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1 Introduction 

Proteins are one of the most important classes of biological macromolecules and involved 

in virtually all cellular processes. Their central role is reflected in the molecular basis of 

life, the cellular machinery that translates genetic information (DNA) into proteins. 

Nucleotide sequences exist for every protein, which contain the required information to 

synthesize the protein out of amino acids. Despite the modest number of amino acids 

(20), protein diversity is overwhelming. This variety arises from the multitude of 

possible combinations. A polypeptide with 60 amino acids offers 2060 (1.153∙1078) different 

theoretical species, all unique in their sequence (Mountain et al., 1999). 

The function of a protein is determined by its three-dimensional structure, built by 

folding of the linear polypeptide sequence into a compact structure. Folding is energy 

driven and the native, biologically active structure is generally considered the most 

stable configuration under physiological conditions (Dill and Chan, 1997). Although the 

structure of the folded protein is encoded in its amino acid sequence (Anfinsen, 1972), 

protein folding is a complex problem due to the immense conformational space 

(Levinthal, 1969). Despite intense research, a prediction from the sequence is not 

feasible today and experimental studies are necessary to study structure and function.  

The structural and functional diversity and the vital importance make proteins a very 

interesting target for science and industry. Modern molecular biology methods allow an 

easy and comprehensive analysis of genes and the corresponding proteins. Proteins of 

interest are usually produced in host organisms like Escherichia coli, which are easy to 

handle and feature well-established genetic tools. Besides the expression of genes from 

other organisms, which are simply transferred to the host organism, it is also possible to 

modify the nucleotide sequence and generate new variants. Thus, the enormous set of 

natural proteins is extended by a novel set of designed molecules with customized 

functionality in features like activity, stability or binding (protein engineering). Two 

classes of proteins are especially focused on for industrial applications: enzymes as 

natural catalysts (white biotechnology) and proteins for therapeutic applications (red 

biotechnology). For both, target proteins have to be produced pure, cost-efficiently and on 

a large scale (Mountain et al., 1999; Voet and Voet, 2004).  
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2 Thesis Motivation and Objectives 

2.1 Motivation 

Protein expression in Escherichia coli (E. coli) is a standard low cost and high yield 

production process for recombinant proteins (Graumann and Premstaller, 2006). 

However, in vivo solubility is often limited. Approximately 40 % of the proteins 

overexpressed in E. coli are insoluble (Mayer and Buchner, 2004) and require 

solubilization and subsequent refolding in order to obtain the biologically active native 

structure. This refolding step represents a bottleneck in process development, as optimal 

refolding conditions have to be determined in large screening experiments (Clark, 2001; 

Middelberg, 2002).  

Standard refolding screens described in the literature are primarily based on statistical 

methods (fractional factorial designs) and limited in some core characteristics. Either a 

limited number of buffer components that affect refolding are analyzed (Boyle et al., 

2009) or their interdependence is not sufficiently considered (Cowan et al., 2008; Willis et 

al., 2005). Another shortcoming of those studies is often the lack of further optimization 

of suitable refolding conditions (Armstrong et al., 1999; Hofmann et al., 1995). In 

addition, previous studies either do not include an analysis of the variable effects 

(Hofmann et al., 1995; Lin et al., 2006) or perform only a regression analysis of the most 

important variables (Armstrong et al., 1999; Tobbell et al., 2002; Willis et al., 2005). A 

comprehensive model which connects the refolding success and the composition of the 

refolding buffer is missing. 

Stochastic search methods like genetic algorithms (GA) offer the potential to combine 

screening and optimization in one step. In contrast to statistic screening methods, like 

the fractional factorial screens, they are not based on a simplified process model. GAs 

are able to identify optimal solutions with limited experimental effort in complex search 

spaces. The major advantage of stochastic search strategies lies in the multi-objective 

optimization of complex search spaces (Bianchi et al., 2008). Protein refolding, with its 

variety of interacting variables (protein, pH, ionic strength, additives, redox agents), is 

presumed to be such a complicated problem.  
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2.2 Objectives 

This thesis investigated the application of a stochastic search method on the problem of 

protein refolding. The aim was to provide a robust, standardized, one-step optimization 

strategy which allows an experimenter to optimize the refolding conditions in a series of 

parallel experiments. Acquired data should be used to model the coherence of refolding 

conditions and refolding yields and deduce trends. 

The individual objectives of this thesis were to:  

 Establish a standard experimental design approach for protein refolding based on 

a genetic algorithm (GA). 

 Optimize the refolding conditions of a variety of well-characterized model proteins 

partially in cooperation with the project partner (Department Chemie, Center for 

Integrated Protein Science, Technische Universität München). 

 Evaluate the performance of this approach and compare it to standard statistical 

design of experiments (DOE) strategies. 

 Analyze the experimental data and build black box models that model refolding 

success as a function of the composition of the refolding buffer. 
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3 Theoretical Background 

3.1 Production of recombinant proteins 

3.1.1 Protein expression systems 

Today, protein production is almost exclusively performed recombinantly, which means 

that the protein is heterologously expressed in a host organism. Because of the immense 

structural and functional diversity of proteins, the expression system has to adapted to 

the protein under study. Standard expression systems include bacteria, yeast, 

filamentous fungi and mammalian cell cultures. In the following sections, applications, 

advantages and disadvantages are outlined briefly. 

Escherichia coli (E. coli) is the standard microorganism for the production of 

recombinant proteins. Efficient tools for genetic manipulation, high growth rates, high 

content of recombinant protein (up to 50 % of the dry cell mass) and cheap and easy 

cultivation in defined media make E. coli the primary choice for host organisms. 

Applications range from high-throughput screening to large-scale production processes 

(Andersen and Krummen, 2002; Graumann and Premstaller, 2006; Schmidt, 2004). 

However, E. coli lacks several eukaryotic properties with severe consequences for the 

expression of eukaryotic and especially mammalian proteins. Posttranslational 

modifications like glycosylation are challenging and recombinant proteins expressed in 

high titers are often prone to aggregation. Consequently, the expression of soluble 

protein is limited and protein aggregates, so called inclusion bodies (IBs), are often 

observed inside the cells (Choe et al., 2006). This solubility problem poses a major 

challenge and will be discussed in detail in section 3.1.2. 

Yeast expression systems are usually applied if the protein cannot be produced in soluble 

form in E. coli or posttranslational modifications are required. Both, Pichia pastoris and 

Saccharomyces cerevisiae are established host organisms that enable moderate protein 

titers (up to 15 g L−1) with a relatively straightforward downstream processing (Cregg et 

al., 2000; Gerngross, 2004; Graumann and Premstaller, 2006). Filamentous fungi 

expression systems, for example Aspergillus niger are largely comparable to yeasts. They 

offer an efficient secretion system and moderate process costs (slightly higher than 

E. coli). Consequently, extracellular proteins with disulfide bonds and other proteins, 

which are inadequate for expression in E. coli, are often produced with either yeast or 
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fungi. The latter are mainly used for industrial enzymes, for which costs are critical, and 

not for therapeutic proteins (Gerngross, 2004).  

Mammalian cell cultures, specifically Chinese Hamster Ovary (CHO) cells, are almost 

exclusively used for therapeutic proteins due to the higher costs. Today, about 70 % of all 

therapeutic proteins on the market are produced in CHO cells, while most of the rest is 

expressed in E. coli (Hacker et al., 2009; De Jesus and Wurm, 2011). As mammalian cell 

cultures are closer related to the human than the previously discussed expression 

systems, post-translational modifications are in general a minor problem. Recent 

advances in the field significantly improved both productivity (50 pg cell−1 day−1 

to 60 pg cell−1 day−1) and harvest concentrations (1 g L−1 to 5 g L−1) for CHO processes 

(Hacker et al., 2009). 

Concluding remarks 

In conclusion, E. coli is the primary choice for expression systems and close to ideal with 

respect to costs and most practical consideration. If the expression cannot be realized in 

E. coli, either yeast and fungi (enzymes) or CHO cells (therapeutic proteins) are typically 

studied as alternatives. 

3.1.2 Expression in bacterial hosts – the issue of protein solubility 

Cytoplasmic expression in E. coli 

E. coli is the standard host organism for the expression of non-glycosylated peptides and 

proteins. In principle, three different expression strategies exist, each with unique 

advantages and disadvantages (Table 3.1). 

Table 3.1: Strategies for protein expression in E. coli (Andersen and Krummen, 2002). (IB) 

inclusion body. 

Expression route Advantages Limitations 

Cytoplasmic Highest yields, IB formation 

enriches the protein  

IB formation makes refolding 

necessary 

Periplasmic Disulfide bridging, natural 

secretion signals 

Empirical and often inefficient 

translocation, typically low yields 

Secretory Easy product separation, 

reasonably efficient for peptides 

Secretion machinery not fully 

understood, inefficient for proteins 
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This thesis focuses on the cytoplasmic expression strategy, as it is used for most 

industrial processes. Pivotal for the wide-spread application are very high productivities 

and product yields. A good example is the production of human interferon-γ in high cell 

density cultivation. In this case, a fed-batch processes with a maximal biomass of 

127 g L−1 cell dry weight (CDW) enabled the production of 42.5 g L−1 product in 17 h 

cultivation time with a productivity of 2.5 g L−1 h−1 and a specific yield of 

0.33 gproduct gCDW
−1 (Koolaee et al., 2006). 

However, approximately 40 % of the proteins overexpressed in E. coli exhibit a low in 

vivo solubility and form IB (Mayer and Buchner, 2004). The exact mechanism of 

misfolding and aggregation is not clearly understood, but several factors are assumed to 

contribute to IB formation. One of the main factors is the difference between pro- and 

eukaryotic proteins. This applies to the protein size, as only 13 % of E. coli proteins 

possess more than 500 residues (roughly 500 kDa) compared to 38 % in 

Saccharomyces cerevisiae (Hartl and Hayer-Hartl, 2002). In addition, the complexity is 

lower for prokaryotic proteins. Multiple domains, oligomeric structure and multiple 

disulfide bonds are far more common in eukaryotes. The second factor that contributes to 

misfolding is the difference between the prokaryotic host and eukaryotes. Translational 

and post-translational machineries and folding modulators (chaperones and foldases) are 

partly or completely unalike. Finally, the reductive conditions of the bacterial cytoplasm 

promote misfolding and aggregation for disulfide-bridged proteins (Choe et al., 2006; 

Graumann and Premstaller, 2006). 

In the light of this problem two different process strategies are pursued.  

On the one hand, it is possible to optimize the soluble expression in order to obtain more 

functional protein. In the last decades considerable progress was realized in this subject 

(Makino et al., 2011). Protein expression as fusion proteins to solubilizing partners like 

the maltose-binding protein or glutathione-S-transferase (Cho et al., 2008; Rabhi-Essafi 

et al., 2007) or the co-expression of various chaperones or folding assistants (de Marco et 

al., 2007) enables higher expression rates for many proteins. Furthermore, mutant 

strains of E. coli allow a more efficient expression of disulfide-bridged proteins (Bessette 

et al., 1999) or glycosylated proteins (Wacker et al., 2002), though the yields are still low. 

On the other hand, many industrial processes are based on the insoluble expression of 

the protein of interest in IBs. (Table 3.2). Insulin and insulin analogs are probably the 

best-known products. In addition, various other therapeutic proteins including growth 

hormones, growth factors, interferons and interleukins are all produced in IBs. The 
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general advantages are the enrichment of the product, the protection from proteolysis 

and the ability to produce proteins that are toxic to E. coli cells (Choe et al., 2006). Such 

aspects compensate for the additional effort required in the downstream processing. For 

IB based processes two additional processing steps become necessary: Solubilization and 

the subsequent refolding, which will be discussed in detail in section 3.2. 

Table 3.2: Overview of therapeutic peptides and proteins produced in E. coli (Choe et al., 

2006; Rabhi-Essafi et al., 2007). 

Product Remarks Companies 

Asparaginase - Merck 

B-type natriuretic peptide Inclusion bodies Scios/Johnson & Johnson 

Cholera toxin subunit B - SBL Vaccine 

Granulocyte-colony 

stimulating factor 

Inclusion bodies  Amgen 

Human Growth Hormone Inclusion bodies  

or periplamic 

Genentech, Eli Lilly, Pfizer, 

Schwartz Pharma, Novo Nordisk  

Insulin and analogs Inclusion bodies Eli Lilly, Aventis 

Interferon alfacon-1 Inclusion bodies Valeant 

Interferon α-2a - Hoffmann-LaRoche, Schering 

Interferon β-1b Inclusion bodies Schering AG, Chiron 

Interferon γ-1b Inclusion bodies Genentec, Intermune 

Interleukin 11 - Genetics Institute 

Interleukin 2 - Chiron 

Interleukin-1 receptor 

antagonist 

- Amgen 

Parathyroid Hormone Inclusion bodies Eli Lilly 

Pertussis toxin - Chiron 

Salmon Calcitonin Secretion Unigene 

Tissue Plasminogen activator Inclusion bodies  Roche 

Tumor necrosis factor alpha - Boehringer Ingelheim 
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Insoluble protein expression in inclusion bodies (IBs)  

Before detailing the typical production process with IBs, it is important to characterize 

the properties of IBs (Figure 3.1). IBs are protein aggregates located in the cytoplasm or 

rarely the periplasm. The composition and the amount of IBs vary significantly. Both are 

influenced by the growth conditions (temperature, medium and other process 

parameters), the induction (system, concentration, time), the expression system and the 

protein of interest (Choe et al., 2006). In general, IBs comprise the target protein (up to 

95 %) and contaminants. For example, inclusion bodies of β-lactamase contained 35 % to 

95 % protein of interest, 5 % to 50 % polypeptides, 1 % to 13 % phospholipids and traces 

of nucleic acids (Valax and Georgiou, 1993). However, in most cases washing steps 

enable an efficient depletion of contaminants. It was shown that most contaminants 

absorb onto the IBs after cell disruption. They are generally not incorporated in the IB 

and thus easy to remove (Clark, 2001; Middelberg, 2002; Valax and Georgiou, 1993). The 

physical properties of IBs again vary according to process conditions and the protein 

under study. In general, a size distribution between 0.35 µm and 1.28 µm (diameter) and 

a density between 1.034 g cm−3 and 1.260 g cm−3 are observed (Jin et al., 1994; Taylor et 

al., 1986). Consequently, a fractionation of IBs from insoluble cell debris is possible but 

in some cases challenging (Clark, 2001; Middelberg, 2002).  

 

Figure 3.1: Electron micrograph of E. coli cells containing cytosolic inclusion bodies 

(http://web.mit.edu/king-lab/www/research/Scott/Scott-Research.html; Feb 2012; 

Betts and King, 1998;). 

In the past, it was assumed that IBs contain only misfolded, inactive protein. However, 

recent work revealed native-like secondary structures and active protein in IBs of 

several proteins. Instead of being homogenous, IBs seem to consist of a distribution of 

misfolded and partially or fully folded protein species (Doglia et al., 2008; Jevsevar et al., 

2005; Oberg et al., 1994; Ventura and Villaverde, 2006).  

200 nm 
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Protein production processes that are based on IBs rely on the conversion from the 

aggregated, non-functional protein to the soluble and active form and are structured in 

three parts: preprocessing, solubilization and refolding (Figure 3.2). After the 

cultivation, cells are disrupted and soluble impurities and other (lighter) particles are 

depleted via centrifugation or filtration. The insoluble IBs are enriched as pellets and 

washed with detergents to remove other contaminants (see above). In some cases, the 

requirements for downstream processing may contraindicate detergent usage (Choe et 

al., 2006). For the solubilization, the IBs are dissolved in solutions with high 

concentrations of chaotropes (urea or guanidine hydrochloride, Gdn∙HCl). Hereby, the 

chaotropes break up the non-covalent bonds in the IB and the protein aggregates 

dissolve. Furthermore, reducing agents like dithiothreitol (DTT) are added to break up 

disulfide bonds via reduction. They facilitate the effective dissolution of IBs with 

disulfide-bridged proteins. Finally, the remaining insoluble material is removed by a 

fractionation step (usually centrifugation). Refolding or renaturation of the correctly 

folded bioactive product requires the removal of chaotropes and reducing agents. This 

step is critical both in process development and economic evaluations and strongly 

dependent on the protein (Choe et al., 2006). Protein refolding will be discussed in detail 

in the next section.  

 

Figure 3.2: Traditional processing scheme for the production of recombinant proteins 

in insoluble form. Preprocessing typically involves mechanical cell disruption, 

centrifugation steps and preliminary purification. Subsequently, the inclusion bodies 

(IBs) are solubilized with chaotropes. Finally, refolding reconstitutes the native 

protein structure which is necessary for biological activity. 

Cultivation 

Cell removal and disruption 

IB fractionation and purification 

Solubilization 

Refolding 

Purification and polishing 

Preprocessing 
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IB based processes were subject to great variety of innovations in the last decades, 

improving various process steps, ranging from cell disruption, IB extraction, 

solubilization and purification to refolding (Choe et al., 2006; Crisman and Randolph, 

2009; Jungbauer and Kaar, 2007; Middelberg, 2002; Qoronfleh et al., 2007; Singh and 

Panda, 2005). Naturally, these improvements affect the competitiveness to alternative 

strategies and the economic performance (Freydell et al., 2011; Lee et al., 2006). 

Concluding remarks 

The expression of recombinant proteins in E. coli is often associated with misfolding and 

aggregation to IBs. IBs enable a high enrichment of the protein of interest (of up to 95 % 

Valax and Georgiou, 1993) and are the basis for a variety of products, especially 

therapeutic proteins (Graumann and Premstaller, 2006). In comparison to soluble 

expression, IB based processes require two additional steps: A solubilization step with 

chaotropes and the subsequent refolding of the native protein structure. 
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3.2 Protein refolding 

Protein refolding or renaturation reconstitutes the native structure of the protein of 

interest after the IB solubilization in chaotropes. It is generally considered the 

bottleneck of IB based processes, since reaction conditions that enable efficient refolding 

drastically vary depending on the protein of interest (Jungbauer and Kaar, 2007; Lilie et 

al., 1998). Furthermore, misfolding and aggregation represent competing side reactions 

that can severely reduce the refolding yield. Therefore, refolding conditions have to be 

optimized experimentally for each protein (Basu et al., 2011; Clark, 2001; Middelberg, 

2002; Rudolph and Lilie, 1996). This chapter details protein refolding and is structured 

in: refolding methods (3.2.1), parameters (3.2.2), reaction kinetics (3.2.3) and the 

analysis of folded proteins (3.2.4).  

3.2.1 Refolding methods 

In order to obtain biologically active proteins out of the solubilized IBs, the chaotropes 

have to be removed from the protein containing solution. Additionally, for oxidative 

protein refolding, the redox environment may be altered to enable disulfide bond 

formation. Both processing steps are usually combined and several different methods 

exist for efficient protein refolding. 

Dilution 

Dilution of the unfolded protein into an appropriate refolding buffer is straightforward 

and the simplest and most commonly used refolding method. The main applications are 

small-scale refolding studies and high-throughput screening experiments (Mannall et al., 

2009; Trésaugues et al., 2004; Willis et al., 2005). Large-scale dilution is also used in 

industry, mainly because of the simplicity of the processing scheme (Jungbauer and 

Kaar, 2007). After the dilution of the IBs in the refolding buffer, the solution is stirred at 

a controlled temperature. Subsequently, the protein is harvested after a fixed time. 

However, large-scale dilution has serious drawbacks in terms of the reaction vessels 

(large volumes, uniform mixing) and further processing (additional concentration steps). 

In order to avoid aggregation and low refolding yields, it is decisive to maintain low 

protein concentrations. Therefore, good mixing and a slow addition of the protein 

containing solution are required. A final protein concentration of 10 mg L−1 to 100 mg L−1 

is applied in most processes (Jungbauer and Kaar, 2007). Furthermore, a step-wise 

dilution of the protein, the so called pulse renaturation, is possible and often enables 

higher yields and final protein concentrations. Thus, pulse renaturation or other 
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implementations, like fed-batch or continuous processes, facilitate more economic 

dilution processes (De Bernardez Clark et al., 1999; Katoh and Katoh, 2000; Lilie et al., 

1998). 

Dialysis  

Buffer exchange and thus removal of chaotropes is also possible through dialysis. In 

comparison to dilution, dialysis enables refolding with very low protein concentrations 

and a complete exchange of the buffer is possible. However, refolding yields can be 

negatively affected by non-specific protein adsorption to the dialysis membrane (West et 

al., 1998). Furthermore, slow buffer exchange kinetics can induce aggregation of 

refolding intermediates, especially if the protein folding rate is low (Basu et al., 2011; 

Tsumoto et al., 2003b). Comparable to pulse renaturation for dilution, stepwise dialysis 

enables improved refolding yields (Tsumoto et al., 2010). Due to the disadvantages of 

dialysis, dilution is nevertheless the preferred method for most applications. 

Matrix-assisted refolding 

On-column refolding provides an alternative to dilution, especially for proteins with slow 

refolding kinetics or a high tendency for aggregation (Jungbauer et al., 2004). The 

immobilization of the protein on the chromatography matrix enables a spatial isolation 

of the proteins. Thus, intermolecular interactions of folding intermediates and 

consequently aggregation are reduced (Schmoeger et al., 2010). Several different 

chromatography methods are used for on-column refolding. 

Immobilized metal affinity chromatography (IMAC) refolding is based on the 

immobilization of the denatured protein, which has a functional tag, onto the matrix and 

the subsequent dilution of the denaturant to promote refolding. Hence, IMAC refolding 

is restricted to proteins, whose function or structure are not affected by the tag 

(Jungbauer et al., 2004). In addition, the column material restricts the choice of refolding 

buffers (pH, detergents and redox agents). IMAC refolding is in particular interesting for 

screening applications and proteins that are difficult to refold by dilution. 

Size exclusion chromatography (SEC) has been used since the 1990s for refolding 

(Werner et al., 1994). In general, an optimization of the buffer system is necessary for 

efficient refolding. Furthermore, the refolding yield is dependent on the matrix 

composition (Fahey et al., 2000; Jungbauer et al., 2004). In comparison to dilution, 

refolding yields are often higher, but many proteins show identical performance for both 

methods. However, SEC incorporates a fractionation of different molecule sizes. Hence, a 
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depletion of contaminants is possible and advantageous for this method (Middelberg, 

2002).  

Ion exchange chromatography (IEC) is also used for refolding. The applications are 

generally comparable to SEC. However, IEC was reported to be more efficient for crude 

samples (Jungbauer et al., 2004; Kweon et al., 2004; Li et al., 2003).  

Furthermore, it is possible to mimic in vivo folding conditions by immobilization of 

folding catalysts onto the chromatographic support. This method might improve in vitro 

refolding yields and extend the range of proteins that can be refolded from IBs 

(Jungbauer et al., 2004; Middelberg, 2002). However, only a few examples have been 

published so far (Altamirano et al., 1999; Altamirano et al., 2001; Tsumoto et al., 2003a) 

and the costs of immobilized chaperonin systems and oxidoreductases hinder an 

industrial application. 

Concluding remarks 

In summary, dilution is the standard method for protein refolding (Jungbauer and Kaar, 

2007). Especially for high-throughput screening experiments, the simplicity of the 

process outweighs the disadvantage of low protein concentrations (Mannall et al., 2009; 

Trésaugues et al., 2004; Willis et al., 2005). Chromatography is an important alternative, 

as it enables higher final protein concentrations and yields for many proteins 

(Middelberg, 2002). Dialysis is mainly considered as a niche strategy. 

3.2.2 Parameters in protein refolding 

Protein folding normally proceeds in vivo, after or during translation. The refolding 

reaction, which is carried out in vitro from the solubilized protein, takes place under 

drastically different conditions. The protein is typically diluted in a buffered solution 

comprising various small molecule additives and defined redox conditions. Major 

differences to the cell are the absence of molecular crowding and chaperone systems and 

the remainder of the denaturant. Additionally, little is known about the functional 

relationships between refolding yield and process conditions. Therefore, process design is 

based on rough guidelines and the parameters have to be optimized experimentally for 

each protein (Basu et al., 2011; Jungbauer and Kaar, 2007; Lilie et al., 1998; Middelberg, 

2002). The different parameters that influence protein refolding are detailed in the 

following. 
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Protein concentration and temperature 

High concentrations of the protein of interest promote aggregation, hence refolding 

yields are decreased. Aggregation is the result of the exposure of normally inaccessible, 

hydrophobic core residues that become exposed on the surface of folding intermediates. If 

the protein concentration is high, hydrophobic interactions between these residues 

become more probable and aggregation occurs (Fischer et al., 1993; Rudolph et al., 1979). 

Therefore, refolding is usually performed at low protein concentrations between 

10 mg L−1 and 100 mg L−1 (Jungbauer and Kaar, 2007; Lilie et al., 1998) and most 

refolding screens are based on similar ranges (Armstrong et al., 1999; Trésaugues et al., 

2004; Willis et al., 2005). The relation of applied protein concentration and obtained 

refolding yield is not universal, as some proteins are more prone to aggregation and 

misfolding. Furthermore, the refolding method has an influence on this concentration 

dependency (Jungbauer et al., 2004; Middelberg, 2002; Tsumoto et al., 2003b). 

High local protein concentrations have to be avoided in the refolding process. This is 

especially important during the initial phase, in which the denatured protein is diluted 

in the refolding buffer or loaded on the chromatography column. Therefore, mixing is an 

important process parameter on large industrial scales (Clark, 2001; Jungbauer and 

Kaar, 2007) and high-throughput screening in µL-volumes (Mannall et al., 2009). 

For most proteins, higher yields and less aggregation are observed at lower refolding 

temperatures (Mattingly et al., 1995; Wang and Engel, 2009; Xie and Wetlaufer, 1996). 

While high temperatures seem to promote aggregation, lower temperatures decrease the 

folding speed and hydrophobic interactions of folding intermediates. However, it was 

also observed that high refolding temperatures may improve refolding for stable proteins 

like lysozyme (Sakamoto et al., 2004). For screening experiments, protein concentration 

and temperature are usually standardized and kept constant at low levels (Cowieson et 

al., 2006; Trésaugues et al., 2004; Vincentelli et al., 2004; Willis et al., 2005). 

pH of the refolding buffer 

Native proteins show an increasing solubility with increasing distance from the 

isoelectric point (pI). The pH of the solution determines the total charge of the dissolved 

protein. Highly charged proteins are less prone to aggregation, as repulsive interactions 

raise the energy barrier for protein-protein interactions and thus for aggregation. In 

contrast, proteins near the pI have both negative and positive charges. An anisotropic 

distribution of positive and negative charges can result in dipole formation, making 

protein-protein interactions much more favorable (Chi et al., 2003). However, guidelines 
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for protein solubility are not generally transferable to protein refolding. For oxidative 

refolding, an alkaline pH is required for the formation of thiolate ions and native 

disulfide bonds. Suitable conditions have to be evaluated experimentally and a 

prediction on the basis of the pI is not feasible. In most refolding screens, the pH is 

varied from slightly acidic (pH 6.0) to alkaline (pH 9.5) (Armstrong et al., 1999; Cowan et 

al., 2008; Tobbell et al., 2002; Trésaugues et al., 2004). 

Refolding additives 

Numerous additives either promote refolding by stabilizing the native structure or 

inhibiting aggregation. According to Hamada et al. (2009) additives can be grouped in 

three classes: Denaturants, including guanidine, urea, strong ionic detergents and 

other chaotropes, which bind to the protein (folding intermediates) and prevent 

aggregation. Stabilizers, including sugars and polyhydric alcohols (glycerol), which 

stabilize the native state during refolding through preferential hydration. Mixed class 

additives, which combine characteristics of denaturants and stabilizers. This group 

contains all other refolding additives: various detergents and non-detergent surfactants, 

ionic liquids, arginine, other amino acids and derivates and amphiphilic polymers like 

polyethylene glycol (PEG). 

Prior to discussing the most important additives in the following, it is important to note 

that the focus of this literature review lies on the refolding application. Many of the 

above-mentioned additives are commonly used to stabilize proteins and suppress non-

native aggregation (Chi et al., 2003). This information is incorporated as the same effect 

(aggregation) is circumvented. However, protein refolding exhibits some differences: a 

background of denaturants is usually present and the starting point is the unfolded 

protein, not the native protein.  

Guanidine hydrochloride (Gdn∙HCl) 

Denaturing chemicals like Gdn∙HCl or urea are used for the solubilization of IBs (see 

section 3.1.2). They disrupt both intra- and intermolecular interactions, enabling IB 

solubilization and concomitant protein denaturation. If the protein is refolded via 

dilution, residual amounts of guanidine or urea remain. These non-denaturing residual 

concentrations enable the refolding of proteins that are otherwise very difficult to refold 

(Hevehan and De Bernardez Clark, 1997; Lilie et al., 1998). The underlying mechanism 

is the solubilization of solvent exposed hydrophobic regions in misfolded species or 

folding intermediates. Both molecular dynamics simulation (O’Brien et al., 2007) and 
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thermodynamic measurements (Arakawa and Timasheff, 1984) show, that guanidine 

interacts with the peptide backbone and negatively charged residues. Thus, aggregation-

prone species or folding intermediates are stabilized. 

Detergents, non-detergent surfactants and ionic liquids  

Detergents enable higher refolding yields for many proteins (Wetlaufer and Xie, 1995; 

Yasuda et al., 1998). The underlying mechanism is an increased solubilization of folding 

intermediates, as hydrophobic moieties are shielded by the detergent from the 

hydrophilic solvent. Consequently, aggregation is suppressed (Lilie et al., 1998). The 

impact on refolding is strongly dependent on the protein concentration, the concentration 

of the detergent and the critical micellar concentration (CMC) of the detergent (Tandon 

and Horowitz, 1987). Strong detergents like sodium dodecyl sulfate (SDS) function as a 

denaturant (see Gdn∙HCl). Specifically, SDS strongly binds to the protein (Takagi et al., 

1975), resulting in an overall negative charge. Thus, aggregation is suppressed as 

protein-protein interactions become energetically disfavored. Refolding conditions have 

to be selected carefully, as higher SDS concentrations cause denaturation, while high 

concentrations of other detergents are less critical.  

Non-detergent surfactants, mainly non-detergent sulfobetaines, consist of a hydrophilic 

head group and a hydrophobic tail. However, this tail is very short compared to above-

mentioned detergents. Consequently, no micelles are formed, even at concentrations of 

up to 1 M. Like detergents, non-detergent sulfobetaines prevent protein aggregation by 

interacting with folding intermediates (Vuillard et al., 1998). 

Ionic liquids are a recent class of refolding additives consisting of an organic cation and 

an either organic or inorganic anion. Most important representatives for refolding 

applications are N-alkyl- and N-hydroxyalkyl-N-methyl-imidazolium chlorides (Buchfink 

et al., 2010; Lange et al., 2005). Ionic liquids suppress protein aggregation and are more 

or less denaturing, depending on the cation. Therefore, their mode of action incorporates 

properties of denaturants (Gdn∙HCl) and stabilizers (see below).  

Cosolvent sugars and glycerol 

Glycerol and several sugars act as stabilizers of the native state during refolding. Their 

function can be explained by their influence on the water molecules at the protein 

surface. Two concepts are important: preferential hydration and the Wyman linkage 

function (Gekko and Timasheff, 1981; Timasheff, 1998). The Wyman linkage function is 

the differential binding of a ligand in a two-state equilibrium, which shifts the 
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equilibrium towards the state with greater affinity or binding. Preferential hydration is 

usually interpreted as a negative binding. Protein stabilizers like glycerol are 

preferentially excluded from the protein surface and water molecules are enriched in this 

area (Figure 3.3). This can be considered as a negative binding of the cosolvents, since 

the surface contacts between protein and glycerol are minimized leading to higher local 

concentrations of water molecules near the protein surface. The exposed surface area of 

unfolded proteins is larger than the native state. Therefore, the degree of preferential 

exclusion is higher. Hence, a high negative binding of the unfolded state has the effect of 

favoring the native state (Chi et al., 2003; Timasheff, 2002). Although entropy is most 

probably involved, specific changes in the entropy of the water / bounded water and the 

protein surface residues seem to be largely neglected and the simplified model of the 

preferential binding is generally used to explain the additive function (Arakawa et al., 

2007; Hamada et al., 2009; Timasheff, 2002). 

 
Figure 3.3: Preferential hydration. (A) normal binding of ligands to a protein. (B) 

preferential hydration of proteins in aqueous solutions with cosolvents like glycerol 

observed in dialysis equilibrium experiments (Gekko and Timasheff, 1981). (○) water 

molecules, (●) diffusible molecule either normal ligands (A) or glycerol (B).  

Mechanistic knowledge of the effect of cosolvents on protein structure and folding is best 

for glycerol, that is also the most used refolding cosolvent (Phan et al., 2011). According 

to Vagenende et al. (2009), the preferential hydration of proteins in glycerol-water 

mixtures originates from spatial orientation of glycerol molecules on the protein surface 

through electrostatic interactions. These interactions disfavor the larger exposed surface 

areas of the unfolded protein and thus bias the native state. In addition, the amphiphilic 

Dialysis membrane 

   
Protein 

Preferential hydration 

   
Protein 

Normal binding 

(A) (B) 
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glycerol shields hydrophobic areas and stabilizes aggregation-prone intermediates, 

comparable to the above-mentioned effect of detergents.  

Polyethylene glycol (PEG) 

Amphiphilic polymers like PEG are used for the stabilization of proteins by chemical 

modification (PEGylation; Roberts et al., 2002) and serve as important refolding 

additives as well. The underlying mechanism is the preferential protein hydration 

(compare cosolvents). However, in contrast to the electrostatic interactions of glycerol, 

steric exclusion of the PEG from the protein surface is mainly responsible for this effect. 

Thus, the effect varies dependent on the  molecular size of the PEG. For PEGs with 

molecular weights between 200 g mol–1 and 6000 g mol–1, the magnitude of preferential 

hydration increased with increasing PEG size (Bhat and Timasheff, 1992). PEG is 

considered to be a mixed class additive, because it can also bind to non-polar residues. 

Salts and ionic strength 

Various salts act similar to the above-mentioned additives by preferential hydration. In 

this case, the exclusion of the salt molecules is based on the perturbation of the surface 

water tension. A cosolvent that increases the surface tension of water, will be depleted at 

the protein surface. The stabilizing effect on proteins is related to the salting-out effect 

described by the Hofmeister series (Kunz et al., 2004).  

Next to the influence on surface tension, which is generally observed at high 

concentrations (M), salts act as electrolytes. Hence, the ionic strength of the solution 

influences refolding by modulating the strength of electrostatic interactions between 

charged groups (Chi et al., 2003). Consequently, the effects are very complex, as both 

intra- and intermolecular interactions between proteins are affected. Additionally, all 

other refolding additives with charged groups are affected, too. Combined with the 

impact of the pH (see above), this generates a network of very complex interactions.  

Literature on the effects of the ionic strength of the refolding buffer is rather sparse. 

Most reviews mention ionic strength as an important factor, but experimental values are 

not given (Lilie et al., 1998; Rudolph and Lilie, 1996; Wang, 2005). The most common 

salt for ionic strength variation is NaCl, which is used in concentrations of 50 mM to 

500 mM for refolding experiments (Cabrita and Bottomley, 2004). Human growth 

hormone was reported to refold nearly independently from the ionic strength. However, 

only low ionic strengths of up to 200 mM were examined (Kim and Lee, 2000). 
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Arginine and other amino acids (mixed class) 

The amino acid arginine is the most important refolding additive and commonly used for 

standard refolding protocols and screens in concentrations of up to 750 mM (Phan et al., 

2011). Arginine increases the solubility of aggregation-prone folding intermediates. 

Although, arginine has a guanidine group, it exhibits no denaturing or destabilizing 

effects on the native structure (Hamada et al., 2009). Despite intense research on the 

mode of action, the exact mechanism is so far unsolved (Arakawa et al., 2007; Tsumoto et 

al., 2004a; Tsumoto et al., 2004b). Arginine interacts with aromatic and charged protein 

residues and stabilizes unfolded intermediates. In addition, aqueous arginine solutions 

show a tendency for self-association and the formation of arginine clusters. The planar 

guanidine group is probably pivotal for this effect (Shukla and Trout, 2010). Other amino 

acids and alkyl- or amide derivates have a positive effect on refolding as well, but 

arginine usage is predominant (Hamada et al., 2009; Phan et al., 2011). 

Concluding remarks on the classification of refolding additives 

Refolding additives have complex effects on the protein and the solvent water (Gekko 

and Timasheff, 1981; Timasheff, 1998). Stabilizing agents (glycerol) mainly act through 

preferential hydration. In contrast, denaturants (guanidine, strong detergents) suppress 

aggregation mainly by the opposite effect. Denaturants bind to the protein and shield 

aggregation-prone hydrophobic moieties of folding intermediates. Hence, the different 

size (solvent accessible surface) of native (small, compact) and unfolded (large, diffuse) 

protein states plays an important role for both stabilizers and denaturants. Denaturants 

preferentially bind to the larger unfolded state. Whereas stabilizers are preferentially 

excluded from the protein surface, therefore, the smaller native state is favored. 

However, the underlying mechanisms are usually more complex and a mixture of effects 

is observed. 

Redox agents 

Proteins with disulfide bonds complicate the refolding process. Next to the correct 

noncovalent secondary and tertiary structure of the protein, the covalent disulfide bonds 

have to be reformed after IB solubilization. Correct disulfide bond formation is biased, as 

the native structure is generally most stable. However, proteins with many cysteine 

residues are difficult targets for refolding, as the number of possible combinations 

increases dramatically with the number of cysteine residues present (Table 3.3). 
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Table 3.3: Statistics of the disulfide bond (1 to j) formation in proteins with varying number of 

cysteine residues (1 to 2n) (Galat, 1982). 

Disulfide 

bonds 

Cysteine 

residues 

Possible combinations, 

maximum of disulfide bonds 

Possible combinations, 

partial formation allowed 

1 2 1 1 

2 4 3 9 

4 8 105 763 

8 16 2 027 025 46 306 735 

j 2n 
     

                
 ∑

     

                

 

 

 

    

IB solubilization is routinely performed under reductive conditions, in order to dissolve 

possible wrongly formed disulfide bonds in the IB. Hence, upon disulfide bridge 

formation, an oxidation of the cysteine residues is necessary (Figure 3.4). 

         →                 

Figure 3.4: Oxidation for disulfide bond formation. 

Although it is possible to use molecular oxygen for this oxidation, the yields for air 

oxidation are very low (Sela et al., 1957). Therefore, thiols with low molecular weight are 

usually added to the refolding buffer. Common reagents include: reduced and oxidized 

glutathione (GSH, GSSG), cysteine and cystine, 2-mercaptoethanol, dithiothreitol (DTT) 

and tris-carboxyethyl-phosphine (TCEP). Typical molar ratios vary between 1:1 and 1:10 

for the reduced and oxidized form, respectively (Lilie et al., 1998). Thiols enable a rapid 

reshuffling of disulfide bonds, as the thiol-disulfide exchange is fast and reversible 

(Figure 3.5). Hence, redox agents often increase the yield of correct protein disulfide 

formation (Rudolph and Lilie, 1996). An alkaline pH is necessary for thiol-disulfide 

exchange, as the reaction mechanism is based on a nucleophilic attack of the thiolate 

anion. 
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Figure 3.5: Disulfide bond formation and oxido-shuffling with glutathione in the 

reduced (GSH) and oxidized state (GSSG) (Voet and Voet, 2004). 

Chaperones 

The impact of folding catalysts was already mentioned in case of column 

chromatography using immobilized chaperones, which effectively mimics in vivo 

conditions (see 3.2.1). Chaperones and other folding helpers are also used for dilution 

experiment as supplements to the refolding buffer. They often increase refolding yields 

and enable refolding of challenging proteins (Mayer and Buchner, 2004; Schwarz et al., 

1996; Vallejo and Rinas, 2004). The bacterial GroEL / GroES chaperone complex is the 

most common system for in vitro refolding applications (Ayling and Baneyx, 1996). 

However, the high costs of chaperones hinder an industrial application (Jungbauer and 

Kaar, 2007).  

REFOLD database 

The REFOLD database (http://refold.med.monash.edu.au; Feb 2012; Amin et al., 2006; 

Buckle et al., 2005;) is a repository for refolding data with the information of 

approximately 1100 refolding experiments. Experimental data are extracted from the 

primary literature and dependent on contributors. Thus, data quality and filtering are 

an issue. Nevertheless, the database offers far more information than literature reviews 

and is especially valuable for the design of refolding screens. For this thesis, the 

possibility to extract quantitative data about the refolding buffer composition was 

especially valuable.  

Concluding remarks 

A variety of parameters affect refolding by either suppressing aggregation or stabilizing 

folding intermediates or the native structure. The underlying mechanisms are only 

roughly understood. Interdependencies and the requirements for disulfide-bridged 

proteins further complicate the picture and hinder a prediction of suitable refolding 

conditions. 

SH 

SH 

 

GSSG GSH 

GSSG GSH 

SH 

SSG 

   

 GSH 

 GSH 

S 

S 

   



22   Theoretical Background 

3.2.3 Refolding – a kinetic competition between folding and 

aggregation 

Refolding of the denatured protein to the biologically active, native state requires the 

formation of secondary, super-secondary, tertiary and quaternary structures (for 

oligomers) out of the denatured, highly flexible polypeptide chain. Although the native 

structure is encoded in its amino acid sequence (Anfinsen, 1972) and is generally the 

most stable structure under physiological conditions (Dill and Chan, 1997), protein 

folding is a complex problem due to the immense conformational space (Levinthal, 1969).  

While exact mechanisms and pathways of protein folding remain controversial, it was 

proven that most proteins undergo different intermediate conformations before achieving 

their native structure (Dill et al., 2008; Lindorff-Larsen et al., 2011; Onuchic and 

Wolynes, 2004; Sosnick and Hinshaw, 2011). These intermediate states are more or less 

unstable and subjected to nonspecific hydrophobic interactions and incorrect interactions 

of partially structured regions. Hence, aggregation may occur, which is generally 

considered a second (or higher) order reaction. This poses the central problem for in vitro 

refolding: Because cellular chaperone systems are absent, folding intermediates readily 

aggregate without supplementation of refolding additives (Jungbauer et al., 2004).  

In vitro refolding is a competition between the correct folding pathway and misfolding 

and aggregation (Figure 3.6). Intermediate (I) formation and correct folding (N) are 

typically described as a first order reaction, while the aggregation (A) has a higher order 

(Kiefhaber et al., 1991).  

 

Figure 3.6: (A) Refolding kinetics with unfolded (U), intermediate (I), aggregated (A) 

and native (N) protein and rate constants (ki) (Kiefhaber et al., 1991). (B) Schematic 

influence of refolding additives. Stabilizers like glycerol stabilize the native state, 

while denaturants like guanidine prevent aggregation of folding intermediates 

(denaturing and destabilizing effects of denaturants are omitted for clarity). 
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The model can be further simplified for practical purposes. Typically, intermediate 

formation from the unfolded state is considered instantaneous. Thus, k1 (compare Figure 

3.6) is neglected. In addition, the reverse reaction from the native state (k4) is also 

neglected (k2 >> k4). Therefore, the simplified model is a straightforward competition 

between first and higher order reactions. For batch processes refolding can be described 

by the following equations. 

Unfolded (U) and native (N) protein concentrations can by described as: 

  

  
           

   
(Equation 1) 

     

 with U unfolded protein  

  t time  

  n reaction order  

  k2, k3 folding, aggregation rate 

constants 

 

     

  

  
      

(Equation 2) 

     

 with N native protein  

     

For a second order (n = 2) aggregation reaction, the refolding yield (Y) is given by: 

      
  

    

   (  
    

  

         )  
(Equation 3) 

     

 with Y refolding yield  

  U0 unfolded protein, initial 

concentration 

 

     

Thus, the final refolding yield (t approaches infinity) is: 

      
  

    

   (  
    

  

)  
(Equation 4) 

     

Hence, the refolding yield depends on the initial concentration of the unfolded protein 

and the rate constants for folding and aggregation. The difference of the reaction orders 

results in a drastic decrease of refolding yields at higher protein concentration, as 

described previously (see section 3.2.2).  
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3.2.4 Analysis of folded proteins 

In order to evaluate refolding yields, sensitive analytical methods are required which 

quantify the correctly folded protein. These may either be based on structural or 

functional features and have to be able to differentiate between folded and misfolded or 

aggregated protein. Especially for refolding screens, which are designed to evaluate and 

optimize refolding of a variety of different proteins, the correct quantification is a basic 

concern (Basu et al., 2011; Middelberg, 2002).  

Structure-based methods 

Several structure-based methods provide exact data on the folding state, but are not 

suitable for high-throughput refolding screens. Instead, they are mainly used for 

stability and folding studies: Intrinsic protein fluorescence is limited to proteins with 

internal tryptophan residues. Furthermore, quenching effects of buffer components are 

problematic and fluorescence spectra of the native protein have to be available (Royer, 

2006). Circular dichroism spectroscopy (CD) uses the differential absorption of circularly 

polarized light to investigate the secondary structure of proteins. However, the 

application is limited to pure protein samples and a high-throughput application in 

screens is not feasible. Limited proteolysis is based on the higher stability of compact 

native protein structures against photolytic cleavage. Native protein stability and 

cumbersome fragment analysis are major drawbacks (Heiring and Muller, 2001). Other 

methods like nuclear magnetic resonance (NMR) or sophisticated spectroscopy coupled 

with detailed analysis of spectra might be suitable future methods. However, they are 

not readily applicable today (Balbach et al., 1995; Middelberg, 2002). 

In contrast to above-mentioned methods, a variety of techniques are technologically fully 

developed and established for large-scale refolding screens. Absorbance, light scattering 

or turbidity measurements provide information about protein solubility, thus enabling a 

quantification of protein aggregation (Basu et al., 2011; Middelberg, 2002). Several 

refolding screens use this as a first analytical step. In a second step, positive refolding 

conditions are subject to a more detailed analysis with another method to verify correct 

folding (Dechavanne et al., 2011; Scheich et al., 2004; Willis et al., 2005). Reverse phase 

high-performance liquid chromatography (HPLC) and hydrophobic interaction HPLC 

detect the surface hydrophobicity differences of native and misfolded protein by different 

retention times. Due to the serial mode, data analysis can be time consuming. In 

addition, native protein has to be available for comparison and the resolution is limited if 

http://en.wikipedia.org/wiki/Circular_polarization
http://en.wikipedia.org/wiki/Circular_polarization
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Secondary_structure
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many misfolded species occur. Nevertheless, this method is used in several refolding 

screens (Boyle et al., 2008; Boyle et al., 2009; Cowan et al., 2008). 

Function or specific binding based methods 

Protein specific assays based on enzymatic activity and immuno- or bioassays provide 

very reliable information on protein folding (Middelberg, 2002). In comparison to 

structure-based methods, functional assays are generally rather simple to automate. 

Furthermore, most assays are either already established in 96-well plate scale or can be 

easily parallelized. For these reasons, functional assays are the method of choice for 

most refolding screens (Armstrong et al., 1999; Hofmann et al., 1995; Mannall et al., 

2009; Willis et al., 2005). However, each protein of interest requires a suitable enzymatic 

assay or antibody. Especially for therapeutic proteins, the biological activity is the 

overall decision criteria and often the exclusive optimization criteria. However, 

regulations for therapeutic protein often demand a combination of methods, for example 

bioassays and turbidity measurements, to quantify aggregation which is not accessible 

by functional assays (Jungbauer and Kaar, 2007). 

Concluding remarks 

Structure-based methods have the potential advantage of a wide applicability for a high 

number of proteins. The application for high-throughput refolding screens is usually 

limited to solubility measurements or HPCL methods. On the other hand, functional 

assays provide reliable information about protein structure and the final criteria for 

protein applications (enzymes or therapeutics) is also enzymatic- or biological activity. 

However, these methods are protein-specific and development time for new target 

proteins has to be taken into account. Finally, a combination of analytical steps 

(aggregation measurement and activity) is required for therapeutic proteins. 
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3.2.5 Model proteins for refolding – overview of the analyzed proteins 

Refolding screens from the literature are not standardized regarding the proteins under 

study. While almost all screens include lysozyme (LYZ) as a well-characterized model 

protein, other proteins differ from screen to screen (Armstrong et al., 1999; Hofmann et 

al., 1995; Willis et al., 2005). This chapter briefly outline the six proteins which were 

optimized within the scope of this thesis.  

Green fluorescent protein from Aequorea victoria (GFP) 

Green fluorescent protein (GFP) constitutes an important reporter and biosensor in 

molecular biology (Chalfie et al., 1994). GFP is a monomeric protein with a rather small 

molecular mass of 28 kDa and a pI of 5.7. Its distinctive feature is the intrinsic 

fluorescence under exposure to blue light. The chromophore (p-hydroxy-

benzylideneimidazolidone) is located in the center of an 11-stranded beta barrel which is 

illustrated in Figure 3.7. Chromophore formation proceeds autocatalytically during 

folding. Refolding was examined for the engineered enhanced GFP (variant F64L and 

S65T, Topell et al., 1999) which is more stable than the wild-type.  

 

 

  

Green fluorescent protein  

from Aequorea victoria 

PDB 1EMA; UniProt P42212 

28 kDa, monomer, pI 5.7 

no disulfide-bridges 

intrinsic fluorescence  

 

Figure 3.7: Structure (Ormö et al., 1996) and key data of GFP. PDB (Protein Data 

Bank; http://www.rcsb.org; Feb 2012; Berman et al., 2000), UniProt (Universal 

Protein Resource; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012). 
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Glutathione reductase from Saccharomyces cerevisiae (GLR) 

Glutathione reductase (GLR) from Saccharomyces cerevisiae exhibits a molecular mass 

of 53 kDa and a pI of 7.7 (Collinson and Dawes, 1995). The protein contains three 

distinctive domains and is active as a dimer (Yu and Zhou, 2007). GLR plays an 

important role in cytoplasmic and mitochondrial redox regulatory systems. The flavo-

oxidoreductase (EC 1.8.1.7) reduces oxidized glutathione (GSSG) to the reduced form 

(GSH) with nicotinamide adenine dinucleotide phosphate (NADPH) as electron donor 

and flavin adenine dinucleotide (FAD) as coenzyme. The enzyme folds as a 3-layer(bba) 

sandwich (Yu and Zhou, 2007) (Figure 3.8). 

GLR activity is influenced by the redox environment and various metal ions including 

Zn2+. The active site comprises a redox-active disulfide bond. Hence, GLR activity is 

quite sensitive to the stated changes to the redox environment. However, 

ethylenediaminetetraacetic acid (EDTA) was reported to regenerate GLR activity after 

treatment with Zn2+ (Tandoğan and Ulusu, 2007). 

 

 

  

Glutathione reductase  

from Saccharomyces cerevisiae 

PDB 2HQM; UniProt P41921 

53 kDa, dimer, pI 7.7 

no disulfide-bridges 

oxidoreductase (EC 1.8.1.7) 

Figure 3.8: Structure (Yu and Zhou, 2007) and key data of GLR. PDB (Protein Data 

Bank; http://www.rcsb.org; Feb 2012; Berman et al., 2000), UniProt (Universal 

Protein Resource; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012). 
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Glucokinase from Escherichia coli (GLK) 

Intracellular glucose in E. coli is phosphorylated to glucose-6-phosphate by the enzyme 

glucokinase (GLK) (EC 2.7.1.2) in the first step of the glycolysis. GLK is not considered 

essential for the E. coli metabolism as glucose is transported into the cell as glucose-6-

phosphate (phospho-transferase system). However, GLK plays an important role in the 

regulation of the carbohydrate metabolism. GLK is a homodimeric protein with a mass of 

35 kDa and a pI of 6.1 (Meyer et al., 1997). Each monomer folds into two distinct 

domains with the active site located in a cleft in between (Lunin et al., 2004) (Figure 3.9). 

Compared to closely related hexokinases (EC 2.7.1.1) which phosphorylate various 

sugars, the substrate specificity of GLK is narrow and limited to glucose. The activity of 

GLK depends on adenosine-triphosphate (ATP) and Mg2+ which is typical for kinases 

(Meyer et al., 1997). 

 

 

  

Glucokinase  

from Escherichia coli 

PDB 1Q18; UniProt P0A6V8 

35 kDa, dimer, pI 6.1 

no disulfide-bridges 

kinase (EC 2.7.1.2) 

Figure 3.9: Structure (Lunin et al., 2004) and key data of GLK. PDB (Protein Data 

Bank; http://www.rcsb.org; Feb 2012; Berman et al., 2000), UniProt (Universal 

Protein Resource; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012). 
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Lysozyme from Gallus gallus (LYZ) 

The well-characterized lysozyme (LYZ) is a disulfide-bridged protein with a small 

molecular mass of 14 kDa and an exceptionally high pI of 9.3 (Diamond, 1974). Its 

biological function is primarily bacteriolytic: LYZ exhibits a strong antimicrobial effect 

as the monomeric enzyme hydrolyses (EC 3.2.1.17) peptidoglycan linkages between  

N-acetylmuramic acid and N-acetyl-D-glucosamine residues present in microbial cell 

walls. Thus, the structural integrity of the bacterial cell wall is disturbed. LYZ folds as a 

compact orthogonal bundle (Rypniewski et al., 1993) (Figure 3.10). 

LYZ is an extracellular enzyme which exhibits a high stability. The protein shows 

activity over a broad pH range with an optimum at slightly acidic conditions (pH 5.5 to 

pH 6.0) (Xu et al., 2004). Higher ionic strength of the reaction buffer decreases the 

activity (Davies et al., 1969). 

 

 

  

Lysozyme 

from Gallus gallus 

PDB 132L; UniProt P00698 

14 kDa, monomer, pI 9.3 

4 disulfide-bridges 

hydrolase (EC 3.2.1.17) 

Figure 3.10: Structure (Rypniewski et al., 1993) and key data of LYZ. PDB (Protein 

Data Bank; http://www.rcsb.org; Feb 2012; Berman et al., 2000), UniProt (Universal 

Protein Resource; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012). 
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Lactate dehydrogenase from Oryctolagus cuniculus (LDH) 

Lactate dehydrogenase (LDH) (EC 1.1.1.27) catalyzes the conversion of pyruvate to 

lactate. For eukaryotes the main function of LDH is the recycling of oxidized 

nicotinamide adenine dinucleotide (NAD+) in the presence of oxygen limitations (Pineda 

et al., 2007). The analyzed LDH from Oryctolagus cuniculus muscle is a tetrameric 

protein with a monomer mass of 36 kDa and a pI of 8.2 (Sass et al., 1989). A crystal 

structure is not available for this subtype of LDH. Hence, another closely related LDH 

(LDH from human heart) is illustrated in Figure 3.11. 

In vivo activity of LDH is influenced by the substrate pyruvate and the product lactate 

as well as ascorbate (Stambaugh and Post, 1966). The enzyme is most stable at neutral 

pH and low temperatures (Zheng et al., 2004). 

 

 

  

Lactate dehydrogenase  

from Oryctolagus cuniculus 

PDB 1I0Z; UniProt P13491 

36 kDa, tetramer, pI 8.2 

no disulfide-bridges 

oxidoreductase (EC 1.1.1.27) 

Figure 3.11: Structure of the LDH from human heart (Read et al., 2001) and key 

data of the LDH from rabbit muscle. PDB (Protein Data Bank; http://www.rcsb.org; 

Feb 2012; Berman et al., 2000), UniProt (Universal Protein Resource; 

http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012). 
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Lipase from Thermomyces lanuginosus (LIP) 

The lipase from Thermomyces lanuginosus (LIP) is one of the most important industrial 

enzymes. It is mainly applied in washing agents to remove oils and fats from fabrics 

(Brzozowski et al., 2000; Jaeger and Reetz, 1998). LIP was one of the first enzymes 

subjected to intensive protein engineering (Danielsen et al., 2001) resulting in more 

stable variants which are commercially available (trade names LipolaseUltra and 

LipoPrime, Novozymes). In this thesis, the wild type LIP (Lipolase, Novozymes) was 

characterized with regard to refolding.  

LIP is a disulfide-bridged monomeric protein with a mass of 29 kDa and a pI of 5.0. The 

hydrolytic enzyme (EC 3.1.1.3) cleaves triglycerides into glycerol and fatty acids. LIP 

features an active center which is covered by an α-helical lid (Figure 3.12). This “closed 

state” of the enzyme is stable in aqueous solution. For catalysis, the lid must be 

displaced to allow the substrate access to the active center (Ollis et al., 1992). The 

activation proceeds quickly in the presence of a partially hydrophobic environment: LIP 

activity increases dramatically at the oil-water interface, a phenomenon known as 

interfacial activation (Derewenda et al., 1994).  

 

 

  

Lipase  

from Thermomyces lanuginosus 

PDB 1TIB; UniProt O59952 

29 kDa, monomer, pI 5.0 

3 disulfide-bridges 

hydrolase (EC 3.1.1.3) 

Figure 3.12: Structure (Derewenda et al., 1994) and key data of LIP. PDB (Protein 

Data Bank; http://www.rcsb.org; Feb 2012; Berman et al., 2000), UniProt (Universal 

Protein Resource; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012). 
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3.3 Experimental design strategies 

Optimization of experimental problems is a challenging task in both engineering and 

science. In principle, two different experimental design strategies exist: statistic and 

stochastic (heuristic) methods. Both aim for an efficient and precise identification of 

optimal solutions inside the problem specific search space. This subchapter introduces 

both strategies and details standard designs and algorithms. 

3.3.1 Statistical design of experiments (DOE) 

Statistic experimental design was established in the 1920s by Ronald Fisher (Fisher, 

1971). Next to the three principles of randomization, replication and blocking, he 

introduced the factorial designs. Response surface methodology (RSM) was the next 

developmental step in the 1950s. Afterwards, the application of design of experiments 

(DOE) spread from the agricultural sciences to industry and engineering. Today DOE is 

widely used, both in the commercial sector and academia (Montgomery, 2009). In 

addition, DOE constitutes an integral part of quality by design principles, which are 

applied for product quality control in industrial production processes (Lasky and Boser, 

1997; Lionberger et al., 2008). 

Statistical DOE is based on a process model (Figure 3.13), which is approximated by 

more or less complex equations. DOE generally aims to optimize this process with 

respect to the output, the so called response variables (Y). Examples of Y are yields, 

product concentrations or costs. While some process variables (or factors) are not 

controllable (zi) and thus kept constant, the other variables (xi) are varied in order to 

obtain an optimized response. 

 

Figure 3.13: General process model with in- and output (Y) and influencing factors. 

Factors are either controllable (xi) or uncontrollable (zi) (Montgomery, 2009). 
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Depending on the problem, the method for experimental design varies greatly. First, the 

process or problem of interest is examined and important factors (controllable and 

significant effect on response) are selected. For simple problems with only one factor 

influencing the response, univariate methods are pursued. However, most problems 

show more complexity and many factors need to be considered. Here, the experimenter 

has the choice between univariate or multivariate DOE approaches (Figure 3.14). 

 

Figure 3.14: Overview of statistical DOE strategies with univariate (left) and 

multivariate methods (right). 

In the classic one-factor-at-a-time approach a series of straightforward univariate 

optimizations are carried out. One factor is varied, subsequently this factor is fixed at 

the optimum and the next factor is varied in turn. Consequently, interactions between 

factors are not considered and only a small part of the experimental space is sampled. 

Therefore, obtaining a global optimum is not assured and strongly dependent on the 

initial conditions. Furthermore, the number of required experiments is higher compared 

to multivariate methods (Montgomery, 2009).  

Multivariate strategies vary several factors simultaneously. Thereby, more information 

can be obtained in less experiments. The advantage of analyzing multiple factors is 

illustrated in Figure 3.15. On the left side (Figure 3.15, A), the one-factor-at-a-time 

approach fails to detect the global optimum because of the interaction between both 

variables. On the right side (Figure 3.15, B), a simultaneous variation of both variables 
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in a factorial design reveals the direction of the global optimum. This optimum can be 

further approximated in a subsequent experiment.  

 

Figure 3.15: Comparison between univariate and multivariate DOE strategies on a 

problem with two interacting variables. The optimum is illustrated with a contour 

plot. (A) one-factor-at-a-time, (B) factorial design, (●) planned experiments. 

This chapter focuses on simultaneous DOE. Alternatives like the simplex method 

(Nelder et al., 1965) will not be detailed here. Simultaneous DOE is characterized by an 

experimental setup with a number of predefined experiments, that are performed in 

parallel at the same time, the so called experimental design. After the experimental 

evaluation, the results are statistically evaluated and if necessary, an additional 

experiment is planned. Statistical DOE is structured into two parts (compare Figure 

3.14): In a first screening experiment, a large number of factors are evaluated in 

relatively few experiments. In the process, variable interactions are usually neglected to 

minimize experimental effort. Afterwards, a statistical analysis identifies the most 

significant factors. If only one variable is important, an univariate optimization is 

applied subsequently. Otherwise, multiple variables and their interactions are analyzed, 

typically with response surface methodology (RSM).  

  

(A) (B) 
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Screening 

Screening methods are mainly based on two-level factorial designs illustrated in Figure 

3.16. Factors are varied in two levels (coded −1 and 1) with the shape of the DOE 

resembling a quadrat (two factors) or cube (three factors).  

 

Figure 3.16: Two-level full factorial designs. (A) Two factors 22, (B) three factors 23,  

(●) planned experiments.  

Full factorial designs 

Full factorial designs contain all possible combinations between the factors (f) and their 

levels (L). All planned experiments (●) of the factorial design are evaluated (see Figure 

3.16). This enables an estimation of both main effects (the factors) and their interactions. 

However, the large experimental effort for processes with many important factors 

(Equation 5), severely restricts the application for screening purposes. Full factorial 

designs are, however, the base for most RSM designs (see optimization section). An 

example for a two-level design is given in the appendix (Table 9.1). In this design,  

8 experiments are necessary to examine three factors. 

           (Equation 5) 

     

 with N number of experiments - 

  f factors  - 

  L level (two is standard for 

screening methods) 

- 

     

 

(A) (B) 
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Fractional factorial designs 

For screening purposes, only a fraction of the above-mentioned full factorial design is 

evaluated experimentally. Consequently, some information is lost and not all main and 

interaction effects can be estimated separately. Therefore, in most cases interactions are 

neglected for analysis. The experimental effort is much smaller compared to full factorial 

designs (Equation 6).  

          (Equation 6) 

     

 with v fraction of the full factorial - 

     

An example for a fractional factorial two-level design is given in the appendix (Table 

9.2). Here, 8 experiments are necessary to examine four factors. Thus, half of the 

experiments of the full factorial design are evaluated. 

Plackett-Burman designs 

Plackett-Burman designs are a derivate of fractional factorial designs developed by 

Plackett and Burman (1946). These designs display a very low experimental effort, as k 

factors can be studied in N = k + 1 experiments. Hence, they are ideal for large screening 

experiments. An example for a Plackett-Burman design with 7 factors is depicted in the 

appendix (Table 9.3). Here 8 experiments are necessary to analyze 7 factors. Thus, the 

experimental effort is very low compared to the 27 = 128 required experiments for the 

full factorial design (Equation 5). The method to construct Plackett-Burman designs 

with a differing number of factors is detailed in Montgomery (2009). 

The loss of information due to the limited number of performed experiments is an 

embedded disadvantage of these design. In contrast to normal fractional factorial 

designs, Plackett-Burman designs cannot be represented as cubes and often depict 

messy alias structures (Montgomery, 2009). For practical purposes, so called dummy 

factors are often defined in order to obtain an estimation of experimental error variance. 

Therefore, the number of necessary experiments will be slightly larger. Typically 

N = k + 4 experiments are needed (Weuster-Botz, 2000). 
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Factorial designs with mixed levels 

Naturally, real-world problems often demand modifications to the previously detailed 

theoretical designs. A common issue are processes, in which one factor needs to be varied 

in more than two levels. This can be accomplished by combining two-level factors into 

one overall factor (Table 3.4). However, this approach is only straightforward and simple 

to use for full factorial designs. Mixed fractional factorial or Plackett-Burman designs 

should be used very carefully, as alias matrices get more complicated and the relative 

variance of factors can pose problematic (Montgomery, 2009).  

Table 3.4: Mixed-level designs. The use of two-level factors to form a three-level factor 

(Montgomery, 2009). 

Two-level factor Three-level 

factor 

−                 − x1 

+                 − x2 

−                 + x2 

+                 + x3 

  

D-optimal designs 

D-optimal designs are model-specific and thus able to address some of the limitations of 

the previously discussed design types. In essence, knowledge of the experimental domain 

can be readily integrated into the optimization: It is possible to generate designs with 

custom models, in which some factors interact and others do not. Furthermore, designs 

with mixed levels (compare Table 3.4) are easier to realize and statistically more sound, 

as the relative factor variances of the optimized model are equal in most cases 

(Montgomery, 2009).  

For screening purposes, D-optimal designs are based on a linear regression model with 

first order terms (main effects) (Equation 7). They examine k factors in N ≥ k + 1 

experiments. Hence, the experimental effort is comparable to Plackett-Burman designs. 
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       ∑      
(Equation 7) 

     

 with y response variable - 

  xi input variables - 

  b0,bi  zero and first order coefficients - 

     

D-optimal designs are generated using a search algorithm and not based on orthogonal 

matrices. In a first step, an initial design matrix X is generated. Afterwards, an iterative 

search algorithm minimizes the variance of the model regression coefficients 

(covariance). This is equivalent to maximizing the determinant D = |XTX|, where X is 

the design matrix of model terms (columns) evaluated at the different experimental 

conditions (rows). Most algorithms either exchange entire rows or single elements of X. 

Both, in the initial design generation and in the incremental change of the search 

algorithm, random effects are observed. Consequently, parameter estimates may be 

locally, but not globally, D-optimal. Most publications recommend running the design 

algorithms multiple times and then selecting the best design. Additionally, unlike the 

previously discussed designs, D-optimal designs are not based on orthogonal design 

matrices. Therefore, parameter estimates may be correlated (Dejaegher and Heyden, 

2011; Montgomery, 2009). 

Supersaturated designs 

All above-mentioned experimental designs are saturated, that is k factors are examined 

in N > k + 1 experiments. Another recent class of DOE uses even less experiments, hence 

they are commonly called supersaturated designs (Sun et al., 2011). Supersaturated 

designs contain the absolute minimum of necessary experiments. Consequently, even 

their main effects are confounded and cannot be estimated unconfounded anymore. 

Supersaturated designs are only sensible with regards to very large screening 

experiments. In this case the “sparsity of effect principle” often applies: Most of the 

examined factors have no significant impact on the response, especially in large 

screening experiments with very many factors. Supersaturated design construction is 

controversial, in general they are either generated from heuristic local search algorithms 

or are based on one of the above-mentioned designs (Dejaegher and Heyden, 2011; Sun et 

al., 2011). 

Optimization 

The screening experiments (previous section) represent only the first step with regard to 

process optimization. The most important factors, which were identified in the screening 
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are subsequently subjected to a more detailed analysis in order to find the optimal 

conditions for this subset of factors. For this application, response surface methodology 

(RSM) is predominant (Montgomery, 2009). 

RSM describes the response (for example yields or product concentrations) as a function 

of the analyzed factors, enabling a visualization of the response in the experimental 

design space. The differences to the previously discussed screening designs are the 

reduced number of factors and the model complexity (Equation 7). RSM models typically 

include interaction and second order (quadratic) terms (Equation 8). 

       ∑     ∑      
  ∑∑         (Equation 8) 

     

 with xi, xj input variables - 

  b0, bi, bi∙i, 

bi∙j 

zero, first, second order and 

interaction coefficients 

- 

     

Standard experimental designs for RSM are symmetrical and based on full factorial 

designs (Figure 3.17, A). Central composite designs are generally the method of choice. 

They contain a two-level full factorial design (the cube), a star design and a centre point. 

Thus, N = 2k + 2k + 1 experiments are needed for k factors. While the points of the full 

factorial design describe a cube at factor levels of −1 and 1, the points of the star have a 

different distance (−α / +α) to the centre point, which is situated at zero. Several different 

designs with varying α exist. The circumscribed design (α > 1) is most common. This 

design type is illustrated for three factors in Figure 3.17. The respective design matrix 

for this example is depicted in the appendix (Table 9.4).  

 

Figure 3.17: (A) Two-level full factorial design. (B) Circumscribed central composite 

design for response surface methodology with three factors. (●) planned experiments. 

(A) (B) 
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Other design types include inscribed (α < 1) and faced (α = 1) star points. While 

circumscribed RSMs offer a good accuracy over the entire design space, inscribed designs 

are better over the central subset. Faced designs are in overall good, but the quadratic 

coefficients are poorly estimated. Values for α are dependent on the number of analyzed 

factors (k): |α| = (2k)0.25. Other symmetrical designs include Box-Behnken and Doehlert 

(uniform shell), which are a less popular choices (Dejaegher and Heyden, 2011; 

Montgomery, 2009). Asymmetrical designs for specific problems can be generated by the 

D-optimal method, analogue to the D-optimal screening design. Naturally, a more 

complex model with interaction and quadratic terms is used for optimization purposes 

(Equation 8). Therefore, far more experiments are required. 

Concluding remarks 

Statistical design of experiments (DOE) is based on simplified process models, in which a 

variable of interest (response) is described by a function of factors. Generally, the aim is 

to optimize this response by varying the factors in a defined set of experiments. Due to 

the drastically increasing complexity for problems with many factors, a two-step 

procedure is typically used: In a first set of experiments, the statistical DOE is confined 

to linear effects. The aim is to identify the most important factors with the least possible 

experimental effort. In a second set of experiments, this subset of factors is then 

optimized. In this step, the process model incorporates both interaction and quadratic 

effects.  

 

3.3.2 Stochastic optimization strategies for experimental design 

Stochastic optimization and global search algorithms are standard methods in 

informatics, engineering and related sciences (Bianchi et al., 2008). Various heuristic 

optimization strategies like ant colony optimization, evolutionary algorithms, or particle 

swarm optimization are applied routinely, especially in multi-objective optimization or 

for problems with complex search spaces. All these approaches are heuristic, as they try 

to examine the search space in an “intelligent way”: They attempt to find optimal 

solutions with minimal effort. Marked similarities of all approaches are the stochastic 

aspect of the optimization (there is no guarantee of reaching the global optimum) and the 

efficiency of the optimization process compared to classical approaches (Coello Coello, 

2006). In this chapter, the experimental application of these algorithms as stochastic 
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DOE strategies is in the foreground, the focus lies on multi-objective genetic algorithms 

(GAs). 

Principles of genetic algorithms 

One subtype of heuristic global search algorithms are GAs, which are inspired by 

evolutionary principles. GAs are considered robust and powerful search and optimization 

methods especially for large complex search spaces and multiple objectives (Back et al., 

1997a). In principle, GAs simulate the process of natural evolution starting with a set of 

randomly generated candidate solutions, which iteratively evolve to better solutions 

during the optimization. Typically, the following nomenclature is used for GAs: 

 A candidate solution is termed individual. 

 The set of individuals is called population. 

 One iteration of the algorithm is called a generation (GEN). 

The basic structure of a GA is depicted in Table 3.5. In short, the GA maintains a set of 

feasible solutions, which change iteratively in each generation. After a number of GENs 

the GA converges and possibly, but not necessarily finds the global optimum. In order to 

work correctly, a balance is necessary between selection and evolutionary pressure on 

the one hand and maintenance of variance on the other hand: Individuals with low 

scores of the objective functions are removed from the population, while high scoring 

individuals are retained and hence reproduce. The aim is to narrow the search space to 

particularly promising areas and to increase the average quality within the population. 

However, the variance of the population has to be retained at the same time in order to 

avoid local optima and successfully identify the global optimum. This is achieved 

through mutation and recombination. 
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Table 3.5: General structure of a genetic algorithm (GA) (Back et al., 1997a). 

Pseudo code Comment 

1. t := 0 Starting point 

2. initialize P(t) Generate (random) first population (P). 

3. evaluate P(t) Evaluate objective function values of all individuals. 

4. while not terminate do Iterate the following steps until a termination criteria 

is achieved. 

     5. t := t + 1 Next iteration step, increase iteration numerator. 

     6. select P(t) from P(t − 1) Select subset from the previous population. 

     7. vary P(t) Apply mating, recombination and mutation operators 

to generate a new population. 

     8. evaluate P(t) Evaluate objective function values of all individuals. 

9. end Terminate if termination criteria is true. 

  

Search, decision and objective space 

GAs typically operate in three different spaces (Figure 3.18):  

 The decision space (X) constitutes the real-world problem, in this thesis, the 

refolding buffer conditions with the various experimental parameters. In analogy 

to evolution, it is also called phenotype space. 

 The search space (I) is an encoded representation (often with reduced order) of 

the decision space in which recombination and mutation takes place. The 

representation of an individual in the search space is called chromosome. The 

entire space is also referred to as genotype space. 

 The objective space (Y) maps the individuals according to the objective functions 

and is decisive for fitness assignment and selection, which will be discussed later. 

During optimization, high-quality individuals are selected on basis of the objective 

function (f). For stochastic DOE, the experimental evaluation itself serves as the 

objective function. Hence, the optimization is not based on a simplified model (compare 

statistical DOE, section 3.3.1). Fitness assignment and the following selection are 
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entirely based on the obtained experimental data (y), representing the objective space 

(Y). 

 

Figure 3.18: Standard spaces used for GAs. The search space (I) with the individual 

solutions (i), the decision space (X) with the decision vectors (x) and the objective 

space (Y) with the objective vectors (y). Grey shading illustrates the different 

structure and dimensional properties of the spaces. Mapping (m) and objective (f) 

functions connect the spaces (Zitzler, 1999). 

As mentioned before, the GA is not working in the decision space (X) itself. Instead, the 

experimental problem is encoded, typically in form of a bit string (Back et al., 1997a). All 

operations of the GA are applied to this encoded version of the problem. A decoder or 

mapping function (m) is necessary to map the search space on to the decision space. 

Practically, the decoder translates the individual (i), a bit string, into a decision vector 

(x). This vector describes one experiment, for example in this thesis, one refolding 

condition (one unique combination of pH and refolding additives).  

The encoding of the problem has a strong impact on the results and a well-suited genetic 

representation (chromosome) is essential for good performance (Back et al., 1997a). A 

binary representation is often the method of choice, as it is (for most problems) ideal in 

view of the schema theory (Rudolph, 1994; Schmitt, 2001). The schema theory analyzes 

the behavior of the chromosome during recombination. It observes how the chromosome 

changes: which subsets (schema) are retained and what is altered. Evolution is largely 

attributed to the augmentation and recombination of these schemes, which are also 
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referred to as building blocks. Mutation happens on the lowest tier (one bit), but the 

overall optimization is based on the larger subsets (building blocks), that are retained 

and rearranged during the optimization. This represents a form of dimensional 

reduction, as the real variables are mapped into a virtual space with reduced order. 

Hence, GAs are typically considered to be a good choice for complex, multidimensional 

problem spaces (Back et al., 1997a; Weuster-Botz, 2000).  

Although, the binary representation is widespread and often considered standard, 

various other options exist. These are important if the problem at hand is not well-suited 

for a binary representation (encoding function to complex) or a problem-related, more 

natural representation is preferred. In these cases, other evolutionary algorithms 

(evolutionary programming and evolution strategies) offer suitable alternatives to GAs 

(Back et al., 1997a; Van Veldhuizen and Lamont, 2000). Another concept are hybrid 

evolutionary algorithms, which combine the efficiency of a heuristic method with a 

classic search algorithm for a finer resolution of the optimal region (Grosan and 

Abraham, 2007). 

Selection for multi-objective optimization: the pareto principle 

Next to the genetic representation of the problem, several other factors drastically 

influence the optimization success. Most important are the selected objective functions 

together with the fitness assignment and the selection procedure. In this thesis a multi-

objective GA was used, the strength pareto evolutionary algorithm (SPEA 2), which is 

able to optimize several variables in parallel. 

Multi-objective optimization is characterized by a subset of optimal solutions, as it is not 

possible to select the best candidate if more than one objective is considered. One of the  

most popular concepts to compare these optimal solutions is the pareto principle, 

illustrated in Figure 3.19 (Zitzler, 1999).  
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Figure 3.19: Schematic example of pareto optimality with two objective functions. (○) 

dominated solutions, (●) non-dominated solutions, ( ) pareto front. 

According to the pareto principle, a solution (objective vector, y1) dominates another 

solution (objective vector, y2) in the objective space (Y) if no component of y1 is smaller 

than the corresponding component of y2 and at least one component is evaluated better. 

For two objective functions (compare Figure 3.19), at least one value of either objective 1 

or objective 2 has to be higher and the other one has to be at least equal. The sum of all 

non-dominated solutions in the objective space (Y) is called pareto front.  

The same principle can also be applied on the decision space X, but the differences 

between the two spaces have to be considered. Non-dominated solution vectors (x) may 

be mapped to different objective vectors (y). Therefore, there may be several non-

dominated objective vectors. The set of optimal solutions in the decision space (X) is 

termed pareto set. A globally optimal solution (the global pareto set) is the non-

dominated set in the whole search space (X). The aim of the optimization is to identify 

this set of optimal solutions. However, due to the heuristic nature, it is not guaranteed 

that the GA correctly identifies the global pareto set. A local pareto set is defined as a set 

of solutions (x), for which no objective vector (y) in the neighborhood dominates any 

member of the set (Zitzler, 1999). 

Although the selection process for multi-objective algorithms is typically based on the 

above-discussed pareto dominance, which is used to assign a fitness value for each 

individual, the practical implementation is usually modified. One important addition is 

clustering, which is used to reduce the amount of non-dominated solutions and is applied 

after evaluation dominance and fitness assignment. A reduction is necessary as too 

many individuals could reduce the selection pressure and slow down the optimization 

process (Covas et al., 1999). Specific methods and implementation are dependent on the 

O
b

je
ct

iv
e
 1

 

Objective 2 

dominated  

solutions 



46   Theoretical Background 

algorithm of choice. For details regarding the specific algorithm (SPEA 2) the reader is 

referred to the original literature (Zitzler et al., 2002). 

Recombination 

After the selection of the best (highest fitness values) individuals, a new set of candidate 

solutions is generated by recombination. This procedure is typically divided in three 

parts. In the first step a mating pool is generated, based on the selected individuals of 

the current GEN and optionally an external archive with good solutions from previous 

GENs. Afterwards, it is necessary to determine which individuals recombine with each 

other. A popular method is binary tournament (Zitzler, 1999). Subsequently, operators 

like crossing-over are applied, which recombine the individuals in analogy to basic 

genetic principles. In order to maintain schemes (building blocks) in the optimization, 

single point crossing-overs are typical (Weuster-Botz, 2000). Finally, the variance of the 

above-generated candidate solution is increased by mutation. For a representation as a 

binary string, mutation usually affects each bit individually, this means that each bit 

has a certain probability to be flipped. In practice, methods and implementation are both 

dependent on the algorithm and the encoding of the problem (Zitzler, 1999). In addition, 

other functions may be implemented. A common example is the verification of the new 

candidate solutions to ensure that only novel solutions are evaluated and no experiment 

is repeated.  

Experimental applications: number of experiments and error 

Most GAs focus on pure in silico problems or problems in which a simulation is carried 

out to evaluate the objective function. Thus, the objective function(s) is computationally 

evaluated and real experiments are limited to a validation of the optimal conditions at 

the end. In these cases, experimental effort is a matter of computational time and largely 

neglectable. Therefore, large population sizes and many iterations are the norm. In 

contrast, following criteria have to be considered for experimental stochastic 

optimizations. First, the experimental effort (number of experiments) should be 

minimized, as experiments are the major cost factor. Additionally, a relative high 

experimental error of up 20 % standard deviation is often observed. Finally, complex 

problems with a many variables and possible interactions occur on a regular basis 

(Weuster-Botz, 2000). 
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Concluding remarks 

Genetic algorithms (GAs) are population-based heuristic search methods, that use 

evolutionary principles to efficiently examine the search space in an intelligent way. GAs 

are considered robust and powerful, especially for large complex search spaces and 

multiple objectives (Back et al., 1997a). Typical applications involve in silico problems, in 

which computational time is the only limiting factor. GAs can also be used as a 

stochastic DOE. In this case, the experimental evaluation itself constitutes the objective 

function. The distinguishing feature in comparison to the statistical DOE strategies 

(3.3.1), is the model independence. There is no underlying simplified process model and 

no unimodality assumed. 
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3.4 Black-box models for data analysis 

Models are typically classified according to the amount of available a priori information 

on the analyzed system. In the best case, the system is well understood and the 

knowledge about the functional relations between variables can be used to generate a 

mechanistic model. Thus, the model is only used to estimate unknown parameters. 

However, many problems offer only limited information about the functional relations. 

Hence, both function and parameters have to be estimated. These models are typically 

called black-box models. Two standard approaches will be discussed in this chapter: 

artificial neural networks (ANN), a biologically-inspired method that mimics neural 

processing and bagged decision trees (BDT), an example for ensemble models. 

3.4.1 Artificial neural networks (ANNs) 

Artificial neural networks (ANNs) are applied in virtually every scientific discipline and 

are widely used in industry as well. Traditionally, ANNs focus on three areas: pattern 

recognition, data clustering and function fitting (Meireles et al., 2003).  

Artificial neurons – the processing units of ANNs 

ANNs, like genetic algorithms, belong to the biologically-inspired computing methods. 

ANNs are based on neurons as the individual processing units of the network (Figure 

3.20). Neurons are structured exactly like the biological prototype and characterized by a 

series of weighted (w) inputs (x), a transfer function (f) and one output (y). Incoming 

signals are processed by calculating the weighted sum of all inputs (I). This can be done 

straightforward (Equation 9) or additional weights (bias) can be integrated in this step. 

    ∑      
(Equation 9) 

     

 with I weighted sum of inputs - 

  xi inputs - 

  wi  weights - 
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Figure 3.20: Schematic neuron. Comparison between the biological prototype (A) and 

the artificial model (B) with inputs (dendrites, xi and wi), processing (cell, sum and 

transfer functions) and output (axon, y) (Agatonovic-Kustrin and Beresford, 2000). 

After calculating the net signal (weighted sum of inputs, I), the signal is transformed 

and an output signal is generated. In the biological system, the neuron only responds if a 

certain threshold value is exceeded. In the model, a transfer function (f) transforms the 

net signal into an output (y) with an output value ranging from −1 to 1. A variety of 

transfer functions are illustrated in Figure 3.21. Most common for multilayer networks 

is the log-sigmoid transfer function. 
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Figure 3.21: Standard transfer functions for neurons (Patnaik, 1998) 

Network structure 

Neurons are only the individual processing units of the network. An ANN is structured 

into several layers of neurons interconnected by outputs from neurons of the previous 

layer and inputs to the next layer, each with their respective weights. Various ANN 

structures are used which differ in the number of neurons, the connection formula and 

the training procedure. The general structure of an ANN is the following: 

 Inputs, xi. 

 Input layer, with as much neurons as input variables. 

 Hidden layer(s), one or more layers with varying number of neurons. 

Architecture, size and connectivity is strongly dependent on the problem, the type 

of network used and often subject to iterative changes to optimize the 

performance. The hidden layers represent the processing part of the network. 

Because of the complexity, it is usually regarded as a black-box system. 

 Output layer, with as much neurons as output variables. 

 Outputs, yi. 

A standard ANN network is the feedforward network, also called backpropagation 

network. Its architecture is depicted in Figure 3.22. 
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Figure 3.22: Feedforward ANN with three layers and four input (xi) and two output 

variables (yi) (Patnaik, 1998). 

Training and validation 

For the application, an ANN with a specified structure is first generated and weights (wi) 

are initialized. Afterwards, the network is trained using part of the experimental data. 

In the training process the network weights are adjusted to optimize performance, that 

is the correct prediction of the functional relationship between inputs (x) and outputs (y). 

The usual measure of performance is the mean square error (Equation 10) between the 

network output and the known real output, commonly called target output. 

      
 

 
∑       

 

   

 
(Equation 10) 

     

 with MSE mean square error - 

  Ti target outputs - 

  Ai  network outputs - 

     

A variety of standard numerical algorithms can be used to optimize the network 

performance. Common choices are: Levenberg-Marquardt, gradient descent, gradient 

descent with momentum or scaled conjugate gradient. These optimization methods use 

the gradient of the network performance with respect to the network weights. The 

gradient is calculated using a technique called backpropagation, which involves 

performing computations backward through the network according to Rumelhart et al. 

(1986).  

After training, the network is validated on the part of the dataset, that was not used for 

training purposes. Ratios of 75 % (training) and 25 % (validation) are typical if no 

internal test or cross validation is used. ANN performance in the validation is strongly 
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dependent on the amount of available training data and the division of training and 

validation datasets (Meireles et al., 2003; Patnaik, 1998). Due to their complexity ANNs 

are able to approximate any reasonable function. However, the application of the 

network on new data (generalization) can pose a serious problem. (Meireles et al., 2003; 

Razi and Athappilly, 2005). 

Concluding remarks 

ANNs are biologically-inspired models with wide-spread use in science and industry. 

ANNs mimic neural processing both with regards to the processing unit (neuron) and the 

connectivity. Modeling is based on adjusting the network weights in the training and 

then using the trained network to predict the output for the rest of data (validation). 

While ANNs are considered powerful tools for data mining and modeling, the 

generalization error is often problematic (Razi and Athappilly, 2005). 

3.4.2 Bagged decision trees (BDT) – random forest 

Decision Trees 

Decision trees are a common method in data mining which can be used both for 

classification or regression. In such a tree structure, leaves represent class labels or real 

numbers and branches are logical conjunctions (variable thresholds). The general 

structure of a regression tree is illustrated in Figure 3.23. 

 

Figure 3.23: Exemplary decision tree for a regression problem with two input 

variables (xi), four normal nodes (Δ) and six leaves (○). 
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The generation of the tree model is generally performed top-down by splitting, that is 

introducing branch points (recursive partioning). At each branch point, one of the input 

variables (xi) is selected and an attribute test (below or under threshold) is performed. If 

the test is positive, the tree is split and two subsets are generated. This process is 

repeated until splitting no longer increases the prediction performance (Breiman et al., 

1993). 

Although decision trees have a variety of advantages (simple to understand, no black-

box-model, works with numerical and categorical data) individual trees have serious 

drawbacks in comparison with other modeling approaches. For a comparison to ANNs 

the reader is referred to Razi and Athappilly (2005). However, ensemble systems, which 

are based on many individual trees are far more effective (Breiman, 2001). The concept 

of ensemble models will be discussed in the following. 

Ensemble based systems – bootstrap aggregation 

A recent development in modeling is the concept of combining many individual models 

and using the entire ensemble for prediction. These methods are based on resampling 

techniques like bootstrap aggregating (bagging). Advantages of ensemble systems 

include above all a good generalization performance. The model prediction of new data is 

not as problematic compared to other approaches like ANNs. Individual models show 

different generalization performance. Thus, averaging over all models reduces the risk of 

making a poor choice and the overall generalization errors are typically smaller. In 

addition, ensembles perform better in the absence of adequate training data, that is 

insufficient experimental data or an unsuitable distribution. Resampling techniques can 

be used to obtain overlapping subsets of the available dataset. Afterwards each subset is 

used to train a different individual model. Furthermore, ensemble models are able to 

approximate complex problems with non-linear interactions. A classification problem in 

which a complex decision boundary between class 1 (●) and 2 (○) is approximated with 

an ensemble is exemplified in Figure 3.24. Finally, ensemble systems also perform better 

on too much data or a fusion between different datasets (Polikar, 2006). 

Different methods exist for creating the ensemble. Next to boosting (Freund and 

Schapire, 1997) bagging is the most popular choice. Bagging is generally considered 

superior for datasets with high errors (Breiman, 2001; Polikar, 2006).  
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Figure 3.24: Ensemble classification. (A) Classification problem with two classes 

(● / ○) and a complex decision boundary ( ) that cannot be learned by linear or 

circular classifiers. (B) Ensemble of circular classifiers ( ), which span the decision 

space and allow an approximation of the decision boundary (Polikar, 2006). 

Bagging is based on resampling the dataset by selecting data with replacement. The 

general structure of the algorithm is as follows (Polikar, 2006): 

 Training dataset of size m: (x1, y1), ..., (xm, ym). 

 For i = 1, ..., k 

o Form a bootstrap replicate dataset Si by selecting m random examples 

from the training set with replacement. Hence, the same example may 

appear multiple times in the bootstrap replicate, or not at all. 

o Train one model on Si and obtain the result hi. 

 Combine the models for prediction and obtain the ensemble model (H). For this, a 

variety of averaging function (f) can be applied: H(x) = f(h1(x), ..., hk(x)). 

In principle, resampling techniques like bagging can be used with all modeling 

approaches, including ANNs. However, bagging is especially successful for decision 

trees. In this case the ensemble of bagged decision trees is also called random forests 

(Breiman, 2001). 
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Concluding remarks 

Decision trees are an intuitive modeling approach in which the dataset is recursively 

partitioned in order to obtain a tree like structure for classification or prediction. They 

are especially powerful in combination with resampling techniques, like bagging, which 

are used to create an ensemble of individual models (random forest). This ensemble 

model is then used for prediction by averaging the output of the individual models to 

generate an overall prediction. In comparison to ANNs, especially the good performance 

on inadequate data (not enough data or bad distribution) and the good generalization 

performance (prediction of new data) distinguishes this modeling approach. 

 



56   Material and Methods 

 

4 Material and Methods 

This chapter describes the experimental and computational methods used during this 

project. Abbreviations and material are listed in the appendix. First, the experimental 

methods are depicted: Section 4.1 describes the protein refolding experiments that were 

integral for this project. Subsequently, methods for protein analytics and molecular 

biology are explained in 4.2 and 4.3, respectively. Section 4.4 sums up basic calculations 

used in this thesis. Finally, the computational methods used for experimental design and 

modeling are detailed in section 4.5 and 4.6. 

4.1 Protein refolding 

Protein refolding was optimized in 96-well plate format. After denaturation and 

refolding, the reaction yield was determined using a functional assay. Proteins were 

either purchased in purified form, provided by the cooperation partner (Department 

Chemie, Center for Integrated Protein Science, Technische Universität München) or 

expressed in Escherichia coli (E. coli) (Table 4.1). 

Table 4.1: Overview of analyzed proteins (cooperation partner*: Department Chemie, Center 

for Integrated Protein Science, Technische Universität München). 

Abbr. Protein Source 

GFP Green fluorescent protein from Aequorea victoria Cooperation partner*  

GLK Glucokinase from Escherichia coli Cooperation partner* 

GLR Glutathione reductase from Saccharomyces cerevisiae Sigma-Aldrich (G3664) 

LYZ Lysozyme from Gallus gallus Sigma-Aldrich (L7651) 

LDH Lactate dehydrogenase from Oryctolagus cuniculus Sigma-Aldrich (61309) 

LIP Lipase from Thermomyces lanuginosus Sigma-Aldrich (L0777)  

or expressed in E. coli 
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4.1.1 Denaturation 

Proteins were denatured in the presence of 6 M guanidine hydrochloride (Gdn∙HCl) at 

room temperature (RT). Specific denaturation conditions were taken from the literature 

and are listed in Table 4.2. Denaturation was verified via the respective functional assay 

and circular dichroism spectroscopy (CD) for the lipase from Thermomyces lanuginosus 

(LIP). 

Table 4.2: Protein denaturation conditions (DTT, dithiothreitol; EDTA, ethylenediamine-

tetraacetic acid; PB, sodium phosphate buffer; TRIS, tris-hydroxymethyl-aminomethane). 

Protein Denaturation buffer Time c, g L−1 Reference 

GFP 50 mM TRIS∙HCl, pH 7.5, 

6 M Gdn∙HCl 

Overnight 1.0 (Dashivets et al., 2009) 

GLK 50 mM TRIS∙HCl, pH 8.0, 

6 M Gdn∙HCl, 5 mM DTT 

Overnight 0.4 (Dashivets et al., 2009) 

GLR 100 mM PB, pH 6.9, 6 M 

Gdn∙HCl, 5 mM DTT 

3.0 h 0.2 (Hevehan and De Bernardez 

Clark, 1997) 

LYZ 100 mM PB, pH 6.9, 6 M 

Gdn∙HCl, 5 mM DTT 

3.0 h 1.0 (Hevehan and De Bernardez 

Clark, 1997) 

LDH 200 mM PB, 1 mM EDTA, 

6 M Gdn∙HCl, 0.1 mM DTT 

0.5 h 0.1 (Rudolph et al., 1977) 

LIP 100 mM TRIS∙HCl, pH 7.5, 

6 M Gdn∙HCl (or 10 M 

urea), 5 mM DTT 

2.5 h 0.5 (Rudolph and Lilie, 1996) 

      

4.1.2 Refolding 

Protein refolding was optimized regarding the refolding buffer composition. In the 

conducted experiments protein concentration, temperature, time and stirring were 

standardized and kept constant. For refolding, the denatured protein was rapidly diluted 

15-fold to 200-fold to a final concentration of 1 mg L−1 to 33 mg L−1 in the respective 

refolding buffer. Very low protein concentrations between 1 mg L−1 and 5 mg L−1 were 

desired to reduce aggregation. However, LIP and GLK required higher concentrations, 

as the functional assays were not as sensitive. Specific refolding conditions are listed in 

Table 4.3. 
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Table 4.3: Protein refolding conditions I – Standardized variables. 

Protein Dilution 

step 

c, mg L−1 Temp, °C Time Reference 

GFP 100 4.0 10 Overnight (Dashivets et al., 2009) 

GLK 50 20.0 10 Overnight (Dashivets et al., 2009) 

GLR 200 1.0 20 Overnight (Hevehan and De Bernardez 

Clark, 1997) 

LYZ 200 5.0 20 Overnight (Hevehan and De Bernardez 

Clark, 1997) 

LDH 68 1.4 20 2.0 h (Rudolph et al., 1977) 

LIP 15 33.0 4 Overnight (Rudolph and Lilie, 1996) 

      

In contrast to the standardized variables, the refolding buffer composition was optimized 

with a genetic algorithm (GA). For this purpose experimental parameters were extracted 

from the refolding literature and combined with the information on approximately 1100 

refolding experiments from the REFOLD database (Amin et al., 2006; Buckle et al., 

2005) to establish a comprehensive experimental design (summarized in Table 4.4). 

Functionally related substances and conditions were subgrouped in six different classes. 

 Buffer: The first class referred to the pH and the buffering agent. TRIS∙HCl and 

PBs were most prominent in REFOLD (Amin et al., 2006; Buckle et al., 2005). 

Nevertheless, hydroxylethyl-piperazine-ethanesulfonic acid (HEPES) and 

morpholino-propanesulfonic acid (MOPS), two other common organic buffers, 

were also included. Concentrations were varied between 20 mM to 100 mM for 

phosphate, HEPES and MOPS. For TRIS∙HCl up to 1.25 M were examined, 

because it was previously employed as a refolding additive (Rudolph and Lilie, 

1996). With regard to the pH, a range between pH 6.0 and pH 9.5 covered most 

published refolding experiments (Amin et al., 2006; Buckle et al., 2005). In 

addition, only conditions within the buffer range were permitted for PB (pH 6.0 to 

pH 7.5) and TRIS∙HCl (pH 7.0 to pH 9.5). 

 Salts: NaCl was used as the primary compound to vary the ionic strength of the 

buffer. Furthermore, the addition of small concentrations (20 mM) of KCl was 

analyzed. 
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 Additives: This class was composed of refolding additives, including glycerol and 

polyethylene glycol (PEG 4000) as well as three commonly used amino acids 

(arginine, glutamine and glycin). A later version of the stochastic optimization 

also incorporated glutamate. 

 Mineral ions: Divalent metal cations (Cu2+ Zn2+ Mg2+ Mn2+ sulfates) utilized in 

past refolding experiments (Armstrong et al., 1999) and alternatively, EDTA 

formed the fourth class.  

 Detergents: Eight detergents, including different detergent families (zwitterionic, 

ionic and nonionic) in concentrations between 0 and 4/3 of the critical micellar 

concentration (CMC) were incorporated in the optimization. CMCs are detailed in 

the appendix (Table 9.17). In addition, a non-detergent sulfo-betaine that was 

previously utilized in refolding screens (Qoronfleh et al., 2007; Willis et al., 2005) 

was included. 

 Redox agents: As disulfide bonds play a central role in protein structure, common 

reducing and oxidizing agents like DTT, tris-carboxyethyl-phosphine (TCEP), 

reduced L-glutathione (GSH) and oxidized L-glutathione (GSSG) formed the last 

class. 

A refolding condition consisted of at least one pH and one buffer substance, for example 

TRIS∙HCl, pH 8.0. Additionally, substances from other classes could be included, for 

example TRIS∙HCl, pH 8.0 with 100 mM NaCl, 100 mM arginine, 5 mM DTT. 

Furthermore, combinations within several classes were possible. These were annotated 

with “and”, not possible combinations with “or”. The specific encoding of the refolding 

conditions is detailed in 4.4.3. 
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Table 4.4: Protein refolding conditions II – Parameters of the stochastic optimization. The 

general setup was modified in the course of this project, changes are highlighted with new 

values in brackets (*).  

Parameter / substance Min Max Unit 

pH 6.0 9.5 - 

Buffer substances: no combination 

no combination PB 20 100 mM 

HEPES 20 100 mM 

MOPS 50 100 mM 

TRIS∙HCl* 20 1250 (1000) mM 

Salts: combination of NaCl and KCl 

NaCl 0 350 mM 

KCl* 0 20 (80) mM 

Additives: combination (glycerol or PEG) and (arginine and glutamine and glycine) 

Glycerol 0 15.0 % v/v 

PEG 4000 0 0.2 % w/v 

Arginine 0 750 mM 

Glycine 0 150 mM 

Glutamine 0 100 mM 

(Glutamate)* 0 - (200) mM 

Cofactors: no combination 

(Cu2+ Zn2+ Mg2+ Mn2+)*
 

0 5 (100) mM (µM) 

EDTA* 0 2 (10) mM 

Detergents: no combination 

zwitterionic 

CHAPS
 

0 11 mM 

ZWITTERGENT 3-12
 

0 4 mM 

NDSB 201 0 1500 mM 

nonionic    

TWEEN 20
 

0 80 µM 

TRITON-X 100
 

0 800 µM 
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Table 4.4 (continued): 

Parameter / substance Min Max Unit 

BRIJ 35
 

0 120 µM 

ionic 

SDS
 

0 12 mM 

SDC*
 

0 8 (-) mM 

Redox agents: combination DTT or TCEP or (GSH and GSSG)* 

DTT 0 10 mM 

TCEP 0 10 mM 

GSH 0 5 mM 

GSSG 0 5 mM 

PB, sodium phosphate buffer; HEPES, hydroxylethyl-piperazine-ethanesulfonic acid; MOPS, 

morpholino-propanesulfonic acid; TRIS, tris(hydroxymethyl)aminomethane; PEG, poly-

ethylene glycol; (Cu2+ Zn2+ Mg2+ Mn2+) sulfates; EDTA, ethylenediaminetetraacetic acid; 

CHAPS, cholamidopropyl-dimethylammonium-propanesulfonate; ZWITTERGENT 3-12, 

dodecyl-dimethyl-ammonio-propanesulfonate; NDSB 201, non-detergent sulfobetaine 201; 

TWEEN 20, polyethylene glycol sorbitan-monolaurate; TRITON-X 100, polyethylene glycol 

tert-octylphenyl ether; BRIJ 35, polyethylene glycol dodecyl ether; SDS, sodium dodecyl 

sulfate; SDC, deoxycholic acid sodium salt; DTT, dithiothreitol; TCEP, tris-carboxyethyl-

phosphine; GSH, reduced glutathione; GSSG, oxidized glutathione. 

 

For refolding, denatured proteins were rapidly diluted using the respective refolding 

buffer. In addition, control reactions with native, non-denatured protein were carried 

out. Each generation of the stochastic optimization contained 22 unique, previously 

untested refolding conditions. Next to these 22 conditions, two controls were measured in 

all experiments: The buffer of the functional assay and a refolding condition from the 

literature. The refolding reaction was carried out in 2.2 mL 96-well plates (Sarstedt). 

Figure 4.1 displays the “one-plate” layout for LDH and LIP. Other proteins were 

measured on two plates with multiple evaluations of the native activity and an 

additional control without any protein. 
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Figure 4.1: Experimental setup of the 96-well plate refolding experiments. (1 to 22) 

refolding conditions of the current generation, (c) native control, the buffer of the 

functional assay, (c*) refolding control from the literature. 

4.1.3 Functional assays 

In order to quantify the refolding exactly, a protein-specific functional assay was applied 

after the refolding screen. All measurements were carried out in 96-well plate scale in a 

GeniosTM or Infinite® M200 plate reader (Tecan), unless otherwise specified. Samples 

were taken directly from the 2.2 mL 96-deepwell plates with a multichannel pipette and 

transferred to a 300 µL 96-well plate for the protein-specific assay. GFP, GLK, GLR and 

most of the LYZ measurements were carried out by the cooperation partner. 

GFP: The activity, that is the structural integrity of GFP variant F64L and S65T (Topell 

et al., 1999) was determined by fluorescence emission of the folded and oxidized protein 

(Dashivets et al., 2009). Measurements were carried out in a SPEX II fluorescence 

spectrometer (Jobin Yvon) with a fixed excitation wavelength of 395 nm and an emission 

scan between 430 nm and 550 nm. The signal intensity of the emission peak (508 nm) 

was used to calculate refolding yield. 

GLK: ATPase activity was measured in an ATP (adenosine-triphosphate) regenerating 

system (Figure 4.2) coupled to NADH consumption, which was monitored at 340 nm 

(Nørby, 1988). The measurement was carried out in the presence of 2.5 mM ATP and 

800 µM D-glucose. In addition, the assay contained 2 mM phosphoenolpyruvate (PEP), 

0.2 mM NADH, 2 U mL−1 pyruvate kinase (PK), 10 U mL−1 LDH and 15 mM ammonium 

sulfate. 
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Figure 4.2: ATP regenerating system for the glucokinase activity assay (Pi, hydrated 

inorganic phosphate). 

GLR activity was determined by measuring the decrease of the cosubstrate NADPH at 

340 nm (Mavis and Stellwagen, 1968). The assay was adjusted to 96-well plates and 

250 µL total volume. 25 µL sample were added to 225 µL master mix (PB, NADPH, 

GSSG, EDTA). The reaction mix contained 75 mM PB, pH 7.6, 2.6 mM EDTA, 1 mM 

GSSG and 0.09 mM NADPH. After mixing, kinetics were measured at 340 nm at 25 °C 

for 15 min. 

LYZ activity was analyzed using the EnzChek® lysozyme assay kit (Invitrogen) based on 

fluorescence labeled Micrococcus lysodeikticus cell walls. Measurements were carried out 

in black 96-well plates in a total volume of 100 µL. 50 µL sample were added to 50 µL 

reaction mix (100 mM PB, pH 7.5, 100 mM NaCl, 25 mg L−1 substrate). After mixing, the 

fluorescence (excitation 485 nm, emission 535 nm, gain 76, flashes 3, integration time 

40 µs) was measured for 15 min at 37 °C. The increase of fluorescence was proportional 

to LYZ activity. 

LDH activity was determined by measuring the decrease of the substrate NADH at 

340 nm (adapted from Stambaugh and Post, 1966). The assay was performed in 96-well 

plates and 250 µL total volume. First, a master mix with 160 mM TRIS∙HCl, pH 7.3, 

6 mM NADH and 50 mM pyruvate was generated with the stock solutions (Table 9.22). 

200 µL master mix were pipetted in each well and baseline activity was measured in an 

El 808 Ultra Microplate Reader (BioTek) at 340 nm for 12 min. Subsequently, 50 µL 

sample were added and mixed. Finally, reaction kinetics were measured at 340 nm for 

12 min at RT. 

LIP activity was measured with a 4-nitrophenyl palmitate based assay (Liu et al., 2006) 

with 0.25 g L−1 nitrophenyl palmitate, 0.6 g L−1 gum arabic and 2.9 g L−1 Triton X-100. 

The assay was performed in 96-well plates and 270 µL total volume buffered with 1.45 M 

TRIS∙HCl, pH 7.5. Immediately before measurement, solution B (157.5 µL per well) and 
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solution A (22.5 µL per well) were mixed in a 300 µL 96-well plate (Nunc, Thermo 

Scientific). Afterwards, baseline absorbance at 410 nm was measured for 5 min at 37 °C. 

Subsequently, 90 µL sample were added. After mixing, kinetics were measured at 

410 nm at 37 °C for 15 min. Stock solutions A and B are listed in the appendix (Table 

9.23). 

4.1.4 Circular dichroism spectroscopy 

Protein denaturation was verified with the respective functional assay (see section 4.1.3). 

Circular dichroism spectroscopy (CD) was used as an additional, structure-based 

method. CD measurements were carried out in a J-715 spectropolarimeter (JASCO). 

First, the protein was diluted into the appropriate buffer (native or denaturizing 

conditions) and incubated at RT for 2.5 h. Second, the sample was transferred into a 

130 µL cuvette cell (106-QS with detachable window, Hellma Analytics). CD spectra 

between 260 nm and 190 nm were recorded using default parameter settings. For 

analysis the blank spectra of the buffer was subtracted from the native and denatured 

spectra. The molar ellipticity θMRW was calculated as follows:  

        
         

     
 

(Equation 11) 

     

 with θMRW molar ellipticity deg cm2 dmol−1 

  MRW mean residue weight - 

  θd ellipticity deg 

  λ wavelength - 

  n number of peptide bonds - 

  c protein concentration mol L−1 

  d cuvette width cm 

     

 

 

4.2 Protein analytics 

Proteins were characterized regarding purity and concentration using a variety of 

standard analytical methods. 

4.2.1 Protein concentration determination 

Protein concentration was determined with three different methods. For the Bradford 

assay (Bradford, 1976), 30 µL sample and 1.5 mL Bradford solution (Sigma-Aldrich) 

were mixed and incubated at RT for 5 min. Afterwards, the extinction at 595 nm was 
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determined in a UV/VIS photometer (spectral photometer BioMate 3, Thermo Scientific). 

The BCA protein assay (Smith et al., 1985) was performed using the BCA protein assay 

kit (Thermo Scientific) on a 225 µL-scale. For both assays a BSA standard was used to 

obtain concentration values. The extinction at 280 nm (Ennis and Layne, 1957) was 

determined in a UV/VIS photometer with a 1 mL fused glass cuvette. Protein extinction 

coefficients ε and molecular mass M were calculated with the online tool ProtParam 

(http://web.expasy.org/protparam; Feb 2012; Wilkins et al., 1999). Subsequently, protein 

concentrations were calculated according to the Lambert-Beer law (Equation 12). 

        (Equation 12) 

     

 with E extinction - 

  c concentration mol L−1 

  ε extinction coefficient mol L−1 cm−1 

  d cuvette width cm 

     

 

4.2.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis  

(SDS-PAGE) 

Protein purity was analyzed via SDS-PAGE (Fling and Gregerson, 1986; Laemmli, 1970) 

with a 3 % stacking gel and a 12.5 % separating gel. After adding 5 x Laemmli buffer the 

samples were incubated at 95 °C for 5 min. Subsequently, the gel was loaded with 30 µL 

sample. Roti®-Mark standard (14 kDa to 212 kDa, Carl Roth) was used for size 

determination. Electrophoresis was carried out in running buffer (0.25 M TRIS∙HCl, 2 M 

glycine pH 8.8, 1 % SDS) at 30 mA and a maximal power of 300 W. Afterwards, the gels 

were stained with Coomassie (Fairbanks et al., 1971) and digitized. Staining solutions 

and buffers are listed in the appendix (Table 9.18 and Table 9.19). 

4.2.3 Protein dialysis 

Purchased lipase from Thermomyces lanuginosus (LIP, Lipolase™, Sigma-Aldrich) was 

dialyzed in order to remove stabilizing agents (propylene glycol, CaCl2). 10 mL protein 

solution were dialyzed (1 to 500 dilution) overnight using a 14 kDa molecular weight cut 

off in dialysis buffer (0.1 M TRIS∙HCl, pH 7.5) at 4 °C. 
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4.3 Molecular biology 

LIP was purchased from Sigma-Aldrich in soluble form. In addition, the protein was also 

expressed in E. coli. After oligomer assembly, the two constructs (with and without His-

tag) were expressed using standard procedures in E. coli BL21 (DE3). Subsequently, 

both proteins were purified and evaluated in terms of refolding. 

4.3.1 Design of DNA oligomers  

DNA oligomers were designed using DNAWorks (http://helixweb.nih.gov/dnaworks; 

Feb 2012; Hoover and Lubkowski, 2002;) with standard parameter settings and the 

E. coli class II codon frequency table. The first and last oligomers included restriction 

sites and an extension for enzymatic digestion. In addition, the terminal codon 36 was 

modified manually: variant A (containing a GSG linker and C-terminal His-tag) and 

variant B (wild type sequence, including a stop codon). All oligomers are listed in the 

appendix (Table 9.9).  

4.3.2 Assembly of DNA oligomers 

DNA oligomers were purchased from Eurofins MWG Operon (grade: salt free, scale: 

0.01 µmol.) The oligomers were dissolved in ddH2O and diluted to a final concentration of 

150 µM. Afterwards, oligomers were pooled (oligomer 1 to 35 and either oligomer 36 a or 

b) and the mix diluted to a final concentration of 25 µM. In a first polymerase chain 

reaction (PCR) using the Phusion polymerase (New England Biolabs) the oligomers were 

assembled (Table 9.9) Afterwards the products were amplified in a second PCR (Table 

9.11). The products were subsequently purified with the GeneEluteTM PCR clean-up kit 

(Sigma-Aldrich). Yield and length were evaluated by agarose gel electrophoresis using 

1 % v/v agarose and 0.4 mg L−1 ethidium bromide staining. Electrophoresis was carried 

out in a TAE buffer system (Table 9.20) at 120 V. 

4.3.3 Ligation and transformation 

The PCR product and vector (pET21-a +, Novagen) were digested using 10 U restriction 

enzymes (NdeI and XhoI) according to manufactures instruction in 20 µL or 50 µL total 

volume. Subsequently, the vector was dephosphorylated in 70 µL total volume with 10 U 

antarctic phosphatase. All enzymes were purchased from New England Biolabs (Table 

9.12). 

Prior to ligation, the digested PCR product and vector were purified using the 

GeneEluteTM PCR clean-up kit (Sigma-Aldrich). Subsequently, the ligation was carried 
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out with the Quick LigationTM kit (New England Biolabs). Thereafter, E. coli DH5α 

(Invitrogen) was transformed using the ligated vectors: 200 µL of competent cells were 

thawed on ice. 10 µL ligation product were added and the cells were incubated on ice for 

30 min. After a heat shock for 30 s at 42 °C 600 µL NZY medium were added. The 

samples were incubated for 1 h at 37 °C. Subsequently, the cells were gently pelleted 

(1000 g for 5 min) and spread on Luria broth (LB)-plates containing 50 mg L−1 ampicillin 

for selection. Cloning success was evaluated by colony PCR (Table 9.14). For this purpose 

a swap of the colony was suspended in 10 µL ddH2O and used as template in a three step 

PCR using Taq polymerase (New England Biolabs). Positive clones were cultivated in a 

5 mL preculture with LB medium containing 50 mg L−1 ampicillin at 37 °C and 250 rpm 

overnight. Afterwards, plasmid DNA was extracted using the QIAprep Spin Miniprep kit 

(Quiagen). DNA sequencing was carried out by Eurofins MWG Operon. Finally, positive 

samples were transformed in E. coli BL21 (DE3) for expression. 

4.3.4 Expression and purification 

Proteins expression was performed in 1 L standard shaking flasks with 200 mL terrific 

growth medium containing 50 mg L−1 ampicillin for selection. After inoculation with 

5 mL overnight preculture, the cells were incubated at 37 °C and 250 rpm up to an OD600 

of 1. Protein expression was induced with 1 mM isopropyl-thiogalactopyranoside. After 

4 h cultivation at 30 °C, the cells were pelleted at 3250 g, 20 min at 4 °C. After 

resuspension in 10 mL 100 mM TRIS∙HCl, pH 7.5, the cells were aliquoted and stored at  

−80 °C. 

Purification of His-tagged lipase: After thawing and centrifugation (3250 g, 5 min at 

4 °C) the pellet was resuspended in 8 mL binding buffer (20 mM phosphate, pH 7.4, 

30 mM NaCl, 500 mM NaCl, 8 M urea, 5 mM DTT). Cells were disrupted with a W450E 

Branson Sonifier® (Branson) using 30 % of the maximal amplitude and 6 pulses of 15 s. 

After each pulse, the sample was cooled on ice for 30 s. Subsequent to rigorous mixing for 

15 min and centrifugation (3250 g, 5 min at 4 °C), the supernatant containing the soluble 

protein was purified with immobilized metal ion affinity chromatography (Hochuli et al., 

1987) using His-Trap columns with 1 mL column volume (His-trap FF crude, 

GE Healthcare). Subsequent to column equilibration (binding buffer), the sample was 

applied using a flow rate of 1 column volume min−1. The protein of interest was eluted 

with (20 mM phosphate, pH 7.4, 500 mM NaCl, 500 mM NaCl, 8 M urea, 5 mM DTT) 

and fractions containing protein were collected. All buffers contained denaturizing 

agents (urea, DTT), to ensure inclusion body solubilization and protein denaturation. 
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Purification of non-tagged lipase: After thawing and centrifugation (3250 g, 5 min at 

4 °C), the pellet was resuspended in 8 mL phosphate buffer (PB) with 20 mM phosphate 

at pH 7.4 and 5 mM DTT. The cells were disrupted with a sonicator (see above). Possible 

contaminants were removed by successive washing with 8 mL buffer and subsequent 

centrifugation. Step 1: PB. Step 2: PB with 2 % v/v TRITON-X 100. Step 3: PB with 

2 % v/v TWEEN 20. Finally, the inclusion bodies were resuspended and solubilized in 

8 mL binding buffer under rigorous mixing (15 min).  

 

 

4.4 Basic calculations 

4.4.1 Ionic strength computation 

Ionic strength of the refolding buffer was calculated as the sum of all ionic components 

at the experimentally determined pH. First, the Henderson-Hasselbach equation 

(Equation 13) was applied on all relevant compounds (buffer substances, amino acids). 

Thereby, small (µm to mM) concentrations of detergent, redox substances and protein 

were neglected.  

          
    

    
 

(Equation 13) 

     

 with pH pH - 

  pKa acid dissociation constant - 

  A− acid, deprotonated - 

  HA acid, protonated - 

     

Input for the Henderson-Hasselbach equation was the experimentally derived pH and 

pKa values from the literature. For amino acids with multiple acidic / alkaline groups all 

charged species were considered. However, zwitterions without net charge were omitted 

as they are not contributing to the ionic strength (Stellwagen et al., 2008). The result 

was a list of all ionic species. This list was supplemented with the amount of added 

titration substance (HCl, NaOH). Finally, the ionic strength was calculated as the sum of 

all charged species (Equation 14). 
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 ∑      

 

 

   

 
(Equation 14) 

 

     

 with I ionic strength mol L−1 

  ci concentration of compound i mol L−1 

  zi charge number of compound i - 

     

4.4.2 Refolding yields 

The activities of native and refolded proteins were determined in the respective 

functional assays (4.1.3). Linear kinetics were applied and the slope was used to 

calculate the enzymatic activity. Afterwards, the refolding yield was determined as the 

quotient of the refolded activity and the activity of the native enzyme diluted in the same 

refolding buffer. 

                 
                 

               
  

(Equation 15) 

     

     

4.4.3 Experimental costs 

As certain refolding additives, for example arginine and redox agents, were expensive 

compounds, the overall costs of the refolding buffer was considered. Using the pricing of 

the provider, individual costs of the respective compounds were summarized and 

indicated as overall costs of the respective refolding buffer (Equation 16).  

       ∑         

 

   

 
(Equation 16) 

     

 with costs experimental costs € mL−1 

  ci concentration of compound i mol L−1 

  Mi molar mass of compound i g mol−1 

  pi price of compound i € g−1 
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4.5 Design of experiments (DOE) 

Two different design of experiments (DOE) strategies were used in this work. A 

stochastic, heuristic design based on a genetic algorithm (GA) and a classic statistical 

design incorporating a D-optimal screening step and a subsequent optimization with 

response surface methodology (RSM). Both strategies are depicted in this subchapter. 

4.5.1 Genetic algorithm 

Protein refolding was optimized iteratively with a multi-objective GA. This subchapter 

depicts implementation and encoding. The experimental procedure is detailed in 4.1. 

Optimization algorithm 

For this project the strength pareto evolutionary algorithm (SPEA 2) was used (Zitzler, 

1999). SPEA 2 is a multi-objective algorithm, allowing a simultaneous optimization of 

refolding yield, activities or cost. SPEA 2 was already applied for a variety of 

experimental problems (Gobin et al., 2007; Gobin and Schüth, 2008; Havel et al., 2006). 

The limiting factor for experimental optimizations are the number of experiments and 

the experimental error. Consequently, an algorithm that was previously used on similar 

problems with known parameters and settings was considered favorably. Furthermore, 

both the source code and a user friendly program with a graphical user interface (GUI) 

was available. 

SPEA 2 was implemented in Matlab (Mathworks, R2009a) and an Excel (Microsoft, 

2003) based file exchange was established. SPEA 2 was used with the following 

optimization parameters: population size 22, crossover points two, mutation rate one 

percent per bit, other parameters were left default (Zitzler et al., 2002). The fitness 

evaluation was done experimentally. An alternative implementation with a GUI was 

based on the program GAME.opt (Link and Weuster-Botz, 2006). This method included 

an Excel file with the coded variables and substitution functions for “wrong” 

combinations of pH and buffering agent. However, it deviated from the Matlab based 

method as no repair function could be implemented in Excel. Therefore the variable 

encoding was slightly divergent. 

Encoding of the experimental problem 

Critical for the optimization success with a GA is the encoding, which is the 

representation of the problem specific decision space by a data structure. In this thesis, a 
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classical binary vector was used. As the experimental problem at hand consisted of two 

parts, this choice had to be evaluated for both.  

First, the variable combination. The binary representation is generally used for encoding 

combinatorial problems (Back et al., 1997b; Michalewicz, 1999). While the most direct 

way of binary encoding, the usage of one bit for each element was investigated (Wolf et 

al., 2000), it is more efficient to use constraints (see below) and limit possible 

combinations. Hence, experimental knowledge of the problem was used to limit the 

search space and problem complexity. Second, the encoding of the variable values and 

concentrations. This part constituted a continuous problem. Hence, floating point vectors 

were an obvious choice as data structures. However, binary vectors have distinct 

advantages: Above all, a uniform and consistent representation of the problem should be 

the aim. It was considered suboptimal to split the problem in a combinatorial (binary) 

and a continuous (floating points) part as described by Wolf et al. (2000), since it would 

be difficult to generate a recombination operator for the whole vector. In addition, a 

continuous representation is only sensible if the experimental error of the design 

variable is close to zero. This is the case for most in silico optimizations but generally not 

for experimental problems. For experimental problems, the search space is discretized 

using a step size smaller than the experimental error. A discretization also reduces the 

accuracy and thus the search space enabling a faster convergence of the GA (Link and 

Weuster-Botz, 2006). 

A total of 26 variables (see Table 4.4 in the experimental section) constituted the 

refolding problem. These were classified in 6 groups and boundary conditions were 

introduced to incorporate biochemical knowledge. 

 Functionally related variables were subgrouped in the following categories: 

buffers, salts, additives, mineral ions, detergents, redox agents (see 4.1.2). 

 Minimal requirement for a refolding condition was a buffer substance and the 

associated pH, for example TRIS∙HCl, pH 8.0. 

 Additions of components from all other groups were allowed, resulting in complex 

refolding conditions like TRIS∙HCl, pH 8.0 with 100 mM NaCl, 100 mM arginine, 

5 mM DTT. 

 In order to screen for synergistic interactions, combinations inside one functional 

class were allowed in several cases for example both glutamine and arginine 

(Dashivets et al., 2009). A repair function was introduced to remove infeasible 

variable combinations. The latter were replaced with new (random) solutions. 
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 Finally, the discretization of the 26 variables was critical. Refolding literature 

and the REFOLD database (Amin et al., 2006; Buckle et al., 2005) was evaluated 

in terms of variable concentrations, variance and influence. For some variables, 

for example detergents, only the presence or absence in the refolding buffer was 

important. Consequently, only three detergent concentrations around the CMC 

were examined. Other variables, like NaCl or arginine, were subjected to a 

detailed analysis with a far higher resolution. 

The entire optimization problem was coded in bit form with a length (L) of the binary 

string of 32. Considering the number of refolding conditions (M = 22) analyzed in every 

generation, it was possible to calculate the probability to reach each point in the search 

space via crossover (Equation 17) (Reeves, 1993). p indicates if the chosen population 

size was adequate for the complexity of the search space. With the given setup it would 

even be possible to expand the design space, for example testing more substances or 

concentrations in future optimizations. 

                        

 

(Equation 17) 

 with p probability to reach each point in 

the search space 

- 

  L length of the binary string - 

  M population size - 

     

4.5.2 Statistical design of experiments 

In addition, to the stochastic optimization (see above), a classic statistical DOE was 

utilized. This design consisted of two steps: a D-optimal screening step and a subsequent 

RSM based optimization. 

D-optimal screening 

First, the parameter space of the stochastic optimization was translated into a D-optimal 

statistical design with 27 variables and a linear model (see appendix Table 9.5). The 

Matlabs (Mathworks) coordinate exchange algorithm cordexch was used to generate the 

experimental design matrix. This algorithm constructed an initial design matrix X that 

was optimized iteratively to increase the determinant D = |XTX|, thereby minimizing 

the covariance. As the initial design was random, design solutions might be locally, but 

not globally D-optimal. Therefore, the method was repeated 25 times and the best try 

was selected and subsequently verified experimentally. Refolding experiments were 

carried out in the corresponding design buffers and native and refolded activities were 
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measured threefold. Afterwards, the linear regression model (Equation 7) was applied 

for both activities and non-significant terms were iteratively removed. The remaining 

predicators with the highest impact (regression coefficients) were subject to the following 

RSM optimization. DOE data are summarized in the appendix: the problem encoding 

(Table 9.5), the design matrix with the experimental results (Table 9.6) and the 

regression matrix (Table 9.7). 

Response surface methodology 

A circumscribed central composite design type (compare Table 9.4) with a second order 

polynomial model was used to optimize the remaining predicators. The Matlabs 

(Mathworks) ccdesign function was used to generate the design. Predicator variables 

were coded appropriately (−2, −1, 0, 1, 2). Subsequently, refolding was evaluated in the 

designed refolding conditions with the standard setup (see 4.1). Instead of only repeating 

the center point, all data points were measured threefold. The measured native and 

refolded enzyme activities were used to fit second order polynomial models (Equation 8). 

Afterwards, non-significant terms were iteratively removed. RSM data and the 

measured activities are detailed in the appendix (Table 9.8).  

 

 

4.6 Black-box models for data analysis 

Data from refolding experiments were stored in a relational database (MySQL 5.1). Data 

analysis and modeling was carried out in Matlab (Mathworks), while the Database 

Toolbox enabled direct access to the database. A variety of standard methods from data 

mining and modeling were applied to this dataset. These are explained in the following 

sections. 

4.6.1 Artificial Neural networks (ANNs) 

ANNs are a standard modeling technique that is applied for both classification and 

regression. In this thesis, a variety of network sizes, architectures and function were 

examined. Creation, testing and validation of the ANNs were done with the Matlabs 

Neural Network Toolbox. 
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Input / Output 

Input for the ANNs was the normalized refolding data from one protein optimization, 

that is the composition of the refolding buffer (see Table 5.12). In addition, parameters 

like the ionic strength of the buffer and protein-specific variables were examined. The 

models predicted the normalized refolding success: either the activities or the refolding 

yield (see Table 5.11). 

Creation 

Modeling started with a simple network architecture: feedforward, two layers, 10 to 25 

neurons in the hidden layer and a sigmoid transfer function. If the performance was 

unsatisfactory, changes were done according to the following priorities: Network size 

(more neurons), architecture (more layers), training function, network type and data 

division (random vs. fixed). Weights were initialized before training network.  

Training 

Network training (adjustment of the weight matrix) generally used the Levenberg-

Marquardt algorithm and backpropagation. 70 % of the dataset was used for training, 

the rest was omitted for validation and testing. Training performance was measured as 

the mean squared error (Equation 10) of the validation data. 

Validation 

All models were subject to an independent validation. Therefore, parts of the original 

dataset (typically 30 %) were retained.  

4.6.2 Bagged decision trees (BDT) 

The Matlabs TreeBagger function was used to generate an ensemble of bagged decision 

trees (BDT). Individual trees were grown on independently-generated bootstrap replicas 

of the data. The part of the data that was not included in a replica was “out-of-bag” 

regarding the respective tree. Ensemble predictions were the averaged prediction from 

all individual trees. 

Input 

Equivalent to the ANNs (see 4.6.1). 
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Creation and Training 

First, a small tree model (50 trees) was generated to identify the optimal leaf size. 

Afterwards, ensemble models with 100 to 250 trees were generated. In comparison to the 

ANNs, the ensemble offers an additional quality parameter. The out-of-bag mean 

squared error enables an estimation of the true ensemble error and was used as a 

measure of the model performance. Nevertheless, an experimental validation was also 

performed for the final model (see below). 

Validation 

Preliminary models were not validated. Instead the models were trained on the entire 

dataset and the out-of-bag-error was the sole performance criteria. For the refined 

model, an independent validation with 88 refolding experiments from the final LIP 

optimizations was carried out.  
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5 Results and Discussion 

Within the scope of this thesis a standardized optimization strategy for protein refolding 

conditions was developed. This chapter contains the experimental and computational 

results and is structured as follows: In section 5.1, the experimental optimization of the 

refolding conditions of a variety of model proteins is depicted successively. Afterwards, 

the optimization strategy is further evaluated and compared to standard statistical 

approaches (section 5.2). Finally, section 5.3 details data analysis and modeling. 

5.1 Experimental optimization of protein refolding  

Protein refolding from the denatured state constitutes a complex problem with a great 

variety of variables and is strongly dependent on the examined protein. Therefore, 

optimal refolding conditions are typically determined experimentally (Clark, 2001; Lilie 

et al., 1998; Middelberg, 2002). In this thesis, a genetic algorithm (GA) was used to 

iteratively optimize protein refolding using a standardized experimental design in mL-

scale and 96-well plate format. For this purpose experimental parameters were extracted 

from the refolding literature and combined with the information on approximately 1100 

refolding experiments from the REFOLD database (Amin et al., 2006; Buckle et al., 

2005) to establish a comprehensive experimental design, which is presented in detail in 

the previous material and methods chapter. 

Figure 5.1 illustrates the iterative character of the design strategy. At the beginning of 

each optimization, 22 refolding conditions were randomly generated and subsequently 

evaluated experimentally by diluting the denatured protein into the respective refolding 

condition. Depending on the results, fitness values were assigned to each condition. 

Similar to evolution, experimental conditions with high fitness were subsequently 

selected to calculate a new set of refolding conditions. These new refolding conditions, 

which are based on the most efficient solutions of the previous set, were evaluated 

experimentally again. The optimization was terminated if no increase in performance 

was determined in several iterations or a fixed limit of experiments was reached. 
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Figure 5.1: Scheme of the novel stochastic optimization strategy for protein refolding 

in mL-scale and 96-well plate format. 

The proposed optimization strategy was evaluated with six functionally and structurally 

different model proteins (Table 5.1). In the following subsections results of the individual 

proteins will be presented successively. In this regard, several aspects have to be pointed 

out.  

Protein-specific functional assays were used to quantify the refolding success (see 4.1.3). 

For the experiments, both denatured and native proteins were diluted into the respective 

refolding conditions. Afterwards, refolding yields were calculated as the ratio of the 

activity of the refolded protein and the native protein in the respective refolding 

condition (Equation 15). Measurements of the first four proteins (compare Table 5.1) 

were carried out by the cooperation partner (Department Chemie, Center for Integrated 

Protein Science, Technische Universität München).  

An experimental reference was deemed necessary as refolding method, temperature and 

protein concentration influence the refolding success. Hence, a direct comparison to 

literature values is problematic. The reference was a known literature refolding 

condition, which was examined in each iteration of the optimization under the same 
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experimental conditions. It was not used as a starting point for the optimization. Instead 

it served as a comparison and as a measure for the experimental error.  

A varying number of experiments was performed for each protein, as the termination 

criteria was a lack of progress. In GA terminology, an iteration is generally referred to as 

a generation (GEN), which will be consecutively numbered in roman numerals (I to X).  

Table 5.1: Overview of analyzed proteins. GFP, GLK GLR and LYZ measurements were 

carried out by the cooperation partner. (qs*) quaternary structure, (ds*) disulfide bonds. 

Abbr. Protein M, 

kDa 

pI qs* ds* Activity Organism 

GFP Green 

fluorescent 

protein 

28 5.7 monomer - intrinsic 

fluorescence 

Aequorea 

victoria 

GLR Glutathione 

reductase 

53 7.7 dimer - reduction of 

glutathione 

disulfide 

Saccharomyces 

cerevisiae 

GLK Glucokinase 35 6.1 dimer - phosphorylation of 

glucose 

Escherichia coli 

LYZ Lysozyme 14 9.3 monomer 4 hydrolysis of 

peptidoglycan 

linkages 

Gallus gallus 

LDH Lactate 

dehydrogenase 

36 8.2 tetramer - reduction of 

pyruvate 

Oryctolagus 

cuniculus 

LIP Lipase 29 5.0 monomer 3 hydrolysis of 

triacylglycerol 

Thermomyces 

lanuginosus 

 

5.1.1 Green fluorescent protein from Aequorea victoria (GFP) 

Green fluorescent protein (GFP), that exhibits fluorescence under exposure to blue light, 

constitutes an important reporter and biosensor in molecular biology (Chalfie et al., 

1994). In contrast to the other analyzed proteins (Table 5.1), GFP has no enzymatic 

function. Refolding is quantified by measuring the intrinsic fluorescence. During the 

optimization process, both refolding yield (Equation 14) and the experimental costs of 

the refolding buffer (Equation 16) were optimized simultaneously.  
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Experimental data of the stochastic optimization were plotted according to the two 

objectives and the respective GENs to provide an overview of the optimization progress 

(Figure 5.2). In each GEN a standard refolding condition from the literature (Dashivets 

et al., 2009) was evaluated as an experimental control. This reference was inside the 

search space of the stochastic optimization. Its mean is depicted as a star. In addition, 

the optimization progress is highlighted by black dashed lines. The general aim of the 

optimization was to identify refolding conditions with high yields and low costs, that are 

conditions in the upper right corner of the graph. GFP showed a steady and fast increase 

in both objectives, achieving 100 % refolding yield in GENIV. Further GENs led only to 

an improvement of experimental costs. The optimization was terminated after GENVI.  
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Figure 5.2: Overview of the GFP optimization. Experimental data of the individual 

GENs (I ●, II ○, III ▼, IV ∆, V ■, VI □) were plotted according to the two objectives, 

only conditions with costs smaller than 0.05 € mL are displayed. The star (  ) 

represents an experimentally verified standard refolding condition (Dashivets et al., 

2009). In addition, the optimization progress from the start (I) to the end (VI, last 

improvement in VI) is highlighted for several GENs by black dashed lines. 

GAs are based on a set of feasible solutions (population) and exhibit a competition 

between selection and evolutionary pressure on the one hand and maintenance of 

variance on the other hand (see 3.3.2). Hence, a trend towards the optimization 

objectives is observable if the optimization progresses.  

During the optimization, the median costs of GFP decreased steadily in each GEN, from 

0.041 € mL−1 in the first GEN to 0.015 € mL−1 in GENVI. The refolding buffer of the 

reference condition (Dashivets et al., 2009) amounted to 0.010 € mL−1. For the refolding 

yields, a trend to higher yields was observed until GENIV (Figure 5.3). 
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Figure 5.3: Development of the two objectives during the GFP optimization 

illustrated as box plots: (A) experimental costs, (B) refolding yield. The boxes contain 

the middle of 50 % of the data, whiskers denote the 10th and 90th percentiles.  

(●) outliers, (—) median. 

Fluorescence of the native and refolded protein was evaluated in triplets for each 

refolding condition. Due to the large errors of both measurements, the calculated relative 

refolding yield featured high standard deviations of 30 % to 50 % (data not shown). The 

reference condition (Dashivets et al., 2009) was measured along in each GEN. Here, the 

experimental error of each measurement was smaller (about 10 %) and generally 

comparable over the GENs. But large deviations could be observed for the refolded 

activity in GENI and GENIV (Figure 5.4). 
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Figure 5.4: Error of the fluorescence measurements of GFP in the reference refolding 

condition (Dashivets et al., 2009) during the optimization. (A) native activity, (B) 

refolded activity. 
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5.1.2 Glutathione reductase from Saccharomyces cerevisiae (GLR) 

Glutathione reductase (GLR) maintains high levels of reduced glutathione in the cytosol 

of eukaryotes. In contrast to GFP, GLR is a dimer with a mass of 53 kDa. Analog to the 

previous optimization, experimental costs and refolding yield were optimized in parallel 

(Figure 5.5). A very fast optimization was observed, as the first GEN already contained a 

refolding condition with 100 % yield. However, the respective refolding buffer was 

expensive (0.075 € mL−1). In the following GENs experimental costs were optimized, 

leading to improved refolding conditions with 100 % yield and reduced costs of 

0.006 € mL−1. 
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Figure 5.5: Overview of the first GLR optimization. Experimental data of the 

individual GENs (I ●, II ○, III ▼, IV ∆, V ■, VI □) were plotted according to the two 

objectives, only conditions with costs smaller than 0.05 € mL are displayed. The star 

(  ) represents an experimentally verified standard refolding condition (Nordhoff et 

al., 1997). In addition, the optimization progress from the start (I) to the end (VI, last 

improvement in V) is highlighted for several GENs by black dashed lines. 

The development of the two objective functions during the optimization is illustrated in 

Figure 5.6. On the one hand, a trend towards lower average costs was observed in each 

GEN. Median costs were reduced from 0.045 € mL−1 in the first GEN to 0.025 € mL−1 at 

the end. The reference refolding condition featured costs of 0.002 € mL−1. On the other 

hand, maximal refolding (100 %) was detected in nearly all generations, but there was no 

increase in average performance, as a lot of refolding conditions showed no refolded 

activity. 
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Figure 5.6: Development of the two objectives during the first GLR optimization 

illustrated as box plots: (A) experimental costs , (B) refolding yield. The boxes contain 

the middle of 50 % of the data, whiskers denote the 10th and 90th percentiles.  

(●) outliers, (—) median. 

During the stochastic optimization, GLR exhibited many refolding conditions with 100 % 

refolding yield. However, the respective activities itself varied between 40 U mg−1 and 

100 U mg−1 depending on the respective buffer condition (exemplified in Figure 5.7). 
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Figure 5.7: Specific activities of the native (grey) and refolded (dark grey) GLR in 

three different refolding conditions (A, B, C). (A) 1 M TRIS∙HCl, pH 8.5, 150 mM 

NaCl, 10 % v/v glycerol, 500 mM arginine, 100 mM glutamine, 2 mM EDTA; (B) 

100 mM PB, pH 7.5, 250 mM NaCl, 20 mM KCl, 500 mM arginine, 100 mM 

glutamine, 2 mM EDTA, 5 mM GSH; (C) 100 mM MOPS, pH 8.5, 150 mM NaCl, 

20 mM KCl, 500 mM arginine, 50 mM glutamine, 5 mM EDTA. 

All illustrated refolding conditions (Figure 5.7) showed 100 % yield but very different 

specific activities. Consequently, it was not possible to differentiate conditions with 

100 % yield solely based on the relative refolding yield. Instead, the specific activity of 

the refolded protein under the refolding conditions offered more information. Therefore, 

(A) (B) 



Results and Discussion  83 

a second independent optimization with modified objectives (native and refolded activity 

instead of refolding yield and cost) was performed for GLR in order to obtain buffers with 

highly active protein and maximum refolding yield (Figure 5.8). 

In contrast to the previous optimizations of GFP and GLR, the aim was to identify 

refolding conditions with high native and refolded activities. Ideal conditions would be in 

the upper right corner of the graphs and close to the bisecting line which indicates 100 % 

refolding yield. Figure 5.8 shows an increase in the best native and refolded activity 

until GENVI. The activities of the optimal refolding conditions (refolded activities of 

100 U mg−1 to 120 U mg−1 and roughly 100 % yield) were comparable to those obtained in 

the first optimization. As no further improvement could be detected in the last two 

GENs, the optimization was terminated in GEN VIII.  
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Figure 5.8: Overview of the second GLR optimization. Experimental data of the 

individual GENs (I ●, II ○, III ▼, IV ∆, V ■, VI □, VII ♦, VIII ◊) were plotted according 

to the two objectives. The star (  ) represents an experimentally verified standard 

refolding condition (Nordhoff et al., 1997). The bisecting line denotes 100 % refolding 

yield and therefore the best refolding buffers at different activities. In addition, the 

optimization progress (last improvement in VI) is highlighted for several GENs by 

black dashed lines. 

With regard to the native activity an unsteady trend towards higher activities was 

observed until GENVI, afterwards the values stagnated or decreased. The median of the 

native activity increased from 75 U mg−1 to 120 U mg−1. Progress of the refolded activity 

was erratic, as only the outliers exhibited increased activities (Figure 5.9). 
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Figure 5.9: Development of the two objectives during the second GLR optimization 

illustrated as box plots: (A) native activity , (B) refolded activity. The boxes contain 

the middle of 50 % of the data, whiskers denote the 10th and 90th percentiles.  

(●) outliers, (—) median. 

The experimental error of the GLR activity measurements was generally less than 15 % 

(data not shown). However, sequential reproducibility was problematic, as indicated by 

the error of the reference condition, which was measured in each GEN (Figure 5.10).  
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Figure 5.10: Error of the activity measurements of the reference refolding condition 

(Nordhoff et al., 1997) during the first and second optimization of GLR. (A) native 

activity, (B) refolded activity, white bars were classified as outliers. 
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5.1.3 Glucokinase from Escherichia coli (GLK) 

Glucokinase (GLK), a dimeric protein with a mass of 35  kDa, phosphorylates glucose in 

the first step of the glycolysis and plays a critical role in the regulation of the 

carbohydrate metabolism. Refolding of GLK was optimized with native and refolded 

activity as objectives (Figure 5.11). Both native and refolded activity increased during 

the optimization from maximal values of 100 U mg−1 in GENI to 310 U mg−1 at the end. 

Furthermore, 100 % refolding yield could be achieved in 40 % of the examined conditions 

(points near the bisecting line).  
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Figure 5.11: Overview of the GLK optimization. Experimental data of the individual 

GENs (I ●, II ○, III ▼, IV ∆, V ■, VI □, VII ♦) were plotted according to the two 

objectives. The star (  ) represents the buffer of the GLK functional assay and the 

bisecting line denotes 100 % refolding yield. In addition, the optimization progress 

(last improvement in VI) is highlighted by black dashed lines. 

During the optimization a trend towards higher activities was observed until GENVI, 

with a very similar development for both activities. The median activities increased from 

25 U mg−1 to 50 U mg−1. Progress was unsteady and many outliers with high activity 

data (up to 310 U mg−1) occurred (Figure 5.12).  
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Figure 5.12: Development of the two objectives during the GLK optimization 

illustrated as box plots: (A) native activity , (B) refolded activity. The boxes contain 

the middle of 50 % of the data, whiskers denote the 10th and 90th percentiles.  

(●) outliers, (—) median. 

As mentioned above, GLK refolded in many conditions with maximum yield. This was 

also the case for the buffer of the functional assay (50 mM HEPES, pH 7.5, 150 mM KCl, 

10 mM MgCl2), that was included as a reference. In addition, the activities of the 

reference notably exceeded the above-mentioned median in the optimization. Only the 

outliers exhibited comparable or higher activities (Figure 5.12). The measurement data 

of the reference with the respective standard deviations are shown in Figure 5.13. 

Overall experimental errors of the GLK activity measurements were in general smaller 

than 20 % (data not shown).  
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Figure 5.13: Error of the activity measurements of the reference refolding condition 

(buffer of the GLK functional assay) during the optimization of GLK. (A) native 

activity, (B) refolded activity, white bars were classified as outliers. 
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5.1.4 Lysozyme from Gallus gallus (LYZ) 

Lysozyme (LYZ) is a well-characterized model protein. Compared to the majority of 

proteins, it is very small (14 kDa) and it features four disulfide bonds. LYZ was first 

optimized with the standard configuration of the stochastic optimization approach and 

native and refolded activities as objectives (Figure 5.14, A). However, positive refolding 

was very sparse, as only two out of 88 conditions showed refolding. These two refolding 

conditions contained oxidative redox conditions (reduced GSH and oxidized glutathione 

GSSG). Therefore, a second independent optimization approach was started with a 

modified configuration (Figure 5.14, B). In this approach constrained redox conditions 

were utilized. Specifically, purely reductive conditions with tris-carboxyethyl-phosphine 

(TCEP) or dithiothreitol (DTT) were removed from the setup. 
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Figure 5.14: Overview of the independent first (A) and second (B, with modified 

redox conditions) optimizations of LYZ refolding. Experimental data of the individual 

GENs (I ●, II ○, III ▼, IV ∆, V ■, VI □, VII ♦, VIII ◊) were plotted according to the two 

objectives. The star (  ) represents an experimentally verified standard refolding 

condition (Hevehan and De Bernardez Clark, 1997) and the bisecting line denotes 

100 % refolding yield. In addition, the optimization progress (last improvement in IV 

/ VI) is highlighted for several GENs by black dashed lines.  

Positive data were sparse in both optimizations (Figure 5.14). Most refolding conditions 

showed no or only native activity. Nevertheless, the second optimization slightly 

progressed and refolding conditions exhibiting 40 % higher activities than the reference 

could be detected. Statistics of the optimization objectives are not shown as most data 

were close to zero and featured no refolding.  
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LYZ activity was correlated with the ionic strength of the refolding buffer, which was 

calculated as the sum of all charged species at the experimentally determined pH 

(Equation 14). Above 0.7 M ionic strength, both native and refolded activity were close to 

zero (Figure 5.15). Consequently, analog to the reductive conditions in the second 

optimization, a modified third optimization was performed which incorporated a 

threshold for the ionic strength. 
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Figure 5.15: Impact of the ionic strength of the refolding buffer (264 experiments) on 

the LYZ activity. (●) native activity, (○) refolded activity.  

In the independent third optimization, far more positive results, that is conditions with 

both native and refolded activity could be observed (Figure 5.16). The problematic 

sparsity of positive data in the previous optimizations, in which the majority of the 

refolding conditions showed no or only native activity (Figure 5.14), did not occur for this 

modified approach. However, the overall activities were smaller (< 10 s−1) compared to 

the previous experiments. In addition, the native activity of reference was smaller than 

previously measured. Therefore, the optimization was terminated after GENIII. 

0.7 M 
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Figure 5.16: Overview of the third LYZ optimization with constrained ionic strength 

and redox conditions. Experimental data of the individual GENs (I ●, II ○, III ▼) 

were plotted according to the two objectives. The star (  ) represents an 

experimentally verified standard refolding condition (Hevehan and De Bernardez 

Clark, 1997) and the bisecting line denotes 100 % refolding yield. In addition, the 

optimization progress (last improvement in II) is indicated. 

The measurement data of the reference condition (Hevehan and De Bernardez Clark, 

1997), which was evaluated in all three optimizations in each GEN, is shown in Figure 

5.17. In the third optimization, the mean native activity (9.15 ± 1.3 s−1) was smaller than 

in optimization one and two (11.2 ± 0.9 s−1), while the refolded activity (9.45 ± 1.0 s−1) 

was comparable (8.39 ± 0.6 s−1). The overall error of the LYZ activity measurements was 

10 % to 15 % (data not shown).  
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Figure 5.17: Error of the activity measurements of the reference refolding condition 

(Hevehan and De Bernardez Clark, 1997) during the first, second and third 

optimization of LYZ. (A) native activity, (B) refolded activity. 
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5.1.5 Lactate dehydrogenase from Oryctolagus cuniculus (LDH) 

The tetrameric enzyme lactate dehydrogenase (LDH) catalyzes the conversion of 

pyruvate to lactate. In higher eukaryotes different tissues may exhibit different LDH 

subtypes. The analyzed LDH is from rabbit (Oryctolagus cuniculus) muscle. In contrast 

to the previously discussed proteins, refolding experiments with LDH were not 

performed by the cooperation partner. The LDH assay was adapted from Stambaugh and 

Post (1966). While the assay proved robust and sensitive, the stability of the protein was 

low (Figure 5.18). In a buffered solution (pH 7.3), the activity of LDH dropped from 

68 U mg−1 to 35 U mg−1 in 4 h and decreased further. Therefore refolding times were 

limited to 2 h (compare Table 4.3).  
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Figure 5.18: LDH activity and stability. (A) Exemplary activity assay of native  

(●, 0.2 M TRIS∙HCl, pH 7.3), refolded (○, 0.2 M TRIS∙HCl, 50 mM NaCl, 100 mM 

arginine and 10 mM DTT, pH 8.75) and denatured (▲) protein, linear regression is 

indicated. (B) Stability of LDH in solution (0.2 M TRIS∙HCl, pH 7.3) at room 

temperature. 

LDH refolding was optimized using a new standard configuration of the stochastic 

optimization with minor modifications (see 5.1.8) and native and refolded activities as 

objectives (Figure 5.19). In the stochastic optimization, most conditions exhibited only 

native activity. Nevertheless, the optimization progressed. At the end (GENV) refolding 

conditions with 40 % higher activities than the reference (Rudolph et al., 1977) could be 

obtained. 
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Figure 5.19: Overview of the LDH optimization. Experimental data of the individual 

GENs (I ●, II ○, III ▼, IV ∆, V ■) were plotted according to the two objectives. The 

star (  ) represents an experimentally verified standard refolding condition (Rudolph 

et al., 1977) and the bisecting line denotes 100 % refolding yield. In addition, the 

optimization progress (last improvement in V) is highlighted for several GENs by 

black dashed lines. 

Figure 5.20 illustrates the development of the two optimization objectives during the 

optimization. While the median of the native activity increased from 12 U mg−1 to 

72 U mg−1, only stagnating refolded activities could be observed. The overall 

experimental errors of the refolding experiments were comparable to the previously 

detailed proteins (data not shown).  
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Figure 5.20: Development of the two objectives during the LDH optimization 

illustrated as box plots: (A) native activity, (B) refolded activity. The boxes contain 

the middle of 50 % of the data, whiskers denote the 10th and 90th percentiles.  

(●) outliers, (—) median. 
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5.1.6 Lipase from Thermomyces lanuginosus (LIP) 

Like LYZ (section 5.1.4), the lipase from Thermomyces lanuginosus (LIP) is an  

extracellular enzyme and disulfide-bridged. The hydrolytic enzyme is mainly used in 

washing agents to remove oils and fats from fabrics. LIP refolding was evaluated with a 

nitrophenyl palmitate based activity assay (Liu et al., 2006), as exemplary illustrated in 

Figure 5.21. 
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Figure 5.21: LIP activity. Exemplary activity assay of native (●, 0.1 M TRIS∙HCl, 

pH 7.5), refolded (○, 0.1 M TRIS∙HCl, 50 mM NaCl, 100 mM arginine and 2.5 mM 

GSSG, pH 8.75) and denatured (▲) protein, linear regression is indicated. 

The extinction coefficient (ε) of the product 4-nitrophenol was dependent on the pH. 

Therefore, the influence of the refolding buffers (pH 6.0 to pH 9.5) was examined in a 

preliminary experiment (Table 5.2).  

Table 5.2: Influence of the pH of the refolding buffer on the pH in the LIP activity assay 

(buffered with 0.1 or 2.5 M TRIS∙HCl, pH 7.5) and the extinction coefficient (ε) of the product 

4-nitrophenol (PB, sodium phosphate buffer). 

 Addition of 1 M 

TRIS∙HCl, pH 7.5  

pH, -        ε, M−1 cm−1 

Addition of 0.1 M PB, 

pH 6.0 

pH, -       ε, M−1 cm−1 

Addition of 1 M 

TRIS∙HCl, pH 9.5  

pH, -       ε, M−1 cm−1 

0.1 M TRIS∙HCl 7.50            9627 6.77            4160 8.90          16 800 

2.5 M TRIS∙HCl 7.50          14 547 7.52          13 924 7.76          14 535 
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The addition of acid or alkaline refolding buffers resulted in large deviations for both pH 

and ε in the original assay, which was buffered with 0.1 M TRIS∙HCl at pH 7.5. An 

increased buffer capacity (2.5 M) exhibited far better performance with a maximal 

deviation of 435 M−1 cm−1 for ε. Hence, refolding experiments were carried out with the 

modified assay and the mean value for ε in the 2.5 M buffer (14 350 M−1 cm−1) was used 

for LIP activity calculations. 

LIP refolding was optimized analog to LDH with native and refolded activities as 

objectives (Figure 5.22, A). Native activities of up to 680 U g−1 and refolded activities of 

up to 380 U g−1 could be obtained within six GENs. These activities remarkably exceeded 

the reference (Ahn et al., 1997), which exhibited 76 U g−1 refolded activity. 

In order to estimate the robustness of the stochastic optimization, LIP was subjected to a 

further, independent optimization approach using the same setup (random start). In the 

second approach, the best refolding condition from the first optimization was chosen as a 

new reference (Figure 5.22, B). Native LIP activities of up to 1400 U g−1 were measured 

in the second approach. Data analysis revealed sodium dodecyl sulfate (SDS) in all 

refolding conditions with activities higher than 700 U g−1. 
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Figure 5.22: Overviews of the first (A) and second (B) independent optimization 

approaches for LIP. Experimental data of the individual GENs (I ●, II ○, III ▼, IV ∆, 

V ■) were plotted according to the two objectives. The star (  ) represents a standard 

refolding condition (A: Ahn et al. (1997), B: best result of the first optimization) and 

the bisecting line denotes 100 % refolding yield. In addition, the optimization 

progress (last improvement in IV / IV) is highlighted for several GENs by black 

dashed lines. 
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A negative side effect of the presence of SDS was a low reproducibility, since remains 

from the diluted denaturant guanidine hydrochloride (Gdn∙HCl) caused precipitation in 

presence of SDS (results not shown) Therefore, the second optimization was terminated 

prematurely after four GENs and alternative protein denaturation with urea was tested 

and verified by circular dichroism spectroscopy (CD) (Figure 5.23). 
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Figure 5.23: CD spectroscopy of native (black) and denatured LIP incubated in a 

denaturation buffer with 10 mM DTT and 6 M Gdn∙HCl (dark grey) or 10 M urea 

(grey). 

In the following third stochastic optimization (Figure 5.24), Gdn∙HCl was replaced with 

urea for denaturation. Otherwise, there were no changes and the third approach was 

performed independently of the previous optimizations (random start). In the third 

optimization, up to 1400 U g−1 refolded activity were determined. This was 2.8-fold 

higher compared to the second optimization. In the latter, high native activities were 

measured, but maximum refolding was smaller than 500 U g−1 and thus comparable to 

the first optimization. Furthermore, native activities were improved in the third 

approach as well, up to 1750 U g−1 were measured in refolding conditions with SDS. 
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Figure 5.24: Overview of the third LIP optimization, LIP was denatured with urea. 

Experimental data of the individual GENs (I ●, II ○, III ▼, IV ∆, V ■, VI □) were 

plotted according to the two objectives. The star (  ) represents a standard refolding 

condition (best result of the first optimization) and the bisecting line denotes 100 % 

refolding yield. In addition, the optimization progress (last improvement in V) is 

highlighted for several GENs by black dashed lines. 

5.1.7 Comparing refolding from soluble proteins and inclusion bodies 

One of the major assumptions of the refolding experiments was the comparability 

between soluble, native protein and inclusion bodies (IBs). Despite the amount of 

literature on refolding, a search revealed no information about this specific topic. 

Therefore, an experimental verification for at least one protein was considered 

important. LIP, which was purchased in soluble form from Sigma-Aldrich was chosen as 

an example protein. LIP was expressed in Escherichia coli (E. coli) and subsequently 

refolding was evaluated. 

Expression and purification 

Protein- and DNA sequences were derived from the UniProt database (Jain et al., 2009). 

After gene synthesis and transformation into E. coli BL21 (DE3), protein expression was 

validated (Figure 5.25). In the SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

protein expression was evident in the cell pellet, indicating IB formation. Whereas, no or 

only very faint bands were visibly in the soluble fractions. This was the case for both the 

His-tagged and the non-tagged construct. In addition, protein sizes were comparable to 

calculations (29.3 kDa and 30.3 kDa). 
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Figure 5.25: Soluble fractions and cell pellets of expressed LIP. (a) LIP with His-

Tag, (b) non-tagged LIP, (M) marker with molecular weights (MW) between 14 kDa 

and 212 kDa (Carl Roth). 

Purified protein is generally preferred for refolding, as aggregating side reactions can 

reduce yields (see 3.2). Hence, a purification step was carried out prior to refolding. IBs 

of His-tagged LIP were purified using immobilized metal ion affinity chromatography 

(IMAC). IBs of non-tagged LIP were subjected to several washing steps with detergents 

to remove possible membrane proteins decontaminants. The SDS-PAGE from the 

purification is depicted in the appendix (Figure 9.1). In case of the His-tagged protein, no 

other bands indicating contaminant proteins were visible. The sample contained even 

less impurities than the purchased control. In contrast, the non-tagged protein was 

slightly purified after washing with detergent containing buffers. According to 

densitometry analysis the non-tagged LIP was approximately 90 % pure, while the 

purchased protein was 95 % pure.  

Refolding experiment 

After purification, refolding was examined in five different conditions from the previous 

stochastic optimizations (section 5.1.6). As both constructs formed IBs and almost no 

soluble protein (Figure 5.25), a comparison of the native activities was not possible. The 

results of the refolding experiment are detailed in Figure 5.26. While the LIP with  

His-tag exhibited 49 % to 57 % of the control activity, refolded activities of the non-

tagged protein and the control were in good agreement for all five experimental 

conditions.  
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Figure 5.26: Refolding with different LIP forms. Comparison of soluble protein (grey) 

purchased from Sigma-Aldrich and protein from IBs: (dark grey) His-tagged protein, 

(black) non-tagged protein, (1 to 4, cref) refolding conditions and the reference from 

the previous optimizations. 

 

5.1.8 Overall comparison of the proteins under study 

This subchapter gives an overview of the performance of the stochastic optimization 

strategy regarding all six proteins. Hence, the reference conditions for each protein and 

the optima obtained in the optimization are compared. 

Performance of the stochastic optimization strategy 

For all six proteins the stochastic optimization strategy identified comparable or better 

refolding conditions than the reference gained from the literature. For GFP and GLR 

refolding yields and experimental costs were optimized, achieving refolding buffers with 

100 % yield in conjunction with costs of 0.006 € mL−1and 0.012 € mL−1. GLR, GLK, LYZ, 

LDH and LIP were optimized regarding the native and refolded activities. Thereby, the 

optimization of the enzymatic activities was successful for all five proteins, obtaining a 

1.3-fold to 30.6-fold increase compared to the activity of the reference (Table 5.3). In 

addition, 100 % refolding yield could be observed for all proteins except LDH. 
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Table 5.3: Overall performance of the stochastic optimization for protein refolding. Maximum 

measured native and refolded activities relative to the experimentally verified standard 

refolding conditions. 

 GFP GLR GLK LYZ LDH LIP 

Improvement of  

native activity 

n/a 130 % 130 % 40 % 40 % 5.3-fold 

Improvement of 

refolded activity 

n/a 250 % 30 % 40 % 40 % 30.6-fold 

100 % yield 

achieved 

yes yes yes yes no yes 

       

Composition of the best refolding conditions 

Although both native and refolded activity were optimized in parallel, refolding was 

considered to be of primary importance for the analysis. The experimental conditions 

with the highest refolded activities and yields, which can be stated as the “optima” of the 

stochastic optimizations for each protein, are detailed in Table 5.4.  

All listed refolding buffers contained 6 to 10 compounds and were therefore rather 

complex compared to the reference conditions, which contained 3 to 5 substances. The 

similarity of the two best conditions (optima A and B in Table 5.4), varied significantly. 

LYZ optima were similar and differed only in one variable: the pH (pH 7.5 and pH 7.0). 

For the other proteins, comparable refolded activities could be determined in two 

different buffers. For example GLK differed in the ionic strength, the buffer substances, 

the refolding additives and the redox agent, but both conditions exhibited 236 U mg−1 

refolded activity in the assay. One overall trend was visible: GFP, GLR, GLK and LDH 

optima all featured a reductive component (DTT or TCEP). In contrast, LYZ and LIP 

optima contained a combination of oxidative (GSSG) and reductive (GSH) glutathione.  

Modifications in the general configuration of the stochastic optimization  

After the evaluation of the first four proteins, the acquired data were analyzed with 

regards to negative trends for all proteins. High concentrations of divalent metal ions 

(Cu2+ Zn2+ Mg2+ Mn2+) and TRIS∙HCl and the presence of SDC (deoxycholic acid sodium 

salt) frequently resulted in refolding buffers that exceeded the maximal solubility. 

Hence, refolding buffers could not be prepared or precipitation occurred at lower 

temperatures (data not shown). In subsequent optimizations (LDH and LIP), variables 
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were adjusted accordingly. In the modified GA parameter space (Table 4.4), mineral ions 

were reduced to 0.1 mM, TRIS∙HCl to 1 M and SDC was removed from the list of tested 

detergents. At the same time, glutamate was added as an additional refolding additive 

and other minor modifications were performed (see Table 4.4). 

Table 5.4: The best identified refolding conditions of the stochastic optimization (A and B) and 

the experimentally evaluated reference refolding conditions (R) for GFP, GLR, GLK, LYZ, 

LDH and LIP. Listed are the composition, the individual activities of the native and refolded 

protein and the yield achieved in the respective refolding conditions. 

Best refolding conditions (A and B) and reference (R) 

for each protein 

Native 

activity* 

Refolded 

activity* 

Relative 

yield, % 

GFP A  

40 mM PB, pH 7.0, 100 mM NaCl, 10 % v/v glycerol, 50 mM 

arginine, 50 mM glutamine, 5 mM EDTA, 7.5 mM DTT 

18100 

± 5110 

19862 

± 1743 

100 

± 37 

GFP B 

50 mM TRIS∙HCl, pH 7.0, 250 mM NaCl, 15 % v/v glycerol, 

100 mM arginine, 50 mM glutamine, 2.5 mM TCEP 

25700 

± 7500 

24885 

± 5717 

97 

± 51 

GFP R (Dashivets et al., 2009) 

40 mM PB, pH 7.5, 300 mM NaCl, 50 mM arginine, 50 mM 

glutamine, 5 mM DTT 

28480 

± 3330 

24900 

± 4152 

87 

± 9 

GLR A 

100 mM MOPS, pH 8.5, 150 mM NaCl, 20 mM KCl, 

500 mM arginine, 50 mM glutamine, 5 mM EDTA, 

0.06 mM TWEEN 20, 2.5 mM DTT 

101 

± 5 

96 

± 8 

95 

 ± 12 

GLR B 

 50 mM MOPS, pH 8.5, 300 mM NaCl, 0.1 % w/v PEG 4000, 

100 mM arginine, 100 mM glycine, 2 mM EDTA,  

120  

 ± 8 

112  

± 18 

94  

± 20 

GLR R (Nordhoff et al., 1997) 

20 mM PB, pH 6.9, 0.5 mM EDTA, 2 mM DTT  

95 

± 20 

60 

± 15 

61 

± 18 

GLK A 

20 mM HEPES, pH 9.5, 350 mM NaCl, 

0.05 % w/v PEG 4000, 5 mM EDTA, 5 mM DTT 

213  

± 23 

236  

± 8 

100  

± 14 

GLK B 

20 mM TRIS∙HCl, pH 9.5, 50 mM NaCl, 0.15 % w/v PEG 

4000, 50 mM arginine, 50 mM glutamine, 5 mM EDTA,  

7.5 mM DTT  

266  

± 13 

236  

± 8 

89  

± 7 

GLK R (assay buffer) 

50 mM HEPES, pH 7.5, 150 mM KCl, 10 mM MgCl2 

137  

± 29 

198  

± 24 

100  

± 28 
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Table 5.4 (continued): 

Best refolding conditions (A and B) and reference (R) 

for each protein 

Native 

activity* 

Refolded 

activity* 

Relative 

yield, % 

LYZ A 

100 mM TRIS∙HCl, pH 7.5, 0.05 % w/v PEG 4000, 50 mM 

arginine, 100 mM glutamine, 25 mM glycine, 1 mM GSSG 

16.8  

± 1.3 

12.4  

± 0.9 

74  

± 11 

LYZ B 

100 mM TRIS∙HCl, pH 7.0, 0.05 % w/v PEG 4000, 50 mM 

arginine, 100 mM glutamine, 25 mM glycine, 1 mM GSSG 

16.3 

 ± 1.5 

10.2 

± 1.2 

62  

± n/a 

LYZ R (Hevehan and De Bernardez Clark, 1997)  

50 mM TRIS∙HCl, pH 8.0, 1 mM EDTA, 0.5 mM GSH, 

5 mM GSSG  

11.2  

± 1.8 

9.2  

± 1.8 

82  

± 16 

LDH A 

20 mM TRIS HCl, pH 7.75, 100 mM NaCl, 50 mM arginine, 

100 mM glutamine, 0.12 mM BRIJ, 3.75 mM TCEP 

60.6  

± n/a 

33.0  

± 1.3 

54  

 ± 2 

LDH B 

40 mM MOPS, pH 6.75, 25 mM NaCl, 33 mM KCl, 

0.05 % w/v PEG 4000, 2 mM EDTA, 2.5 mM TCEP 

71.5 

± n/a 

29.1  

± 1.0 

41  

± 1 

LDH R (Rudolph et al., 1977) 

200 mM PB, pH 7.6, 1 mM EDTA, 0.1 mM DTT 

66.2  

± 5.5 

23.1  

 ± 5.5 

36  

± 11 

LIP A 

500 mM TRIS∙HCl, pH 8.5, 175 mM NaCl, 50 mM KCl, 

0.05 % w/v PEG 4000, 250 mM arginine, 200 mM 

glutamate, 12 mM SDS, 0.5 mM GSH, 5 mM GSSG 

1306  

± n/a 

1430  

± 175 

100  

± 12 

LIP B 

750 mM TRIS∙HCl, pH 7.5, 50 mM KCl, 25 mM arginine, 

50 mM glutamine, 12 mM SDS, 5 mM GSH, 5 mM GSSG 

1451  

± 286 

1335 

± 172 

92 

± 32 

LIP R (Ahn et al., 1997) 

50 mM TRIS HCl, 10 mM CaCl2, 5 mM DTT 

325 

± 76 

45  

± 10 

14  

± 5 

* GFP fluorescence intensity at 408 nm, GLR, GLK, LDH specific activity in U mg−1 and LIP in 

U g−1, LYZ activity according to the EnzChek® assay in s−1; PB, sodium phosphate buffer; TRIS, 

tris(hydroxymethyl)aminomethane; DTT, dithiothreitol; TCEP, tris-carboxyethyl-phosphine; 

MOPS, morpholino-propanesulfonic acid; EDTA, ethylenediaminetetraacetic acid; TWEEN 20, 

polyethylene glycol sorbitan-monolaurate; PEG, polyethylene glycol; GSH, reduced glutathione; 

GSSG, oxidized glutathione; HEPES, hydroxylethyl-piperazine-ethanesulfonic acid; BRIJ 35, 

polyethylene glycol dodecyl ether 
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5.1.9 Discussion 

Six functionally and structurally different model proteins were successfully optimized in 

terms of the refolding buffer, thereby proving the applicability of the proposed stochastic 

optimization strategy. Both yields and the underlying activities could be significantly 

improved compared to the experimentally validated literature references. 

Optimization results of the individual proteins 

GFP and GLR were optimized focusing on costs and refolding yields. The optimal 

refolding conditions for GFP identified in this work were quite similar to the reference 

condition described by Dashivets et al. (2009) and exhibited roughly identical yields 

considering the high measurement errors. Refolding yields and activities of GLR could be 

significantly increased compared to the reference. The experimentally determined 

refolding yield of the GLR reference (61 ± 18 %) corresponded well to Nordhoff et al. 

(1997) who reported up to 70 % yield depending on the protein concentration. While 

maximum refolding yields could be achieved for both proteins, the cost optimization was 

not saturated after six GENs. This was indicated by the lower costs of the reference and 

the steady progress of the cost criteria until the end of the optimization. Costs are a 

critical process parameter as 60 % to 75 % of the operating costs of industrial-scale 

inclusion body processes relate to the refolding step. For batch dilution, roughly 85 % of 

these costs comprise the raw materials, that is mainly the refolding buffer (Lee et al., 

2006). Typical costs for refolding buffers are not detailed, but redox agents are the most 

costly compounds (Freydell et al., 2011). 

GLK and LDH were probably suboptimal targets for a refolding screen. GLK exhibited 

“too” easy refolding, as 40 % of the examined conditions featured 100 % refolding yield. 

Furthermore, even dilution of the denatured protein in the buffer of the functional assay 

resulted in maximum refolding yields. Nevertheless, higher specific activities could be 

obtained during the optimization of GLK. The optimization of LDH failed to achieve 

100 % refolding yield. Overall, the activities of the refolded LDH were low and only the 

native protein exhibited a trend towards higher activities during the optimization. The 

observed instability in solution was probably related. Rudolph et al. (1977) reported no 

loss of activity, but the LDH under study was a different subtype. 

Reductive conditions were predominant for all four above-detailed proteins. Probably 

because DTT and TCEP prevented the oxidation of free SH-groups by air oxygen and 

thus positively affected the stability and activity. In contrast, LYZ and LIP required 

oxidative conditions for successful refolding and exhibited no or reduced enzymatic 
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activity in the presence of DTT or TCEP. This can be easily explained, LYZ and LIP 

contain disulfide bonds (Table 5.1).  

LYZ constituted a difficult target protein, as two factors (oxidative conditions and ionic 

strength) drastically influenced the activity. By putting constraints on both factors and 

performing modified optimizations with a reduced search space, the proportion of 

positive conditions could be increased to enable progression of the GA. LYZ is probably 

the best analyzed protein and well-characterized. Hence, both the necessity of 

glutathione (GSH / GSSG) and the impact of ionic strength were known (Davies et al., 

1969; Hevehan and De Bernardez Clark, 1997). However, data analysis was carried out 

independently without further information. Both trends were clearly observed in the 

datasets (Figure 5.14 and Figure 5.15). Hence, it should be possible to apply the same 

approach to new, unknown proteins. Unfortunately, a different batch of LYZ was used in 

the third experiment. Therefore, the activities were different compared to the previous 

optimizations. 

LIP activity was strongly influenced by SDS. Furthermore, the protein required (like 

LYZ) oxidative conditions for refolding. In this regard, the reference with 5 mM DTT 

was rather unsuitable as it was reductive. This reference was chosen because refolding 

conditions for the Lipase from Thermomyces lanuginosus (LIP) were not available. Ahn 

et al., (1997) studied the lipase from another organism (Pseudomonas fluorescence). 

Hence a comparison to LIP is not valid. For subsequent optimizations the best refolding 

condition from the first optimization was selected as a new reference. In these 

optimizations high LIP activities could be obtained in refolding conditions with SDS. 

However, the reproducibility was low in presence of SDS and Gdn∙HCl impeding the 

comparison of the three stochastic optimizations.  

Behavior of the GA during the optimization  

All optimal refolding conditions identified with the stochastic optimization were complex 

mixtures of 6 to 10 substances (Table 5.4). This bias towards complicated refolding 

buffers was probably a side effect of the encoding (see 4.5.1). Although a “soft” limit for 

complexity was introduced by classification in functional groups, there was no actual 

function to reduce complexity. Therefore, non-significant substances may remain during 

the optimization as the evolutionary pressure does not apply. This point is backed by the 

first two optimizations, which included experimental costs as objective. In these 

optimizations the general complexity was lower (compare GFP Table 5.4), as the costs 

acted as an indirect pressure and thereby penalized non-significant variables. Hence, 
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either the encoding strategy has to be adapted by defining a maximum for the number of 

compounds or an additional objective analog to the costs has to be introduced. The 

introduction of a third objective should be possible without changes to the experimental 

setup (22 experiments in each GEN). 

During the optimization, the GA “stuttered”: Although the mean of the objective 

functions increased during most optimizations, a clear pareto front with many 

individuals did not occur. As the GA parameters for population size, mutation and 

crossover were default and already used in other experimental optimizations (Gobin et 

al., 2007; Havel et al., 2006), this probably indicated a non-steady search or decision 

space. The high experimental error of up to 50 % for the refolding yield of GFP probably 

was one reason. Comparable stochastic optimizations of fermentation media performed 

well with standard deviations of up to 20 % (Weuster-Botz, 2000).  

Suitability of the functional assays 

Detection of refolded proteins by functional assays constitutes a standard approach for 

refolding screens, which offers reliable information about folding and can be easily 

parallelized in 96-well plate scale (Armstrong et al., 1999; Middelberg, 2002; Willis et al., 

2005). Using this method, six functionally and structurally different proteins (compare 

Table 4.1) were successfully optimized within the scope of this thesis. The proteins under 

study differed notably in their monomer mass (14 kDa to 53 kDa), their quaternary 

structure (monomer to tetramer) and the pI (pH 5.0 to pH 9.3). Next to GFP, five 

different enzymes were examined: two oxidoreductases (LDH, GLR), two hydrolases 

(LYZ, LIP) and one transferase (GLK). This variability is sufficient for a proof of concept 

of the stochastic optimization strategy. However, in the light of the natural diversity of 

proteins a further generalization (prediction for unknown proteins) is problematic. 

Refolding screens from the literature are limited to the analysis of the refolded protein. 

In this project, the activity of the native protein in the refolding buffer was measured as 

well. Thereby, effects of refolding additives on the activity itself could be excluded and 

refolding yields were quantified individually for each refolding condition. The major 

advantage was the ability to differentiate between effects on refolding and the activity. 

This made it possible to gain insights in the enzymatic activity, which is especially 

interesting for industrial biotransformations. Within this context, the switch from 

optimizing yields to optimizing the underlying activities itself was important (Figure 

5.7). For enzymatic applications the overall activity of the protein is decisive, not the 

refolding yields in the production process. 
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Measurements of the native activity are only possible if soluble protein is available. 

Further, the application in the refolding optimization is based on the assumption, that 

refolding from the denatured soluble protein is analog to refolding from the denatured 

IB. The comparability was proven for LIP (Figure 5.26), verifying the application of 

soluble model proteins in refolding screens. Tagged LIP was far less active, probably 

because the C-terminal His-tag was too close to the active center. Functional tags may 

influence protein activity and refolding, both positive and negative effects were observed 

for other proteins (Ishibashi et al., 2011). 
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5.2 Analysis of design of experiments (DOE) strategies 

Design of experiments (DOE) strategies aim to efficiently and precisely identify optimal 

solutions inside the problem specific search space (see 3.3). In this thesis, optimal 

protein refolding conditions were obtained in a small number of experiments using a 

stochastic optimization strategy based on a genetic algorithm (GA). In total, six different 

proteins were optimized, which are detailed in the previous chapter (5.1). In this section, 

the optimization performance of the proposed optimization strategy is first further 

characterized (5.2.1) and then compared to a classic statistical DOE (5.2.2). Experiments 

were performed with the lipase from Thermomyces lanuginosus (LIP). 

5.2.1 Robustness of the stochastic optimization 

Experimental design strategies based on GAs are heuristic and stochastic. Hence, it is 

not guaranteed to reach the global optimum. Depending on the random start and the 

subsequent experiments, optimization approaches may perform differently. In order to 

analyze the robustness and the stochastic nature of the proposed optimization strategy, 

LIP refolding was optimized consecutively several times. 

Sodium dodecyl sulfate (SDS) was observed to facilitate high native and refolded 

activities of up to 1750 U g−1
 but also caused precipitation in the presence of guanidine 

hydrochloride (Gdn∙HCl) (see section 5.1.6). However, optimal refolding conditions with 

SDS were not identified in all optimizations. While the first optimization (OPTI) failed to 

identify SDS and exhibited only moderate (up to 700 U g−1) enzymatic activities, the 

second, independent optimization (OPTII) contained conditions with highly active (up to 

1400 U g−1) native protein. Finally, very high refolded activities (up to 1400 U g−1) were 

measured in a third optimization (OPTIII). Hence, the performance was different, even 

though all optimizations were performed independently (random start) using the same 

parameters. 

Optimization of LIP without SDS  

In order to examine the above-detailed differing performance, first the necessity of SDS 

was examined in detail. SDS was removed from the list of included detergents and two 

additional optimizations were performed with the GA. Both approaches were 

independent with a random start (Figure 5.27). The maximum identified refolded 

activities were at the level of the reference (about 300 U g−1), which was the best 

refolding condition from OPTI. However, the native activity could be slightly improved 

compared to OPTI: 800 U g−1 were measured in a complex alkaline refolding buffer 
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without SDS. In all experiments (264 unique refolding conditions), LIP activity was 

significantly smaller compared to the previously determined conditions with SDS. 
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Figure 5.27: Overviews of the fourth (A) and fifth (B) LIP optimization approaches, 

SDS was excluded from the search. Experimental data of the individual GENs (I ●, 

II ○, III ▼, IV ∆, V ■, VI □) were plotted according to the two objectives. The star (  ) 

represents a standard refolding condition (best result of the first optimization) and 

the bisecting line denotes 100 % refolding yield. In addition, the optimization 

progress (last improvement in IV / IV) is highlighted for several GENs by black 

dashed lines.  

Continuation of the first and second optimization 

While the first two optimizations failed to identify experimental conditions which 

exhibited high refolded activities, both were terminated rather quickly. Only four to five 

generations (GENs) were evaluated (compare Figure 5.22). Therefore, OPTI and OPTII 

were continued by performing  additional GENs, in which Gdn∙HCl was replaced with 

urea for protein denaturation (Figure 5.28). OPTI was previously discontinued after five 

GENs. In the next few GENs there was little progress, but in GENVIII 1300 U mg−1 

native activity could be measured in a buffer containing SDS. Finally, GENX yielded a 

refolding buffer with 100 % yield and about 1000 U g−1 activity. In addition, native 

activities could be further increased to 1450 U g−1 (Figure 5.28, A). OPTII was previously 

aborted after four GENs. This optimization already contained a lot of experiments with 

SDS and high native activities. In the new experiments the next GEN (GENV) exhibited 

refolded activities of up to 1300 U g−1. These could be slightly improved in the following 

GENs. The optimization was terminated after GENVIII (Figure 5.28, B).  

VI (II) 

(A) (B) 
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Figure 5.28: Overviews of the continued first (A) and second (B) optimization 

approaches. Experimental data of the individual GENs (I ●, II ○, III ▼, IV ∆, V ■, 

VI □, VII ♦, VIII ◊, IX ▲, X  ) were plotted according to the two objectives. The star 

(  ) represents a standard refolding condition (best result of the first optimization, 

Figure 5.22) and the bisecting line denotes 100 % refolding yield. In addition, the 

optimization progress (last improvement in X / VI) is highlighted for several GENs by 

black dashed lines. LIP was denatured with urea for the additional experiments. 

Figure 5.29 compares the progress of the three independent stochastic optimizations for 

LIP, which incorporated SDS (continued OPTI+II and OPTIII). While OPTII and OPTIII 

identified comparable maximum activities, the best refolded activities in OPTI were 

slightly lower. Nevertheless, all optimizations revealed both conditions with 1450 U g−1 

or more native activity and refolded activities of 1000 U g−1 or more, which all contained 

SDS. The occurrence of high activities in the three optimizations differed notably. OPTI 

exhibited only a few activities higher than 750 U g−1. In contrast, OPTII and OPTIII 

featured more conditions with high activities. This was closely related to the presence of 

SDS during the optimization (Table 5.5). OPTI contained only 18 refolding conditions 

with SDS, equivalent to 8 % of the total experiments. In the other two optimizations, up 

to 43 % of the refolding conditions featured SDS. All optimizations enriched SDS during 

the optimization, indicated by the high percentage of SDS in the last GEN. 

(A) (B) 
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Figure 5.29: Overview of the first ( ), second ( ) and third ( ) independent 

stochastic optimizations of LIP refolding. Experimental data were plotted according 

to the two objectives. The star (  ) represents a standard refolding condition and the 

bisecting line denotes 100 % refolding yield. In addition, the optimization progress 

(last improvement in X, V, VI) is highlighted for several GENs by dashed lines. 

Table 5.5: Occurrence of SDS in LIP optimization one, two and three. 

Optimization GENs and total 

experiments 

Conditions with 

SDS 

Conditions with 

SDS in the last GEN 

One  10 / 220 18 (8 %) 7 (32 %) 

Two 8 / 176 76 (43 %) 12 (55 %) 

Three 6 / 132 38 (29 %) 15 (68 %) 

    

 

  

IV 

Experiments contain SDS 
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Although LIP refolding was subjected to an extensive analysis with 968 refolding 

experiments, a claim for the identification of a global optimum for LIP refolding was not 

justified. However, it was possible to compare the (local) optima identified by each 

optimization. Table 5.6 lists the refolding conditions with the highest refolded activities 

(optima). For all three optima, the specific activities were approximately 1000 U g−1 or 

higher with a refolding yield between 92 % and 100 %. Several compounds were 

ubiquitous: an alkaline buffer, SDS and a combination of reduced (GSH) and oxidized 

glutathione (GSSG). Furthermore, the composition of all refolding buffers was rather 

complex with 7 to 9 substances. A more detailed view revealed additional similarities 

between the optima of OPTII and OPTIII (Figure 5.30). Both contained high 

concentrations of TRIS∙HCl (500 mM to 750 mM), KCl, arginine and the maximum 

concentrations of SDS (12 mM) and GSSG (5 mM). On the other hand, the optimum of 

OPTI exhibited a slightly lower activity. In this optima another buffering agent was 

applied and the concentrations of SDS (3 mM) and GSSG (0.5 mM) were much smaller. 

Table 5.6: Highest refolded activities in optimization one, two and three. Listed are the 

composition, the individual activities of the native and refolded protein (* U g−1) and the yield 

achieved in the respective refolding conditions. 

Best LIP refolding condition (highest refolded 

activity) in each optimization  

Native 

activity* 

Refolded 

activity* 

Relative 

yield, % 

Optimization one (OPTII) 

100 mM MOPS, pH 9.25, 350 mM NaCl,  25 mM glutamate, 

7.5 mM EDTA, 3 mM SDS, 3.75 mM GSH, 0.5 mM GSSG 

1062 

± 296 

977 

± 33 

92 

± 29 

Optimization two (OPTII) 

750 mM TRIS∙HCl, pH 7.5, 50 mM KCl, 25 mM arginine, 

50 mM glutamine, 12 mM SDS, 5 mM GSH, 5 mM GSSG 

1451  

± 286 

1335 

± 172 

92 

± 32 

Optimization three (OPTII) 

500 mM TRIS∙HCl, pH 8.5, 175 mM NaCl, 50 mM KCl, 

0.05 % w/v PEG 4000, 250 mM arginine, 200 mM 

glutamate, 12 mM SDS, 0.5 mM GSH, 5 mM GSSG 

1306  

± Na 

1430  

± 175 

100  

± 12 

MOPS, morpholino-propanesulfonic acid; TRIS, tris(hydroxymethyl)aminomethane;  

EDTA, ethylenediaminetetraacetic acid; GSH, reduced glutathione; GSSG, oxidized glutathione 

PEG, polyethylene glycol; TRIS, tris(hydroxymethyl)aminomethane. 
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Figure 5.30: Composition of the best refolding conditions in each optimization.  

( ) OPTI, ( ) OPTII and ( ) OPTIII. (A) Variables were normalized using the maximal 

values of the search space (Table 4.4). (B) Complex variables with more than one 

substance were grouped in the respective categories sorted from left to right: buffer 

type (PB, HEPES, MOPS, TRIS∙HCl), stabilizer type (none, Glycerol, PEG 4000), 

cofactor type (none, Cu2+ Zn2+ Mg2+ Mn2+, EDTA), detergent type (none, CHAPS, 

ZWITTERGENT 3-12, NDSB 201, TWEEN 20, TRITON-X 100, BRIJ 35, SDS). 

 

 

  

 pH           

 buffer                      buffer 

 NaCl           

 KCl           

 stabilizer                       stabilizer 

 arginine           

 glycine           

 glutamine           

 glutamate           

 cofactor                       cofactor 

 detergent                       detergent 

 GSH            

 GSSG            

 0.0     0.2     0.4     0.6      0.8     1.0 

Variable range, - Categorical variables 

V
a

ri
a

b
le

s
, 
- 

(A) (B) 



Results and Discussion  111 

5.2.2 Comparison to a standard, two-step statistical design of 

experiments (DOE) 

In contrast to the previously discussed stochastic optimization, standard DOE strategies 

are statistic and centered on a simplified process model. This model is described by more 

(including quadratic and interactions terms) or less (only linear terms) complex 

equations. In this subsection the results of the stochastic optimization of LIP (see 5.1 

and 5.2.1) are compared to a standard two-step DOE, which includes a D-optimal 

screening experiment and the subsequent optimization by response surface methodology 

(RSM).  

Screening 

First, a D-optimal screening design was generated. This DOE incorporated the variables 

of the stochastic optimization (compare Table 4.4), but as a screening experiment the 

resolution was drastically lower. Only two levels were examined for each variable, for 

example pH 6.00 and pH 9.75 or no NaCl and 350 mM NaCl. Apart from the pH, the 

addition of 25 refolding substances was analyzed. Concentrations represented the upper 

limit of the stochastic optimization (Table 5.7).  

Table 5.7: Screened variables for LIP refolding. The D-optimal screening contained 27 

variables (Vi), that were analyzed in two levels. 

Nr. Variable and abbreviation  Experimental 

values 

V1  pH pH 6.00, pH 9.75 

V2 sodium phosphate buffer, PB 0 mM, 100 mM 

V3  hydroxylethyl-piperazine-ethanesulfonic acid, HEPES 0 mM, 100 mM 

V4  morpholino-propanesulfonic acid, MOPS 0 mM, 100 mM 

V5  tris-carboxyethyl-phosphine, TRIS∙HCl 0 mM, 1000 mM 

V6 NaCl 0 mM, 350 mM 

V7 KCl 0 mM, 80 mM 

V8 glycerol 0 % v/v , 15 % v/v  

V9 polyethylene glycol 4000, PEG 4000 0 % w/v, 0.25 % w/v 
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Table 5.7 (continued): 

Nr. Variable and abbreviation  Experimental 

values 

V10 arginine 0 mM, 750 mM 

V11 glycine 0 mM, 350 mM 

V12 glutamine 0 mM, 350 mM 

V13 glutamate 0 mM, 350 mM 

V14 Cu2+ Zn2+ Mg2+ Mn2+, mineral ions (sulfates) 0 µM, 100 µM 

V15 ethylenediaminetetraacetic acid, EDTA 0 mM, 10 mM 

V16 cholamidopropyl-dimethylammonium-propanesulfonate, CHAPS 0 mM, 11 mM 

V17 non-detergent sulfobetaine 201, NDSB 201 0 mM, 1500 mM 

V18 dodecyldimethyl-ammonio-propanesulfonate, ZWITTERGENT 3-12 0 mM, 4 mM 

V19 polyethylene glycol sorbitan-monolaurate, TWEEN 20 0 µM, 80 µM 

V20 polyethylene glycol tert-octylphenyl ether, TRITON-X 100 0 µM, 800 µM 

V21 sodium dodecyl sulfate, SDS 0 mM, 12 mM  

V22 polyethylene glycol dodecyl ether, BRIJ 35 0 µM, 120 µM 

V23 dithiothreitol, DTT 0 mM, 10 mM 

V24 tris-carboxyethyl-phosphine, TCEP 0 mM, 10 mM 

V25 reduced L-glutathione, GSH 0 mM, 5 mM 

V26 oxidized L-glutathione, GSSG 0 mM, 5 mM 

V27 combination of GSH and GSSG 0 mM, 5 mM each 

   

In order to ensure the comparability of the D-optimal design and the stochastic 

optimization, knowledge was incorporated in form of variable groups (factors). Most 

factors were simple numerical two-level factors, like the previously mentioned pH or 

NaCl. However, three factors grouped substances of the same class in categorical factors 

with more levels, as it made little sense to include more than one buffer substance or 

detergent into a refolding buffer. Furthermore, this process translated the class 

constraints of the GA (see section 4.5.1) into the statistical DOE and saved experimental 
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effort as fewer experiments were required. Details of the design are listed in the 

appendix (Table 9.5). 

LIP refolding was carried out by diluting the denatured protein (urea) in the respective 

refolding buffer using the same experimental procedure as in the stochastic optimization 

(see 4.1). Refolded activities and the activity of the native protein were determined 

three-fold for each experimental condition. Refolding conditions and the measured 

activities are summarized in the appendix (Table 9.6). After performing the experiments, 

multi-linear regression with the design matrices (Table 9.7) gave a regression model 

with one constant and 28 linear coefficients. Subsequently, the model was refined by 

removing non-significant coefficients (Table 5.8).  

Regression was carried out twice: first for the native and then for the refolded activities. 

Both could be modeled with high coefficients of determination (R2) of 0.9995 and 0.9487. 

Even after refinement, the models were quite complex, since 18 and 22 variables had a 

significant effect on LIP activities. However, roughly 50 % had a negative effect and were 

consequently not of interest for a subsequent optimization. KCl, glycerol and mineral 

ions exhibited a moderate negative influence. Additionally, several detergents and the 

reductive redox agents DTT and TCEP severely decreased the activity.  

The native activity of LIP was influenced positively by an alkaline pH and the addition 

of TRIS∙HCl, arginine, glutamate, EDTA, GSH and three detergents. Many of these 

variables had a positive impact on refolding as well (alkaline pH, TRIS∙HCl, arginine, 

EDTA and GSH). However, the refolded activity was also strongly influenced by redox 

agents (GSSG and the combination of GSH and GSSG). With regard to the detergents, 

SDS had a positive effect in both cases, but was outperformed by other detergents 

(TRITON-X 100 and TWEEN 20). 

After the evaluation, the most important variables were selected for the subsequent 

RSM optimization. Efficient refolding conditions were the overall aim. Hence, the 

refolded activity (highest regression coefficient, bi) was selected as decision criteria 

(Table 5.8). Consequently, the pH, TRIS∙HCl, EDTA, TWEEN 20 and GSSG were chosen 

as variables for the next optimization. SDS exhibited a high coefficient but TWEEN 20, 

another detergent, performed even better.  
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Table 5.8: Coefficients (bi) of the first order regression models for the native LIP activity (bnat) 

and the refolded activity (bref) in the D-optimal screening. (*) variables selected for the RSM. 

b Variable  bnat bref 

b0 (constant) 260.2 78.07 

b1 pH * 43.2 46.83 

b2 PB 18.3 - 

b5 TRIS∙HCL * 20.4 59.36 

b7 KCl −75.4 −27.15 

b8 glycerol −22.9 −24.49 

b10 arginine 25.3 27.37 

b11 glycine −15.2 - 

b12 glutamine −17.7 18.16 

b13 glutamate 67.3 - 

b14 Cu2+ Zn2+ Mg2+ Mn2 −51.8 −32.97 

b15 EDTA * 35.6 35.89 

b16 CHAPS −92.1 −80.70 

b17 NDSB 201 −178.7 −59.34 

b18 ZWITTERGENT 3-12 50.5 - 

b19 TWEEN 20 * - 90.35 

b20 TRITON-X 100 94.3 −39.87 

b21 SDS 75.8 69.24 

b22 Brij −94.8 −59.55 

b23 DTT −135.8 - 

b24 TCEP −143.8 - 

b25 GSH 36.4 68.27 

b26 GSSG * - 149.96 

b27 GSH/GSSG 13.3 83.02 
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RSM optimization 

Based on the results of the previous screening, LIP refolding was optimized using 

response surface methodology (RSM). Five variables were examined: pH, TRIS∙HCl, 

EDTA, TWEEN 20 and GSSG (Table 5.9). In contrast to the screening, the optimization 

was based on a second order polynomial, so interaction and quadratic terms were 

included (Equation 8). Hence, variables had to be analyzed in more detail (five levels, 

coded −2, −1, 0, 1, 2) and more experiments were necessary for each variable. A 

circumscribed central composite design with the mentioned five levels and 27 

experiments was used (see appendix Table 9.8). Refolding was evaluated experimentally 

in each condition using the standard setup. Mean values of the activity measurements 

and the standard deviation are listed in the appendix (Table 9.8). 

Table 5.9: RSM model for LIP refolding. Encoded levels (−2,−1, 0, 1, 2) variables (V1 to V5) and 

the respective experimental values. 

Variable 

Coding 

V1 

pH, - 

V2 

TRIS∙HCl, M 

V3 

EDTA, mM 

V4 

TWEEN 20, mM 

V5 

GSSG, mM 

−2.00 8.00 0.00 0.00 0.00 0.00 

−1.00 8.50 0.25 5.00 0.04 2.50 

0.00 9.00 0.50 10.00 0.08 5.00 

1.00 9.50 0.75 15.00 0.12 7.50 

2.00 10.00 1.00 20.00 0.16 10.00 

      

Analogous to the screening, both native and refolded activities were fitted to the model of 

the DOE (Equation 8) by multi-linear regression. Subsequently, the models were refined 

by removing non-significant coefficients. While the RSM model of the refolded activity 

featured an R2 of 0.9796, the agreement of experimental and estimated native activities 

was lower (R2 0.8894). Table 5.10 lists the significant constant, linear, interaction and 

quadratic terms for both models. Overall, the RSM confirmed the results of the screening 

experiment, as GSSG was not important for the native activity and TWEEN 20 had a 

very limited effect. In contrast, all five variables affected the refolded activity 

significantly.  
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Table 5.10: Coefficients (b) of the second order polynomial regression models for the native 

LIP activity (bnat) and the refolded activity (bref) in the RSM optimization. Constant (b0), linear 

(bi), interaction (bi∙j) and quadratic (bi∙i).  

b Variable bnat bref 

b0 (constant) 364.3 359.3 

b1 pH −31.0 14.0 

b2 TRIS∙HCl −32.7 7.5 

b3 EDTA 18.4 26.0 

b4 TWEEN 20 10.0 27.1 

b5 GSSG - 45.1 

b1∙2 pH ∙ TRIS∙HCl 21.4 - 

b1∙4 pH ∙ TWEEN 20 20.9 - 

b1∙5 pH ∙ GSSG - −35.6 

b2∙5 TRIS∙HCl ∙ GSSG - 22.3 

b4∙5 TWEEN 20 ∙ GSSG 12.5 - 

b1∙1 (pH)2 44.1 23.9 

b2∙2 (TRIS HCl)2 26.1 12.2 

b3∙2 (EDTA)2 36.2 - 

b4∙2 (TWEEN 20)2 - 15.6 

b5∙2 (GSSG)2 - −13.0 

   

In the RSM model, the native activity of LIP was mostly dependent on the pH and the 

concentrations of TRIS∙HCl and EDTA. The maximum of the model estimation was 

outside the borders set by the design space. An activity of 1171 U g−1 were estimated for 

the point at a corner (−2, 2, 2, 2, 2). However, this computational maximum was not 

verified experimentally. The highest experimentally determined activity was at 

663 U g−1 (appendix Table 9.8). With regards to the model coefficients (bnat), the pH was 

most important, it interacted with almost all other variables and exhibited a large 

quadratic term. In the RSM model, the optimal pH was the lower limit of the design, 

pH 8. 
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With respect to the refolded activity, the RSM model estimated the highest activities 

(929 U g−1) at the same corner point (−2, 2, 2, 2, 2). In comparison, the highest 

experimentally determined refolded activity, 508 U g−1, was low. Considering the model 

coefficients (bref), GSSG was of exceptional importance (highest linear regression 

coefficient) and various interactions with other variables could be identified (Figure 

5.31). While the highest activities were estimated for pH 8 and maximal GSSG 

concentration (Figure 5.31, A), an extreme point existed for a higher pH with maximal 

refolded activities at 6.5 mM GSSG. The interactions with EDTA and TWEEN 20 at this 

extreme point are illustrated in Figure 5.31 B and C.  

In conclusion, the RSM approach improved both native and refolded activities compared 

to the activities in the previous screening experiment. Maximum experimental values 

increased 10 % to 55 % for native (426 U g−1 to 663 U g−1) and refolded (453 U g−1 to 

508 U g−1) activities, respectively. The polynomials estimated even higher activities for 

the corner points of the design space. Experimentally measured LIP activities were low 

compared to the 1750 U g−1 identified by the stochastic DOE approach (see 5.2.1). 
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Figure 5.31: Visualization of the estimated  interactions of GSSG in the RSM model 

for the refolded activity of LIP. (A) pH, (B) EDTA and  (C) TWEEN 20. 
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Analysis of the complexity of LIP refolding 

Standard statistical DOE with preliminary screening and subsequent optimization 

assumes that a linear approach is sufficient to identify essential variables in the 

screening. In order to evaluate, why the screening experiments failed to gain high 

refolded activities, the linear approach (Equation 7) was applied on the entire dataset of 

the stochastic optimizations (Figure 5.32, A). Using this simple process model with one 

constant and 26 linear terms it was only possible to achieve small correlation coefficients 

(R2) of 0.6756 (native) and 0.5218 (refolded). Elevated refolded activities were estimated 

incorrectly and too low, as all normalized estimated refolded activities were smaller than 

0.4. Hence, the linear approach of the screening did not capture all necessary 

information to correctly estimate LIP activity in the dataset from the stochastic 

optimizations. 
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Figure 5.32: Regression models for the stochastic optimization of LIP refolding with 

679 experiments. (A) linear model, (B) second order polynomial with interaction 

terms. ( ) native activity, ( ) refolded activity, (—) perfect fitting line, (– –) 20 % 

deviations limits, (  
 ,   

 ) correlation coefficients for the native and refolded activities. 

Applying the more complex second order polynomial (Equation 8) of the RSM approach 

on the dataset was difficult, as the entire model included 378 terms: 1 constant, 26 

linear, 325 interaction, 26 quadratic terms. A straightforward regression was not 

possible as the dataset (679 experiments) contained insufficient information. Hence, a 

regularized least-squares regression using lasso (Tibshirani, 1996) was carried out with 

the Matlabs (Mathworks) lasso function. Both activities could be fitted well (R2 of 0.8830 

and 0.8462) considering the experimental error of up to 20 % (Figure 5.32, B).  
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5.2.3 Discussion  

In order to compare different DOE strategies, LIP refolding conditions were subject to an 

in depth analysis with the proposed stochastic optimization strategy and a standard 

statistical DOE approach. The stochastic optimization approach was applied multiple 

times. In total, 968 experimental conditions were examined in 44 GENs. Additionally, its 

performance was juxtaposed to a standard statistical approach revealing the importance 

of variable interactions in the problem. 

Robustness of the stochastic optimization 

An experimental analysis regarding the robustness of a stochastic DOE has not been 

published as of February 2012. This study on LIP refolding represents the first 

experimental problem, in which a stochastic search algorithm was evaluated multiple 

times on the same problem. All three optimizations (OPTI – III) which incorporated SDS 

achieved high refolded LIP activities of about 1000 U g−1 or greater in alkaline refolding 

buffers with GSSG and GSH and SDS. This close similarity indicates that the proposed 

stochastic optimization strategy is quite robust, as the optima in each independent 

approach were roughly identical. In contrast to statistical DOE which starts with a 

predefined list of experiments (the experimental design), a stochastic optimization is not 

deterministic: Non-deterministic steps occur both in the beginning (random starting 

population) and in each GEN (mutation, crossing-over). Nevertheless, all three 

optimizations with the GA resulted in similar optima for the refolded activities of LIP. 

Therefore, the above-detailed stochastic aspects of the GA seem to be limited, even for an 

experimental problem with small population sizes and few GENs. 

OPTII and OPTIII obtained similar optima and slightly outperformed OPTI, which despite 

evaluating 10 GENs (220 experiments) identified only a suboptimal solution. SDS 

occurred late in OPTI and the percentage of buffers containing SDS in the entire 

optimization and the last GEN was drastically lower compared to the other two 

optimizations (Table 5.5). This indicated further potential and that higher activities in 

OPTI could have probably been obtained by performing more GENs. 

Despite the comprehensive dataset for the LIP, it is not justified to define the best 

refolding conditions identified in OPTII and OPTIII as global optima. By principle, a 

stochastic optimization is only able to identify local optima: The method is non-

deterministic and thus further experiments might identify better refolding conditions. 

The fact that both independent optimizations yielded very similar optima is a hint but 
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no proof. A more detailed analysis, either with a fine resolution statistical DOE or by 

substituting the applied GA with a hybrid optimization algorithm (Grosan and 

Abraham, 2007), might be able to determine even better activities. However, considering 

the large experimental error of up to 20 %, it is questionable if the measurements would 

provide enough resolution to distinguish between optimal and suboptimal solutions in 

close proximity. 

Comparison to a standard two-step statistical DOE 

In the initial step of the statistical DOE, the D-optimal screening used a simplified 

linear model to estimate the most important variables. Despite this simplification, most 

process variables that affected refolding were “correctly” identified. “Correctly” meaning 

that the entire LIP dataset exhibited similar results (section 5.3.2). However, another 

detergent outperformed SDS, which had tremendous impact on the activity in the 

stochastic optimizations (section 5.1.6) in the screening. Therefore, it was not included 

and successively optimized in the RSM. Although, the RSM increased native and 

refolded activities compared to the screening, it was not possible to identify the high 

activities which the GA discovered. The computational optima of the RSM models were 

outside the design space and the highest activities were measured for a point at the 

corner. In these outlying regions of the problem space, the model quality of the RSM is 

bound to be rather poor. A further optimization experiment with adjusted borders and 

an experimental validation would be necessary to evaluate this region of experimental 

space. The interactions of the pH and GSSG, which were identified in the RSM model, 

were observed previously (Ahn et al., 1997; Willis et al., 2005). Alkaline buffers (pH 7.5 

to pH 9.0) are standard for oxidative refolding (Fischer et al., 1993).  

The importance of including interactions into the process model was highlighted by a 

regression analysis on the entire LIP dataset. A linear regression model was unsuitable 

to correctly estimate LIP refolding. Small correlation coefficients (R2) of 0.52 and 0.68 

compared well to Weuster-Botz (2000), who reported 0.45 to 0.6 for the linear regression 

analysis of datasets from stochastic optimizations. A second order polynomial, that 

incorporated interaction and quadratic terms (Equation 8) correctly estimated LIP 

activities (R2 0.88 and 0.85). This model was in principle able to estimate LIP activities, 

but was overly complex (335 coefficients) and basically unfit for prediction purposes due 

to the generalization error (results not shown). However, it demonstrated in conjunction 

with the linear approach, that a correct estimation of LIP activity could only be achieved 

by integrating interaction and quadratic terms. Hence, a simple linear model for 
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screening and a successive optimization was inadequate to identify the “global” optimum 

conditions found by the GA. In summary, it was not possible to obtain the high activities 

previously determined in the stochastic DOE because SDS was excluded after the 

screening experiment. This highlighted the limits of the classic two-step statistical DOE: 

The linear model used to identify the most important process variables did not 

incorporate interactions, which proved to be integral for this optimization. 

Regarding the experimental effort, the statistical DOE was far superior to the GA. It 

amounted to 30 experiments in the screening and 27 in the subsequent optimization. On 

the other hand, 22 experiments were performed in each GEN for the GA with a total 

effort 22∙10 = 220 experiments for the first optimization. However, this comparison is 

only valid for a DOE approach using a linear screening as the first step. This approach 

however, failed to identify optimal conditions. Performing  a “non-linear screening” that 

includes interaction terms would require far more experiments. For LIP, a problem with 

27 variables, the model featured 378 terms and was overly complex (see above). It was 

difficult to fit, even with the entire dataset of the stochastic optimizations 

(679 experiments). Hence, the experimental effort of the stochastic optimization, which 

at first seemed quite high (220 experiments) is actually moderate compared to the 

statistical approach. Thus, the analyzed problem (LIP refolding) exemplified the 

efficiency of GAs for complicated multidimensional problems. 
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5.3 Modeling of the refolding conditions 

Results from the experimental work (section 5.1 and 5.2) were subjected to a detailed 

analysis, which aimed to correlate the composition of the refolding buffer and the 

refolding success. More specifically, native and refolded activities as well as the relative 

refolding yield were to be described as a function of the refolding condition. The aim was 

to analyze all compounds of the refolding buffer and their effect on the activity and 

refolding yield. Analog to the regression analysis in the previous section (5.2.2), the 

dataset of the stochastic optimization of one protein was used as input, however more 

sophisticated modeling approaches were pursued: artificial neural networks (ANN) and 

bagged decision trees (BDT).  

5.3.1 Preliminary models of LIP refolding 

Modeling focused on lysozyme (LYZ) and the lipase from Thermomyces lanuginosus (LIP) 

as they provided far more experimental data than the other proteins. Work on LYZ 

yielded promising preliminary ANN models for the native activity measurements from 

the first two optimizations (results not shown). However, subsequent experiments with 

LYZ were carried out with a different enzyme batch and the resulting enzymatic 

activities differed significantly (compare 5.1.4). Therefore, an experimental validation 

was not possible and the remaining dataset (new enzyme batch, third optimization) was 

not large enough for new models. Consequently, further work concentrated on LIP. For 

this protein, five different optimizations had been performed resulting in a detailed 

picture of refolding conditions (see 5.2.1). In total, the LIP dataset contained 459 

(preliminary model) to 767 (refined model) individual refolding experiments. Modeling 

variables and inputs are summarized in Table 5.11 and Table 5.12. Both datasets were 

normalized to obtain values between zero and one. 

Table 5.11: Modeling variables for LIP. Native and refolded activities measured in the 

respective refolding conditions and the derived relative yield. All variables were normalized. 

Modeling variable Comment 

Native activity Measured only once for most refolding conditions, 15 % 

to 20 % standard error for multiple measurements 

Refolded activity Measured three-fold, standard error smaller than 20 % 

Refolding yield Calculated as the quotient of native and refolded activity 

(Equation 15), up to 35 % error 
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Table 5.12: Input variables of the LIP models. (Features) Normalized compounds of the 

refolding buffer ordered according to the functional classes (pH and buffer, salts, various 

additives, detergents, redox agents). 

Nr. Features of the refolding buffer 

1  pH 

2 sodium phosphate buffer, PB 

3  hydroxylethyl-piperazine-ethanesulfonic acid, HEPES 

4  morpholino-propanesulfonic acid, MOPS 

5  tris-carboxyethyl-phosphine, TRIS∙HCl 

6 NaCl 

7 KCl 

8 glycerol 

9 polyethylene glycol 4000, PEG 4000 

10 arginine 

11 glycine 

12 glutamine 

13 glutamate 

14 Cu2+ Zn2+ Mg2+ Mn2+, mineral ions supplemented as sulfates 

15 ethylenediaminetetraacetic acid, EDTA 

16 cholamidopropyl-dimethylammonium-propanesulfonate, CHAPS 

17 non-detergent sulfobetaine 201, NDSB 201 

18 dodecyldimethyl-ammonio-propanesulfonate, ZWITTERGENT 3-12 

19 polyethylene glycol sorbitan-monolaurate, TWEEN 20 

20 polyethylene glycol tert-octylphenyl ether, TRITON-X 100 

21 sodium dodecyl sulfate, SDS 

22 polyethylene glycol dodecyl ether, BRIJ 35 

23 dithiothreitol, DTT 
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Table 5.12 (continued):  

Nr. Features of the refolding buffer 

24 tris-carboxyethyl-phosphine, TCEP 

25 reduced L-glutathione, GSH 

26 oxidized L-glutathione, GSSG 

  

Artificial neural network (ANN) models  

First, normalized data from LIP refolding experiments were used as input for ANNs (see 

section 3.4.1). While the variation of inputs, network size, architecture and training 

algorithms showed some positive effects (results not shown), ANN models generally 

performed well in training, but were unable to predict new data correctly. This high 

generalization error is exemplified in Figure 5.33 for two feed-forward ANN with 10 and 

20 neurons in the hidden layer, respectively. In this example the native activity of a 

preliminary dataset (600 LIP refolding conditions) was modeled. The dataset was 

divided randomly using 70 % for training to adjust the network weights using the 

Levenberg-Marquard algorithm with backpropagation, while the remaining 188 

experiments were used for an independent test and validation. A more complicated 

network increased the correlation coefficient for the training data (R2) from 0.6846 to 

0.9399, but it caused the quality of the validation results to decrease even further  

(R2 0.4961 to 0.2003). Thus, the ANN was not able to predict new data. The key problem 

was the distribution of the dataset. LIP refolding was optimized by using a genetic 

algorithm (GA), a heuristic and stochastic optimization method. Therefore, the 

experimental dataset was not uniformly distributed. In some regions of the search space 

data were very sparse. Especially for highly active refolded protein, only few 

experiments had been performed. Consequently, the division of the dataset strongly 

influenced the model performance. The high level of noise in the dataset, that is the 

error of the activity measurements (Table 5.11), further complicated modeling. In 

addition to the native activity, refolded activity and yield were examined as well. For 

these two model variables the ANN performance was even lower compared to the native 

activity (results not shown). 
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Figure 5.33: Training and validation of ANN models with 10 (A, B) or 20 (C, D) 

neurons in the hidden layer for LIP native activity. Training was performed with 413 

experiments, test and validation with 188. (○) model data, (—) perfect fitting line,  

(– –) 20 % deviations limits. 
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Preliminary bagged decision tree (BDT) models without SDS 

Due to the lack of performance of ANNs, other modeling approaches were pursued. As 

the data quality and distribution seemed to be problematic, ensemble system were 

focused on, which generally perform better on “non-ideal” datasets (Polikar, 2006). In 

particular, bagged decision trees (BDT) which are based on resampling the dataset, often 

perform well on noisy dataset and offer better generalization performances (see section 

3.4.2).  

BDT performance was evaluated in the training with the out-of bag mean square error: 

the prediction error of all observations that were not part of the bootstrap sample (out-of-

bag). For the model generation, first the optimal minimum leaf size (minimum number 

of observations per tree leaf) was determined by comparing mean squared errors 

obtained by regression for various leaf sizes (Figure 5.34, A). A minimum leaf size of five 

was optimal for all BDT models. Additionally, the fraction of observations in the training 

data that were in-bag for all trees was monitored (Figure 5.34, B). Starting at about 2/3 

for one tree (2/3 was the fraction selected by one bootstrap replica), the fraction of in-bag 

observations dropped to zero at approximately ten trees.  

Number of grown trees, -

0 10 20 30 40 50

O
u

t-
o
f-

b
a

g
 m

e
a
n

 s
q
u

a
re

 e
rr

o
r,

 -

0.010

0.015

0.020

0.025

0.030

0.035

 Number of grown trees, -

0 5 10 15 20 25

F
ra

ct
io

n
 o

f 
in

-b
a
g
 o

b
e
rs

e
rv

a
ti

o
n

s
, 

-

0.0

0.2

0.4

0.6

0.8

 

Figure 5.34: BDT model generation, example for LIP native activity. (A) Mean 

square error for models with different minimum leaf size (black, 1, grey 5, dashed 

black 10, dashed grey 50). (B) Fraction of in-bag observations for all trees. 
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Refolding experiments with SDS exhibited a low reproducibility if the protein was 

denatured with Gdn∙HCl due to precipitation (see 5.1.6). Therefore, the first BDT models 

excluded all experiments incorporating SDS. Additionally, refolding experiments with 

urea denaturation were filtered out as well. The aim was a consistent minimal dataset 

which was restricted to refolding experiments performed with exactly the same 

experimental setup. This preliminary dataset of 459 LIP refolding conditions was later 

expanded in subsequent modeling approaches. Three different models were generated 

with the preliminary dataset: one for the native activity, the refolded activity and the 

relative refolding yield, respectively (Figure 5.35 and Figure 5.36).  

In the parity plots (Figure 5.35, A and C) of predicted and measured LIP activities, more 

than 98 % of the observations were located within the limits of the standard deviation 

(20 %). Correlation coefficients (0.6735 and 0.8072) and model performance were 

moderate considering the high experimental error of up to 20 %. The architecture of the 

BDT model enables an easy estimation of the impact of each input variable or feature. 

Each feature represents one compound of the refolding buffer, for example the NaCl 

concentration (compare Table 5.12). In general the BDT prediction ability should depend 

more on important and less on unimportant features. By permuting the values of one 

feature across all observations and measuring the impact on the mean square error it is 

possible to obtain the out-of-bag feature importance (Figure 5.35, B and D). This value 

represents a significance measure for the model. It offers no information about the effect 

(positive or negative influence). For the native activity of LIP, NaCl, arginine and two 

reductive compounds were most important for the model prediction (Figure 5.35, B). 

While DTT and TCEP decreased LIP activities (see 5.1.9), the other two compounds had 

a positive effect. In contrast, the activity of the refolded protein  was mostly affected by 

the pH (alkaline pH increased activities), mineral ions (negative), DTT (negative) and 

the GSH / GSSG (positive) redox system (Figure 5.35, D). 

  



Results and Discussion  129 

 Normalized experimental variable, -

0.0 0.2 0.4 0.6 0.8 1.0

N
o
rm

a
li

z
e
d

 p
re

d
ic

te
d

 v
a
ri

a
b
le

, 
-

0.0

0.2

0.4

0.6

0.8

1.0

 Feature number, -

5 10 15 20 25O
u

t-
o
f-

b
a

g
 f

e
a
tu

re
 i

m
p

o
rt

a
n

ce
, 

-

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 

 Normalized experimental variable, -

0.0 0.2 0.4 0.6 0.8 1.0

N
o
rm

a
li

z
e
d

 p
re

d
ic

te
d

 v
a
ri

a
b

le
, 

-

0.0

0.2

0.4

0.6

0.8

1.0

 Feature number, -

5 10 15 20 25O
u

t-
o
f-

b
a

g
 f

e
a
tu

re
 i

m
p

o
rt

a
n

ce
, 

-

0.0

0.5

1.0

1.5

2.0

2.5

 

Figure 5.35: Preliminary BDT models for the native (A, B) and refolded (C, D) 

activity of LIP. The dataset contained 459 LIP refolding experiments without SDS. 

(A, C) Parity plots of experimental and predicted activity. (○) model data, (—) perfect 

fitting line, (– –) 20 % deviations limits. (B, D) Importance of the components of the 

refolding buffer (features) for the model performance. 

The third model variable, the refolding yield, was calculated relative (Equation 15) as 

the quotient of the native and refolded activities. Due to the measurement errors in the 

LIP assay of 15 % to 20 % and the error propagation, yields were poorly defined (35 % 

standard deviation). In the BDT model an R2 of 0.5573 was observed (Figure 5.36, A). 

Additionally, a clear bias was visible. Low refolding yields were overestimated and high 

refolding were underestimated by the model. The feature importance (Figure 5.36, B) 

was roughly equal to the refolded activity (compare Figure 5.35, D), though DTT and 

TCEP were less important. 
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Figure 5.36: Preliminary BDT models for the relative refolding yield of LIP. The 

dataset contained 459 LIP refolding experiments without SDS. (A) Parity plot of 

experimental and predicted yield. (○) model data, (—) perfect fitting line, (– –) 35 % 

deviations limits. (B) Importance of the components of the refolding buffer (features) 

for the model performance. 

Preliminary bagged decision tree (BDT) models with SDS 

Only refolding conditions with SDS exhibited high LIP activities of up to 1750 U g−1 

(section 5.2.1). Therefore, including SDS into the models was crucial. Hence, the 

previous dataset was merged with refolding experiments from the third stochastic 

optimization. The resulting 591 LIP refolding experiments were again modeled in 

respect to the three variables: native and refolded activities (Figure 5.37) and refolding 

yield (Figure 5.38). 

Like before (Figure 5.35), refolding conditions with high activities were very sparse in 

the dataset and thus not uniformly distributed (Figure 5.37, A and C). Compared to the 

previous models, the R2 values were slightly increased (0.8231 and 0.751). Most data 

were inside the limits of the experimental error. However, elevated refolded activities 

were underestimated (Figure 5.37, C). SDS was a very important feature for both models 

(Figure 5.37, B and D). In addition, DTT and TCEP strongly influenced the native 

activity comparable to the previous model. In contrast, the refolded activity was 

influenced by the pH and GSH / GSSG. 
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Figure 5.37: Preliminary BDT models for the native (A, B) and refolded (C, D) 

activity of LIP. The dataset contained 591 LIP refolding experiments including 

conditions with SDS. (A, C) Parity plots of experimental and predicted activity. (○) 

model data, (—) perfect fitting line, (– –) 20 % deviations limits. (B, D) Importance of 

the components of the refolding buffer (features) for the model performance. 

Regarding the refolding yield, again a low correlation between experiments and model 

data (R2 of 0.5106) and a bias occurred (Figure 5.38, A). However, the feature importance 

exhibited a very interesting picture (Figure 5.38, B) as SDS had no effect on the refolding 

yield itself. Only the pH, GSH and GSSG affected the prediction of the yield.  
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Figure 5.38: Preliminary BDT models for the relative refolding yield of LIP. The 

dataset contained 591 LIP refolding experiments including conditions with SDS.  

(A) Parity plot of experimental and predicted yield. (○) model data, (—) perfect fitting 

line, (– –) 35 % deviations limits. (B) Importance of the components of the refolding 

buffer (features) for the model performance. 

5.3.2 Refined models of LIP refolding and experimental validation 

The BDT models were refined and experimentally validated using the results of the 

continuation experiments of the first two stochastic optimizations (section 5.2.1). These 

contained many refolding conditions with SDS and high activities, thereby increasing 

the amount of observations with high activities and reducing the bias in the new dataset. 

Half of the new experiments were used for refinement (88), the other half for validation 

purposes (Figure 5.39 and Figure 5.40).  

In the refined BDT models of the LIP activities (Figure 5.39, A and C), significantly 

higher R2 of 0.8699 (native) and  0.8218 (refolded) were calculated. Thus, the refined 

models explained most of the variability in the dataset and over 99 % of the observations 

were within the boundaries of the standard deviation. Additionally, 88 refolding 

experiments were used for an independent validation. In the parity plots, these 

observations showed a similar distribution compared to the model data. R2 for the 

validation data varied between 0.8205 (native) and 0.8292 (refolded) and were thus in 

good agreement with the model data. Feature importance was roughly equal to the 

previous models (compare Figure 5.37). However, the relative importance of SDS was 

increased (Figure 5.39, B and D). 
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Figure 5.39: Refined BDT models for the native (A, B) and refolded (C, D) activity of 

LIP. (A, C) Parity plots of experimental and predicted activity. (○) model data 679 

experiments, (●) independent validation 88 experiments, (—) perfect fitting line, (– –) 

20 % deviations limits, (  
 ,   

 ) correlation coefficients for the model and validation 

data. (B, D) Importance of the components of the refolding buffer (features) for the 

model performance.  

After refinement, the overall agreement of the predicted refolding yields to the 

experimental yields was moderate (Figure 5.40, A), both for model and validation data 

(R2 of 0.7313 and 0.7165). Although the bias (to underestimate elevated yields and 

overestimate low yields) was reduced compared to the preliminary model (Figure 5.38, 

A), it was still visible. However, the statistical spread could be reduced. The feature 

importance remained constant, with the pH and the redox system (GSH and GSSG) as 

central components of the refolding buffer (Figure 5.40, B).  
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Figure 5.40: Refined BDT model for the relative refolding yield of LIP. (A) Parity 

plot of experimental and predicted yield. (○) model data 679 experiments, (●) 

independent validation 88 experiments,  (—) perfect fitting line, (– –) 35 % deviations 

limits, (  
 ,   

 ) correlation coefficients for the model and validation data.  

(B) Importance of the components of the refolding buffer (features) for the model 

performance.  

5.3.3 Quality of the experimental data and the model prediction 

In the first stochastic optimization of LIP, the literature reference condition (Ahn et al., 

1997) showed only marginal refolding rendering it unsuitable as a standard condition 

(section 5.1.6). Hence, the best refolding condition from this optimization was chosen as 

a new refolding reference and measured in all further experiments. Consequently, a 

comprehensive overview of the experimental error and the reproducibility could be 

obtained. Figure 5.41 details the 38 measurements of the native and refolded activity of 

the stochastic optimizations (section 5.2.1) and the statistical DOE (section 5.2.2). In the 

majority of the experiments, 400 U g−1 to 500 U g−1 were measured for the native protein. 

Native activities tended to be lower in the first experiments (second and third 

optimization). Compared to the activity of the native enzyme, the refolded protein 

exhibited activities between 200 U g−1  and 300 U g−1 with a moderate statistical spread. 

BDT models are based on many individual models (trees). Prediction is carried out for all 

individual models, afterwards the overall model prediction (prediction of the ensemble) is 

calculated by averaging. Hence, a BDT model offers a standard error that is easy to 

deduce. The three model predictions (M1, M2 and M3) for the reference condition are 

illustrated together with the mean experimental values (E) in Figure 5.41. Regarding 

the native activity, all three models predicted 400 U g−1 to 500 U g−1 with an error of 
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about 100 U g−1. The magnitude was comparable to the experimental mean, though the 

predictions were slightly higher. In contrast, the agreement of model and experimental 

data was lower for the refolded activity. The unrefined model without SDS estimated 

significantly higher activities than the experiments. The other two models predicted 

approximately 200 U g−1 refolded activity, slightly lower than the measured LIP 

refolding. However, the relatively large experimental error has to be factored into the 

interpretation, hence the difference is only by trend and not significant. 
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Figure 5.41: Native (A) and refolded (B) activity of the LIP reference conditions 

(100 mM MOPS, pH 9.25, 100 mM NaCl, 10 mM KCl, 5 % w/v PEG 4000, 300 mM 

arginine, 1000 mM NDSB, 1 mM GSH 2.5 mM GSSG) in all refolding experiments, 

the experimental mean value (E) and the three model predictions: M1 (unrefined 

model without SDS), M2 (unrefined model with SDS), M3 (refined model). 
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5.3.4 Discussion 

Modeling focused on LIP for which roughly 1000 refolding conditions were 

experimentally evaluated, thus providing a detailed picture of the refolding buffer. This 

dataset was used to generate a model of the refolding success as a function of the buffer. 

Insights 

Modeling was severely affected by the large experimental error and the biased data 

distribution from the stochastic optimization. Only LIP, the protein with the largest 

dataset, was successfully modeled. Performance, that is the agreement between model 

and experimental data, was much better for the BDT models, especially the 

generalization error. The high generalization error of ANNs is one of the main 

drawbacks of this approach and has been studied thoroughly (Meireles et al., 2003; Razi 

and Athappilly, 2005). Another advantage of the BDT models is the embedded error of 

the ensemble. Many individual models are averaged for the overall prediction, providing 

an easy to calculate standard error. For LIP, this ensemble model error was in most 

cases in good agreement with the experimental error observed for LIP refolding. 

The available dataset of the stochastic optimization was pivotal for the performance of 

the model. Roughly 400 refolding experiments were necessary to generate adequate 

preliminary models for LIP. Consequently, more than 18 GENs with the GA would be 

necessary to generate sufficient data for a new target protein. This requirement could 

probably be drastically reduced if the experimental error of the measurements is 

decreased.  

By measuring both native and refolded activity in the refolding experiments, it was 

possible to model three critical variables: the native activity, the refolded activity and 

the refolding yield. This differentiation enabled a more detailed look at the refolding 

buffer and made it possible to compare the impact on native protein and refolding. For 

example, SDS strongly influenced the activity of both native and refolded LIP, but had 

no effect on the refolding yield itself. 

The feature importance of the BDT models was in good agreement with the composition 

of the best refolding conditions (compare Table 5.6) and the results of the statistical DOE 

(section 5.2.2). For the refolded LIP activity, the pH was important and alkaline buffers 

were advantageous. SDS strongly influenced the activity as well. GSH and GSSG were 

required for refolding, while purely reductive substances drastically reduced the 

activities. 



Results and Discussion  137 

Only LIP was successfully modeled with the BDT approach and the total number of 

proteins analyzed in this projects was small compared to the overall protein diversity. 

Therefore, it is difficult to generalize the results to other proteins. The major trend was 

the importance of the redox agents for disulfide-bridged (oxidative) and other proteins 

(reductive). In contrast to other studies (Ho and Middelberg, 2004; Zhang et al., 2009), 

the isoelectric point (pI) of the protein seemed to have less importance. Almost all 

proteins preferred alkaline refolding conditions regardless of the pI. A general model for 

protein refolding requires data on more proteins and was not attainable within the scope 

of this thesis.  

Application of the BDT model 

The refined models of LIP were used for an in silico optimization of the refolding 

conditions. As an example application, the experimental optimizations of LIP (section 

5.2.1) were analyzed in more detail. In this experiment one of the previous optimizations 

of LIP (the first optimization) was continued in silico (results not shown). By 

substituting the experimental evaluation with the BDT model of the refolding buffer the 

experimental effort could be avoided. This experiment allowed an estimation of the 

performance of the stochastic optimization in further GENs. According to the prediction, 

the slightly suboptimal optimization could achieve refolded activities that were identical 

to the other optimizations after three more GENs (1450 U g−1, compare section 5.2.1).  

This highlighted the potential application of the model in computational evaluations 

saving experimental effort and costs (Figure 5.42). Of course, the application is not 

limited to this aspect. It is possible to use the model to examine various similar aspects 

or questions. For example, a cost optimization or a restriction of the parameters to a 

subset is possible. Thereby, costly or unavailable compounds of the refolding buffer could 

be excluded. In addition, other downstream processing requirements like pH thresholds 

or the absence of detergents could be incorporated and optimized computationally. In 

both cases the optimization would proceed in silico and identify  potential solutions for a 

sub-space of the search space. Afterwards, these refolding conditions can be verified 

experimentally. Hence, the costly experimental evaluation could be drastically reduced. 



138   Results and Discussion 

 

Figure 5.42: Generation and application of the model for protein refolding 

conditions. Protein refolding is optimized with the stochastic DOE. The generated 

data is used to train BDT models which can be applied for in silico optimization. 
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6 Conclusions 

Soluble expression of recombinant proteins in Escherichia coli is often limited. To obtain 

the biologically active native form, additional processing steps are required, as the 

protein of interest aggregates inside the cell. The critical step is the reconstitution of the 

native structure (refolding), which represents a bottleneck in process development, as 

suitable conditions have to be evaluated in large screening experiments (Clark, 2001).  

In this work, a new optimization strategy for protein refolding was developed, which 

used a genetic algorithm (GA) to optimize refolding in a standardized experimental 

design. For this purpose, experimental parameters were extracted from the refolding 

literature and combined with the information on roughly 1100 experiments from the 

REFOLD database to establish a comprehensive design. The new optimization strategy 

iteratively optimizes refolding conditions, specifically the 26 variables of the refolding 

buffer, using evolutionary principles (Figure 6.1).  

 

Figure 6.1: Scheme of the novel stochastic optimization strategy for protein refolding 

in mL-scale and 96-well plate format. 
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In order to demonstrate the suitability of this new approach, six structurally and 

functionally different model proteins were evaluated in a series of refolding experiments. 

For all proteins, the stochastic optimization identified comparable or better refolding 

conditions than the reference from the literature. For green fluorescent protein (GFP) 

and glutathione reductase (GLR), refolding yields and experimental costs were 

optimized, achieving 100 % refolding yield and costs of the refolding buffer between 

0.006 € mL−1 and 0.012 € mL−1. GLR and four other proteins, namely glucokinase (GLK), 

lysozyme (LYZ), lactate dehydrogenase (LDH) and the lipase from Thermomyces 

lanuginosus (LIP) were optimized with regards to the activity of the native and refolded 

protein. For all five proteins, the optimization of the enzymatic activities was successful, 

obtaining a 1.3-fold to 30.6-fold increase compared to the activity of the reference (Table 

6.1). In addition, 100 % refolding yield could be achieved for all proteins except LDH. 

Table 6.1: Performance of the new stochastic optimization strategy for protein refolding. 

Maximal measured native and refolded activities relative to the experimentally verified 

reference refolding conditions from the literature. (GFP) green fluorescent protein, (GLR) 

glutathione reductase, (GLK) glucokinase, (LYZ) lysozyme, (LDH) lactate dehydrogenase, 

(LIP) lipase from Thermomyces lanuginosus. 

 GFP GLR GLK LYZ LDH LIP 

Improvement of  

native activity 

n/a 130 % 130 % 40 % 40 % 5.3-fold 

Improvement of 

refolded activity 

n/a 250 % 30 % 40 % 40 % 30.6-fold 

100 % yield  yes yes yes yes no yes 

       

Next, the proposed optimization strategy was characterized by analyzing the stochastic 

aspects of the GA and thus the overall robustness of the process. This was deemed 

necessary, as the optimization algorithm is not deterministic: Non-deterministic steps 

occur in the beginning (random start) and in each iteration (mutation, crossing-overs). 

Experiments were performed with LIP, a disulfide-bridged protein with a mass of 

29 kDa. Three independent optimizations were evaluated. Within 10 iterations 

(generations, GEN) all optimizations achieved activities of approximately 1000 U g−1 or 

greater in alkaline refolding buffers with a mixture of oxidized and reduced glutathione 

(GSSG and GSH) and sodium dodecyl sulfate (SDS) (Table 6.2). The similar optima 

determined in each independent optimization approach indicated that the stochastic 
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optimization strategy is quite robust. Therefore, the above-detailed stochastic aspects of 

the GA seem to be limited, even for an experimental problem with small population sizes 

(22) and few GENs (10). To the best of our knowledge, this study represents the first case 

in which a GA was evaluated multiple times on the same experimental problem. 

According to these results, stochastic optimization strategies seem to be quite robust and 

suitable for experimental problems.  

Table 6.2: Robustness of the stochastic optimization strategy for protein refolding. Optimal 

refolding conditions of LIP identified in three independent optimizations. Composition, 

individual activities of the native and refolded protein (* U g−1) and yield in the refolding 

conditions with the highest refolded activity for each optimization. 

Best LIP refolding condition (highest refolded 

activity) in each optimization  

Native 

activity* 

Refolded 

activity* 

Relative 

yield, % 

Optimization one 

100 mM MOPS, pH 9.25, 350 mM NaCl,  25 mM glutamate, 

7.5 mM EDTA, 3 mM SDS, 3.75 mM GSH, 0.5 mM GSSG 

1062 

± 296 

977 

± 33 

92 

± 29 

Optimization two  

750 mM TRIS∙HCl, pH 7.5, 50 mM KCl, 25 mM arginine, 

50 mM glutamine, 12 mM SDS, 5 mM GSH, 5 mM GSSG 

1451  

± 286 

1335 

± 172 

92 

± 32 

Optimization three 

500 mM TRIS∙HCl, pH 8.5, 175 mM NaCl, 50 mM KCl, 

0.05 % w/v PEG 4000, 250 mM arginine, 200 mM 

glutamate, 12 mM SDS, 0.5 mM GSH, 5 mM GSSG 

1306  

± Na 

1430  

± 175 

100  

± 12 

MOPS, morpholino-propanesulfonic acid; TRIS, tris(hydroxymethyl)aminomethane; EDTA, 

ethylenediaminetetraacetic acid; GSH, reduced glutathione; GSSG, oxidized glutathione;  

PEG, polyethylene glycol 

 

In the next step, the stochastic optimization was compared to a standard two-step 

statistical design of experiments (DOE), which included a D-optimal screening 

experiment and the subsequent optimization by response surface methodology (RSM). 

The D-optimal screening used a simplified linear process model to estimate the most 

important process variables. Although many variables which affected LIP refolding were 

correctly identified, the importance of SDS was underestimated. Therefore, SDS was not 

optimized in the subsequent RSM and it was not possible to obtain the high activities 

determined in the stochastic DOE (508 U g−1 versus 1430 U g−1 refolded activity). 
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Applying the linear model on the entire LIP dataset gave poor estimates for the 

activities and highlighted the limitations of the linear process model. The regression 

models featured small correlation coefficients (R2) of 0.52 and 0.68, which compared well 

to Weuster-Botz (2000), who reported 0.45 to 0.60 for the linear regression analysis of 

datasets from stochastic optimizations. Thus, the linear approach was insufficient and 

interactions seemed to be essential to give a correct estimate of the activity. This 

assumption was reinforced by the regression analysis with a second order polynomial, 

that incorporated interaction (325) and quadratic (26) terms, which correctly estimated 

(R2 0.88 and 0.85) LIP activities.  

Using this complex model (378 terms) for a non-linear statistical DOE would drastically 

increase the experimental effort from 30 to at least 379 experiments. Hence, the 

experimental effort of the GA, which at first seemed quite high (22 experiments in 

10 GENs = 220 experiments), is actually moderate. Therefore, LIP refolding seems to be 

a good example for the efficiency of GAs for complicated multidimensional problems. 

Finally, black box models were trained on the experimental data to predict the refolding 

success dependent on the composition of the refolding buffer. Modeling was severely 

affected by the large experimental error (up to 35 % standard deviation) and the biased 

data distribution from the stochastic optimization. Only LIP, which was subjected to an 

in depth analysis within this thesis (about 1000 refolding experiments), could be 

successfully modeled with the robust bagged decision tree (BDT) approach. For LIP, 

experimental and predicted values were in good agreement even for the independent 

validation (R2 greater than 0.8). Almost all results were within the limits of the standard 

deviation (Figure 6.2, A). BDT models include an embedded estimate of the variable 

importance which allows visualization of the significance for the prediction (Figure 6.2, 

B). In the LIP model, an alkaline pH, SDS and the presence of glutathione were most 

important for high activities of the refolded protein. This was in good agreement with 

composition of the best refolding conditions identified by the stochastic optimization 

(compare Table 6.2). The LIP model was successfully applied for an in silico 

optimization. In this experiment one of the previous optimizations of LIP (the first 

optimization) was continued in silico. Costly experiments could be avoided by 

substituting the experimental evaluation with the model of the refolding buffer. 

According to the prediction, the slightly suboptimal first optimization could achieve 

refolded activities that were identical to the other optimizations after three more GENs 

(1450 U g−1, compare Table 6.2). This highlighted the potential applications of the model 

in computational evaluations saving experimental effort and costs. 
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Figure 6.2: BDT model for the refolded activity of LIP. (A) Parity plot of 

experimental and predicted refolded activity. (○) model data 679 experiments, (●) 

independent validation 88 experiments, (—) perfect fitting line, (– –) 20 % deviations 

limits, (  
 ,   

 ) correlation coefficients for the model and validation data.  

(B) Importance of the components of the refolding buffer (features) for the model 

performance. 
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7 Outlook 

There are two possibilities to integrate the results into the optimization of new target 

proteins. On the one hand, bagged decision tree (BDT) models could be embedded into 

the stochastic optimization by evaluating several generations in experiments in the first 

place. Afterwards, a model is trained on the acquired data and in turn, refolding is 

optimized in silico, thus saving experimental effort (Franco-Lara et al., 2006). The 

principle was successfully examined for the refolding of LIP by continuing the first 

optimization in silico. However, the large datasets required for an adequate model 

(roughly 1000 experiments for LIP) pose a serious drawback. On the other hand, it is 

possible to adjust the search space of the stochastic optimization according to the protein 

of interest. One of the major trends was the preference of oxidative conditions (GSH and 

GSSG) for extracellular proteins with disulfide bonds (LYZ, LIP) and reductive 

conditions for the rest. Hence, purely reductive conditions could be excluded for proteins 

with disulfide bonds in order to limit the search space and speed up the optimization. 

This approach was evaluated for LYZ, which was optimized with the normal GA setup, a 

modified setup for redox conditions and modified redox conditions in conjunction with a 

threshold for ionic strength. 

The search space for new target proteins can be constrained in a similar way by using 

sequence information or sequence based predictions (Liu, 2007; Sankararaman et al., 

2010). Alternatively, if the protein is closely related to a protein that has been previously 

optimized, it would also be possible to adjust the search space accordingly. For proteins 

which were already successfully refolded but not optimized, it would probably be more 

efficient to substitute the global GA optimization with a local optimization using either a 

standard optimization algorithm or a RSM approach. The proposed workflow for the 

optimization of new target proteins is illustrated in Figure 7.1. 

As the total number of proteins analyzed in this projects is small compared to the protein 

diversity, it is difficult to generalize these results. The major trend was the importance 

of the redox agents for disulfide-bridged (oxidative) and other proteins (reductive). In 

contrast to other studies (Ho and Middelberg, 2004; Zhang et al., 2009), the isoelectric 

point (pI) of the protein seemed to have less importance. Almost all proteins preferred 

alkaline refolding conditions regardless of the pI. A general model that predicts 

refolding, requires data on more proteins and was not attainable within the scope of this 
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thesis. Further work should focus on examining more proteins and in parallel integrate 

additional information from REFOLD (Amin et al., 2006; Buckle et al., 2005) and other 

databases.  

Next to direct application for protein refolding, it might also be possible to use the 

generated BDT model as a “real world” search space in order to evaluate other 

optimization algorithms or methods. The comprehensive dataset with realistic error data 

provides the potential to thoroughly test new methods in a realistic environment. 

 

 

Figure 7.1: Proposed workflow for new target proteins. After detecting insolubility 

either experimentally or in silico (Diaz et al., 2010; Magnan et al., 2009), the protein 

is mapped to well characterized proteins and the protein sequence and sequence 

based prediction algorithms are utilized to obtain as much information as possible on 

refolding. Subsequently, three different DOE approaches are proposed depending on 

the amount of information on the target protein.  
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9 Appendix 

9.1 Abbreviations  

  

ATP adenosine-triphosphate 

BDT bagged decision trees 

BRIJ 35 polyethylene glycol dodecyl ether 

CD  circular dichroism spectroscopy 

CDW cell dry weight 

CHAPS cholamidopropyl-dimethylammonium-propanesulfonate 

CHO chinese hamster ovary cells 

CMC critical micellar concentration 

Cu2+ Zn2+ Mg2+ Mn2+ mineral ions supplemented as sulfates 

ddH2O bidistilled water 

DOE design of experiments 

DTT dithiothreitol 

EDTA ethylenediaminetetraacetic acid 

FAD flavin adenine dinucleotide 

GA genetic algorithm 

Gdn∙HCl guanidine hydrochloride 

GEN generation or iteration of the optimization 

GFP green fluorescent protein 

GLK glucokinase 

GLR glutathione reductase 

GSH reduced L-glutathione  

GSSG oxidized L-glutathione  
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GUI graphical user interface 

HEPES hydroxylethyl-piperazine-ethanesulfonic acid 

HPLC high-performance liquid chromatography 

IEC ion exchange chromatography 

IMAC immobilized metal affinity chromatography 

LB  Luria broth medium 

LDH lactate dehydrogenase 

LYZ lysozyme 

MOPS morpholino-propanesulfonic acid 

MSE mean square error 

NADH nicotinamide adenine dinucleotide 

NADPH nicotinamide adenine dinucleotide phosphate 

NDSB 201 non-detergent sulfobetaine 201 

NZY NZY media 

PB sodium phosphate buffer 

PCR polymerase chain reaction 

PEG (4000) polyethylene glycol (4000) 

pI isoelectric point 

RSM response surface methodology 

RT room temperature 

SDC deoxycholic acid sodium salt 

SDS sodium dodecyl sulfate 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SEC size exclusion chromatography 

SPEA  strength pareto evolutionary algorithm 

TAE  buffer system with TRIS, acetic acid and EDTA 

TCEP tris-carboxyethyl-phosphine 
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TRIS tris(hydroxymethyl)aminomethane 

TRITON-X 100 polyethylene glycol tert-octylphenyl ether 

TWEEN 20 polyethylene glycol sorbitan-monolaurate 

ZWITTERGENT 3-12 dodecyldimethyl-ammonio-propanesulfonate 

 

9.2 Symbols and variables 

   

b0 zero order coefficients - 

bi first order coefficients - 

bi∙i interaction coefficients - 

bi∙j second order coefficients - 

costs experimental costs of the refolding buffer € mL−1 

I ionic strength mol L−1 

native activity specific activity of the native protein (-, U mg−1, U g−1, s−1)  

OPTI–V LIP optimization  

R2 correlation coefficient - 

refolded activity specific activity of the refolded protein  (-, U mg−1, U g−1, s−1) 

refolding yield relative refolding yield  

θMRW molar ellipticity deg cm2 dmol−1 
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9.3 Experimental design matrices  

9.3.1 Standard experimental design matrices 

Table 9.1: Two-level full factorial design for 3 factors with 8 experiments. These are the 

experimental data points of the cube illustrated in Figure 3.16. 

Experiment  

A 

Factors 

B 

 

C 

1 −1 −1 −1 

2 1 −1 −1 

3 −1 1 −1 

4 1 1 −1 

5 −1 −1 1 

6 1 −1 1 

7 −1 1 1 

8 1 1 1 
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Table 9.2: Two-level fractional (24−1) factorial design for 4 factors with 8 experiments.  

Experiment  

A 

Factors 

B 

 

C 

 

D 

1 −1 −1 −1 −1 

2 1 −1 −1 1 

3 −1 1 −1 1 

4 1 1 −1 −1 

5 −1 −1 1 1 

6 1 −1 1 −1 

7 −1 1 1 −1 

8 1 1 1 1 

     

Table 9.3: Plackett-Burman design with 7 factors.  

Experiment  

A 

 

B 

 

C 

Factors 

D 

 

E 

 

F 

 

G 

1 1 1 1 −1 1 −1 −1 

2 −1 1 1 1 −1 1 −1 

3 −1 −1 1 1 1 −1 1 

4 1 −1 −1 1 1 1 −1 

5 −1 1 −1 −1 1 1 1 

6 1 −1 1 −1 −1 1 1 

7 1 1 −1 1 −1 −1 1 

8 −1 −1 −1 −1 −1 −1 −1 
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Table 9.4: Central composite design with 3 factors. For practical purposes the centre point is 

often measured several times, in order to get on error estimation. α defines the design type and 

varies for circumscribed (1.6818), faced (1) and inscribed (0.5946) designs. 

Experiment  

A 

Factors 

B 

 

C 

Comment 

1 −1 −1 −1 factorial 

2 1 −1 −1 factorial 

3 −1 1 −1 factorial 

4 1 1 −1 factorial 

5 −1 −1 1 factorial 

6 1 −1 1 factorial 

7 −1 1 1 factorial 

8 1 1 1 factorial 

9 − α 0 0 star 

10 +α 0 0 star 

11 0 − α 0 star 

12 0 +α 0 star 

13 0 0 − α star 

14 0 0 +α star 

15 0 0 0 centre 
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9.3.2 Experimental design matrices of the statistical DOE 

Table 9.5: Encoding of the D-optimal design. Factors (f) were two-level and numerical except 

for the categorical factor 2 (buffer conditions; 5 levels), 13 (detergents, 8 levels) and 14 (redox 

substances, 6 levels). 

Factor Levels decoded, experimental values 

f1 2 1: pH 6.0; 2: pH 9.75 

f2 4 1: 100 mM PB; 2: 100 mM HEPES, 3: 100 mM MOPS, 4: 1000 mM 

TRIS∙HCl; 5: - 

f3 2 1: -; 2: 350 mM NaCl 

f4 2 1: -; 2: 80 mM KCl 

f5 2 1: -; 2: 15 % v/v  glycerol 

f6 2 1: -; 2: 0.25 % w/v  PEG 

f7 2 1: -; 2: 750 mM arginine 

f8 2 1: -; 2: 350 mM glycine 

f9 2 1: -; 2: 350 mM glutamine 

f10 2 1: -; 2: 350 mM glutamate 

f11 2 1: -; 2: 0.1 mM Cu2+ Zn2+ Mg2+ Mn2+ 

f12 2 1: -; 2: 10 mM EDTA 

f13 8 1: -; 2: 10.67 mM CHAPS; 3: 1500 mM NDSB 201; 4: 4 mM 

ZWITTERGENT 3-12; 5: 0.08 mM TWEEN; 6: 0.8 mM TRITON-X 100; 7: 

12 mM SDS; 8: 0.12 mM BRIJ 35 

f14 4 1: 10 mM DTT; 2: 10 mM TCEP; 3: 5 mM GSH; 4: 5 mM GSSG; 5: 5 mM 

GSH and 5 mM GSSG; 6: - 

   

 



 

Table 9.6: D-optimal design with 30 experiments (E) and 14 factors (f). Factors are two-level except for factor 2 (buffer conditions;5 levels),  

13 (detergents, 8 levels) and 14 (redox substances, 6 levels). Native and refolded LIP activity in U g−1 (nat and ref ) with standard deviation (stdnat,ref). 

E f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 nat stdnat ref stdref 

1 1 2 1 2 1 1 1 2 1 2 2 1 5 6 420.6 67.8 140.0 41.4 

2 1 3 2 2 1 1 1 1 2 2 1 1 6 2 204.1 69.7 208.5 64.3 

3 1 5 2 1 2 2 1 1 2 2 1 1 2 6 44.6 4.4 46.3 23.5 

4 2 2 2 1 2 1 2 1 1 2 2 2 4 6 134.4 32.8 133.6 40.6 

5 1 1 1 2 2 1 2 1 1 1 1 1 3 6 368.5 88.2 75.6 8.4 

6 2 3 2 1 2 2 1 1 2 1 2 1 5 3 426.4 97.7 133.2 19.5 

7 2 5 1 1 2 1 1 1 2 2 2 2 8 2 27.3 23.4 30.1 15.6 

8 2 4 1 1 1 2 2 2 2 1 2 2 6 6 344.9 78.2 194.5 33.2 

9 1 2 1 1 2 2 1 2 2 1 1 2 7 2 36.5 9.9 29.0 15.6 

10 2 2 1 2 2 1 2 2 2 2 1 1 2 3 81.4 30.3 89.9 30.6 

11 1 5 2 2 1 1 2 1 1 1 1 2 7 3 200.2 64.7 92.3 35.0 

12 1 2 2 1 1 2 2 1 1 2 1 1 8 4 172.8 65.7 274.5 56.5 

13 2 2 2 2 1 1 1 2 2 1 2 2 3 1 240.9 67.2 100.3 6.3 

14 2 1 2 2 1 2 2 2 1 1 2 2 2 2 3.6 7.1 4.2 12.1 

1
6
7

 
 

   A
p

p
e
n

d
ix

 



 

15 2 5 1 1 1 2 2 2 1 2 1 1 5 5 255.9 55.8 133.3 40.2 

16 1 4 2 2 2 1 2 2 2 1 2 1 8 5 415.7 52.0 278.0 60.6 

17 1 3 1 1 1 1 2 2 2 1 1 1 4 1 123.9 6.9 200.8 2.9 

18 2 4 2 1 2 1 1 2 1 1 1 1 1 2 4.1 5.9 43.7 21.0 

19 2 1 1 1 1 1 1 1 2 1 2 1 1 3 239.1 18.0 72.8 18.9 

20 2 4 1 2 1 2 1 1 1 2 2 1 7 1 78.8 4.7 170.3 14.2 

21 1 4 1 1 2 2 2 2 1 2 2 2 3 3 320.3 102.8 235.0 62.9 

22 2 4 1 2 2 1 2 1 2 1 1 2 5 4 354.5 51.2 183.2 10.3 

23 1 3 1 1 1 1 1 1 1 1 2 2 2 5 97.5 5.5 173.1 15.3 

24 1 5 1 2 2 2 1 2 1 1 2 1 4 4 413.3 59.9 453.2 91.0 

25 2 2 1 2 2 2 2 1 1 1 2 1 6 5 425.3 59.2 275.8 23.8 

26 2 3 2 1 2 1 2 2 2 2 2 1 7 4 99.9 8.4 147.3 20.1 

27 2 1 2 2 1 2 1 2 2 2 1 2 4 5 265.2 57.4 206.4 16.2 

28 1 1 2 1 2 1 1 2 1 2 1 2 6 1 119.0 63.8 140.0 38.9 

29 1 3 1 2 2 2 2 1 2 2 2 2 1 1 59.8 20.1 58.6 11.4 

30 2 3 1 2 2 2 1 2 1 1 1 2 8 6 283.5 37.7 144.5 58.3 
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Table 9.7: D-optimal design matrix for regression analysis. E experiments 1 to 30, 1 constant term, 2 to 28 linear terms.  

E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

1 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

2 1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 

3 1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 

4 1 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

5 1 1 1 0 0 0 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 

6 1 0 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 

7 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

8 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

9 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 

10 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 

11 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 

12 1 1 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 

13 1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

14 1 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 

15 1 0 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 
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16 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 

17 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 

18 1 0 0 0 0 1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 

19 1 0 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 

20 1 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 

21 1 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

22 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

23 1 1 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

24 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 

25 1 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 1 

26 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 

27 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 

28 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 

29 1 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 

30 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 9.8: RSM, circumscribed central composite design. Experiments with coded variables (V1 to V5) and the experimental results for LIP refolding. 

Native and refolded LIP activity in U g−1 (nat and ref ) with standard deviation (stdnat,ref). 

 V1 V2 V4 V4 V5 nat stdnat ref stdref 

1 −1 −1 −1 −1 1 558.55 92.31 373.54 69.43 

2 −1 −1 −1 1 −1 501.39 74.51 331.41 81.10 

3 −1 −1 1 −1 −1 598.25 56.08 296.21 71.99 

4 −1 −1 1 1 1 546.31 70.07 481.38 61.90 

5 −1 1 −1 −1 −1 439.73 80.80 236.64 43.37 

6 −1 1 −1 1 1 439.08 35.59 491.20 65.22 

7 −1 1 1 −1 1 479.99 84.22 504.91 85.72 

8 −1 1 1 1 −1 442.50 81.35 323.36 101.44 

9 1 −1 −1 −1 −1 468.46 45.45 362.14 111.05 

10 1 −1 −1 1 1 470.72 39.81 378.58 95.72 

11 1 −1 1 −1 1 431.81 29.39 413.14 57.48 

12 1 −1 1 1 −1 511.84 62.19 456.81 74.20 

13 1 1 −1 −1 1 394.15 18.21 397.49 49.66 

14 1 1 −1 1 −1 434.98 86.42 398.27 97,77 
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15 1 1 1 −1 −1 464.83 50.16 387.19 40.95 

16 1 1 1 1 1 528.13 80.66 508.45 95.81 

17 −2 0 0 0 0 662.56 86.83 440.79 110.29 

18 2 0 0 0 0 440.67 48.67 476.87 74.52 

19 0 −2 0 0 0 559.89 84.73 405.36 47.77 

20 0 2 0 0 0 400.01 33.42 418.51 54.87 

21 0 0 −2 0 0 483.73 21.24 301.48 79.75 

22 0 0 2 0 0 556.82 48.09 412.66 86.32 

23 0 0 0 −2 0 391.91 74.18 362.34 76.63 

24 0 0 0 2 0 492.70 62.20 488.68 77.83 

25 0 0 0 0 −2 367.55 56.32 229.94 42.74 

26 0 0 0 0 2 377.95 80.27 392.46 90.33 

27 0 0 0 0 0 347.48 52.83 363.83 46.33 
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9.4 Expression of the Lipase from Thermomyces 

lanuginosus  

 

 

 

Figure 9.1: Purification of LIP. (A) with His-tag, (B) without His-tag. (p) pellet, (si) 

solube fractions, (a) purified His-tagged protein, (b) purified wild type, (c) control 

purchased by Sigma-Aldrich, (M) marker, 14 kDa to 212 kDa (Carl Roth). 

 

 

 

 

 

(A) 

(B) 
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Table 9.9: DNA oligomers for gene synthesis of LIP. 

Name Sequence Length 

d1 GATACACATATGGAAGTTTCCCAGGACCTGTTC 33 

d2 CGCGAACAGATTGAACTGGTTGAACAGGTCCTGGGAAACTTC   42 

d3 ACCAGTTCAATCTGTTCGCGCAATATTCTGCAGCCGCTTATT   42 

d4 TGCGTCGTTGTTTTTACCACAATAAGCGGCTGCAGAATATTG   42 

d5 GTGGTAAAAACAACGACGCACCAGCCGGCACGAACATTACCT   42 

d6 CTTCCGGACAGGCGTTGCCCGTGCAGGTAATGTTCGTGCCGG   42 

d7 CAACGCCTGTCCGGAAGTTGAAAAAGCGGACGCGACCTTCCT   42 

d8 CGACACCGCTGTCCTCAAAAGAGTACAGGAAGGTCGCGTCCG   42 

d9 TGAGGACAGCGGTGTCGGCGACGTTACTGGTTTCCTGGCGCT   42 

d10 AACGATCAGTTTGTTGGTGTTGTCGAGCGCCAGGAAACCAGT   42 

d11 CAACACCAACAAACTGATCGTTCTCTCTTTCCGTGGCTCTCG   42 

d12 TTACCGATCCAATTCTCGATGGAACGAGAGCCACGGAAAGAG   42 

d13 CCATCGAGAATTGGATCGGTAACCTGAACTTCGACCTGAAGG   42 

d14 CCAGAGCAGATATCGTTGATCTCCTTCAGGTCGAAGTTCAGG   42 

d15 AGATCAACGATATCTGCTCTGGTTGCCGTGGTCACGACGGTT   42 

d16 GCTACAGAACGCCAAGAAGAGGTGAAACCGTCGTGACCACGG   42 

d17 TCTTCTTGGCGTTCTGTAGCGGACACGCTGCGTCAGAAAGTA   42 

d18 GGGTGTTCACGAACCGCGTCCTCTACTTTCTGACGCAGCGTG   42 

d19 GCGGTTCGTGAACACCCGGACTATCGTGTAGTATTCACCGGT   42 

d20 AGTGCACCACCGAGAGAGTGACCGGTGAATACTACACGATAG   42 

d21 CTCTCTCGGTGGTGCACTCGCCACCGTTGCGGGTGCGGATCT   42 

d22 CGTCAATGTCGTAGCCATTGCCGCGGAGATCCGCACCCGCAA   42 

d23 CAATGGCTACGACATTGACGTTTTCTCTTACGGTGCGCCTCG   42 

d24 CTCCGCAAACGCACGGTTACCTACGCGAGGCGCACCGTAAGA   42 
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Table 9.9 (continued):  

Name Sequence Length 

d25 CCGTGCGTTTGCGGAGTTCCTCACCGTTCAAACGGGTGGTAC   42 

d26 TCGTGTGGGTGATACGGTACAGAGTACCACCCGTTTGAACGG   42 

d27 TACCGTATCACCCACACGAATGACATTGTTCCGCGTCTGCCT   42 

d28 TGTGAGAGTAACCGAATTCACGTGGAGGCAGACGCGGAACAA   42 

d29 CGTGAATTCGGTTACTCTCACAGCAGCCCGGAGTACTGGATT   42 

d30 ACTGGAACCAGGGTACCAGATTTAATCCAGTACTCCGGGCTG   42 

d31 CTGGTACCCTGGTTCCAGTCACCCGTAACGACATCGTTAAAA   42 

d32 AGTGGCATCGATACCTTCGATTTTAACGATGTCGTTACGGGT   42 

d33 TCGAAGGTATCGATGCCACTGGCGGTAACAACCAGCCTAACA   42 

d34 AGGTGCGCAGGGATGTCAGGAATGTTAGGCTGGTTGTTACCG   42 

d35 GACATCCCTGCGCACCTCTGGTATTTCGGTCTGATCGGCACT   42 

d36a GGATATCTCGAGGCCGGAGCCCAGGCAAGTGCCGATCAGACCGAA 45 

d36b GGATATCTCGAGTCATTACTACAGGCAAGTGCCGATCAGACCGAA 45 

   

Table 9.10: Assembly PCR reaction. 

PCR mix PCR cycle 

1 µL oligomer mix (a or b) 1. 98 °C 30 s 

5 µL phusion buffer 2. 98 °C 5 s 

0.5 µL dNTPs 3. 63 °C 15 s 

18.25 µL ddH2O 4. 72 °C 15 s (go to step 2. 24 X)  

0.25 µL phusion enzyme (high fidelity) 5. 72 °C 5 min 

25 µL total volume 6. 4°C forever 
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Table 9.11: Amplification PCR reaction. 

PCR mix PCR cycle (gradient PCR) 

1 µL assembly product (a or b) 1. 98 °C 30 s 

5 µL phusion buffer 2. 98 °C 5 s 

0.5 µL dNTPs 3. 63 °C 15 s 

18.25 µL ddH2O 4. Gradient 72 to 78 °C 15 s (go to step 2. 29 X)  

0.25 µL phusion enzyme (high fidelity) 5. 72 °C 5 min 

25 µL total volume 6. 4 °C forever 

  

Table 9.12: Digestion and dephosphorylation. 

Digestion (construct) Digestion (vector) Dephosphorylation 

1.5 µL construct 10.0 µL pET21-a(+) 50.0 µL digested vector 

3.0 µL NE buffer 5.0 µL NE buffer 7.0 µL AP buffer 

0.3 µL BSA (100X) 0.5 µL BSA (100X) 12.0 µL ddH2O 

10.7 µL ddH2O 5.0 µL ddH2O 1.0 µL antarctic phosphatase 

0.5 µL XhoI 0.5 µL XhoI  

0.5 µL NdeI 0.5 µL NdeI  

Incubate 2 h at 37 °C Incubate 3 h at 37 °C Incubate 1 h at 37 °C 
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Table 9.13: NZY medium: Dissolve peptone, yeast extract and NaCl, adjust the pH to 7.5 and 

sterilize. Afterwards, add Glucose, MgCl2 and MgSO4. 

Substance Concentration 

Peptone 1.0 % w/v 

Yeast extract 0.5 % w/v 

NaCl 0.5 w/v 

Glucose 0.02 M 

MgCl2 0.0125 M 

MgSO4 0.0125 M 

  

Table 9.14: Colony PCR reaction. 

PCR mix  PCR cycle (gradient PCR) 

2.5 µL Taq buffer 1. 95 °C 30 s 

0.5 µL dNTPs 2. 95 °C 5 s 

0.13 µL Taq polymerase 3. 51 °C 30 s 

1.0 µL T7 forward primer  4. 68 °C 90 s (go to step 2. 29 X)  

1.0 µL T7 reverse primer  5. 68 °C 10 min 

9.87 µL ddH2O 6. 4 °C forever 
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9.5 Reagents, assays and kits 

Table 9.15: Kits. 

Kit Source Order number 

BCA Protein Assay Thermo Scientific 23225 

QIAprep Spin Miniprep Quiagen 27104 

GeneEluteTM PCR clean-up Sigma-Aldrich NA1020 

Quick LigationTM New England Biolabs M2200S 

EnzChek® Lysozyme Assay Invitrogen E22013 

   

Table 9.16: Stock solutions for the refolding screen (1 stored at −20 °C). 

Substance Concentration 

PB (pH 6.0, 7.0) 0.4 M 

HEPES (pH 6.0, 7.0, 8.0, 9.0) 0.5 M 

MOPS (pH 6.0, 7.0, 8.0, 9.0) 0.5 M 

TRIS∙HC (pH 7.0, 8.0, 9.0) 2.5 M 

NaCl 5 M 

KCl 2.5 M 

Glycerol 60 % v/v 

PEG 4000 5 % w/v 

EDTA 0.1 M 

Cu/Zn/Mg/Mn (CuSO4∙5 H2O, ZnSO4∙7 H2O, 

MnSO4∙H2O, MgSO4)   

0.02 M 

Brij 35 5 mM 

CHAPS 500 mM 

ZWITTERGENT 3-12 200 mM 
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Table 9.16 ( continued): 

Substance Concentration 

TWEEN 20  5 mM 

TRITON-X 100 50 mM 

SDS 500 mM 

DTT1 1 M 

TCEP1 100 mM 

GSH1 50 mM 

GSSG1 50 mM 

  

Table 9.17: Critical micellar concentration (CMC) of the applied detergents.  

Detergent CMC  Unit 

CHAPS
 

8 mM 

ZWITTERGENT 3-12
 

3 mM 

NDSB 201 - - 

TWEEN 20
 

60 µM 

TRITON-X 100
 

600 µM 

BRIJ 35 90 µM 

SDS
 

9 mM 

SDC*
 

6 (-) mM 

CHAPS, cholamidopropyl-dimethylammonium-propanesulfonate; ZWITTERGENT 3-12, 

dodecyl-dimethyl-ammonio-propanesulfonate; NDSB 201, non-detergent sulfobetaine 201; 

TWEEN 20, polyethylene glycol sorbitan-monolaurate; TRITON-X 100, polyethylene glycol 

tert-octylphenyl ether; BRIJ 35, polyethylene glycol dodecyl ether; SDS, sodium dodecyl 

sulfate; SDC, deoxycholic acid sodium salt; DTT, dithiothreitol; TCEP, tris-carboxyethyl-

phosphine; GSH, reduced glutathione; GSSG, oxidized glutathione 
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Table 9.18: Buffer solutions for the SDS-PAGE. 

Substance Concentration 

2 X Stacking gel buffer   

TRIS∙HCl 250 mM, pH 6.8 

SDS 0.4 % (w/v) 

4 X Separating gel buffer   

TRIS∙HCl 1.5 M, pH 8.8 

SDS 0.8 % (w/v) 

5 X Laemmli buffer  

TRIS∙HCl 300 mM, pH 6.8 

Glycerol 50 % v/v 

SDS 10 % w/v 

2-Mercaptoethanol 5 % v/v 

Bromophenol blue 0.05 % w/v 

10 X Running buffer  

TRIS∙HCl 250 mM 

Glycine 1.92 M 

SDS 1 % w/v 
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Table 9.19: Buffer solutions for Coomassie staining. 

Substance Concentration 

Fairbanks A   

Isopropanol 25 % v/v 

Acetic acid 10 % v/v 

Coomassie Brilliant Blue R-250 0.05 % w/v 

Fairbanks B  

Isopropanol 10 % v/v 

Acetic acid 10 % v/v 

Coomassie Brilliant Blue R-250 0.05 % w/v 

Fairbanks C 50 % v/v 

Acetic acid 10 % v/v 

  

Table 9.20: TAE buffer solution (10x stock solution) for agarose gel electrophoresis. 

Substance Concentration 

TRIS, pH 8.0 400 mM 

EDTA 10 mM 

Acetic acid 1.14 % v/v 
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Table 9.21: Cultivation media for E. coli (agar plates with an additional 15 g L−1 agar agar, 

selection media with 100 mg L−1 ampicillin). 

Substance Concentration 

Luria broth (LB)  

Peptone  10 g L−1 

Yeast extract 5 g L−1 

NaCl 5 g L−1 

Terrific broth (TB)  

Peptone  12 g L−1 

Yeast extract 24 g L−1 

Glycerol 5.04 g L−1 

KH2PO4 2.13 g L−1 

K2HPO4 12.54 g L−1 

  

Table 9.22: Lactate dehydrogenase activity assay. 

Substance Concentration 

Assay buffer (TRIS∙HCL pH 7.3) 0.2 M 

NADH 7 mM 

Pyruvate 60 mM 
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Table 9.23: Lipase activity assay. 

Substance Concentration 

Solution A   

4-nitrophenyl palmitate 3 g L−1 (in n-propanol) 

Solution B  

Triton X-100 5 g L−1 

Gum arabic 1 g L−1 

TRIS∙HCL pH 7.5 2.5 M 

  

 


