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Given a sample from a discrete compound Poisson distribution, we consider
variants of plug-in and likelihood estimators for the corresponding base distri-
bution. These proceed recursively with an intermediate truncation step. We
discuss the asymptotic behaviour of the estimators and give some numerical ex-
amples. It appears that both procedures result in a considerable improvement if
compared with the straightforward and the naively projected plug-in estimator
that we introduced in Buchmann and Grübel (2003).
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1. Introduction. Poisson counting processes with bulk arrivals appear in vari-
ous application areas such as queueing theory. They are one of the standard tools
in stochastic modelling. If a process of this type is observed at evenly spaced time
intervals then we obtain a sample from a discrete compound Poisson distribution.
Formally, let p = (pk)k∈N be a probability distribution on the positive integers and
let λ > 0. With ‘⋆’ denoting convolution we call the distribution q = (qk)k∈N0

on
the non-negative integers given by

q = e−λ
∞
∑

m=0

λm

m!
p⋆m

the discrete compound Poisson distribution with rate parameter λ and base distri-
bution p. Distributions of this type arise quite generally as random sums: If N ,
X1, X2, X3, . . . are independent, N Poisson with parameter λ and p the probabil-
ity mass function of the X-variables, then q is the probability mass function for
∑N

m=1
Xm. The q-values can be obtained from λ and p by an algorithm known in

insurance mathematics as Panjer recursion,

q0 = e−λ, qk =
λ

k

k
∑

j=1

j pj qk−j for all k ∈ N.

Continuing the investigations in Buchmann and Grübel (2003), to which paper we
also refer for a more detailed discussion of the problem and its applications, we
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consider two new estimators for the base distribution associated with a discrete
compound Poisson distribution. These are introduced in the next section, which
contains four theorems on their asymptotic behaviour. In Section 3 we give some
examples with real data, one the canonical horse kick data, the other taken from
the ecological literature. Section 4 investigates the finite sample behaviour of our
estimators for some specific distributions by simulation.

2. Results. We first recall the definition of the plug-in estimator, in Sections 2.2
and 2.3 respectively we explain and discuss the new proposals. In the final subsec-
tion we describe a connection between the three estimators.

2.1 The plug-in estimator . In Buchmann and Grübel (2003) we introduced an
estimator which is based on the following inversion of the Panjer recursion,

λ = − log q0, pk =
qk

λq0

− 1

kq0

k−1
∑

j=1

j pj qk−j for all k ∈ N.

Given a sample Y1, . . . , Yn of size n from such a distribution let q̂n = (qn,k)k∈N0
,

q̂n,k :=
1

n
#

{

1 ≤ m ≤ n : Ym = k
}

be the associated empirical probability mass function. The plug-in estimators λ̂n

and p̂PI
n = (p̂PI

n,k)k∈N for λ and p are then constructed by replacing the q-entries
in the above inversion formula by the corresponding relative frequencies q̂n,k; in
particular,

λ̂n := − log q̂n,0.

Here and in the sequel we assume that q̂n,0 > 0 which in view of our general assump-
tion λ > 0 will be satisfied if n is large enough. In Buchmann and Grübel (2003)
we obtained consistency and asymptotic normality for these estimators, but we
also pointed out that the estimate for the base distribution is in general not a
probability mass function as it may contain negative entries. One popular if crude
remedy consists in replacing such negative entries by 0 and then renormalizing to
sum 1, we will refer to this as the projected plug-in estimator p̂PPI

n = (p̂PPI

n,k)k∈N (in

all estimators considered in this paper λ̂n will be the same, so we do not need a
distinguishing superscript for the rate parameter). Note that we risk an ambiguity
in order to keep the notation compact: q with a single subscript refers to the com-
ponents of q and q̂ with the further subscript n refers to the empirical probability
mass function. Below we will also use λ0, p0 = (p0,k)k∈N and q0 = (q0,k)k∈N0

for
the true parameters.

2.2 The truncated plug-in estimator . The first of our new proposals uses the
above recursion but inserts a truncation step in order to insure that the entries are
nonnegative and that their sum does not exceed the value 1. Formally, we define
the truncated plug-in estimator p̂TP

n = (p̂TP

n,k)k∈N0
by

p̂TP

n,k := max

{

0 , min
{

xn,k , 1 −
k−1
∑

j=1

p̂TP

n,j

}

}

,

with
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xn,k :=
q̂n,k

λ̂nq̂n,0

− 1

kq̂n,0

k−1
∑

j=1

j p̂TP

n,j q̂n,k−j .

By definition, p̂TP
n is a (sub)probability mass function. Also, xn,k ≤ 0 whenever

q̂n,k = 0 which shows that the support of the truncated plug-in estimator is con-
tained in the support of q̂n. In particular, p̂TP

n,k = 0 for k > Mn := max{Y1, . . . , Yn},
so that the recursion can always be stopped after a finite number of steps.

The following two theorems deal with the asymptotic behaviour of p̂TP
n . The first

of these shows that the truncated plug-in estimators are strongly consistent.

Theorem 1 Let λ0 be the true rate parameter and let p0 = (p0,k)k∈N be the

true base distribution. Then λ̂n → λ0 and p̂TP

n,k → p0,k for all k ∈ N almost surely

as n → ∞.

Proof: We proceed by induction. Since q̂n,0 → q0,0 = e−λ0 and

xn,1 = − q̂n,1

q̂n,0 log q̂n,0
→ − q0,1

q0,0 log q0,0
= −λ0p0,1q0,0

q0,0(−λ0)
= p0,1

almost surely, λ̂n and and the first component of p̂TP
n are consistent. Generally,

xn,k = Ψk(q̂n,0, . . . , q̂n,k; p̂TP

n,1, . . . , p̂
TP

n,k−1)

with

Ψk(y0, . . . , yk; z1, . . . , zk−1) := − yk

y0 log y0

− 1

ky0

k−1
∑

j=1

jzjyk−j .

For y0 > 0 (an assumption that is satisfied in our setup since y0 corresponds to
e−λ0) this is a continuous function, hence consistency of q̂n,j for j = 0, . . . , k and
p̂TP

n,j for j = 1 . . . , k − 1 implies that xn,k converges almost surely to

p0,k = Ψk(q0,0, . . . , q0,k; p0,1, . . . , p0,k−1),

with the equality a consequence of Panjer inversion. The truncation step is con-
tinuous and leaves the limit invariant, hence p̂TP

n,k → p0,k as desired. �

We next consider the distributional asymptotics of the truncated plug-in estima-
tor. In contrast to the situation in Buchmann and Grübel (2003) this new estimator
is not a differentiable function of the empirical mass function q̂n as the truncation
introduces a continuous but non-differentiable step. As a consequence we still have
the desirable ‘parametric’ rate n−1/2 but the limit will in general not be a Gaus-
sian process. Further, we only obtain (weak) convergence of the finite-dimensional
distributions, which we abbreviate as ‘→fidi’. This is a consequence of our method
of proof, which relies on the recursive structure of the estimators. The truncation
step in these recursions prevents the use of the canonical approach of transferring
tightness by local linearization.

To define the limit process let V = (Vk)k∈N0
be a sequence of centred Gaussian

random variables with cov(Vk, Vj) = δkjq0,k − q0,kq0,j . We define ZTP = (ZTP

k )k∈N0

3



recursively in terms of V , using an intermediate process W = (Wk)k∈N. For this,
put ZTP

0 = −V0/q0,0 and, for k ∈ N,

Wk :=
q0,k

λ2
0q

2
0,0

V0 − 1

kq0,0

k−1
∑

j=0

(k − j)p0,k−jVj +
1

λ0q0,0
Vk − 1

kq0,0

k−1
∑

j=1

jq0,k−jZ
TP

j .

Then

ZTP

k :=























Wk, if p0,k > 0 and
∑k

j=1
p0,k < 1,

min{Wk,−∑k−1

j=1
ZTP

j }, if p0,k > 0 and
∑k

j=1
p0,k = 1,

max{0, Wk}, if p0,k = 0 and
∑k

j=1
p0,k < 1,

max
{

0, min{Wk,−
∑k−1

j=1
ZTP

j }
}

, if p0,k = 0 and
∑k

j=1
p0,k = 1.

The truncation step in the definition of the estimator leads to a truncation step in
the construction of the limit process that depends on the support of the true base
distribution. In particular, if p0,k > 0 for all k ∈ N then (ZTP

k )k∈N = (Wk)k∈N and
ZTP is a Gaussian process. For the next theorem, we combine the rate parameter
λ and the base distribution p into a single sequence (λ, p).

Theorem 2 Let λ0 be the true rate parameter and let p0 = (p0,k)k∈N be the

true base distribution. Then, with ZTP = (ZTP

k )k∈N0
as defined above,

√
n
(

(λ̂n, p̂TP

n ) − (λ0, p0)
)

→fidi ZTP as n → ∞.

Proof: The central limit theorem for multinomial distributions implies that√
n(q̂n− q0) →fidi V , with V = (Vk)k∈N0

as given above. Using a suitable construc-
tion we may even assume that the convergence holds pointwise for the respective
random variables. (This step together with the subsequent local linearizations ap-
pears in many proofs of distributional convergence, see e.g. Section 4 in Buchmann
and Grübel (2003).) Since λ̂n = − log q̂n,0 is a differentiable function of q̂n,0 and
λ0 = − log q0,0 we then obtain

√
n(λ̂n − λ0) → ZTP

0 = − 1

q0,0
V0 .

Assume now that we have already shown that

√
n
(

(q̂n,0, . . . , q̂n,k; p̂TP

n,1, . . . , p̂
TP

n,k−1) − (q0,0, . . . , q0,k; p0,1, . . . , p0,k−1)
)

converges pointwise to the random vector (V0, . . . , Vk; ZTP
1 , . . . , ZTP

k−1
). Let Ψk and

xn,k be as in the proof of Theorem 1. Then a standard calculus argument yields
the pointwise convergence of

√
n(xn,k − p0,k)

=
√

n
(

Ψk(q̂n,0, . . . , q̂n,k; p̂TP

n,1, . . . , p̂
TP

n,k−1) − Ψk(q0,0, . . . , q0,k; p0,1, . . . , p0,k−1)
)
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to

k
∑

j=0

∂Ψk

∂yj
(q0,0, . . . , q0,k; p0,1, . . . , p0,k−1)Vj

+
k−1
∑

j=1

∂Ψk

∂zj
(q0,0, . . . , q0,k; p0,1, . . . , p0,k−1)ZTP

j .

A straightforward computation shows that this is equal to

q0,k

q2
0,0(log q0,0)2

V0 −
1

kq0,0

k−1
∑

j=0

(k−j)p0,k−jVj −
1

q0,0 log q0,0
Vk −

1

kq0,0

k−1
∑

j=1

jq0,k−jZ
TP

j ,

hence
√

n(xn,k −p0,k) → Wk with Wk as given above. The definition of p̂TP
n implies

√
n(p̂TP

n,k−p0,k) = max

{

−
√

np0,k , min
{√

n(xn,k−p0,k),
√

n
(

1−
k

∑

j=1

p0,j

)

−yn,k

}

}

with yn,k :=
∑k−1

j=1

√
n(p̂TP

n,j − p0,j). This representation can be used for a proof
by induction that the sequences (yn,k)k∈N are bounded for all k ∈ N. Hence, if

p0,k > 0 and
∑k

j=1
p0,k < 1 then the right hand side will be equal to

√
n(xn,k−p0,k)

for n large enough and therefore converge to Wk. A similar check of the other three
cases shows that √

n(p̂TP

n,k − p0,k) → ZTP

k .

Putting pieces together we obtain that

√
n
(

(q̂n,0, . . . , q̂n,k+1; p̂
TP

n,1, . . . , p̂
TP

n,k) − (q0,0, . . . , q0,k+1; p0,1, . . . , p0,k)
)

converges to (V0, . . . , Vk+1; Z
TP
1 , . . . , ZTP

k ). Switching back to the original variables
we see that this completes the proof of the induction step for the convergence of
the finite-dimensional distributions. �

Theorem 2 shows that we get a complicated limit process, but the result has
some statistical significance. This rests upon two observations: First, the finite di-
mensional distributions L

(

(ZTP

j )j=0,...,k |λ, p
)

, k ∈ N0, of the limit process depend
on the unknown parameter (λ, p) in a continuous manner, as is obvious from its

construction. Hence we can ‘studentize’, i.e. use L
(

(ZTP

j )j=0,...,k |λ̂n, p̂TP
n

)

to esti-

mate L
(

(ZTP

j )j=0,...,k |λ, p
)

. In view of Theorem 1 this will lead to asymptotically
correct confidence regions for finite sets of parameter components if the construc-
tion of these regions allows the application of the continuous mapping theorem.
Still, it remains to find e.g. the quantiles of L(ZTP

k |λ̂n, p̂TP
n ). For this, the sec-

ond observation is useful: A centred Gaussian process (Vk)k∈N0
with covariance

structure

var(Vk) = qk(1 − qk), cov(Vl, Vk) = −qlqk for all k, l ∈ N0 with k 6= l
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can be obtained recursively from a sequence (ξk)k∈N0
of independent centred normal

random variables with

var(ξk) = qktktk+1, tk :=
∞
∑

j=k

qj for all k ∈ N0

as follows: V0 := ξ0,

Vk :=
1

tk

(

ξk − qk

k−1
∑

j=0

Vj

)

for all k ∈ N with tk > 0, Vk = 0 if tk = 0. Together with the above constructive
description of ZTP this makes it easy to generate values from some initial segment
of the limit process so that numerical approximations for quantiles etc. can be
obtained by simulation. Similarly, we can construct critical regions for tests of
simple hypotheses if these involve a finite set of parameters only.

2.3 The truncated maximum-likelihood estimator . Our second estimator uses
likelihood ideas, but otherwise the approach is very similar. Suppose that we base
the estimation of λ0 on q̂n,0 and that of p0,k on q̂n,0, . . . , q̂n,k, as we have done in
the various forms of plug-in estimation. We obtain the recursive step by assuming
when estimating p0,k that the estimates for λ0 and p0,1, . . . , p0,k−1 are exact. Note
that this is only a heuristic motivation for the following formal definition. Again,
λ̂n = − log q̂n,0. If the original data are truncated at k + 1 in the sense that we
replace Yl by min{Yl, k + 1} for l = 1, . . . , n then the likelihood associated with
(λ, p1, . . . , pk) is given by

Ln,k(λ, p1, . . . , pk) =
k

∑

j=0

q̂n,j log qj +
(

1 −
k

∑

j=0

q̂n,j

)

log
(

1 −
k

∑

j=0

qj

)

,

where q0, . . . , qk are the corresponding compound probabilities, related to the argu-
ments of Ln,k by Panjer recursion. We now define the truncated maximum likeli-
hood estimator p̂TL

n = (p̂TL

n,k)k∈N recursively: Given λn and p̂TL

n,j for j = 1, . . . , k− 1
let p̂TL

n,k be the value that maximizes the function

x 7→ Ln,k(λ̂n, p̂TL

n,1, . . . , p̂
TL

n,k−1, x)

on the interval [0, 1 −
∑k−1

j=1
p̂TL

n,j]. This argmax exists, is unique and can be given
explicitly. To see this, we first consider the case k = Mn = max{Y1, . . . , Yn}. Then
the second part of Ln,k vanishes. In the remaining sum only qk depends on pk,
qk is a strictly increasing function of pk and q̂n,k > 0, hence pk has to be chosen

as large as possible. The unique maximizer is therefore given by 1 − ∑k−1

j=1
p̂TL

n,j.
This also implies that p̂TL

n,j = 0 for j > Mn; in particular, the truncated maximum
likelihood estimator is a (proper) probability mass function and the recursion can
be stopped after a finite number of steps. For k < Mn we rewrite the function that
has to be maximized as follows,

g(x) = C1 + C2 log(C3 + C4x) + C5 log(1 − C6 − C3 − C4x)
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with

C2 = q̂n,k, C3 =
λ̂n

k

k−1
∑

j=1

jp̂TL

n,j q̂
TL

n,k−j , C4 = λ̂nq̂n,0, C5 = 1 −
k

∑

j=0

q̂n,j

and C6 =
∑k−1

j=0
q̂TL

n,j . Here q̂TL
n denotes the compound distribution with rate pa-

rameter λ̂n and base distribution p̂TL
n . None of the constants C1, . . . , C6 depend on

x and we may assume that C4 > 0. If C2 = 0 then g is strictly decreasing, which
leads to x = 0. If C2 > 0 then standard calculations show that the pre-truncation
argmax of the strictly concave function g is uniquely given by

xn,k =
C2 − C2C3 − C2C6 − C3C5

C2C4 + C4C5

=
q̂n,k

λ̂nq̂n,0

·
1 − ∑k−1

j=0
q̂TL

n,j

1 − ∑k−1

j=0
q̂n,j

− 1

kq̂n,0

k−1
∑

j=1

jp̂TL

n,j q̂
TL

n,k−j ,

so that finally

p̂TL

n,k = max

{

0 , min
{

xn,k , 1 −
k−1
∑

j=1

p̂TL

n,j

}

}

.

It may be interesting to note that the auxiliary quantity xn,k reduces to the one
that we introduced in connection with the truncated plug-in estimator if we replace
q̂TL

n,k by q̂n,k. As in the plug-in case we have that the support of p̂TL
n is a subset of

the support of q̂n.

Theorem 3 Let λ0 be the true rate parameter and let p0 = (p0,k)k∈N be the

true base distribution. Then λ̂n → λ0 and p̂TL

n,k → p0,k for all k ∈ N almost surely

as n → ∞.

Proof: We proceed as in the proof of Theorem 1; indeed, the induction start
remains unchanged as λ̂n, xn,1 and therefore the estimator for p0,1 are the same
for truncated plug-in and truncated maximum likelihood. For the induction step
we use xn,k = Φk(q̂n,0, . . . , q̂n,k; p̂TL

n,1, . . . , p̂
TL

n,k−1) with

Φk(y0, . . . , yk; z1, . . . , zk−1) := − yk

y0 log y0

1 − ∑k−1

j=0
qj

1 −
∑k−1

j=0
yj

− 1

ky0

k−1
∑

j=1

jzjqk−j

where the functions qk are given recursively by q0(y0) = y0,

qk = qk(y0; z1, . . . , zk) = − log y0

k

k
∑

j=1

jzj qk−j(y0; z1, . . . , zk−j) .

Again, Φk is continuous at the true parameter value, which provides the basis for
the induction step. �
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For the corresponding distributional limit result we again give the construction
of the limit process first. We need the auxiliary sequences a0 = (a0,k)k∈N and
b0 = (b0,k)k∈N defined by

a0,k :=

k
∑

j=1

p0,jq0,k−j , b0,k :=

k−1
∑

j=1

jp0,ja0,k−j for all k ∈ N.

Note that a0 = p0 ⋆ q0 is a probability mass function. Further let (t0,k)k∈N0
and

(c0,k)k∈N0
denote the tail sequences associated with q0 and a0 respectively, i.e.

t0,k :=

∞
∑

j=k

q0,j, c0,k :=

∞
∑

j=k

a0,j for all k ∈ N0.

As for Theorem 2, let V = (Vk)k∈N0
be a sequence of centred Gaussian random

variables with cov(Vk, Vj) = δkjq0,k − q0,kq0,j . Again we define ZTL = (ZTL

k )k∈N0

recursively, using auxiliary variables Wk, k ∈ N: Let ZTL
0 = −V0/q0,0 and, for

k ∈ N,

Wk :=

(

q0,k

λ2
0q

2
0,0

− q0,kc0,k

λ0q2
0,0t0,k

+
b0,k

kq2
0,0

)

V0 +
q0,k

λ0q0,0t0,k

k−1
∑

j=0

Vj

+
1

λ0q0,0
Vk −

k−1
∑

j=1

(

q0,k(1 − t0,k−j)

q0,0t0,k
+

q0,k−j

q0,0

)

ZTL

j .

Then

ZTL

k :=























Wk, if p0,k > 0 and
∑k

j=1
p0,k < 1,

min{Wk,−∑k−1

j=1
ZTL

j }, if p0,k > 0 and
∑k

j=1
p0,k = 1,

max{Wk, 0}, if p0,k = 0 and
∑k

j=1
p0,k < 1,

max
{

0, min{Wk,−
∑k−1

j=1
ZTL

j }
}

, if p0,k = 0 and
∑k

j=1
p0,k = 1.

Note that the truncation step is identical to the one that we used in connection
with the limit process for the truncated plug-in estimator.

Theorem 4 Let λ0 be the true rate parameter and let p0 = (p0,k)k∈N be the

true base distribution. Then, with ZTL = (ZTL

k )k∈N0
as defined above,

√
n
(

(λ̂n, p̂TL

n ) − (λ0, p0)
)

→fidi ZTL as n → ∞.

Proof: Let Φk and qk be as in the proof of Theorem 3. If we regard the
exponential function as a non-linear operator on the space of summable sequences,
a view that has been used extensively in Buchmann and Grübel (2003), then the
convolution series that gives q in terms of λ and p can be written as q = exp

(

λ(p−
δ0)

)

. This leads to

∂qk

∂zl
(q0,0; p0,1, . . . , p0,k) =

{

− log(q0,0) q0,k−l, if k ≥ l,
0, if k < l.
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Alternatively, this can be verified by induction on using the recursive definition
of qk. The convolution series representation of q also gives

∂qk

∂y0

(q0,0; p0,1, . . . , p0,k) =
1

q0,0

(

q0,k − (p0 ∗ q0)k

)

=
1

q0,0
(q0,k − a0,k).

Note that qj(q0,0; p0,1, . . . , p0,j) = q0,j . From these we obtain, with λ0 = − log q0,0

and (. . .) abbreviating (q0,0, . . . , q0,k; p0,1, . . . , p0,k−1),

∂Φk

∂y0

(. . .) =
q0,k

λ2
0q

2
0,0

+
q0,k

λ0q0,0t0,k
− q0,kc0,k

λ0q2
0,0t0,k

+
b0,k

kq2
0,0

,

∂Φk

∂yj
(. . .) =

q0,k

λ0q0,0t0,k
for j = 1, . . . , k − 1,

∂Φk

∂yk
(. . .) =

1

λ0q0,0
,

∂Φk

∂zj
(. . .) = −q0,k(1 − t0,k−j)

q0,0t0,k
− q0,k−j

q0,0
for j = 1, . . . , k − 1.

Using these we see that

Wk =

k
∑

j=0

∂Φk

∂yj
(. . .)Vj +

k−1
∑

j=1

∂Φk

∂zj
(. . .)ZTL

j

and we can now continue as in the proof of Theorem 2. �

The same remarks as given after Theorem 2 apply in this situation too. In fact,
a slight simplification occurs as ∂Φk/∂yj for j = 1, . . . , k−1 does not depend on j:
With

ξk := q0,k

k−1
∑

j=0

Vj + t0,kVk,

which produces a sequence of independent centred normal random variables with
var(ξk) = q0,kt0,kt0,k+1, we obtain

Wk =

(

q0,k

λ2
0q

2
0,0

− q0,kc0,k

λ0q2
0,0t0,k

+
b0,k

kq2
0,0

)

ξ0

+
1

λ0q0,0t0,k
ξk −

k−1
∑

j=1

(

q0,k(1 − t0,k−j)

q0,0t0,k
+

q0,k−j

q0,0

)

ZTL

j .

Written in this form the recursion is driven by independent random variables, which
is convenient in connection with simulations.

2.4 Backwards compatibility. In Buchmann and Grübel (2003) we regarded the
plug-in estimator p̂PI

n = (p̂PI

n,k)k∈N as a point in a suitable sequence space and we
directly analyzed its dependence on the sequence (point) q̂n = (q̂n,k)k∈N0

. Alter-
natively, and in the style of the present paper, we can write

p̂PI

n,k = Ψk(q̂n,0, . . . , q̂n,k; p̂PI

n,1, . . . , p̂
PI

n,k−1)

9



and prove consistency and convergence of the finite dimensional distributions of√
n(p̂PI

n − p0) as n → ∞, using arguments from the proofs of Theorem 1 and
Theorem 2. Apart from providing an alternative method of proof (leading to
a weaker distributional result) the recursive structure of the unadorned plug-in
estimator, as displayed above, also leads to the following two observations: First,
if

p0,1 > 0, . . . , p0,k > 0 and
k

∑

i=1

p0,i < 1

then the (strong) consistency of the plug-in estimator implies that there exist an
n0 ∈ N and a set of probability zero such that, outside this set and for all n ≥ n0,

p̂PI

n,1 > 0, . . . , p̂PI

n,k > 0 and

k
∑

i=1

p̂PI

n,i < 1.

A truncation then does not occur in the first k steps and therefore p̂PI

n,i = p̂TP

n,i for
i = 1, . . . , k. Essentially the same arguments apply to the truncated maximum
likelihood estimator. Indeed, as we will see in the numerical examples in the next
section, the three estimates will typically coincide for the first k components and
then bifurcate. If truncation occurs at that stage because of

∑k
i=1

p̂PI

n,i ≥ 1, then
the truncated plug-in and the truncated maximum likelihood estimates will be
identical.

Secondly, in the special case with p0,k > 0 for all k ∈ N (an assumption that
holds for some popular parametric families, see Section 3.2 below) we can use this
argument, together with the familiar fact that the finite dimensional distributions
determine the distribution of a stochastic process with countable index set, to show
that ZTP = ZTL = W , and that W is the limit process obtained in Buchmann and
Grübel (2003) for the plug-in estimator.

3. Examples. We consider two real data sets in the first two subsections, in
Subsection 3.3 we outline an approach that could be used for the test of composite
hypotheses that arise in these examples.

3.1 The horse kick data. As in Buchmann and Grübel (2003) we first apply
our procedures to the time-honoured Prussian horse kick data; see e.g. Quine and
Seneta (1987). Of the 200 observations 109, 65, 22, 3 and 1 respectively are equal
to k = 0, 1, 2, 3 and 4. Table 1 displays the various estimates, for reference
we also give the plug-in and projected plug-in estimates in the second and third
line. In contrast to our new proposals these have unbounded support. We use
the heuristic argument that Y -values smaller than some k cannot possibly contain
any information about p0,l for l ≥ k and stop the recursion underlying the plug-
in estimator at the largest observed value; this is also used as the basis for the
projection in the third line. Next are the truncated plug-in and the truncated
likelihood estimates; we see that both are closer to the traditional interpretation of
these data as being from an ordinary Poisson distribution. Also, both are identical,
as announced in Section 2.4.
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k 0 1 2 3 4

p̂PI

n,k - 0.9825 0.0396 -0.0365 0.0207

p̂PPI

n,k - 0.9422 0.0380 0 0.0198

p̂TP

n,k, p̂TL

n,k - 0.9825 0.0175 0 0

q̂n,k, q̂PI

n,k 0.5450 0.3250 0.1100 0.0150 0.0050

q̂PPI

n,k 0.5450 0.3117 0.1017 0.0242 0.0112

q̂TP

n,k, q̂TL

n,k 0.5450 0.3250 0.1027 0.0227 0.0039

Poisson 0.5434 0.3314 0.1011 0.0206 0.0031

Table 1: The horse kick data

The next three lines give the respective q-values, beginning with the relative fre-
quencies. By construction, these are equal to the q-values for the straight plug-in
estimate. The final line contains the result of the usual Poisson approximation,
with λ estimated by the mean 0.61 of the data (all decompounding estimators con-

sidered in this paper use λ̂n = − log q̂n,0 = − log 0.545 = 0.606969 . . .). We see that
the truncation estimators give a notably better fit on the q-side than the naively
projected plug-in estimator:

4
∑

k=0

|q̂PPI

n,k − q̂n,k| = 0.037,

4
∑

k=0

|q̂TP/TL

n,k − q̂n,k| = 0.016.

3.2 The plant data. Compound Poisson distributions (‘contagious distributions’)
also appear in the ecological literature where they are used to model plant and in-
sect populations. In the basic model, apparently due to Neyman (1939), it is
assumed that ancestor plants or insects are distributed in a given area according
to a two-dimensional Poisson process with constant intensity. These have random
numbers of offspring, independent and identically distributed, which stay close to
their respective ancestors. Dividing a given (sufficiently homogeneous) area into
subareas of equal size and ignoring edge effects one then regards the counts for the
subareas as a sample from a compound Poisson distribution. This may be seen as
a two-dimensional variant of our motivating example of queues with bulk arrivals.
Neyman (1939) advocated the use of a Poisson base distribution, the resulting fam-
ily of compound distributions is also known as the Neyman Type A family. In the
case of a geometric base we similarly arrive at the Pólya-Aeppli distributions; see
Chapter 9 in Johnson, Kotz and Kemp (1992). (Atoms at zero of the base distri-
bution can be incorporated into the rate parameter.) A third popular parametric
family in this area is the family of negative binomial distributions. These are also
of the compound Poisson type, the special case of geometric distributions is used
below in one of the simulation examples. In an effort to find out which of these
three families is appropriate for plant or insect populations Evans (1953) collected
and analyzed a variety of data sets. For plant populations he generally regards the
Neyman Type A distributions as appropriate, but for one of his data sets (14c in
the paper) the Pólya-Aeppli distribution results in a better fit. In Table 2 below
we give this data set together with our estimates for the base distribution.
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k 0 1 2 3 4 5 6 7 8 9 10 11 12

counts 274 71 58 36 20 12 10 7 6 3 0 2 1

p̂PI

n,k - .431 .296 .137 .049 .023 .029 .018 .017 .002 -.011 .009 .003

p̂TP

n,k, p̂TL

n,k - .431 .296 .137 .049 .023 .029 .018 .016 0 0 0 0

Table 2: The plant data

Again, the plug-in estimate has a negative entry and the truncated plug-in and
truncated likelihood estimates are identical. The data here are such that the trun-
cation step in the definition of p̂TP

n,k, p̂TL

n,k first takes effect with k = 8, hence both are
equal to p̂PI

n,k for k = 1, . . . , 7. As a consequence these estimates give a perfect fit of
observed and expected frequencies in this k-range, which cannot be obtained with
any of the parametric models mentioned above. On the other hand a parametric
model, if correct, could be used to extrapolate beyond the range of the obser-
vations, for example by providing an estimate for high quantiles of the offspring
distribution.

For data such as these our procedures provide a partly nonparametric alterna-
tive to the classical approach. In effect, we estimate the offspring distribution
directly, without any parametric assumptions, but the assumptions on the spatial
distribution of the ancestors remain in force.

3.3 Significance tests . The numerical examples in the previous two subsections
are mainly meant to illustrate the estimators that we introduced in Section 2 and
to compare them with the plug-in estimators in Buchmann and Grübel (2003).
Of course, the question arises as to what extent our asymptotic results can be
used for the construction of formal significance tests, for example of the hypothesis
that we do have a straight Poisson distribution in the first example or whether the
deviation from a geometric distribution is significant in the second. We have already
mentioned in the results section that asymptotically valid confidence regions for
the atoms of the base distributions can be obtained from the distributional limit
theorems. Of course, the familiar connection between such regions and the rejection
regions of significance tests can be used to obtain tests for simple hypotheses.
For the composite hypotheses that we just mentioned one could use an extension
of our results for the case of a converging sequence of rate parameters and base
distributions, but we will not pursue this here.

4. Some simulation experiments. In our next two examples we use simulated
data, with λ0 = 2 and p0 the uniform distribution on the set {1, 4, 6} in the first
case. Figure 1(a) shows the result of 50 simulations with sample size n = 500.
Displayed are the corresponding absolute error sums, with ◦ and + for the vectors
with coordinates

(Mn
∑

k=0

|p̂TP

n,k − p0,k| ,
Mn
∑

k=0

|p̂PPI

n,k − p0,k|
)

and

(Mn
∑

k=0

|p̂TP

n,k − p0,k| ,
Mn
∑

k=0

|p̂TL

n,k − p0,k|
)
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respectively. To make the comparisons easier the plots include the line x 7→ (x, x).
The figure shows that, at least in this particular example, the new estimators both
considerably improve upon the projected plug-in estimate, and that the two new
estimators show a very similar performance.
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Figure 1 Error comparisons for simulated data
◦: PPI vs. TP, +: TL vs. TP

In the second example with artificial data we take q0 to be the geometric dis-
tribution with parameter α = 0.25. It is known that this is a compound Poisson
distribution with rate parameter λ = − log(α) and with the logarithmic distribu-
tion

p0,k = − (1 − α)k

k log α
, k ∈ N,

as base distribution; see e.g. Johnson, Kotz and Kemp (1992). As explained in
Section 2.4 the limit processes are then the same for all three estimators, which leads
us to suspect that the projected plug-in estimate can compete with the truncation
estimates. To some extent this is confirmed by Figure 1(b).

In our last experiment we consider the performance of the truncated plug-in,
the truncated likelihood and the projected plug-in estimators with respect to a
structural property of the base distribution such as its support. Again, the base
distribution is uniform on the set {1, 4, 6}. Table 3 gives the percentages of the
correct results in 1000 simulations for two different sample sizes and rate param-
eters. For example, the last value 93.9 in the first line means that the truncated
plug-in estimator gave the correct value

∑

∞

k=9
p0,k = 0 in 939 of the 1000 runs

with n = 1000, λ = 4. (The values in the table remain essentially unchanged if we
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replace the condition x = 0 by |x| < 0.001.) It appears that the truncated plug-in
procedure is slightly superior to the truncated likelihood variant for large k-values,
with the order reversed for k = 3. Again, both outperform the projected plug-in
estimator.

n = 500, λ = 2 n = 1000, λ = 4
k 2 3 5 7 8 ≥ 9 2 3 5 7 8 ≥ 9

TP 50.2 62.9 48.0 71.0 86.3 88.7 51.1 68.1 42.7 62.5 85.4 93.9
TL 50.2 75.4 47.7 64.5 81.9 76.3 51.1 77.2 35.2 52.0 76.0 74.9
PPI 50.2 47.4 47.8 52.0 48.1 0.0 51.1 43.6 33.3 43.8 44.7 0.0

Table 3: Support results with unif({1, 4, 6})

In the degenerate case, with data from an ordinary Poisson distribution, getting
the support right means that the base distribution is estimated with zero error.
Interestingly, the limiting probability that this occurs is equal to 1/2, irrespective
of the rate parameter:

P (p̂TP

n,1 = 1) = P (p̂TL

n,1 = 1)

= P (q̂n,1 ≥ λ̂nq̂n,0)

= P
(√

n(q̂n,1 − q0,1) − q̂n,0

√
n(λ̂n − λ0) − λ0

√
n(q̂n,0 − q0,0) ≥ 0

)

→ P
(

V1 + (1 − λ0)V0 ≥ 0
)

as n → ∞
= 1/2.

The support results may seem to be a bit disappointing, but they may be re-
garded as another instance of a phenomenon that is familiar in order-restricted
statistical inference. A canonical example is provided by a sample X1, . . . , Xn

from the normal distribution where we know that the true mean µ is nonnega-
tive. If we estimate µ by µ̂n := max{X̄n, 0}, X̄n := n−1

∑n
i=1

Xi, then we have
P (µ̂n = µ) = 1/2 at the boundary µ = 0 of the parameter space.

As a final comment we mention a drawback of the estimators considered so far:
They do not provide a sensible result if no zero values are observed. Ordinary
maximum likelihood estimators do not have this drawback but have some others
instead, as will be discussed in a separate paper.
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