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ABSTRACT 

Generative Design-to-Fabrication Automation  
using Spatial Grammars and Heuristic Search 

Planning for Computerized Numerical Control (CNC) fabrication requires generation of 
process plans for the fabrication of parts that can be executed on CNC enabled machine tools. 
To create such plans, a large amount of domain specific knowledge is required to map the 
desired geometry of a part to a manufacturing process, thus decomposing design information 
into a set of feasible machining operations. Approaches to automate this planning process still 
rely heavily on human capabilities, such as planning and reasoning about geometry in relation 
to machining capabilities. In this thesis, the author presents a new, spatial grammar-based 
approach for automatically creating fabrication plans for CNC machining from a given part 
geometry. To avoid the use of static feature sets and their pre-defined mappings to machining 
operations, the method encodes knowledge of fundamental machine capabilities. The use of 
spatial grammars as a formalism enables systematic formulation of hard and soft constraints 
on spatial relations between the volume to be removed and the removal volume shape for a 
machining operation. Further, a software implementation of the core method is presented and 
validated using several examples of machining a part on a milling machine including changed 
tools and tool failures during runtime. Advanced heuristic search methods are investigated to 
further improve the quality of the generated plans in terms of accuracy and machining time. 
Overall, the approach and method presented is an enabler for the creation of an autonomous 
fabrication system and CNC machine tools that are able to reason about part geometry in 
relation to available capabilities and carry out on-line planning for CNC fabrication. 

Generative Konstruktions- und Fertigungs-Automation mittels Räumlicher 
Grammatiken und heuristischer Suchmethoden 

Die Planung von CNC-Bearbeitungsprozessen erfordert die Erzeugung von Prozess-Plänen 
die auf CNC Werkzeugmaschinen ausgeführt werden können. Eine große Menge spezifischen 
Wissens ist erforderlich um die Form eines Bauteils den entsprechenden Fertigungsprozessen 
zuzuordnen und damit die Gestalt-Information in eine Menge möglicher 
Fertigungsoperationen zu zerlegen. Existierende Ansätze sind zu großen Teilen noch 
abhängig von menschlichen Fähigkeiten, wie Planen und Schlussfolgern über die Geometrie 
im Bezug zu den Fertigungsmöglichkeiten. In dieser Arbeit wird ein neuer, auf räumlichen 
Grammatiken basierender Ansatz vorgestellt um automatisiert Pläne für die Herstellung einer 
Bauteil-Geometrie auf CNC Werkzeugmaschinen zu erzeugen. Die Methode beinhaltet das 
Wissen über die fundamentalen Fertigungsmöglichkeiten, um statische Zuordnungen 
zwischen Features und Fertigungsoperationen zu vermeiden. Die Verwendung von 
räumlichen Grammatiken erlaubt es, Randbedingungen und Beschränkungen bezüglich der 
Form eines Bauteils und den möglichen Fertigungsoperationen systematisch zu formulieren. 
Weiterhin wird ein Software-Prototyp der Kern-Methode vorgestellt und anhand mehrerer 
Szenarien validiert. Weiterentwickelte heuristische Suchmethoden werden untersucht um die 
erzielten Ergebnisse hinsichtlich Genauigkeit und Herstelldauer zu verbessern. Insgesamt 
ermöglicht der Ansatz, dass autonome Fertigungssysteme und CNC Werkzeugmaschinen 
zwischen der Bauteilgeometrie und den verfügbaren Bearbeitungsmöglichkeiten abwägen und 
selbstständig, während der Laufzeit, Pläne für die CNC Bearbeitung generieren. 
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1 Introduction 

In order for companies to remain competitive in today’s global market they must be able to 
rapidly respond to changing customer needs and desires. Manufacturing companies are 
constantly increasing the number of product variants they offer to the market to react to the 
growing trend to produce customized products (LINDEMANN et al. 2006). The customization 
of products drives the need for manufacturing systems to more efficiently produce parts with 
non-pre-defined geometry at a competitive price. Even today, the process, from design to the 
actual fabrication of parts, relies on human experts for planning, preparing and carrying out 
fabrication processes. This process is presented in Section 1.1, focusing on the part fabrication 
itself using CNC machine tools. For each new part to be fabricated, new machine tool 
programs must be created that drive the machines tools. These part programs are required for 
every part and shape to be machined and often are prepared manually or created using 
software tools operated by human experts. The role of human experts in today’s design-to-
fabrication process chain is presented in Section 1.2. In the context of customized and 
individual part production, today’s conventional automation is too inflexible and often leads 
to a significant drop of productivity due to frequent changeovers. To overcome this, 
researchers propose to apply cognition within technical systems that allows the automation 
systems to increase the productivity despite the increase in complexity (PUTZER & ONKEN 
2003) by becoming more autonomous. This can be achieved by providing the cognitive 
system with an internal representation of its environment and giving it the capability to reason 
about the knowledge within this representation. The new paradigm for enabling autonomous 
behavior of systems in dynamic environments, called “Cognition for Technical Systems 
(CoTeSys)”, is presented in Section 1.3. The drivers and barriers for fully automating the 
design-to-fabrication process are presented in Section 1.4. This chapter closes with a 
presentation of the thesis outline in Section 1.5 and a summary of the targeted research 
contributions in Section 1.6. 

1.1 The design-to-fabrication process 

Process planning refers to the selection of the procedures required to convert a part design 
into a piece of hardware (MACHINABILITY DATA CENTER 1986). Throughout the whole 
process chain, shown in Figure 1-1, from an initial design to the finished part, decisions have 
to be made and plans created as well as machine instructions generated. The first step is the 
creation of a geometric model of the design using Computer-Aided Design (CAD). 
Computer-Aided Process Planning (CAPP), as the essential link between CAD and 
Computer-Aided Manufacturing (CAM) (CORNEY et al. 2005), is a tool for preparing the 
fabrication by generating high level process plans. It involves recognition of possible 
machining operations from the geometric model, the selection of machines and processes as 
well as the determination of their sequence. Overall, DRAGHICI & BONDREA (1998) consider 
CAPP as comprising preparation, design, and coordination of manufacturing.  
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Different approaches to CAPP can be identified (CHEN et al. 2006): The variant approach 
relies on using process plans from previously fabricated parts within the same part family and 
to allow the human expert to change the process plan as to fit it to the part to be fabricated. 
The similarity between several parts is determined based on a classification scheme for parts 
such as Group Technology (GT) (KUSIAK 1990). However, this approach is tedious, labor-
intensive and must rely on the similarity and classification of the fabricated parts. In contrast 
to this, the generative approach creates new process plans for each part using knowledge 
about the fabrication processes. 

In contrast to CAD/CAM, CAPP focuses more on the production oriented aspects than the 
geometric reasoning involved in fabrication planning. However, sometimes researchers use 
the term CAP/CAPP and CAD/CAM alike. For the remainder of this thesis, the terms are 
used independently either for managing process plans in the case of CAPP or for the link 
between geometry and operations and processes in the case of CAD/CAM. 

CAD

?

Design finished 

part
CAPP CAM CNC

machining

 

Figure 1-1: Current Design-to-Fabrication process (CORNEY et al. 2005, FEENEY & FRECHETTE 2002, 

 KRISHNA & RAO 2006, MIAO et al. 2002, SHEA et al. 2008). 

Table 1-1: Sample process plan (according to ZHANG & ALTING 1994) 

Date 08.06.2007
Material Aluminium, 82 N/mm²
Stock L 30.00mm x W 30.00mm x H 20.00mm 

No. Process 
description

Machine Setup Tool Parameters
(Speed, Feed)

NC-Data Time [min]

10 Mill bottom surface 1
Roughing

MILL01 see attached #1 
for illustration

Face mill #1 5200 Rpm
7925 mm/min

Housing_Bottom 3 setup
5 machining

20 Mill top surface
Roughing

MILL01 see attached #1 Face mill #1 5200 Rpm
7925 mm/min

Housing_Top 2 setup
6 machining

30 Drill 4 holes
Roughing

DRL02 set on surface 1
see attached #2

Fwist drill #5 3900 Rpm
  364 mm/min

Housing_Holes 2 setup
3 machining

(...)

Part No.     S0125-F
Part Name   Housing
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To enable the fabrication of a part in an industrial environment, a process plan for its 
fabrication must be derived from the part design, reflecting the available resources and 
machines. An example process plan can be found in Table 1-1. The process plan can be 
provided digitally or on paper. The header section of the process plan contains the part 
identification number, the part name, the date of the creation of the process plan, a 
specification of the workpiece and the size of the stock or workpiece. Each row of the table 
corresponds to a fabrication operation, each specified by a sequence of operations, a 
description of the process, the machine tool, the setup of the part within the machine tool 
envelope including fixtures, the tool used, cutting conditions (speed and feed), a reference to 
the NC program and the time duration of setup and machining (CHEN et al. 2006, ZHANG & 
ALTING 1994). 

For fabrication planning of parts, several important tasks have to be fulfilled. In the following 
a selection of the most important tasks within the design-to-fabrication process is presented.  

Checking the machinability 

Before a process plan for machining a part can be created it must be ensured that it can be 
machined with the available resources. To assess the machinability three factors have to be 
considered (MIAO et al. 2002): Part size, Complexity and Accessibility. 

Part size determines whether the part can fit inside the machine tools and fixtures and 
whether the machine tools and handling devices can support the dimensions and weights of 
the part. The Complexity of the part is greatly determined by the types of features, i.e. 
geometric entities e.g. prismatic pockets, freeform surfaces, used (see Section 2.1 for a more 
thorough definition of the term feature). An additional determination is whether they can be 
machined only from one access direction or from multiple. The more potential access 
direction a feature has the less complex the part is since the number of setups can potentially 
be reduced. For Accessibility it is important that every feature can be reached collision free by 
the tools of the machine tool such that the machined part matches the designed part. 

However with increasing part complexity, the checking of the machinability relies on 
software tools to analyze the outcome of the process. That means the process plan is created 
iteratively until the desired result, a feasible process plan, is achieved. 

Setup planning 

Setup planning deals with the definition of the location and orientation of the part within the 
machine tool such that machining can take place (YAO et al. 2007). The machining features, 
and respectively their machining operations with the same approach direction are grouped 
into the same setup (AMAITIK & KILIÇ 2007) to minimize change-over time on the shop floor. 
Therefore alternative feature interpretations reducing the number of setups are chosen (SHAH 
& MÄNTYLÄ 1995). 
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Selection of machine tools and operations 

The operations required to machine features need to be specified since the same feature can 
be machined using different types of operations. An example for this is a hole that can be 
milled using circular interpolation, bored using a boring tool or be drilled. Further the 
machine tools need to be defined. Considering a similar example, a concentric hole in a 
cylindrical part can be drilled on a turning machine or on a milling machine. If the type of 
machine tool is determined, e.g. “milling machine”, the actual machine tool (i.e. its instance) 
to use on the shop floor has to also be defined, e.g. “milling machine 1.” 

Specification of manufacturing sequence 

After the type of operations and machine tools have been defined, the sequence of operations 
can be specified aiming at a minimum machining time (MIAO et al. 2002). The operations can 
be reordered depending on operation constraints and precedence constraints. Operation 
constraints dictate, that operations are carried out in a distinctive order, e.g. finish machining 
after rough machining or reaming after drilling. The precedence constraints reflect the spatial 
arrangements of the operation, i.e. can an operation be carried out collision-free before 
another (MIAO et al. 2002). In literature, the term cutting sequence (SAKAL & CHOW 1994) is 
used similarly to the term machining sequence. 

Selection of cutting tools 

The selection of cutting tools comprises the determination of the cutting tool type and tool 
size regarding the part’s geometry and machining operations such as drilling, turning or 
milling. The tool selection greatly influences process time and part quality (MIAO et al. 2002). 
The tool selection defines also technological parameters such as the tool material, e.g. carbide 
or high speed steel (HSS) (SAKAL & CHOW 1994). 

 

From the plan created, the machine instructions for the Computerized Numerical Controlled 
(CNC) machine tools can be generated by first generating tool paths and then translating these 
to controller specific instructions using Computer-Aided Manufacturing. These instructions 
can then be executed on the CNC machine tool to fabricate the desired part. 

The origin of CAM stems from the introduction of Numerical Control (NC) (BESANT & LUI 
1986) and later Computerized Numerical Control (CNC) machine tools. With increasing 
capabilities, such as multi-axis machining, programming and validation of programs became 
more and more difficult. To overcome this, the first CAM tools were developed offering a 
more convenient way of programming using a graphical user-interface and program 
validation using simulation. According to KOCHAN (1986), CAM is the “computer-aided 
preparation of manufacturing including decision-making, process and operational planning… 
and manufacturing with different types of automation” and further encompasses the 
management and control of the manufacturing system (XU & HE 2004). This also involves the 
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technical control and operation of machines and tools (based on NC and CNC technology) 
during production and not the organizational control as in Production Planning Systems (PPS) 
(FRANZ 1991). Giving a single concise definition of CAM is difficult due to the widespread 
and sometimes ambiguous use of the term CAM (ZHANG & ALTING 1994). However, CAM is 
used now as general term for any computer tool to support the creation of machining 
programs (SHIRASE & FUJII 2009). Therefore the terms CAM and CAD/CAM are used 
synonymously if not indicated otherwise. 

The idea of coupling Computer-Aided Design (CAD) Systems with Computer-Aided 
Manufacturing (CAM) lies in using the existing product definition data for process planning 
and NC programming (GRABOWSKI & ANDERL 1990). The integration of these subsystems on 
a high-level leads to CAD/CAM (HATVANY 1982). Therefore CAD/CAM overcomes the 
need for traditional manual or computer-assisted NC program creation even when higher level 
languages such as APT are used. 

In a CAD/CAM application, the part program can be created with graphic feedback, able to 
display the part geometry and the created tool paths. After the verification of the tool path it 
can be converted to the program for the CNC machine tool (CHANG et al. 1991). 

The current state-of-the-art in NC programming is shown in Figure 1-2. At the Business Level 
NC Planning, CAM tools are used for programming. The result is machine independent 
Cutter Location data (CL data) and standardized in DIN 66215 (1974). CL data describes the 

Business Level
NC Planning

Machine independent

Shop - Floor
Machine Tool

Machine dependent

CAM

NC Controller

Post - Processor

Cutter location data
DIN 66215

Vendor specific Formats
based on ISO 6983

Business Level
NC Planning

Machine independent

Business Level
NC Planning

Machine independent

Shop - Floor
Machine Tool

Machine dependent

Shop - Floor
Machine Tool

Machine dependent

CAM

NC Controller

Post - Processor

Cutter location data
DIN 66215

Vendor specific Formats
based on ISO 6983

CAM

NC Controller

Post - Processor

Cutter location data
DIN 66215

Vendor specific Formats
based on ISO 6983

 

Figure 1-2: State-of-the-art NC Programming (according to WECK & WOLF 2003) 
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toolpaths in terms of locations, type of operations, feeds and speeds. This data, however, 
cannot be used directly by machine tools. Therefore, it is transformed into the vendor specific 
dialect of G-code using a specialized post-processor. 

Despite the efforts to develop more powerful languages to program machine tools such as 
Binary Cutter Location (BCL) (ALBERT 1990) or STEP-NC (ISO 14649 2003), G-code is still 
the primary language in today’s manufacturing industry. 

The working steps in a CAD/CAM application are as follows (according to GRABOWSKI & 
ANDERL 1990, MCMAHON & BROWNE 1993): 

Resource definition 

The geometry of the used workpiece and the tool is defined, potentially selected from a 
library. Also, the machine tool is specified in terms of number of axis and type of machining 
process (e.g. turning or milling). 

Recognition of manufacturing features 

Feature recognition (FR) can be generally defined as processing of a geometric model from a 
CAD system to find portions of the model matching the characteristics of interest for a given 
application (SHAH et al. 2001). Manufacturing feature recognition therefore searches the 
geometric model for manufacturing features, i.e. geometries that correspond to machining 
operations and that can be removed from a stock to yield the desired part. The goal is to build 
a manufacturing feature model of the part to be fabricated which can then be mapped to 
available machining operations and resources. A detailed discussion of automated feature 
recognition can be found in Section 2.1. 

Machining operation sequencing and tool path generation 

After defining the resources, the sequence of machining operations is identified and tool paths 
are created interactively by the human expert by specifying the part contours to be machined 
in each machining operation. To machine the desired part, the tool of course has to be guided 
correctly along the desired surface to be machined (ZEID 1991). The correct trajectory is 
called toolpath. In traditional CAD/CAM, the toolpath can be generated from the specification 
of the drive surface (guiding the tool), the part surface (the intentionally created surface) and 
the check surface (motion constraint). The toolpath can be generated if the part region to be 
machined is specified and the cutting strategy, e.g. zig-zag, spiral in/out, is defined. Generally 
a minimum length of the cut is desired for minimum machining time (CHANG et al. 1991). 

Definition of Approach and retract directions 

The approach of a machining region of the workpiece and the retract direction of the tool 
must be defined to avoid collisions of the tool with the workpiece. This also involves defining 
the retract and re-approach direction during the transitioning from one machining region to 
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the other. This decision is usually carried out by a human expert planner  
(MIAO et al. 2002). 

Generation of Cutter Location (CL) data 

After the full definition of the desired tool movements, a Cutter Location (CL) data file is 
created by the CAD/CAM software. This file describes the location of the cutting tool in 
relation to the specified coordinate system. 

Simulation of machining process 

The verification of the created CNC program plays an important role in the planning process. 
The toolpaths have to be verified regarding the desired output in terms of the created shape 
and the program checked for possible collisions during execution (ZEID 1991). 

Figure 1-3 shows a part as it was designed (a). With this design, the CNC-code was created 
using a CAD/CAM software. The result has been simulated as shown (b). However, the shape 
of the part obtained from the simulation significantly differs from the originally designed part, 
especially regarding the four blocks on the topmost surface. In practical CAM, every program 
therefore has to be checked by a human expert and interpreted to ensure its correctness. 

Post-processing of CL data to machine specific code 

To allow the execution of the NC program on the machine tool, it must be created by post-
processing the CL data file. Through this, the location and movements of the cutting tool are 
translated into movement commands for the individual axes of the machine tool. 

 

Figure 1-3: Designed part (a) and simulated outcome of the CNC program (b) 
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Adding further NC data 

After the NC program generation, it can be necessary, due to deficiencies in the post-
processor used, to add further, machine tool specific, commands to the NC code file. 

The most common CNC programming language G-code, created by Gerber Scientific 
Instruments, a manufacturer of photoplotters, was approved as DIN 66025 in 1983 and ISO 

6983 in 1988. It contains preparatory (G), miscellaneous (M) and control (F Feed, S Speed 
and T Tool) functions that are combined into records. Each record corresponds to either a line 
on a punch card as in the first NC machines, or today, to a line of a text file. Each record starts 
with the letter N and an incrementing record number. In each record, one or several functions 
can be called with given numerical values. Optional comments can be added with a preceding 
semicolon. 

Figure 1-4 shows an example of a CNC program in G-code. The program begins with 
selecting the reference coordinate system G54 that was set to the upper left front edge of the 
workpiece in the machine tool controller. Next, a tool change is performed and afterwards the 
spindle is started counter-clockwise and the working feed is set to 100mm/min. After this, the 
virtual tool tip is moved to the home position above the part at rapid feed using the G0 
command. Then, a sequence of cutting operations, using the G1 command for linear 
interpolation, is carried out. These operations create the toolpath depicted as dashed line. 
Before ending the program, the tool is retracted from the part and the spindle is stopped. 

x

z

y

N10 ; select reference coordinate system
N20 G54
N30 ; Change tool to tool no. 6 and active edge 1
N40 T6 D1 M6
N50 ; turn on main spindle with 5000 rpm ccw
N60 S5000 M3
N70 ; set working feed to 100mm/min
N80 F100
N90 ; go to home position at rapid feed
N100 G0 X0.0 Y0.0 Z10.0
N110 ; perform cutting operation
N120 G1 X0.0 Y0.0 Z-5.0
N130 G1 X20.0Y0.0 Z-5.0
N140 G1 X20.0Y20.0Z-5.0
N150 G1 X0.0 Y20.0Z-5.0
N160 G1 X0.0 Y0.0 Z-5.0
N170 ; retract tool
N180 G0 X0.0 Y0.0 Z10.0
N190 ; stop spindle
N200 M5
N210 ; end program
N220 M30

home
point

reference
point

toolpath

workpiece

Figure 1-4: Example of a G-code CNC program and created toolpath. 
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In the following the detailed working step that have to be accomplished during the use of 
Computerized Numerical Control (CNC) for fabrication are presented: 

Selection and preparation of workpiece/manufacturing part 

For the machining of the desired part, the workpiece must be provided. Depending on the type 
of manufacturing environment, this can also require the machinist to choose a raw part or take 
an existing raw part and machine it such that it matches the raw part shape as it was used 
during the creation of the NC program. 

Tool setting 

To machine the part correctly, the correct tools, as they were defined during the NC program 
creation, must be installed and, if required, calibrated such that the machine tool controller 
can compensate for tool diameter and tool length. 

Selection of machining conditions  

Often, the exact machining conditions for the part are determined on the shop-floor level 
(MACHINABILITY DATA CENTER 1986). This is usually done by looking up appropriate 
parameters in tables and fine tuning them with respect to surface quality, machine vibrations 
and sound. However, with more recent computer tools, the first estimation of machining 
conditions is transferred to the CAM planning stage. 

Machine setup, part fixturing 

The raw part must be fixed in the machining envelope according to the setup specifications in 
the process plan. To hold the part securely in place, the part is clamped to the machine table 
or held by a vise. For most methods of fixturing, the coordinate-system origin as it was used 
during programming must be accurately measured on the raw part and entered into the 
machine tool controller. 

Simulation of machining instructions on the machine tool 

Before the NC program is executed for the first time on the machine tool controller, the 
machinist checks the NC program to ensure its correctness and to prevent damage to the 
machine tool due to collisions or wrongly specified cutting conditions. This can be done by 
displaying graphically the tool movements, by graphical simulation of the NC program on the 
machine tool or by having a “dry-run” of the NC program without a part inside the machine 
envelope. The “dry-run” functionality runs the NC program without driving the spindle and 
having the axes operate at rapid feed all the time. 

In the remainder of the thesis the most important steps for the fabrication plan creation are 
pursued further. These are: The selection of machine tools, specification of manufacturing 
sequence, the selection of cutting tools and the machining operation sequencing and toolpath 
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generation. The checking of the machinability can also be considered by proving that a 
feasible process plan for part fabrication exists by generating it. 

1.2 The role of human experts in design-to-fabrication 

Despite the numerous efforts to automate the fabrication of parts and components, human 
experts still play an important role in the design-to-fabrication process. To illustrate this, a 
typical planning process and a study of a CAD/CAM/CAPP system is presented. This section 
finishes with a conclusion on the role of human experts in design-to-fabrication. 

Figure 1-5 shows the course of process plan creation for a typical process planning system in 
the year 1985. The process begins with an engineering drawing of the part that should be 
fabricated. A process planner takes the information of the engineering drawing and uses some 
form of coding scheme to classify the part. Such a very simple classification could be whether 
it is a part for milling, a part for turning or a sheet metal part. Once the classification has been 
created, a standard plan for fabrication can be retrieved from the process planning system. 
This process or process plan, however, cannot be executed as it is still incomplete. An 
industrial engineer has first to set the time standard for fabricating the part, write the operation 

 

Figure 1-5: Typical process planning system by 1985 (based on Chang & Wysk 1985) 
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instructions and plan, if necessary, the machine or plant layout. After this the production 
planner can create the schedule for fabrication and carry out the Manufacturing Resource 
Planning (MRP). 

Once the resources for manufacturing have been determined, the part programmer can begin 
to code a specific APT (Automatically Programmed Tool) program that can be used to 
fabricate the part on the CNC machine tools. This program is still in a high-level language 
and must be therefore post-processed to yield the machine tool specific CNC program that can 
be executed on the machine tool’s controller. 

To examine the role of humans in today’s design-to-fabrication chain, a study on the use of 
two selected CAD/CAM/CAPP tools was conducted, namely CATIA CAD/CAM and Tebis 
CAD/CAM. This study is not intended to serve as a quantified study but intends to show the 
general level of existing automation as well as some of the barriers in the design-to-
fabrication automation. Due to the length of the process presentation and similar result, only 
the results for Tebis CAD/CAM are presented. 

The analysis of the Tebis CAD/CAM process was carried out, observing (video recording) 
and interviewing an experienced user while he was using the software to create a process plan 
for a 2.5 D milled part. The part is a prototype locator part for inserts in a carbon fiber 
composite. 

The first step of the process, shown in Figure 1-6, is loading the part geometry from a CAD 
file and importing it into the software. This step is carried out by the human expert, while the 
conversion process itself is done by the computer automatically. After the surface model has 
been loaded, it must be checked for correctness by the expert, especially that it does not 
contain any “leaks”, i.e. that it is watertight, or overlaps. Then the expert defines the origin of 
the setup that must match later the machining origin of the machine tool. 

The machine tool that should be used for the fabrication is either defined or selected from a 
database of existing machine tools. Similar to this, the tool is defined or selected respectively. 
Again, the tool must match the actual tooling of the machine tool. Once the machine tool and 
the tool are defined, the machining process can be specified. This comprises the type of 
operation such as prismatic milling, turning or freeform surface milling. 

Then, the stock for the part is defined regarding its geometry and the single machining 
operations are defined (e.g. face milling, pocket milling). The cutting conditions for each 
operation are specified either from the expert’s knowledge, tables or technical specifications 
of the workpiece supplier or empirical formulas. For the complete definition, the cutting 
strategy must be defined. Examples are line-by-line, zig-zag or inside-out/outside-in 
strategies. To successfully apply these strategies, the machining area (the envelope in which 
the material removal action should take place) and the start- and end-plane are defined by the 
operator. If some islands of the part exist in the machining area, these have to be recognized 
and specified by the human expert. Up to this step, almost every operation has to be carried 
out with or solely by the human expert with aid of the software application. 
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Figure 1-6: Study of process planning using Tebis CAD/CAM. Different shades of color indicate the degree of 

automation from human based (light gray) to machine based (dark gray). 
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The toolpaths can then be generated by the software and are presented to the human expert. 
He then edits the toolpaths, e.g. by mirroring, arranging according to a pattern, to avoid 
multiple definition of similar part areas. If the toolpaths do not meet expectations, the process 
must return to a previous step. After editing the toolpaths, the software can calculate the 
theoretical shape of the finished part based on the generated and edited toolpaths. The human 
expert evaluates the results and checks it for unwanted cuts. If the part’s shape seems to be 
incorrect, the process returns to a previous step. If the expert found the part to be correct, the 
toolpaths are post-processed, i.e. they are converted into the CNC controller specific 
representation. The CNC code is then checked for correctness by the expert before it is 
transferred to the CNC machine tool where it is again checked for correctness by the machine 
tool controller and the machine tool operator. If the CNC code is not correct, changes must be 
made in previous steps. To hold the part during machining, a suitable fixture must be installed 
and its origin must be measured. The machining origin must then be adjusted accordingly. 
After the part has been inserted and secured in the fixture, the program is run by the machine 
tool. During the machining, the operator is able to fine tune the cutting conditions by 
changing speed and feed. After the program execution has terminated, the operator roughly 
checks the part for correctness. If the part has been machined correctly, the process is 
finished, otherwise it must return to previous steps of the process. 

Though many claim that the design-to-fabrication process has been completely automated 
successfully, today’s CAD/CAM tools still require a high level of human expert interaction to 
produce feasible process plans, just considering the use of a typical CAD/CAM system. 
Typically, the human process-planning expert is still required to determine setups, select 
fixtures and tools and sequence the necessary operations whereas the CAM system is mainly 
used to generate toolpaths (CORNEY et al. 2005). 

The currently established design-to-fabrication process in industry still relies on expert 
knowledge and skills (CORNEY et al. 2005, SAKAL & CHOW 1994), as Figure 1-7 illustrates. 
Here, human expert knowledge and skills are required from design to Computer-Aided 
Design (CAD), Computer-Aided Process Planning (CAPP), Computer-Aided Manufacturing 
(CAM), Computerized Numerical Control (CNC) machining to the finished part. This fact is 
also supported by the concept of Computer-Integrated Manufacturing (CIM), which integrates 
all manufacturing activities by means of linked computer aids and data interfaces (MCMAHON 
& BROWNE 1993). 
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1.3 Cognition for Technical Systems (CoTeSys) 

Cognition for technical systems is one approach that could make machines more autonomous, 
in a way that they can reason about and plan their own actions. Through this, the steps 
required in design-to-fabrication that are carried out by human experts, could be transferred to 
machines. 

The notion of Cognitive Technical Systems goes back to the cognitivist paradigm as it was 
formulated by NEWELL (1994): Such intelligent systems, according to the unified theory of 
cognition (UTC), are based on symbolic representations following a set of syntactic rules. The 
grounding of these symbols is done by the programmer who formulated the symbols and 
rules; therefore it captures their particular knowledge of a specific domain and makes it 
accessible to the system (KEMPF et al. 2009). Therefore, the system itself does not have an 
understanding of the domain it is acting in. 

Traditionally, in cognitivist systems, the act of cognition is regarded as being an identifiable 
and explicit process within an intelligent system (VERNON et al. 2007), as shown in 
Figure 1-8. The perception system describes the world using a computable model. The 
cognition then uses the model to somehow perform the “thinking” by symbol processing and 
perform actions based on the decisions made. This model corresponds to the top-down 
approach in AI. BROOKS (1999) explains the difficulty of this model: The cognition box can 
be recursively decomposed, finding in each recursion some intelligent behavior until only a 
simplistic computational intelligence is left which uses highly abstract facts hardly allowing 
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Figure 1-7: Current Design-to-Fabrication process  

(CORNEY et al. 2005, FEENEY & FRECHETTE 2002, KRISHNA & RAO 2006,  

MIAO et al. 2002, SHEA et al. 2008) 
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performing truly intelligent actions. Once again, the system relies on a computable formalism 
and is therefore purely syntactic which denies any kind of semantics and therefore mind. 

However, the so called new AI, also known as emergent systems approach (VERNON et al. 
2007), moved away from this view of intelligent behavior. Cognition is regarded as a property 
of an intelligent system which emerges from the overlapping of perception and action and 
which is only implied by an observer (BROOKS 1999). The idea of the new AI is not to create 
a thinking machine that has a mind but tries to build systems that can react intelligently to 
their environments. This new AI basically has to suffer from the same problem that no 
understanding and mind can emerge from a formal system which is only syntactical as today’s 
computers. The idea is that cognition might appear for an outside observer by the overlapping 
processes of perception and action, as shown in Figure 1-9. Therefore, cognition as the 
intelligent behavior of a technical system exists only implicitly or in the eyes of an observer, 
i.e. the system is not intelligent though it appears to act intelligently. This view corresponds to 
the behavioristic, bottom-up view on the intelligence of a system. 

 

Figure 1-8: Traditional Model of Cognition (BROOKS 1999) 
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The commonality of all approaches to realize cognitive processes within technical systems are 
the areas of perception and action. The interplay of different areas of human cognition and 
their interaction is of most interest in cognition for technical systems. Through combining 
these skills, technical systems should be enabled to perform more autonomously, flexibly and 
robustly in a constantly changing environment without necessarily being able to exhibit 
intelligence. These technical systems should aid humans by solving problems that are 
difficult, cumbersome or even dangerous for humans. 

World

Perception
Action

Cognition!

 

Figure 1-9: Model of cognition, where the cognition is in the eye of the observer  

within the overlap of perception and action (BROOKS 1999). 
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The Research Cluster of Excellence “Cognition for Technical Systems – CoTeSys” 
(COTESYS 2011) addresses this matter by following the approach to cognition as depicted in 
Figure 1-10. A Cognitive Technical System, indicated by the dashed border, is able to read 
sensory data from the environment. The perceptual mechanism allows the system to map the 
sensor data to the internal representation of the Cognitive System. Learning enables the 
system to reorganize data contained in the internal representations or models beyond the 
existing explicitly formulated models. Reasoning capabilities allow the system to infer 
conclusions from a range of data. Models are one core aspect of cognitive systems since they 
are used by all other areas of cognition. Using models, that is partial representations of the 
environment or the system itself, future action effects and retrospective findings can be 
evaluated. This is particularly important for planning. Here, the future effect of actions that 
are directed to achieve a specified goal must be evaluated in order to find the right 
combination and sequence of actions to finally obtain the goal. After the plan has been created 
by the system, it can be brought into action using the systems actuators. A cognitive system 
should not only interact with its environment using its sensors and performing actions but also 
should interact with humans. A human in this context can be a user or instructor that should 
specify goals for the cognitive system or supervise it to allow the system to learn from its own 
performance. 

Cognitive system architecture

Learning & 
reasoning

Models

Planning

Sensors
Perception

Actuators
Action

Environment

Human

 

Figure 1-10: The perception-action closed loop (BEETZ et al. 2007) 
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Having these thoughts in mind it is still important to clarify the claim of this research: The 
aim is not to create a real thinking machine that has a mind but rather build a technical system 
that is able to autonomously and robustly perform under changing conditions of its 
environment and changing demands from the users it is interacting with. 

1.4 Drivers and barriers for automated design-to-fabrication 

At a base level design and fabrication is about producing physical objects or artifacts. 
However, due to the increasing complexity of parts and their fabrication within global 
manufacturing networks, producing a design becomes more and more complex as well. This 
factor and of course the ongoing trend towards individualized products drives the need for 
manufacturing systems to more efficiently produce parts and products with both customized 
geometry and customized configurations without the need for time-consuming, manual re-
planning and re-programming. While this goal is supported in part by rapid prototyping and 
rapid manufacturing (see Section 2.3 for a discussion), a significant gap still exists in rapidly 
fabricating end-use metal parts. 

The desire to increase the flexibility in mass production has led to the development of 
Flexible Manufacturing Systems (FMS) during the 1980s. These are capable of producing a 
family of parts, i.e. a set of parts with similar shape, size and manufacturing processes. 
However, the set of parts and the required processes are pre-programmed into the different 
hardware of the system. Since FMS are used for mid-volume and mid-variety fabrication of 
parts, the production of individual, one of a kind parts requires the time-consuming re-
programming of the whole system. This does not only comprise changing the programming of 
the machine tools but also changing the programs of robots and handling devices to grip and 
position the parts correctly. 

On the other hand, typical workshops run by humans can produce a large variety of different 
parts. The specialists in the workshop do not require an exact specification of the part to be 
produced. Often a sketch or a simple drawing can be enough. If a part cannot be fabricated, 
they can successfully find solutions by changing the design while maintaining the desired 
functionality. The specialists working in the machine shop learn and gain experience over 
time and use it to improve the quality of the parts produced. However, such machine shops 
are often slow and costly compared to more automated fabrication systems. 

What if the cognitive capabilities of human specialist in a mechanical workshop could be 
transferred to an automated system such as a network of CNC machine tools? The system 
would be self-aware, knowing its own fabrication capabilities and autonomously plan the 
process to fabricate a new part based on the current state of the environment. Each machine 
would be enabled to learn over time, acquire new capabilities and improve its performance 
considering time and quality. If difficulties or even failures occur, the machines would re-plan 
from the current situation to overcome the difficulties.  
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Within the Research Cluster of Excellence Cognition for Technical Systems (CoTeSys), the 
Cognitive Machine Shop (CogMaSh), as shown in Figure 1-11, is under development. It is a 
cognitive system of machines such as CNC machine tools, conveyor belts and storage 
facilities as well as robots for handling and assembly. By having the machines planning and 
working together to produce a part, the high throughput of automated systems is combined 
with the robustness and flexibility of mechanical workshops run by humans. This goal is 
addressed in the long-term by integrating on-line knowledge models, perception, automated 
planning and learning. With this, the system is aware of its own fabrication capabilities and 
resources that it can use to autonomously plan the process to most efficiently make a new, 
previously unknown, part based on the current state of the environment  
(SHEA et al. 2010). 

In its final development stage, CogMaSh should be able to produce new and individual parts 
upon request, without the need for re-programming the system. The machines will plan the 
fabrication together, requesting additional services such as a required workpiece or fixture 
from each other. If the system is confronted with difficulties it will attempt to overcome these. 
If for example, a machining capability is missing, a tool is broken or a workpiece is missing, 
the system will find an alternative plan enabling the successful fabrication of the requested 
part. Through shifting the planning process down to the machine level, planning and 
performing becomes an integrated process, thus allowing for dynamically generating and 
changing process plans on-the-fly according to recognized changes in the environment. 

Figure 1-11 Cognitive Machine Shop (CogMaSh) hardware setup. 
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In a first step, knowledge models that represent machine capabilities, especially those of 
machine tools, need to be developed. These representations must be used to allow the 
machines to plan their own actions and perform these in their environment. Giving the 
machines the capability to react to changes in their environment is crucial. This first step is 
the focus of this thesis. 

1.5 Thesis structure 

The structure of this thesis is shown in Figure 1-12. After the introduction to design-to-
fabrication in Section 1, Section 2 presents a review of the state-of-the-art in methods related 
to design-to-fabrication. Feature technology as a mediator between design and fabrication is 
reviewed along with existing approaches to intelligent systems for planning and 
manufacturing. In addition to this, Rapid Prototyping (RP) technology as an enabler for the 
convenient fabrication of customized parts is reviewed as a competing technology to 
autonomous design-to-fabrication. Spatial grammars with their applications to generative 
design in engineering are presented as well. 
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Figure 1-12: Thesis structure. 
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An initial method and validation for generative design and fabrication using shape grammars, 
is presented in Section 3. Here, designs are created by means of a shape grammar and then 
mapped to the manufacturing domain using a combination of different shape grammars. The 
machining knowledge is embedded within the shape grammar framework. An example part is 
presented to validate the approach and to prove its feasibility. 

Section 4 presents a more advanced method to autonomous design-to-fabrication using spatial 
grammars and heuristic search methods to decompose CAD designs into feasible CNC 
machining plans. Within the decomposition process, a two level search process is applied to 
select rules of a spatial grammar and to find the best transformation of the applied shape. An 
initial implementation of the method is presented. 

The results of the method along with a variety of scenarios that can be addressed by the 
method are presented in Section 5. These comprise the autonomous generation of machining 
plans, creating of machining plans for more complex parts, using multiple tools for the 
fabrication of a part, reacting to the unavailability of workpieces and reacting to tool failures. 

Based on the previous presentation of the basic method, Section 6 presents more refined 
search methods, attempting to further improve the obtained results. 

Finally, this work is concluded by reviewing the research contributions, discussing the 
limitations of the method and its implementation as well as giving recommendation for future 
work in the direction of this research in Section 7. 

As appendices, a brief documentation of the implemented software prototype and 
development environment for the Spatial Grammar Machining Planning (SGMP) system is 
given. 
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1.6 Summary of research contributions 

This thesis aims to make the following contributions: 

 Development of a machining knowledge representation including geometry and 
semantics of machining operations that allows for direct integration with and 
application by machine tools (Sections 3 & 4). 

 Development of a new bottom-up, process-based method for CNC machining 
planning in automated design-to-fabrication using spatial grammars and heuristic 
search (Sections 3 & 4). 

 Application of spatial grammars and design synthesis methods to decompose designs 
into feasible machining plans (Section 4). 

 Implementation of the method in a software prototype able to successfully plan CNC 
machining operations for a variety of parts (Sections 5.1, 5.2 & 5.3). 

 Unique example of use of spatial grammars in a hardware-based spatial grammar 
implementation (Section 5). 

 Powerful and extensible spatial grammar framework for CNC machining planning, 
able to  

 capitalize on newly added or changed capabilities instantly (Sections 5.4 
& 5.5) and to 

 react online to changes of the hardware (Section 5.6). 

A thorough discussion of these contributions with respect to the state-of-the-art is presented in 
Section 7.1. 



 

2 Background 

In the following the state-of-the-art in feature technology and its use in design-to-fabrication, 
namely feature recognition, is presented. Further, existing approaches to intelligent systems 
for planning and fabrication are reviewed. Rapid Prototyping and Rapid Manufacturing as 
competing technology for automated design-to-fabrication will be presented. Spatial 
grammars with their use in engineering are presented as powerful method to capture design 
knowledge and apply it to engineering problems. This section concludes with a brief summary 
of the state-of-the-art. 

2.1 Feature technology 

A driver for the use of features has been the desire to integrate design with further, 
downstream applications such as manufacturing and process planning (SHAH et al. 1995). A 
feature enables this by representing “… the engineering meaning or significance of the 
geometry of a part or assembly” and by offering the following characteristics (SHAH & 
MÄNTYLÄ 1995): 

 A feature is a symbol that has a significant meaning within a defined context, 

 it can be linked to a shape, 

 features are the building blocks for a part and 

 there is a common agreement about the feature’s properties. 

Consequently, the definition of a specific feature is arbitrary and context dependant 
(SHAH 1988), i.e. in different domains different features are used. To translate from one 
domain to the other a mapping is required. This mapping is rarely one-to-one, instead, the 
mapping is highly non-linear and complex. Due to this, several approaches were developed: 
Feature Mapping, Design-by-Features (DbF), and Feature Recognition. 

Feature Mapping 

Feature mapping attempts to connect different views of the same entity, each specified by 
features, by describing how features from the one view can be translated to the other view and 
vice versa. This mapping is required since feature descriptions can vary according to their 
level of abstraction, completeness of their description (e.g. information might be omitted), 
parameterization, what they describe (e.g. solids in design and voids in injection molding 
design) and application specific attributes (e.g. for process planning, electric wiring) (SHAH & 
MÄNTYLÄ 1995). Due to the widespread meaning of the term feature mapping, it is more of a 
general description of desired methods than a specific technique. For symbolic and rigid 
specification, a translation table of how to map features can be established. With increasing 
complexity and semantic meaning of features, prescribed automatic translation becomes 
infeasible. Instead, the mapping then requires knowledge about the relations of the features 
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and their underlying geometry (SHAH et al. 1995). This is especially true, considering disjoint 
feature domains, e.g. design and manufacturing. Here, features from one domain may not 
have an appropriate counterpart in the other domain since they are not of interest there. An 
example might be an indexing surface for part locating. This feature is important in 
manufacturing but is insignificant in design (CUTKOSKY et al. 1988). 

Design-by-Features (DbF) 

In design-by-features, the user specifies the feature model using a feature library of valid 
features. The geometric model can then be automatically created using a geometric modeler. 
The features can either be constructive, i.e. the design begins with an empty space from which 
features can be added or subtracted, or destructive, i.e. the design begins with a stock from 
which features can only be subtracted (SHAH & MÄNTYLÄ 1995). In the case of destructive 
solid geometry design, the resulting part design is not only a shape but also a manufacturing 
plan (CUTKOSKY et al. 1988), if there is a mapping from the features to machining operations. 
However, it is impossible to fabricate the desired part using alternative ways  
(SALOMONS et al. 1993) since the working steps are fixed. This poses difficulties as 
manufacturing processes may change over the life-time of a design and optimal processes 
cannot be chosen due to the fixed manufacturing feature decomposition (VANDENBRANDE & 
REQUICHA 1993). Further, the designer must have a clear picture of the part he wants to 
design for which “… design by manufacturing features is not viewed appropriate for 
innovative design.” (SHAH et al. 1994b). 

Feature Recognition 

In automatic feature recognition (FR) the user is replaced by an automated system that finds 
features within the geometric model (SHAH & MÄNTYLÄ 1995). More specifically, FR 
identifies the portions of the geometric model with a certain characteristic which is of interest 
for a specific application (SHAH et al. 2001). In the field of design-to-fabrication this refers to 
the identification of manufacturing features or machining volumes. SHAH et al. (2001) present 
an excellent review of current approaches to FR. Their findings are presented in the 
following. 

While it poses little difficulty for a human to reason about complex geometry and to think 
about where to remove what volume to yield a desired part, the very same task is a hard 
problem for computer algorithms due to the following challenges (CORNEY et al. 2005). 
Several perspectives and different representations are required to capture the complete design 
intention within a CAD-System. This can be required from different disciplines such as 
mechanical or electrical engineer or reside within the same discipline such as general 
mechanical design and tolerancing. Multiple interpretations of the same part must be allowed 
to enable a broader range of solutions in later process steps. This can be multiple 
interpretations of a designed part in terms of manufacturing features for milling or as an 
alternative as die-casted part. At the same time, the information gap between different 
domains, e.g. the design (CAD) and the manufacturing (CAM), must be bridged which is 
even more difficult since design features do not necessarily directly map to manufacturing 
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features. A design feature does not have a manufacturing meaning per-se and a manufacturing 
feature does not automatically have any function or design meaning. Also, features are 
context dependent. Features in conventional mechanical design differ strongly from e.g. sheet 
metal design features. In manufacturing, features for milling applications differ largely from 
features for turning applications, forging or die-casting. In each of these domains, features 
have to be identified and formalized which is labor intensive. Further, different abstraction 
levels of features and the inflexibility in their definition complicates this challenge  
(SHAH et al. 1994b). 

Existing approaches to FR can be classified according to their underlying principle.  
Figure 2-1 shows the taxonomy divided by topological, heuristic, symbolic, volumetric, 
process-centric and hybrid approaches. The individual techniques are presented for the 
convenience of the reader based on SHAH & MÄNTYLÄ 1995 and SHAH et al. 2001. 

Topological approaches use the information from the relationship of topological entities 
(edges, faces, points) of the geometric model. This information can be the existence of 
adjacent faces or the interconnections between a set of topological entities. Using a graph-
based representation of all topological entities of the geometric model, the desired features 
can be identified by matching their graph of topological entities to a sub-graph of the 
geometric model. 

Heuristic FR approaches use guesses to identify potential features. Hint-based approaches 
generate such guesses from incomplete patterns in the boundary representation of the 
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Figure 2-1: Taxonomy of Feature Recognition techniques (SHAH et al. 2001) 
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geometric model. The identified features are then extended in terms of size to their maximum 
volume. Through this, interacting features, i.e. features that lost or gained relations of their 
entities, can still be identified. Rule-based recognition uses formalized production rules to 
identify features. For each feature type, a separate rule has to be created and evaluated once 
for every feature which can be time consuming and thus prohibit the application to large 
models (SHAH & MÄNTYLÄ 1995). As advancement over classical rule based approaches, 
neural nets give a probabilistic estimation as to whether a feature exists.  

Symbolic methods form the next group of techniques. Symbols can be used to describe 
patterns such as a series of line segments. Syntactic pattern recognition uses vision system 
methods to match these patterns. From the symbols, a grammar describing the sequence of 
symbols algebraically and manipulating them can be formulated, thus forming a language of 
valid patterns.  

In contrast to topological recognition methods, volumetric recognition techniques rely on the 
existence of complete volumes. The search can be directly performed on the constructive 
solid geometry (CSG) tree by matching the feature definition to a sub-tree of the CSG tree. To 
accomplish this, the CSG tree must be rearranged to some canonical form as to enable the 
algorithm to successfully identify the desired features (SHAH & MÄNTYLÄ 1995). The Delta 
Volumes technique aims to identify the volumes on a workpiece stock that correspond to 
machining operations, thus identifying the delta volume on the workpiece for each operation. 

Convex Hull Alternating Sum of Volumes (ASV) calculates the convex hull for a given part 
and then subtracts the part model itself from the convex hull. From the set of resulting disjoint 
volumes, the same algorithm is applied recursively, creating the convex hull for each disjoint 
volume and subtracting the volume from the hull until the convex hull matches the part’s 
volume. Through this method either a decomposition of positive features (design features) or 
negative features (e.g. machining volumes) can be obtained. 

Volume decomposition and re-composition splits up the removal volume (stock minus the 
desired part) into separate volumes. The volumes are then re-combined into different 
configurations using Boolean operations. This means, from a single decomposition, multiple 
possible re-combinations can be created. Through this, lost regions due to interacting features 
can be restored and multiple feature interpretations generated. 

Process-centric techniques focus on the recognition of machining volumes using specific 
knowledge on the machining process. 2.5D milling sections the part to be machined 
horizontally into layers such that the outlines of the part can be obtained. Fitting toolpaths can 
then be created by offsetting the contours towards the non-material side and connecting the 
resulting paths. The technique has also been extended to allow for the toolpath generation for 
pockets with freeform bottom surfaces. Multi-axis milling requires a more complex 
recognition method. Based on a feature taxonomy of 5-axis milling features, recognition 
methods for each feature class based on geometric and topological characteristics have been 
designed and implemented (SHAH et al. 2001). However, through the use of a universally 
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applicable plan for machining a part by cutting it layer-by-layer, efficiency and accurateness 
is lowered significantly (BOURNE et al. 2011). 

Hybrid techniques take advantage of two or more basic FR techniques. One example is the 
Minimal Condition Sub-Graph (MCSG) method. To recognize features, an Attributed 
Adjacency Graph (AAG) of the parts faces is created. This graph represents all faces of the 
parts and their connections. From the AAG all connected faces that do not belong to the 
complex hull or the stock are extracted into the Manufacturing Face Adjacency Graph 
(MFAG). The faces in theses graphs must be created during manufacturing and thus represent 
valid machining features. Interactions between the features can be resolved by using hints 
from the MFAG. If the AAG of a feature represents the maximal sub-graph of the MCSG of a 
feature, i.e. it fulfills the conditions for being that specific feature, the feature is identified. 

Despite the progress made, no single approach solves all the challenges in feature extraction 
(CORNEY et al. 2005). It rather seems that there is no single best technique for all types of 
features and applications (SHAH et al. 2001). In industrial practice, feature recognition has not 
been significantly implemented (RAHMANI & AREZOO 2007). 

However, besides the challenge of feature recognition and feature mapping and the limitations 
of design-by-features, several limitations and difficulties already exist by using feature 
technology: The most fundamental limitation is that “the semantics of the data is not 
embodied in features” (SHAH et al. 2001). This means, a feature is only a symbol and 
therefore requires a mapping to actions or processes to give it meaning to something like a 
machine tool. The long emerging standard STEP-NC aims at offering a set of machining 
features which should enable machine tool vendors to program their products to automatically 
decompose each STEP-NC feature into feasible machining operations. However, having a 
machining feature representation of a part, already pre-defines the manufacturing process to a 
great extent. This can result in less efficient manufacturing due to the highly coupled planning 
problem (BOURNE et al. 2011) where seemingly each decision influences the ones already 
made and of course future ones as well. To overcome this, multiple feature interpretations can 
be used. This then leads to exponential growth in complexity of the planning problem, since 
multiple interpretations of features, through feature interaction, increase the number of 
possible combinations of operations (BOURNE et al. 2011). Also, feature technology requires 
maintaining a large number of specialized features due to the narrow scope and required 
exactness to allow for a successful mapping. Especially since features and feature recognition 
is not universal but depends on the intended application and the required level of detail: For 
NC machining planning, a lot of detail knowledge about tools and machine capabilities is 
required whereas in manufacturability analysis rough information is sufficient (SHAH & 
MÄNTYLÄ 1995). Also, the work to identify and formalize features for each domain is labor 
intensive (SHAH et al. 1994a). Even if a satisfyingly large set of features is available, each 
feature must be mapped to actions or processes to give it meaning, thus further increasing the 
amount of work to establish and maintain features and their mappings.  
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2.2 Intelligent systems for planning and manufacturing 

In the last years, research moved from realizing single component systems for automated 
design-to fabrication towards more complete systems. These should then be able to produce 
complex parts while maintaining a high degree of automation or even autonomy during 
runtime. In the following, a number of selected systems are presented. 

2.2.1 Smart Machining Systems 

The approach of “Smart Machining Systems (SMS)” at the National Institute of Standards 
and Technology (NIST), as presented by DESHAYES et al. (2006) and NEWMAN et al. (2007), 
focuses on the optimization of machining processes during runtime and knowledge required 
to decide what to optimize in the detailed process plan and which tactics should be applied to 
the runtime optimization. Through this, a SMS shall be enabled to learn from experience, 
monitor and optimize its operations, assess the quality of its work and communicate its 
capabilities using a high level language. Through these capabilities, the detailed process 
optimization during production ramp-up should be avoided, the system should react to 
changes in demand and the overall manufacturing time should be shortened enabling a rapid 
manufacturing 

The need for runtime optimization stems from using approximation models for the planning 
stage which still contain uncertainties. For the planning stage, various models for machine 
performance and cutting force prediction are used applying experience based models, 
machining experiment models and models based on standard material properties. To capture 
and represent the semantics and syntax of the required knowledge, ontologies are used. 

As of 2006, the research was in its initial stage. The researchers see the most important issues 
in developing a unified methodology for integrating the different machining process models 
and in the necessary effort to develop the software enabling SMS. However the research focus 
within SMS is the optimization of processes during runtime of the system using sensor 
feedback and not the machining planning down to CNC code generation. Since SMS 
capitalize on the manufacturing feature representation STEP-NC, the limitations presented in 
Section 2.1 apply here as well. 

2.2.2 Shandong University Intelligent CNC 

Researchers at the Shandong University are working on an intelligent CNC controller. This 
CNC controller will be using STEP-NC to carry out process planning down to real-time 
control of the machine tool (ZHANG et al. 2006). To achieve this, the tool-path planning 
capabilities traditionally embedded within a CAM system shall be transferred to the CNC 
controller itself. The Intelligent CNC should use a STEP-NC compliant part program as input 
to carry out the detailed and process specific planning for the part manufacture itself  
(LIU et al. 2006). Because the system uses a STEP-NC part program, the fabrication process is 
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already pre-defined to great extent. Only process-specific information such as feeds and 
speeds need to be planned on the CNC controller level. Similar to Smart Machining Systems 
(SMS), due to the use of STEP-NC, the same limitations, presented in Section 2.1, apply. 

2.2.3 Research Cluster of Excellence “Integrative Production 
Technology for High-Wage Countries” 

The Cluster of Excellence “Integrative Production Technology for High-Wage Countries” 
focuses on the research areas of “Individualized Production”, “Virtual Production Systems”, 
“Hybrid Manufacturing Technology” and “Self-optimizing Production Systems”. In the 
following, selected research work on “Individualized Production” and “Self-optimizing 
Production Systems” will be further in detailed as it has been described by SCHUH et al. 
(2007). 

Individualized Production 

Research into Individualized Production focuses on the production of individualized, 
customized products. To achieve this research in Advanced Manufacturing Technologies for 
Individualized Products is underway. The work focuses on low-batch, possibly one-of-a-kind 
production of parts using modular dies and molds for die-casting and Selective Laser Melting. 
Especially the Rapid Prototyping process Selective Laser Melting promises to be suitable for 
the production of highly individualized functional metal parts. However, for Rapid 
Prototyping processes, several limitations exist that will be discusses in Section 2.3. 

Self-optimizing Production Systems 

Research into Self-optimizing Production Systems focuses on methods to enable production 
systems to analyze the current situation, assign and evaluate system objectives and to modify 
its behavior if necessary. 

The subproject Cognitive Control Systems for Manufacturing Systems aims at creating 
“control technology that – for a given problem domain – is capable of aggregating distributed 
knowledge and of reasoning on this knowledge to detect interrelations between facts” 
(BRECHER et al. 2008). Through this, the system should be enabled to autonomously 
formulate subgoals, find solution paths, and initiate decisions under consideration of the 
current situation. The observation of the system over time should enable the system to cope 
with fuzzy, incomplete or contradicting information and to perform adequately and stable. 
The system architecture on the planning level relies on the SOAR architecture whereas the 
domain-specific knowledge is represented by a formal conceptualization similar but not 
identical to an ontology (BRECHER et al. 2008). The approach is applied to an assembly cell 
with two industrial robots. The approach is claimed to reduce the planning and programming 
effort of the industrial robots, especially if more resources with the same capabilities are 
added (KEMPF et al. 2009). 
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However, the focus of this Research Cluster of Excellence is the application of Rapid 
Prototyping Technology to individualized production and the self-optimizing of assembly 
operations and not the fabrication of parts using CNC machines. 

2.2.4 CyberCut 

The idea of CyberCut is to enable the rapid fabrication of parts similar, to the existing Metal 
Oxide Semiconductor Implementation Service (MOSIS) for the production of Very-large-
scale integration (VLSI) circuits. The development of CyberCut stems from the Integrated 
Manufacturing and Design Environment (IMADE) and transforms it into a distributed agent 
environment (SMITH & WRIGHT 1996). 

CyberCut integrates World Wide Web technologies with IMADE’s CAD/CAP/CAM process 
chain creating a web-based design-to-fabrication system (SMITH & WRIGHT 1996). Offering a 
web-based CAD software to design in destructive machining features, the process planning 
system is able to create the macro- and micro-plans for the fabrication of the parts iteratively, 
giving feedback to the user on the manufacturability of the part right in the design phase  
(AHN et al. 2001). The created process plans can then be executed on a 3-axis milling 
machine which is integrated in CyberCut. The process planning also allows setup and fixture 
planning for conventional vices, toe clamps or Reference Free Part Encapsulation (RFPE) 
(AHN et al. 2001). 

The initial CyberCut system was limited to 2.5D prismatic milling parts which had to be 
designed using Destructive Solid Geometry, i.e. design-by-features, which allows for easier 
mapping of machining features to machining operations (AHN et al. 2001). However it has 
been extended to allow machining of freeform surfaces using 3-axis milling as presented by 
WRIGHT et al. (2004). SUNDARARAJAN & WRIGHT (2007) extended the system with Feature 
Recognition techniques to allow, in parallel to the web-based, specialized CAD software, the 
use of a Boundary Representation input to the CyberCut process planning pipeline.  

However, a number of strong limitations do exist (SUNDARARAJAN & WRIGHT 2007): The 
fabrication capabilities are limited to a single generic 3-axis milling machine. The stock has to 
be cuboid to fabricate the part and it must be the bounding box of the part. The feature 
recognition algorithm is rather simplistic. Because of this, features can be only extracted from 
six orthogonal directions and features with undercuts such as dove-tails are not recognizable. 
Each recognized feature is represented by its planar contour, access direction, depth of the 
feature and whether the feature goes through the whole stock. Because of this specialized 
feature representation, the approach can only be applied to 3-axis milling. 

2.3 Rapid Prototyping and Rapid Manufacturing 

Rapid Prototyping (RP) and Rapid Manufacturing (RM) technologies can avoid the issues of 
CAD/CAM and feature recognition by using a fundamentally different approach to the 



2.3. Rapid Prototyping and Rapid Manufacturing    31 

fabrication of parts that reduces the complexity of fabrication planning. A review of RP 
technologies is now discussed and related to automating the CAD/CAM interface.  

The relatively young disciplines of RP and RM have many different definitions. First, it is 
necessary to differentiate between rapid prototyping technology and its applications 
(GEBHARDT 2003). On the technology side, RP can be regarded as a means of Layered 
Manufacturing (LM) (LEVY et al. 2003). On the application level, rapid prototyping 
techniques can be defined as a group of technologies capable of creating a 3D solid object 
with little or no human intervention once the manufacturing process has begun (ONUH & 
YUSUF 1999). To some extent, CNC cutting, which traditionally is not regarded as a RP 
technology, can be included in this definition (BURNS 1993). Nevertheless, direct component 
production (LEVY et al. 2003), where a part is directly produced from the corresponding 
geometry file, is common to these definitions, while CNC machining still violates the 
condition of little human intervention in practice. 

Rapid Manufacturing can be defined as super-set to rapid prototyping and rapid tooling (RT) 
(PHAM & DIMOV 2001). RM can also be viewed as an application of RP to produce end-use 
parts from a rapid prototyping technology (GEBHARDT 2003). 

Comparing LM to CNC machining, it is possible to conclude (GEBHARDT 2003) that with 
CNC machining almost every material can be processed, whereas LM is bound to certain 
materials depending on the rapid prototyping process, which sometimes only mimics the 
original material characteristics. This is especially true for producing metal parts using RP 
technologies. Since the metal must be deposited in a controlled way, depending on the RP 
process, different methods are used. Most common are depositing melted metal (e.g. heated 
by a laser), metal powders glued by a binder, metal sheets welded together or metal powder 
within a paste based material. Common to the processes is the required post-processing such 
as furnacing of the part and infiltrating the porous part with another low melting point metal. 
Therefore, metal parts created using RP technology cannot reach the same strength as parts 
that were machined from the same material. 

Further, in CNC machining almost every scale of parts can be manufactured with rich feature 
detail, high dimensional accuracy and good surface finish. In LM, the resolution of features is 
limited as well as the size is constrained by the machine envelope. On the other hand, LM has 
a couple of advantages over CNC machining. In LM the production time of a part is 
independent of the part-complexity whereas in CNC machining complexity can require 
additional setups, tool changes or can even prevent a part from being machined at all. Finally, 
CNC machining requires highly trained professional personnel. Even during operation, the 
attendance of a skilled craftsman is required to ensure safe and reliable operation of the 
machine tool. In contrast to this, some RP technologies can be used by non-experts, e.g. 3D 
printing or fused-deposition modeling.  

In summary, automating the design-to-fabrication process for CNC machining will enable it 
to compete with RP technologies, especially for the direct production of end-use metal parts, 
where RP technologies have not succeeded to continue the success story of RP  
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(KOCHAN et al. 1999) and still have several issues (BERNARD & KARUNAKARAN 2008). The 
real breakthrough for RP will still depend on improving cost and productivity as well as 
improving material properties, accuracy and reliability (LEVY et al. 2003). 

2.4 Spatial grammars and their applications in engineering 

In the following, spatial grammars, i.e. grammars that work on spatial entities, are introduced, 
followed by a review of their use in engineering. 

Production systems are a method used in cognitive systems and artificial intelligence (cp. 
Section 1.3) to solve specific problems, especially ill-structured problems. Such an ill-
structured problem lacks quantitive descriptions, clearly defined goals and computationally 
exact methods to solve them (SIMON & NEWELL 1958) and comprises a complex dynamic 
environment with interactions and unpredictable and uncontrollable system behavior.  

Consisting of a storage (production memory) for rules (productions), a set of symbols 
(working memory), and symbols (elements), production systems (KLAHR et al. 1987) form a 
generative mechanism, generally applicable to a wide variety of symbolic problems. 

Formal grammars and algebras are such systems. While formal grammars work mostly 
symbolically, spatial grammars work in the domain of geometry and space. 

According to HOISL & SHEA (2011), spatial grammars are a superset to different grammars 
that are able to represent spatial problems directly. The most fundamental type is shape 
grammars, a concept initially developed by STINY & GIPS (1972). After the refinement of the 
method in STINY (1980), a simpler form of shape grammars, the set grammar was developed. 
Instead of manipulating a shape and its components directly, set grammars work on sets of 
shapes (STINY 1982). 

The advantages of spatial grammars lie within the same generation and analysis capabilities 
as production systems while being able to represent knowledge about both form and function 
and representing geometric shapes in addition to symbols (AGARWAL & CAGAN 2001). 

A shape grammar, as well as a spatial grammar, consists, according to STINY (1980), of 

 S – a finite set of shapes, 

 L – a finite set of symbols, 

 R – a finite set of shape rules, 

 I – the initial labeled shape. 

For the shape grammars, the algebras Uij and Vij define the subshape relation, operators and 
Euclidian transformations (STINY 1991) of shapes and labeled shapes respectively whereas i 



2.4. Spatial grammars and their applications in engineering    33 

refers to the dimension of the shape and j to the dimension in which the shapes are 
manipulated. These algebras do not only include the elements of the shape grammar and their 
transformation but also operators as for addition or subtraction (STINY 1991) or even more 
complex operations (SHIRUR et al. 1998). 

The two main issues in implementing shape grammars, which currently prevent a full featured 
implementation of a shape grammar system, are (a) the generic representation of all shapes 
and (b) the recognition of emergent shapes. These two problems go hand in hand since the 
representation of shapes lays the foundation for the recognition of new and prior non-
explicitly represented shapes. While humans have no trouble in recognizing alternative 
interpretations of shape by “simply seeing it” (STINY 2006), computers lack this ability. The 
issues are more difficult if shapes from different algebras interact, such as a planar shape is 
cut into two new shapes by a line. KRISHNAMURTI & STOUFFS developed a method and 
algorithms for calculating the shape boundary and thus representing shapes enabling 
emergence (KRISHNAMURTI & STOUFFS 2004, STOUFFS & KRISHNAMURTI 2006). 

In contrast to shape grammars, set grammars are more convenient to be used in an algorithm 
(STINY 1982). HEISSERMAN & WOODBURY (1993) use in their solid model grammar a 
topology graph to make all entities of the solids accessible to a computer implementation. If 
only set grammars are considered, existing solid shape implementations such as CAD kernels 
can be used. Such an implementation of a spatial grammar system is presented by 
PIAZZALUNGA & FITZHORN (1998). Important to note is the fact that such a CAD kernel also 
supports shapes of different dimensionality but is not able to represent interactions of the 
different algebras nor does it enable the reinterpretation of shapes in order to support the 
subshape detection as shape grammars do. However, shapes from different algebras can exist 
in the same model.  

In contrast to knowledge-based and case-based design systems or expert systems in general, 
spatial grammars comprise deep knowledge especially on geometry and geometric relations. 
Therefore, shape grammar based systems have proven to be able to represent and generate 
designs for numerous engineering applications:  

AGARWAL et al. (2000) developed a shape grammatical system able to represent and generate 
Microelectromechanical Systems (MEMS). It uses a two-dimensional parametric shape 
grammar with weights on geometric elements and also considers plane surfaces and their 
boundaries. The grammar is implemented using LISP. Therefore, the system is limited to 
creating MEMS designs in a two-dimensional space. PUGLIESE & CAGAN (2002) developed a 
shape grammar to capture the stylistic formalism of a specific motorcycle brand and to create 
new motorcycle designs within the same stylistic formalism. However, the system only 
considered visual aspects without functional aspects and was not implemented.  

MCCORMACK & CAGAN (2002) presented a shape grammar implementation for two-
dimensional straight-line design problems and applied it to the automatic design generation of 
automotive hood panels. The work on the shape grammar implementation was generalized to 
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also handle curves (MCCORMACK & CAGAN 2006). However, the system only considers two-
dimensional shapes. 

Grammatical approaches have also been successfully applied not only to design problems but 
also to the design-to-fabrication interface. PREISS & KAPLANSKY (1985) proposed using a 
production system, i.e. symbolic grammar, with rules that encode the machining operations 
and using heuristic search methods to generate machine tool instructions from 2D drawings 
for 2.5D milling. To create machining instructions the user is prompted to input the height of 
the different areas of the part. Therefore, the approach required the existence of an 
engineering drawing, i.e. it is not able to directly work on three-dimensional geometries and 
further interaction with an expert is required. SASS (2008)developed a system using a shape 
grammar approach to section a larger design model into smaller pieces that then fit into the 
envelope of the RP machine that is used to fabricate these parts. However, the primary means 
of fabrication is Rapid Prototyping and generating the instructions for the fabrication 
machines is not part of their research. A previous work of other researchers (WANG & 
DUARTE 2002) already use a shape grammar framework to create designs and Rapid 
Prototyping technology to produce these parts. However, the system is limited to a small set 
of rules and therefore the design capabilities are limited as well. Also, the generation of the 
detailed fabrication instructions for the Rapid Prototyping machines is not part of their work. 

BROWN et al. (1995) use a feature grammar to represent valid, 2D designs for turned shafts. 
With this system, a user is able to design shafts in a design-by-features manner while 
receiving feedback on manufacturability from the computer. The work was later extended to 
include a generative search method (BROWN & CAGAN 1997) that enables automated process 
planning for turning of the designed shafts, based on the prior representation. However, this 
work is limited to two-dimensional rectilinear shaft designs and the process plan created 
cannot be directly executed on machine tools. 

OSTROSI & FERNEY (2005) use a feature graph grammar on topological and geometric graph 
representation of a part for feature modeling and feature recognition, especially the 
recognition of canonical and interacting features. In their work, features are recognized from 
faces based on the structure they are embedded in. Due to the nature of their approach, it 
suffers from similar limitations as feature recognitions approaches discussed in Section 2.1. 
Also, their work does not include the creation of production or machining plans or generation 
of detailed machining instructions. 

The generative power of spatial grammars has been successfully combined with heuristic 
search methods to produce optimally directed functional designs by CAGAN & MITCHELL 
(1993). The method has been successfully applied to the design of three-dimensional truss 
structures (SHEA & CAGAN 1999). However, the approach is limited to generating designs 
only, without considering the fabrication of the truss structures. STARLING & SHEA (2005) 
developed a parallel grammar to represent valid configurations of gear systems and multi-
objective optimization to generate gear systems according to a given specification. This 
approach focuses on the functional and spatial design of gear systems and not the fabrication. 



2.5. Summary    35 

2.5 Summary 

Although much progress has been made in the last decades in the area of integrated 
CAD/CAPP/CAM, no single system provides the possibility to autonomously derive all 
necessary fabrication information down to the Numerical Control (NC) programs from a 
given 3D model. This is generally due to using a feature-based approach. However, the 
fundamental flaw of features, as discussed in Section 2.1, is that the semantics is not part of 
the feature but lies in the eye of the observer. Certainly, great successes have been realized 
using feature technology and feature recognition, however todays industrially used 
CAD/CAM systems are still aids to a sophisticated process planning expert and NC part 
programmer. 

The efficiency of fabrication has always been of importance in production research. 
Consequently, researchers continuously strive towards more efficient production especially 
with the change of markets towards customized products and small batch production. The 
intelligent systems presented in Section 2.2 aim mostly at having the machines optimize their 
behavior themselves during runtime or focus more on assembly processes rather than 
machining processes. If the system should also integrate machining capabilities, the 
researchers rely still on the shallow knowledge representation of features. Building an 
intelligent or cognitive system using such a shallow knowledge representation might not lead 
to success.  

Rapid Prototyping (presented in Section 2.3) seemed to be a loophole to overcome the deficits 
of CAD/CAM systems, providing a uniform and rather simplistic preparation process for the 
fabrication of arbitrarily shaped parts. However, RP technologies are today still expensive and 
cannot perfectly compete with traditional machining when it comes to available materials, 
precision and strength of the parts fabricated.  

New methods for an autonomous and flexible design-to-fabrication process are required that 
equip machine tools with knowledge about their capabilities, allow them to plan their own 
actions and thus make them more intelligent, beyond the traditional automation technology 
which is not intelligent at all (BRECHER et al. 2008). 

Spatial grammars have proven to be able to capture domain specific knowledge as discussed 
in Section 2.4. Together with heuristic search methods this captured knowledge has been 
successfully applied to a variety of engineering problems. 

The deep knowledge representation of spatial grammars for capturing the fundamental 
knowledge of specific machining processes and the power of heuristic search methods to 
apply this knowledge to generate feasible machining plans can be an enabler for automated 
design-to-fabrication of customized parts. Such an approach is presented in the remainder of 
this thesis. 





 

3 Generative design and fabrication using shape 
grammars 

Generative design and fabrication refers to the ability to autonomously generate designs while 
simultaneously generating all information to directly fabricate them. This technique is driven 
by the increasing need to rapidly and flexibly fabricate customized parts and individually 
designed products. For the automation of the design-to-fabrication process chain, intensive 
and dynamically updated knowledge from the domains of design and fabrication must be 
provided. To allow for a flexible, autonomous fabrication, the knowledge modeled must 
dynamically reflect the state of the fabrication system and its capabilities. This section 
presents an approach to unify knowledge for generative design and generative fabrication 
using shape grammars. With shape grammars, the geometry of designs and their mapping to 
removal volumes corresponding to fabrication processes on CNC machine tools are 
represented. The process instructions for fabrication are included by augmenting the removal 
volume shapes with labels. A new shape grammar approach to represent designs and 
fabrication processes is presented and validated on an example functional part as a proof-of-
concept. The approach enables pushing knowledge downstream, from design and process 
planning directly to the fabrication system itself providing a stepping stone towards 
autonomous fabrication planning for customized parts. 

3.1 Method for generative design and fabrication using shape 
grammars  

In the following section, a new method is presented for generating designs and automatically 
generating fabrication information for CNC 3-axis-milling using shape grammars. Further, it 
is illustrated that the gap between the domains of design and fabrication can be bridged with 
shape grammars. To accomplish this, shape grammars are used to represent design and 
fabrication information. The approach presented covers the steps of design generation, 
process planning and fabrication. 

A customized toy maze is chosen as a proof-of-concept demonstration part for a functional 
design. It allows the direct generation of numerous variants with a small underlying shape and 
rule set. Given a designable region and constraints on pocket size and depth, unique mazes are 
generated automatically. Four holes are added on the edges to allow for a cover bolted onto 
the maze from the top. Further, only macro-geometric aspects are considered, allowing focus 
on how to create and fabricate shapes rather than considering detailed aspects including 
machining process stability and tolerances. 



38    3. Generative design and fabrication using shape grammars 

3.1.1 Design generation using shape grammars 

The Maze Grammar (MG) describes a maze design by the volume to be removed and allows 
therefore a direct mapping between the geometry and the necessary processes to manufacture 
the part. The maze layout is constrained to form a perfect maze, i.e. it has no loops, 
unreachable or open areas. The elements of the grammar are subject to a V03 x V33 algebra, 
however to yield working mazes the transformations are further constrained. For ease of 
visualization, the figures of the Maze Grammar are shown only in top view. 

The labels and shapes of the maze grammar are shown in Figure 3-1. 

The set of shapes consist of a point and a pocket representing the volume to be removed to 
connect two cells of the maze. The set of labels consist of the label p, denoting the current 
position of the maze growth, the label v to denote a point being unoccupied by a pocket and 
the label s indicating a point to be occupied by a pocket. 

To create feasible and functional designs, a regular and rectangular point grid with a uniform 
grid size of l is created within a defined boundary (Figure 3-2). This is the initial shape for the 
Maze Grammar. 

 

Figure 3-1: Shapes and labels of the Maze Grammar (MG). 

 

Figure 3-2: Initial shape of the Maze Grammar with point grid and holes. 
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Figure 3-3 shows the rules for the creation of the maze itself. The first rule picks a random 
point within the grid and initially sets the label v of the point to the label p,s denoting the 
point to be occupied (label s)and that the point is now the current maze growth position (label 
p). The second rule connects two adjacent points labeled p,s and v by a pocket of the uniform 
grid length l, width w and depth d. Further the label p is moved to the point formerly labeled 
as v yielding the label p,s. The third rule transfers the label p between two arbitrary adjacent 
or non-adjacent points labeled s. This rule changes the position of the maze growth. The 
fourth rule is the terminal, finally eliminating the label p to stop maze growth. 

As possible transformations to these rules, only translations and rotations by multiples of 90° 
within the same plane are allowed. 

3.1.2 Shape grammar for CNC machining 

After applying shape grammar rules to generate designs, shape grammars can also be used to 
reason about geometry and be applied to fabrication process planning. To bridge the gap 
between design and fabrication, intensive knowledge of the fabrication process is required. 
This thesis focuses on CNC controlled machine tools for cutting as a means of fabrication. 
Nevertheless the approach is intended to be general and suitable for alternative fabrication 
processes. 

 

Figure 3-3: Maze grammar (MG) rule set. 
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For machining, in this case CNC controlled 3-axis milling, knowledge on how to instruct the 
machine tool, the semantics of commands and the tool-workpiece interaction and constraints, 
must be provided. To meet these requirements, a two-layer grammar framework shown in 
Figure 3-4 is proposed. 

On the lower level, the CNC controller codes, which encode the tool movements and machine 
parameters, consisting of a specific command and its parameters, are mapped to toolpaths. 
The mapping is done by the Machine Tool Controller Grammar (CG). The elemental 
toolpaths or tool trajectories are then used in the Manufacturing Removal Volume Grammar 
(RVG) to generate the removal volume, considering the tool shape and constraints on cutting 
conditions provided by the tool model. Together, the grammars model a set of valid CNC 
operations and syntactically valid CNC controller code. The gathered process knowledge is 
the output of this framework. 

Figure 3-5 shows the inputs and output of the Machine Tool Controller Grammar (CG). The 
input is the CNC machine instructions and syntax, i.e. the controller specific commands. As 
output, the CG generates a sequence of CNC machine operations with toolpaths and the 
corresponding CNC code. 

 

Figure 3-4: Two-layer grammar framework for removal volume and CNC code generation. 
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The Machine Tool Controller Grammar (CG) has the shape set SCG, consisting of a point, a 
line and an arc. The labels are m to denote the current position of the virtual tool tip, the label 
n to indicate a point being member of the CG, the coordinate label (x,y,z), r for the radius of 
an arc and the labels G1, G2 and G3 for the CNC G-commands straight line interpolation, 
clockwise circular interpolation and counter-clockwise circular interpolation. The shape set 
and labels are shown in Figure 3-6. 

Figure 3-7 shows the rules of the CG. The first rule creates a point at an arbitrary spatial 
position, labeled n for being member of the CG and m as current position of the virtual tool 
tip. 

 

Figure 3-5: Input and Output of the Machine Tool Controller Grammar (CG). 

 

Figure 3-6: Shapes and labels of the Machine Tool Controller Grammar (CG). 

 

Figure 3-7: Rule set of the machine tool controller grammar (CG). 
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The second rule creates a straight line interpolation from the current position of the virtual 
tool tip and moves the label m to the newly created point at the end of the line. At the same 
time, the CNC command G1 and the coordinates of the newly created point are attached to 
this toolpath. The third rule creates a clockwise arc and moves the label m analogous to rule 
CG.2. The label G2 along with the coordinate 3-tupel of the arc’s endpoint and the arc’s 
radius r are attached to the toolpath. The fourth rule works similar to rule CG.3, only it creates 
a counter-clockwise arc and attaches the G3 command to the toolpath. The fifth rule 
terminates the toolpath generation by removing the label m. 

As transformations of the algebra V03 x V13, all translations and rotations as well as scaling 
can be applied. Mirroring is not allowed since it would change a clockwise arc to a counter-
clockwise arc and vice-versa. 

Figure 3-8 shows the inputs and output of the Manufacturing Removal Volume Grammar 
(RVG). The grammar uses the tool shape and constraints, e.g. cutting directions, and the 
sequence of operations with their toolpaths from the CG and generates the removal volume 
along with the CNC code used for the creation of the removal volume. 

Figure 3-9 shows the labels and shapes of the Removal Volume Grammar (RVG). 

The set of shapes consist of a point, a line and a cylinder representing the tool shape, in this 
case an end-mill. The set of labels consists of the label n identifying points from the 
Controller Grammar (CG) and the coordinate label (x,y,z). 

 

Figure 3-8: Inputs and output of the Manufacturing Removal Volume Grammar (RVG). 

 

Figure 3-9: Shapes and Labels of the Removal Volume Grammar (RVG). 
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Figure 3-10 shows the rules of the Removal Volume Grammar. 

The first rule transforms a horizontal straight line toolpath into a removal volume by 
sweeping the tool shape along the trajectory of the toolpath. The removal volume is 
constrained by the maximum cutting depth t of the tool. The second rule creates a cylindrical 
removal volume (with the height t) from a vertical straight line toolpath analogous to the first 
rule. The CNC commands used to create the removal volume (not shown in Figure 3-10) are 
inherited from the Controller Grammar. 

It is important to mention that the applicable transformations to the single shape elements 
reflect the kinematic properties of the machine tool. For a 3-axis-milling machine, the algebra 
V03 x V13 x V33 is restricted to translations in x- and y-direction and rotations around the z-axis. 
Further, any scaling, skew and mirroring is not allowed. 

 

Figure 3-10: Rule set of the Removal Volume Grammar (RVG). 
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3.1.3 Mapping from design to fabrication 

To overcome the differences between shape-based design and process-based fabrication, 
several mapping solutions are possible as shown in Figure 3-11. 

Using feature recognition in process planning, the preferred method is to use a heuristic 
approach to map removal volumes of a process to the target removal volume represented in a 
CAD model (Figure 3-11 top). Here, a direct volume mapping is used by mapping removal 
volumes of machining sub-processes or operations to portions of the shapes created by the 
design grammar, in this case the maze grammar (MG), until the desired shape is fabricated. 

The Mapping Grammar (MPG) links the design grammar to the fabrication process. It 
integrates the RVG and CG as described before. The inputs and output of the MPG are shown 
in Figure 3-12. The process constraints, e.g. an uninterrupted tool trajectory, and 
manufacturing information are inherited from the underlying RVG and CG. Through this, the 
complete CNC code instructions are generated by applying the MPG rules. 
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Figure 3-11: Mapping types for the sequential overall process. 
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Figure 3-13 shows the shapes and labels of the MPG. 

The set of shapes contains a point, line, the pocket from the MG and the horizontal and 
vertical removal volume generated by the RVG. The labels are m for the current position of 
the virtual tool tip, n to denote a point of the CG, s to denote a point of the MG, G1 and G0 as 
machining commands for straight line interpolation and rapid feed positioning, safe to 
indicate to move the virtual tool tip to a position from which it can be moved in rapid mode 
without collisions and the coordinate 3-tupel (x,y,z). A safe position in 3-axis-milling usually 
refers to a certain z-plane above the workpiece. 

The Mapping Grammar (MPG) links the designed shapes to specific machining processes. 
Further the grammar considers physical constraints on accessibility and possible collisions 
between tool and workpiece. 

Figure 3-14 shows the mapping rules where the shapes and labels in the left-hand side are the 
result of the maze grammar (MG), or design representation. 

 

Figure 3-12: Inputs and output of the Mapping Grammar (MPG). 

 

Figure 3-13: Labels and shapes of the Mapping Grammar (MPG). 
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The first rule sets the virtual tool tip labeled m,n on a surface of the workpiece near to a point 
labeled s of the MG. Simultaneously, CNC commands to approach the new position of the 
virtual tool tip are generated. First, a safe position near to the target point is approached at 
rapid feed, avoiding collisions, and then the final position is reached at work feed. The second 
rule spawns a horizontal removal volume of the thickness t at the position of a design-pocket 
of the depth d. After applying the rule, the virtual tool tip is moved to its new position and the 
depth of the design-pocket reduced by the amount of t. The gap between the removal volume 
of the tool sweep and the residual volume is introduced for graphic display only. The CNC 
command G1 along with the destination coordinates is generated at the same time. The third 
rule creates a removal volume by a vertical tool sweep of the height t at the current virtual 
tool tip position vertically aligned with the point labeled s of the MG. After applying the rule, 
the virtual tool tip position is moved and the CNC command generated. The fourth rule allows 
the virtual tool tip to return to the position it has been previously at. To do so, the tool is 
retracted to a safe position, near the first point at rapid feed, i.e. G0 command, then moved to 
a safe position near the second point at rapid feed and then lowered to the final destination at 
work feed. The fifth rule removes the virtual tool tip position and retracts the tool to a safe 
position near its last position. 

 

Figure 3-14: Rule set of the Mapping Grammar (MPG). 
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To explain further the process of mapping the design view into the fabrication process, Figure 
3-15 shows an example of how a single pocket of the maze is mapped to a process and, at the 
same time, the CNC machining instructions are generated. The label n is suppressed for 
clarity. 

The first picture of the sequence shows the volume of the designed shape (gray) and the 
coordinate system used in the example. In the first step, the virtual tool tip is set onto the top 
surface of the pocket by applying rule MPG.1. From this, rule MPG.3 is applied to remove a 
cylindrical volume from the pocket’s volume. Then, rule MPG.2 is applied to remove a 
horizontal slice of the pocket. In the following steps, the rules MPG.3 and MPG.2 are applied 
alternating until all of the pocket’s volume is removed in step eight. Finally, the virtual tool 
tip is removed by rule MPG.5 to terminate the machining sequence. The generated CNC code 
can be executed on any standard 3-axis-milling machine under consideration of appropriate 
cutting conditions and coordinate system transformations. 

 

Figure 3-15: Example of the mapping between designed shape (gray) and manufacturing removal volume. 
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3.2 Validation 

After presenting the approach and method to generative design and fabrication, the Maze 
Grammar will now be validated. To allow for a more visual calculation of the grammar, the 
symbols in Figure 3-16 will be used instead of the labels. 

The maze generation starts with the initial shape shown in Figure 3-17. 

First, the starting symbol is added (MG.1) to a random location, yielding Figure 3-18: 

 

Figure 3-16: Symbols for visual calculation of the Maze Grammar. 

 

Figure 3-17: Initial shape of the maze. 

 

Figure 3-18: Shape of the maze after applying the starting symbol. 
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Subsequently the pocket creation rule (MG.2) is applied three-times in Figure 3-19 a-c. 

After the first three pockets, the marker’s position is reset (MG.3) and the creation of pockets 
(MG.2) is continued (Figure 3-20 a-d). 

 

Figure 3-19: Creation of three pockets within the part. 

 

Figure 3-20: Further creation of pockets. 
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Finally the generation of the part is ended by applying the terminal rule (MG.4), thus 
removing the marker from the part as shown in Figure 3-21. 

The final output of the shape grammar is shown in Figure 3-22. 

With the given design in Figure 3-22, the CNC code can be created by applying the Mapping 
Grammar to the design shown in Figure 3-21. 

3.3 Discussion 

In this example, the mapping between the design and fabrication domains is simple, yet 
demonstrates the main issues and potential for shape grammars.  

With the process-based approach to representing knowledge in the grammar, machine tool 
capabilities are described and through application of grammar rules, process plans are 
produced for a desired design. Implicitly, the set of manufacturable shapes are represented by 
the grammar as well.  

 

Figure 3-21: The maze after applying the terminal rule. 

 

Figure 3-22: Output of the Maze Grammar (MG). 
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Different product variants can be generated by changing the initial shape of the grammar to 
different dimensions or shapes. While the maze generation using the Maze Grammar (MG) 
can be interrupted by applying the terminal rule at any time, resulting in a non-finished and 
possibly inoperable design, the mapping of the design to removal volumes must be continued 
until no rule from the Mapping Grammar (MPG), except for the terminal, can be applied. 
Otherwise, collisions between tool and workpiece can occur during the final retraction of the 
tool at the end of the CNC program. Further, prematurely stopping the MPG can result in only 
a portion of the design being fabricated. 

The mapping grammar (MPG) only works with designs that are generated from the maze 
grammar (MG). Through this combination of grammars, an integrated representation for both 
design and fabrication is used. The advantage of shape grammars in the domain of 
CAD/CAM integration are that they provide a computable representation of the design 
geometry along with labels indicating fabrication information and are not restricted to a fixed 
feature decomposition or feature library. Further, the design-to-fabrication process can be 
transformed into a parallel process by alternating the application of rules from the Maze 
Grammar and the Mapping Grammar resulting in a concurrent process enabling the 
integration of fabrication knowledge in the design generation itself. However, this requires 
reducing generality, i.e. being forced to generate designs using grammars, to eliminate the 
need to recognize machining features from general CAD models. The rest of the thesis 
considers extending the initial approach to cover both, more complex shapes and handling 
general CAD models as input. 

3.4 Conclusion 

This section presented a shape grammar approach for generating both valid designs of a 
certain product class and their corresponding fabrication information to enable rapid 
fabrication of customized parts. The method provides an integrated representation for both 
generative design and fabrication. It was validated using an example of designing and 
fabricating customized mazes as a proof-of-concept. An important aspect of the approach is 
the representation of fabrication process knowledge in the Machine Tool Controller Grammar, 
Removal Volume Grammar and Mapping Grammar covering the capabilities of machine tools 
and tool shapes. However, the approach relies still on a design generated using a shape 
grammar to allow for a successful mapping to fabrication processes. This limitation is 
addressed in the next section. 





 

4 Generative machining planning using spatial grammars 
and heuristic search 

The previously presented method is limited by requiring the designer to express the design in 
a shape grammar formalism. To give the designer more freedom in the design expression, a 
method, based on spatial grammars and heuristic search that allows for creating machining 
plans from 3D CAD geometries is presented. To create such plans, domain specific 
knowledge is required to map the desired geometry of a part to a manufacturing process, thus 
decomposing design information into a set of feasible machining operations. Approaches to 
automating this planning process still rely heavily on human capabilities, such as planning 
and reasoning about geometry in relation to machining capabilities. To avoid the use of static 
feature sets and their pre-defined mappings to machining operations, the method encodes 
knowledge of fundamental machine capabilities. A method for generating a vocabulary of 
removal volumes, based on the available tool set and machine tool motions, is defined in 
combination with a basic rule set for material removal, covering tool motion, removal volume 
calculation and CNC code generation. The use of spatial grammars as a formalism in the 
Spatial Grammar Machining Planning (SGMP) method enables systematic formulation of 
constraints on spatial relations between the volume to be removed and the removal volume 
shape for a machining operation. A prototype implementation of the core method is presented. 

4.1 Process for general design-to-fabrication 

The process to translate a general 3D part model into a machining process plan in terms of 
CNC machining instructions is shown in Figure 4-1. It begins with the 3D geometric models 
of the part design and the stock (workpiece). The Total Removal Volume (TRV), i.e. the 
volume, which needs to be removed from the stock, or workpiece, to yield the finished part, is 
generated by applying a Boolean subtraction operation. The knowledge of the available 
machining processes can be generated from the available tools and machine tool capabilities 
as described in Section 4.3. The Removal Volumes generated become part of the spatial 
grammar’s vocabulary and can be used by the rules as presented in Section 4.4. Using the 
fundamental knowledge of the machining process, material (i.e. volume) is removed from the 
TRV by iteratively applying rules of the spatial grammar as described in Section 4.5. To 
apply the rules in a directed manner, heuristic search methods are applied. Simultaneously, 
the application of rules instantiates the toolpath and the necessary CNC instructions to 
execute the operation on the machine tool. After each rule application, the TRV geometry, i.e. 
the working shape, is updated and further rules are applied until the volume of the TRV is 
minimized. After having minimized the volume of the TRV, the CNC instructions are 
collected from the created toolpaths in the sequence of rules applied. The resulting machining 
plan can be executed on a CNC machine tool.  
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Figure 4-1: Design-to-fabrication process 
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4.2 Terms and definitions 

This section presents basic terms and definitions that are used in the presentation of the 
method. 

4.2.1 Total Removal Volume 

The Total Removal Volume (TRV) represents the sum of all volumes that need to be removed 
from a stock (workpiece) to yield the desired part. As shown in Figure 4-2, the TRV (gray) is 
not necessarily connected but can consist of several bodies. In the expression of Boolean 
operations it is  

 designdesiredstockTRV   
(1) 

4.2.2 Open Face 

Every face of the TRV that is shared with the stock but is not part of the desired part is called 
an Open Face (OF). 

4.2.3 Removal Volume 

The Removal Volume (RV) (Figure 4-3) represents the volume of material that can be 
removed from a stock by the interaction of the tool with the given stock during a single 

TRV open 
faces

 

Figure 4-2: Total Removal Volume (TRV) of a part and its open faces 
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operation (movement of the tool) along the toolpath. The size of the RV is further constrained 
by the maximum cutting depth t. The shape of the RV depends also on the shape and size of 
the tool. 

The RV itself consists of the removed volume, the toolpath and constraints for the application 
of the RV and therefore contains all necessary information to execute the machining 
operation. 

4.2.4 Limiting Face 

The Limiting Face (LF) constrains the RV to a certain cutting depth t of the tool. The LF in 
most cases is the top-face of the RV as shown in Figure 4-3. The LF can be defined as the 
face created by offsetting the swept tool surface normal to the swept tool face and orthogonal 
to the toolpath towards the tool axis by the distance of the defined maximum cutting depth t. 
If tool-axis and toolpath are collinear, then the RV does not have a LF. 

4.3 Generating removal volumes 

To capture the knowledge of the machining process, a fitting representation is required. This 
representation has to have all the properties required for the application, i.e. the geometry-
based generation of a process plan for machining on a CNC machine tool. This suggests using 
a geometry-based representation for the single operations that can be carried out on a machine 
tool. In this approach the representation comprises the Removal Volume (RV) that the 
machine tool and the tool can remove from the stock along with the toolpath, i.e. the 
instructions to carry out the operation. 

tool
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tool
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Removal
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tool-path  

Figure 4-3: The Removal Volume (RV) created by a tool-sweep and  

constrained by the maximum cutting depth 



4.3. Generating removal volumes    57 

In the area of machining simulation, approaches to generating the volume of a machining 
operation exist in the area of Cutter-Workpiece Interaction analysis (see ARAS & YIP-HOI 
2008 for examples). An approach similar to ARAS & YIP-HOI (2008) based on MOUNAYRI et 
al. (1998) and SPENCE & ALTINTAS (1994), is used to generate the RV from a tool with a 
given elemental toolpath segment shown in Figure 4-4. The process comprises 
(a) decomposition of the solid tool representation into faces, (b) sweeping of the individual 
faces along the toolpath segment, (c) Boolean sum of the individual solids and (d) healing of 
irregular bodies (e.g. non-manifold and hollow bodies). This method is not bound to endmills, 
but can be used for a wide variety of milling tools (see ARAS & YIP-HOI 2008 for examples). 
In contrast to the initial approach presented in Section 3, the shapes of the RV depend on the 
tool shape. Through this, the approach can be applied using a wide variety of tool shapes. 

The Removal Volumes also contain the parameters of the RV that are instantiated during rule 
application and the definition of the used machine tool, tool, toolpath and machining 
instructions as labels. The complete machining instructions can then be collected from a 
sequence of RVs. 

The knowledge on the machining process is encoded in the rule set and in the vocabulary. In 
the vocabulary, the elemental shapes that can be removed by a machining operation are 
generated from the combination of the tool shape and the kinematic capabilities of the 
machine tool from the machine tool library. 
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Figure 4-4: Removal Volume (RV) generation 
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4.4 Set grammar formalism 

As described in Section 2.4, a set grammar consists of a vocabulary, the set of rules and an 
initial labeled shape. The vocabulary here, shown in Figure 4-5, consists of the Removal 
Volume shapes, toolpath-curves and endpoints of the toolpath. The set of labels (Figure 4-6) 
is used to control the application of rules and parametrically represent CNC commands. 

The Total Removal Volume (TRV) represents the initial shape of the grammar. During the 
application of RVs to the TRV, the TRV and the sequence of RV applications represent the 
working shape. 

In detail, the set of shapes consists of the vocabulary of Removal Volumes (Figure 4-5), 
which in turn consists of the solid shape of the removed volume by the machine tool, the 
toolpath of the associated machining operations, which are assumed to be straight lines and 
the start- and end-point of the toolpath. 

The Removal Volumes (Figure 4-5) are constrained such that only the defined parameters, 
here t, l and h, are allowed to be changed to enable the generation of a feasible process plan. 

The set of labels (Figure 4-6) consists of labels for Non-Open-Faces (NOF), Open Faces 
(OF), Limiting Faces (LF), Non-Limiting Faces (NLF) and a Marker (M) representing the 
current spatial position of the generation process thus ensuring a continuous toolpath. Further 
labels include G0 and G1 as CNC-commands for moving the tool at machining feed (G1) or 
rapid feed (G0) and the triplet <x,y,z> describing the coordinates of a point. 

The set of rules, shown in Figure 4-7, describes how the vocabulary can be applied to the 
working shape. The rule set consists of the rule R.1 that applies the starting symbol on the 

 

Figure 4-5: Basic vocabulary with Removal Volumes 

 

Figure 4-6: Set of labels 
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model level, thus creating a toolpath origin on the machine level. The repositioning rule, R.2, 
creates a G0 labeled line from the current marker position to a new position. On the machine 
level this represents a rapid, thus non-cutting, movement of the tool to a new position. The 
terminal rule, R.4, ends the generative process on the model level and retracts the tool from 
the workpiece on the machine level. The most important rule of the set is the subtractive set 
rule schema, R.3, for 3-axis-machining. This rule schema applies on the model level a 
Removal Volume under a certain transformation (rotation and definition of parameters of the 
RV) and thus removes the volume of the RV from the working shape while adding the 
toolpath to the working shape. Since the working shape can have an arbitrary shape, 
Figure 4-7 can only give an example of such an instantiated rule and major parameters. Newly 
created faces are labeled as Open Face (OF) unless they are coincident with a Non-Open Face 
(NOF). This corresponds to an actual single machining operation on the machine level, with 
the engagement of the moving tool and the workpiece. 

To allow for maintenance and extension, the grammatical system features a minimum number 
of rules to cover the fundamentally different operations in a manufacturing process. Such 
operations can be the cutting process and the movement associated with it but also 
repositioning of the tool at rapid feed. 

 

Figure 4-7: Set of rules 
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In general, the application of a rule  

 BA  (2) 

follows the formula 

 )()(' BTATCC  , (3) 

where C’ is the new working shape generated from the former working shape C and the shape 
sets A and  under the transformation T. Specifically for rule R.3 (Figure 4-7) this schema 
results in 

 ))(())((' RVTPTRVVTCC  (4) 

Where V(RV) represents the volume of the Removal Volume that is subtracted and TP(RV) 
represents the toolpath of the RV that is added to the working shape. 

These rules are general referring to their use, but represent specific operations in the 
manufacturing process. Such operations can be the cutting process and the movement 
associated with it but also repositioning of the tool at rapid feed. As a drawback of this 
approach, the system must rely on numerous constraints on the spatial relation between the 
TRV and RV to ensure that only feasible and valid process plans are generated. The 
implementation and embedding of these constraints, however, is a known difficulty in spatial 
grammars. Encoding the constraints within the rules makes the constraints rule specific where 
some constraints may be repeated in several rules and would have to be changed in each rule. 
The definition of all constraints in the rules also requires creating a multitude of rules to cover 
all situations in which the explicitly defined constraints apply. 

The hard constraints for the rule application are shown in Table 4-1. These may not be 
violated to ensure that a feasible plan is generated. 

The constraint C.1 resides within the rules R.1 and R.2. The toolpath must start outside of the 
Total Removal Volume thus preventing collisions of the tool and the TRV. This addresses 
also constraint C.2, which ensures a continuous toolpath, i.e. the tool cannot freely move in 
the material. This also reduces the computing complexity since it disallows translation during 
rule application such that the endpoint of the previous RV’s toolpath becomes the starting 
point of the current RV’s toolpath. In practice, this is ensured by the use of marker M from 
the set of labels in rule R.3. 

Constraint C.3 prevents the limiting face of the RV from penetrating the TRV. This prevents 
the tool from cutting too deep into the material resulting in exceeding the allowed cutting 
forces and possible tool-breakage. 
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Similarly, C.4 forbids limiting faces of the RV to coincide with non-open face of the TRV. 
Referring to the definition of these terms, this constrains the tool from approaching the part 
from within the material. 

Constraint C.5 prevents the RV from penetrating the designed part shape, which would cause 
an irreversible deviation from the desired end-contour. 

C.6 constrains the possible transformation of the RV to translations in x, y and z directions 
and rotations around the z-axis, which is the case for 2.5D machining on a 3-axis milling 
machine. Once again, this is necessary to create an executable plan and also lowers the 
complexity by reducing the possible combinations of the transformations. 

Table 4-1: Hard constraints on spatial relations for rule application 

plan 
feasibility

reducing 
complexity

C.1
R.1
R.2

RV:TRV
The toolpath must
start outside the
TRV

X

C.2 R.3 RV:RV
The toolpath must
be continuous X X

C.3 R.3 RV:TRV
A limiting face must
not penetrate the
TRV

X

C.4 R.3 RV:TRV

Non-open faces
must never be
coincidental with
the limiting face

X

C.5 R.3 RV:Part

The part shape
may not be
penetrated by the
RV

X

C.6
R.2
R.3

RV
only translations x,
y, z and rotations in
dz are allowed

X X

examplename rule
spatial 
relation

contribution tospatial 
relation 

type
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4.5 Heuristic search methods for machining planning 

This section presents a new method for generating machining plans by combining the 
presented set grammar with heuristic search. 

Many problems, especially in combinatorial optimization, require vast computational effort to 
enumerate all possible solutions to the problem posed. However, often the optimal solution is 
not required and instead, finding a near-best solution that is computable in reasonable time is 
acceptable. In such cases heuristics play an important role. Heuristics, or rules of thumb, are 
criteria and methods that help decide which alternatives to pursue further and which ones to 
abandon. A good heuristic balances the effort to compute it and its significance, i.e. its ability 
to discriminate correctly between a good and a bad choice. 

Using the good guesses provided by the heuristic, the search problem can be constrained to 
promising areas. Through this, less partial solutions of a combinatorial problem must be 
evaluated, thus the computational effort is significantly reduced. However, using a heuristic 
does not guarantee finding a solution nor finding any solution at all. Summarizing, a heuristic 
can be defined as “… a technique that seeks good (i.e. near-optimal) solutions at a reasonable 
computational cost without being able to guarantee either feasibility or optimality, or even in 
many cases to state how close to optimality a particular feasible solution is” (REEVES 1995). 

The search strategy determining which nodes of the search tree are generated or expanded 
next has a great influence on the algorithm’s performance. Depending on the strategy, a 
search can be uninformed or informed (PEARL 1984): Uninformed search methods know little 
to nothing about the structure of the problem or the reachable states in the neighborhood of 
the current state. Examples are Depth-First Search (DFS) or Backtracking. In DFS, the search 
tree is expanded by picking the successor nodes at random. The search is terminated when the 
goal state is reached or single nodes are abandoned if the depth bound is reached or the node 
has no successors. If a node is a dead-end or has reached the depth bound, the search 
continues with another node. In contrast to DFS, backtracking generates only a single 
successor for each node and further pursues in this direction. If a node is a dead-end, the 
search returns to its predecessor and generates another successor, previously not visited. 
Through this, backtracking can recover from dead-ends. However, the search itself is still 
undirected. Informed search methods have the ability to assess the quality of an alternative 
state by means of a heuristic function. This function provides the search with information on 
how close the state is to the goal state. Examples for search methods that capitalize on this are 
Best-First Search (BFS) and A*. In the search the open nodes or states, i.e. the nodes that still 
need to be explored, are ranked by their respective value of the heuristic function. In BFS, the 
highest ranking successor node is explored. In contrast to BFS, A* uses not only heuristic 
information on how close the evaluated state is to the goal but also evaluates recursively the 
cost for this particular partial solution. 
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4.5.1 A* search 

A* is a widely used search method for graph search due to its ability to use heuristic 
information in the search to guide it. A* is usually implemented using a ranked list of states to 
be explored, sorted by the heuristic function f(i) for each state i,  

 )()()1()( ihwigwif  . (5) 

The cost is represented by the recursive function g(i) with 

 )()1()( igigig   (6) 

and some weight  

 ]1..0[w . (7) 

The term g(i-1) represents the previously generated cost, whereas Δg(i) is the cost caused 
exclusively by the state i. The function h(i) is an optimistic estimate of the distance to the 
goal, i.e. the quality of the state. Thus h(i) may never overestimate the distance and therefore 
needs to be admissible. If h(i) is monotonic, the search can be implemented more effectively 
because each state is only visited once.  

During each iteration, the state/node with the lowest f(i) is selected and further expanded. By 
minimizing f(i) (eq. (5)), the goal can be reached effectively and with minimum cost. Since 
only the state with the minimum f(i) is pursued further within the search, the search can get 
trapped in local optima. 

Figure 4-8 shows the tree of evaluated states using A* for a single depression. First, the 
starting symbol is applied, initializing the heuristic values h, g and f. From this state, three 
rules are applicable: ApplyRV with a cylindrical RV, ApplyRV with a slot RV and the 
Repositioning rule.  
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A* evaluates all of these three rules, thus creating new states and calculating their objectives. 
After this, A* continues with the state having the lowest f value, here state 1, the only state 
that cuts away material and thus lowers the h value. From this, again the three applicable rules 
are applied and evaluated. However, applying a cylindrical RV fails since the marker is 
already at the bottom of the depression. Therefore, state 11 is not pursued further. State 12 has 
the overall lowest f value and is pursued further during the search. It can be seen that A* does 
not accept inferior moves that can have a positive influence later on search and thus cannot 
escape local minima. 

4.5.2 Pattern Search 

Pattern Search (PS) (HOOKE & JEEVES 1961) is known for its ability to solve geometric 
optimization and search problems well. Examples comprise 3D component layout problems 
(YIN & CAGAN 2000) and trunk packing (knapsack) problems (DING & CAGAN 2003). 

In the Hooke and Jeeves Pattern Search, the generation of neighboring solutions is prescribed 
by alternately changing each variable, one at a time. If all variables have been attempted to 
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Figure 4-8: Partial decision tree after the first few iterations using A* 
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change and if the solution obtained is better than the previous one, a so called pattern move 
can be performed. Having a vector v


 of variables at iteration i, the pattern move m


 can be 

calculated from the previous iteration i-1 by 

 1 ii vvm


. (8) 

Then, a change of the variables by repeating the movement pattern m


 from the last iteration 
can be applied with  

 mvv i


 . (9) 

If the result of the objective function for the vector v


 is better, it is accepted. Otherwise, the 
search returns to the variables of the last iteration i. Through the use of pattern moves, the 
search can proceed according to an estimated gradient (see eq. (8)). As a result, PS can be 
applied even if a gradient cannot be calculated. 

The PS search procedure is illustrated in Figure 4-9 where a 2D continuous minimization 
problem is considered. The curves represent the values of the objective function with the 
minimum in the center.  

The first step is taken in the x-direction and accepted since the objective value is lower. The 
second move is attempted in the y-direction and also accepted. Once all variables have been 
changed, a pattern move according to eq. (8) is calculated and performed based on the current 

 

Figure 4-9: Example of Pattern Search 
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state (so called basepoint, shown as empty circle). The pattern move (displayed as a gray 
dotted line in Figure 4-9) is accepted since it decreases the goal value. The next move is again 
applied in the x-direction and accepted. The next move is attempted in the positive y-direction 
but rejected since the objective value is higher. Therefore, the same move in the negative  
y-direction is attempted and accepted since this time the objective value is lower. After all 
variables have been attempted to be changed, a pattern move is calculated again and accepted. 
The search continues until the minimum is reached (not shown). 

4.5.3 Decomposition of the Total Removal Volume 

The problem of applying a subtractive rule and thus decomposing the TRV into a sequence of 
RV applications can be sectioned into subproblems as follows: 

a) (global search problem) find the best sequence of operations (rule applications) to 
yield the desired part 

b) (local decision problem) select which removal volume to apply 

c) (local search problem) find the transformation (position, orientation and parameters) 
under which the rule application is valid and most effective 

The process of the decomposition is shown in Figure 4-10. The decomposition process is 
repeated until the volume of the Total Removal Volume is smaller than the a-priori defined 
Tolerance Volume. First a rule is selected. If the rule incorporates a Removal Volume, e.g. 
R.3, one parameterized Removal Volume from the set of all Removal Volumes is selected. At 
this point, the tool and machine tool on which the operation should be carried out is already 
determined through the inheritance of this information during the RV generation. The local 
search has then to find suitable transformations that allow the rule to purposefully be applied 
to the TRV under consideration of the constraints on the spatial relation. If all constraints are 
met, the rule can be applied to the working shape under the found transformation. After this, 
the process continues from the beginning. If there is no transformation that would allow the 
rule application, the process returns to a prior step and either selects a different RV or another 
rule to apply. 
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Figure 4-11 shows this decomposition process using an example. After the TRV has been 
calculated from the part model and stock model, the starting symbol (rule R.1) is applied to 
the TRV. The marker, M, is placed directly above the top surface of the TRV indicating the 
starting point for cutting. Then rule R.3 is instantiated with the cylindrical Removal Volume 
along with parameter h, and applied, representing a vertical tool movement. The toolpath is 
created at the same time, denoted by the dotted line, and the position of the marker M is 
moved to the endpoint of the toolpath. Next, the same rule is instantiated and applied again, 
this time using the bar-like RV and parameter l, representing a horizontal tool movement. The 
toolpath is generated, denoted by the dotted line. The application of rule R.3 using the bar-like 
RV continues until the TRV has been completely removed. Then, the terminal rule R.4 is 

V(TRV) < 
Tolerance

start

end

yes

select rule rule set

rule w/ RV?

vocabularyselect RV
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Figure 4-10: Total Removal Volume decomposition process 
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applied, thus retracting the tool to a safe position and removing the marker M. During all rule 
applications the CNC instructions are instantiated such that the CNC control program to drive 
the machine tool can be collected from the sequence of successful rule applications. 
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R.3(      )

R.3(   
   )

M
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M

M
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Figure 4-11: Sequence of rules for the decomposition of a TRV 
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The search problem for this application can be split into two loops: 

 An outer loop to select which rule to apply and to search the tree of dynamically 
generated states each formed by a rule application, addressing subproblems a) and b). 

 An inner loop that optimizes continuous parameters for the Removal Volumes that are 
subject to several constraints, addressing subproblem c). 

Due to the search algorithms’ requirements, a more complex objective function for 
minimization is used instead of only minimizing the volume of the residual TRV as depicted 
in Figure 4-10. 

Outer loop search 

For the outer search, i.e. the search for a good sequence of rule applications, the A* algorithm 
(PEARL 1984) has been chosen for its ability to use heuristic information on benefit and cost 
of actions to guide the search through all generated states. 

Assuming i denotes a state, the goal distance function h, represents the benefit of each action 
and is chosen as the residual volume of the TRV, i.e. the remaining volume to remove: 

 ))(()( iTRVVolumeih   (10). 

The h(i) heuristic must be admissible i.e. it must not overestimate the distance to the goal. 
Since the Volume of the TRV should be made equal to zero, h(i) is exactly the distance to the 
goal and therefore admissible. 

The cost g(i) of each action or rule is represented by the approximated time it takes to 
fabricate a part up to this state, thus it can be recursively defined 

 )1()()(  igitimeig  (11), 

where g(i-1) refers to the cost of the previous state. The A* algorithm combines the metric for 
benefit and cost into one function f using the weight ]1..0[w  to balance the guidance 

between benefit (i.e. greediness) and cost according to the formula: 

 )()1()()( igwihwif   (12). 

The goal is to minimize f(i) during the outer loop search and thus find a feasible machining 
plan with minimum cost and minimum deviation from the desired part shape. 

In addition to the cost function g(i) and the goal distance function h(i), a penalty is added to 
allow relaxation of constraints. In analogy to (12), a weighted objective function can be 
formulated as 

 ))(()()1()()( 2
offsetp pipwigwihwif   (13), 
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using the weight ]1..0[pw  to control the influence of the penalties in comparison to cost and 

benefit with the penalty value 

 )()1()( ipipip   (14) 

and a positive penalty offset poffset defined as 
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

ipp

ipp

offset

offset
 (15). 

The goal of the search is to minimize the objective function value f(i) according to eq. (15). 

The A* search algorithm, as implemented, is outlined below: 

Table 4-2: Basic A* algorithm in pseudo code for searching a tree of states 

create root of state tree and put node on open list 
while openlist (sorted by descending f(i)) is not empty 
 select node with the lowest f value and make it the current state 
 if current state meets goal criterion 
  exit search 
 remove the state from the open list 
 generate all state siblings 
 calculate g, h, p and f for each new node 
 add each node to the open list 
 add current state to the closed list 

Inner loop search (parameters of Removal Volumes) 

The inner loop search is used to optimize the parameters of each candidate Removal Volume. 
For this problem, Pattern Search (PS) has been selected for its known good behavior on 
geometric optimization problems (YIN & CAGAN 2000). Since the outer loop A* search 
requires the use of an objective function, incorporating cost and benefit, it is reasonable to use 
the same objective function in the local loop of the search process as well. 

However, since Pattern Search explores the search space deterministically, it can get trapped 
in certain solutions, thus returning no result. In addition to this, Pattern Search can also fail to 
find a feasible solution under hard constraints. The cause of this behavior is discussed in the 
following.  

Figure 4-12 presents a situation where the deterministic search space exploration can block 
the search from proceeding under the hard constraint C.5. This constraint, shown in Table 4-1, 
forbids the RV to intersect the design part shape. The methods using hard constrained Pattern 
Search (a) and the penalized Pattern Search (b) are compared. 
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The shaded area represents the part, whereas the inner clear triangle represents the valid 
machining area. The tool has already removed some of the volume from right to left in the 
lower area of the triangle. The marker, representing the current position of the virtual tool, is 
located at the origin of the coordinate system. In (a), the hard constrained Pattern Search is 
shown. First, the PS attempts a move in positive x direction (1). For this move however, the 
objective function increases since the move only creates cost g(i) while not changing the 
residual volume h(i) because the overlap of the RV and the TRV is zero. Therefore the move 
is not accepted. For the other explored moves (2-4), the constraint C.5 is violated since the 
RV (dashed outlines) intersects with the part shape. The penalized PS (b) does not accept the 
first attempted move (1) as well but is able to accept move 2 and 3 sequentially since these no 
longer violate the constraints and do have an effect to improve the objective function. The 
solid gray areas represent the volume that is added as a penalty to the objective function, 
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Figure 4-12: Hard constrained (a) vs. penalized (b) Pattern Search 
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whereas the small black area represents the volume that could be removed from the stock and 
which lowers the objective function. 

If the hard constraint C.5 (intersections between Removal Volumes and the part shape are not 
allowed) is relaxed and transformed into a penalty which can be formulated recursively as the 
volume of the intersection between the Removal Volume that is applied and the part shape 
and the penalty of the parent state, thus: 

 )1())(()(  ipPartiRVVolumeip  (16). 

In case there is no Removal Volume involved, the formula is simplified to. 

 )1()(  ipip  (17). 

The positive penalty offset poffset is defined as 
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The penalty is used in eq. (9) to calculate the objective function. However, through early 
studies, it was found that the inner loop search (here Pattern Search) must not take cost into 
account otherwise it is possible that an invariant partial solution is returned, i.e. the algorithm 
chooses minimizing the cost g(i) over minimizing the residual volume h(i), resulting in no 
change in h(i). This keeps the outer loop search from achieving any progress through the 
search space at all. Therefore, the objective function for the local search loop is defined as 

 ))(()()( 2
offsetplocal pipwihwif   (19). 

The goal of the search is to minimize the objective function value f(i) according to eq. (19). 
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The Hooke and Jeeves Pattern Search algorithm, as implemented, is outlined below:  

Table 4-3: Hooke and Jeeves Pattern Search algorithm in pseudo code 

do 
 for each variable x of vx


  in turn  

  x = x + step_size(x) 
  if objective value Ci=f( v


) decreased 

   accept move and continue 
  else 
   revert move 
   x = x - step_size (x) 
   if objective value Ci decreased 
    accept move and continue 
   else 
    revert move 
 end of for loop 
  if no move has been made 
   reduce step sizes 
  else 
   attempt a pattern move mvv


  

   if objective value Ci=f( v


) decreased 
    accept move 
   else 
     reject move 
while goal criterion has not been reached and step_sizes not below minimum step_sizes 

4.6 Implementation 

The method for Spatial Grammar Machining Planning (SGMP), as presented, has been 
implemented using the C++ language and OpenCascade (OPEN CASCADE S.A.S. 2011) as the 
geometric kernel and for exchanging STEP-geometries, but not feature models, for parts and 
workpieces. 

To allow for a high degree of flexibility of the grammar, it has been implemented using an 
abstract model of the grammar as shown in Figure 4-13. The main element is the abstract 
class SGMP for Spatial Grammar Machining Planning. It provides routines to instantiate 
Rules, Removal Volumes and Constraints using a factory pattern, implemented in the Loki 
library (ALEXANDRESCU 2001) during runtime. It also provides the functionality for searching 
the best parameters, and at the same time transformations, for each RV. The Total Removal 
Volume, the Non-Open Faces and the Part Shape are represented by the OpenCascade 
boundary representation class TopoDS_Shape. For the global search problem, the SGMP 
provides a tree structure (PEETERS 2011) of states to build up dynamically a search tree in 
which each rule application corresponds to a node. Each State saves the rule and the 
associated Removal Volume along with the Total Removal Volume. Through this, the search 
can return to previous states. Each Rule can be applied to the current state after the associated 
constraints have been checked. If a rule features a Removal Volume, the constraints for the 
Removal Volume are checked as well. 
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During the local search, the Parameter Vector, representing the shape and transformation of 
the RV, is modified and the shape and the Limiting Face of the Removal Volume are 
generated. Then the constraints can be evaluated. If Rule and Removal Volume have been 
successfully applied, the CNC instructions can be instantiated. 

This structure provides the framework for the grammar and cannot be compiled as the vital 
functionality must be defined in derived classes. To create a working grammar, rules, 
Removal Volumes and constraints must be derived from the abstract class definitions and 
their functionality realized by overwriting the abstract routines from the base class. Due to the 
design of the C++ language, each element must be registered in the constructor of the 
grammar class derived from SGMP. However, it is still possible to enable and disable 
elements of the grammar, such as rules or removal volumes, and change mappings of the 
constraints during runtime. 
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Figure 4-13: Basic UML diagram of the abstract grammar implementation 
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The grammar has been implemented using the structure described. The grammar of the 
implemented software prototype features the following rules, Removal Volumes and 
constraints (see Table 4-1) shown in Figure 4-14. The Starting Symbol (R.1 in Figure 4-7) is 
not associated with a constraint since it is only applied once during the search procedure. The 
rule Reset Marker (R.2) repositions the marker to a new position and therefore depends on the 
Marker to be already set that is expressed by the associated constraint. The Terminal rule 
(R.4) can also be only applied if the marker has already been set. The rule Apply Removal 
Volume is associated with two Removal Volumes representing a vertical and a horizontal tool 
movement (see Figure 4-5). The rule itself relies on an existing marker. The Removal 
Volumes associated are subject to the constraints, shown in Table 4-1, C.3 (The Limiting 
Face of the RV may not intersect with the TRV), C.4 (the Limiting Face and the Non-Open 
Faces may not intersect) and C.5 (the part shape and the RV may not intersect). 

Due to the nature of C++, the implemented elements of the grammar need to be registered in 
the factory pattern in order to be available in the grammar. The code in Table 4-4, taken from 
the constructor of the grammar’s main class, shows the registration of the basic rules, 
Removal Volumes and Constraints. In the registration, a symbolic name (e.g. “ApplyRV”) is 
defined, under which the element is accessible within the grammar. Along with the symbolic 
name, a pointer to a class (e.g. “RApplyRV) is specified that instantiates the object. Here, a 
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Figure 4-14: Implemented Rules, Removal Volumes and Constraints 
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template function is used to instantiate the object, so it does not require implementing a new 
function for each element manually. 

Table 4-4: Code sequence for registering elements of the grammar 

RegisterRule("StartingSymbol", createInstance<Rule, RStartingSymbol>); 
RegisterRule("ResetMarker", createInstance<Rule, RResetMarker>); 
RegisterRule("ApplyRV", createInstance<Rule, RApplyRV>); 
RegisterRule("Terminal", createInstance<Rule, RTerminal>); 
 
RegisterRemovalVolume("CylinderD10", createInstance<RemovalVolume, RVcylD10>); 
RegisterRemovalVolume("SlotD10", createInstance<RemovalVolume, RVslotD10>); 
 
RegisterConstraint("IsMarkerSet", createInstance<Constraint, CIsMarkerSet>); 
RegisterConstraint("LFTRVnonintersecting", createInstance<Constraint, CLFTRVnonintersec>); 
RegisterConstraint("NOLFnoncoincidential", createInstance<Constraint, CNOFLFnoncoin>); 
RegisterConstraint("NOFRVnonintersecting", createInstance<Constraint, CNOFRVnoninter>); 
RegisterConstraint("NoRepRules", createInstance<Constraint, CNoRepRules>); 
RegisterConstraint("SameTool", createInstance<Constraint, CSameTool>); 

Once the elements are registered, mappings that define the relations between the different 
elements are created. These mappings are checked during the instantiation of the elements 
such that related elements are created and added to the original element, e.g. once a rule is 
created, all associated constraints are also instantiated and added to the rule. The code in 
Table 4-5 shows the mapping for the grammar structure depicted in Figure 4-14. 

Table 4-5: Code sequence for defining mappings between elements of the grammar 

AddRuleToConstraintMapping("ResetMarker", "IsMarkerSet"); 
AddRuleToConstraintMapping("ApplyRV", "IsMarkerSet"); 
AddRuleToConstraintMapping("Terminal", "IsMarkerSet"); 
 
AddRemovalVolumeToConstraintMapping("CylinderD10", "NOFRVnonintersecting"); 
AddRemovalVolumeToConstraintMapping("SlotD10", "NOFRVnonintersecting"); 
 
AddRemovalVolumeToRuleMapping("CylinderD10", "ApplyRV"); 
AddRemovalVolumeToRuleMapping("SlotD10", "ApplyRV"); 

The first block defines constraints as being required by the specific rule. The second block 
defines which constraint has to be kept by which Removal Volume. The last block defines 
which Removal Volumes can be used by which grammar rule. 

The rules, Removal Volumes and constraints can be deactivated or activated globally by 
unregistering or registering the element of the grammar. This illustrates the flexibility of the 
implementation. 



 

5 Results and applications of Spatial Grammar Machining 
Planning 

This chapter presents the results and several scenarios that demonstrate the potential of 
Spatial Grammar Machining Planning (SGMP) method as presented in the previous section. 
First, the feasibility of the approach and its implementation is presented, followed by a 
demonstration of the systems capability to autonomously plan the machining operations for 
the fabrication of customized parts. Then the handling of several disjoint bodies within one 
Total Removal Volume and the advantageous use of several tools is considered. After this, the 
system’s ability to react to missing workpieces and the reaction to tool failures is 
demonstrated. 

These scenarios cover a range of practical applications and address several common issues in 
machining planning as well as demonstrate the capabilities and flexibility of the method and 
its implementation. The machining plans have been created using the implementation and 
search methods, namely A* for rule selection and penalized Pattern Search (PS) for 
parametric optimization, as presented in Section 4. 

5.1 Machining planning for part fabrication 

The approach and implementation have been tested on several cases. The general behavior of 
the search is presented using the part shown in Figure 5-1. Here, the wedged depression must 
be machined from an oblong shaped stock. 

 

Figure 5-1: Basic validation part for search methods 
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First, the effectiveness of the pattern search is investigated for a single search for variables of 
the Removal Volume shown in Figure 5-2. The search first applied a cylindrical RV using 
rule R.3 based on the previous Starting Symbol that located the marker above the centroid of 
the pocket. Therefore, the marker is currently at the center bottom of the pocket, displayed as 
a cross in the figure. The pattern search must now find the best new location for the marker on 
an x-y-plane thus creating a toolpath from which the machine tool instructions can be created. 
From the current marker position, the search applies the first move in the positive x-direction. 
The search generates the Removal Volume and evaluates its volume of intersection with the 
TRV. The search continues applying the next move in the positive y-direction. Now that all 
variables have been attempted to be changed, a pattern move can be performed. For this, the 
current position of the marker is set as basepoint. The vector from previous iteration of pattern 
search to the current basepoint (eq. (8)) is added to the markers position (eq. (9)). The pattern 
move is indicated in Figure 5-2 as a diagonal, gray dotted line. 

Figure 5-3 shows the development of the objective function over the iterations during the 
search. The objective function decreases steeply over the pattern move after the second 
iteration. After 18 iterations the step length is less than 0.001mm and the search procedure is 
terminated. 

y

x

 

Figure 5-2: Pattern search procedure for a single Removal Volume. Pattern moves displayed diagonally in gray.
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To investigate the interplay of inner and outer search, the machining planning has been 
carried out repeatedly using a weight of w=0.5 and wp=1.0 (cp eq. (13) & (19)). The resulting 
residual TRV volume h(x) and cost g(x) for each solution x have been sampled. Figure 5-4 
shows one possible process plan for manufacturing the pocket (a) and a resulting part after 
machining (b) using CNC code generated during the planning process. 

The search is carried out using a combination of A* and PS with hard constraints (in the 
following called method M1) and using A* and PS with penalties (in the following called 
method M2) as presented in the previous section. The objective functions are calculated for 
the outer loop (A*) with eq. (12) and for the inner loop (PS) with eq. (19). 
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Figure 5-3: Objective function and iteration of the pattern search during the search shown in Figure 5-2. 
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Figure 5-5 displays the approximated cost vs. the normalized residual volume of the TRV 
after the terminal rule has been applied and thus the planning process has ended. The ideal 
solution lies in the lower left corner, with zero residual volume h(x) and minimum cost g(x). 

The diamonds represent solutions for the first search method (M1) using hard constraints 
instead of penalties. The narrow scattered datapoints indicate the general feasibility of the 
method. 

The triangles represent solutions for the second search method (M2) using penalties instead of 
the hard constraint. These solutions can be grouped into three clusters by visual inspection. 
The first central cluster (cluster 1) is in the vicinity of the previously presented solutions. The 
second cluster (cluster 2) in the upper left corner represents solutions that are far from the 
ideal solutions, i.e. the method is not able to find acceptable solutions in these cases. The only 
difference between the methods is the different implementation of the constraints. Therefore, 
it can be assumed that the different behavior results only from this. 

The third cluster (cluster 3) is the solution at the bottom that represents the overall best found 
solution. This solution demonstrates the potential of method M2 for finding improved 
solutions. 

 

Figure 5-4: Geometric representation of a generated process plan (a, colors enhanced for clarity)  

and a fabricated part (b) 
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Ideally the residual volume h(x) would be zero for each solution x. The fact that it is not 
implies numerical problems or deadlocks in the search process. The numerical problems can 
be caused in the local search algorithm itself or the underlying CAD kernel and its Boolean 
functions for solids. The deadlocks of the search algorithm, i.e. it is not able to recover from a 
bad sequence of operations and thus is unable to reach the goal state, must be addressed by 
more powerful heuristics and guidance in the search process. 

Table 5-1 shows detailed result statistics for each method. The first column shows the best 
solution for h, i.e. the solution with the least residual volume thus approximating the desired 
part best. The second column shows the best solution considering the combined objective 
function, f, as defined in eq. (12) and (19). The third and fourth columns show the worst 
solutions regarding h and f respectively. The fifth column shows the average values over all 
solutions and the last column the standard deviation over all solutions. Overall, the penalty p 
is zero for all solutions where it applies. This means, an unwanted overcut, i.e. removing 
material from the later part, did not occur in any solution. This demonstrates the ability of the 
method to find feasible solutions using penalties. 
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Figure 5-5: approximated cost vs. normalized residual volume (error value) for A*-PS with hard constraints 

(M1) and A*-PS with penalties (M2). 
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Table 5-1: Result statistics by methods, best and worst solutions for h and f,  

average values and standard deviations 

   

best  

min(h) 

best  

min(f) 

worst  

max(h) 

worst  

max(f) average 

standard  

deviation 

m
et

ho
d 

M
1 

h [mm³] 18.4227 28.2290 105.6870 60.7200 45.6627 18.2203

hres / h0 0.0029 0.0044 0.0164 0.0094 0.0071 0.0028

g [s] 320.7200 235.9030 265.9890 326.2240 289.5924 29.0383

p [mm³] - - - - - - 

f 169.5714 132.0660 185.8380 193.4720 167.6275 16.7012

m
et

ho
d 

M
2 

 

ov
er

al
l 

h [mm³] 3.5356 3.5356 2614.4600 2614.4600 395.3728 734.2194

hres / h0 0.0005 0.0005 0.4060 0.4060 0.0614 0.1140

g [s] 181.9350 181.9350 118.1500 118.1500 236.3794 62.1644

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f 92.7351 92.7351 1366.3100 1366.3100 315.8762 342.6549

m
et

ho
d 

M
2 

cl
us

te
r 

1 

h [mm³] 18.7894 18.7894 182.8270 182.8270 89.4167 43.1980

hres / h0 0.0029 0.0029 0.0284 0.0284 0.0139 0.0067

g [s] 238.2840 238.2840 286.4230 286.4230 267.7135 20.2066

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f 128.5370 128.5370 234.6250 234.6250 178.5650 26.7904

m
et

ho
d 

M
2 

 

cl
us

te
r 

2 

h [mm³] 299.3140 299.3140 2614.4600 2614.4600 1697.5648 833.6033

hres / h0 0.0465 0.0465 0.4060 0.4060 0.2636 0.1295

g [s] 118.1760 118.1760 118.1500 118.1500 121.9321 29.0411

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f 208.7450 208.7450 1366.3100 1366.3100 909.7492 411.8404

m
et

ho
d 

M
2 

 

cl
us

te
r 

3 

h [mm³] 3.5356 

- - - - - 

hres / h0 0.0005 

g [s] 181.9350 

p [mm³] 0.0000 

f 92.7351 
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It can be concluded that method M2 is, overall, not better than method M1. Although 
method M2 is able to find an absolute best solution, the average values and standard 
deviations are larger than those of method M1. However, breaking the statistics down to the 
clusters identified in Figure 5-5, more conclusions can be drawn. Cluster 1 of method M2 
shows similar results as method M1. The best solutions (min(h)) are almost identical in terms 
of h. The average values and standard deviation are larger than those of method M1. For 
method M2 the best solutions with min(h) is identical to the min(f) solution. Together with the 
lower spread and average values of the cost g, this indicates a more directed search towards 
effective solutions. Cluster 2 of method M2 displays overall unacceptable solutions with high 
average values and high standard deviations. Cluster 3 of method M2 is the absolute best 
found solution in terms of minimum f, h and g. 

There are several reasons for the deviation of the results from the ideal goal state. First, the 
spatial resolution of the boundary representation is limited. Second, the minimum step length, 
i.e. the resolutions, of the heuristic search is limited. Third, the volume calculation needed for 
the objective function can cause numerical inaccuracies, especially for thin bodies. Finally, 
the search process can be trapped in local optima such that the residual TRV cannot be further 
removed. 

The behavior of the two presented search methods is explored, using a slightly more complex 
example, depicted in Figure 5-6. Here the L-shaped depression must be machined from an 
oblong shaped stock. 

The comparison of the two presented methods is shown in Figure 5-7. Again, the diagram 
shows the normalized residual volume and the approximated cost for machining the part with 
the ideal solution in the lower left corner. The diamonds represent method M1 whereas the 
triangles represent method M2. The results using method M1 form a loosely scattered pattern 
with a normalized residual volume above 0.0144 and normalized cost above 0.685. In contrast 

 

Figure 5-6: More complex example with an L-shaped depression. 
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to this, the results using method M2 can be separated into three clusters. The second cluster 
(cluster 2) in the upper left corner represents solutions that are far from the ideal solutions, i.e. 
the method is not able to find acceptable solutions in these cases. The results within cluster 1 
are more closely scattered than those of method M1, below a normalized residual volume of 
0.0411. These solutions have a lower normalized residual volume with similar normalized 
cost. Cluster 3, consisting of only one solution is much closer to the goal state than any other 
result. 

The detailed result statistics can be found in Table 5-2. The columns are the same as in 
Table 5-1. The rows represent the different methods and clusters. 
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Figure 5-7: Approximated cost vs. normalized residual volume (error value) for A*-PS with hard constraints 

(M1) and A*-PS with penalties (M2) for the part, shown in Figure 5-6. 
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Table 5-2: Result statistics by methods, best and worst solutions for h and f,  

average values and standard deviations 

    

best  

min(h) 

best  

min(f) 

worst  

max(h) 

worst  

max(f) average 

standard  

deviation 

m
et

ho
d 

M
1 

h [mm³] 70.7890 84.5702 264.6040 264.6040 161.0504 50.4058

hres / h0 0.0144 0.0172 0.0411 0.0411 0.0328 0.0103

g [s] 309.4860 272.4690 285.7190 285.7190 271.2112 22.3608

p [mm³] - - - - - - 

f 190.1380 178.5190 275.1620 275.1620 216.1308 26.7910

m
et

ho
d 

M
2 

 

ov
er

al
l 

h [mm³] 0.8686 3.6637 254.7660 254.7660 63.6389 60.1405

hres / h0 0.0002 0.0007 0.0519 0.0519 0.0130 0.0123

g [s] 250.4040 144.7020 182.0320 182.0320 237.0982 43.3952

p [mm³] 0.0000 0.0000 3.4403 3.4403 0.1941 0.7509

f 125.6360 74.1829 305.2350 305.2350 158.4700 42.8260

m
et

ho
d 

M
2 

 

cl
us

te
r 

1 

h [mm³] 0.8686 0.8686 76.2303 66.4211 43.0520 18.9581

hres / h0 0.0002 0.0002 0.0155 0.0135 0.0088 0.0039

g [s] 250.4040 250.4040 225.3160 278.0630 256.1554 20.9246

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f 125.6360 125.6360 150.7730 172.2420 149.6036 12.1502

m
et

ho
d 

M
2 

 

cl
us

te
r 

2 

h [mm³] 158.8820 166.6340 254.7660 254.7660 193.4273 43.4883

hres / h0 0.0324 0.0340 0.0519 0.0519 0.0394 0.0089

g [s] 137.3760 179.3680 182.0320 182.0320 166.2587 20.4521

p [mm³] 0.4414 0.0000 3.4403 3.4403 1.2939 1.5284

f 223.3240 173.0010 305.2350 305.2350 233.8533 54.4953

m
et

ho
d 

M
2 

 

cl
us

te
r 

3 

h [mm³] 3.6637 

- - - - - 

hres / h0 0.0007 

g [s] 144.7020 

p [mm³] 0.0000 

f 74.1829 
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Comparing method M1 and method M2 overall, method M2 shows better best and worst 
solutions than method M1. Also, the average values are better too. However, due to the 
existence of the three clusters, method M2 shows overall higher standard deviation values. 
Considering cluster 1 of method M2 compared to method M1, it can be seen that method M2 
produces better results for both min(h) and min(f). Also the worst solutions (with max(h) and 
max(f)) have lower values than those of method M1. The average values and standard 
deviation values are generally lower than those of method M1. It is remarkable that the 
penalty is zero for all solutions within cluster 1. Considering only the cluster 2, it can be seen, 
that the best solutions of method M2 are worse than those of method M1. However, the worst 
solution of method M2 in cluster 1 is still better than the worst of method M1. Some of the 
solutions within cluster 2 show a non-zero value penalty value. Cluster 3, consisting of only 
one solution is much closer to the goal state than any other result. 

Overall it is reasonable to conclude that method M2 is able to solve more complex parts better 
than method M1 while still maintaining similar results as method M1 for simpler examples. 
The exceptional result in cluster 1 of method M2 indicates the potential for improvements 
using more advanced heuristics to drive the search process more closely and reliably to the 
desired goal state. Therefore, only method M2 is pursued further in this thesis. 

5.2 Autonomous generation of machining plans 

The previously presented results only considered the machining planning process itself. In 
this section, the process is extended to cover more aspects of design-to-fabrication. The 
typical application of this scenario is the autonomous fabrication of customized parts where a 
3D model of a customized part is given as input and the output is the machining plan that is 
directly executed on the hardware. 

To accomplish this scenario, the following operations have to be carried out 

1. Specifying the customized part geometry, 
2. selection of a fitting workpiece, 
3. generation of machining plan using method M2 and 
4. execution of the machining plan on the hardware. 

First, the customized part geometry needs to be specified. This is done by loading a STEP file 
into the GUI of the Spatial Grammar Machining Planning (SGMP) system. This GUI, based 
on the OpenCascade sample application Viewer3d (OPEN CASCADE S.A.S. 2011), is shown in 
Figure 5-8. 
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In the central area of the window, the part geometry can be inspected using the tools and 
menus provided by the Viewer3d application. 

 

Figure 5-8: Part to be fabricated within the software for machining planning 

 

Figure 5-9: Workpiece selection dialogue, querying the workpiece selection ontology (SHEA et al. 2010). 
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In the second step, a workpiece for the fabrication of the part must be selected. This choice 
does not only include geometric considerations but also requirements regarding the quality 
and properties as well as machining process constraints such as machinability of the 
workpiece as specified by the user. For the selection of the workpiece, an ontology is used 
that is able to propose one or several alternative workpieces to the user (SHEA et al. 2010). 
This specification and results returned by the ontology are shown in Figure 5-9. 

At the top of the dialogue, the user can specify the use of the part. Choices are FinishedPart 
(highest accuracies), FormPrototype (good shape creation, material may differ), 
FunctionalPrototype (good mechanical strength). Further, the shape of the workpiece can be 
specified, either box shaped or cylindrical. 

At the bottom of the dialogue, available properties can be selected and their value specified 
and added to the list of requirements. After the search, the ontology proposes several 
workpieces on the right list. In the example shown, a workpiece for a finished part with a box 
shape, high machinability, medium stiffness and medium mechanical strength is required. The 
ontology proposes four different workpieces as shown on the right list in Figure 5-9. After 
selecting one workpiece from the list, the shape of the workpiece is created within the GUI of 
the SGMP system as shown in Figure 5-10. 

 

Figure 5-10: Desired part and shape of the selected workpiece in the workspace. 
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Here, the workpiece is displayed in gray while the customized part in dark gray can partially 
be seen. From the part shape and workpiece shape, the material that needs to be removed is 
calculated (TRV) as shown in Figure 5-11. The TRV is displayed in dark gray and the non-
open faces (NOF) are displayed in light gray. 

With this data, the machining planning process using SGMP can be started. After the 
planning, the CNC code can be generated. Since every rule and RV corresponds to a specific 
machine tool, tool and machining instructions, the CNC code can directly be derived from the 
sequence of rule and RV applications. Once the CNC code has been generated, it can be 
transferred over a network connection to the CNC machine tool where it is executed. 
Figure 5-12 displays the TRV after decomposition, i.e. after the planning process and a part 
that was fabricated using the CNC code generated by the SGMP system. 

 

Figure 5-11: Total Removal Volume (TRV) calculated from the part and workpiece shape. 
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5.3 Machining planning for multi-body TRVs 

For most engineering parts, more than a single protrusion has to be machined. Instead a 
customized part may consist of several areas that create not a connected Total Removal 
Volume (TRV) but several disjoint bodies. Figure 5-13 shows such a part. 

 

Figure 5-12: Geometric representation of a generated process plan (a) (M2, h = 24.706, g = 288.878, p=0 

f=156.792, computation time t=2147s, colors modified for clarity) and fabricated part (b)  



5.3. Machining planning for multi-body TRVs    91 

Here several protrusions must be machined from the stock. However, calculating the TRV 
from the stock and part shown in Figure 5-14, the TRV yields to the shape with multiple 
bodies shown in Figure 5-15. 

 

                                                 

1 Example part simplified from motor casing, kindly provided by Brennand Pierce, Institute for Cognitive 

Systems, Technische Universität München 

 

Figure 5-13: Part that creates several TRVs.1 

 

Figure 5-14: Part (dark gray) and workpiece (gray). 
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The decomposition of all bodies of the TRV within a single search process is very complex 
and prone to fail by not reaching all bodies during the search. This is due to the requirement, 
that the toolpath must be continuous. Therefore, the search would have to relocate the tool to 
each body of the TRV by itself and then completely remove the volume. To overcome this, 
the core functionality of the CAD kernel is used to identify the individual bodies shown in 
Figure 5-15. Then, the search can find a feasible machining process plan for each individual 
body. Once a feasible plan for each body has been generated, the machining plan for the 
complete part can be created by concatenating the machining plans for the individual bodies. 

The process of this iterative decomposition is shown in Figure 5-16. From the part shape and 
the workpiece shape, the Total Removal Volume (delta volume) can be calculated. It consists 
of four separated bodies. A machining plan for each body is generated. The overall machining 
plan can be generated as a concatenation of the individual plans in the sequence of the search. 
Currently the sequence of plan generation for separate bodies is arbitrary but can be extended 
to a ranked order by volume. Since every part of the TRV can be decomposed into a feasible 
machining plan with safe and feasible approach and retract positions, the whole TRV can be 
machined by the sequence of plans generated for the individual parts of the TRV. The overall 
machining plan made up of the individual machining plans is graphically shown in 
Figure 5-17.  

 

Figure 5-15: Resulting, multiple bodies within one TRV. 
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Figure 5-16: Machining planning process for multiple, disjoint TRVs. 

 

Figure 5-17: Graphical representation of the machining plan for multiple TRVs (colors modified for clarity) 

(method M2) 
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5.4 Use of multiple tools 

The previously presented scenario used only a single tool. However, in industrial practice, 
multiple tools are used, usually a bigger tool for roughing and a smaller tool for finish 
machining and details of the part. 

To reflect the necessity for using multiple tools in the planning system, new Removal 
Volumes for different tools can be introduced. However, to take advantage of these, it must be 
ensured that: 

 The cost caused by tool changes are taken into account during the planning process 
and 

 the constraints are maintained, such that tools are retracted prior to changing the tool. 

If the search attempts to apply a tool change alone, it would never be accepted since it only 
causes cost and therefore increases the objective function value. Therefore, this rule must be 
combined with other rules that have a positive effect, i.e. lowering the objective function. This 
combination must comprise rules that can directly take advantage of the tool-change and thus 
are able to reach overall a lower objective function value than other rules. 

In the implementation of the planning system, this has been accomplished by the following 
measures: 

(a) The rule “ChangeTool” has been implemented providing the base functionality and 
allowing for a safe reatraction of the tool before initiating the exchange of the tools. 

(b) The constraint “DifferentTool” has been introduced, ensuring that no tool change 
between the same tools is attempted. 

(c) The application of Removal Volumes is constrained to use the same tool as the 
previous one through the constraint “SameTool” 

(d) The new rule class “Rule Sequence” has been implemented. This allows defining a 
sequence of rules to retract the tool, change the tool and re-approach the part safely. 
Of course, rule sequences can also be used for other purposes. 

(1) The RuleSequence “ChangeTooltoD10”, performing a tool change to a D10 
endmill, applying a cylindrical Removal Volume and a slot shaped Removal 
Volume is implemented. 

(2) The RuleSequence “ChangeTooltoD15”, performing a tool change to a D15 
endmill, applying a cylindrical Removal Volume and a slot shaped Removal 
Volume is implemented 

By using sequences of rules, the rule “ChangeTool” can be applied though it only causes cost 
and would therefore never be applied alone during search by any opportunistic search method 
such as the A* search method. 

Figure 5-18 shows a part that can be best machined using multiple tools, namely a D15mm 
endmill and a D10mm endmill. Machining the complete protrusion using only the D10 
endmill would be ineffective and result in a long machining time. 
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Using a D15 endmill, only the shaded area shown in Figure 5-19 is accessible, therefore the 
part is not completely machinable using only this tool. 

Figure 5-20 shows the TRV after a complete planning process. The SGMP system starts by 
applying the larger D15 endmill until all of the accessible area (cp. Figure 5-19) is removed. 
Afterwards, the system performs a tool-change and continues using the D10 endmill. Though 
the system is able to change both ways between the tools at any time, it only changes the tool 
from D15 to D10 once.  

 

Figure 5-18: L-shaped part to enforce tool changes (colors modified for clarity) 

 

Figure 5-19: L-shaped part with accessible region for a D15 endmill (shaded area) 
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After the planning process, the CNC code was used to machine the part as shown in 
Figure 5-21. 

 

Figure 5-20: L-shaped part as planned for fabrication using two different tools  

(M2, h = 38.1213, g = 172.638, p=0.654078 f=116.633, computation time t=4150s) 

 - (colors modified for clarity) 

 

Figure 5-21: Machined part using the CNC code created by SGMP. 
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To compare the performance and to prove that the use of several tools is more effective, the 
planning process is carried out using only the D10 endmill. The resulting TRV is shown in 
Figure 5-22. Here, the values for the goal distance function h and the cost g are much higher 
than using multiple tools. 

 

Figure 5-22: The same part using a single tool D10  

(M2, h = 110.136, g = 355.674, p = 0, f = 232.905, computation time t = 3661s) 

 - (colors modified for clarity) 
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5.5 Reaction to (un-)availability of workpieces 

During the operation of an autonomous design-to-fabrication system, the situation of missing 
workpieces can occur. This situation and actions of the system are presented in the following. 
After a plan for machining is generated and initiated, the system tries to find the workpiece 
with a box shape and dimensions of 80x60x15mm. For some reason, the workpiece is 
missing. However, alternative workpieces are available. Once again, the ontology for material 
selection can be used to find the next best workpiece for the fabrication of the customized part 
(Figure 5-23).  

The selected alternate workpiece can then be used as input to the planning system. However, 
performing a complete replanning of the machining process is less effective. If a plan for the 
fabrication of the customized part with the original workpiece exists, the system needs only to 
generate a machining plan for fabricating the original workpiece from the alternate. The 
original workpiece is then treated as the part to be fabricated.  

 

Figure 5-23: Workpiece selection where only one alternate workpiece is available 
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Figure 5-24 illustrates this situation where the original workpiece is loaded as the part (gray 
color) and the slightly larger alternate workpiece is loaded as the workpiece (gray). The 
resulting TRV is depicted in Figure 5-25.  

With this input, the SGMP system can plan the machining. The result of one planning run is 
shown in Figure 5-26.  

 

Figure 5-24: Total Removal Volumes of original (dark gray) and alternate (gray) workpiece  

(colors modified for clarity). 

 

Figure 5-25: Resulting TRV (colors changed for clarity). 
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The original workpiece has successfully been machined from the alternate workpiece as 
shown in Figure 5-27. 

Using this workpiece, the original machining plan for the customized part can now be 
executed. 

 

 

Figure 5-26: Decomposed TRV of the difference between the two workpieces  

(M2, h = 6.085, g = 609.405, p = 0, f = 307.745, computation time t=3225s) 

 - (colors changed for clarity). 

 

Figure 5-27: Machined original workpiece. 
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5.6 Reaction to tool failures 

An important issue is the reliable operation of fabrication systems for autonomous design-to-
fabrication. Ideally, the fabrication system is able to recover from failures. One typical failure 
during machining is tool failure. Here, the tool, used for cutting, is destroyed or made 
unusable which results in unwanted deviations of the workpiece shape. Figure 5-28 shows an 
example of a destroyed workpiece due to tool failure. Through increased temperature at the 
tool workpiece contact, the material is no longer completely cut but partially altered by plastic 
deformation. This results in deviations from the desired shape. 

Figure 5-29 displays the timeline of such a situation and which measures should be taken by 
an autonomous fabrication system. 

 

Figure 5-28: Destroyed workpiece due to tool failure 
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At time t0, a machining operation begins using the tool D15. This operation is expected to last 
until t2. However, at time t1 (before t2 is reached) a tool failure is detected and the machining 
operation is interrupted. Since the currently used tool must be considered as defective, it must 
not be used in following machining operations. Therefore, the knowledge model is updated by 
unregistering the Removal Volumes (RVs) and rule associated with this tool in the machining 
planning system. Since the machining planning system capitalizes on atomic machine tool 
motions, the Total Removal Volume is a representation of the actual workpiece shape during 
machining. Therefore, the machining operation can be replanned using the TRV at time t1 for 
replanning the machining operation using a different tool, here the tool D10. 

Figure 5-30 shows a graphical representation of the machining plans generated with a 
simulated tool failure (a) and without (b). The different size of the shaded area on the bottom 
is due to the numerical resolution of the visualization. Otherwise, the resulting part shape is 
almost identical. Though the machining takes more time, until t3, the design-to-fabrication 
system is still able to produce the requested part. 

timet0 t1

machining operation
tool D10

unregistering RVs

replanning using 
intermediate model

tool failure!

machining operation
tool D15

t2 t3  

Figure 5-29: Timeline for machining operation with tool failure and reaction of the system 
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5.7 Discussion 

In this section several scenarios and results from the application of the SGMP method have 
been presented: machining planning for general parts, autonomous machining planning 
involving material selection and CNC fabrication, machining planning for parts with a 
disjoint TRVs, use of multiple tools, reaction to (un-)availability of workpieces and reaction 
to tool failures. The scenarios presented demonstrate the flexibility and the potential of the 
approach. 

Reacting to tool failure demonstrates the ability of the machining planning method to handle 
dynamic changes in the fabrication system, reflected by adding and removing Removal 
Volumes and rules to and from the grammatical framework. The planning system can then 
instantly take advantage of new rules and Removal Volumes. This can also be used to add 
new resources to a fabrication system namely machine tools or new and changed tools. 
Further use of this can be to consider scheduling aspects by reflecting the availability of 
machine tools online within the grammar. 

 

Figure 5-30: Comparison of results  

with simulated tool failure (a) (M2, h=133.889, g=195.05, p=0, f=164.469, computation time t=522s) 

and without (b) (M2, h=151.089, g=155.351, p=0, f=153.22, computation time t=437s) 

 - (colors enhanced for clarity) 
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The implementation is capable of creating valid machining plans for customized parts based 
on their CAD geometric representation. It capitalizes on a strict object-oriented framework 
and powerful patterns that allow for straight forward extension of the grammar by creating 
new rules, Removal Volumes and constraints. The planning can be carried out for single or 
multiple TRVs (machining volumes). The method in implementation can capitalize on the 
availability of multiple tools and thus can use the tools that lead to best machining 
performance and least time for machining. The current implementation is limited to 2.5D 
parts that can be milled using end-mills with a pre-specified approach direction. However, the 
method is extendable to more complicated machining processes such as turning and multi-
axis machining.  

The results demonstrate the general feasibility of the approach but also illustrate potential for 
improvement. First, the search method, in terms of both result quality and computation time, 
must be further enhanced by adding heuristics, based on best practice knowledge, that help 
guide the search process better towards globally optimal solutions. It might also be beneficial 
to use more powerful heuristic search methods as well as applying an iterative optimization 
method for re-optimizing previously applied rules.  

5.8 Conclusion 

To create an effective and automated system for machining planning, the steps of shape 
recognition, mapping shapes to machining operations and scheduling operations need to be 
integrated. The method and implementation presented achieves this by using a combination of 
a spatial grammar and heuristic search methods that allow for spatial reasoning in terms of 
which operations are required to remove the correct volume from the stock while being able 
to directly generate the specific CNC instructions to execute the plan directly on the machine 
tool. The bottom-up and process-based approach, using the CNC instructions and their 
semantics to build up a library of manufacturing knowledge and capabilities makes the system 
highly adaptable and extendable. Since the rules and vocabulary build on machining 
operations and their instructions, they are associated directly with the shape. In contrast to 
feature-based approaches that use a taxonomy of symbols, the approach presented does not 
require grounding by mapping these symbols to actual machine operations. Further, the 
fundamental constraints on rule application are formalized with respect to the allowed spatial 
relations between the Removal Volume (RV) and the Total Removal Volume (TRV) and the 
allowed transformations, based on machine and process capabilities, during rule application. 
By changing the rule set and vocabulary of the grammar during runtime, changes in the live 
manufacturing system can be reflected. Overall, the scenarios presented demonstrate the 
feasibility of the approach. 

The next section investigates more advanced search methods to improve the results. 



 

6 Advanced heuristic search methods for Spatial 
Grammar Machining Planning 

Planning the machining of a specific region of a workpiece has been identified before as a 
covering salesperson problem (ARKIN & HASSIN 1994). Similar to the travelling salesperson 
problem, an agent should travel through a region, covering it entirely while minimizing the 
travelled distance. As proved by ARKIN et al. (2000) this problem is NP-hard, i.e. it cannot be 
solved in polynomial time. However, numerous algorithms have been developed to approach 
the problem of automatic tool-path generation for CNC machining of pockets. Most 
approaches create the toolpaths either by “zig-zagging” over the region or by using offsets of 
the outer contour of the pocket (HELD 1991). Both strategies solve the problem for a single 
pocket. However, these algorithms only solve this problem, thus their application requires the 
identification of situations where they can be applied as for example feature recognition or 
feature mapping. Also, the algorithms do not incorporate inherent process constraints such as 
requiring continuous toolpaths and do not have simulation capabilities to validate the 
generated plans.  

In contrast to the algorithms briefly described, the SGMP system is not designed to solve the 
specific case of machining a single pocket. Since it is built on the fundamental machine tool 
and tool capabilities, the method by design is not limited to 2.5D milling of pockets but can 
also be applied to multi-axis machining and different machining processes in theory, to every 
machinable part and workpiece. However, quality and effectiveness of the generated plans is 
not guaranteed nor might be achievable due to the high complexity of the problem, especially 
when using multiple tools. 

The subject of this section is the improvement of the search method for better plan quality. 
After a presentation of the advanced search methods, results using A* with Pattern Search and 
different penalties will be presented. Simulated Annealing (SA) is applied to state space 
search, i.e. selecting the rules to apply. Last, the concept of re-optimization of machining 
plans is presented. 

6.1 Simulated Annealing 

Since the development of Simulated Annealing (SA) (LEVY et al. 2003) from the original 
Monte-Carlo algorithm, it has gained a lot of attention in research, due to the ease of 
implementation and its robust and statistical behavior, resulting in the ability to recover from 
local optima. SA has been successfully applied to design synthesis (CAGAN & MITCHELL 
1993) as well as process planning and scheduling (LI & MCMAHON 2007). The name 
Simulated Annealing stems from the physical analogy of annealing metal, i.e. treating the 
metallurgic properties by heating and cooling the material according to a specific schedule. 
The material then drops into specific crystal configurations that can be identified as local or 
global minima of energy of the crystals. SA attempts to achieve the same with the objective 
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function. Consequently SA also features a control parameter called temperature t. The 
formulation of Simulated Annealing in this work is based on the work by SHEA (1997) and 
has been adapted to this new search problem. The SA algorithm implemented in this work is 
given in Table 6-1. 

Table 6-1: Basic Simulated Annealing algorithm in pseudo code. 

Initialize temperature t with some t0 
while halt criterion is not met 
 while termination criterion not met 
  generate new solution candidate 
  evaluate candidate quality fj+1 
  calculate change in objective function Δf = fj - fj+1 
  if change of objective function Δf < 0 
   accept solution candidate 
  else accept with probability q(Δf, t) 
  else reject solution 
  if candidate is better than best solution 
    save candidate as best solution 
  update temperature 
  check termination criterion 
  check halt criterion 

The probability q that determines the acceptance of a solution candidates in case Δf ≥ 0 is 
defined as  

 
t

f

etfq



 ),( . (20) 

The temperature t has to be lowered slowly enough and the initial temperature t0 has to be 
chosen appropriately, trading of search time by using a high initial temperature and risking to 
not finding the global optima by choosing a too low initial temperature. Choosing the initial 
temperature and the cooling schedule is a major challenge in applying SA. To overcome this, 
Lam and Delosme (LAM & DELOSME 1988) developed an efficient cooling schedule based on 
statistics gathered during the search process. 

The theory behind the Lam-Delosme schedule states that a solution can be found if the 
thermodynamic equilibrium is met. To achieve this, a specific acceptance ratio αactual is 
maintained by adjusting the temperature accordingly. The acceptance ratio is defined as 

 
movesall

movesaccepted
actual #

#
 . (21) 

The schedule presented here has been modified by Swartz and Sechen (HUMMEL 1989) from 
the original Lam-Delosme schedule. Depending on the current number of iterations, the target 
acceptance ratio α is calculated and the temperature adapted to meet this acceptance ratio. An 
example for the course of the target acceptance rate is displayed in Figure 6-1. 
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The acceptance ratio begins with a high value of about 0.96, therefore almost all inferior 
solutions are accepted at the beginning of the search. The target acceptance rate is lowered 
quickly during the first 15% of the iterations. The curve approaches zero asymptotical 
towards the last iterations (dashed line). Then, the target acceptance ratio is kept at a 
stationary value of α=0.44. After 65% of the iterations have been completed, the acceptance 
rate is lowered again until a minimum value of α=0.01 is reached. 

The temperature for each new move i+1 in each iteration can be calculated using 

 
i

actual
i t

K
t 






 



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where K is a damping factor. The actual acceptance ratio, αactual, is calculated during the 
search process. With this schedule, the temperature is adjusted to the specific problem and to 
the progress of the search. The statistic nature of SA also results in a high computing effort 
due to the high number of iterations and moves.  

Generating the candidate solutions, also called neighbors, is a crucial step during search. The 
choice is problem specific and depends on the type of search space, whether it is 
discontinuous (rule-based) or continuous (parameter-based). 

Continuous search space 

Within a continuous search space, several variables can be modified continuously to find a 
solution. Generating the neighbor can either be obtained by some kind of heuristic that gives 
directions a priori on the search, or purely at random by modifying one, several or all 
parameters at the same time by adding or subtracting some random value. However, the kind 
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Figure 6-1: The course of the target acceptance ratio α  

using the modified Lam-Delosme schedule (HUMMEL 1989). 
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of randomness is important in this case for changing the variables randomly. It is suggested to 
use a Gaussian or Cauchy random distribution (MICHALEWICZ & FOGEL 2004). It is not 
advised to use a uniform random distribution. Otherwise the search can alternate between a 
small number of very similar solution candidates since it is likely, due to the uniform 
distribution, that a step in a specific direction is revoked by another step (with similar length) 
in the opposite direction. 

Discontinuous search space 

For a discontinuous search space, encountered in grammar based searches, the choice of 
candidates can rely on a probability distribution over all rules. A candidate is generated by 
applying a rule to the current state or configuration. The choice of the rule itself depends on a 
static probability of picking the rule. However, such a static rule probability can result in slow 
search progress since rules that are helpful at the beginning of the search might hinder the 
search at later iterations and vice versa. Further, the rule probabilities are tuned to fit one 
specific problem. HUSTIN proposed to not use static rule probabilities but to recalculate the 
probabilities during the search to overcome this problem (HUSTIN 1988). A quality factor is 
introduced and defined as 
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The quality of each move (which corresponds to one rule application) equals the sum of all 
accepted changes to the objective function (here size(M)) divided by the number of the 
attempted moves M.  

The probability of selecting a move or rule equals then the quality of the rule divided by the 
sum of all qualities, thus 
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For the outer loop (discontinues) search, Simulated Annealing (SA) has been implemented 
using Hustin moves (HUSTIN 1988) and a tabu list for already tested rules. Through the use of 
a tabu list, the application of a rule to a state is attempted only once, preventing ineffective re-
applications of the same rule to the same state. 



6.2. Method studies    109 

The search procedure is shown in Table 6-2. 

Table 6-2: Simulated Annealing outer loop (discontinues) search procedure 

Start iterations 
 Reset rule policy 
 Start moves  

 Select rule 
 If rule has been tried at this state, skip it 
 Apply rule 
 If df < 0 
  Accept 
 Else accept with probability 
 Update policy 

 End moves 
End iterations 

6.2 Method studies 

In the following, studies of the search methods and results are presented. Figure 6-2 shows the 
structure of the search problems within SGMP.  

Decomposition of TRV (plan generation)

Selection & application of rules

Application of Removal Volume

Search for best parameters

Inner loop search
(continuous)

Outer loop search
(discontinuous)

Problem

Re-optimization

Solution
 

Figure 6-2: Structure of search problems within SGMP 
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At the top, the problem is formulated and passed to SGMP. The primary task is the 
decomposition of the TRV to generate a feasible machining plan. Within this decomposition, 
the rules need to be selected and applied to change the topology of the candidate solution. To 
do this, SGMP uses an outer loop search for this discontinuous problem. If a rule features a 
Removal Volume, its parameters need to be optimized. To do so, the continuous inner loop 
search is used to find good solutions for newly added elements of the topology. Optionally, 
the generated plan can be re-optimized as further described in Section 6.2.4. After finishing 
the decomposition or the re-optimization, the solution, i.e. the machining plan that has been 
generated, can be executed on the hardware. 

Table 6-3 shows the different combinations of search methods that are applied within SGMP. 
Method M2 is using A* for the outer loop and Pattern Search with penalties in the inner loop 
as presented in Section 4. The results obtained using this combination are used as reference 
for the other search method combinations and are presented in Sections 6.2.1 & 6.2.2. Method 
M3 is Simulated Annealing with Hustin moves for the outer loop and Pattern Search with 
penalties on the inner loop. The results obtained using this combination of methods are 
presented in Section 6.2.3. Method M4 uses A* on the outer loop, Pattern Search with 
penalties on the inner loop and Simulated Annealing for re-optimization of the solution. The 
findings of this method are presented in Section 6.2.4.  

Table 6-3: Portfolio of search methods applied. 

Method Outer loop Inner loop Re-optimization 

Method M2 
(4.5.3) 

A* Pattern Search w/ 
penalties 

- 

Method M3 
(6.2.3) 

Simulated Annealing w/ 
Hustin moves 

Pattern Search w/ 
penalties 

- 

Method M4 
(6.2.4) 

A* Pattern Search w/ 
penalties 

Simulated Annealing 
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To allow for a comparison with the results presented in Section 5, the same example part 
shown in Figure 6-3 is used. 

In the following the computation results and specific implementations for each search method 
are presented. 

6.2.1 Behavior of A* for outer loop search 

In this section the behavior of the A* search method (method M2) is investigated more 
closely. One complete search for the part shown in Figure 6-3 is displayed in Figure 6-4. The 
figure shows the values of the heuristic functions h(x) residual volume, g(x) cost and f(x) 
objective function over the A* iterations. The number of evaluated states is limited to 1000 
states such that 334 iterations were run (branching factor 3). In the first iterations, h(x) drops 
steeply below 500 while cost is almost linearly accumulated during the first ten iterations. 
Then the search is almost stationary until a drop in h(x) is reached at iteration 20. Another 
drop can be seen at iteration 35. After this, the search remains mainly stationary. The 
fluctuation in h(x) between 110 and 190 iterations indicates that the search still attempts to 
find better solutions. After iteration 190, the change in the objective function becomes very 
small. 

 

Figure 6-3: Example part with an L-shaped depression. 
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6.2.2 Behavior of A* for outer loop search with variation of penalty 
offsets 

To analyze quantitatively A* with Pattern Search (M2), several runs with different penalty 
offsets using the example part described are performed. In A*, a maximum number of 1000 
states is evaluated. The comparison of A* with Pattern Search with penalty offsets of 
poffset=75 and poffset=10 is shown in Figure 6-5. Through a higher poffset value, the search less 
likely accepts penalties at all (cp. eq. (13) & (19)). The diagram shows the normalized 
residual volume and the approximated cost for machining the part with the ideal solution in 
the lower left corner. The search with poffset=75 shows in general good behavior and most 
solutions are near a normalized residual volume of 0.01 and normalized cost of 0.8. A few 
solutions reach lower cost. However, most of these only solve the problem partially, i.e. the 
residual volume is up to five times larger. Only one exception with almost no residual 
volume, i.e. h=0.8686 was generated. The solutions obtained with poffset=10 form a compact 
cluster in a similar area to those with the larger penalty offset. 
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Figure 6-4: A* search run on the part shown in Figure 6-3, heuristic values over iterations. 
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The detailed result statistics are shown in Table 6-4. The columns show solutions for 
minimum residual volume min(h), minimum goal function value min(f) and maximum 
residual volume max(h), maximum goal function value max(f) as well as average values and 
standard deviations of the solutions.  
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normalized cost vs. normalized residual volume (n=20)

A*(g,h,p²), PS(h,p²), with
penalties (poffset=75)

A*(g,h,p²), PS(h,p²), with
penalties (poffset=10)

h0 = 4906.9 mm³
max(g(x)) = 310 s

Figure 6-5: Approximated cost vs. normalized residual volume (error value) for A*-Pattern Search with 

penalties (M2) and different penalty offsets. 
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Table 6-4: Result statistics by methods, best and worst solutions for h and f,  

average values and standard deviations. Values for poffset=75 have been presented in Table 5-2. 

    

best  

min(h) 

best  

min(f) 

worst  

max(h) 

worst  

max(f) average 

standard  

deviation 

A
* 

-P
S

* 
(M

2)
 

p o
ffs

et
=

75
 

h [mm³] 0.8686 3.6637 254.7660 254.7660 63.6389 60.1405 

hres / h0 0.0002 0.0007 0.0519 0.0519 0.0130 0.0123 

g [s] 250.4040 144.7020 182.0320 182.0320 237.0982 43.3952 

p [mm³] 0.0000 0.0000 3.4403 3.4403 0.1941 0.7509 

f 125.6360 74.1829 305.2350 305.2350 158.4700 42.8260 

A
* 

-P
S

* 
(M

2)
 

p o
ffs

et
=

10
 

h [mm³] 13.5313 13.5313 63.5919 63.5919 37.4282 9.8656 

hres / h0 0.0028 0.0028 0.0130 0.0130 0.0076 0.0020 

g [s] 245.1050 245.1050 261.5800 261.5800 261.9818 11.3671 

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f 129.3180 129.3180 162.5860 162.5860 149.7049 7.6878 

 

Comparing the results with poffset=75 and poffset=10, poffset=75 shows better results in terms of 
min(h) and min(f). The minimum values for a poffset=10 refer to the identical solution. 
However, the maximum value solutions of poffset=75 have larger values than those of 
poffset=10. In addition, the average values of poffset=10 are smaller than those of poffset=75, 
except for average cost. The standard deviations of poffset=75 are much larger than those of 
poffset=10. 

Overall, method M2 with poffset=75, under ideal conditions, can obtain better results. 
However, it also produces much worse solutions. Considering the average and standard 
deviations of the solutions, method M2 with poffset=10 is more directed and solves the problem 
more reliably. Further, the penalty value is zero for all solutions obtained with poffset=10. 
Therefore, poffset=10 is used as penalty offset in subsequent studies. 

6.2.3 Simulated Annealing for outer loop search 

To provide a comparison to A* for the outer loop search, Simulated Annealing (SA) is 
applied. Figure 6-6 shows solutions of Simulated Annealing (SA) and Pattern Search using 
penalties (M3) for the example part comparing to the method M2. However, only a few 
solutions were obtained for method M3. The reasons are the long calculation time comparing 
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to A* and hang ups of the implementation during Boolean operations that are required for the 
calculation of the objective function. 

Comparing the results, the solutions obtained by using M3 are worse with higher objective 
function values and higher residual volumes than those obtained by using M2 (A*). However, 
only a few numbers of results using SA were successfully generated. In most solution runs, 
the SA search did not finish but hung during calculating Boolean operations. This behavior is 
due to the more exploratory characteristic of SA during the early phase of the search process. 
Here, SA also accepts inferior solutions, whereas A* always accepts the best solution. If 
inferior solutions are accepted in the beginning, the search can be lead to areas of the search 
space where the objective function cannot be calculated anymore due to the lack of stability in 
the Boolean operations. 
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Figure 6-6: Approximated cost vs. normalized residual volume (error value) for A*-Pattern Search with 

penalties(M2) and Simulated Annealing (SA) with Pattern Search and penalties (M3). 
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Table 6-5: Result statistics by methods, best and worst solutions for h and f,  

average values and standard deviations. 

    

best  

min(h) 

best  

min(f) 

worst  

max(h) 

worst  

max(f) average 

standard 

deviation 

A
*-

P
S

 w
ith

 p
en

al
tie

s 

(M
2,

 p
of

fs
et
=

10
) 

h [mm³] 13.5313 13.5313 63.5919 63.5919 37.4282 9.8656

hres / h0 0.0028 0.0028 0.0130 0.0130 0.0076 0.0020

g [s] 245.1050 245.1050 261.5800 261.5800 261.9818 11.3671

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f 129.3180 129.3180 162.5860 162.5860 149.7049 7.6878

S
A

-P
S

 w
ith

 p
en

al
tie

s 

(M
3,

 p
of

fs
et
=

10
) 

h [mm³] 160.2310 205.4680 1017.7700 1017.7700 404.9111 267.7536

hres / h0 0.0327 0.0419 0.2074 0.2074 0.0825 0.0546

g [s] 259.2480 211.8230 141.5490 141.5490 202.7660 39.8574

p [mm³] 0.0000 0.0000 1.1538 1.1538 0.1648 0.4037

f 209.7390 208.6460 590.9900 590.9900 305.4571 121.9149

6.2.4 Simulated Annealing for re-optimization 

The search methods presented suffer from having only local information on the effect of 
variable changes. For example, the selection of variables, e.g. how long a slot cut is made, in 
the early search process can lead to inferior solutions in the late search process. This is due to 
the two-level search process that is necessary to optimize the topology of solutions, i.e. which 
machining operations, as well as the variables within that topology. 

To overcome the limitation of the two level search process, the variables within the existing 
topology are optimized at the same time such that the objective function of the last resulting 
state (leaf) is minimized. Improvements are achievable by reducing overlap of Removal 
Volumes as well as to remove cusps in the shape of the resulting machining plan. Through 
this, cost g(i) as well as the residual volume h(i) can be reduced. 

Figure 6-7 shows the principle of the re-optimization. On the left side, the state tree is 
displayed that stores all evaluated states that represent partial solutions. In the first step, the 
current best state and all of its predecessors are copied to a separate branch. This allows 
manipulating the states while not violating the integrity of states that are adjacent to the active 
branch (white circles). 

After copying the branch, the optimization can commence. During optimization, neighboring 
solutions are generated and evaluated. The evaluation comprises the updating of all states in 
the optimization branch from top node to leaf node. The objective function for the 
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optimization is then the objective function f(i) of the last state of the optimization branch. 
After re-optimization, the regular search process can continue with the new best state. 

The generation of neighboring solutions is crucial in this closely coupled optimization 
problem. Since the location of a RV is defined by the end-point of the preceding tool-path, 
any change of variables also results in changing shapes of all succeeding RemovalVolumes. 
Figure 6-8 displays this situation. The first of the three RVs at the bottom is changed by 
moving the end-point of the RV upwards denoted by the arrow. The orientation of the 
toolpath is counter-clockwise, as denoted by the triangles. 

If the size of the RV and the associated toolpath is changed, the succeeding RVs are updated 
and change their positions to maintain an uninterrupted tool-path. This, however, can result in 
the succeeding RVs to be outside of the TRV. This makes optimizing the variables almost 
impossible since a change of variables can result in a drastic increase of the objective function 
due to high penalty values p(i). 

state tree

current best 
state

2) extract 
parameters of RVs

1) copy  
active branch

3) optimize

change variables

update 
RVs and rules

evaluate goal 
function

4) continue regular 
outer loop search

active 
branch

new best 
state

 

Figure 6-7: Re-optimization of a solution 
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To overcome this, only one RV should be changed in each iteration and the succeeding RVs 
updated to have the same end-point of the new toolpath. 

This method is shown in Figure 6-9. Here, the RV at the bottom is changed. Once the 
parameters of the RV are changed, the following, vertical RV is changed too, to have the 
same end-point as before. Through this, the changes are more directed and cause less 
penalties during search. 

 

Figure 6-8: Influence of variable changes on succeeding RVs 

 

Figure 6-9: Generating neighboring solutions during re-optimization 
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One solution, obtained by using A* and Pattern Search to create a solution candidate and then 
using Simulated Annealing for re-optimization, as described, is shown in Figure 6-10. The 
solutions candidate before re-optimization is shown at the top (a). The final solution after re-
optimization is shown at the bottom (b). After the re-optimization the residual volume is 
higher whereas the cost is lower than before. Also the objective function f is lower. 
Comparing the shapes, before, there are two partial cuts leaving triangle shaped plates at the 
bottom of the TRV. After re-optimization, these areas have been removed but another cusp 
has been created in the right corner. However, the search time of 72072s to achieve this result 
is large compared to the time of 1780s, needed to create the initial solution candidate. 

The behavior of SA during the re-optimization will now be explored to ensure that the 
behavior is not the result of a flaw within the implementation. Figure 6-11 shows the 
acceptance rate and the acceptance target rate over the iterations of the Simulated Annealing 
search run. The acceptance target follows the Lam-Delosme-schedule. The actual acceptance 
rate follows the target values rather well during the first 65% of the iterations. Afterwards, a 
larger difference between the target value and actual value occurs. Especially after 85 

 

Figure 6-10: Graphical representation of the machining plan before  

(a) (h=40.9934, g=290.91, p=0, f=165.952 computation time t=1780s) and after  

(b) (h=56.5631, g=243.084, p=0, f=149.824, computation time t=72072s) re-optimization (M4). 



120    6. Advanced heuristic search methods for Spatial Grammar Machining Planning 

iterations, the actual acceptance rate is almost constant whereas the target value is lowered 
further. 

Figure 6-12 shows the course of the SA temperature over the iterations of the search. The 
temperature is the control parameter of the acceptance rate. During the first 15 iterations, the 
temperature is kept high. This phase is called initial quench. The high temperature should 
allow the search to leave local optima. During the simmer phase until iteration 65, new 
optima are explored. Towards the end of the search, the temperature is lowered until the 
search freezes and ideally converges towards optima. However in this particular search run, 
the minimum temperature of 0.001 is reached already at iteration 85. 
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Figure 6-11: Acceptance rate and acceptance target rate. 
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To study the behavior further, overall 104 successful machining planning runs using A* and 
SA re-optimization were run. The number of evaluated states during A* search is lowered to 
500 and the number of Simulated Annealing re-optimization iterations and moves are each set 
to 100. However, a validation of results showed numerical problems in calculating the 
objective functions. A validation of very good results, i.e. low residual volume h below 2mm³, 
showed that these are due to numerical inaccuracies during volume calculation caused by 
inverted faces. Also numerical aberrations in calculating the objective values occurred. These 
caused lower residual volume h while maintaining the same plan and cost g. Since the plan is 
identical, the residual volume cannot change. Therefore, these two cases were removed from 
the result set. 
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Figure 6-12: Simulated Annealing temperature vs. iterations. 
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Figure 6-13 shows the normalized residual volume and normalized cost for the results using 
A* outer search only (M2) and using A* and Simulated Annealing re-optimization (M4). 

Comparing the results using A* only (M2) and A* with re-optimization (M4), M2 only shows 
better results than M4 before the re-optimization run. However, this behavior was expected 
due to the lower number of evaluated states in the A* search (500 compared to 1000). After 
re-optimization, the results tend to have lower cost while also exhibiting larger residual 
volumes. 

The results obtained using Simulated Annealing re-optimization can be differentiated as 
follows: 

 Case 1: no change in the objective function, i.e. the search is unable to find a better 
result (4 occurrences) 

 Case 2: lower objective function values f and lower values for residual volume h and 
cost g (4 occurrences) 
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Figure 6-13: Approximated cost vs. normalized residual volume (error value) for  

A*-Pattern Search with penalties (M2) and  

A*-Pattern Search with penalties and Simulated Annealing (SA) re-optimization (M4). 
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 Case 3: lower objective function value f but higher value for residual volume h and 
lower cost g (15 occurrences) 

 Case 4: lower objective function value f, lower residual volume h but higher cost g 
(2 occurrences) 

 Case 5: marginal changes in objective function values f, h and g (less than 0.1) 
(2 occurrences) 

Table 6-6 comprises the detailed statistics for each method. 

Table 6-6: Result statistics by methods, best and worst solutions for h and f,  

average values and standard deviations. 

    

best  

min(h) 

best  

min(f) 

worst  

max(h) 

worst  

max(f) average 

standard  

deviation 

m
et

ho
d 

M
2 

(n
=

20
) 

h [mm³] 13.5313 13.5313 63.5919 63.5919 37.4282 9.8656

hres / h0 0.0028 0.0028 0.0130 0.0130 0.0076 0.0020

g [s] 245.1050 245.1050 261.5800 261.5800 261.9818 11.3671

p [mm³] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

f 129.3180 129.3180 162.5860 162.5860 149.7049 7.6878

comp. time 

[s] 2916 2916 3067 3067 3106 111

m
et

ho
d 

M
4 

(n
=

27
) 

h [mm³] 19.9284 52.8789 104.7010 96.1619 59.2691 22.5740

hres / h0 0.0041 0.0108 0.0213 0.0196 0.0121 0.0046

g [s] 202.1380 188.4600 203.5520 214.6370 221.2876 25.1113

p [mm³] 0.6402 0.0000 0.0000 1.3091 0.5867 0.6511

f 121.4430 120.6700 154.1270 167.1130 145.8613 11.5550

comp. time 

[s] 42502 61607 49211 46322 51170 5851

 

Comparing the two methods, M2 and M4, M2 clearly shows better results for minimum 
residual volume. In all cases and on average, the residual volume obtained using method M2 
is lower. However, cost g is significantly lower using method M4. This leads to lower values 
of the objective function f, except for the worst result with maximum f value using method 
M4. Here, the objective function f is higher. This is also reflected by the higher standard 
deviation of f of method M4. On average, M2 reaches lower values in residual volume h and 
penalty volume p with lower standard deviations. However, on average, M4 reaches lower 
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values in cost g and objective function f but with higher standard deviations. Overall, M4 
reaches better results for the objective function f but the computation time to obtain these 
results is on average a factor 16 times higher than using method M2. 

6.3 Discussion 

Advanced heuristic search methods have been introduced that further improve the search. The 
size of the penalties has an influence on the result quality. With a lower penalty offset it is 
possible to obtain more directed solutions to the problem using A* and Pattern Search with 
penalties. 

The simulated annealing algorithm using Hustin moves allows for adapting the rule 
application policy. Through this, effective rules are applied more frequently than less 
effective ones. However, Simulated Annealing is known to be very exploratory considering 
the design space and sometimes also exploits the model it is applied to. It turned out, that SA 
often does not finish the search due to numerical problems in calculating the objective 
function. Through this, only inferior solutions are returned while better solutions are not 
found since the search stops at some point. 

In most cases, the best results are not yet satisfying since residual volume is still left over. To 
obtain a perfect shape match between the desired part and the fabricated part, the residual 
volume should be zero. To overcome this, re-optimization techniques were introduced. 
Motivated by the local knowledge during rule application, i.e. the rule is applied only 
considering the current and not any future state, all applied rules are optimized in one search. 
Results show that Simulated Annealing is able to further improve the results in terms of the 
objective function due to its ability to escape local minima and accept inferior moves in the 
early stages of the search. However, the improvement of the objective function value can also 
cause an increase of the residual volume that is offset by a greater decrease in fabrication 
time. 
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6.4 Conclusion 

Three different heuristic search methods and their validation have been presented: A* search, 
Simulated Annealing with Hustin moves and a combination of A* with re-optimization of the 
best result using Simulated Annealing. 

The results indicate, that A* as well as A* and Simulated Annealing re-optimization solve the 
problem successfully. However, the computational effort for re-optimization is high compared 
to the benefit gained. The high computational effort results from the complex objective 
function evaluation due to the recursive calculation of cost and penalty. Also, minimizing the 
objective function f, basically the sum of residual volume and cost of the solution, can lead to 
increased residual volume. This of course results in a larger deviation of the fabricated part 
from the designed shape, which might not be acceptable. 

Although Simulated Annealing with Hustin moves seemed promising, the application of this 
search method did not produce better results. Due to the exploratory nature of this stochastic 
search algorithm, the representation and manipulation algorithms underlying the planning 
system become unstable and are not able to successfully compute solutions. Although it is 
possible to obtain some results, it is clear that these do not successfully solve the problem but 
only represent cases were the search did not try too hard to find good solutions and therefore 
did not make the representation for the search fail. 





 

7 Discussion 

In the following the results presented in this thesis are discussed and the contributions to the 
state of the art are reviewed, followed by a discussion of the current limitations of the method 
and its implementation. The thesis is closed by recommendations for future work and a final 
conclusion. 

Machining planning deals with the arrangement and spatial relation between geometric shapes 
and the fabrication operations that create them. Spatial grammars natively support such a 
geometry-based planning by their ability to represent and manipulate spatial relations and 
entities. By applying elements of the vocabulary representing the geometric shape created by 
a machining operation, and using rules under constrained spatial relations, a feasible process 
plan can be created. The combined rules and vocabulary represent the fundamental 
knowledge of the machining process. Implicitly, the set of manufacturable shapes is 
represented by the grammar as well. 

The method combines multiple planning steps together instead of using a hierarchical 
approach that is partitioned into manufacturing volume recognition, toolpath planning and 
scheduling. The main advantage is the use of “deep” knowledge of machining processes 
encoded in the rule set and vocabulary. Thus, fabrication constraints are already integrated in 
the planning process, however, in a generic way. Starting from a 3D shape of the part, the 
approach is able to carry out all planning tasks including toolpath planning in a bottom-up 
fashion. The ability of the method to use a dynamic rule set and vocabulary in the grammar, 
by (un)registering resources that correspond to machining capabilities and tools and allows 
for responding to changes in the hardware due to failure or (un-)availability. This capability 
can also be used for extending the approach to different manufacturing processes such as 
turning in addition to 3-axis milling. 

To extend the method, new Removal Volumes can be created and used by the existing rules, 
if the same constraints apply, or if necessary, additional generic rules can be created specific 
to other cutting processes. The use of generic rules combined with search to direct the 
application of rules allows for easier extension to a wider range of machining strategies and 
machining processes compared to putting all the knowledge in the rules themselves. This also 
reduces the negative impact of rule maintenance. Conventional 2.5D default strategies, e.g. 
creating toolpaths by offsetting the part contour or machining the part in a line-by-line 
fashion, can result in effective process plans but are limited to their specific application area 
and workpieces. The use of the dynamic grammar overcomes the necessity to model all 
knowledge upfront. Further, it avoids maintaining a feature library and separate mappings 
from features to specific manufacturing operations. 

The machining planning system can also be used to have a design-to-fabrication system run 
autonomously, i.e. unattended. By reacting to changes in the availability of workpieces and 
reacting to tool failures the system can overcome critical situations that would cause a 
traditional manufacturing system to shut down. In the case of reacting to the unavailability of 
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workpieces in traditional CAM, it would require a complete manual re-planning of the 
process. The envisaged system, based around the SGMP method, however, decides if it can 
overcome the problem of the missing workpiece. 

During the development of the method, several search methods have been applied: A* with 
Pattern Search under hard constraints, A* with Pattern Search and penalties, Simulated 
Annealing with Pattern Search and A* with Pattern Search and Simulated Annealing re-
optimization. A* with Pattern Search under hard constraints has been successfully applied to 
the planning problem. However, it turned out that the search gets stuck within certain 
situations due to the hard constraints that keep possible solution candidates from being 
accepted at all. To overcome this, the hard constraints were relaxed and transformed into a 
penalty that was introduced to the objective function. Through this, the search is able to solve 
more complex problems better than the method with hard constraints. Still, the results indicate 
room for further improvement. One issue with the deterministic nature of the A* algorithm is 
that it only accepts the next best solution and does not accept inferior solutions that might lead 
to the global optimum in the later search. To overcome this, Simulated Annealing, a widely 
known stochastic search algorithm was applied. However, it turned out that only few results 
can be obtained and the ones obtained are not satisfying in terms of the objective function. 
The majority of searches did hang due to numerical problems within the solid model 
representation and the Boolean operations. This once more, proves the power of Simulated 
Annealing being able to explore the model it is applied to such that the model fails. Since the 
results were not improved by using Simulated Annealing, re-optimization techniques were 
introduced. In contrast to the previous search methods, re-optimization does not apply a single 
rule or RV but attempts to alter a complete process plan at once. This technique allows to 
consider knowledge on the effect of rule applications, e.g. if the first rule is changed, its effect 
on all subsequent rules is considered in the re-optimization. Therefore the search is able to not 
only consider the next rule application but to consider all. The results from applying re-
optimization prove its feasibility but the computation time is extremely high compared to all 
other search methods. In conclusion, A* in combination with Pattern Search and penalties, 
despite its simplicity, still offers the best tradeoff between computation time and quality of the 
solutions for this application. 

In analogy to the analysis of using a commercially available CAD/CAM software tool, the 
different steps using the developed method and software prototype are shown in Figure 7-1. 
The process begins by defining the part geometry by importing a 3D part model. The origin is 
already pre-defined by the geometric model. The stock can be defined either by importing a 
stock geometry from 3D model or by using the workpiece selection system presented in  
SHEA et al. 2010. By using a metric for selecting a specific workpiece, this step can also be 
automated. Since the available hardware system and the automated handling devices are 
constrained to a single setup, the setup is already pre-defined. However, the workpiece could 
be machined on several different machine tools with the same setup orientation.  
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Figure 7-1: Study of process planning using Spatial Grammar Machining Planning (SGMP). Different shades of 

color indicate the degree of automation from human based (light gray) to machine based (dark gray) 

and pre-defined or constrained by the available hardware (black). 
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Within the heuristic search process, the machine tools and operations as well as the sequence 
of manufacturing operations are determined automatically. Further the machining area is 
recognized and the operations sequenced automatically. The machining conditions (i.e. speeds 
and feeds) are pre-defined. Using the available data, the tool-paths can then be generated. 
Since there is only a single setup due to the constraints of the systems, the approach and 
retract directions are already defined. However, the exact trajectory is still calculated 
automatically. After this the CNC code can be generated. Since the system capitalizes on 
spatial grammars to integrate the shaping capability of the machine tools, the finished part is 
automatically calculated throughout the machining planning process.  

After the user has evaluated the calculated finished part, the CNC code can be transferred to 
the machine tool. The file transfer can be automated. Since the Spatial Grammar Machining 
Planning (SGMP) already plans with the tools available at planning time, the tool setting is 
already defined upfront. Since the machine tool is fed automatically by a handling device, the 
origin on the fixture is pre-defined. However, the part fixturing is carried out automatically by 
a reconfigurable fixture presented in SHEA et al. 2010. After the program has run, the part has 
to be checked manually. 

7.1 Review of research contributions 

A new bottom-up process-centric approach for CNC machining planning for the fabrication of 
customized parts for autonomous design-to-fabrication systems has been presented. The 
approach combines methods from design synthesis, namely spatial grammars and heuristic 
search methods that are used to generate designs and to decompose a design into machining 
operations and CNC machining instructions. The achievements realized in this work are 
shown in Figure 7-2. In the area of models, for the first time a spatial grammar formalism has 
been used to capture the shaping capability of machine tools in a bottom-up fashion such that 
the current state of the machine tool and its capabilities can be reflected to the planning. 
Though the model has been applied to 2.5D milling in this work, it is not limited by design to 
this application. Further applications are the planning of turning and multi-axis milling 
processes. To address this machining process, new rules and vocabulary of shapes need to be 
designed that capture the shaping capability as well as the inherent process constraints. 
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In the area of methods, a method for the planning of machining operations using the 
previously described model has been developed. In the first version, it was limited to design 
specifications using shape grammars. An extension of the method to accepting general 3D 
solid models as input for the designed part has been presented as the focus of the thesis. With 
this method, a customized design and the workpiece can be specified using CAD software. 
From this representation, the method is able to generate the machining instructions to 
fabricate the part from a specified workpiece. The feasibility of the approach has been 
demonstrated by successfully planning the machining operations and executing these on the 
hardware to fabricate the part. The powerful and extensible grammar framework allows for 
adding and changing capabilities. Through this, the system can react to changes in the 
hardware online. If workpieces are not available or a tool failure has been detected, the 
system can still successfully fabricate the desired part. The current state of the fabrication 
system is reflected in the planning system. The ability to incorporate such online feedback has 
been demonstrated in the scenarios handling missing workpieces and reacting to tool failure. 
The method and its implementation are unique within design synthesis methods, and 
specifically spatial grammars, in manufacturing to decompose a design into feasible 
machining operations that are linked to available hardware and capabilities. 

Models

Methods Tools

• bottom-up 
representation of 
machining capabilities 
using spatial grammars

• not restricted by design 
to 2.5D milling

• planning machining operations 
considering inherent process 
constraints

• powerful & extensible grammar 
framework for machining planning

• reacting to changes at runtime
• unique application of design synthesis 

methods in manufacturing

• working software 
prototype for machining 
planning

• use of spatial grammars 
in a hardware-based 
implementation

Figure 7-2: Research contributions in the areas of models, methods and tools. 
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The model and method has been implemented using a geometric kernel for solid modeling to 
support the capabilities of a three-dimensional set grammar. A working software prototype for 
machining planning for 2.5D milling processes has been implemented. The application allows 
importing STEP solid models of the part and workpiece, inspection of the resulting Total 
Removal Volumes and the choice of different search methods to generate the machining plan. 
By having the generated machining plans executed on CNC machine tools, the hardware-
based implementation demonstrates the integration of spatial grammars with hardware for 
fabrication. 

Overall the approach is an enabler for autonomous design-to-fabrication systems. Through 
reacting to feedback from the hardware and online planning capabilities, the actual planning 
process can be pushed downstream to the machine tools. Through this, the machine tools can 
be made aware of their capabilities and enabled to reason about part geometry in relation to 
available capabilities and to plan on-line their own operations to fabricate a part. The machine 
tools can not only plan their actions but also respond robustly to changes and unforeseen 
events within the design-to-fabrication system and maintain operations by overcoming failure 
of resources and machines. 

7.2 Limitations 

One of the limitations of the current implementation is the limited part complexity that the 
system can handle and successfully generate machining plans for. One reason for this 
limitation is the numerical complexity of the Boolean operations that are used for the 
calculation of the objective function as well as for the simulation of the individual cutting 
operations. During search, the calculation of the Boolean operations is very time consuming 
such that the search hangs, i.e. even after several hours, when a single Boolean operation does 
not completely compute. Another reason is the combinatorial explosion if further rules and 
Removal Volumes are added to the system. Depending on the search method applied, all 
available rules and Removal Volumes must be tested before a choice for a specific rule or 
Removal Volume is made. With a large branching factor, i.e. a large number of rules and 
RVs, the speed of the search progress decreases. 

The slow search progress is another limitation that makes the application of the system online 
more difficult. The machining plan generation can take one to several hours even for a rather 
simplistic part. The primary reason, besides the already mentioned ones, is the rather slow 
representation of the geometry using solid modeling. While being the first choice considering 
exactness, the computation of the geometry is very time-consuming. Here alternative and 
approximated 3D geometry representations could help increase the speed of the search 
progress. 

Currently the Removal Volume generation is not implemented. Instead, the Removal 
Volumes need to be preprogrammed. However, the Removal Volume generation requires 
complex spatial operations. Therefore it was decided to not implement the Removal Volume 
generation to not further slowdown the search. 
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7.3 Recommendations for future work 

For the further development of the method and implementation the primary limitations should 
be addressed. The root cause for several limitations lies in the representation of the 3D 
geometries. The Boolean operations are slow in comparison to the rest of the search and, 
more important, are prone to fail, especially when the solution becomes more accurate, i.e. 
with low residual volume. Therefore, alternative representations for 3D geometries should be 
explored. Examples are octree or volumetric mesh representations. These are only 
approximate representations but are much faster to compute. It would also be possible to 
combine the advantages of approximate representations with solid modeling techniques. By 
using the approximate representation to generate and test solutions candidates and the solid 
model then to calculate the final solution, the search can be made faster with a similar level of 
exactness. 

With a faster geometric representation, it would be possible to implement and use the 
Removal Volume generation online. Through this, the machine tools can take advantage of 
newly added tools instantly after installation. With the use of tool shape scanning methods, 
available in today’s machine tools, the tool shape can be captured and used in the planning of 
the machining operations. The automated Removal Volume generation would also ease the 
extension of the implementation to alternative machining processes such as turning. By 
specifying the tool shape and the kinematic properties of the process it would be possible to 
capture the knowledge of turning processes. 

Addressing the increasing complexity of plan generation with growing capabilities, or to be 
more exact with increasing number of rules and Removal Volumes, improved heuristics and 
soft-constraints are needed to constrain the search to promising areas of the search space. 
These heuristics and constraints should integrate expert best practice knowledge in the 
planning process, such that the system can generate better machining plans and achieve higher 
quality of fabricated parts. 

A number of such soft constraints are shown in Table 7-1. These soft constraints are classified 
according to their primary intent: Whether they reduce the complexity of the planning process 
or whether they are used as planning strategy to create better quality machining plans. It is 
important to mention that the soft constraints may be violated and still a feasible plan can be 
generated, i.e. they provide guidance to the search and incorporate additional domain specific 
knowledge. One or multiple constraints can be incorporated as penalties in the objective 
function during the search as described in Section 4. 
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C.7 recommends that an initial toolpath should start from an open face of the TRV. Similarly 
to this, C.8 recommends having coincident limiting faces of the RV and open faces of the 
TRV thus using the full volume of the RV for the machining operation. To produce a good 
surface quality, C.9 recommends having coincident non-limiting faces of the RV and non-
open faces of the TRV such that the surfaces each are created by as few as possible RVs. 

C.10 aims at minimizing unused volume of the RVs which results in longer machining time. 
This is a soft constraint since it is not required but gives a hint about how to create an efficient 
process plan. 

C.11 aims at increasing the machining quality by having the individual RV overlap thus 
reducing cusping in the machining process. 

An example for a heuristic to improve the search is the implementation of an improved 
repositioning rule. Instead of repositioning the tool randomly, it could be placed above an area 
where the most residual volume exists.  

Table 7-1: Soft constraints on spatial relations for rule application 

planning 
strategy

reducing 
complexity

C.7 R.1 RV:TRV
toolpath origin on
open face of TRV X

Coincident open

examplename location

spatial 
relation 

type
spatial 
relation

contribution to

C.8 R.3 RV:TRV

Coincident open
faces and limiting
face should give
good results

X

C.9 R.3 RV:TRV

Coincident non-
open face and a 
non-limiting face 
should be good

X

C.10 R.3 RV:TRV

Open faces may be
penetrated by the
RVs but can be
less effective

X

C.11 R.3 RV:RV
To reduce cusping,
RVs should
overlap 

X
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7.4 Conclusion 

The feasibility of using spatial grammars in combination with heuristic search for CNC 
machining planning from CAD geometries has been demonstrated by the results presented. 
The approach and the implemented Spatial Grammar Machining Planning (SGMP) system 
incorporate machining knowledge directly in the planning. This is achieved by the 
representation of machining operations through the spatial grammar. Since the shape is 
directly associated with the machining operation, there is no need for mapping the geometry 
separately to the machining operation as in feature technology. The availability of machines 
and tools can be reflected by the SGMP system by activating and deactivating the vocabulary 
and rules that the machines and tools are associated with. Through this, newly added tools can 
be used directly without mapping to machining operations and the unavailability of resources 
can be considered in the planning. Since the altering of the rule set is possible during 
planning, the planning system can cope with highly dynamic situations within a fabrication 
environment. Therefore, the method can be used for online planning of fabrication processes. 
The SGMP system is able to generate a full fabrication plan from operation selection and 
sequencing, tool and resource selection down to the generation of specific CNC code and 
therefore integrates CAPP and CAM capabilities without the need of post-processing data for 
the fabrication of parts. Thus, the approach enables direct fabrication of customized parts on 
CNC machines. Through this, the spatial grammar provides knowledge about the shaping 
capability of the machine tools and the SGMP systems allows the machine tool to plan its 
own actions. Therefore, the approach is an enabler in the development of cognitive machine 
tools within the Cognitive Machine Shop that “know what they are doing”  
(BRACHMAN 2002). 
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9 Appendix 

9.1 Software usage 

After starting the application, the main window is displayed. Any other window can be 
closed. The main menu is at the top of the window. Here, the SGMP menu is most important. 
Below the controls can be used to create and remove geometries as well as change the 
visualization style and manipulate the viewpoint. The black area is the display for 
visualization. 

 

Figure 9-1: Main window based on the Viewer3d application. 
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9.1.1 Main window controls 

The most important control elements within the main window are described in Table 9-1. 

Table 9-1: Main window controls. 

 

Toggle selection mode on/off. After application start 
selection mode is off. Running SGMP with selection mode 
off is recommended, otherwise application can crash. 

 
Fit view to window. Adjusts zoom to display all objects at 
once. 

 
Zoom to selection. Draw a selection box on the view to 
magnify. 

 
Zoom using the mouse. 

 
Switch to pre-defined view-points (from left to right): front, 
top, left, back, right, bottom or isometric view. 

All other controls to change the visualization style are functional. However it is not 
recommended to use controls that create or remove objects other than those from SGMP. 

All functions to setup and start jobs for SGMP are in the SGMP menu shown in Figure 9-2. It 
is possible to load from a STEP file a part design and a raw workpiece, select a workpiece 
from the ontology, and generate the TRV from part and raw shape. Solid volume to be 
removed is displayed and the boundary between the TRV and the part design is displayed in 
green. Machining plans can be generated using different mechanisms: Generate Plan using 
Simulated Annealing Outer Loop, using A* and using A* with Simulated Annealing re-
optimization. Finally, the resulting TRV can be saved as STEP file for further inspection. 
Usually using A* only delivers good results in a reasonable time. 

 

Figure 9-2: SGMP menu. 
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9.1.2 Running machining planning processes 

Creating and running a machining planning should be done using the following procedure: 

1. Load a part design using the SGMP menu. 

2. Define the workpiece shape by either loading the workpiece shape or selecting a 
workpiece from an ontology 

3. Generate and visually inspect the TRV.  

4. Generate the machining plan (it is recommended to use A*) 

5. Visually inspect the result and save the TRV. 

For better inspection the selection mode can be set to on to highlight edges of the TRV. The 
NC-code is written to the “D:\” location as text file if the appropriate pre-compile command is 
defined. However, before transferring it to a machine tool it must be checked for correctness. 

9.1.3 File structure of the development environment: 

D:\ 
 MSDL-Fullv1.owl  MSDL Ontology for workpiece selection 
 WorkpieceMatchmaker.jar  Workpiece matchmaker, interface to query the ontology 
D:\devel\ 
 OpenCASCADE6.3.0  OpenCASCADE directory 
 SVN 
  CCalc   source directory for command line SGMP calculation application 
  Common   common includes of the OpenCASCADE demo samples 
  loki-0.1.7   source directory of the loki library 
  MP1   source directory of fully implemented SGMP for 3-axis milling 
  SGMP   source directory of abstract SGMP implementation 
  Tree  source directory of tree structure 
  View_Anim_v1  source directory of the GUI for SGMP based on Viewer3d 
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9.1.4 Pre-compiler directives 

The pre-compiler directives widely control the behavior of SGMP. The directives can be 
defined or undefined in the SGMP.h source file. The directives are listed below 

Table 9-2: Pre-compiler directives. 

SAOUTERITERATIONS (default 100) Defines the number of Simulated Annealing 
(SA) iterations in the outer loop (rule 
selection). 

SAOUTERMOVES (default 300) Defines the number of Simulated Annealing 
(SA) moves in the outer loop (rule selection).

SAREOPTITERATIONS (default 100) Defines the number of Simulated Annealing 
(SA) iterations during re-optimization. 

SAREOPTMOVES (default 100) Defines the number of Simulated Annealing 
(SA) moves during re-optimization. 

ASTAREXPANDEDSTATES (default 500) Defined the number of states that are 
explored during A* search for rule selection 
before terminating. 

MAXCUTTINGDEPTHMULT (default 0.5) Defines the factor to calculate the maximum 
cutting depth from the tool-diameter. 

PSMAXITERATIONS (default 100) Defines the number of Patters Search 
iterations in the inner loop, i.e. during 
parameter optimization. 

GOSTATS (default undefined) Define this directive to enable detailed 
statistics for re-optimization 

CONSTW (default 0.5) Defines the weight to balance between h(x) 
and g (x) in f(x) = w*g(x) + (1-w)*h(x). 

CONSTWP (default 1.0) Defines the weight assigned to the penalty 
p(x). 

CONSTPOFFSET (default 10.0) Defines the offset (base value) to calculate 
the penalty p(x). 

CONSTPEXP (default 2) Defines the exponent to calculate the penalty 
(p(x))^exp. 
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9.1.5 Activating and deactivating grammar elements 

The elements of the grammar can be activated or deactivated by registering or unregistering 
them in the SGMPMP1.h source file. 

9.2 Spatial grammar machining planning (SGMP) framework 
documentation 

The following documentation of the Spatial Grammar Machining Planning (SGMP) system is 
based on the auto-generated doxygen documentation. The full doxygen documentation can be 
created from the SGMP source code. 

9.2.1 Modules 

The SGMP system consists of two modules: The abstract core functionality and a derived 
implementation of SGMP for 2.5D milling. 

Spatial Grammar Machining Planning (SGMP) 

This module implements the core functionality of SGMP. However, due to its abstract nature, 
this module cannot be compiled directly. To use it, derived classes must be created, that 
implement valid functionality. Figure 9-3 shows a UML diagram of the SGMP core module 
displaying the relation of the classes and selected core member functions. 
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Figure 9-3: UML diagram of the SGMP module reduced to core functionality 
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SGMP for 2.5D milling 

This module implements the crucial functionality of the SGMP focused on 2.5D milling. All 
rules and vocabulary is defined in this module. 

9.2.2 Class hierarchy 

Constraint 
CDifferentTool 
CIsMarkerSet 
CLFTRVnonintersec 
CLimitComputationTime 
CNOFLFnoncoin 
CNOFRVnoninter 
CNoRepRules 
CRVPartNonintersect 
CSameTool 
CWithinDistance 

MachineTool 
QualityItem 
QualityList 
RemovalVolume 

RVcslotD10 
RVcylD10 

RVcylD15 
RVslotD10 

RVslotD15 
Rule 

RApplyRV 
RChangeTool 
RResetMarker 
RStartingSymbol 
RTerminal 
RuleSequence 

RSChangeTooltoD10 
RSChangeTooltoD15 

SGMP 
SGMPMP1 

State 
Tool 
Workpiece 
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9.2.3 Class list 

In the following the classes of the framework are briefly described. 

CDifferentTool 

Constraint to use different tools. This Constraint checks whether the tool that is used in the 
RemovalVolume is different from the currently used tool (in the workspace) Returns >= 0.0 if 
they are different. 

CIsMarkerSet 

Constraint to check whether a marker has been set .This Constraint checks whether a marker 
has already been set within the workspace environment Returns >= 0 if marker has been set. 

CLFTRVnonintersec 

Constraint avoiding intersection of Limiting Face (LF) and Total Removal Volume (TRV). 
This Constraint checks whether the Limiting Face (LF) of the Removal Volume intersects 
with the Total Removal Volume (TRV). This prevents exceeding the maximum cutting depth. 
Returns >= 0 if not intersecting. 

CLimitComputationTime 

Constraint aimed at limiting the computation time during applying RemovalVolumes. 

CNOFLFnoncoin 

Constraint avoiding intersection between Non-Open Faces and Limiting Face (LF). This 
Constraint checks whether the Non-Open Faces (NOF) and the Limiting Face (LF) of the 
Removal Volume are intersecting. Returns >= 0 if they are not intersecting. 

CNOFRVnoninter 

Constraint to avoid intersection between Non-Open Faces and Removal Volume. This 
Constraint checks whether the Non-Open Faces (NOF) and Removal Volume (RV) are 
intersecting. Returns >= 0 if they are not intersecting. 

CNoRepRules 

Constraint to use rules only once in a row. This Constraint checks whether the rule is applied 
twice in a row. This can be used to prevent the ineffective application of rules. Returns >= 0 if 
the rules are not repetitive. 
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Constraint  

The class Constraint implements constraints that can be used during search. 

CRVPartNonintersect 

Constraint avoiding intersection between Removal Volume and part. This Constraint checks 
whether the Removal Volume (RV) and the later part shape are intersecting. Returns >= 0 if 
they are not intersecting. 

CSameTool 

Constraint for using the same tool. This Constraint checks whether the tool that is used in the 
RemovalVolume is the same as the currently used tool (in the workspace) Returns >= 0.0 if 
they are identical. 

CWithinDistance 

Constraint to prevent growth of Removal Volumes This Constraint checks whether the 
Removal Volume (RV) fits inside the bounding box of the Total Removal Volume (TRV). 
This can be used to prevent Removal Volumes of becoming too big. Returns >= 0.0 if the 
Removal Volume fits inside the bounding box of the TRV. 

MachineTool 

Implements a model of a machine tool. This class represents a basic model for the machine 
tools, including which tools can be hold at which position. 

QualityItem 

Aggregates data for Hustin moves during Simulated Annealing. This class collects all 
information required to calculate Hustin moves (i.e. rule probabilities) for Simulated 
Annealing. 

QualityList 

Manages data for Hustin moves during Simulated Annealing. This class acts as container for 
QualityItems to calculate Hustin moves (i.e. rule probabilities) for Simulated Annealing. 

RApplyRV 

Rule to apply Removal Volumes to the TRV. This rule applies a Removal Volume to the 
shape of the Total Removal Volume. The call to the GetCNCcode method is redirected to the 
attached RemovalVolume. 
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RChangeTool 

Rule to perform a tool change. This rule performs a tool change and instantiates the required 
CNC code. 

RemovalVolume 

Implements the volume removed during a machining operation. This class represents the 
volume that can be removed from a workpiece by a single machining operation. 

RResetMarker 

Rule to reset the marker, i.e. reposition the tool. This rule resets the marker. This corresponds 
to retracting the tool, transferring and to a different location at rapid feed. The new location is 
determined by choosing a random position above the bounding box of the Total Removal 
Volume (TRV). 

RSChangeTooltoD10 

Rule Sequence to actually perform a tool change. This rule sequence performs a tool change 
to the D10 tool by applying the RChangeTool rule, and then applying the RApplyRV rule. 
Through this, the search accepts the RChangeTool rule that primarily only causes cost. 

RSChangeTooltoD15 

Rule Sequence to actually perform a tool change. This rule sequence performs a tool change 
to the D15 tool by applying the RChangeTool rule, and then applying the RApplyRV rule. 
Through this, the search accepts the RChangeTool rule that primarily only causes cost. 

RStartingSymbol 

Rule to apply the Starting Symbol (initial rule). This rule is the starting symbol. It initializes 
the workspace and defines the orientation of the envelope. The marker is placed above the 
centroid of the bounding box surrounding the Total Removal Volume (TRV). 

RTerminal 

Rule to apply the terminal. This rule ends the planning process. The marker is removed from 
the workspace and the tool retracted to a save position. 

Rule 

This class represents rules within the grammar framework. 
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RuleSequence 

This class represents a rule sequence within the grammar framework. With this class several 
rules can be applied at once. 

RVcslotD10 

Removal Volume for a curved slot with D=10mm. This RV represents a Removal Volume 
created by a curved toolpath and a tool with D=10mm. (experimental) 

RVcylD10 

Removal Volume for a cylinder with D=10mm. This RV represents a Removal Volume 
created by a line toolpath and a tool with D=10mm where the toolpath and tool axis are co-
linear 

RVcylD15 

Removal Volume for a cylinder with D=15mm. This RV represents a Removal Volume 
created by a line toolpath and a tool with D=15mm where the toolpath and tool axis are co-
linear. 

RVslotD10 

Removal Volume for a slot with D=10mm. This RV represents a Removal Volume created by 
a line toolpath and a tool with D=10mm where the toolpath and tool axis are perpendicular. 

RVslotD15 

Removal Volume for a slot with D=15mm. This RV represents a Removal Volume created by 
a line toolpath and a tool with D=15mm where the toolpath and tool axis are perpendicular. 

SGMP  

The class SGMP (short for Spatial Grammar Machining Planning) represents the abstract 
main class. 

SGMPMP1 

The class SGMPMP 1 (Machining Planning 1) represents the core of the implemented SGMP 
for 2.5D milling. 
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State 

Represents a state during search. This class represents a state of the workspace, i.e. the current 
configuration and the applied rule and Removal Volume. 

Tool 

This class represents a tool used for cutting processes. 

Workpiece 

Implements a workpiece model. This class represents a workpiece/raw material used as input 
to the planning system. 

 


