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1 Introduction

Whereas Lévy processes and stochastic volatility models are by now standard
models for stock prices, more recently long memory processes like fractional
Brownian motion (FBM) have attracted attention by stochastic analysts and
mathematical finance researchers, cf. e.g. Hu and Oksendal (HuOks03) and
the references therein. For an introduction to FBM see Samorodnitsky and
Taqqu (ST94). Certain financial time series show long memory properties as
observed since the 1980s; see Granger (Gra80), Granger and Joyeux (GJ80),
and Mandelbrot (Man97). Such observation has led to an ongoing debate
among econometricians and statisticians. It is obvious that any determinis-
tic component like a small trend or business cycle can cause a fictitious long
memory effect in a time series and it has been shown recently that also change-
points in a time series can exhibit such a long memory effect (Mikosch and
Starica (MS03)). More recently, Brody, Syroka and Zervos (BrSyZe01) have
investigated weather derivatives written on temperature-based indices, whose
dynamics show long memory and can be modelled by fractional Ornstein-
Uhlenbeck processes.

From the point of view of stochastic analysis FBM has the distinct disadvan-
tage that it is not a semimartingale and allows for arbitrage; explicit arbitrage
strategies have been found for FBM by Rogers (Rog97) and for geometric
FBM by Cheridito (Ch03). But, as already mentioned there, the existence of
an arbitrage possibility is no inherent property of long memory processes. It
is rather a consequence of the local behaviour of FBM that is inconsistent
with the properties of a semimartingale, whereas long-range dependence is a
property of the long-run behaviour of a process.

In this paper we answer the natural question for a possible economic explana-
tion of logarithmic stock price processes to follow FBM. In the case of Brown-
ian motion, it is well-known that it appears as Donsker limit of a random walk
for relative price changes; this applies to Lévy processes in general. Stochastic
volatility models, on the other hand, have the obvious economic interpreta-
tion of a volatility changing in time depending on past prices, past volatilities,
and market conditions. As for FBM, a first idea is to find a discrete skeleton,
which may have an economic interpretation. The most natural one is obviously
a long memory linear model, more precisely an ARIMA(p, d, ¢) process with
autoregressive part of order p, moving average part of order ¢ and fractional
difference parameter d € (0, 0.5). Such models converge in a Donsker sense
to FBM, see Konstantopoulos and Sakhanenko (KS03) and Davydov (Da70).
A special example is given in Sottinen (Sot01), who shows convergence of a
special binary market model to FBM.

However, all this does not provide an economic reason, why to consider FBM



or geometric FBM as a price model. More promising in this context seems
to us an idea by Stute (Stu00) who suggested to enrich geometric Brownian
motion by a geometric shot noise part. The model he suggests is given by

P(t) =exp{B(t)+ S(t)}, t>0, (1.1)

where (B(1))¢>0 is a Brownian motion and (S(%))s>0 is a shot noise model,
which we define in a slight modification by

S(t) = Nz(? Xi(t—T) + _ZOO [X,(t = T) — X;(~T))], t>0. (1.2)

i=1 i=—1

Here X; = (Xi(?))ier, ¢ € Z \ {0}, are i.i.d. stochastic processes on R such
that X;(t) = 0 for ¢t < 0, independent of the two-sided homogeneous Poisson
process N with rate a > 0 and points ... < T_o < T_; < Ty < Ty < .... For
t = 0 we have S(0) = 0 as both sums on the right-hand side are 0.

The shot noise model S is interpreted as a model for information provided by
various sources which enters the price at random Poisson times. The arrival of
information acts like a shock to the market which may change the price quite
drastically and may also have some influence on the future price movements.
The reason for this is that a new piece of information that is relevant for
the stock price of a firm (e.g. a political decision or some rumor concerning
a merger) needs some time to spread among the market participants. That
means some traders have information earlier than others (think for example
of insider-trading). Therefore it needs some time until the news reaches its
maximum effect on the market. Later on, some effects may fade away again,
but it may as well happen that certain information has a long lasting influence
on the price. In this way long memory is introduced into the economic model.

We obtain convergence to FBM. Moreover, we show that the model (1.2) itself
can be chosen arbitrage-free (by the right choice of X; near 0), only its limit
model FBM allows for arbitrage. Recently, another economic foundation for
models based on FBM has been given by Bayraktar, Horst and Sircar (BHS03).

In that paper investor inertia leads to longe range dependence.

Shot noise processes were used in various branches of stochastic modelling; ref-
erences can be found in Klippelberg and Mikosch (KM95) and Klippelberg,
Mikosch and Scharf (KMS03). Whereas in those papers limits for non-stationary

shot noise models of the form S(t) = Zf\;(f) Xi(t = T;), t > 0, were investi-
gated with a view towards applications in insurance, in this paper we work
with a version of the process possessing stationary increments, which requires

the introduction of the second sum in (1.2).



Our paper is organized as follows. In section 2 we investigate some proper-
ties of the restricted process S ’[O,t] which are important for applications in
mathematical finance. In particular, we show how to construct an equivalent
martingale measure. Hence, our model does not allow for arbitrage. In section
3 we show weak convergence of the rescaled process to a FBM when the time
horizon tends to infinity.

2 Shot noise processes and long-range dependence

It is straightforward to see that S given by (1.2) has stationary increments.
Throughout the paper, we restrict ourselves to the special model of multiplica-

tive shots: for all ¢ € Z \ {0},

Xi(u) =g(w)Y:, u>0, (2.1)

where g : Ry — R is a continuously differentiable function with

g'(u)=0 (u_l/z_a) ,  u— 00, (2.2)
for some & > 0. The Y; are i.i.d. innovations with EY; = 0 and EY? € (0, 00).

Notice that the shots entering S are in general not absolutely summable.
However, the multiplicative process with the above restrictions on g and the
Y; exists and has nice sample path properties.

Proposition 2.1 The process S as defined in (1.2) with (2.1) possesses a
cadlag version and has finite variation. Therefore, it is a semimartingale with
respect to its natural filtration.

Proof. For fixed ¢ > 0 the existence of S(¢) can be derived from Theorem 1
in Westcott (Wes76).

Note now that the first process (Zf\;(lt) Yig(t — T;))eso of the right-hand side of
(1.2) has at most finitely many jumps in any compact time interval. Hence it
is cadlag and it has, as g is continuously differentiable, finite variation. Next

consider the second sum of (1.2)

— 00

S(t):= 3 Yilgt = T)) —g(=T)], ¢>0.

i=—1

For u,h > 0 we have



P [(§(u YR - §(u)>2]

= BYPE | Y lo(u+ b —To) — g(u— T
i=—1
< EY}W'E sup  [g/(s)]” (2.3)
i=—1 s€[u=T; u+h=T;]

We obtain for u, h,sg > 0 (recall that a > 0 is the rate of the Poisson process
N),

— 00

)

sup [9'(8)]2}

i=—1 s€[u=T; ,u+h=T;]

= > FE l (|T| < soV i |) sup [g’(s)]Q]
20 s€lu—T; ut+h—T;]

i=—1
e plr(mzavll) e o]
=1 2a s€lu—T; ut+h—T;]
=T+1r.

We estimate

I < sup ZP(|T|<SO\/||)
0<s<co P 2
The infinite sum on the right-hand side is finite, which follows from a general
result for random walks with drift (see e.g. Theorem 3.3 in Chapter 3 of
Gut (Gut88)) applied to the random walk (|T3] — |¢|/(2¢))i=—1,—2,... (which has
a positive drift and its increments are bounded from below). Hence, I < oo
for all sp € R
To estimate II recall from (2.2) that we have for sy large enough |¢'(s)| <
s™Y2=¢/2 for all s > so. Hence

<Y E

t=—1

(|T|>30v") ap [g'<s>12] > (%)@o

5250\/% i=—1

giving [ + Il =: A < oo. Thus, Kolmogorov’s continuity theorem (see e.g.
Protter (Pro90), Ch. IV, Theorem 53, p. 171) ensures the existence of a con-
tinuous version of § (or a cadlag version of 5).

To calculate the variation of S we approximate it by the variation of the
process S on the dual grid {i2="t | i = 0,...,2"}. Using Jensen’s inequality
and again (2.3) with the subsequent arguments we obtain for ¢t > 0



E rni [S((k +1)27m) - §(k2‘”t)”

2"—1

< S \JE [(5((k +1)2-n1) — §(k2—nt))2]

<ty EY?A < 0. (2.4)

Due to monotone convergence, we get the assertion by letting n — oo. O

From now on we work with the completed stochastic basis (€2, Fy, (F)o<s<t, P),
t > 0, where

Fo=0((V)iero, (Tien, (S(1))ogucs) - (2.5)

Define f as caglad modification of the process

U Z Yig'(u —T;).
i=N(u)

Similar to (2.3), by Kolmogorov’s continuity theorem, there exists a continuous

version of (Z_OO Yig' (u — TZ)) o’ which we call f.. In addition, we define

t=—1

Z(1):=g(0) 3 Vi, 120 (2.6)

Lemma 2.2 With the quantities as defined above, S salisfies the stochastic
differential equation (SDE)

dS(t) = dZ(t) + f(t)dt, >0 (2.7)

Proof. Step 1: We show first that we can interchange integration and
summation, i.e. that for all {,h > 0,

oo t+h

S Viglt+h—T) — gt —T))] = / folw)du P-as.. (2.8)

1=—1 t

Recall that the addends entering the sums in (2.8) need not be absolutely
summable. On the grid points {t + hj2™" | n € N, 7 =1,...,2"}, however,
we have pointwise convergence by the martingale convergence theorem:



Tim Z_;l Yid (L + hj2™™ = T)) = [.(t + hj2™) P-as.. (2.9)

Next we estimate the approximation error G(m,n) := 37", Yz-az(-n), where

-
ol i=h27" Y g (b4 hj2T = T) — {g(t+ h —T0) — g(t — Th)}.

j=1

Foralli € {—1,...,—m}and n € N, |az(~n)| < 2R SUp oty t4h-T)) g'(uv)| =: ai,
and £ [Z;’fl aﬂ < 00, since the right-hand side of (2.3) is finite. On the other
hand, as ¢’ is continuous, we have by Riemann integration for all 7 € Z_ that

limysee al” = 0 P-as.. This yields limaseo B [$7% (al)?] = 0. Therefore,

i=—1
we obtain

(i) for fixed n € N, G(m,n) — G(co,n) as m — oo, both P-a.s. and in
L*(P)

(the former is by the martingale convergence theorem and the latter by the
Cauchy criterion). Since

—00

Z(aﬁ")Y] —0, n-— o0,

i=—1

E[G(co0,n)?] = EYYE

we have G/(oco,n) £ 0asn — oo and
(ii) P ({Vd >0, G(oo,n) < 4§ infinitely often}) = 1.

Now, we are ready to proof Equation (2.8).

Take w € € such that (i) and (ii) hold (due to completeness of F; we can
exclude all countably many null sets on which (i) or (ii) does not hold). Let
¢ > 0. As f. is continuous the integral f;"’h Je(u) du can be approximated (w-
wise) by the Riemann sums h27" f; Je(t+ hj27"), n € N, i.e. there exists
an n; such that for n > n,

h2‘”§:fc(t—|—hj2‘”)—/fc(u)du (2.10)

J=1 1

|
Wl ™

Furthermore, since (i) holds, we can find ny > ny and m; € N such that for
all m > m,

|G(m,ny)| < (2.11)

W] ™



For this ny we use (2.9), i.e. convergence on the grid {t 4+ hj27" | j =
1,...,2"} and we get for m > my

272 272

Z Yih2™™ Y g/ (t+ hj27™ = T;) — h27™ Y fu(t + hj27™)

i=—1 7=1 7=1

212 _m 272
=[h27 Y N Vg (t+ hj27™ = T;) — h27™ > fu(t + hj27™)
j=1i=-1 7=1
9
< -, 2.12
<t 212
Putting (2.10), (2.11), and (2.12) together, we get for m > my V my
. t+h
S Vilg(t+h—T) =gt =T = [ fluw)du| <e.
1==1 t
and therefore (2.8) holds.
Step 2:  Using (2.8) Equation (2.7) follows from the calculation:
S(t+h)—5(t)
N (t+h) —00
= X Veli+h=T)+ 3 Vila(t+h=T) =g~ T
N(t)+1 i=N(t)
N (t+h) N(t+h)
- 9(0) Z Y+ Yilg(t + h —Ti) — g(0)]
=N(t)+1 i=N(t)+1
+ Y Vilgl+h—T)—g(t—T)
i=N(t)
N(t+h) N(t+h) t+h t+h
=g(0) > Yi+ Vi [qw-Tydut [ 3 Vig(u—T)du
()41 =N+ S =N (1)
(t+h) t+h  N(u) t+h
—o0) > Vit [ Y Vigw-Todut [ 3 Viflu-T)du
(t)+1 t 2:N(t)+1 t ’t N )
t+h



2.1 Girsanov Theorem

Theorem 2.3 Lett > 0. If g(0) # 0 there exists a probability measure Q ~ P
such that S ‘[O,t] s a local Q)-martingale.

To prove this theorem we need the following result.

Lemma 2.4 Let (Tn>neNo be a sequence of random variables with Ty = 0
and i.i.d. exponential increments. Let furthermore (Yy,)nen, be an independent
sequence of non-negalive random variables, which are i.1.d. with EY; < oo,

and P(Yy > 0) = 1. Define now recursively

. - T — To
T() ::0, Tn = n_l—l_Tﬂil’ TZEN
Yico Yi

Then, the sequence (Tn>neNo is non-explosive, i.e. T, /oo P-a.s. asn — 0o.

Proof. W.l.o.g. we assume that '7A12-+1 - ﬂ, 1 € Ny, are standard exponential.
Define the filtration

Fi=o (T, j=0,...,i, (V)jens, ), i€No.

As an immediate consequence of the strong law of large numbers, we have

V;<Cn VneN P-as.,
=0

k3

where (' is an Fy-measurable real-valued random variable. Hence we obtain

~ ~ n2 -~ ~ ~ 1
P (TH_] ~Ti> oo | E) > P (Tgr = Ti > n2) = 5 Pas. (213
Furthermore,
T —nz_:l(f T)>n_lf Ty — Ty > m2) In2 (2.14)
n — P 41 1) P 1+1 2 Cl C’L ’ .
and
P im_?:oo|ﬁ0 =1 P-as. (2.15)
=0 CZ



Putting (2.13), (2.14), and (2.15) together we obtain

P Z(ﬁﬂ—ﬂ):oﬂ%)
1=0

~ ln2) In2

> T —To> =2 22 — o | B )

If the indicator variables were (conditionally on fo) i.i.d. and not vanishing,
then by the Three-series theorem (cf. e.g. Feller (Fel71), Theorem 1X.9.3), the
right-hand probability would be equal to 1 P-a.s.. Using (2.13) and some con-
ditioning argument, this also holds for the dependent indicator variables; for
details see (Kueh02), Lemmas A.1.1 and A.1.2. Finally, by Fubini’s theorem,
T, /' oo as n — oo P-a.s. O

Proof of Theorem 2.3. Sitep 1: Let ¢ > 0. We construct a possible ().
Under @, the process Z as defined in (2.6) should have drift rate —f. Then
by (2.7) S becomes a local martingale. This can be achieved by applying
Girsanov’s theorem for point processes, cf. Brémaud (Bre81), Theorem T10,
Ch. VIII. We interpret the double sequence (T7,Y;)ien as a marked point
process with points 7; having marks Y;. Under P its intensity is
Ap(t,dz) = aP(Y] € dz). Translated to our notation Theorem T10 of Ch. VIII
in (Bre81) gives the following recipe.

Choose a function ¢ : [0,¢] x & x R — (0, 00), which is P-measurable (75 =
P @ B(R) where P is the F-predictable o-algebra on [0,¢] x @ and B(R) is
the Borel o-algebra on R) and satisfies

¢
//qb(a,i)aP(Yl €dr)ds < oo P-as..
0 R

Then define for s € [0, ¢]
L, :=

exp {/S/log O(u, z)p(du, dz) + /s/(l — ¢(u,z))aP(Y; € dzx) du} (2.16)

0

or, equivalently,

dL, = L,- /(¢(5,$) ~ 1) {p(ds,dx) — aP(Y; € dx)ds}, Lo = 1,

R

10



where p((0,5] x A) 1= Yoer<s [(Yi € A) for all s > 0 and A € B(R). If
EL; =1, then there exists a () ~ P defined by

aQ _

=1
dP b

such that under () the marked point process (T;,Y;)ien has intensity

Ag(s,dz) = ¢(s,x)aP(Y; €dz), s>0, z€R. (2.17)

To make S a local martingale we need that

g(O)/;c)\Q(s,d;c) =—f(s), s>0. (2.18)

R

This can be achieved by setting (recall £Y; = 0)

|f(s)II({f(s) <0})
b ag(0)EY;* o=t
$(s,2) = =1
1+f(8)1({f(8)20}) . r<0.
ag(0)EY,”

3

Note that ¢ is P-measurable and strictly positive. Furthermore, (Ls)ogsgt isa
local P-martingale and, due to positivity, a P-supermartingale, i.e. KL, < 1.
To verify EL; = 1 we make a localization: as f is caglad we can define a
sequence 7, = inf{s > 0 | |f(s+)] > n}, n € N, of stopping times with
|f™ < n, where f7(-) = f(7, A-). As in the proof of Proposition 2.1 we
obtain P(supcpq|f(s)| < o0) =1, so that P(7, < 1) = 0 as n — co. Define
for s € [0,¢] and z € R

¢"(s,x) = (s, 2)[({s <1 })+ I({s > 71.}). (2.20)

For the corresponding density processes (L7 )sepo,q and dQ"/dP = L} we have
indeed FL? =1 (cf. Brémaud (Bre81), Ch. VIII, Theorem T11) and therefore

1= E(L})=E(LJI({r, > 1})) + E(LFI({r, < 1}))
=E(LJI({r > 1})) + Q" (7 < 1).

Step 2: It remains to show that Q™(7, <) = 0 as n — oco.

Note that by definition of ¢ in (2.19), if f(s) < 0 the rate of positive jumps
increases, whereas, if f(s) > 0 the rate of the negative jumps increases. To
describe the change of measure explicitly, we construct (possibly on a new

11



probability space, which is again called (Q,F, P)) the sequence (Y)ien in
(2.1) as follows: let (UY)ien, (U2)ien, and (I(A;))ien be three independent

k2 k2

i.i.d. sequences. U}, U? are uniformly distributed on (0,1) and the events A;

3

have probability p := P(AZ-) = Fy(0). Define

Vi i= I(A)FE (pUD) + 12\ A)FE (p 4 (1 = p)U), (2.21)

where F¥ (u) :=inf{z € R | Fy(z)> u}, u € (0,1), is the (right continuous)
generalized inverse of Fy. This construction guarantees that under the new
measure Q", given by (2.16) and (2.20), the random variables U}, UZ?, i €
N remain independent and uniformly distributed on (0,1). The density L}
only changes the distribution of 7(A;). Moreover, since pU! < p, we have
F¥ (pU}!) <0, hence Y; <0 on A; and, similarly, ¥; > 0 on Q \ A;. Based on

the construction of the Y; we define for later use

Yii= (=K (pU) VB (p+ (1= p)U) > Y], neN.

It is important to note that ¥; does not depend on A;.

Denote
C'y = sup Z Yig'(s — TZ-) , €y i= sup |g'(s)|, C3 1= [g(O)(EY{" A EYI_)]_1
SE[Ovt] 1=—1 SE[Ovt]

Define the increasing sequence (7T});en recursively by

. T N - Tor — T,
Thpom— 20 T =T s n €N, (2.22)
o+ c3Ch a+ces(Cr+ ey, z)

where the increments of (ﬁ')ieN are (under P) i.i.d. standard exponential ran-
dom variables. By Lemma 2.4 the point process (7});en is non-explosive under

P. Therefore

Sf(s) =C1+ ¢ Z ﬁgf(t)<m Vs € [0,t] P —a.s..
{ieN : ﬁ<8}

Consequently, for 7, :=inf{s > 0 | f(s) >n},n €N, wehave P(7, <) =0
as n — oo. By construction (7});ey also does not depend on A;. We shall show
that for each m € N, s € [0, ]

k3

<Q" (T >s | UI,U2 i=1,...,mF%)) Pas, (2.23)

P(Tn>s | ULUE i=1,...,m,F))

3

12



where Fj as defined in (2.5) is the information available at time 0.

We prove (2.23) by induction on m and start with the argument for m = 1.
By definition of Ty and the fact that 7} is standard exponential and indepen-
dent of U}, U, Fy we have for s € [0, ],

P(Tl > S | U117U127F0) ( (06—1-6301)8 | Ullezv}—O)
=exp(—(a+ ¢;C1)s) P-as.. (2.24)

Consider a new measure Q™ which is constructed similar to Q”, but in (2.19) f
is replaced by f.; i.e., only jumps from the negative time axes enter. The rate
/\én(u) of N under Q" is then Fy-measurable; i.e., N is under Q™ a doubly
stochastic Poisson process (a Poisson process with random rate). On the other
hand the (conditional) probability of the event {77 > s} is invariant under Q"
and Q" as the rates of N coincide on [0,7}] (no jump has yet occurred after
0). Using these two facts we obtain

QY Ty >s | ULULF)=Q™Ty>s | UL ULF)

=exp (—/)\én(u)du) . (2.25)

0

Notice that the event {7} > s} is Q"-independent of U}, U2. By definition of
C1, we have |f.(u)| < Cy for u € [0,1], and thus by (2.17)

/\én(u) <a+eCy, 0<u<t,
which, inserted in (2.25), gives the estimate (2.23).

Now consider m > 1. Define

Foni=a(Tyi=1,....om—1, ULU i=1,...,m,Fo).

Similar to (2.24) we have for all s € [0, 1]

P(Tp>s | Tyyi=1,....om—1, UL U i=1,....,m,F)
m—1

— exp (—(a +ea(Cr+ e S ViN((s — Tmt) V 0)) : (2.26)

=1

Consider now a measure Q™™, again constructed like @, but in (2.19) f is
replaced by

f(u) = > Yig'(u = To), wel0,1],

{i=m—-1,m—-2,..,1,—-1,... : T;<u}

13



i.e., only the jumps from the negative time axes and the first m—1 jumps from
the positive time axes enter. The point process (N(Tpn_1 + u) —m + 1)u>o is
under Q™" a doubly stochastic Poisson process with rate ()\@n,m (Tt -|—u))u20

which is measurable with respect to F,,. As the rates of Q™ and Q™™ coincide
on [0,7,,] we obtain for s € [0, ]

Q" (T >s | Fu)=Q"™(T, >s| Fn)

(S Tm 1)\/0
=exp ( / Aén,nz(Tm—l + u)du) . (2.27)

0

On [0, (t = Thue1) V0] we have | [ (Truoq + )| < C1 4 ¢2 7271 Y| and thus by
(2.17)

m—1 m—1
|/\§n,m(Tm—1 + )| <a+e(Cr+ e Z Vi) <a+e(Ch + e Z Yi),

=1 =1

which, inserted in (2.27), implies the estimate

Q" (T >s | Fu)

Zexp( (a+e3(Chr + ¢y ZY/Z )\/0)) (2.28)
As
Q”(Tm>s)| UZ1 U2 ) ..,m,}"o)
=/Q”<Tm>s|U}UE,'— 1, Fo; Trey € du),
0

(2.23) follows from (2.26) and (2.28) by induction. Confer also Lemma A.1.1
in Kithn (Kueh02).

As T, is P-independent of U; for i > m and, because of the special form of
¢ in (2.19) and the construction of the Y; in (2.21),the random variable T, is
@"-independent of U; for all ¢ > m. Therefore (2.23) implies

P(Tn>t | ULUL i €NF)) <Q" (T >t | ULUE i €N Fy)),

P-a.s.. As the joint distribution of (U}, U?);en and the random variables gen-

k2
erating Fy does not change under the measure transformation from P to Q"
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and, moreover, Y; > |Yi| we obtain that Q"(supyc < |fs| > n) < P(ﬁ > n)
and, therefore, Q" (7, < t) < P(7, <) — 0. O

Remark 2.5 A heuristic explanation, why S is arbitrage-free, goes as follows.
Although an investor could profit by the stochastic drift f(s) ds, there remains
the risk d7; that consists of random jumps. Therefore, it cannot be controlled
as effectively as for FBM, which has continuous sample paths. In contrast, the
fractional binary market model in Sottinen (Sot01) obviously allows for arbi-
trage as — given the history of the process — it can happen that the discounted
stock price increases with probability one. The same phenomena occurs in our

model, when setting ¢(0) = 0.

Remark 2.6 () is obviously not unique. The unities in (2.19) can be replaced
by any other element of R4 \ {0}.

Coming back to model (1.2) we add to S an independent Brownian motion o B,
o > 0. To transfer an additive to a geometric model, there are two common
approaches in mathematical finance: the Doléans-Dade-exponential and the
ordinary exponential of the process 5. In the first case the price process of the

asset satisfies the SDE

dP(t) = P(t=)(dS(t) + cdB(t)), t>0,  P(0)=py>0.  (2.29)
(S(s) + 0B(s))sefo is a local @-martingale and hence (P(s))sefo,, cf. e.g.
Protter (Pro90) Ch. IIT, Theorem 17. If AS > —1 then (P(s))seo,q is positive.

In the second case, i.e. setting

N 2
P(t) = poexp {S(t) +oB(t) — %t} , >0, (2.30)
by It6’s formula, the price process satisfies the SDE

dP(t) = P(1—) (dS(1) + 2™ —1 — AS(1) + 0 dB(1)), 1 >0,

and, by (2.7),

dP(t) = P(1—) (e2”® — 1 4 df (1) + 0 dB(1)), 1> 0.

Thus, condition (2.18) has to be replaced by

/ (@O — 1) Ag(s,da) = —f(s), s> 0. (2.31)

15



Assume that EeldOVl < 0o, Then, (2.31) can be achieved by setting

]  f(5) <0, g(0)r <0
1 — Fe-loOMm]™ f(s) '

Ee[g(O)Y1]+ _1 - o (Ee[g(o)y1]+ _ ]) : f(‘?) < 0, (](O)T >0
(s, z) = 7(s)

Ty (1 = EeBO7T) f(s) >0, g(0)z <0
1 — Fe~loOY]™
Ee[g(oﬁg"lrr —1 : f(s) >0, g(0)z >0

With the same arguments as in the proof of Theorem 2.3 one verifies that by
plugging ¢ into (2.16) one obtains a measure ) ~ P, under which P becomes
a local martingale.

3 Asymptotic theory

From now on we assume that ¢ is normalized regularly varying in oo with
index v € (—1/2, 1/2), i.e. ¢ : R — Ry is continuously differentiable and
lim, e ug'(u)/g(u) = v, cf. Bingham, Goldie, and Teugels (BGT8T7). This
implies that ¢’ is regularly varying with index v — 1 and thus (2.2) is satisfied
for any ¢ € (0,1/2 — ).

Example 3.1 Examples for such normalized regularly varying functions are
gu)=(u+1)", u>0,and
glu)=(u+1)"In(u+2)or g(u)=(u+1)"/In(u+2), u > 0.

We introduce for ¢t > 0 the rescaled process

where 0?(1) = Var (S(¢)) and show weak convergence to a FBM.

Theorem 3.2 Let BY be a FBM with Hurst parameter H = v + 1/2 for
v € (0, 1/2). Then

S(t) L BT 1 oo,

where the convergence holds in D[0,00) equipped with the metric of uniform
convergence on compacla.
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Remark 3.3 If v € (—1/2, 0] we still have convergence of the finite-dimensional
distributions. This follows from Steps 1-2 in the proof of Theorem 3.2, which
go through for all v € (—=1/2, 1/2).

On the other hand, for v < 0, by taking innovations with E|Y;|**¢ = oo for e >

0 arbitrarily small, it is easy to construct an example with max,ejo17|S=(¢)| LN

, t — oo. Therefore (S_(t))teR+\{0} need not be tight for such ~.

In the case v < —1/2 the shots g(t —T};)Y; regress very fast when time is going

oo

on. Therefore the effect of a single shot on the accumulated process can be
significant. The Lindeberg condition is violated and, in general, there is no
Gaussian limit.

Proof of Theorem 3.2. The limit process has continuous sample paths.
Therefore, by Theorem 6.6 in Billingsley (Bil99) we can equivalently consider
weak convergence with respect to the Skorohod d? -metric on D[0, o). For a
definition of d?, see e.g. (16.4) in Billingsley (Bil99). By Billingsley (Bil99),
Theorem 16.7 and Theorem 13.1, we have to show weak convergence of the
finite-dimensional distributions and tightness of (S_(t)|[07M]) - for each M €

te
R,.

Step 1: By Campbell’s theorem (cf. Daley and Vere-Jones (DVJ88)) we have
for 0 <s<t

cww@%ﬂo)za/Exm¢a@+t_gm

+ a/E (Xi(s+u)— Xq(u)] [Xa(t+ u) — Xi(u)] du. (3.1)

For the model of multiplicative shots we obtain and 0 < x < y we obtain

We show that the right-hand side converges as t — oo to
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xr o0

/u”’(u—l—y—x)”du—l—/[(;v—l—u)”—u'y] [(y 4+ u)Y —u"] du

0 0

o0 9

n / (14 u)" — w2 du

0

2y +1

which is the covariance function of BY*'/2. For fixed u € R4\ {0} convergence
is obvious and by Potter bounds the integrals on compacta converge. But,
for the integrals on (0,00) we need integrable dominating functions. Let ¢ €
(0,1/2 —v). As ¢ is regularly varying with index v — 1, the function h(s) :=
g'(s)s' =77, s > 0, is regularly varying with index —e. Therefore, h(At)/h(t)
converges to A7 uniformly in XA € [1,00) as t — oo, cf. Bingham, Goldie, and
Teugels (BGT8T7), Theorem 1.5.2. This implies that for all A € [1,00) and ¢

large enough

gl()‘t) — )\—1+'y+5 hh(();t> S )\—H—fy-l-s (1 + )\—s) S 2)\—1+'y+5.

)

Therefore, we have for some ¢ € (u,z + u)

tg’(ft)‘ _ ‘xtg’(t)g’(é“t)

< 2zfyuTtH
q(t) g(t) ¢'(1) ‘

forall u > 1,1 > tg. As =1+ v+ ¢ < —1/2 we have the required integrable

dominating function. Hence we have shown for 0 < z <y that

lim Cov (S xtI)L

t—o00 ()'2(

,)S(yt)) _ COV(B’V-H/Q(JJ), B’V-H/Q(y)). (32>
Step 2: Ford € Nlet \; e R,i=1,...,d,0 <z, < ... < 24 < o0, and
consider

By (3.2) the variance of Z(t) converges to those of %4, A\;B"*'/2(z;). Now we
verify a condition (similar to the Lindeberg condition) for Z() to ensure that
it converges to a normal limit. Z(¢) has zero mean and, if not all A; vanish,
Var(Z(t)) — ¢ as t — oo for some ¢ > 0. Hence by Theorem 3 in Lane (Lan84)
we have to show that for every ¢ > 0

18



le&g it —u)

i=1

g

>y> du] dy — 0

as t — oo. It 1s sufficient to verify that for every A, ¢ > 0 and t = o

o0

o) [y [ POV (glut1) = g(w)| > y) dudy — 0 (3.3)

eo(t) O

and

o) [y [ POMig)] > y) dudy =0, (3.4

eo(t) O

Ad (3.3): we have

dﬂ?/y/PAm<w+w g(w)] > y) dudy

o0
_ 2/
0

so’t

\8

P(AYi(g(u+1t) = g(u))] > y) dydu

00
2

_ 2/E (Y (g + ) — g(u))| — ea(t))*)’ du

g((u+1)t) = g(ut)
g(t)

Since

o0

/E(nq«“+2% (WU i

:vaj(mw+2%—wmvﬂm<m,

we have an integrable function that dominates the integrand in the last line
of (3.5). From (3.1) we see that 0'2(t) = cg(t)Qt (1 + 0(1)) as t — oo for some
¢ > 0. Therefore, dominated convergence implies that the last line of (3.5)

0

0
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converges to zero as t — oo. (3.4) can be proven in a similar way. Thus

Z(1) 2 S NBYY2(2)) as t — oo, and the Cramér-Wold device yields the
convergence of the finite-dimensional distributions.

Step 3:  Finally, we check tightness.
The family of processes ((a(t)™'g(0) Zf\;(lt)Yz) ll0,m])¢>0 is obviously tight.
Thus we can replace g by § = g—g¢(0). Since the increments of S are stationary
we have for 0 <z <y and all t >0

E(S,(t) — Sa(1))* = 02((Jy2—(—t)$)t)

Due to (3.2) o? is regularly varying with index 1 + 2. Therefore, h(s) :=
o?(s)/s'*7 is regularly varying with index v > 0, and % is bounded near zero,
which can be seen from the following calculation:

EYZ {/ w) du + / [g(s 4+ u) — (u)]2 du}

< EYY {/ (/ v) du+82070${1215 [§'(6)1° dU}

SEYE{%‘? sup [§'(w)]* + 57 / sup [§'(¢)]” du}-

O<u<oo 0 E>u
Therefore, h((y — z)t)/h(t) converges to (y — z)” for t — oo wuniformly in

x < y on compact subsets of R4, cf. Bingham, Goldie, and Teugels (BGTS87),
Theorem 1.5.2. This implies that for each M > 0 and ¢ >

H(Er%—éf)t)ﬂwu)(y—x)“t 0<z<y< M.

This (together with Cauchy-Schwarz’s inequality) ensures the tightness con-
dition (13.14) in Billingsley (Bil99). O

4 Conclusion

We have constructed Poisson shot noise processes whose finite-dimensional dis-
tributions are close to those of FBM, but which lead to arbitrage-free models
for stock prices. By way of contrast, if the shots (X;);ez\ (03 have no jumps at
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zero and there is no additional Brownian noise o B in (2.29) and (2.30), respec-
tively, our model obviously allows for arbitrage, even with so-called “simple”
trading strategies.

These results can also be considered as supplements to recent work of
Cheridito (Ch00),(Ch01). He has excluded arbitrage from FBM by changing
slightly the convolution kernel in the Mandelbrot-Van Ness representation of
FBM or, alternatively, he considered, for H € (3/4, 1], the process BH 4 :B'/?
(¢ > 0 arbitrary small) instead of just B. This leads to complete models
whereas our models are incomplete.
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