TUM

TECHNISCHE UNIVERSITAT MUNCHEN
INSTITUT FUR INFORMATIK

Component Composition: Formal
Specification and Verification of
Cryptographic Properties

Maria Spichkova

TUM-1124

Component Composition:
Formal Specification and Verification
of Cryptographic Properties

Maria Spichkova
Institut fir Informatik, Technische Universitdt Miinchen

Boltzmannstr. 3, 85748 Garching, Germany

Abstract

This paper presents an optimized and refined methodology to specify
crypto-based distributed software and to verify their composition proper-
ties in a formal way.

We suggest to specify all components in Focus, a framework for formal
specification and development of interactive systems. Having a formal
Focus representation of a protocol components, one can argue about
their properties and composition in a methodological way, referring to the
approach “Focus on Isabelle” and checking the defined properties formal
proofs using the theorem prover Isabelle/HOL, as well as make automatic
correctness proofs of syntactic interfaces for specified system components.

As a running example, a variant of the Internet security protocol TLS
is presented. We analyzed one of the versions of the protocol using refined
Focus specification and demonstrated a security flaw in this version for-
mally, using Isabelle/HOL. We also used the extended approach to harden
the protocol in a formal way, and showed how to construct a new version
of the secure channel on the basis of the corrected formal specification of
the protocol. The formal proof that the discussed flaw no more exist in
this corrected version of the protocol was done also in Isabelle/HOL.

On the base of these protocol we specified secure channels that adopt
the main protocol properties.

Keywords: Formal Specification, Verification, Composition, Cryptographic
Properties

Contents
1 Introduction
2 Focus: Composition of Components

3 Secrecy: Focus on Isabelle
3.1 DataTypes
3.2 Correct Composition
3.3 New Auxiliary Predicates
3.4 Input and Output of Expressions
3.5 Composing Input Properties,
3.6 Composing Output Properties
3.7 Set of Local Secrets. L.
3.8 Knowledges of An Adversary

4 TLS Protocol
4.1 The Handshake Protocol
4.2 Security Analysis
4.3 Fixing the Security Weakness
4.4 Open Question

5 Secure Channels

6 Conclusions

10
12
14
18
22
25

35
35
40
46
50

53

59

1 Introduction

In this paper we discuss a result of extension and optimization of the draft ideas
presented in [SJ08]: the question how we can combine system components, which
enforce a particular security requirement in a way that allows us to predict which
properties the combined system will have, is very important and very difficult
to answer. Thus, we need a methodology that allows us not only to represent
crypto-based software and their composition properties in a formal way, but also
to argue about them (semi)automatically, using theorem provers — the paper-
and-pencil proofs are not enough for this case. Therefore, an extension to the
representation which is suitable to the theorem prover is essential.

We use the Focus approach, because it was developed specifically to sup-
port the compositional development of distributed systems and offers a number
of specification techniques including several practical notions of refinement. It
also supports formal arguments about property combination using well-founded
theories of component- and service-composition, and applying the methodology
“Focus on Isabelle” [Spi07] we can verify the properties and their combination
using the Isabelle/HOL theorem prover [NPW02]. Using “Focus on Isabelle”
we can influence the complexity of proofs and their reusability already dur-
ing the specification phase, because the specification and verification/validation
methodologies are treated here as a single joint methodology with the main
focus on the specification part. Moreover, using it we can perform automatic
correctness proofs of syntactic interfaces for specified system components.

Using the extended approach, we can, as before, demonstrate a security flaw
in the protocol and show how to prove security properties of a corrected version,
but now we can do it not only in paper-and-pencil version but also using more
strict and solid way: a semiautomatic theorem prover. We also transfer to the
extended version of the approach the idea of secure channels and provide some
general results on composition of security properties.

Like in [SJ08], we use here as a running example a variant of the Internet
security protocol TLS published in [APS99], but the Focus specification of
the protocol is now corrected and refined to be more readable and to avoid
misinterpretation. Thus, in contrast to [SJ08] we used here an optimized method
to specify components in FOCus, some of the optimization ideas were previously
discussed in [Spilla] and [Spillb].

2 Focus: Composition of Components

Focus [BS01] is a framework for formal specifications and development of dis-
tributed interactive systems. A system in FOCUS is represented by its com-
ponents that are connected by communication lines called channels, and are
described in terms of its input/output behavior. The components can interact
and also work independently of each other. A specification can be elementary
or composite — composite specifications are built hierarchically from the ele-
mentary ones. In FOCUS any specification characterizes the relation between

the communication histories for the external input and output channels. To de-
note that the (lists of) input and output channel identifiers, I and O, build the
syntactic interface of the specification S the notation (Ip > Op) is used. The
formal meaning of a specification is exactly this external input/output relation.

The central concept of this framework are streams, that represent commu-
nication histories of directed channels. For any set of messages M, M“ denotes
the set of all streams, M and M* denote the sets of all infinite and all finite
streams respectively, M% denotes the set of all timed streams, M= and M=*
denote the sets of all infinite and all finite timed streams respectively. The no-
tion of time provided by the timed streams allows us to correctly specify system
components, and to compose them with the anomalies that may occur in the
untimed treatment (Brock-Ackermann anomaly).

A Focus specifications can be structured into a number of formulas each
characterizing a different kind of property, the most prominent classes of them
are safety and liveness properties. The specification scheme of FOCUS supports
a variety of specification styles which describe system components by logical
formulas or by diagrams and tables representing logical formulas. It has an
integrated notion of time and modeling techniques for unbounded networks,
provides a number of specification techniques for distributed systems and con-
cepts of refinement.

A large number of composition properties defined in [BS01] can be repre-
sented in Isabelle/HOL according the rules we introduce in [Spi07] to prove them
automatically. By representing protocols as FOCUS specifications, like discussed
in [SJO8], we can describe them as components or services (see [BS01, Bro05])
and can argue about properties of component compositions using well-founded
theories of component- and service-composition (see [Bro97, Bro98]). Thus,
using this representation we can combine different components involved in a
protocol and can check in Isabelle/HOL whether this combination satisfies the
desired security properties. In such a way we can reduce the problem of proto-
col component composition to the problem of function (or component/service)
composition. This also means that when specifying a protocol component, one
needs to analyze the preconditions of its correct activity and specify them in
the assumption part. Missing assumptions and incompatibilities of properties
will be detected during the verification. For this purpose we can translate the
Focus specification into Isabelle/HOL and verify them using the methodology
“Focus on Isabelle” [Spi07].

Focus operators used in the paper:

An empty stream is represented in Focus by ().

(z) denotes the one element stream consisting of the element z.

#s denotes the length of the stream s.

ith time interval of the stream s is represented by ti(s,).

msg,, (s) denotes a stream s that can have at most n messages at each time
interval.

See [BSO01] and [Spi07] for more background on Focus and its extensions.

As mentioned in [SJ08], by representing protocols as FOCUS specifications we
can describe them as components or services (see [BS01, Bro05]) and can ar-
gue about properties of component compositions using well-founded theories of
component- and service-composition (see [Bro97, Bro98]).

The Focus semantics of a composite specification S = §1®- - -® 5, is defined
in [BS01] as follows:

n
[S] < 3isels: NS] (1)
j=1
where Ig denotes a set of local streams and Lg denotes their corresponding
types, [S;] denotes semantics of the FOcus specification S;, 1 < j < n, which
is a specification of subcomponent of S.

A large number of composition properties defined in [BS01, Spi07] can be
represented in Isabelle/HOL according the rules we introduce in [Spi07] to prove
them automatically. Thus, using this representation we can combine different
components involved in a protocol and can check in Isabelle/HOL whether this
combination satisfies the desired security properties . Thus, we can reduce
the problem of protocol component composition to the problem of function
(or component/service) composition. This also means that when specifying
a protocol component, one needs to analyze the preconditions of its correct
activity and specify them in the assumption part. Missing assumptions and
incompatibilities of properties will be detected during the verification. For this
purpose we can translate the FOCUs specification into Isabelle/HOL and verify
them using the methodology “Focus on Isabelle” [Spi07].

3 Secrecy: Focus on Isabelle

In this section we introduce an Isabelle/HOL formalization of the security prop-
erty of data secrecy, the corresponding definitions, and a number of abstract
data types used in this formalization. This formalization is a translation of the
Focus representation of these artifacts (see [SJ08]).

3.1 Data Types

We assume here disjoint sets Data of data values, Secret of unguessable val-
ues, and Keys of cryptographic keys. Based on these sets, we specify the sets
EncType of encryptors that may be used for encryption or decryption, CEzp of
closed expressions, and Fzxpression of expression items:

KS def Keys U Secret

EncType K eysU Var

CFExp ' Datau Keys U Secret
FEzxpression ' Datau KeysU Secret U Var

Below, we will treat an ezpression (that can for example be sent as an argument
of a message within the distributed system) as a finite sequence of expression
items. () then denotes an empty expression.

The decryption key corresponding to an encryption key K is written as K 1.
In the case of asymmetric encryption, the encryption key K is public, and the
decryption key K ! secret. For symmetric encryption, K and K~! coincide.
For the encryption, decryption, signature creation and signature verification
functions we define only their signatures and general axioms, because in order
to reason effectively, we view them as abstract functions and abstract from
their bit-level implementation details (following the usual Dolev-Yao approach
to crypto-protocol verification [DY83]):

Enc, Decr, Sign, Ext :: EncType x Expression™ — Expression *
Ve € Expression : Ext(K, Sign(K~1,¢)) = e
Decr(CKey™!, Enc(CKey, e)) = e

The corresponding definition in Isabelle:

consts

Enc :: “Keys = Expression list = Expression list”

Decr :: “Keys = FExpression list = Fxpression list”
Sign :: “Keys = Expression list = Expression list”
FExt 2 “Keys = Expression list = Expression list”

EncrDecrKeys :: “Keys = Keys = bool”

axioms

ExtSign :

“EncrDecrKeys K1 K2 — (Ext K1 (Sign K2 E)) = E” DecrEnc :
“EncrDecrKeys K1 K2 — (Decr K2 (Enc K1 E)) = E”

We denote by Kp C Keysand Sp C Secret the set of private keys of a component
P and the set of unguessable values used by a component P, respectively. The
union of these two sets will be denoted by KSp.

In Isabelle we define this as follows:

consts
specKeys :: “specID = Keys set”
consts
specSecrets :: “specID = Secrets set”
constdefs
specKeysSecrets :: “specID = KS set”
“specKeysSecrets C =
{y. 2.y = (kKS z) A (z € (specKeys C))} U
{z.3 5.2 = (sKS s) N\ (s € (specSecrets C))}"

3.2 Correct Composition

We assume in our specification that the composition of components has a num-
ber of general properties which sometimes seem to be obvious, but for a formal
representation is essential to mention these properties explicitly either we can’t
make the proofs in a correct way.

The sets of private keys and unguessable values used by a composed com-
ponent C' = €} ® --- ® C, must be defined by union of corresponding sets. In
Isabelle/HOL we define this by the following predicates (according the general
ideas presented in [Spi07]):

constdefs
correctCompositionKeys :: “specID = bool”
“correctCompositionKeys © =

subcomponents © # {} — specKeys © = U (specKeys * (subcomponents x))”

constdefs
correctCompositionSecrets :: “specID = bool”
“correctCompositionSecrets © =

subcomponents © # {} — specSecrets © = U (specSecrets * (subcomponents x))”

constdefs

correctCompositionKS :: “specID = bool”

“correctCompositionK St =
subcomponents x # {} —

specKeysSecrets x = U (specKeysSecrets * (subcomponents x))”

The following properties must hold for the correct composed components:

e If zb is a private key of the composed component C, then this key must
belong to the set of private keys of one subcomponents of C'.

C=0® - C, Nzbe Kc —3i € [17’1,] b € K¢,
In Isabelle we can represent this property by the following lemma

“[correctCompositionKeys C; x € subcomponents C; zb € specKeys C]
= Jdz € subcomponents C. xb € specKeys z”

or more general:

“[correctCompositionKS C; x € subcomponents C; za € specKeys C

= Jx € subcomponents C. xa € specKeys z”

e If zb is an unguessable value used by the composed component C, then
this value must belong to the set of unguessable values used by one sub-
components of C.

C=0C® - ®@C, Nzbe Sc — 3Fie[l.n]. zb € S¢,
In Isabelle we can represent this property by the following lemma

“[correctCompositionSecrets C; x € subcomponents C; s € specSecrets C]

= Jx € subcomponentsC. s € specSecrets x”
or more general:

“[correctCompositionKS C; x € subcomponents C; za € specSecrets (]

= dz € subcomponents C. xa € specSecrets x”

e If zb is a private key of one subcomponents of the composed component
C', then this key must belong to the set of private keys of C.

C=0® - @C,AN1<i<nAzbe K —abe Kc

“[correctCompositionKeys C; x € subcomponents C; zc € specKeys x]

= xc € specKeysC”

“[correctCompositionKS C; z € subcomponents C; za € specKeys]

= za € specKeys C”

e If zb is an unguessable value used by one subcomponents of the composed
component C', then this value must belong to the set of unguessable values
used by C.

C=0® -0, AN1<i<nAzbeSs — xbe Sc

" [correctCompositionSecrets C; x € subcomponents C; zc € specSecrets x]

= xc € specSecrets C”

“correctCompositionKeys C N correctCompositionSecrets C'

= correctCompositionKS C”

e If zb does not belong to the set of private keys and unguessable values
of any subcomponent of the composed component PQ = P ® @, then zp
does not belong to the set of private keys and unguessable values of PQ).

PQ=P® QAzb¢ KSp Aab ¢ KSg — xb & KSpg

“[subcomponents PQ = {P, Q}; correctCompositionKS PQ;
ks & specKeysSecrets P; ks & specKeysSecrets Q]
= ks & specKeysSecrets PQ”

We also add to the set of properties of composition the following two lemmas:

e If a channel z belongs to the set of input channels of the composition
PQ = P ® @ for any two components P and @, then this channel must
belong to the set of input channels of P or Q.

T E€lpgg > T E€ipVIEIQ

“[subcomponents PQ = {P, Q}; correctCompositionIn PQ; z € ins PQ]
=z €ins PVze€ins Q7

e If a channel z belongs to the set of output channels of the composition
PQ = P ® @ for any two components P and @), then this channel must
belong to the set of output channels of P or Q.

T E€Eopyg > TEOPVITEO

“[subcomponents PQ = {P, Q}; correctCompositionOut PQ; = € out PQ]
=x €out PVzecout Q'

3.3 New Auxiliary Predicates

To discuss the next propositions we introduce first of all a number of new pred-
icates.

A channel ch € ip of a component P is a single input channel of this
component that may eventually input an expression £ € CFEzp (denoted by
exprChannelSinglel (P, ch, E) in Focus and by ine_exprChannelSingle sP ch E
in Isabelle/HOL):

exprChannelSinglel (P, ch, F) def

che€ipN(FteN: Ecti(ch,t)) A
Ve cip: x#ch—>VteN: E &ti(z,t)

The corresponding definition in Isabelle:

constdefs

ine_exprChannelSingle :: “specID = chanID = Ezpression = bool”
“ine_exprChannelSinglesPchE = (ch € (ins sP)) A (exprChannel ch E) A
V(z :: chanID)(t :: nat).(x € ins sP A x # ch — —(exprChannel z E))”

The Focus predicate exprChannelSetI (P, chSet, E) yields true if only the chan-
nels from the set chSet, which is a subset of input channels of a component P,
may eventually input an expression F € CEzp:

exprChannelSetI (P, chSet, E) =

Va: x € chSet — ch€ip AN(It€N: E €ti(ch,t)) A
Vo: x & chSet Acheip— (VteN: E &ti(z,t))

The corresponding definition in Isabelle:

constdefs

ine_exprChannelSet :: “specID = chanlDset = Expression = bool”
“ine_exprChannelSet sP chSet E =

((V(z :: chanID).(z € chSet — (x € ins sP A exprChannel z E))) A
(V(z :: chanID).(z & chSet A x € ins sP — —(exprChannel x E))))”

A channel ch € op of a component P is a single output channel of this com-
ponent that may eventually output an expression £ € CExp (denoted by
exprChannelSingleO (P, ch, E) in Focus and by out_exzprChannelSingle sP ch E
in Isabelle/HOL):

exprChannelSingleO (P, ch, E) def

ch€opN(IteN: Eecti(ch,t)) A
Ve €op: x#ch—=VteN: E &ti(z,t)

10

The corresponding definition in Isabelle:

constdefs

out_exprChannelSingle :: “specID = chanlD = FExpression = bool”
“out_exprChannelSingle sP ch E =

(ch € out sP) A (exprChannel ch E) A

V(x :: chanID)(t :: nat).(z € outsP A\ x # ch — —(exprChannel z E))”

The Focus predicate exprChannelSetO(P, chSet, E) yields true if only the chan-
nels from the set chSet, which is a subset of output channels of a component P,
may eventually output an expression £ € CFExp:

exprChannelSetO(P, chSet, E) def

Vz: z € chSet > ch € op AN(Ft€N: E €ti(ch,t)) A
Vo: o & chSet Ach € op— (VteN: E &ti(z,t))

The corresponding definition in Isabelle:

constdefs

out_exprChannelSet :: “specID = chanlDset = Expression = bool”
“out_exprChannelSet sP chSet E =

((V(z :: chanID).(z € chSet — (x € out sP A (exprChannelzE)))) A
(V(z :: chanID).(z & chSet Az € out sP — —(exprChannelzE))))”

Now we present a number of properties that show the relation between these
predicates:

exprChannelSinglel (P, ch, E) — exprChannelSetI (P,{ch}, E)
exprChannelSingleO(P, ch, E) — exprChannelSetO(P,{ch}, E)
exprChannelSet] (P,{ch}, E) — exprChannelSinglel (P, ch, E)
exprChannelSetO(P,{ch}, E) — exprChannelSingleO(P, ch, E)

“[ine_exprChannelSingle P ch E| = ine_exprChannelSet P {ch} E”
“lout_exprChannelSingle P ch E] = out_exprChannelSet P {ch} E”
“[ine_exprChannelSet P {ch} E] = ine_exprChannelSingle P ch E”
“Tout_exprChannelSet P {ch} E] = out_exprChannelSingle P ch E”

11

3.4 Input and Output of Expressions

In this Section we refine and optimize the definition presented in [SJ08] and
represent them in Isabelle/HOL. We omit now proofs for the all discussed here
proposition and theorems: paper-and-pensil proofs of them are shown in [SJ08§],
the semi-automatic proofs are given in the corresponding Isabelle/HOL theories
we created (Secrecy.thy, Secrecy_types.thy).

Please note that we use for this purpose the ideas from [Spi07], where
the argumentation and proofs about the syntactical interface are represented
separately from the main part of the specification to allow automatic verifi-
cation of syntax correctness. Like in [Spi07] we use here the following nota-
tion: sC denotes a (syntactical) identifier of a component C, ch_z denotes
a (syntactical) identifier of a channel z. The predicates correctCompositionIn,
correctCompositionOut, correctCompositionLoc ete. are defined in Isabelle/HOL
to insure that a composition of components has the same properties as discussed
in [BS01, Spi07], i.e. that the composition is done in a correct way.

Let assume a component P without any sheaves of channels, (Ip > Op) with
ip ={z1,...,z,} and op = {y1,..., Ym}-

Corresponding notations in Isabelle/HOL are the following ones: ins sP =
{ch_zy,...,ch_x,} and out sP = {ch_yy,..., ch_ynm}.

The set Ip = {l1,...,1,} of local channels of component P is represented in
Isabelle/HOL as follows: loc sP = {ch_ly, ..., ch_l,}.

We say that a component P, (Ip > Op), may eventually output an expression
E € CEzp (denoted by P*°"*(FE) in Focus and by ecout sP E in Isabelle/HOL),
if there exists a time interval ¢ of an output stream s € op which contains this
expression F:

def

Pt (E) P(zy, .. Zny Y1y oy Ym) A Js€op: FteN: E €ti(s, t)

The corresponding representation in Isabelle:

consts

exprChannel :: “chanID = FExpression = bool”
constdefs

eout :: “specID = Ezpression = bool”

“eout sP E =

Fch i chanlD. (ch € (out sP)) A (exprChannel ch E)”

A component P, (Ip > Op), may eventually output an expression £ € CExp via
M (denoted by P§"*(F) in Focus and by eoutM sP M E in Isabelle/HOL) if
M is the set of channels, which is a subset of output channels of the component
P (M C op), and if there exists a time interval ¢ of a stream s € M which
contains this expression F:

PsoUt(E) ¥ MCop A IseM: JteN: E € ti(s, t)

12

The corresponding representation in Isabelle:

constdefs

eoutM :: “specID = chanID set = Fxpression = bool”

“eoutM sP M E =

3 ch = chanID. ((ch € (out sP)) A (ch € M) N (exprChannel ch E))

A component P, (Ip > Op), may eventually get an expression £ € CEzp (de-
noted by P"¢(E) in Focus and by ine sP E in Isabelle/HOL), if there exists a
time interval ¢ of an input stream s € ip which contains this expression E:

Pre(B) € 3scip: 3teN: Eeti(st)

The corresponding representation in Isabelle:

constdefs
ine : “specID = Fxpression = bool”
“ime sP E =
3 ¢ch = chanID. ((ch € (ins sP)) A (exprChannel ch E))”

A component P, (Ip> Op), may eventually get an expression F € CFErp via
M (denoted by P¢(E) in Focus and by ineM sP M E in Isabelle/HOL) if
M is the set of channels, which is a subset of input channels of the component
P, and if there exists a time interval ¢ of a stream s € M which contains this
expression F:

PreE) ' MCip A IseM: JteN: Eeti(s,t)

The corresponding representation in Isabelle:

constdefs
ineM :: “specID = chanlD set = FEzxpression = bool”
“ineM sP M E =
3 ch : chanID. ((ch € (ins sP)) A (ch € M) A (exprChannel ch E))”

Please note that the following properties hold for these predicates:

exprChannelSetI (P, ChSet, E) A ChSet # {} — P'"*(E)
exprChannelSetI (P, ChSet, E) A ChSet = {} — —P"(E)

The corresponding representation of these properties in Isabelle by lemmas:

“[ine_exprChannelSet P ChSet E; ChSet # {}] = ine P E”
“[ine_exprChannelSet P ChSet E; ChSet = {}] = —(ine P E)”

We omit here the discussion of a number of other auxiliary lemmas we defined
on these predicates, because they do not belong directly to the properties of
component composition, and continue with the presentation of the input and
output properties of the composed components.

13

3.5 Composing Input Properties
Theorem 1 For any components P and @ the composition P ® @ has the

following properties (e € Expression, m € KS, m ¢ KSp and m ¢ KSqg):
(P® Q)':"e(e) = P™(e) v Q"(e) (1)
(P® Q) (e) — Pire(e) vV Qire(e) (2)

The corresponding representation in Isabelle:

“[ine PQ E; subcomponents PQ = P, Q; correctCompositionIn PQ |

= me PE V ine @Q E”

“[ineM PQ M E; subcomponents PQ = P,Q; correctCompositionIn PQ |

= meM PMFE V ineM Q M E”
O

Theorem 2 For any components P and @ the composition P ® @ has the
following properties (e € Expression, m € KS, m ¢ KSp and m & KSq):

(P® Q)™ (e) — P®(e) V Q*(e) (1)
(P Q)5 "(e) = Pi*(e) V Q52"(e) (2)
The corresponding representation in Isabelle:
“[eout PQ E; subcomponents PQ = {P,Q}; correctCompositionOut PQ]
= eout PE V eout Q E”

“[eoutM PQ M E; subcomponents PQ = {P,Q}; correctCompositionOut PQ]
= eoutM PM E VN eoutM QQ M E”
O

Theorem 3 For any components P and () the composition P ® Q) has the
following properties (e € Expression, m € KS, m ¢ KSp and m & KSqg):

—P(e) A =Q"(e) — ~(P®Q)™(e) (1)
—PiE(e) A 2Qif(e) = ~(P®Q)y(e) (2)
The corresponding representation in Isabelle:
“[= (ine P E); = (ine Q E); subcomponents PQ = P, Q;
correctCompositionIn PQ |
= - (ine PQ E)”

14

“I = (ineM P M E); — (ineM Q M E); subcomponents PQ = P, Q;
correctCompositionIn PQ |
= = (ineM PQ M E)”

O

Theorem 4 For any components P and @Q in general the following properties
of the composition P ® Q (e € Expression, m € KS, m & KSp and m & KSq)
does NOT hold:

Pine(e) vV Qine(e) N (P@ Q)ine(e)

Pif(e) v Qif(e) — (P @ Q)y(e)

O
In addition to the paper-and-pensil proof from [SJ08] we can easily find a coun-
terexample in Isabelle to show that the properties above do not hold in general,
but even more important is to find out for which special cases these properties

hold and for which ones hold exactly opposite properties. Thus, we extend the
set of proven properties by a number of extra propositions.

Proposition 1 For any components P and @ the following property of the
parallel composition P ® @, i.e. with an empty set of local channels, holds
(e € Ezpression, m € KS, m ¢ KSp and m ¢ KSq):

(PMe(e) v Q"(e)) Alpag ={} = (P Q)"™(e)
The corresponding representation in Isabelle:

“[(ine P E)V (ine Q E); subcomponents PQ = {P, Q};
correctCompositionIn PQ; loc PQ = {}]
= ine PQ E”

O

Proposition 2 For any components P and @Q the following properties of the
composition P ® @ (e € Expression, m € KS, m & KSp and m ¢ KSg) hold:

15

Pire(e) AT ch.(ch € ip Ach & lpgg AN(3t €N e € ti(ch,t)))
- (P®Q)™(e)

(P™e(e) v Q™ (e)) A
Jch.((ch€ipVech €ig)Ach &lpgog N(TteN: e € ti(ch,t)))
- (P Q)™ (e)

Pine(e) NI ch.(ch €ip Ach € M Ach & lpgg AN(3t €N e € ti(ch,t)))
= (P®Q)y(e)

(Pi(e) v Qi (e)) A
Jch.((cheipVecheig)Nche M Ach & lpgg AN(FteN: e € ti(ch,t)))
~ (P®Q)f(e)

The corresponding representation in Isabelle:

“[ine P E; subcomponents PQ = {P, Q}; correctCompositionln PQ);
Jch.((ch € ins P) A (ch & loc PQ) A exprChannel ch E)]
= ine PQ E”

“[ineM P M E; subcomponents PQ = {P, Q}; correctCompositionln PQ);
Jch.((ch € ins Q) A ch € M A ch & loc PQ A exprChannel ch E)]
= meM PQ M E”

“[((ine P E)V (ine Q E)); subcomponents PQ = {P, Q};
correctCompositionIn PQ);

dch.((ch € ins PV ch € ins Q) N (exprChannel ch E) N (ch & (loc PQ)))]
= ine PQ E”

“[(ineM P M E)V (ineM @Q M E); subcomponents PQ = {P, Q};
correctCompositionIn PQ);

dch.((ch € ins PV ch € ins Q) A ch € M A exprChannel ch E A ch & loc PQ)]
= ineM PQ M E”

16

Proposition 3 For any components P and @Q the following properties of the
composition P ® @ (e € Expression, m € KS, m &€ KSp and m ¢ KSg) hold:
Pire(E)Y A =Q™(E) AT ch € lpgq : exprChannelSinglel (P, ch, E)
— (P®Q)"™(E)

Pine(E) A =Qire(E) A3 ch € lpgq : (exprChannelSetl (P, ch, E) A ch € M)
- (P® Q) (B)

The corresponding representation in Isabelle:

“[ine P E; —ine Q E; subcomponents PQ = {P, Q}; correctCompositionIn PQ;
3 ch.((ine_exprChannelSingle P ch E) A (ch € loc PQ))]
= = (ine PQ E)”

“[ineM P M E; = (ineM Q M E); subcomponents PQ = {P, Q};
correctCompositionIn PQ);
3 ch.((ine_exprChannelSingle P ch E) A (ch € M) A (ch € loc PQ))]
= - (ineM PQ M E)’
O

Proposition 4 For any components P and @Q the following properties of the
composition P ® @ (e € Expression, m € KS, m & KSp and m ¢ KSg) hold:
=Q(E) A exprChannelSetI (P, ChSet, E) AV ch : ch € ChSet — ch € lpg g
- =(P®Q)™(E)

=Qine(E) A exprChannelSetI (P, ChSet, E) AV ch : ch € ChSet — ch € lpg g
= (P& Q)f(F)
The corresponding representation in Isabelle:
“[=(ine @ E); subcomponents PQ = {P, Q}; correctCompositionIn PQ;
ine_exprChannelSet P ChSet E;

V(z :: chanID).((xz € ChSet) — (z € loc PQ))]
= —(ine PQ E)”

“I =(ineM Q@ M E); subcomponents PQ = {P, Q};
correctCompositionIn PQ); ine_exprChannelSet P ChSet E;
V(z :: chanID).((z € ChSet) — (z € loc PQ))]
= —(ineM PQ M E)”

17

Proposition 5 For any components P and @Q the following properties of the
composition P ® @ (e € Expression, m € KS, m &€ KSp and m ¢ KSg) hold:
exprChannelSetl (P, ChSetP, E) A exprChannelSetl (@), ChSetQ, E) N
Vch: ch € ChSetP — ch € lpgg N Vch:ch € ChSetQQ = ch € lpgq
= ~(P®Q)™(E)

exprChannelSet] (P, ChSetP, E) A exprChannelSetl (Q, ChSetQ, E) A

M = ChSetP U ChSet@ A

Vch:ch € ChSetP — ch € lpgg N Vch:ch € ChSet@ — ch € lpgq
= (P ® Q) ()

The corresponding representation in Isabelle:

“[subcomponents PQ = {P, Q}; correctCompositionln PQ);
ine_exprChannelSet P ChSetP E; ine_exprChannelSet @@ ChSet@ F;
V(x :: chanID).((z € ChSetP) — (z € loc PQ));

Y(x :: chanID).((z € ChSetQ) — (z € loc PQ))]
= —(ine PQ E)”

“[subcomponents PQ = {P, Q}; correctCompositionIn PQ);
ime_exprChannelSet P ChSetP E; ine_exprChannelSet @@ ChSet@ F;
M = ChSetP U ChSetQ;

V(z :: chanID).((z € ChSetP) — (z € (loc PQ)));
V(z :: chanID).((z € ChSetQ) — (z € (loc PQ)))]
= —(ineM PQ M E)”

3.6 Composing Output Properties

Theorem 5 For any components P and @ in general the following properties
of the composition P ® @ (e € Expression) does NOT hold:
Peout(e) Vv Qeout(e) N (P ® Q)EOUt(e)
Pig(e) vV Q5(e) = (P Q)3 (¢)
O

In addition to the paper-and-pensil proof from [SJ08] we can easily find a coun-
terexample in Isabelle to show that the properties above do not hold in general,
but even more important is to find out for which special cases these properties
hold and for which ones hold exactly opposite properties. Thus, we extend the
set of proven properties by a number of extra propositions.

18

Proposition 6 For any components P and @ the following property of the
parallel composition P ® @, i.e. with an empty set of local channels, holds
(e € Expression, m € KS, m ¢ KSp and m & KSq):

(Peout(e) Vi Qeout(e)) A ZP®Q — {} - (P® Q)eout(e)
The corresponding representation in Isabelle:
“[(eout P E)V (eout Q F);
subcomponents PQ = {P, Q}; correctCompositionOut PQ; loc PQ = {}]
= eout PQ E”
O
Proposition 7 For any components P and @Q the following properties of the
composition P ® @ (e € Expression, m € KS, m ¢ KSp and m ¢ KSg) hold:
Peett(e) A ch.(ch € op Ach & lpgo N (Lt € N: e € ti(ch,t)))
_ (P ® Q)eout(e)

Psit(e) AN ch.(ch € op Ach € M Ach & lpgg A (3t €N: e € ti(ch,t)))
- (P2 Q)5"(e)

(Peout(e) Vi QEOUt(e)) A
Jch.((ch € opVch € og)ANch & lpgg AN(It €N e € ti(ch,t)))
— (P Q)™ (e)

(P37 (e) V Q37 (€)) A
dch.((ch€opVcheog)Nche M Ach¢lpggN(TteN: ec€ti(ch,t)))
= (P2 Q)5"(e)

The corresponding representation in Isabelle:

“[eout P E;

subcomponents PQ = {P, Q}; correctCompositionOut PQ;
Jch.((ch € out P) A (exprChannel ch E) A (ch & loc PQ))]
= eout PQ E”

“[eoutM P M E;

subcomponents PQ = {P, Q}; correctCompositionOut PQ;

Jch.((ch € out Q) A (exprChannel ch E) A (ch & loc PQ) A ch € M)]
= eoutM PQ M E”

19

“[(eout P E)V (eout @ E);

subcomponents PQ = {P, Q}; correctCompositionOut PQ;

Jch.((ch € out PV ch € out Q) A (exprChannel ch E) A (ch & loc PQ))]
= eout PQ E”

“IleoutM P M E)V (eoutM @ M E);

subcomponents PQ = {P, Q}; correctCompositionOut PQ;

Jch.((ch € out PV ch € out Q) A ch € M A (exprChannel ch E) A (ch & loc PQ))]
= eoutM PQ M E”

O
Proposition 8 For any components P and @Q the following properties of the
composition P ® Q (e € Expression, m € KS, m & KSp and m ¢ KSg) hold:
Pt (EY A =Q®"(E) N3 ch € lpgq : exprChannelSingleO(P, ch, E)
= (P2 Q)*"(E)

PSP (E) A =Q5"(E) A ch € lpgq : (exprChannelSetO(P, ch, E) A\ ch € M)
- (P® Q) ()

The corresponding representation in Isabelle:

“[eout P E; =(eout Q E);

subcomponents PQ = {P, Q}; correctCompositionOut PQ;
3 ch.((out_exprChannelSingle P ch E) A (ch € loc PQ))]
= —(eout PQ E)”

“leoutM P M E; —(eoutM Q M E);
subcomponents PQ = {P, Q}; correctCompositionOut PQ;
3 ch.((out_exprChannelSingle P ch E) A ch € M A (ch € loc PQ))]
= —(eoutM PQ M E)”
O
Proposition 9 For any components P and @ the following properties of the
composition P ® @ (e € Expression, m € KS, m & KSp and m ¢ KSg) hold:
= Q% (E) A exprChannelSetO(P, ChSet, E) AV ch : ch € ChSet — ch € lpg g
= (P ® Q)*"(B)

20

Q5 (E) A exprChannelSetO(P, ChSet, E) AV ch : ch € ChSet — ch € lpg g
- ~(P® Q)5 (E)

The corresponding representation in Isabelle:

“[-(eout @ E); out_exprChannelSet P ChSet E;
subcomponents PQ = {P, Q}; correctCompositionOut PQ;
V(z :: chanID).(z € ChSet — x € loc PQ)]

= —(eout PQ E)”

“[-(eoutM @ M E); out_exprChannelSet P ChSet E;
subcomponents PQ = {P, Q}; correctCompositionOut PQ;
V(z :: chanID).(x € ChSet — (z € loc PQ))]
= —(eoutM PQ M E)”
O

Proposition 10 For any components P and @Q the following properties of the
composition P ® @ (e € Expression, m € KS, m & KSp and m ¢ KSg) hold:

exprChannelSetO (P, ChSetP, E) A exprChannelSetO(Q, ChSetQ, E) A
Vch:ch € ChSetP — ch € lpgg N Ych:ch € ChSet@Q — ch € lpgq
N _‘(P ® Q)eout(E)

exprChannelSetO(P, ChSetP, E) N exprChannelSetO(Q, ChSetQ, E) A

M = ChSetP U ChSet@ A

Vch:ch € ChSetP — ch € lpgg N Ych:ch € ChSet@Q — ch € lpgq
= (P ® Q)" (E)

The corresponding representation in Isabelle:

“[subcomponents PQ = {P, Q}; correctCompositionOut PQ;
out_exprChannelSet P ChSetP E; out_exprChannelSet) ChSetQ FE;
V(z :: chanID).(z € ChSetP — (z € loc PQ));

V(z :: chanID).(z € ChSet@Q — (z € loc PQ))]
= —(eout PQ E)”

21

“[subcomponents PQ = {P, Q}; correctCompositionOut PQ;
out_exprChannelSet P ChSetP E; out_exprChannelSet) ChSetQ E;
M = ChSetP U ChSetQ;
V(z :: chanID).(x € ChSetP — (x € loc PQ));
V(z :: chanID).(z € ChSetQ — (z € loc PQ))]

= —(eoutM PQ M E)”

3.7 Set of Local Secrets

In addition to the sets of private keys and unguessable values of a component
A we present in Isabelle/HOL according to the definition from [SJ08] the set
of local secrets LS, — the set of secrets which does not belong to the KS4, but
are transmitted via local channels of A or belongs to the local secrets of its
subcomponents:

consts
LocalSecrets :: “specID = KSset”
axioms
LocalSecretsDef :
“LocalSecrets A =
{(m = KS).m & specKeysSecretsAN
(Fzy.(z € loc ANm = (kKS y) A (exprChannel z (kE y))))
V (Jzz.(x € loc ANm = (sKS z) A (exprChannel x (sE z2)))))}
U
(U(LocalSecrets * (subcomponents A)))”

We defined a number of Isabelle/HOL lemmas describing properties of the set
of the local secrets:

e If Is belongs to the set of local secrets of a subcomponent of the composite
component PQ = P ® @, then Is lelongs also to the set of local secrets of

PQ.

"[ls € LocalSecrets P; subcomponents PQ = {P, Q}]
= ls € LocalSecrets PQ”

e If a key does not belong to the set of local secrets of any subcomponent
of the composite component PQ = P ® @ as well as cannot be eventually

22

input by any of the subcomponents, then it also does not belong to the
set of local secrets of PQ.

“[subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
—ine P (kE Keys); kKS Keys ¢ LocalSecretsP;
—ine Q (kE Keys); kKS Keys & LocalSecrets Q]

= kKS Keys & LocalSecrets PQ”

“[subcomponents PQ = {P, Q};
correctCompositionLoc PQ; correctCompositionKS P(Q);
(KKS m) & specKeysSecrets P; (kKS m) & specKeysSecrets Q;
=(ine P (kE m)); —(ine Q (kE m));
(kKS m) & ((LocalSecrets P) U (LocalSecrets Q))]
= (kKS m) ¢ (LocalSecrets PQ)”

e If an unguessable value does not belong to the set of local secrets of any
subcomponent of the composite component PQ) = P® () as well as cannot
be eventually input by any of the subcomponents, then it also does not
belong to the set of unguessable values of PQ.

“[subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
—ine P (sE s); sKS s & LocalSecrets P;
—ine Q (sE s); sKS s & LocalSecrets Q]

= sKS s & LocalSecrets PQ”

“[subcomponents PQ = {P, Q};
correctCompositionLoc PQ; correctCompositionKS PQ;
(sKS m) & specKeysSecrets P; (sKS m) & specKeysSecrets Q;
=(ine P (sE m)); —(ine Q (sE m));
(sKS m) & ((LocalSecrets P) U (LocalSecrets Q))]
= (sKS m) & (LocalSecrets PQ))”

e If a key or an unguessable value does not belong to the set of local secrets
of any subcomponent of the composite component PQ = P ® @ as well
as cannot be eventually input by any of the subcomponents, then it also

23

does not belong to the set of keys and unguessable values of PQ.

“[subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
V'm. ks = kKSm — (=(ine P (kE m)) A —(ine @ (kE m)));
Vm. ks = sKSm — (=(ine P (sE m)) A =(ine Q (SE m)));
ks & LocalSecrets P; ks & LocalSecrets Q]

= ks & LocalSecrets PQ"

“[subcomponents PQ = {P, Q};
correctCompositionLoc PQ; correctCompositionKS PQ;
ks & specKeysSecrets P; ks & specKeysSecrets @Q;
Vm. ks = kKSm — (=(ine P (kE m)) A (ine Q (kE m)));
Vm. ks = sKSm — (=(ine P (sE m)) A (ine Q (sE m)));
ks & ((LocalSecretsP) Un(LocalSecretsQ))]

= ks & (LocalSecrets PQ)”

e If a key belongs to the set of keys of the composite component PQ = PR Q,
but does not belong to the set of keys and unguessable values of P and @,
as well as cannot be eventually input by P@Q and as cannot be eventually
input by its subcomponent @, then it must be eventually input by P.

“[kKS k € LocalSecrets PQ;
subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
—ine PQ (kE k); —ine Q (kE k);
kKS k & LocalSecrets P; kKS k & LocalSecrets Q]
= ine P (kE k)"

e If an unguessable value belongs to the set of unguessable values of the
composite component PQ = P® @, but does not belong to the set of keys
and unguessable values of P and @, as well as cannot be eventually input
by P@ and as cannot be eventually input by its subcomponent @), then it
must be eventually input by P.

“[sKS s € LocalSecrets PQ;
subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
—ine PQ (sE s); —ine Q (sE s);
sKSs & LocalSecrets P; sKS s & LocalSecrets Q]
= ine P (sE s)”

24

3.8

If a key belongs to the set of keys of the composite component PQ = PR Q,
but does not belong to the set of keys and unguessable values of P and @,
as well as cannot be eventually input by P@Q and as cannot be eventually
input by its subcomponent P, then it must be eventually input by Q.

“[kKS k € LocalSecrets PQ;

subcomponents PQ = {P, Q}; correctCompositionLoc PQ);

—ine PQ (kE k); —ine P (kE k);

kKS k & LocalSecrets P; kKS k & LocalSecrets Q]

= ine Q (kE k)"

If an unguessable value belongs to the set of unguessable values of the
composite component PQ = P ® @, but does not belong to the set of keys
and unguessable values of P and @, as well as cannot be eventually input
by PQ and as cannot be eventually input by its subcomponent P, then it
must be eventually input by Q.

“[sKS s € LocalSecrets PQ;
subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
—ine PQ (SE s); —ine P (sE s);
sKS s & LocalSecrets P; sKS s & LocalSecrets Q]
= ine Q (sE s)”

Knowledges of An Adversary

As presented in [SJ08], an (adversary) component A knows a secret m € KS,
m ¢ KS4 (or some secret expression m, m € (Expression \ KS4)*), if

A may eventually get the secret m,

m belongs to the set LS4 of its local secrets,

A knows a one secret (m),

A knows some list of expressions my which is an concatenations of m and
some list of expressions my,

m is a concatenation of some secrets m; and mg (m =m3 mg), and A
knows both these secrets,

A knows some secret key k£~! and the result of the encryption of the m
with the corresponding public key,

A knows some public key & and the result of the signature creation of the
m with the corresponding private key,

m is an encryption of some secret m; with a public key k, and A knows
both m; and &,

m is the result of the signature creation of the m; with the key k, and A
knows both m; and k.

25

We represent these definition in Isabelle/HOL distinguishing (like in Focus)
two cases, represented by mutually recursive functions: m is a single secret
or m some expression (or list), containing a secret — predicates knowA(k) and
knows” (k) respectively.:

know” € KS\ KS4 — Bool

know? (1) & Ane(m) V m € LSy

consts

know :: “specID = KS = bool”

primrec

“know A (EKS m) = ((ine A (kE m)) | (kKS m) € LocalSecrets A))”
“know A (sKS m) = ((ine A (sE m)) | ((sKS m) € LocalSecrets A))”

knows” € (Expression \ KSx)* — Bool
knows” (m) «

(Imy:m = (m) A know”(my)) V

(Fmi,me: (me=m~—my V mg=my—m)A knowsA(mg)) Y
(Fmy,mg:m=my ~mg A knowsA(ml) A knowsA(mg)) Vv
(3k, k=1 know” (k1) A knows™ (Enc(k,m))) V

(3k, k=" know? (k) A knows” (Sign(k~", m))) V

(3k,my : m = Enc(k,my) A knows”(m1) A know?(k)) V
(3k, my : m = Sign(k,my) A knows™(my) A know” (k))

consts

knows :: “specID = Fxpressionlist = bool”

axioms
knows1k :

“know A (kKS m) = knows A [kE m]”
knowlk :

“knows A [kE m| = know A (EKS m)”
knowsls :

“know A (sKS m) = knows A [sE m]”
knowls :

“knows A [sE m] = know A (sKS m)”

26

knows?2 :
“[Fel e2. (e2 = el@QeV e2 = eQel) A (knows A e2)] = knows A e’
knows2a :
“[Fel e2. (e2 = el@e) A (knows A e2)] = knows A e”
knows2b :
“[Fel e2. ((e2 = e@Qel) A (knows A e2))] = knows A €”
knows3 :
“[3el e2. (e = el@e2 A (knows A el) A (knows A e2))] = knows A €”
knows4 :
“I3E1 k2. ((IncrDecrKeys k1 k2) A (know A (kKS k2)) A (knows A (Enc k1 e)))]
= knows A €”
knows5 :
“[3k1E2. ((IncrDecrKeys k1 k2) A (know A (EKS k1)) A (knows A (Sign k2 e)))]
= knows A €”
knows6 :
“[3kel. (e = (Enc k el) A (know A (EKS k)) A (knows A el))] = knows A e”
knowsT :

“[Fkel. (e = (Sign k el) A (know A (EKS k)) A (knows A el))] = knows A ¢”

We also add a number of axioms that describe relations between the predicates
know(s) and the predicate describing that a component may eventually output
an expression.

Axiom 1 For any component C and for any secret m € KS (or expression
e € Expression™), the following equations hold:

VC: VmeKS: C(m) = (meKSc) V know® (m)

VC: Vee Expression*: C(e) = (e e KSc*) V knows® (e)

The corresponding axioms in Isabelle:

axrioms
eout_know_k :
“Y(C :: specID)(m :: Keys).
(eout C (kE m)) = ((m € (specKeys C)) | (know C (kKS m)))”
eout_know_s :
“Y(C :: specID)(s :: Secrets).
(eout C (sE s)) = ((s € (specSecrets C)) | (know C (sKS s)))”

27

eout_knows :
“Y(C :: specID)(e :: Expression).
(eout C €)= ((Fk. e = (kE k) A (k € specKeys C))
| (s. e =(sE s) A (s € specSecrets C'))
| (knows C [e]))”
O

Axiom 2 For any component C and for an empty expression () € Expression ™),
the following equation holds:

V C: knows®(()) = true
The corresponding axiom in Isabelle:

axrioms
knows_emptyexpression :
“knows C []”

O
We omit here a number of lemmas to concentrate on more important ones from

our point of view. For the whole collection of lemmas we would like to refer to
the Isabelle/HOL theory AdvKnowledge.thy.

Proposition 11 If an adversary component A may eventually output a secret
m € KS (or m' € (Expression \ KS4)*), then this component A knows this
secret m (m'):

VA: A®(m) = know” (m)

VA: A®U(m/) = knows”(m’)

The corresponding lemmas in Isabelle:

“[m & specKeys A; eout A (kE m)] = know A (kKS m)”
“[m & specSecrets A; eout A (sE m)] = know A (sKS m)”
“[m & (specKeys A); eout A (kE m)] = knows A [kE m]”
“[m & specSecrets A; eout A (SE m)] = knows A [sE m]”

O
Proposition 12 If an adversary component A does not know a secret or a key
m € KS, then this component A cannot eventually get m:

VA: —know®(m) = —A"(m)
VA : —knows®((m)) = —=A™((m))

28

The corresponding lemmas in Isabelle:

“—know A (kKS m) — —ine A (kE m)”
“—know A (sKS m) — —ine A (sE m)”
“[-knows A [kE m]] = —ine A (kE m)”
“—knows A [sE m| = —ine A (sE m)”

O

Proposition 13 If an adversary component A does not know a secret m € KS
(or m’ € (Expression\ KSa)*), then this component A cannot eventually output
this secret m:

VA: —know®(m) = —A®U(m)
VA: —knows®(m) = —A%¥(m)

The corresponding lemmas in Isabelle:

“[m & specKeys A; —know A (kKS m)] = —eout A (kE m)”

“[m & specSecrets A; —know A (sKS m)]| = —eout A (SE m)”

“[m & specKeys A; =knows A [kE m]] = —eout A (kE m)”

“[Im & specSecrets A; —knows A [sE m]] = —eout A (sE m)”

0O

Proposition 14 If an adversary component A does not know a secret m € KS
(or m' € (Expression \ KS4)*), than the component P with ia C op cannot
eventually output this secret:

YA:is Cop A—know(m) = —PU(m)

VA:is CopA—knows™(m) = =P (m)

The corresponding lemmas in Isabelle:

“Tout P Cins A; —know A (kKS m)] = —eout P (kE m)”
“lout P Cins A; —know A (sKS m)] = —eout P (sE m)”
“lout P Cins A; —knows A [kE m]] = —eout P (kE m)”
“Tout P Cins A; —knows A [sE m]] = —eout P (SE m)”

O

Theorem 6 For any components P and @ the composition P ® @ has the
following property (m € KS, m ¢ KSp and m & KSg):

know” (m) = know"®?(m)

29

The corresponding lemma in Isabelle:

“[m & specKeysSecrets P; m ¢ specKeysSecrets Q;
know P m; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionKS PQ)]
= know PQ m”
O

Theorem 7 For any components P and @ the composition P ® @ has the
following property (m € KS, m & KSp and m & KSg):

know®(m) = know"®(m)
The corresponding lemma in Isabelle:

“[m & specKeysSecrets P; m ¢ specKeysSecrets Q;
know @ m; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionKS PQ]
= know PQ m”
O

Theorem 8 For any components P and @ the composition P ® @ has the
following property (m € KS, m ¢ KSp and m ¢ KSg):

know" (m) vV know®(m) = know"®?(m)
The corresponding lemma in Isabelle:

“[Im & specKeysSecrets P; m ¢ specKeysSecrets Q;

(know P mV know @ m); subcomponents PQ = {P, Q};

correctCompositionIn PQ; correctCompositionKS PQ)]

= know PQ m”
O

Theorem 9 For any components P and @ the following properties of the com-
position P @ @ (m € KS, m ¢ KSp and m ¢ KSg) hold:

—know” (m) A —know®(m) = —know" ®<(m) (1)

know”® 9 (m) = know" (m) V know®(m) (2)

30

The corresponding lemmas in Isabelle:

“[m & specKeysSecrets P; m ¢ specKeysSecrets Q;
—know P m; —know @ m;
subcomponents PQ = {P, Q}; correctCompositionLoc PQ;
correctCompositionIn PQ; correctCompositionKS PQ)]
= —know PQ m”

“[Im & specKeysSecrets P; m ¢ specKeysSecrets Q;
know PQ m; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionLoc PQ]

= know P mV know Q m”
O

Proposition 15 For any components P and @ the composition P ® @ has the
following properties (e € KS*):

knows” ((m)) = knows"® < ((m)) (1)
knows?((m)) = knows"®?((m)) (2)

The corresponding lemmas in Isabelle:

“[(EKS m) & specKeysSecrets P; (kKS m) & specKeysSecrets Q;
knows P [kE m]; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [kE m]”

“I(sKS m) & specKeysSecrets P; (sKS m) & specKeysSecrets Q;
knows P [sE m]; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [sE m]”

“I(EKS m) & specKeysSecrets P; (kKS m) & specKeysSecrets Q;
knows @ [kE m]; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [kE m]”

31

“I(sKS m) & specKeysSecrets P; (sKS m) & specKeysSecrets Q;
knows @ [sE m]; subcomponents PQ = {P, Q};
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [sE m]”

O

Theorem 10 For any components P and @ the composition P ® @ has the
following property (e € KS):

knows” ((e)) = knows"®?((e)
The corresponding lemmas in Isabelle:

“[kKS a & specKeysSecrets P; kKS a & specKeysSecrets Q;
subcomponents PQ = {P, Q}; knows P [kE al;
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [kE a]”

“[sKS a ¢ specKeysSecrets P; sKS a ¢ specKeysSecrets Q;
subcomponents PQ = {P, Q}; knows P [sE al;
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [sE a]”

“[knows P e; subcomponents PQ = {P, Q};
correctCompositionIn PQ); correctCompositionKS PQ;
V'm. m mem e — ((3z. m =kEz) | (3z. m = sEz));
Va. (kE z) mem e — (kKSz) & specKeysSecrets P;
Vy. (sE y) mem e — (sKSy) & specKeysSecrets P;
V. (kE x) mem e — kKSz & specKeysSecrets Q;
Vy. (sE y) mem e — sKSy & specKeysSecrets Q]

= knows PQ e”

O

Theorem 11 For any components P and @ the composition P ® @ has the
following property (e € KS):

knows® ((e)) = knows"®?((e))

32

The corresponding lemmas in Isabelle:

“[kKS a & specKeysSecrets P; kKSa & specKeysSecrets Q;

subcomponents PQ = {P, Q}; knows Q [kE a;

correctCompositionIn PQ; correctCompositionKS PQ)]
= knows PQ [kE a]”

“[sKS a ¢ specKeysSecrets P; sKS a & specKeysSecrets @Q;
subcomponents PQ = {P, Q}; knows Q [sE al;
correctCompositionIn PQ; correctCompositionKS PQ)]

= knows PQ [sE a]”

“[knows Q e; subcomponents PQ = {P, Q};
correctCompositionIn PQ); correctCompositionKS PQ);
Vm. m mem e — ((3z. m =kEz) | (3z. m = sEz));
Va. (kE z) mem e — (kKSz) & specKeysSecrets P
Vy. (sE y) mem e — (sKSy) & specKeysSecrets P;
V. (kE x) mem e — kKSx & specKeysSecrets Q;
Vy. (sE y) mem e — sKSy & specKeysSecrets Q]

= knows PQ ¢€”

O

Theorem 12 For any components P and @ the composition P ® @ has the
following property (e € KS*):

knows” (¢) V knows“(e) = knows"®?(e))

The corresponding lemma in Isabelle:

“[knows P eV knows Q e; subcomponents PQ = {P, Q};
correctCompositionIn PQ); correctCompositionKS PQ;
Vm. m mem e — ((3z. m =kEz) | (3z. m = sEz));
Va. (kE z) mem e — (kKSz) & specKeysSecrets P;

Vy. (sE y) mem e — (sKSy) & specKeysSecrets P;

V. (kE x) mem e — kKSt & specKeysSecrets Q;
Vy. (sE y) mem e — sKSy & specKeysSecrets Q]

= knows PQ e”

33

Theorem 13 For any components P and @Q the following properties of the
composition P® Q (e € KS*, m € KS, m ¢ KSp and m ¢ KSg) hold:

—knows” ((m)) A —knows?((m)) = —knows"®?((m)) (1)
knows"® @ ((m)) = knows” ((m)) V knows®({m)) (2)

The corresponding lemmas in Isabelle:

“[kKS m & specKeysSecrets P; kKS m ¢ specKeysSecrets Q;
—knows P [kE m]; —knows Q [kE m];
subcomponents PQ = {P, Q}; correctCompositionLoc PQ;
correctCompositionIn PQ; correctCompositionKS PQ)]

= —knows PQ [kE m]”

“[sKS m ¢ specKeysSecrets P; sKS m ¢ specKeysSecrets Q;
—knows P [sE m]; —knows @ [sE m];
subcomponents PQ = {P, Q}; correctCompositionLoc PQ);
correctCompositionIn PQ; correctCompositionKS PQ)]

= —knows PQ [sE m]”

“[kKS a & specKeysSecrets P; kKS a & specKeysSecrets Q;
subcomponents PQ = {P, Q}; knows PQ [kE al;
correctCompositionIn PQ; correctCompositionLoc PQ)]

= knows P [kE a] V knows Q [kE a]”

“[sKS a & specKeysSecrets P; sKS a & specKeysSecrets @Q;
subcomponents PQ = {P, Q}; knows PQ [sE al;
correctCompositionIn PQ; correctCompositionLoc PQ)]

= knows P [sE a]V knows Q [sE a]”

“[subcomponents PQ = {P, Q}; knows PQ lal;

correctCompositionIn PQ; correctCompositionLoc PQ;

(Fz.a=kE z)V (2. a=sE z);

Vz.a=kE z— kKS z & specKeysSecrets P N kKS z & specKeysSecrets Q;

Vz.a=3sE z— sKS z & specKeysSecrets P A sKS z & specKeysSecrets Q]
= knowsP[a] V knowsQ[a]”

34

4 TLS Protocol

To demonstrate usability of our approach, we specified in [SJ08] a variant of the
handshake protocol of TLS! [APS99], which goal is to let a client send a secret
over an untrusted communication link to a server in a way that provides secrecy
and server authentication, by using symmetric session keys. Here we present
the optimized version of the FOCus specifications of the protocol components
as well as their translation to Isabelle/HOL and the corresponding lemmas that
show the most important properties of the protocol.

Let us recall the general idea of the handshake protocol of TLS. The pro-
tocol has two participants, Client and Server, that are connected by an Inter-
net connection. We used the following auxiliary data types: Obj = {C, S},
StateC' = {st0, st1, st2} and StateS = {initS, waitS, sendS1, sendS2} to repre-
sent participants names and states, Fvent = {event} to represent message send-
ing events (e.g. an abort message or an acknowledgment), and InitMessage =
im(ungValue € Secret, key € Keys, msg € Expression) to represent events ini-
tiating the protocol by the client.

— System glass-box —

init: InitMessage >

xchd: Expresion >

. abortC: Event >
Client Server

abortS: Event

TSP Expression

4.1 The Handshake Protocol

Client initiates the protocol by sending the message that contains an unguess-
able value N € Secret, its the public key K¢, and a sequence (C, CKey) of its
name and its public key signed by its secret key CKey~!.

Server checks whether the received public key matches to the second element
of the signed sequence. If that is the case, it returns to the Client the received
unguessable value N, an encryption of a sequence (genKey, N) (signed by its
secret key SKey~!) using the received public key, and a sequence (S, SKey)
(of its name and its public key) signed using the secret key CAKey~! of the
certification authority CA.

ITLS (Transport Layer Security) is the successor of the Internet security protocol SSL
(Secure Sockets Layer).

35

Client checks whether the certificate is actually for S and the correct N is
returned. If that is the case, it sends the secret value secretD encrypted with
the received session key genKey to the Server .

If any of the checks fail, the respective protocol participant stops the execu-
tion of the protocol by sending an abort signal.

Below we present the optimized FOCUS specifications of these components.
In comparison with the specification we shown in [SJ08], the new version is
more readable and uses local variables to allow more clear presentation of the
data exchange sequence.

— Client timed —
in abortS : Event; resp : Expression
out init : InitMessage, xchd : Expression; abortC : Event

local check : StateC'; enc : Keys

ti(init, 0) = (im(N, CKey, Sign(CKey™ !, (C, CKey))))
ti(zchd, 0) = ()
ti(abortC,0) = ()

<
~

EN:
ti(init, t + 1) = ()

ti(abortS, t) # () — ti(abortC,t + 1) = () Ati(zchd, t + 1) = () A check’ = st0

ti(abortS, t) = () Ati(resp, t) = () A check = st0
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check’ = st0

ti(abortS, t) = () Ati(resp, t) # () A check’ = st0
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check’ = stl

ti(abortS, t) = () Ati(resp, t) # () A check = stl A ft.secr = S
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check’ = st2 A enc’ = snd.secr

ti(abortS, t) = () Ati(resp,t) # () A check = st2 Asnd.res = N
— ti(abortC, t + 1) = () Ati(zchd, t + 1) = Enc(ft.res, secretD) A check’ = st0

ti(abortS, t) = () A
((check = st1 A (ti(resp, t) = () V (ti(resp, t) # () Aft.secr # 5))) V
(check = st2 A (ti(resp, t) = () V (ti(resp, t) # () Asnd.res # N))))
— ti(abortC, t 4+ 1) = (event) A

ti(zchd, t +1) = () A

check’ = st0

where
secr = Ext(CAKey, ti(resp, t))
res = Ext(enc, Decr(CKey ™1, ti(resp, t)))

36

Please note that we omit in this FOcus specification of the server (like in the
specification from [SJ08]) all the information how the server deals with the data
it gets via the zchd channel.

— Server timed —
in init : InitMessage; abortC : Event; xchd : Expression
out resp : BExpression; abortS : Event

gar
ti(resp, 0) = ()
ti(abortS, 0) = ()
VteN:

ti(abortC, t) # ()
— stateS’ = initS A ti(resp,t+ 1) = () A ti(abortS,t+ 1) = ()

ti(abortC,t) = () A stateS = waitS
— ti(resp, t +1) = () A stateS’ = waitS A ti(abortS,t+ 1) = ()

— ti(resp, t + 1) = () A stateS’ = initS A ti(abortS,t+ 1) = ()

. ti(abortC, t) = () A stateS = initS A ti(init, t) = ()
B ti(abortC.t) = () A stateS = initS A ti(init, t) # () A
snd. Ext((key (init},), msg(initl))) # key(initl)
— ti(resp, t +1) = () A stateS’ = initS A ti(abortS,t+ 1) = (event)
. ti(abortC, t) = () A stateS = initS A ti(init, t) # () A
snd. Ext((key (init},), msg(initl))) = key(initl)
— ti(resp, t + 1) = (ungValue(init}))
A stateS’ = sendS1 A uValue' = ungValue(initl) A kValue' = key(init],)
A ti(abortS,t + 1) = ()

. ti(abortC,t) = () A stateS = sendS1
— ti(resp, t + 1) = Sign(CAKey ™', (S, SKey))
A stateS’ = sendS2 A uValue' = uValue N kValue' = kValue
A ti(abortS,t + 1) = ()

. ti(abortC,t) = () A stateS = sendS2
— ti(resp, t + 1) = Enc(kValue, Sign(SKey™ ', (genKey, uValue)))
A stateS’ = waitS A ti(abortS,t+ 1) = ()

The corresponding Isabelle/HOL representation of these two components looks
like follows:

37

constdefs

Client_L ::

? Event istream = Expression istream = StateC iustream = Keys iustream =

mnitMessage istream = Expression istream = Event istream = StateC iustream = Keys iustream
= bool”

“Client_L abortS resp check enc init xchd abortC checkNext encNext

(True

—

((init (0 :: nat)) = [(] ungValue = N, key = CKey, imsg = (Sign CKeyP [idE sClient, kE CKey]) |)] A
(zchd (0 :: nat)) =[] A

(abortC (0 :: nat) =[])

N

(V(t :: nat).(

init (Suc t) =[]

N

(abortS t # (]

— (zchd (Suc t) =[]) A (abortC (Suc t) = []) A checkNext ¢t = st0)

A

((abortS t =[]) A (resp t = []) A (check ¢t = st0)

— (zchd (Suc t) = []) A (abortC (Suc t) = []) A checkNext t = st0)

A

((abortS t =1]) A (resp t # []) A (check t = st0)

— (abortC (Suc t) = []) A (zchd (Suc t) = []) A checkNext t = stl)

N

((abortS t = []) A (resp t # []) A check t = st1 A

(hd (Ext CAKey (resp t))) = idE sServer — (zchd (Suc t) = []) A (abortC (Suc t) = [])
A checkNext t = st2

A kE (encNext t) = hd (tl (Ext CAKey (resp t))))

N

((abortS t = []) A (resp t # []) A (check t = st2) A

(sE N = hd (tl (Ext (enc t)(Decr CKeyP (resp t)))))

— (zchd (Suc t) = Enc (Expr2Keys (hd (Ext (enc t)(Decr CKeyP (resp t))))) [sE secretD])
A (abortC (Suc t) = []) A checkNext ¢t = st0)

A

((abortS t = []) A (check t = st1)A

((resp t =)V

((resp t # []) A (hd (Ext CAKey (resp t))) # idE sServer))

— (zchd (Suc t) = []) A (abortC (Suc t) = [event])

AcheckNext t = st0)

N

((abortS t = []) A (check t = st2) A

((resp t =[]V

((resp t #[]) AN (sE N # hd (tl (Ext (enc t) (Decr CKeyP (resp t)))))))

— (xzchd (Suc t) =[]) A (abortC (Suc t) = [event]|) A checkNext t = st0)))))”

constdefs
Client :: “Event istream = Ezpression istream =
initMessage istream = Expression istream = Event istream = bool”

“Client abortS resp init xchd abortC =

(3 check enc.
Client_L abortS resp (fin—inf_append [st0] check) (fin—inf_append [CKey] enc) init zchd abortC check enc)”

38

constdefs

Server_L ::

“InitMessage istream = FEvent istream = Ezpression istream =
StateS tustream = Keys tustream = Secrets iustream =
Ezpression istream = Event istream

= StateS tustream = Keys iustream = Secrels tustream = bool”

“Server_L init abortC xzchd stateS kValue uValue
resp abortS stateSNext kValueNext uValueNext

(msg (1 :: nat) init) A (msg (1 :: nat) zchd)) — (resp (0 :: nat) = ||

>

abortS (0 :: nat) =]

>

(V(t :: nat).(

((abortC t #1])

— stateSNext t = initS A resp (Suc t) =[] A abortS (Suc t) = [])

N

((abortC t =]) A stateS t = waitS

— stateSNext t = waitS A resp (Suc t) = [| A abortS (Suc t) = [])

N

((abortC t = []) A stateS t = initS A init t = |]

— stateSNext t = initS A resp (Suc t) = [| A abortS (Suc t) = [])

A

((abortC t =]) A stateS t = initS A init t # [|A

(Exzpr2Keys (hd (tl (Ext (key (hd (init t))) (imsg (hd (init t))))))) # key (hd (init t))
— stateSNext t = initS A resp (Suc t) = [| A abortS (Suc t) = [event])

N

((abortC t = []) A stateS t = initS A init t # [|A

(Ezpr2Keys (hd (tl (Ext (key (hd (init t))) (imsg (hd (init t))))))) = key (hd (init t))
— stateSNext t = sendS1

A resp (Suc t) = [sE(ungValue(hd(init t)))]

A abortS (Suc t) =]

A uValueNext t = ungValue(hd(init t)) A kValueNext t = key(hd(init t)))

N

((abortC t =]) A stateS t = sendS1

— stateSNext t = sendS2

A resp (Suc t) = Sign CAKeyP [idE sServer, kE SKey)

A abortS (Suc t) =[] A uValueNext t = uValue t A kValueNext t = kValue t)

A

((abortC t =1]) A stateS t = sendS2

— stateSNext t = waitS

A resp (Suc t) = Enc (kValue t) (Sign SKeyP [kE genKey, sE (uValue t)]) A abortS (Suc t) = [])))))”

constdefs

Server ::

“InitMessage istream = Event istream = Expression istream = Expression istream = Event istream
= bool”

“Server init abortC zchd resp abortS

dst k u.

Server_L init abortC zchd
(fin—inf_append [initS] st) (fin—inf_append [SKey| k) (fin—inf_append [N] u)
resp abortS st k u”

39

4.2 Security Analysis

In this section, we use our approach to demonstrate a security flaw in the TLS
variant introduced above, and how to correct it.

Let P = Client ® Server. To show that P does not preserve the secrecy
of secretD, secretD € KS, we need to find an adversary component Adversary
with Tagpersary € Op such that knowsAd”ers‘"y(m) holds with regards to the
composition, and m does not belong to the set of private keys of Adversary or
to the set of unguessable values of Adversary:

3 Adversary : IAdversary - OP A m g KSAdversary N knowsAdversary(m)

As mentioned in [SJ08], the protocol assumes that there is a secure (wrt. in-
tegrity) way for the client to obtain the public key CAKey of the certification
authority, and for the server to obtain a certificate Sign(CAKey™?, (S, SKey))
signed by the certification authority that contains its name and public key.
An adversary may also have access to CAKey, Sign(CAKey=!,(S, SKey)) and
Sign(CAKey=',(Z, ZKey)) for an arbitrary process Z.

— SystemWithAdversary glass-box —
init;: InitMessage > init,: InitMessage >
xchd;: Expresion > xchd,: Expression >
. abortC;: Event abortC,: Event
Client Adversary Server
abortS,: Event | 2DOrtS;: Event
|« eSP: Expression |« "eSP:: Expression

Consider the Focus specification of the component Adversary presented below.
We used in this specification the following auxiliary data type: AdvStates =
{initA, sendAl, sendA2}

Please note that this specification is weak causal: we assume that the ad-
versary does not delay any message. Please also note that the presented here
specification of the adversary component is different from one defined in [SJO8]:
we corrected some mistakes and change the component specification to be more
readable.

The value genKey € Keysis a session key, which is symmetric (i.e. genKey ! =
genKey) and is generated by the server. This implies that

knowsAdversary (

genKey)

40

holds if and only if

Adversm"y(

knows genKey™1)

holds. Thus, if the adversary knows the value of genKey it also knows the value

of genKey™!.

If we trace its knowledge base as its evolves in interaction with the protocol
components, we get that Adversary will know the secret secretD at the time
unit 4. Let us discuss the data flows more precisely, step by step, representing
them by timed tables for the time intervals [0,...,4] (we represent only the
values of the output streams and the local variables of the components).

First of all computations, let us make the auxiliary computations:

ung Value(ft.ti(inity, 0)) =
ungValue(im(N, AKey, Sign(AKey=1,(C, AKey)))) =
N

key(ft.ti(initz,0)) =
key(im(N, AKey, Sign(AKey=*, (C, AKey)))) =
AKey

ft. Ext(CAKey, ti(respa, 2)) =

ft. Ext(CAKey, Sign(CAKey=', (S, SKey))) =
ft.(S, SKey) =

S

snd. Ext(CAKey, ti(resps,2)) =
snd.Ext(CAKey, Sign(CAKey =, (S, SKey))) =
SKey

Ext(SKey, Decr(CKey ™1, ti(respa, 3))) =

Ext(SKey, Decr(CKey~*, Enc(CKey, Sign(SKey~!, (genKey, N))))) =
Ext(SKey, Sign(SKey~*, (genKey, N))) =

(genKey, N)

41

n

— Adversary timed —

abortC1, abortSy : Event; zchdy, resp1 : Expression; init; : InitMessage

out abortCa, abortSs : Fvent; xchda, resps : Expression; inity : InitMessage
local aCKey, aSKey, aKey € Keys; stateA € AdvStates
e mmen) A mmGe)
I 7ga7r 77
VteN

ti(abortCa, t) = ti(abortCy, t)
ti(abortSa, t) = ti(abortSi, t)
ti(inith t) # <> —
aCKey' = key((init1)},) A
ti(inity, t) = (im(ung Value((init1)},), AKey, Sign(AKey~',(C, AKey))))
ti(init1, t) = () — ti(init2,t) = () A aCKey' = aCKey

ti(respr, £) =) —
stateA’ = initA N aSKey' = aSKey A aKey' = aKey A ti(respa,t) = ()

ti(resp1, t) # () A stateA = initA —

stateA’ = sendA1l A aSKey' = aSKey A aKey' = aKey A ti(resp2,t) = ti(resp1, t)

ti(resp1, t) # () A stateA = sendAl —
stateA’ = sendA2 A aSKey' = snd.Ext(CAKey,ti(resp1,t)) A
aKey' = aKey A
ti(respa, t) = ti(resp1, t)

ti(resp1, t) # () A stateA = sendA2 —
stateA’ = initA A aSKey' = aSKey A
aKey = ft.Ext(aSKey, Decr(AKey ™!, ti(resp1, t)))
ti(respa, t) = Enc(aCKey, Decr(AKey ™1, ti(respi, t)))

ti(zchdz, t) = ti(zchdy, t)

Translating the FOcus specifications to Isabelle/HOL according to the method-
ology “Focus on Isabelle” we can prove formally that the security flaw exists.
These proof (together with protocol component specifications and auxiliary lem-
mas) takes 1,5 kloc. In this report we present only the Isabelle/HOL specifi-
cation of the components and the main lemma (without the proof) which says
that the during the 4th time unit the secret data secretD will be send to the
adversary by the Client component and no abort-signal will be produced. For
further details we would like to refer to the Isabelle/HOL-theory Handshake-
Protocol.thy.

42

Client:

t | init ‘ xchdy ‘ abortCy H check ‘ enc ‘

0 | (im(N, CKey, Sign(CKey™*,(C, CKey)))) | () O st0

I (0 (0 st0

214 0 0 stl

31 O O st2 SKey

41 () Enc(genKey, secretD) | () st0 SKey

Server:

t | respr ‘ abortSy H stateS ‘ kValue ‘ u Value ‘

01| () ") initS

1| (N) O sendS1 | AKey | N

2 | Sign(CAKey™,(S, SKey))) sendS2 | AKey | N

3 | Enc(AKey, Sign(SKey™*, (genKey, N))) | () waitS AKey | N

4| () O waitS AKey | N

Adversary:

t ‘ resp2 ‘ inite ‘ zchds ‘ abortCs ‘ abortSs ‘ knows” H

0| (¢ (im(N, AKey, Sign(AKey™1,(C, AKey)))) | () O) CAKey, AKey, AKey™!
N, CKey

L) 0 0 0 0

2 | Sign(CAKey~—1, (S, SKey)) O O O) Sign(CAKey™1,(S, SKey))
SKey

3 | Enc(CKey, Sign(SKey~1, (genKey, N))) | () O O) Sign(SKey =1, (genKey, N))
genKey, genKey™1

4 | () O Enc(genKey, secretD) | ()) Enc(genKey, secretD)
secretD

The Isabelle/HOL specifications of the component Client and Server are pre-
sented in Section 4, in this section we show the Isabelle/HOL specification of
the adversary component and the main lemma itself.

constdefs

Adv_L ::

“Event istream = Fvent istream =

Expression istream = Expression istream = initMessage istream =

Keys iustream = Keys iustream = Keys iustream = AdvStates iustream =
Ewvent istream = FEvent istream =

Ezpression istream = Expression istream = initMessage istream =

Keys iustream = Keys tustream = Keys tustream = AdvStates iustream = bool”

“Adv_L abortC'1 abortS1 zchdl respl initl aCKey_in aSKey_in aKey_in stateA_in
abortC2 abortS2 xchd2 resp2 init2 aCKey_out aSKey_out aKey_out stateA_out

(msg (1 :: nat) initl) A (msg (1 :: nat) zchdl))

ﬁ

(V(t :: nat).(

(abortC2 t = abortC1 t)

A

(abortS2 t = abortS1 t)

A

((init1 t #])

— aCKey_out t = (key (hd (initl t)))

A nit2 t = [(| ungValue = ungValue (hd (initl t)), key = AKey, imsg = (SignAKeyP[idEsClient, kEAKey]) |)])

N

(initl t =]

— aCKey_out t = aCKey_in t A init2 t = [])

A

(respl t =]

— stateA_out t = initA N aSKey_out t = aSKey_in t

A aKey_out t = aKey_in t A resp2 t = [])

N

(respl t # [] A stateA_in ¢t = initA

— stateA_out t = sendA1 N aSKey_out t = aSKey_in t

A aKey_out t = aKey_in t N\ resp2 t = respl t)

A

(respl t # [| A stateA_in t = sendAl

— stateA_out t = sendA2 N\ aSKey_out t = Expr2Keys(hd(tl(ExtCAKey(respl t))))

A aKey_out t = aKey_in t N\ resp2 t = respl t)

N

(respl t # [| A stateA_in t = sendA2

— stateA_out t = initA N\ aSKey_out t = aSKey_in

A aKey_out t = Expr2Keys (hd (Ext (aSKey_in t) (Decr AKeyP (respl t))))

A resp2 t = Enc (aCKey—in t) (Decr AKeyP (respl t)))

A

(zchd2 t = zchdl t))))”

44

constdefs

Adv ::

” Bvent istream = Event istream =

Expression istream = Expression istream = initMessage istream =
Event istream = FEvent istream =

Ezpression istream = Ezxpression istream = initMessage istream = bool”

? Adv abortC'1 abortS1 xzchdl respl initl abortC2 abortS2 xchd2 resp2 init2

3 aCKey aSKey aKey stateA.

Adv_L abortC1 abortS1 zchdl respl initl
(fin—inf _append [AKey] aCKey)
(fin_inf _append [AKey] aSKey)
(fin—inf _append [AKey] aKey)
(fin_inf _append [initA] stateA)
abortC2 abortS2 xchd2 resp2 init2
aCKey aSKey aKey stateA”

lemma test_security_flaw :

7| Client abortS2 resp2 initl zchdl abortC1,
Server init2 abortC2 xchd2 respl abortS1;
Adv abortC1 abortS1 zchdl respl initl abortC2 abortS2 wchd2 resp2 init2 ||
=

abortC1 (4 :: nat) =]

A

zchdl (4 :: nat) = Enc genKey [sE secretD]”

45

4.3 Fixing the Security Weakness

To fix this security weakness (vs. both kinds of adversary), we need to change
the protocol: the client must find out the situation, where an adversary try to
get the secret data. Thus, we need to correct the specification of the server
in such a way that the client will know with which public key the data was
encrypted at the server, and this information must be received by the client
without any possible changes by the adversary.

The only part of the messages from the server which cannot be changed
by the adversary is the result of the signature creation — the adversary does
not know the secret key SKey~! and cannot modify the signature or create a
new one with modified content. Therefore, we add the public key received by
the server to the content (genKey, N) of the signature. If there is not attack,
this will be CKey, in the attack scenario explained above, it would be AKey.
Accordingly, in the Focus specification of the Server, we change the definition
of el to the following one:

Enc(key(initl), Sign(SKey™!, (genKey, ungValue(initl), key(init},))))

Also, correspondingly we add a new conjunct to the condition for the correct
data receipt in the specification of the client:

trd. Ext(snd. Ext(CAKey, respl), Decr(CKey™ !, respl ;) = CKey

We mark these changes yellow in the Focus specifications.

Using the formal approach explained above, one can also go further and
prove that not only the attack described above is not possible anymore, but more
generally there is no other attack by the kind of Dolev-Yao attacker considered
here, which would get access to the secret.

We omit in this report the presentation of the Isabelle/HOL specification of
the corrected components Client and Server, because they have only the minor
changes vs. the specification presented in Section 4 and these changes are clearly
shown in the corresponding FOCUS specifications. Thus, we discuss here only the
main lemma (without the proof) which says that the during the 4th time unit
no secret data secretD will be send to the adversary by the Client component
and the abort-signal will be produced at this time unit. The proof (together
with protocol component specifications and auxiliary lemmas) takes also about
1,5 kloc, but the most number of lemmas is the same as for the uncorrected
version referred above in theory HandshakeProtocol.thy. For further details on
the corrected version of the protocol we would like to refer to the Isabelle/HOL-
theory HandshakeProtocolCorrected.thy.

lemma test_security_flaw :

7| Client abortS2 resp2 initl xchdl abortC1,
Server init2 abortC2 xchd2 respl abortS1;
Adv abortC1 abortS1 xzchdl respl initl abortC2 abortS2 zchd2 resp2 init2 ||
=

abortC1 (4 :: nat) = [event]

A

xzchdl (4 :: nat) = []”

46

Please note that here we actually do not need to argue about the input streams
abortC1 and abortC2 of the component A, because these streams are of type
FEvent, which has no relation with the type Ezpression.

—Client timed —
in abortS : Event; resp : Expression
out init : InitMessage, xchd : Expression; abortC : Event

local check : StateC'; enc : Keys

ti(init, 0) = (im(N, CKey, Sign(CKey ™!, (C, CKey))))
ti(zchd, 0) = ()
ti(abortC,0) = ()

<
~

EN:
ti(init, t + 1) = ()

ti(abortS, t) # () — ti(abortC,t + 1) = () Ati(zchd, t + 1) = () A check’ = st0

ti(abortS, t) = () Ati(resp, t) = () A check = st0
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check’ = st0

ti(abortS, t) = () Ati(resp, t) # () A check’ = st0
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check’ = stl

ti(abortS, t) = () Ati(resp, t) # () A check = stl A ft.secr = S
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check’ = st2 A enc’ = snd.secr

ti(abortS, t) = () Ati(resp, t) # () A check = st2 Asnd.res = N A trd.res = CKey
— ti(abortC, t + 1) = () Ati(zchd, t + 1) = Enc(ft.res, secretD) A check’ = st0

ti(abortS, t) = () A
((check = st1 A (ti(resp, t) = () V (ti(resp, t) # () Aft.secr # 5))) V
(check = st2 A (ti(resp,t) = () V (ti(resp, t) # () Asnd.res # N V trd.res = CKey))))
— ti(abortC, t + 1) = (event) A
ti(zchd, t +1) = () A
check’ = st0

where
secr = Ext(CAKey,ti(resp, t))
res = Ext(enc, Decr(CKey ', ti(resp, t)))

47

— Server timed —
in init : InitMessage; abortC : Event; xzchd : Expression

out resp : Expression; abortS : Event

local stateS € StateS; kValue € Keys; uValue € Secret

ti(resp, 0) = {)
ti(abortS, 0) = ()

VteN:
ti(abortC, t) # ()
— stateS’ = initS A ti(resp,t +1) = () A ti(abortS,t+1) = ()

ti(abortC,t) = () A stateS = waitS
— ti(resp,t + 1) = () A ti(abortS,t+ 1) = () A stateS’ = waitS

— ti(resp, t + 1) = () A stateS’ = initS

. ti(abortC, t) = () A stateS = initS Ati(init, t) = ()
. ti(abortC, t) = () A stateS = initS A ti(init, t) # () A
snd. Ext ((key (init},), msg(initl))) # key(initl)
— ti(resp,t + 1) = () A stateS’ = initS A ti(abortS,t+ 1) = (event)
. ti(abortC,t) = () A stateS = initS A ti(init,t) # () A
snd. Ext ((key (init},), msg(initl))) = key(initl)
— ti(resp, t + 1) = (ung Value(init!))
A stateS’ = sendS1 A uValue' = ungValue(initl) A kValue' = key(initf,)
A ti(abortS,t + 1) = ()

. ti(abortC,t) = () A stateS = sendS1
— ti(resp, t + 1) = Sign(CAKey ™1, (S, SKey))
A stateS’ = sendS2 A uValue’ = uValue A kValue' = kValue
A ti(abortS, t + 1) = ()

. ti(abortC,t) = () A stateS = sendS2
— ti(resp, t + 1) = Enc(kValue, Sign(SKey*l7 (genKey, kValue, uValue)))
A stateS’ = waitS A ti(abortS,t+ 1) = ()

Now, if we trace the knowledge base of the adversary Adversary considered
above, the secret is not leaked, the transmission will be aborted by the client:
see the communication history for the time intervals [0,...,4].

48

Client:

t ‘ inity ‘ xchdy ‘ abortCy H check ‘ enc ‘

0 | (im(N, CKey, Sign(CKey™*,(C, CKey)))) | () () st0

10 0 o st0

214 0 9 stl

31 O () st2 SKey

4| ()) (event) || stO SKey

Server:

t | respr ‘ abortSy H stateS ‘ kValue ‘ u Value ‘

0| () () initS

1| (N) () sendS1 | AKey | N

2 | Sign(CAKey™*, (S, SKey)) O sendS2 | AKey | N

3 | Enc(AKey, Sign(SKey™', (genKey, AKey, N))) | () waitS AKey | N

4| () () waitS AKey | N

Adversary:

t ‘ respa ‘ inity ‘ zchdy ‘ abortCa ‘ abortSs ‘ knows” H

0| () (im(N, AKey, Sign(AKey™1,(C, AKey)))) | ()) O CAKey, AKey, AKey~!
N, CKey

L) 0 0 0 0

2 | Sign(CAKey™1, (S, SKey))) O) O Sign(CAKey™1, (S, SKey))
SKey

3 | Enc(CKey, Sign(SKey~—!, (genKey, AKey, N))) | () O) O Sign(SKey ™!, (genKey, AKey, N))
genKey, genKey—1

410 () (event) | () ()

4.4 Open Question

The protocol assumes that there is a secure (wrt. integrity) way for the client to
obtain the public key CAKey of the certification authority, and for the server
to obtain a certificate Sign(CAKey ™', (S, SKey)) signed by the certification au-
thority that contains its name and public key. If these properties does not hold,
i.e. if an adversary can obtain the key CAKey~!, the protocol cannot guaran-
tee the security properties anymore. For this case is also not really important
whether the value genKey € Keys is symmetric or not, an adversary can dead
also with an asymmetric key (i.e. with the keys genKey™! # genKey).

If the adversary knows CAKey ™!, it can replace the server key SKey on the
time interval 2 by its own key AKey: the value of ti(resps,2) will be now not

Sign(CAKey™1, (S, SKey))
but
Sign(CAKey=1, (S, AKey)).

At the next step the adversary will output also a different (vs. the first version
of the adversary specification) message. The adversary will use AKey~! and
genKeyA (own session key) to generate Sign(AKey~!,(genKeyA, N)) instead
to resend the Sign(SKey~!,(genKey, N)) to the client component. Thus, the
value of ti(resps, 3) will be now not

Enc(CKey, Sign(SKey~*, (genKey, N)))
but
Enc(CKey, Sign(AKey ™!, (genKeyA, N))).

This implies also that the client component will save the AKey as the server
key.

If we trace its knowledge base as its evolves in interaction with the protocol
components, we get that also this version of an Adversary component will know
the secret secretD at the time unit 4 also if we use the extended versions of the
client and server components.

50

— Adversary timed —
in abortC1, abortSy : Event; zchdy, resp1 : Expression; init; : InitMessage

out abortCa, abortSs : Fvent; xchda, resps : Expression; inity : InitMessage

local aCKey, aSKey, aKey € Keys; aN, aSecret € Secret;
stateA € AdvStates

. ti(abortCa, t) = ti(abortCh, t)
. ti(abortSa, t) = ti(abortSy, t)
Bl tiGnit,) £ —
aCKey' = key((init1)f,) A
ti(initz, t) = (im(ungValue((init1)}), AKey, Sign(AKey =1, (C, AKey))))

ti(eniti, t) = () — ti(inite,t) = () A aCKey’ = aCKey

ti(resp1,t) = () —
stateA’ = initA N aSKey' = aSKey A aKey' = aKey A ti(resp2,t) = ()

ti(respi, t) # () A stateA = initA —
stateA’ = sendA1l A aSKey' = aSKey A aKey' = aKey A ti(respz2,t) = ti(respi,t)

ti(respi, t) # () A stateA = sendAl —
stateA’ = sendA2 A aSKey' = snd.Ext(CAKey, ti(resp1,t)) A
aKey' = aKey A
ti(respe, t) = Sign(CAKey™!, (ft. Bxt(CAKey, ti(resp1, t)), AKey))

ti(respi, t) # () A stateA = sendA2 —
stateA’ = initA A aSKey' = aSKey A
aKey = ft. Ext(aSKey, Decr(AKey ™1, ti(resp1, t)))
ti(respa, t) = Enc(aCKey, Sign(AKey ™1, (genKeyA, aCKey, aN)))

. ti(zchdy, t) = () — aSecret’ = aSecret A ti(zchdz, t) = ()

EO ti(ochdi, t) # () —
aSecret’ = Decr(genKeyA~1 ti(zchdy, t)) Ati(zchdz, t) = Enc(aKey, aSecret’)

o1

Client:

t | inity ‘ zchdy ‘ abortCh H check ‘ enc ‘

0 | (im(N, CKey, Sign(CKey™*,(C, CKey)))) | () () st0

I (0 0 st0

210 0 () stl

31 O () st2 AKey

41 () Enc(genKeyA, secretD) | () st0 AKey

Server:

t | respr ‘ abortSy H stateS ‘ kValue ‘ uValue ‘

01| () () initS

1| (N)) sendS1 | AKey | N

2 | Sign(CAKey™,(S, SKey))) sendS2 | AKey | N

3 | Enc(AKey, Sign(SKey ™!, (genKey, AKey, N))) | () waits AKey N

4| ()) waitsS AKey | N

Adversary:

t ‘ resp2 ‘ inito ‘ xchds ‘ abortCo ‘ abortSs ‘ knows* H

0| () (im(N, AKey, Sign(AKey™1,(C, AKey)))) | ()) O CAKey, CAKey™1,
AKey, AKey™?!
genKeyA, genKeyA~1', N, CKey

L (V) 0 QO O 0

2 | Sign(CAKey~1,(S, AKey)) O)) O Sign(CAKey™1,(S, SKey))
SKey

3 | Enc(CKey, Sign(AKey™1!, 0 O O) Sign(SKey~1, (genKey, AKey, N))

(genKeyA, CKey, N))) genKey
4 | () O Enc(genKey, secretD) | () O Enc(genKeyA, secretD), secretD

5 Secure Channels

We sketch how one can formally develop a secure communication channel based
on the crypto protocol verification approach explained in the previous section.

The components ChC' and ChS are specified on the base of the fixed speci-
fications of the simple client and server components (see Section 4.2). Here we
are not interested in the detailed functionality of the components ExternalClient
and ExternalServer, we just consider abstractions of two components where the
component ErternalClient sends some data to the component ExternalServer.

If the ExternalClient receives the message d at the time unit ¢, there is no
communication problem, and it sends messages only from the second time unit
after ¢, then the EzternalServer gets this data at the time unit t+2+delay, where
delay is a communication delay dependent on the communication medium, and
the two time units delay arises from using the secure channels. We specify here
a system with optimized (vs. the version from [SJ08]) secure channel compo-
nents in FOCUS as a composed component ChSystem and additionally present
for both components, ChC and ChS, the corresponding timed table.

— ChSystem glass-box —
ExternalClient ExternalServer
A A
okC: Event dataC: Expression dataS: Expression
init;: InitMessage > init,: InitMessage >
xchd;: Expresion > xchd,: Expression >
abortC;: Event > abortC,: Event >
ChC A ChS
abortS,: Event abortS;: Event
| o T€SP2: Expression -« "ESP1: Expression

]

—ChC timed —
in abortS : Event; dataC,resp : Expression

out init : InitMessage, xchd : Expression; abortC, okC : Event

local check € {0,1,2,3}; buffer € Expression*; enc € Keys

init check = 0; buffer = ()

gar
ti(init, 0) = (im(N, CKey, Sign(CKey ™1, (C, CKey))))
ti(zchd, 0) = ()
ti(abortC,0) = ()
ti(okC,0) = ()

VteN:

ti(init, t + 1) = ()

ti(abortS, t) # ()
— ti(abortC,t + 1) = () Ati(zchd, t + 1) = () A check’ = 0 Ati(okC,t+ 1) = ()

ti(abortS, t) = () Ati(resp,t) = () A check =0
— ti(abortC, t + 1) = () Ati(zchd, t) = () A check! = 0 Ati(okC,t + 1) = ()

— ti(abortC, t + 1) = () Ati(zchd, t) = () A check! =1 Ati(okC,t + 1) = ()

. ti(abortS, t) = () Ati(resp, t) # () A check =0
. ti(abortS, t) = () Ati(resp,t) # () A check = 1 A ft.secr = S
— ti(abortC,t + 1) = () Ati(zchd, t) = () A check! =2 A enc’ = snd.secr Ati(okC,t + 1) = ()
- ti(abortS, t) = () Ati(resp, t) # () A check =2 Asnd.res = N A trd.res = CKey
— ti(abortC,t+ 1) = () A
ti(zchd, t + 1) = Enc(ft.res, secretD) A
check’ = 3 Ati(okC,t+1) = () A enc’ = enc

- ti(abortS, t) = A
((check = 1 A (ti(resp, t) = () V (ti(resp, t) # () A ft.secr £ 5))) V
(check = 2 A (ti(resp, t) = () V (ti(resp, t) # () A (snd.res # N V trd.res = CKey)))))
— ti(abortC, ¢t + 1) = (event) A
ti(zchd, t + 1) = () A check’ = 0 Ati(okC,t + 1) = ()

ti(abortS, t) = () A check = 3 A buffer = () Ati(dataC,t) = ()
— ti(abortC,t+1) = () A
ti(zchd, t + 1) = () A check’ = 3 Ati(okC,t + 1) = () A buffer’ = ()

ti(abortS, t) = () A check = 3 A buffer = () Ati(dataC,t) # ()
— ti(abortC,t+1) = () A
ti(zchd, t + 1) = Enc(enc, ti(dataC, t)) A
check’ = 3 Ati(okC,t + 1) = (event) A buffer’ = ()

- ti(abortS, t) = () A\ check = 3 A buffer # ()
— ti(abortC,t+1) = () A
ti(zchd, t + 1) = Enc(enc, ft.buffer) A
check’ = 3 Ati(okC,t + 1) = (event) A buffer’ = rt.buffer ~ti(dataC, t)

check = 3 — enc’ = enc
check # 3 — buffer’ = buffer ~ti(dataC,t)
where

secr = Ext(CAKey, ti(resp, t))
res = Ext(enc, Decr(CKey ™1, ti(resp, t)))

—ChS timed —
in it : InitMessage; abortC : Event; xchd : Expression

out dataS, resp : Expression; abortS : Event

local stateS € StateS; kValue € Keys; uValue € Secret

gar
ti(resp,0) = ()
ti(abortS,0) = ()
ti(datasS, 0) = ()
VteN:

B ctiaborto, 1) #)
— stateS’ = nitS A ti(resp,t +1) = () A ti(abortS,t+1) = () A
ti(dataS,t +1) = ()

. ti(abortC,t) = () A stateS = waitS A ti(zchd, t) = ()
— stateS’ = waitS Ati(resp,t +1) = () A ti(abortS,t+1) = () A
ti(dataS,t + 1) = ()

. ti(abortC,t) = () A stateS = waitS A ti(zchd,t) # ()
— stateS’ = waitS Ati(resp,t +1) = () A ti(abortS,t+1) = () A
ti(dataS,t + 1) = Decr(genKey ™1, ti(zchd, t))

. ti(abortC, t) = () A stateS = initS A ti(init, t) = ()
— stateS’ = nitS Ati(resp, t + 1) = () Ati(abortS,t +1) = () A
ti(dataS,t + 1) = ()

. ti(abortC,t) = () A stateS = nitS A ti(init, t) # () A
snd. Ext((key(init},), msg(init}))) # key(init})
— ti(resp,t +1) = () A stateS’ = initS A ti(abortS,t + 1) = (event) A
ti(dataS,t 4+ 1) = ()

. ti(abortC,t) = () A stateS = nitS A ti(init, t) # () A
snd. Ext((key (init},), msg(init}))) = key(init})
— ti(resp, t + 1) = (ungValue(init}))
A stateS’ = sendS1 A uValue’ = ungValue(init}) A kValue' = key(init},)
A ti(abortS,t + 1) = () Ati(dataS,t + 1) = ()

- ti(abortC,t) = () A stateS = sendS1
— ti(resp, t + 1) = Sign(CAKey ™1, (S, SKey))
A stateS’ = sendS2 A uValue’ = uValue A kValue' = kValue
A ti(abortS,t + 1) = () Ati(dataS,t+ 1) = ()

- ti(abortC,t) = () A stateS = sendS2
— ti(resp, t + 1) = Enc(kValue, Sign(SKey ™1, (genKey, kValue, uValue)))
A stateS’ = waitS A ti(abortS,t+ 1) = () Ati(dataS,t+ 1) = ()

timed —

abortS : Event; dataC, resp : Expression
init : InitMessage, zchd : Expression; abortC, okC : Event

Vite

check € {0,1,2,3}; buffer € Ezxpression™; enc € Keys

check = 0; buffer = ()

ti(init, 0) = (im(N, CKey, Sign(CKey ™1, (C, CKey))))
ti(zchd, 0) = ()

ti(abortC,0) = ()

ti(okC,0) = ()

N:

ti(init, t + 1) = ()

tiTable ChClientTable

—ChS timed —
in it : InitMessage; abortC : Event; xchd : Expression
out dataS, resp : Expression; abortS : Event
local stateS € StateS; kValue € Keys; uValue € Secret
init stateS = initS
asm msgy (init) A msg; (zchd)
gar

ti(resp, 0) = ()

ti(abortS,0) = ()

ti(datasS, 0) = ()
tiTable ChServerTable

96

tiTable ChClientTable (univ a : Fvent*; r,x : Expression™): YVt € N

‘ abortS ‘ resp ‘ dataC H xchd’ ‘ abortC’ | okC’ H check’ | enc’ buffer’ H Assumption
1 |a z () () () 0 enc buffer ~x a# ()
2 1 () x () () () 0 enc buffer ~ x check =0
310 r x () () () 1 enc buffer ~ x check =0, r # ()
4 | r x) ") () 2 snd.secr | buffer ~x check =1, r # (), ft.secr = S
5 1 () r z () (event) | () 0 enc buffer ~x check =1, r = () V ft.secr = S
6 | () T x Enc(ft.res, secretD) | () () 3 enc buffer ~ x check =2, r # ()
snd.res = N, trd.res = CKey
700 r x () (event) | () 0 enc buffer ~ x check = 2,
r = () Vsnd.res # N V trd.res = CKey
0 o 1o 0 0 enc |0 check = 3, buffer = {
() x Enc(enc, x) () (event) enc) check = 3, buffer = (), z # ()
10 | () x Enc(enc, ft.buffer) | () (event) enc rt.buffer ~xz || check = 3, buffer # ()
where

secr = Ext(CAKey, ti(resp, t))

res = Ext(enc, Decr(CKey ™!, ti(resp, t)))

tiTable ChServerTable (univ a : Event™*; z : Ezpression™; i : InitMessage): ¥Vt € N

‘ init ‘ abortC ‘ xchd H dataS’ ‘ resp’ ‘ abortS’ || stateS’ | kValue' | uValue' H Assumption
1 a v () () initS a#)
2 | anit | () () () () () waitS stateS = waitS
3 | it | () z Decr(genKey™1,z) | () () waitS stateS = waitS, © # ()
41 () () () () () initS stateS = initS
510 | () () (event) || initS stateS = initS
snd. Ext({key(i), msg(i))) # key(i)
61 () | §) (ungValue(i)) () sendS1 | key(i) | ungValue(i) || stateS = initS
snd. Ext({key(i), msg(i))) = key(i)
7 | nit | () xzchd || () Sign(CAKey1, (S, SKey)) O sendS2 | kValue | uValue stateS = sendS1
8 | it | () xzchd || () Enc(kValue,
Sign(SKey~*,
(genKey, kValue, uValue))) | {) waitS | kValue | uValue stateS = sendS2

6 Conclusions

We presented in this report an optimized an refined methodology to specify
cryptographic protocols and their composition properties in a formal way using
the specification framework Focus. Having such a formal representation, one
can argue about the protocol properties as well as the composition properties
of different cryptographic protocols in a methodological way using the theorem
prover Isabelle/HOL and the the approach “Focus on Isabelle” .

As a running example, a variant of the Internet security protocol TLS is
presented. We analyzed the version of the protocol published in [SJ08], refined
the Focus specification to be more readable and demonstrated a security flaw
in this version using the extended approach and table representation as well has
proved the existence of the flaw formally, using Isabelle/HOL.

We also used the extended approach to harden the protocol in a formal way,
and showed how to construct a new version of the secure channel on the basis
of the corrected formal specification of the protocol. The formal proof that the
discussed flaw no more exist in this corrected version of the protocol was done
also in Isabelle/HOL.

On the base of these protocol we specified secure channels that adopt the
main protocol properties.

References

[APS99] V. Apostolopoulos, V. Peris, and D. Saha. Transport layer secu-
rity: How much does it really cost? In In Conference on Computer
Communications (IEEE Infocom), pages 717-725. IEEE Computer
Society, 1999.

[Bro97] M. Broy. Compositional refinement of interactive systems. J. ACM,
44(6):850-891, 1997.

[Bro98] Manfred Broy. Compositional refinement of interactive systems mod-
elled by relations. COMPOS’97: Revised Lectures from the Interna-
tional Symposium on Compositionality: The Significant Difference,
pages 130-149, 1998.

[Bro05] Manfred Broy. Service-oriented systems engineering: Specification
and design of services and layered architectures. The JANUS Ap-
proach. pages 47-81, July 2005.

[BSO01] M. Broy and K. Stglen. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer,
2001.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory, IT-29(12):198—
208, March 1983.

99

[NPWO02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof

[SJ08]

[Spi07]

[Spilla]

[Spillb]

Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

M. Spichkova and J. Jiirjens. Formal Specification of Cryptographic
Protocols and Their Composition Properties: FOCUS-oriented ap-
proach. Technical report, Technische Universitdt Miinchen, 2008.

M. Spichkova. Specification and Seamless Verification of Embedded
Real-Time Systems: FOCUS on Isabelle. PhD thesis, Technische Uni-
versitat Miinchen, 2007.

M. Spichkova. Focus on processes. Technical Report TUM-I1115,
Technische Universitat Miinchen, 2011.

M. Spichkova. User Guide for the FOCUS representation in La-
TeX. Technical Report TUM-11119, Technische Universitat Miinchen,
2011.

60

