domain with smooth boundary ∂Ω.
We assume that the non-linearity f : R→ R is continuously di�erentiable and satis�es

|f ′(z)| ≤ c(1 + |z|p) z ∈ R, (3.15)

lim sup
|z|→∞

f(z)

z
≤ 0, (3.16)

for some constant c > 0 and 0 < p < 2
n−2

. Furthermore, the function β : R→ R+ is Hölder
continuous and bounded from above and below by positive constants 0 < b0 ≤ b1 <∞,

b0 ≤ β(t) ≤ b1 for all t ∈ R. (3.17)

We apply Theorem 3.10 to show that the evolution process generated by (3.14) possesses

a pullback exponential attractor. Setting v := ∂
∂t
u and w :=

( u
v

)
we rewrite Equation

(3.14) in the abstract form

∂

∂t
w = Aβ(t)w + F (w) t > s, (3.18)

w|t=s = ws ws ∈ V,

where the initial data ws =
( us
vs

)
, and the phase space is V := H1

0 (Ω)×L2(Ω). The norm

in V is given by

‖w‖V :=
(
‖u‖2

H1
0 (Ω) + ‖v‖2

L2(Ω)

) 1
2 for w = (u, v) ∈ V.

Furthermore, the operators are de�ned by Aβ(t) = A1 + A2(t),

A1 :=

(
0 Id
−A 0

)
, A2(t) :=

(
0 0
0 −β(t)Id

)
, F (w) :=

(
0

F̃ (u)

)
,
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where A = −∆ denotes the Laplace operator with homogeneous Dirichlet boundary con-
ditions and domain D(A) = H1

0 (Ω) ∩H2(Ω) in L2(Ω). The domain of the operator A1 in
V is D(A1) = (H1

0 (Ω) ∩H2(Ω))×H1
0 (Ω), and F̃ denotes the Nemytskii operator

F̃ : H1
0 (Ω)→ L2(Ω), F̃ (u) := f(u(·)).

The initial value problem (3.18) generates an evolution process {U(t, s)| t ≥ s} in the
Banach space V , which is asymptotically compact and pullback strongly bounded dissipa-
tive. In the sequel, we only present a sketch of the proof and refer to [42] (Chapter 4), [12]
(Section VI.4), [3] and [8] for details.
We �rst consider the linear homogeneous problem

∂

∂t
w = Aβ(t)w t > s, (3.19)

w|t=s = ws ws ∈ V,

and denote the generated evolution process in V by {C(t, s)| t ≥ s}. The following lemma
was proved in [8] and yields the exponential decay of the solutions of the linear homogeneous
equation.

Lemma 3.4. Let {C(t, s)| t ≥ s} be the evolution process in the Banach space V generated
by (3.19). Then, there exist constants C ≥ 0 and ω > 0 such that the norm of the operators
is bounded by

‖C(t, s)‖L(V ;V ) ≤ Ce−ω(t−s) for all t ≥ s, t, s ∈ R.

Sketch of the proof. We consider the Hilbert spaceH1
0 (Ω) with the norm and scalar product

〈u, v〉H1
0 (Ω) :=

∫
Ω

Ou(x) · Ov(x)dx, ‖u‖H1
0 (Ω) := 〈u, u〉

1
2

H1
0 (Ω)

u, v ∈ H1
0 (Ω),

which is equivalent to the standard norm and scalar product in H1
0 (Ω) by Poincaré's in-

equality. We de�ne the functional F : V → R by

F(φ, ψ) :=
1

2
‖φ‖2

H1
0 (Ω) +

1

2
‖ψ‖2

L2(Ω) + 2b〈φ, ψ〉L2(Ω),

where the constant b > 0 will be chosen below. If w(t) =
( u(t)
v(t)

)
is a smooth solution of

(3.19) we observe

0 = 〈v, vt〉L2(Ω) + 〈u, v〉H1
0 (Ω) + β(t)‖v‖2

L2(Ω),

0 = 〈u, vt〉L2(Ω) + ‖u‖2
H1

0 (Ω) + β(t)〈u, v〉L2(Ω).
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3.2. Non-Autonomous Evolution Equations

Using these identities and Poincaré's inequality follows

d

dt
F(u, v) = 〈u, v〉H1

0 (Ω) + 〈v, vt〉L2(Ω) + 2b〈ut, v〉L2(Ω) + 2b〈u, vt〉L2(Ω)

= −2b‖u‖2
H1

0 (Ω) −
(
β(t)− 2b

)
‖v‖2

L2(Ω) − 2bβ(t)〈u, v〉L2(Ω)

≤ −2b‖u‖2
H1

0 (Ω) −
(
β(t)− 2b

)
‖v‖2

L2(Ω) + bβ(t)
(
ε‖u‖2

L2(Ω) +
1

ε
‖v‖2

L2(Ω)

)
≤ −2b‖u‖2

H1
0 (Ω) −

(
β(t)− 2b

)
‖v‖2

L2(Ω) + bb1

( ε
λ1

‖u‖2
H1

0 (Ω) +
1

ε
‖v‖2

L2(Ω)

)
≤ −b(2− b1ε

λ1

)‖u‖2
H1

0 (Ω) − (b0 − 2b− bb1

ε
)‖v‖2

L2(Ω),

where we used Young's inequality, and λ1 denotes the �rst eigenvalue of the Laplace oper-
ator A. If we chose ε = λ1

b1
and b = b0

2(2+
b1
ε

)
follows

d

dt
F(u, v) ≤ −b

(
‖u‖2

H1
0 (Ω) + ‖v‖2

L2(Ω)

)
= −b‖(u, v)‖2

V .

Next, we prove that the functional F de�nes an equivalent norm on V , if the constant
b > 0 is su�ciently small. Let (φ, ψ) ∈ V , then

F(φ, ψ) ≤ 1

2
‖φ‖2

H1
0 (Ω) +

1

2
‖ψ‖2

L2(Ω) + b(‖φ‖2
L2(Ω) + ‖ψ‖2

L2(Ω)) (3.20)

≤ (
1

2
+

b

λ1

)‖φ‖2
H1

0 (Ω) + (
1

2
+ b)‖ψ‖2

L2(Ω) ≤
3

4
‖(φ, ψ)‖2

V ,

and on the other hand

F(φ, ψ) ≥ 1

2
‖φ‖2

H1
0 (Ω) +

1

2
‖ψ‖2

L2(Ω) − b(‖φ‖2
L2(Ω) + ‖ψ‖2

L2(Ω)) (3.21)

≥ (
1

2
− b

λ1

)‖φ‖2
H1

0 (Ω) + (
1

2
− b)‖ψ‖2

L2(Ω) ≥
1

4
‖(φ, ψ)‖2

V ,

if b < 1
4

min{1, λ1}. Setting α = min{1
4
, λ1

4
, b0

2(2+
b1
ε

)
} we obtain

d

dt
F(u, v) ≤ −α‖(u, v)‖2

V ≤ −
4

3
αF(u, v).

Gronwall's Lemma now implies

F(u, v) ≤ F(us, vs)e
−α 4

3
(t−s) t ≥ s,

and using the equivalence of the norms follows the exponential decay of the solutions,

‖C(t, s)ws‖V ≤
√

3e−
2
3
α(t−s)‖ws‖V t ≥ s.
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The semi-linear problem (3.18) generates an evolution process {U(t, s)| t ≥ s} in V , that
satis�es the integral equation

U(t, s)ws = C(t, s)ws +

∫ t

s

C(t, τ)F (U(τ, s)ws)dτ

= C(t, s)ws + S(t, s)ws

(see [8] and [42]). Next, we show that the evolution process {U(t, s)| t ≥ s} is pullback
strongly bounded dissipative.

Lemma 3.5. Let {U(t, s)| t ≥ s} be the evolution process in the Banach space V generated
by the initial value problem (3.18). Then, there exists a bounded subset B ⊂ V that
uniformly pullback absorbs all bounded sets of V : For every bounded set D ⊂ V there
exists TD ≥ 0 such that

U(t, t− s)D ⊂ B for all s ≥ TD, t ∈ R.

Sketch of the proof. We only indicate the ideas of the proof and refer to [12] (Section VI.4)
and [42] (Chapter 4) for details. We de�ne the functional F̃ : V → R by

F̃(φ, ψ) :=
1

2
‖φ‖2

H1
0 (Ω) +

1

2
‖ψ‖2

L2(Ω) + 2b̃〈φ, ψ〉L2(Ω) −
∫

Ω

G(φ(x))dx,

where G(s) :=
∫ s

0
f(r)dr and b̃ > 0 will be chosen appropriately. If w = w(t) =

( u(t)
v(t)

)
is

a smooth solution of (3.18) we observe

0 = 〈v, vt〉L2(Ω) + 〈u, v〉H1
0 (Ω) + β(t)‖v‖2

L2(Ω) − 〈F̃ (u), v〉L2(Ω),

0 = 〈u, vt〉L2(Ω) + ‖u‖2
H1

0 (Ω) + β(t)〈u, v〉L2(Ω) − 〈F̃ (u), u〉L2(Ω).

Using these identities and the growth restriction (3.15) on the non-linearity one can prove,
similarly as in Lemma 3.4, that the functional satis�es

d

dt
F̃(u, v) ≤ −b̃F̃(u, v) + c̃1,

for some constant c̃1 ≥ 0, if we choose b̃ > 0 su�ciently small. Gronwall's Lemma and the
norm equivalence in the proof of Lemma 3.4 now imply

F̃(u(t), v(t)) ≤ F̃(us, vs)e
−b̃(t−s) +

c̃1

b̃
(1− e−b̃(t−s))

≤
(
‖(us, vs)‖2

V −
∫

Ω

G(us(x))dx
)
e−b̃(t−s) +

c̃1

b̃
.

Furthermore, the growth restriction (3.15) and the continuous embeddingH1
0 (Ω) ↪→ Lp+2(Ω)

(see (3.22) below) allow to estimate the integral

|
∫

Ω

G(us(x))dx| ≤ c̃2

( ∫
Ω

|us(x)|p+2dx+ 1
)
≤ c̃2c̃3

(
‖us‖p+2

H1
0 (Ω)

+ 1
)
,
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where the constants c̃2, c̃3 ≥ 0. On the other hand, one can show using Assumption (3.16)
and the estimates in the proof of Lemma 3.4 that there exits a constant c̃4 ≥ 0 such that

F̃(u(t), v(t)) ≥ 1

8
‖(u(t), v(t))‖2

V − c̃4.

Combining all estimates we conclude

‖U(t, s)(us, vs)‖2
V ≤ c̃5

(
‖(us, vs)‖2

V + ‖us‖p+2

H1
0 (Ω)

+ 1
)
e−α(t−s) + c̃6,

for some constants c̃5, c̃6 ≥ 0.
This shows that the set B := {w ∈ V | ‖w‖V ≤ 2c̃6} is a �xed bounded pullback

absorbing set for the evolution process {U(t, s)| t ≥ s}. Moreover, for a bounded subset
D ⊂ V the corresponding pullback absorbing time TD ≥ 0 is independent of the time
instant t ∈ R.

To show that the family of operators {S(t, s)| t ≥ s} satis�es the smoothing property we
establish several auxiliary results. We denote by Xα, α ∈ R, the fractional power spaces
associated to the operator A with domain D(A) = X1 = H1

0 (Ω)∩H2(Ω) in X := L2(Ω) (see
[69] or [61]). Furthermore, let Hs(Ω), s ∈ R+, be the fractional Sobolev spaces obtained
by interpolation between the spaces Hm(Ω) and L2(Ω), m ∈ N (see [1] or Section II.1.3 in
[69]). Since the domain Ω is bounded we have the following continuous embeddings

Hs
0(Ω) ↪→ Hs(Ω) ↪→ Lp

′
(Ω) ↪→ L2(Ω) if

1

2
≥ 1

p′
≥ 1

2
− s

n
> 0, (3.22)

where Hs
0(Ω) denotes the closure of C∞0 (Ω) in Hs(Ω) (see [1] or [12] Theorem 1.1 in Chapter

2). If the second inequality in (3.22) is strict, the embedding Hs(Ω) ↪→ Lp
′
(Ω) is compact.

Moreover, for all s > 0 the embeddings

Hs
0(Ω) ↪→ X

s
2 ↪→ Hs(Ω),

are continuous (this follows by Theorem 16.1 in [75]). By duality we conclude

L2(Ω) ↪→ Lq
′
(Ω) ↪→ X−

s
2 if

1

p′
+

1

q′
= 1,

1

2
≥ 1

p′
≥ 1

2
− s

n
> 0, (3.23)

and the embedding Lq
′
(Ω) ↪→ X−

s
2 (Ω) is compact if the second inequality in (3.23) is strict.

The solution theory of the linear homogeneous problem can be extended to the fractional
power spaces Xα ×Xα− 1

2 , α ∈ R (see [69] Section IV.1.1).

Lemma 3.6. Let ε > 0 and the space V ε := X
1
2
−ε × X−ε. Then, for every initial data

ws =
( us
vs

)
∈ V ε there exists a unique solution w ∈ C([s, s + T ];V ε) of the homogeneous

problem

wt = Aβ(t)w t > s,

w|t=s = ws ws ∈ V ε,
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where T > 0 is arbitrary. Moreover, the generated evolution process is uniformly bounded
in V ε,

‖C(t, s)‖L(V ε;V ε) < d t ≥ s, t, s ∈ R,
for some constant d ≥ 0.

Proof. We consider the operator

Aβ(t) = A1 + A2(t) =

(
0 Id
−A 0

)
+

(
0 0
0 −β(t)Id

)
,

in V ε, where the operators A2(t) : V ε → V ε are linear and uniformly bounded in t by
Assumption (3.17). Here, A denotes the extension of the operator A to an operator in X−ε

with domain D(A). Since A is selfadjoint the operator A1 is dissipative in V ε. Indeed, let

w =
( u
v

)
∈ D(A1) = D(A)×X 1

2
−ε, then

〈
w,A1w

〉
V ε

=
〈( u

v

)
,
( v
−Au

)〉
V ε

=
〈
A

1
2
−εu,A

1
2
−εv
〉
X

+
〈
A−εv,A−ε(−Au)

〉
X

=
〈
A

1
2
−ε
u,A

1
2
−ε
v
〉
X
−
〈
A

1
2
−ε
v, A

1
2
−ε
u
〉
X

= 0.

By [61] (Corollary 4.4 in Chapter 1) the operator A1 generates a strongly continuous
semigroup of contractions in V ε. The lemma now follows by Theorem 1.2, Chapter 6 in
[61].

Lemma 3.7. There exists 0 < ε < 1 such that the Nemytskii operator F̃ is uniformly
Lipschitz continuous from H1−ε(Ω) to L2(Ω) within bounded subsets of H1

0 (Ω),

‖F̃ (u)− F̃ (v)‖L2(Ω) ≤ cf‖u− v‖H1−ε(Ω) for all u, v ∈ D,

where the constant cf ≥ 0 and the subset D ⊂ H1
0 (Ω) is bounded.

Proof. Let the subset D ⊂ H1
0 (Ω) be bounded, u, v ∈ D and R > 0 such that D ⊂ B0,

where B0 := B
H1

0 (Ω)
R (0). By assumption, p < 2

n−2
and consequently, p = (1 − ε) 2

n−2
for

some 0 < ε < 1. The growth restriction (3.15) and Hölder's inequality with p′ = n
2−2ε

and
q′ = n

n−2+2ε
imply

‖F (u)− F (v)‖L2(Ω) ≤ c‖(1 + |ζ|p)(u− v)‖L2(Ω)

≤ c
(
‖u− v‖L2(Ω) + ‖|ζ|p‖L2p′ (Ω)‖u− v‖L2q′ (Ω)

)
≤ c
(
C1‖u− v‖H1−ε(Ω) + C2‖ζ‖pL2pp′ (Ω)

‖u− v‖H1−ε(Ω)

)
,

for some ζ ∈ B0. Here, we used the continuous embeddings H1−ε(Ω) ↪→ L2(Ω) and
H1−ε(Ω) ↪→ L2q′(Ω) in (3.22), and C1, C2 ≥ 0 are the corresponding embedding constants.
Since the set D ⊂ B0 ⊂ H1

0 (Ω) is bounded, the embedding H1
0 (Ω) ↪→ L2pp′(Ω) = L

2n
n−2 (Ω)

in (3.22) yields the uniform bound on the norm ‖ζ‖p
L2pp′ (Ω)

, and concludes the proof of the
lemma.
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3.2. Non-Autonomous Evolution Equations

Next, we show that the evolution process {U(t, s)| t ≥ s} restricted to the bounded
pullback absorbing set B is uniformly Lipschitz continuous in V

ε
2 = X

1−ε
2 × X− ε2 , where

ε = 1− p
2
(n− 2) was de�ned in the proof of Lemma 3.7.

Lemma 3.8. Let ε := 1 − p
2
(n − 2) and the initial data ws =

( us
vs

)
∈ B, where B ⊂ V

denotes the uniformly pullback absorbing set in Lemma 3.5. Then, the evolution process
{U(t, s)| t ≥ s} generated by the initial value problem (3.18) is Lipschitz continuous with
respect to the norm of V

ε
2 .

Proof. We assume u, v ∈ B. We proved in Lemma 3.7 that the Nemytskii operator F̃ is
uniformly Lipschitz continuous from H1−ε to L2(Ω) in bounded subsets of H1

0 (Ω). More-
over, using the continuous embeddings L2(Ω) = X ↪→ X−

ε
2 and X

1−ε
2 ↪→ H1−ε(Ω) we

obtain

‖F̃ (u)− F̃ (v)‖
X−

ε
2
≤ c1‖F̃ (u)− F̃ (v)‖X ≤ cfc1‖u− v‖H1−ε(Ω) ≤ cfc1c2‖u− v‖

X
1−ε
2
,

for some constants c1, c2 ≥ 0. This shows that the operator F̃ is uniformly Lipschitz
continuous from X

1−ε
2 to X−

ε
2 in bounded subsets of H1

0 (Ω).
Let the initial data ws, zs ∈ B. We recall that the solution of the semi-linear problem

(3.18) satis�es the integral identity

U(t, s)ws = C(t, s)ws +

∫ t

s

C(t, τ)F (U(τ, s)ws)dτ t ≥ s,

and the evolution process {U(t, s)| t ≥ s} is bounded in V by Lemma 3.5. We can estimate

the di�erence of the solutions w(t) =
( w1(t)
w2(t)

)
= U(t, s)ws and z(t) =

( z1(t)
z2(t)

)
= U(t, s)zs

in the space V
ε
2 by

‖w(t)− z(t)‖
V
ε
2
≤ ‖C(t, s)‖L(V

ε
2 ;V

ε
2 )
‖ws − zs‖V ε

2
+

+

∫ t

s

‖C(t, τ)‖L(V
ε
2 ;V

ε
2 )
‖F (U(τ, s)ws)− F (U(τ, s)zs)‖V ε

2
dτ

≤ d
(
‖ws − zs‖V ε

2
+

∫ t

s

‖F̃ (w1(τ))− F̃ (z1(τ))‖
X−

ε
2
dτ
)

≤ d
(
‖ws − zs‖V ε

2
+

∫ t

s

c1c2cf‖w1(τ)− z1(τ)‖
X

1−ε
2
dτ
)

≤ d
(
‖ws − zs‖V ε

2
+

∫ t

s

c1c2cf‖w(τ)− z(τ)‖
V
ε
2
dτ
)
,

where we used the above estimate and Lemma 3.7. The Lipschitz continuity now follows
by Gronwall's Lemma,

‖U(t, s)ws − U(t, s)zs‖V ε
2

= ‖w(t)− z(t)‖
V
ε
2
≤ d‖ws − zs‖V ε

2
ec3(t−s), (3.24)

where the constant c3 = dc1c2cf .
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Combining the previous results we prove the smoothing property of the family of oper-
ators {S(t, s)| t ≥ s} with respect to the Banach space V and the auxiliary normed space
W := V

ε
2 .

Lemma 3.9. Let ε = 1 − p
2
(n − 2) and W := V

ε
2 . Then, the embedding V ↪→↪→ W is

compact, and for every t0 > 0 there exists a positive constant κt0 > 0 such that

‖S(t+ t0, t)w − S(t+ t0, t)z‖V ≤ κt0‖w − z‖W for all w, z ∈ B, t ∈ R,

where B denotes the uniformly pullback absorbing set de�ned in Lemma 3.5.

Proof. Let t ∈ R, t0 > 0 and the initial data w, z ∈ B. We denote the corresponding

solutions of (3.18) by U(τ, t)w =
( U1(τ, t)w
U2(τ, t)w

)
and U(τ, t)z =

( U1(τ, t)z
U2(τ, t)z

)
, where τ ≥ t.

By the de�nition of the operators {S(t, s)| t ≥ s}, Lemma 3.4 and Lemma 3.8 we obtain

‖S(t+ t0, t)w − S(t+ t0, t)z‖V ≤
∫ t+t0

t

‖C(t+ t0, τ)
(
F (U(τ, t)w)− F (U(τ, t)z))

)
‖V dτ

≤ C

∫ t+t0

t

e−ω(t+t0−τ)‖F̃ (U1(τ, t)w − F̃ (U1(τ, t)z)‖Xdτ

≤ cfC

∫ t+t0

t

‖U1(τ, t)w − U1(τ, t)z‖H1−ε(Ω)dτ

≤ cfc4C

∫ t+t0

t

‖U1(τ, t)w − U1(τ, t)z‖
X

1−ε
2
dτ ≤ cfc4C

∫ t+t0

t

‖U(τ, t)w − U(τ, t)z‖
V
ε
2
dτ

≤ cfc4C

∫ t+t0

t

dec3(τ−t)‖w − z‖
V
ε
2
dτ ≤ κt0‖w − z‖W ,

for some constants c4 ≥ 0 and κt0 > 0. In the estimate we used the continuous embedding
X

1−ε
2 ↪→ H1−ε(Ω) and the Lipschitz continuity (3.24) of the process {U(t, s)| t ≥ s} in V ε,

which was proved in Lemma 3.8. The compactness of the embedding V ↪→↪→ W follows
by (3.23).

Theorem 3.10 now implies the existence of a pullback exponential attractor for the
evolution process {U(t, s)| t ≥ s}.

Theorem 3.18. Let {U(t, s)| t ≥ s} be the evolution process in the Hilbert space V =
H1

0 (Ω)×L2(Ω) generated by the initial value problem (3.18). We set ε = 1− p
2
(n− 2) and

consider the space W = X
1−ε
2 ×X− ε2 . Moreover, for arbitrary λ < 1

2
we de�ne t0 := 1

ω
ln C

λ
,

where the constants C ≥ 0 and ω > 0 are determined by the estimate in Lemma 3.4.
Then, for every ν ∈ (0, 1

2
−λ) there exists a pullback exponential attractor {Mν(t)| t ∈ R}

for the evolution process {U(t, s)| t ≥ s}, and the fractal dimension of its sections is
uniformly bounded by

dimV
f (Mν(t)) ≤ log 1

2(ν+λ)

(
NW

ν
κ

(BV
1 (0))

)
for all t ∈ R,
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where κ = κt0 > 0 denotes the smoothing constant in Lemma 3.9.
Furthermore, the global pullback attractor exists and is contained in the pullback expo-

nential attractor {Mν(t)| t ∈ R}.

Proof. In Lemma 3.5 we proved the existence of a �xed bounded uniformly pullback ab-
sorbing set B ⊂ V for the evolution process {U(t, s)| t ≥ s}, and by Remark 3.4 in Section
3.2.3 the pullback absorbing assumptions (H1), (A1) and (A2) are satis�ed. If λ ∈ (0, 1

2
)

and t0 = 1
ω

ln C
λ
, Lemma 3.4 implies that the linear operators C(t + t0, t), t ∈ R, are con-

tractions in V with contraction constant λ < 1
2
, which veri�es Hypothesis (H3). Moreover,

the smoothing property (H2) of the family of operators {S(t, s)| t ≥ s} is valid within the
absorbing set B by Lemma 3.9. It remains to show the Lipschitz continuity (H4) of the
evolution process. To this end we recall that the Nemytskii operator F̃ is uniformly Lip-
schitz continuous from H1−ε(Ω) to L2(Ω) in bounded subsets of H1

0 (Ω) (see Lemma 3.7).
If the subset D ⊂ H1

0 (Ω) is bounded we use the continuous embedding H1
0 (Ω) ↪→ H1−ε(Ω)

and obtain

‖F̃ (u)− F̃ (v)‖L2(Ω) ≤ cf‖u− v‖H1−ε(Ω) ≤ Cf‖u− v‖H1
0 (Ω) for all u, v ∈ D, (3.25)

where the constant Cf ≥ 0. The Lipschitz continuity of the process {U(t, s)| t ≥ s} in V
now follows as in the proof of Lemma 3.7 by replacing the space V

ε
2 by V and using the

estimate (3.25).
Consequently, all required hypothesis are veri�ed and the existence of the pullback ex-

ponential attractor and the uniform estimates for the fractal dimension of its sections
follow from Theorem 3.10. The global pullback attractor of the evolution process exists by
Theorem 3.12 and is contained in the pullback exponential attractor.

3.3. Concluding Remarks

We constructed pullback exponential attractors for asymptotically compact evolution pro-
cesses assuming that the process possesses a family of time-dependent pullback absorbing
sets that possibly grow in the past. In Section 3.2.5 we applied the theoretical results to
show the existence of pullback exponential attractors for a non-autonomous Chafee-Infante
equation and a non-autonomous damped wave equation. We hope our results are appli-
cable in various other cases such as the non-autonomous Navier-Stokes equation or more
general non-autonomous wave equations.
Another interesting problem is whether the theory of exponential attractors can be ap-

plied to study the longtime behaviour of degenerate parabolic equations such as the bio�lm
models discussed in Chapter 1. This requires the construction of exponential attractors
in a generalized setting, which was developed in [20] for semigroups. For non-autonomous
degenerate parabolic problems it is necessary to extend this construction for evolution
processes.
An important property of exponential attractors is its stability under perturbations. For

semigroups it was proved in [26] (Theorem 4.1) that the Hölder continuity of exponential
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3. Exponential Attractors of In�nite Dimensional Dynamical Systems

attractors up to a time shift follows from the exponential attraction property. The proof
can be adapted and extended to show the Hölder continuity (up to a time shift) of the
pullback exponential attractor constructed in Theorem 3.10. However, it is desirable to
establish a stronger version of Hölder continuity. In the autonomous case this was obtained
in [35], and similarly in [32] where the stability was also shown for discrete non-autonomous
forwards exponential attractors.
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A. Function Spaces

We collect and explain in this appendix frequently used notation for function spaces. For
details and properties of the spaces we refer to [1] and [69].

Spaces of Continuous Functions

Let Ω ⊂ Rn, n ∈ N, be a bounded domain and u : Ω→ R be a scalar function. We denote
partial derivatives of u by

∂xi =
∂

∂xi
for i = 1, . . . , n,

and use the multi-index notation for partial derivatives of higher order m ∈ N,

∂β = ∂βnxn . . . ∂
β1
x1
, |β| =

n∑
i=1

βi = m,

where β = (β1, . . . , βn), and βi ∈ Z+ for i = 1, . . . , n.
The space C(Ω) consists of continuous functions u : Ω→ R, and the norm is de�ned by

‖u‖C(Ω) := max
{
|u(x)|

∣∣ x ∈ Ω
}

u ∈ C(Ω).

We denote by Cm(Ω), m ∈ N, the functions u : Ω → R that are m-times continuously
di�erentiable on Ω. The space Cm(Ω) contains all functions in Cm(Ω) such that the
function and all partial derivatives up to order m can be continuously extended to Ω. The
norm in Cm(Ω) is given by

‖u‖Cm(Ω) :=
∑
|β|≤m

‖∂βu‖C(Ω) u ∈ Cm(Ω).

Finally, the space Cm
0 (Ω) consists of the functions in Cm(Ω) that have compact support in

Ω.
For 0 < α < 1 the Hölder space Cα(Ω) contains all functions in C(Ω) such that

|u|α,Ω := sup
{ |u(x)− u(y)|
|x− y|α

∣∣ x, y ∈ Ω, x 6= y
}

is �nite. The norm in Cα(Ω) is de�ned by

‖u‖Cα(Ω) := ‖u‖C(Ω) + |u|α,Ω u ∈ Cα(Ω).
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A. Function Spaces

Let T > 0 and the parabolic cylinder be de�ned by QT := Ω× (0, T ). In the sequel we
consider functions u : QT → R depending on the spatial variable x ∈ Ω and time variable
t ∈ (0, T ). The space Ck,m(QT ), where k,m ∈ N, consists of functions u : QT → R that are
k-times continuously di�erentiable with respect to x and l-times continuously di�erentiable
with respect to t. Analogously, the spaces Ck,m(QT ) are de�ned.
Furthermore, we denote by Cα,β(QT ) the functions in C(QT ) that are Hölder continuous

with exponent 0 < α < 1 with respect to x and Hölder continuous with exponent 0 < β < 1
with respect to time t.

Lebesgue Spaces

For 1 ≤ p <∞ the Lebesgue space Lp(Ω) consists of measurable functions u : Ω→ R such
that the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u(x)|pdx
) 1

p

is �nite. The space of essentially bounded functions L∞(Ω) consists of measurable functions
u : Ω→ R such that

‖u‖L∞(Ω) := esssup
{
|u(x)|

∣∣ x ∈ Ω
}

is �nite. The local Lebesgue spaces Lploc(Rn), where 1 ≤ p ≤ ∞, contain the measurable
functions u : Rn → R such that for every bounded subset K ⊂ Rn the restriction f |K
belongs to the space Lp(K).
If p = 2 the space L2(Ω) is a Hilbert space, and the inner product is de�ned by

〈u, v〉L2(Ω) :=

∫
Ω

u(x)v(x)dx u, v ∈ L2(Ω).

For vector valued functions u : Ω→ Rk, where k ∈ N, the Hilbert space L2(Ω;Rk) consists
of functions u = (u1, . . . , uk) such that ui ∈ L2(Ω) for all i = 1, . . . , n. The inner product
in L2(Ω;Rk) is de�ned by

〈u, v〉L2(Ω;Rk) :=
k∑
i=1

〈ui, vi〉L2(Ω) u, v ∈ L2(Ω;Rk).

Sobolev Spaces

We denote the Sobolev spaces by Wm,p(Ω), where m ∈ N and 1 ≤ p ≤ ∞. The norm in
Wm,p(Ω) is de�ned by

‖u‖Wm,p(Ω) :=
∑
|β|≤m

‖∂βu‖Lp(Ω) u ∈ Wm,p(Ω).
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For p = 2 the Sobolev spaces are Hilbert spaces that we denote by Hm(Ω) := Wm,2(Ω).
The inner product in Hm(Ω) is de�ned by

〈u, v〉Hm(Ω) :=
∑
|β|≤m

〈∂βu, ∂βv〉L2(Ω) u, v ∈ Hm(Ω).

For non-integer s ∈ R+ the spaces Hs(Ω) are de�ned by interpolation between L2(Ω)
and Hm(Ω), m ∈ N. Moreover, for s ∈ R+ we denote by Hs

0(Ω) the completion of the
space C∞0 (Ω) in Hs(Ω), and by H−s(Ω) the dual spaces of Hs

0(Ω).

Banach Space Valued Functions

Let (V, ‖ · ‖V ) be a Banach space and T > 0. We denote by C([0, T ];V ) the space of
continuous functions u : [0, T ]→ V , where the norm is de�ned by

‖u‖C([0,T ];V ) := max
{
‖u(t)‖V | t ∈ [0, T ]

}
u ∈ C([0, T ];V ).

The Bochner spaces Lp((0, T );V ), where 1 ≤ p < ∞, consist of measurable functions
u : (0, T )→ V such that the norm

‖u‖Lp((0,T );V ) :=
(∫ T

0

‖u(t)‖pV dt
) 1
p

is �nite. Similarly, the Bochner space L∞((0, T );V ) contains all measurable functions
u : (0, T )→ V such that

‖u‖L∞((0,T );Ω) := esssup
{
‖u(t)‖V

∣∣ t ∈ (0, T )
}

is �nite.
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B. An Auxiliary Lemma

The following result is needed in the proof of Lemma 1.3. Its proof was indicated by M.A.
Efendiev.

Lemma B.1. Let the function f ∈ C2(R;R) satisfy C1|u|p−1 ≤ f ′(u) ≤ C1|u|p−1, where
p > 1 and the constants C1 and C2 are positive. Then, for every s ∈ (0, 1) and 1 < q ≤ ∞,
we have

‖u‖W s/p,pq(Ω) ≤ Cp‖f(u)‖1/p
W s,q(Ω)

where the constant Cp ≥ 0 is independent of u.

Proof. Let f−1 denote the inverse of the function f . The conditions on f imply that the
function G(v) := sgn(v)|f−1(v)|p is non-degenerate and satis�es

C2 ≤ G′(v) ≤ C1,

for some positive constants C1 and C2. Consequently, we obtain

|f−1(v1)− f−1(v2)|p ≤ Cp|G(v1)−G(v2)| ≤ C ′p|v1 − v2|,

for all v1, v2 ∈ R and some constant C ′p ≥ 0. Finally, according to the characterization of
fractional Sobolev spaces (see [27]) follows

‖f−1(v)‖pq
W s/p,qp(Ω)

:= ‖f−1(v)‖pqLpq(Ω) +

∫
Ω

∫
Ω

|f−1(v(x))− f−1(v(y)|pq

|x− y|n+sq
dx dy

≤ C‖v‖qLq(Ω) + C ′p

∫
Ω

∫
Ω

|v(x)− v(y)|q

|x− y|n+sq
dx dy = C ′′p‖v‖

q
W s,q(Ω),

for some constant C ′′p ≥ 0 , where we implicitly used that f−1(v) ∼ sign(v)|v|1/p.

169





Bibliography

[1] Adams R.A., Fournier J.J.F., Sobolev Spaces, Second Edition, Elsevier, Amsterdam,
2003.

[2] Amann H., Invariant Sets and Existence Theorems for Semilinear Parabolic and El-
liptic Systems, Journal of Mathematical Analysis and Applications 65, pp. 432-467,
1978.

[3] Arrieta J., Carvalho A.N., Hale J.K., A Damped Hyperbolic Equation with Critical
Exponent, Communications in Partial Di�erential Equations 17(5/6), pp. 841-866,
1992.

[4] Assing S., Comparison of Systems of Stochastic Partial Di�erential Equations,
Stochastic Processes and Their Applications 82, pp. 259-282, 1999.

[5] Babin A.V., Vishik M.I., Attractors of Evolution Equations, North-Holland, Amster-
dam, 1992.

[6] Battin T.J., Sloan W.T., Kjelleberg S., Daims H., Head I.M., Curtis T.P., Eberl L.,
Microbial Landscapes: New Paths to Bio�lm Research, Nature Reviews Microbiology
5(1), pp. 76-81, 2007.

[7] Ben-Artzi A., Eden A., Foias C., Nicolaenko B., Hölder Continuity of the Inverse
of Mañe's Projection, Journal of Mathematical Analysis and Applications 178, pp.
22-29, 1993.

[8] Caraballo T., Carvalho A.N., Langa J.A., Rivero L.F., Existence of Pullback Attractors
for Pullback Asymptotically Compact Processes, Nonlinear Analysis: Theory, Methods
and Applications 72(3/4), pp. 1967-1976, 2010.

[9] Carvalho A.N., Langa J.A., Robinson J.C., Finite-Dimensional Global Attractors in
Banach Spaces, Journal of Di�erential Equations 249, pp. 3099-3109, 2010.

[10] Carvalho A.N., Sonner S., Pullback Exponential Attractors for Evolution Processes in
Banach Spaces: Theoretical Results, Submitted.

[11] Cheban D.N., Kloeden P.E., Schmalfuss B., The Relationship between Pullback, For-
ward and Global Attractors of Nonautonomous Dynamical Systems, Nonlinear Dy-
namics and Systems Theory 2(2), pp. 125-144, 2002.

171



Bibliography

[12] Chepyzhov V.V., Vishik M.I., Attractors for Equations of Mathematical Physics,
American Mathematical Society, Providence, Rhode Island, 2002.

[13] Cholewa J.W., Czaja R., Mola G., Remarks on the Fractal Dimension of Bi-Space
Global and Exponential Attractors, Bolletino dell Unione Matematica Italiana 1(1),
pp. 121-146, 2008.

[14] Chueshov I.D., Monotone Random Systems: Theory and Applications, Springer-
Verlag, Berlin-Heidelberg, 2002.

[15] Chueshov I.D., Vuillermot P.A., Non-Random Invariant Sets for Some Systems of
Parabolic Stochastic Partial Di�erential Equations, Stochastic Analysis and Applica-
tions 22(6), pp. 1421-1486, 2004.

[16] Costerton J.W., Stewart P.S., Greenberg E.P., Bacterial Bio�lms: A Common Cause
of Persistent Infections, Science 284, pp. 1318-1322, 1999.

[17] Crauel H., Debussche A., Flandoli F., Random Attractors, Journal of Dynamics and
Di�erential Equations 9(2), pp. 307-341, 1997.

[18] Cresson J., Efendiev M.A., Sonner S., On the Positivity of Solutions of Systems of
Stochastic PDEs, Submitted.

[19] Czaja R., Efendiev M., Pullback Exponential Attractors for Nonautonomous Equa-
tions Part I: Semilinear Parabolic Problems, Journal of Mathematical Analysis and
Application 381(2), pp. 748-765, 2011.

[20] Czaja R., Efendiev M., A Note on Attractors with Finite Fractal Dimension, Bulletin
of the London Mathematical Society 40, pp. 651-658, 2008.

[21] Demaret L., Eberl H.J., Efendiev M.A., Lasser R., Analysis and Simulation of a Meso-
scale Model of Di�usive Resistance of Bacterial Bio�lms to Penetration of Antibiotics,
Advances in Mathematical Sciences and Applications 18(1), pp. 269-304, 2008.

[22] Dung L., Nicolaenko B., Exponential Attractors in Banach Spaces, Journal of Dynam-
ics and Di�erential Equations 13(4), pp. 791-806, 2001.

[23] Eberl H.J., Efendiev M.A., A Transient Density-Dependent Di�usion-Reaction Model
for the Limitation of Antibiotic Penetration in Bio�lms, Electronic Journal of Di�er-
ential Equations, Conference 10, pp. 123-142, 2003.

[24] Eberl H.J., Parker D.F., van Loosdrecht M., A New Deterministic Spatio-Temporal
Continuum Model for Bio�lm Development, Journal of Theoretical Medicine 3(3), pp.
161-175, 2001.

[25] Eberl H.J., Sudarsan R., A Brief Note on Ecological and Mechanical Views in Bio�lm
Modeling, International Journal of Biomathematics and Biostatistics 1(1), pp. 33-45,
2010.

172



Bibliography

[26] Eden A., Foias C., Nicolaenko B., Temam R., Exponential Attractors for Dissipative
Evolution Equations, John Wiley & Sons Ltd., Chichester, 1994.

[27] Efendiev M.A., Fredholm Structures, Topological Invariants and Applications, Ameri-
can Institute of Mathematical Sciences 3, 2009.

[28] Efendiev M.A., Demaret L., On the Structure of Attractors for a Class of Degener-
ate Reaction-Di�usion Systems, Advances in Mathematical Sciences and Applications
18(2), pp. 105-118, 2008.

[29] Efendiev M.A., Eberl H.J., On Positivity of Solutions of Semi-Linear Convection-
Di�usion-Reaction Systems, with Applications in Ecology and Environmental Engi-
neering, Proceedings RIMS Kyoto 1542, pp. 92-101, 2007.

[30] Efendiev M.A., Eberl H.J., Zelik S.V., Existence and Longtime Behavior of a Bio�lm
Model, Communications on Pure and Applied Mathematics 8(2), pp. 509-531, 2009.

[31] Efendiev M.A., Lasser R., Sonner S., Necessary and Su�cient Conditions for an In�-
nite System of Parabolic Equations Preserving the Positive Cone, International Jour-
nal of Biomathematics and Biostatistics 1(1), pp. 47-52, 2010.

[32] Efendiev M., Miranville A., Zelik S., Exponential Attractors and Finite-Dimensional
Reduction for Nonautonomous Dynamical Systems, Proceedings of the Royal Society
of Edinburgh 135(4), pp. 703-730, 2005.

[33] Efendiev M., Miranville A., Zelik S., Exponential Attractors for a Nonlinear Reaction-
Di�usion System in R3, Comptes Rendus de'l Acadadémie des Sciences Paris Series I
330(8), pp. 713-718, 2000.

[34] Efendiev M.A., Sonner S., On Verifying Mathematical Models with Di�usion, Trans-
port and Interaction, Advances in Mathematical Sciences and Applications 32, pp.
41-67, 2010.

[35] Efendiev M., Yagi A., Continuous Dependence on a Parameter of Exponential Attrac-
tors for Chemotaxis-Growth System, Journal of the Mathematical Society of Japan
57(1), pp. 167-181, 2005.

[36] Efendiev M., Yamamoto Y., Yagi A., Exponential Attractors for Non-Autonomous
Dissipative System, Journal of the Mathematical Society of Japan 63(2), pp. 647-673,
2011.

[37] Efendiev M., Zelik S., Finite- and In�nite-Dimensional Attractors for Porous Media
Equations, Proceedings of the London Mathematical Society 96(1), pp. 51-77, 2008.

[38] Falconer K., Fractal Geometry, Mathematical Foundations and Applications, Second
Edition, John Wiley & Sons Ltd., Chichester, 2003.

173



Bibliography

[39] Foias C., Sell G.R., Temam R., Inertial Manifolds for Nonlinear Evolutionary Equa-
tions, Journal of Di�erential Equations 73, pp. 309-353, 1994.

[40] Frederick M.R., Kuttler C., Hense B.A., Müller J., Eberl H.J., A Mathematical Model
of Quorum Sensing in Patchy Bio�lm Communities with Slow Background Flow,
Canadian Applied Math Quarterly 18(3), pp. 267-298, 2010.

[41] Gilbarg D., Trudinger N.S., Elliptic Partial Di�erential Equations of Second Order,
Second Edition, Springer-Verlag, Berlin-Heidelberg-New York, 1983.

[42] Hale J.K., Asymptotic Behavior of Dissipative Systems, American Mathematical So-
ciety, Providence, Rhode Island, 1988.

[43] Hense B.A., Kuttler C., Müller J., Rothballer M., Hartmann A., Kreft J.-U., Does Ef-
�ciency Sensing Unify Di�usion and Quorum Sensing?, Nature Reviews Microbiology
5, pp. 230-239, 2007.

[44] Jäger W., Luckhaus S., On Explosions of Solutions to a System of Partial Di�erential
Equations Modelling Chemotaxis, Transactions of the American Mathematical Society
329(2), pp. 819-824, 1992.

[45] Khassehkhan H., Efendiev M.A., Eberl H.J., A Degenerate Di�usion-Reaction Model
of an Amensalistic Bio�lm Control System: Existence and Simulation of Solutions,
Discrete and Continuous Dynamical Systems Series B 12(2), pp. 371-388, 2009.

[46] Kolmogorov A.N., Tihomirov V.M., ε-Entropy and ε-Capacity of Sets in Functional
Spaces, American Mathematical Society Translations Series 2 17, pp. 277-364, 1961.

[47] Kotelenez P., Comparison Methods for a Class of Function Valued Stochastic Partial
Di�erential Equations, Probability Theory and Related Fields 93, pp. 1-19, 1992.

[48] Ladyzenskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and Quasi-linear Equa-
tions of Parabolic Type, American Mathematical Society, Providence, Rhode Island,
1968.

[49] Langa J.A., Miranville A., Real J., Pullback Exponential Attractors, Discrete and
Continuous Dynamical Systems 26(4), pp. 1329-1357, 2010.

[50] Langa J.A., Schmalfuss B., Finite Dimensionality of Attractors for Non-Autonomous
Dynamical Systems Given by Partial Di�erential Equations, Stochastics and Dynamics
4(3), pp. 385-404, 2004.

[51] Lieberman G.M., Second Order Parabolic Di�erential Equations, World Scienti�c,
Singapore, 1996.

[52] Mañé R., On the Dimension of the Compact Invariant Sets of Certain Non-Linear
Maps, Lecture Notes in Mathematics 898, Springer-Verlag, pp. 230-242, 1981.

174



Bibliography

[53] Milian A., Invariance for Stochastic Equations with Regular Coe�cients, Stochastic
Analysis and Applications 15(1), pp. 91-101, 1997.

[54] Mora X., Semilinear Parabolic Problems De�ne Semi�ows on Ck Spaces, Transactions
of the American Mathematical Society 278(1), pp. 21-55, 1983.

[55] Müller J., Kuttler C., Hense B.A., Rothballer M., Hartmann A., Cell-Cell Communica-
tion by Quorum Sensing and Dimension-Reduction, Journal of Mathematical Biology
53, pp. 672-702, 2006.

[56] Øksendal B., Stochastic Di�erential Equations: An Introduction with Applications,
Sixth Edition, Springer-Verlag, Berlin-Heidelberg, 2003.

[57] O'Toole G.A., Stewart P.S., Bio�lms Strike Back, Nature Biotechnology 23(11), pp.
1378-1379, 2005.

[58] Pao C.V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.

[59] Parsek M.R., Greenberg E.P., Sociomicrobiology: The Connections between Quorum
Sensing and Bio�lms, Trends in Microbiology 13(1), pp. 27-33, 2005.

[60] Pavel N.H., Di�erential Equations, Flow Invariance and Applications, Pitman,
Boston, 1984.

[61] Pazy A., Semigroups of Linear Operators and Applications to Partial Di�erential
Equations, Springer-Verlag, New York, 1983.

[62] Protter M.H., Weinberger H.F., Maximum Principles in Di�erential Equations,
Springer-Verlag, New York, 1984.

[63] Renardy M., Rogers R.C., An Introduction to Partial Di�erential Equations, Second
Edition, Springer-Verlag, New York, 2004.

[64] Robinson J.C., Linear Embeddings of Finite-Dimensional Subsets of Banach Spaces
into Euclidean Spaces, Nonlinearity 22, pp. 711-728, 2009.

[65] Sauer T., Yorke J.A., Casdagli M., Embedology, Journal of Statistical Physics 65(3/4),
pp. 579-616, 1991.

[66] Smith H.L., Monotone Dynamical Systems: An Introduction to Competitive and Co-
operative Systems, American Mathematical Society, Providence, Rhode Island, 1995.

[67] Smoller J., Shock Waves and Reaction-Di�usion Equations, Second Edition, Springer-
Verlag, New York, 1994.

[68] Sonner S., Efendiev M.A., Eberl H.J., On the Well-Posedness of a Mathematical
Model of Quorum-Sensing in Patchy Bio�lm Communities, Mathematical Methods in
the Applied Sciences 34(13), pp. 1667-1684, 2011.

175



Bibliography

[69] Temam R., In�nite Dimensional Dynamical Systems in Mechanics and Physics, Sec-
ond Edition, Springer-Verlag, New York, 1997.

[70] Twardowska K., Wong-Zakai Approximations for Stochastic Di�erential Equations,
Acta Applicandae Mathematicae 43, pp. 317-359, 1996.

[71] Walter W., Gewöhnliche Di�erentialgleichungen, Seventh Edition, Springer-Verlag,
Berlin-Heidelberg, 2000.

[72] Wanner O., Gujer W., A Multispecies Bio�lm Model, Biotechnology and Bioengineer-
ing 28(3), pp. 314-328, 1986.

[73] Wong E., Zakai M., On the Relationship between Ordinary and Stochastic Di�erential
Equations, International Journal of Engineering Science 3, pp. 213-229, 1965.

[74] Wong E., Zakai M., Riemann-Stieljes Approximations of Stochastic Integrals,
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 12, pp. 87-97, 1969.

[75] Yagi A., Abstract Parabolic Evolution Equations and Their Applications, Springer-
Verlag, Berlin-Heidelberg, 2010.

176


