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In this paper we consider a continuous-time autoregressive moving average (CARMA)
process (¥;);cr driven by a symmetric a-stable Lévy process with a € (0,2] sampled at
a high-frequency time-grid {0, A,, 2A,, ..., nA,}, where the observation grid gets finer and
the last observation tends to infinity as n — oo. We investigate the normalized periodogram
I, ya, (@) = ln=1/®Y" | ¥ia, e 2. Under suitable conditions on A, we show the conver-

gence of the finite-dimensional distribution of both A,Zfz/ a[lm van (1AL, - L ya, (@A)

for (@i, ..., ®y) € (R\{0})™ and of self-normalized versions of it to functions of stable distri-
butions. The limit distributions differ depending on whether wy, ..., @, are linearly dependent
or independent over Z. For the proofs we require methods from the geometry of numbers.
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1 Introduction

Continuous-time ARMA (CARMA) processes are the continuous-time versions of the well known ARMA
processes in discrete time having short memory. The advantage of continuous-time modelling is that it
allows handling of irregularly spaced time series and in particular of high-frequency data often appearing
in turbulence and finance. In this paper we consider a CARMA process Y = (¥;),cg driven by a symmetric
o-stable Lévy process (L;);cr. Before we start with its definition, we recall that a real-valued random
variable X is called symmetric o-stable (SauS) with index of stability « € (0, 2], if its characteristic function
is of the form
Py (z) =Elexp{izX}] =exp{—0%|2|*}, z€R,

for some ¢ > 0, and a real random vector X = (Xi, ..., Xd)T is SaS, if all linear combinations
Zflzl a; X;, (a1, ...,ad)T € R? are Sa.S; see the monograph of Samorodnitsky and Taqqu [33] for details
on stable distributions. Then a symmetric a-stable Lévy process (L;);cR is a stochastic process with Ly =0
almost surely, independent and stationary increments which are SaS distributed with characteristic function

@, (z) = Elexp{izL}] =exp{—|t|of [2[*}, z1€R,
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for some o7, > 0 and almost surely cadlag sample paths (cf. the book of Sato [34] on Lévy processes). A
symmetric a-stable CARMA process is then defined as follows. Let (L;);cr be a symmetric ¢¢-stable Lévy

process. Assume that we have given p, g € N, p>gq,and ay, ..., ap, co, ..., cq €R, ap,, co # 0, set
0 1 o ... 0
0 0 1
A= . RP*P
: 0 <
0 0 0 1
—ap —dp-1 ... ... —a

and let (X;),cg be a strictly stationary solution to the stochastic differential equation
dX; = AX;dt +e,dL;, t€R, (1.1a)
where ¢, denotes the p-th unit vector in R”. Then the process
Y, :=c'X,, teR, (1.1b)

with ¢ = (¢g, €41, -+, ¢q—p+1)" (wWhere we use the convention ¢; = 0 for j < 0) is said to be a symmetric
o-stable CARMA process of order (p, q). Necessary and sufficient conditions for the existence of a strictly
stationary CARMA process are given in [11]. A CARMA process can be interpreted as a solution to the
formal p-th order stochastic differential equation

a(D)Y; =c(D)DL,, tE€R,
where D denotes the differential operator with respect to ¢ and
a(z) = 4+ai? ' +.. . +a, and c(2)i=cod +e ey

are the autoregressive and the moving average polynomial, respectively. Hence, Sa&S CARMA processes
can be seen as the continuous-time analog of SaS (discrete-time) ARMA processes. The representation
(T.T) of a CARMA process is the controller canonical state space representation going back to [[7]. Alter-
natively there exists also the observer canonical form of a CARMA process (see (2.8)) below) as derived in
[28] for multivariate CARMA models. For an overview and a comprehensive list of references on CARMA
processes we refer to [8, [12]. CARMA processes are important for stochastic modelling in many areas of
application as, e.g., signal processing and control (cf. [19, 27]), econometrics (cf. [3} 30]), high-frequency
financial econometrics (cf. [38]]) and financial mathematics (cf. [2]]). Stable CARMA processes are partic-
ularly relevant in modelling energy markets (cf. [1} [18]).

The aim of this paper is to investigate the sampled sequence Y2 := (Y;a)scz of a causal (i.e., current
values of the process only depend on past values of the driving process) stable CARMA process, meaning
we only observe the underlying CARMA process (¥;);cr at equidistant time points 0, A, 2A, ... with A >0
small as used for modelling high-frequency data (cf. [10, |15]), and to study the asymptotic behavior of the
sampled process Y in the frequency domain. In the time domain the autocovariance function
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with ¢ (0) = 265 Jo e‘YAepegeSA ds, gives information about the dependence structure, whereas in the fre-
quency domain the spectral density

_ s g, _ OF |c(io)[?
fY(w)_ELwW(h)e dh_? |(,l(l(l))|27 (DER, (13)

gives information about the periodicities of the CARMA process. Both the spectral density and the autoco-



variance function exist only for o = 2. The spectral density of the sampled process Y2 is

fa(w) = Ek A

—=—o00

Y wtaeto=1 Y 5 (2T aco<r, )
fA—

where the second equality follows from [6l p. 206]. It is related to fy by
i ]l T T = .
lim Afa(@A) 1z 5(0) = fr(0), ©€R, (1.5)

(see p.[12|for a proof). Loosely spoken, this means that in the limit A — 0 we can identify every CARMA
process from its equidistantly sampled observations. The question arises whether this is also true if we
study the empirical version of the spectral density, the periodogram. We investigate normalized and self-
normalized versions. The normalized periodogram of Y at frequency @ € [, 7] is given by

n )
I, ya(0) = ‘nil/a Y YkAe”wk‘ .
' k=1

Equation (1.5) suggests that we obtain a non-trivial limit by studying the behavior of the properly rescaled
periodogram [, ya of the sampled CARMA process at point @A. More precisely, we will show that the
finite-dimensional distribution of the periodogram A2~2/® (L ya(@A), ..., I, ya(@nA)] for (o, ..., ©y) €
(R\{0})™ converges weakly to a function of stable distributions, if simultaneously the grid distance A goes
to 0 with a suitable rate and the number of observations n goes to infinity (see Theorem [2.6). A small grid
distance and a huge number of observations reflect the behavior of high-frequency data. A consequence
of this is the fact that the normalized periodogram is not a consistent estimator of the so-called power
transfer function |c(i-)|?/|a(i-)|>. Moreover, if (L;);cr is a Brownian motion then the limit distribution
has independent components. In contrast, if (L;),cr is a SaS-stable Lévy process with o € (0,2) then the
components are dependent. In both cases the limit distributions differ depending on whether @y, ..., @,, are
linearly dependent or independent over Z. However, the one-dimensional distributions do not depend on ®.
Our result is comparable to Brockwell and Davis [9, Chapter 10.3] for the finite variance and Kliippelberg
and Mikosch [23| Theorem 2.4] for the stable case, respectively, of an ARMA process in discrete time;

although the ¢t-stable limit distributions are different in the discrete-time and the continuous-time model.
Since the normalized periodogram depends on o, which is in general an unknown parameter, we also

analyze different normalizations. So-called self-normalized periodogram versions are given by
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and L, ya (o) VN7 ,
k=1YiA

having the obvious benefit that they only depend on the data and not on the index of stability c. Again
the finite-dimensional distributions of I, ya(A-) converge to functions of stable distributions and do not
provide consistent estimators (cf. Theorem . The limit distribution has similar properties as for the
normalized periodogram. The second version [, ya has to be rescaled with A as in (T.3) to derive a limit
result (see Theorem [2.TT)). Our conclusions for the self-normalized periodogram are in analogy to those for
ARMA models in discrete time obtained by Kliippelberg and Mikosch [24].

The paper is structured in the following way. We start with our main results in Section 2] The discrete-
time sampled CARMA process Y has a representation as an MA process in discrete time where the
noise sequence is p-dependent. In Section [2.1] we investigate this moving average structure in detail. Then
the asymptotic behavior of the normalized and the self-normalized periodogram is topic of Sections 2.2
and @ Finally, in Section E] we derive results for the characterization of the limit distributions of the
normalized and the self-normalized periodogram versions. These are based on the geometry of numbers
and on manifolds. The proofs of the results are presented in Section 4]

—rn<w<m, (1.6)

n



Notation

We use N* and R* for the natural and real numbers, respectively, excluding zero and Z for the integers.

For the minimum of two real numbers a, b € R we write shortly a A b and for the maximum a V b. The real

and imaginary part of a complex number z € C is written as R(z) and 3(z), respectively, and its complex

conjugate as Z. For two sequences (a,),en and (by,),en We say a, ~ b, as n — oo if lim,,_wa, /b, = 1. The

transpose of a matrix M is written as M” and the m-dimensional identity matrix shall be denoted by I,,,.
For a subset S C N and k € N we set

<i> — (BCS: |B|=k}.

The orthogonal complement of S C R” is denoted by S-.

On K € {R,C} the Euclidean norm is denoted by | - | whereas on K™ it will be usually written as || - ||.
A scalar product on a linear space is written as (-, - ); in R™ and C™, we usually take the Euclidean one.
If X and Y are normed linear spaces, let B(X,Y) be the set of bounded linear operators from X into Y. On
B(X,Y) we will usually use the operator norm which, in the case of ¥ being a Banach space, turns B(X,Y)
itself into a Banach space. In particular we always equip B(K™,K") with the corresponding operator norm
if not stated otherwise.

For two random variables X and ¥ the notation X Z Y means equality in distribution. If we consider a
sequence of random variables (X,),cn, we denote convergence in probability to some random variable X

P o
by X, — X as n — oo and convergence in distribution by X, Z X as n — oo.

2 Main Results

Before stating the main results, we establish the moving average structure of the sampled sequence together
with two auxiliary lemmata.

2.1 Moving average structure of the sampled process
The aim of this section is to better understand the structure of the discrete-time sampled process Y. Let
At,..., Ay denote the eigenvalues of A. By defining the filter &*(B) :=[T}_, (1 - ¢*B) where, as usual, B

denotes the backward shift operator and applying it to the sampled sequence Y2, we obtain (cf. [11, Lemma
2.1]), for any k € Z,

~ p
Zin =" B)Y =Y Zi iy 2.0
r=1
where
kA r—1 )
Z A ::/ cT(— ZCD?eUIJ)AA)e(kA“')AedeS, r=1,...,p, (2.2a)
’ (k—1)A =
and ' ;
= (—1)7 Yy Anibin  j=0,1,...,p. (2.2b)
)
It is easy to see that we can rewrite the filter as ®*(z) = ]'If:1 (1 —ehid z) =- Zf:() CIDj‘- 7/ for any z € C.
In this paper we will suppose that the eigenvalues A1, ..., A, of A have strictly negative real parts (see

Assumption |I| below). Under this assumption we observe that ®*(z) # 0 for all |z| < 1 and thus deduce,
forany [z] <1,

WA (Z) := (PA(2)) ! = ) ‘P? 7 with ‘I—‘JA- = ) ML=t Anin  j e N,
Jj=0 s Jp€f0,1,.., j}
):.,[1‘1:] Jm=]



We can hence rewrite eq. (2.1)) as N
=VA(B)Za, keEZ, (2.3)

showing that the sampled CARMA process ¥ A is a (discrete-time) moving average process of the noise
sequence Z2 := (Zk A)kez. A challenge is that Z” is not an i.i.d. sequence; it is p-dependent. For this

reason we define, for any k € Z, o € Rand m € {1, ..., p}, the auxiliary (random) functions
= P . p r—1 _
Zk,A((D) — Z Z}:-’Ae—t(u(r—l) and fA — Z —io(r-1) (_ Z cp;‘. e(r—l—j)Aﬂ,m>. (2.4)
r=1 r=1 Jj=0

In contrast to Z* we have now that EA( (Z A)kez(®) is an i.i.d. sequence, and the idea is to rewrite

®) =
the periodogram essentially by means of Z2(®). Then the next auxiliary lemma holds.
Lemma 2.1.

(i) Under the assumption that the eigenvalues A1, ..., A, of A are distinct, we have, for any A >0, r €
{1,....,p},k€Zands € R,

r—1 P r—1
T A (r—1 (kA—s)A c(An) A (r=1=))AA \ o (kKA—5)Am
(=R et et e, - 3 SR (T el Jlta o
Jj= m)

m=1 j=0

(ii) We have, for any A € C,
1 /A
X/ e 9% —1]|%ds =0 asA—0.
0

(iii) Assume that the eigenvalues A1, ..., A, of A possess non-vanishing real parts. We then have, for any
me{l,...,p}and any ® € R,

(m) p—1 - 1

WA) ~ A (0] A— 0.

fa (@A) ali )ia)—lm @

(iv) Assume that the eigenvalues Ay, ..., A, of A are distinct and possess non-vanishing real parts. Then

we have, for any ® € R,

i c(Am) 1 c(io)
— a'(Ay) i0— ’
By virtue of Lemma[2.1{i), eqs. (2.24) and (2.4) we obtain that

. kA p o, ~ kA
(Zia) oy (@) = ( /( » ; :,((Aﬁ)) £ (@) e KA dLS) = ( /( R0 dLS) . 2.5)

k— ke k—1)A

is an i.i.d. sequence of complex So.S random variables since g(Ak)w : R — C is complex-valued. Recall that

integration of complex-valued deterministic functions with respect to a SaS Lévy process is well defined as
a limit in probability for all functions in L*(C) := {f : R — C measurable, [ |f(x)|* dx < e} (for further
details, see [33l Section 3.4 and Section 6.2]). The characteristic function of the stable integral ngdL is
given by

exp{zzl/‘ﬁ ))dLy +1z2/3 s}] :exp{ GL/|21% ) +223(g(x))|*dx

(2.6)
for any z;, zo € R (cf. [33] Example 6.1.5 and Proposition 6.2.1 (i)]) such that (R ([ gdL), 3 ([ gdL)) is
Sos.

Finally, we require the following conclusions for (‘PJA) jen for the proofs of our results.




Lemma 2.2. Suppose A = A, — 0 as n — o and that the eigenvalues Ay, ..., A, of A possess strictly
negative real parts. Then we have:

(i) There is a constant C(p) > 0 such that

A)l
)

<C(p) A;(pil)eA”lm“Xj VjieN where Amax := k glax }%(lk) € (—o0,0).
el,...,p

(ii) Ian,llJ“S 'y oo for some & > 0, then we have

o0 —_n—1 o
Y w0 and - Z (Z \l}%) "=0.

Jj=n+1 k=—co \ j=1
oo — an oo
(iii) If nA, "= oo, then Aﬁ‘”n’lzli:ffn( | ) 0.
(iv) Ianff(”*”“*“ "5 oo, then
A% —1 nA(—k) A a N
" " n—yeo
Ay ( y |l ) =0,
k=2—p—n \ j=1V(2—p—k)
{ete] a (o]
(v) IFnA%P ™D "5 oo then Agn’122:27p< e ) "2,

2.2 Normalized periodogram

Before we formulate the main limit results for the normalized and the self-normalized periodogram, we
introduce a random vector that will show up in the limits.
Letm € N*, @, ..., @, € R* and set @ = (@, ..., )" . We define the (2m + 1)-dimensional (stable)

random vector ((S; EK( ), ij\( ))jef1,...my> Smr1(@)) viaits joint characteristic function

[exp{ (Ze SER +VJSS( )+TSm+l(@)> }] =exp{—gg.[(9(g7 v, T)}, Q,XGRm,TER,

(2.7a)
with K (8, v, ) given as follows:
(i) If o, ..., @, are linearly independent over Z (i.e. there is no h € Z™, h # 0, such that (h, @) = 0),
then
a
Ko(6, Vv, 7) :/ )+ vsin@ax) 41| i xm). (2.7b)
= [0, 1)m
(i) If @y, ..., @, are linearly dependent over Z, then there is an s € {1, ..., m — 1} such that

m o
Z 0jcos (2mx;) + v;sin (27x;) +t| A" (x1, ..., xm), (2.7¢)

Jj=1

K@(Qv Y, T) = W ///[

where # = # (®;, ..., ®y) is the (m — s)-dimensional linear manifold in [0, 1)™ defined in eq. (3.2)
below and ™ * is the (m — s)-dimensional Lebesgue (Hausdorff) measure on .Z (@, ..., ) (for
a definition of manifolds, see, e.g., [29, pp. 200-201]).

We start to investigate the normalized periodogram in analogy to [9, 23]. Since we use Lemmata [2.1]
and [2.2) for the proofs of the asymptotic behavior of the normalized periodogram we require

Assumption 1. The eigenvalues A1, ..., A, of A are distinct and possess strictly negative real parts.



Moreover, we establish our limit results for the different periodogram versions in the asymptotic framework
of high-frequency data within a long time interval using Lemma[2.2] Thus we need

Assumption 2. There is some 6 > 0 such that, with B = max{1+ 96, a(p—1) +max{0, l —a}}, we have
A=A, —>OwhereasnAE — 00 ds N — oo,

Remark 2.3.

(i) Note that in the case of a symmetric a-stable Ornstein-Uhlenbeck process (i.e. p = 1), Assumption 2]
becomes A, — 0 and nAL+9 — o0 as n — oo for some § > 0 and does not depend on a.

(i) Conversely, if p > 2, the convergence rate of A, depends on «. However, one easily verifies that
B <2p—1 is always true and thus, if A, — 0 and nAg,pfl — o0 as n — oo hold, Assumption 2| is
satisfied as well. O

The following is an analog result to the discrete-time ones [9, Theorem 10.3.1] and [23} Proposition 2.1],
respectively.

Proposition 2.4. Let A= A, and Y*" = (Y, )kez, be the sampled SoS CARMA process. Under Assump-
tionthe periodogram I, s, satisfies, for any € [—7, 7],

2

Ly (@) = [¥9(e7) "1, 5, (@) + Ry a, ()

with Z% = (Zk,An)keZ as given in eq. lb If in addition Assumptionholds, then we have for any @ € R*

_2
lim P(Aﬁ @Ry a, (0A)] > s) =0 foreverye >0.

n—soo

This shows that we have to study the limit behavior of the periodogram of Z™ in order to get insight into
the asymptotic properties of I, ya,. The next theorem provides the key result therefore. Note that in terms

of the discrete Fourier transform of ZAn,

n
J Fhn ((D) = l’lil/a Z Zk,A,, eilwk7 —rn<w<m,
k=1

n’7

we can write I, 7, (@) = |/, 71, (®) .

Theorem 2.5. If Assumption|l|holds, A = A,, — 0 and nA,Lva(p N soasn— oo, then we have, for any
meN* and @ = (o, ..., 0,)" € (R*)™,

W ion, 3 (Fo-ate)],, o

j=1,...m j=1,...m

The joint characteristic function of the 2m-dimensional stable random vector (S;'K((g)7 S JS ((g))/ e(1,m} is
given in eq. (2.77) (with T =0). '
Combining now Proposition 2.4]and Theorem [2.5]together with the fact that

2

|‘PA” (e~ 1" ~ A 2P |a(io)| 72 as i — oo,

where the latter can be easily derived from the definition of W2 together with the convergence of A, to 0,
we deduce the following main result for the limit behavior of the normalized periodogram.

Theorem 2.6. Suppose a € (0,2] and let Y = (Yia, )xez denote the sampled So.S CARMA(p, q) process.
IfAssumptionsandhold, then I, ya, satisfies for anym € N* and @ = (@i, ..., )" € (R*)™

K>

A ()] 2 ['C(’“’fﬂz (I3 @)]*+ [55(@)]2)] asn — oo,



where the stable random vector (S;'K(gv)), S?(@))

) has joint characteristic function as given in

je{l,...,m
eq. 2.7) (witht=0).
Remark 2.7.
(1) We highlight two important differences of our limit result to the one in [23] for ARMA models

(i)

(iii)

(iv)

)

in discrete time. First, in our paper we do not have to distinguish between rational and irrational
multiples of 27 in the frequency vector @ as it has been the case in discrete time (see, e.g., [23}
Theorem 2.4]). The reason therefore is our asymptotic framework A, — 0 as n — oo which yields that
in the proof of Proposition[3.4]the crucial eq. holds for any i € Z™, h # 0, whereas with A, :== A
constant and one frequency component being a rational multiple of 27, @33) could not hold for all
h € Z™, h # 0. Secondly, the same equation explains why in our framework the limit distributions
differ depending on whether or not the frequencies @y, ..., @, are linearly dependent over Z (cf.
eq. (2.7)). In discrete time they depend on whether or not 27, @y, ..., @, (with @y, ..., @, being
irrational multiples of 27) are linearly dependent over Z (see again [23, Theorem 2.4]). Note that the
latter is also the reason why the manifold .Z (i, ..., ®,) in (3.2) is different from the manifold that
appears in the discrete-time result.

Moreover, for linearly independent @y, ..., @, the distribution of (S/EK(@), S?(Q))je{l,“.,m} does not
depend on @ anymore. In the dependent case, @ determines the manifold, and hence, has an influence

on the limit distribution. The sequence of random variables (S;K (w),S JS (®)) jeq1,...,my is independent
in the case o@ = 2, whereas for o@ < 2 it is dependent; in particular for m = 1 and @ = @ € R*, the

random variables S¥ (@) and S7 (@) are dependent.
Investigating the special case m = 1, Theorem [2.6] gives for any @ € R*

- 5 [clio)P? o I
Ay “ In,YAn(wAn) - |a(i(1))|2 : /[0 1)ezmdes

as n — oo, Hence, the limit distribution factorizes in a parametric factor depending on @ (the so-
called power transfer function) and a random factor, which does not depend on @ anymore. The limit
distribution coincides with the limit distribution of the normalized periodogram of ARMA models if
 is an irrational multiple of 27.

Let o¢ = 2. Then with @ € R* as n — o,

9 N2 N2 17
An In7yA,, ((DAn) 2) 2717fy((1)) (21 + 22) £ Zyrfy(a))E7

where Ny and N, are i.i.d. standard normal random variables and E is a standard exponential random
variable. This limit result is the empirical counterpart to (I.5) with scaling factor A, and in analogy

to the results for ARMA models (cf. [9, Theorem 10.3.2]). It confirms, that A, ImyAn (wA,) is not a
consistent estimator for the spectral density.

For any heR", (Sjm (hgv))7 S? (hg))je{l,m} 2 (S;X(Q)? S]‘S(Q))je{l,...,m}v such that as n — oo,

o], 5 [ (@ )

= |a(iho;)|? j=1,...m
On the other hand, if wy,..., ®,, are linearly independent over Z, then there exists an 4 € R with s+
@y, ..., h+ o, linearly dependent over Z such that the limit distributions (Sjm(gg), S ;3 (@) jeq1,...m}

and (S]ER (hl+w),S jS (hl+®)) jeq1,...,m) are different. Consequently, there is no general result how a
frequency shift influences the limit distribution. O

Remark 2.8. We conjecture that Assumption [2]is in this formulation not a necessary assumption for The-
orem [2.6| However, it seems to be (close to) necessary for Proposition [2.4] but Proposition 2.4] is not
necessary for Theorem 2.6 O



2.3 Self-normalized periodogram

Next we derive the limit behavior of the self-normalized periodogram I ya and 1 v, Tespectively, as
given in (1.6), which is comparable to those in [24, Section 3] for ARMA processes. As in the normalized
case they converge to functions of stable distributions as the following two theorems show.

First, we have to state some notation. The observer canonical form of a CARMA process (cf. [28]) is
given under Assumption [I]by the stationary and causal multivariate Ornstein-Uhlenbeck process

1
V, = / e!=4BdL,, 1€R, (2.8a)

where the vector § = (Bi,...,B,)" € R? is defined recursively by
p—1-j
Bp*jzi Z ain7j7i+Cq7j7 J:Oalv"'vpilv
i=1

(with the convention ¢; = 0 for j < 0). Then
Yi=elV;, teR, (2.8b)

where e; = (1,0, ...,0)7 € R”. Hence, every Sa.S CARMA process can also be written as a Lévy-driven
moving average process Y; = [ g(t —s)dL;, r € R, with kernel function

g(t) = el e B i) (). (2.9)

The following proposition is crucial for the asymptotic behavior of the different self-normalized peri-
odogram versions.

Proposition 2.9. Assume o € (0,2] and let Y = (Y, )rez, denote the sampled SaS CARMA(p, q) process.
Moreover, define AL(kA,) := Ly, —Lk—1)a, for k € Z, n € N*. Suppose Assumption A, — 0and nA, —
oo as n — oo hold. Then

; n oo . n — 1
(i) T Yia, = 5-08(i0n) - iy AL(A,) +0p (8, ()¢ ) asn— o

. o . _ 2
(i) Yp_, Yszn = j:OgQ(]An) I AL(KA,)* +op (An L(nAy) or) asn— oo,
The main limit results are then:

Theorem 2.10. Suppose o € (0, 2] and let Y2 = (Yya, )kez denote the sampled So.S CARMA(p, q) process.
The self-normalized periodogram I yM isasin (T6). 1If Assumptlonsland Ihold and in addition c; # 0,

then we have for any m € N* and @ = (o, ..., 0y)" € (R*)™, asn — oo,
~ i0;)|? S¥ @ )] —&-[SS( )}
PO R N 1 ;
{In,Y n(w] )]/ Lom — (f g( ) s)2. |a(i(x)j)|2 Sm+1 w) . ,ma

where g is the kernel function of the CARMA process as given in eq. (2.9) and the (2m + 1)-dimensional
stable random vector ((S%( o) SS((D))]E{LW e Sm+1(®)) has jomt characterlstlc function given by

10
eq. (2.7).
Theorem 2.11. Suppose o € (0, 2] and let Y™ = (Yya, ez denote the sampled So.S CARMA(p, q) process.

The self-normalized periodogram I yan Is as in (T6). If Assumptions I and @ hold, then we have for any
meN* and = (@, ..., 0n)" € (R*)", asn — oo,

A |1, A :
" [”’YA" (@; ")} 2(s)ds-|a(io;)|? s? ’

i1
/ j=1,..m

o[ lelio)? [T
- lfow (



where g is again the kernel function of the CARMA process as given in eq. (2.9), the (2m)-dimensional
stable random vector (S;"R(CNO), SJ:‘ (Q>)je{1,...,m} has joint characteristic function as given in eq. (2.7) (with
T =0) and S? is a positive o,/2-stable random variable.

Remark 2.12.

(i) Theorems and show that also the self-normalized periodogram versions do not yield con-
sistent estimators for the (normalized) power transfer function. However, based on that paper we will
show in [16] that applying a smoothing filter to the self-normalized periodogram gives such a con-
sistent estimate. Since the model parameters influence the power transfer function and, causality and
invertibility of the CARMA process preconditioned, the latter uniquely determines those parameters,
it is possible to use that consistent estimator of the normalized power transfer function for statistical
inference on the CARMA parameters.

(i) We have not specified explicitly the joint characteristic function of the random vector that determines
the limit in Theorem However, it is uniquely identifiable from the calculated Laplace transform
in eq. (4.31)). Note that the limit distributions in Theorems and are not the same.

(iii) Moreover, we have to multiply (j;l’yAn (@jAn)) jeq1,...,my in Theorem by A, to obtain an asymp-
totic limit result. This normalization is not necessary for (leyyA" (®jAn)) jeqt,...,my in Theorem
Observing the rescaling with A, seems to be natural in some way. The point is that with Propo-
sition[2.91 we have for the different normalizations

2
An(Th_ 1 Yia)® (MET08(80)" (51, aLka,))? Lop() 3 U8 L}
Y YA, MY 08 Ei AL(KAZ T Jy g(s)?ds  [L,L];

as n — oo, where ([L, L],);>¢ is the quadratic variation process of (L;);>o. For this reason A, appears
in Theorem 2.11] O

3 Lattices in R and the manifolds .7 (w,,...,®,)

In this section we recall some basic facts about lattices in R” and use them to construct the manifolds
M (o1, ..., @) in eq. (2.7c). For more details concerning the theory of lattices we refer the reader to
[14]20].

Definition 3.1 (Lattice). For S C R™ let span”(S) and span® (S), respectively, denote the integer and linear
hull of S. For any linearly independent vectors by, ..., by € R™ the additive subgroup of R™

L =L (by,...,bg) :=span”({by, ..., bs})
is said to be a lattice and by, ..., by is called a basis of Z. The dimension of the lattice .Z is given by
dim(.Z) := dim (span®(.)) = d.
We call a subset S in R"” discrete if S has no accumulation point in R™. It is a classical result that

discreteness characterizes lattices among additive subgroups in R".

Theorem 3.2 (cf. [20], § 3.2). A subset S C R™ is a lattice if and only if it is a discrete, additive subgroup
of R™. In either case the dimension of the lattice is equal to the maximal number of linearly independent
vectors in S.

Suppose that we have given @i, ..., @, € R* which are linearly dependent over Z. Let @ =
(@1, ...,0,)" = 27n. Note that all lattices as well as the manifolds .# (@, ..., ®,) in this paper de-
pend on the frequency vector @ and 7, respectively. We neglect, however, that dependency for ease of

notation. We define N
Z:={n Hnzm

10



Then .Z constitutes a discrete, additive subgroup of R™ and since the maximal possible number of linearly
independent vectors in . is m — 1, we apply Theorem and obtain an s € {1, ..., m— 1} and a basis
bm—si1, ..., by € Z™ of the lattice .Z. Now

L= 2tnz" (3.1

is a discrete, additive subgroup in R™ as well and hence, again due to Theorem [3.2] it is a lattice generated
by abasis by, ..., b,_s € Z™. That the dimension of . is indeed m — s (i.e. the maximal possible dimension
of the orthogonal complement of .£’) can be seen from the following fact: let
br7;175+1
H = : 6 ZSXW[
b

and note that there has to be an s X s-block with non-vanishing determinant. W.l.0.g. this block is given
by the first s columns of H, denoted by H!*/. We can solve, for any j € {s+1, ..., m}, the linear systems
Hblx; = —h; where h; is the j-th column of H and obtain, using Cramer’s rule, solutions x; € Q° with
common denominator det (H [S]) € 7. Hence, the vectors

Xj
' 0
yj = det (HM) A e ez, el m),
0
with e; being the j-th unit vector in R™, are linearly independent and Hv; =0 forall j € {s+1,...,m}.

This shows that v; € {by—st1, ..., b}t NZM" = £ forany j€ {s+1,...,m}, and hence, the dimension
of the lattice .Z has to be m — s as claimed above. Let

Bi=(b1 by ... by_)ez™m

and
m—s
T:(Rmodl1)"™ — (Rmod1)™, x=(x1,...,Xu_s) + Bxmod 1= Z xjb; | mod 1,
j=1

where the mod-operator has to be applied componentwise. We then define
A =T ((Rmod1)"*), (3.2)
the Gram matrix G := B’ B and the set of functions on .#
T = {f,, M ST fy= ) 0T oG oT ! foranh e .z}. (3.3)

7 is well-defined due to the injectivity of T (see the proof of the upcoming Theorem [3.3(i)). Moreover, it
can be shown that all the functions in .7 are continuous (mod 1) on .# . The following theorem holds.

Theorem 3.3.
(i) A is an (m— s)-dimensional C'-manifold in [0,1)™.

(ii) Let g € R™™ be the coordinates of 1 in the basis B, i.e. 1 = BlL. Then (z, H> %0 forall z € 7™,
z#0.

11



(iii) For any f;, € T withh € £, h # 0, we have

l m-—s _
m ///[ Ju(x) " (dx) =0,

where "5 is the (m — s)-dimensional Lebesgue measure on M .
(iv) Foranyx,y € M, x %y, there is an h € £ such that f,(x) # fu(y)-

Since (R mod1)™ and (R mod1)™* are compact Hausdorff spaces, one immediately obtains that also
M is a compact Hausdorff space. Note that the subalgebra span®(.7) of the algebra C(.#) of all contin-
uous complex-valued functions on .# contains the constant function 1 (take 7 = 0). Moreover, spanc(y )
is closed under complex conjugation and separates points (see Theorem [3.3(iv)). Applying the Stone-
Weierstra Theorem (cf. [32, p. 122] or [33] p. 161]), this yields that span®(.7) is dense in C(.#) with
respect to the topology of uniform convergence.

An application of Theorem as given in the next proposition characterizes the limit distributions of
the normalized and the first version of the self-normalized periodogram, respectively, by random vectors
with characteristic functions as given in (2.7).

Proposition 3.4.
Suppose A = A, — 0 and nA, — o as n — . Moreover, define for any z1,z» € R the functionZ;, ,, :C =R
by B;, 2, (x) =21 R(x) + 22 3(x). Then, foranym e N*, o, ..., 0, €R* and 0,y € R,

[04

lim lniiﬂ i Zg. v, (ef"wf'A"kc(ia)-)> =Koy ((Eg V.(c(iar))) , (E_V. 9.(c(ia)<))> ,0) ,
noen S| TN / e Vi 177 ) et om} 720 17 ) et om) ’

where Ky is given by eqs. l) and 1) respectively.
For wy, ..., @, linearly independent over Z a similar result was derived in [25} Corollary 4].

Finally, we shall require Proposition from below for the limit result of the second version of the
self-normalized periodogram. The proof of this proposition is based on Theorem [3.3]as well.

Proposition 3.5. Suppose A=A, — 0 and nA, — o« as n — . Let m € N*, @y,..., @, € R* and write
o= (0,...,0n) =22(N1,...,Nm)T = 2%n. Moreover, suppose that (Ny)ren+ are i.i.d. standard normal
random variables.

(i) If w,...,®y, are linearly independent over Z, we assume that we have given a random variable U,
uniformly distributed on [0,1)™ and independent of (Ni)renv, and a function f: (Rmod1)™ x R — R
such that E[f>(U, N1)] < o0 and g®) (x) := E[f*(x, N)], k = 1,2, is continuous on (R mod 1)".

(ii) If w,...,®, are linearly dependent over Z, we assume that we have given a random variable V,
uniformly distributed on [0,1)"~* and independent of (Ni)ren+, and a function f: # x R — R such
that B[f>(U, N1)] < o and g™ (x) := E[f*(x, N1)], k = 1,2, is continuous on .4, where U :=T(V)
and T is the parametrization of M .

Then in either case
n

% Y f(kAam mod 1, Ny) S E[f(U, )] asn— oo, (3.4)
k=1

4 Proofs

4.1 Proofs of Section[1]

Proof of Equation (1.5).
Fix an arbitrary @ € R and assume that A is sufficiently small such that ®A € [—x, 7]. Then

A & . 1 >° .
Afa(on) & o X wlkayehor L o (A ¥ elittemon)y o). @.1)
S [
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For any € > 0, there exist an Ny € N and Ag > 0 such that

H/ A G—iho g A y e\k|AAefzkwAH

k=—o0
No . ;
< [l lane | [ ertetoan—a. ¥ dtmener|ia ¥ e
|k|>No —No k|<|No/A] |k|>|No/A]+1
< E | Y agino gy A kA1 g—ikoa || € 4.2)
=3 7Noe e Z € € 3 .

[k|<|No/A]

for all 0 < A < Ag. The second addend on the right-hand side converges to 0 as A — 0 (Riemann sums!), i.e.
there is a A; > 0 such that (@.2) is less or equal to € for any A < A;. Hence, the right-hand side of eq. {.I)
converges, as A — 0, to

Lor( [T jna e L 7 ma —iho 15, 3

—c e"e Y dhn }/X(O)c:—/ c'e"y(0)ce " dh = fy ().

2n (/700 ) 27 J oo e —
0!

4.2 Proofs of Section 2.1
Proof of Lemma @ (i) By virtue of [4} Proposition 11.2.1] we have, for any 7 € R,

1

tA 1.1z

e’ = — 1,—A e'“d
Zni/(zl’ ) 2

where p is a simple closed curve in the complex plane enclosing the spectrum of A. Moreover, from [13|
Lemma 3.1] we immediately obtain

(@, —A) e, = =%

for any z € C\{A4, ..., 4,}. Hence,

r—1 r—1
o ( ~Y o e(r—l—j)AA>e(kA—s)Aep . (1 / (2l — A)~lelr—1-Daz+(ka=s)z dz) ey
=0 j=0 p

__ i ot L / (@) (1 pactka—s)z g,
p

) 27i Jp a(z)
_ i c(Am) _ ril @A o(r—1-1)An | o (KA=5)20n
e d (Am) P j )

where the last equality follows from the Residue Formula (see, e.g., [26, Chapter VI, Theorem 1.2 and
Lemma 1.3] or [17, Theorem II1.6.3 and Remark II1.6.4]) and the fact that the eigenvalues A1, ..., A, of A
are supposed to be distinct.

(ii) We obviously have

1 A 1 A
- (A=)A _ 1|%q. _ — SA 1@
A/O le 1 ds—A/O et —1]%ds

a A
< ZX/ e cos (s3(A)) — 1| * + [e M sin (s3 (1)) | “ds.
0
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Due to the Mean Value Theorem there exists an €(A) € [0,A] such that
1 /A .
K/o T M cos (s3(1)) — 1|* ds = [ef@F M cos (e(A) (1)) — 1% 4.3)

Since £(A) — 0 as A — 0, we immediately obtain that the right-hand side of {#3) converges to 0 as A — 0.
Likewise we deduce that

A
%/ leFHsin (s3(4))|“ds -0 asA—0
0

and hence, (ii) follows.
(iii) By virtue of eq. (2.2b) we have, forany r € {1, ..., p},

r—1
— Y @l 1k
Jj=0

= e DA @b _ (M @ _ (M pd P

(_1)2 . e(rfl)Alm o e(r72)Alm . (_1)2 . Z eA/’l,-l _ e(r73)A7L,,, @% L q)A

= (—1)*. (=30 Z Ay thy) () Z QAL A

== (=1L y AL A (4.4)

and hence, due to eq. (24),

(m) _ 3 —ioA(r—1) _r_l A L (r—1—])AA, @IFI _1) e ioAr AL 4
I (wA)_Ze ZCIDje = Z( 1)'e Z e Ls=1"Mis
r=1 J=0 r=0 {il,...,ir}e({l’“"’rp}\{m})

_ Z (_l)r Z eA():.::I )Lix—ia)r)

r J
=) 5 Y= Y (Z/l,»s—ia)r> +o(APY)  asA—0. (4.5)
=0/ =0 {il-’-.wir}E({l,...,rp}\{m}> s=1

Now, since the eigenvalues of A are also the zeros of the autoregressive polynomial a(z), we observe that
in order to show Lemma [2.1{iii) it remains to prove the following
ifj=0,1,...,p—2,

. 0
p—1 r J
Y (-1 ) (Zli,.—iwr) =9 (p=- [l (i@=2) ifj=p—1.
r=0 {il,“.‘,i,}e({l ..... rp}\{m}) s=1 s

S

Nl
EJUR

(4.6)
If p = 1, one immediately verifies that (.6) holds since both sides are equal to 1. Hence, we assume
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p > 1 in the following.
For j = 0, due to the Binomial Theorem, the left-hand side of is equal to

T (")) =t -o

r=0

For j € {l1,..., p— 1} we obtain

¥ iy y (izk —iwr)j Yy L (iw‘ _iw))j

O (i) T e (i)

—1 j p—1—(—1) p—1—(t=2)—k;  p—1—(—(-D))-E\ky , . .
I S Y p—1—1 I\ (J—k

k=1 k=1 ki—1=1

; =2 . t
X e X (] 75":' kh) (Ay — i)/ it [T, — i)t
=1 up, ..., ur€{1,...,pH\{m} s=2
up<up<...<uy
i p—1—(—1) p—1—(—2)—k —2-Y' %k . . . _
B YR S R (A TG B 21
=1 k=1 k=1 ko =1 ky k2 ki1
VI T oy Ny (P11
X Y (A, — i) Ei=t 0 [T (A, — i)1- Y (= 1) e ) @D
uy, .. €{1,...,p\{m} §s=2 r=1
up<up<...<uy

Since <’;> =0foralln € Nand j <0, we get

il (") - "y ey G B G RRC

= r—t
[0 ift=1,....,p—2,
T (=Dl ifr=p—1,

where we used again the Binomial Theorem. Consequently, for any j € {1, ..., p—2}, the right-hand side
of (4.7) vanishes, whereas for j = p — 1 it becomes

(-1 (”Il> (”Iz> (f) gw—im —(p-1)- ;now—xs),

which completes the proof of eq. (4.6) and hence, (iii) is shown.

(iv) Itis a simple consequence of Liouville’s Theorem (see, for instance, [26, Chapter III, Theorem 7.5])

that any rational function f(z) = % with deg(g) < deg(p) can be written as

“w

f@) =hezz M) +...+he(z M)

where Ay, ..., A, are the distinct zeros of p(z) and hy(z; A,,) is the principal part of the Laurent series
expansion of f at the point A,,.

Again, the eigenvalues of A are also the zeros of the autoregressive polynomial a(z). Consequently, we
can apply the above result to the rational function ¢(z)/a(z) (note that deg(a) = p > g = deg(c)) and obtain

c(z)

@ = hC/ll(Z; l])+ .. .+hc/a(z; A«p)
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Since A1, ..., A, are distinct, every A,,, m € {1, ..., p},is a pole of order 1 of the rational function c¢/a. In
this case, it is well known (see, e.g., [26} p. 174]) that the principal part of the Laurent series expansion of
¢/a at the point A,, reduces to

c(Am) 1
a(An) 72— A
Since Ay, ..., A, are supposed to have non-vanishing real parts, we have a(i®) # 0 for any @ € R. Hence,
Lemma [2.1[iv) holds for any w € R. O

Proof of Lemma (1) This statement follows easily by induction over p from the definition of the ‘P?".
(ii) We deduce from (i) that '

I o (n+1)Ap Amax
n —(p—1 nAmaxj — —(p-1¢€
L |#rsca™) B et —c)a o0
j=n+1 Jj=n+1 —¢€
C An<lmax M),/l o
—M(—me” Palte ) e, 4.8)
ax

since A, — 0 and nA}+9 — oo as 1 — oo,
If 0 < ¢ < 1, we have (cf. also [23| Proof of Proposition 2.1])

Aafnl n—k A a o Ao
L (X lerl) s ¥ ey

k=—o0 j=n+2

and analogously to (4.8) it can be shown that the right-hand side converges to 0 as n — co. Otherwise, if

1<a<?2, weset ‘P” = ‘I‘jA.” / Z‘;’:n ) ]‘P;‘»" and obtain
A% —n 1 n—k A o oo a Aoc —n—1 n—k a
n n
FE(E ) -(Zper) FE(F )
k=—co \ j=1—k j=n+2 k=—o0 \ j=1—k
o0 a—1 o
<( 5 )" e 3 e
j=n+2 J=n+2
due to eq. (4.8).
(iii) We use again (i) to derive
A;?p 1-p ( n A C(p)aAa n n A\ @ C(p)aAa n Ak
pon ) S n ( ebn max]) S n ea nAmax
n k:;n j£k| J | n kgl j;k n(lfeAna'max)a kgl
cpear 1 C(p)* 1

—0

n (1 —edtnn )@ T—e@hnn ~ (“Ang)® —Chmaxnd,

as n — oo, since we suppose nA, — oo,
(iv) We have, once again due to (i),

ATy Y % AR e T A J
_n yo < yhn + Ny
" kzzg""</=1v(§ip—k)| ! ) " k;l</zl‘ ! ) k=§:_l(j=k§—p| J )
A a n+p—2
<" (P—2)-(p— D)+ (C(p)- (p—1)-A;PT)* - Y enman(ki2-p)
k=p—1
A ap e |
< (=2 (= D™+ (Cp) - (p=1)- 8,7 ]
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where the first summand obviously vanishes as n — co. The second term is asymptotically equivalent to

Cp)-p—1)* 1

. AL —0

as n — oo by assumption.
(v) Itis once more (i) that gives

T (Er) <0 (L

-1 1
(—Amax)* nASC(p_1>

a(p-1)

as n — oo, since we assume that nA,

A% AP\
<(p—1)=".C(p)* |
) <0 @)QGMM

—0

—» o0 as n —» oo, O

4.3 Proofs of Section 2.2]

Since the proof of Proposition [2.4]is based on Theorem [2.3] we prove first Theorem [2.5]and then Proposi-
tion[2.4] For the proof of Theorem [2.5] we need the following additional result:

Proposition 4.1. If Assumptionholds, A=A, — 0 and nAy P oasn— oo, then, for any @ € R,
n,

1,
J, ZAn(a)A,,):J,S%Zn(wAn)+0P(Ag+p 1) asn — o

with J,(fin(a)An) = Vgt P 7 o (0A) e 7K and (Z p, Vrez as given in eq. li
Proof. We first observe that

no_ ' n » .
Tz (@Bn) =010 Y 7y, €O EDpvey ( )y Z/};rJrl,An) e
r=1

k=1 k=1

n A(n+1—k)
—ale Y Z 7} e @SN — 0 (@A) + 2L (08) +IA (@A) (49)
k=2—p r=1v(2—k)
with
1 0 p '
Jﬁvin(wAn) = n_l/(x Z Z Z/;An e—za)A,,(k+r_1),
k=2—p r=2—k
n—p+1 p 717+1 ‘ )
J,E?in(wAn) =l Y R e VB * Y O Z s (0A,)  and
3 n n+l—k
Jr(z.in(wAn) =n /e Z Z Z[ 4 —i@Ay (k+r—1)
’ k=n—p+2 r=

Moreover, we define, for any z1,z> € R, the function &, ;, : C = R, &, ., (x) :=z1 R(x) + 22 3(x). Then
we have, due to eq. (2.2a) and Lemma 2.1]i),

0 X )4 . kA, r—1 )

/e o i0Mk y i@ (r—1) / 7 ( Y Y e(rl])A,,A) e(kA,,fs)Aep dL,

J
k=2-p r=2—k (k=1)An Jj=0

_ i efia)A,,ki C/((}):m)) i eiwA,l(rl)<_rzch;A_ne(rlj)An)Lm> /kAn ——
—1 9 m j=0 (

k=2—p m r=2—k k—1)A,
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—n e i /kA" eiomk e (o qr (4.10)
An, WA, S .
k:zfp (k_l)An

where, for any @ € R and A > 0,

—1
m2 k)(w) (kA—s) A andfm2 k Z e—zwAr 1) (rz (I);Ae(r—l—j)Alm>.
=0

r=2—k

1-p—1/a

Hence, the joint characteristic function of the complex Sa.S random variable A, ( ) ((DA ) is given

by (cf. 2.6))

" 1 0 kA,
[} 71,22) = €XpR —O] + ———— /
J,(z,'l,,( 122) P L nALTer=1) k:;IJ (k=1)Ay

_ —iwA, k
=21,22 (e ok CA(n?wAn (s))

o
dsy, z1,22€R.

With the same arguments as in eqs. (4.4) and (#.5)) we further obtain, as n — oo,

£ i ( _1>+O(An) @.11)

2—k
and hence, (m;2—k)

ciently large. Thus,

1 0 ki —_ ioAk #(k) ) (‘Z 1 | |ZZ| 0 Kl
—_— ) e 19 s ds < /
nArI,+a<p_1) k——;—p‘/(k—l)An e ( AmwAn( ) B 1+(x ;

o
a P
< (po (LD (s Jelin)
nA, p m=1 |a ()Lm)|
and the right-hand side converges to 0 as n — oo, since we suppose nAy (p=1)

Jr(l,lgn(a)An) =op (Arll/aﬂ’*l) as n — oo.

Likewise we obtain Jr(fin (0A,) =op (A,l,/ otp _1) as n — oo which completes the proof of Proposition

(a)An)| <2, lforanyme {l1,...,p}andk=2—p,3—p, ..., 0, if only n is suffi-

o
AmwA,,( )‘ ds

— oo, This obviously yields

L]
Proof of Theorem[2.3) We prove that A} ~"/“ [Jflzi M)l i % [c(ia)) - (ST (@) = iS7(@)] 1y
as n — oo and then conclude with Proposition[d.1] By v1rtue of (£3) we have
n—p+1 kA,
2 - —iw; k
RO E A Vi B O (4.12)
k=1 <k71)An !
for any j € {1 ...,m} and the joint characteristic function of the complex SaS random vector
1-p—1 .
Al-p-1/a [Jn A,,(wJA )]J:L...,mls given by
a 1 T = —iwjAnk (k) ’
B (0¥)=owof o X [, [ B (T dloa )| @ w1

with arbitrary 6, v € R™. Hence, due to Lévy’s Continuity Theorem, we have to show for any 8, v € R™

1 ni+1/kAn
nAlllJro‘(l’*l) = _

o

ds

<O . k
Z Zo, v, ( leAnkg<An), " (s))

= Kg((ie,--,v,-(C(ia)j)))je{l . ( E oy, QI(C(ia)j)))je{lmm},O), (4.14)
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where K, has been defined in and (2.7¢), respectively.
We first claim

(k) ® a
1" p+1 1 kA, 1 . 8 N n(S) L >°
Py (L / Y &, y, | etk Zhn it T ZE ( '“’fAn"c(iwj)) "2,
no3 An J (k1) j=1 Y A} j=1
(4.15)

To this end, we use [[x|* —[y|%| < (|| %/ 4 [y|*/2) - |x — y|*/? for a € (0,2] together with the Cauchy-
Schwarz inequality and obtain

1 "k, m Akg(Ak)w«A (s) a . » "
Eo e 10WjAnk 2 B0 7 7 _ ,(*len ( )> d
= - 0;,v; | © io s
nAn 3 /(— ; AP ]:Zl Vi j
®) o
1 "2l kA, m o gA,,,a)-A,,(S) | a
< A Z / Z‘zth,‘ e lw/Ank# . ( zw,AnkC(le))
nAn k=1 (k=1)A, j=1 T An g
(k) 5
m _ o An,a)‘An(s) )
X Z“G/yv] € i) Ak ﬁ—c(l(l)]) ds
Jj=1 Ay
1
2 2
(k) b
1n—P+1 1 kA, o 2r oA (S) o
< |- e Q:|+1|v 2, w7 +le(io; > ds
n kgl An (k*l)An ;(i i | Ji Aﬁ_l |( j)|
~ (k) a@ 7z
1" p+1 1 kA, oAk 2r oA (S)
- ) Z —iojAnk PO OB T ds
—1 J
=1 Ay I AP

= Il X 12,
where, due to Assumption|l} eq. lb and Lemma iii), there are constants C (a)j) > 0 such that for all
sufficiently large n

o

+ |C(i(0j) |Ot ds

=
\/\

)
m a 1 n—p+1 1 kA, gAn’ijn (S)
2§ (ol )3 L 5 /Min e

P a
i+ )" (et £ (5000) o) <

and hence, /; is bounded. Setting
Z C i ) (kAnfs)l[7 kE{l,...,p}7

1a’ )io—A

IN
l\)
Ms

j=1

we obtain for the second term

2 m 1n P+l ki g(A’Z{ijn(s) . ’
L <m Z ‘9’—%‘\@’ ]; A . 7&:71 —c(iwj)| ds

~.



n—p+1

<@y (o) Ly
j=1 k=1

®) *
Savon) ) ® ’

1 rkan |
Ain/(kfl)An hA,,,mj(S) +hA,,,mj(s)—C(le) ds

AP
4.16)
Then, forany j € {1, ..., m},
(k) o 0 o
1n ]7+11 A o (S) P ;A [ 0o
ol 0 (o) ase (§ 100 |aulorte) _atio) ) e
no 3 A (k=1)A, AP . =1 ld'(A)] AP le_ll
4.17)
by virtue of Lemma 2.1{iii). Moreover,
1P ke a L ke c() a(io;) *
—c(ioj)| ds=— — I ek _1)| d
=1 Ay J-1ya, ‘ A"’wf(s) e J)’ T = An -1, Z;a’(/lz) iwj—),,( )| ds
Zo(le()] la(io)] N 1 A a0 0a 1@ . ne
<p%. ( B ik b ) —/ e =94 _11% 45" 0, (4.18)
L e Tio-al) ah | |

where we used Lemma [2.1](ii) and (iv). Hence, by eqs. (4.17) and (@.I8) the right-hand side of (4.16)
converges to 0 as n — oo and thus, @13)) is shown, as well.

In order to obtain (@.14) and hence, A} 7~ /e [J,EZ (@A) iy =4 [c(iw)) - (S?‘(tg) - iS?(@»]j:l....,m
as n — oo, it remains to prove that

%n—i i N ( ’wiA"kC(iCOj))
k=1 |j=1

Since we suppose in particular nA, — oo as n — oo, this follows from Proposition 3.4]
Finally, since also nAZ” ") — oo as n — oo holds, Proposition 4. 1| yields J,(llin(wA )+ i (0A,) =
1)

op (A,l,/a+p_1) for any @ € R and hence, APl 7, 50 (cojAn)]j:IW " 2 [c(ia)j)-(S;K( )fzSS( ))] -
as n — oo, This completes the proof. ' ' O

o

.....

Proof of Proposition We immediately obtain

L n oo
Jyyan (@) =0 Y Yy, 07k & -1/a )y < Yy v ij,A,z)e’“’k
k=1 k=1

Jj=0
e wie ol § 7
=0

e_lwk + Un,j7An ((D)) = \PAn (e—i(l)) Jn’ZAn ((D) + ‘/Vn;An ((D),

where
n oo
Un,j, 0, (@ Z Zk 8 =Y Zea, e and Wya, (@) =nV"Y Wie U, A, (0).
k=1 j=0
Hence,
In,YAn ((!)) = |lPAn (e_lw) I ZA”( )+anAn(w)7
with

+ ¥ (e10) ], 5, (0) Waa, (@) +[Wa,a, (@)%

Roa, (@) =P (e_iw)Jn,ZAn (@) Wy A, (@)

For the rest of the proof suppose that Assumption [2|holds and fix an arbitrary @ € R*. We have to show
2-2/a
that A,

P
[Rn A, (0A,)| = 0 as n — oo,
,- p o . . Vo (p—1 : .
Since WA (e~ @) ~ A, P (i)~ as n — oo and since in particular nAL *P ) — oo if Assumptlon
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holds, it follows from Theorem [2.5[ that Ay~ /* ¥ (e’i“’A")Jn7ZA,1 (wAy) 4 Z((i((ﬁ; (o) — iS;:’(a))) as
n — oo, where the joint characteristic function of (§ M), s i:’ (w)) is given by eq. 1| (with m =1 and

. - P . .
7 = 0). Hence, in order to show Ai 2/e |Rn.a, (0A,)] = 0 as n — oo, it is sufficient to prove that

_1
An @Wya, (0A) 50 asn— oo, (4.19)

We shall prove (.19) by an appropriate decomposition of the sum W), ,(®A,), analogously to the one
in [23| Proof of Proposition 2.1]. We write

Wi, (@A) =n~1% Y wf e I, i A (OA, )—i—n’l/aZ‘PA” e I, i o (0A,)
j=n+1 Jj=0

— W) (0A)+ W2 (0A,)

and

Wil (00 = F wreion (-
Jj=n+1

»
il agE
X

74 —iwAk —1 a A —lCOA —i0Ak
Zk,An e n ) / Z lII n nJ Z Zk A” n
j=n+1 k=1—j

= n(.,lAlj (wA,) +Wn(.,lA23 (wAy).

We have
-1 ad
A Wi (@A) < a7 10, g (@A) A Y [
j=n+1

and it is again Theorem [2.5] together with the Continuous Mapping Theorem (see, for instance, [21, The-

I-p-l/a M, 28, (04))| 2 lelio) )| - ST (@) —iST (®)| as n— co. Since we have

1-1/a

orem 13.25]) showing A,
An
n+1 ’lP

Concermng the term W( )(a)A ) we write

— 0 by virtue of Lemma 11) we 1mmed1ately deduce A, W( )(a)A ) 5 0asn — oo,

W( )((DA)_I’! /o Z lPA” —iwA, j Z Zk lCOAnk

j=n+1 k=1—j

-1 A —n—1 n—k A ) )
:nfl/a Z Zk,A, —iwAk Z \P e —i0A, j +n l/a Z Z —iwAk Z IPjnefla)AnJ

k=—n Jj=n+1 k=—c0 j=1-k

=W (@A) + W (04,)

and obtain for arbitrary € > 0

p 1 n—k . . €
( ’Wnlzl | > 8) < Z (A o é Z Zk riLA, Z \P?n e*lwAn(k‘F./) > )
r=1 k=—n Jj=n+1 p
Z g~ A i@ A (k+j) €
S Z P An « o Z Zk r+1,A, ‘R Z \P n(kt) > 7
=1 k=—n j=n+1 4
+P( Ay @0 ): z -3 nik whrmiom(k) )| 5 £ |
. k—r+1,A, " p ] 2
=—n Jj=n+1
(4.20)
Since, for any r € {1, ..., p} and n € N*, the random variables Zi a0 kE {-n,—n+1,...,—1}, are

independent and symmetric we apply [37, Theorem 1.2] and the right-hand side of (#20) can be bounded
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by

=

V4 - 1 2n A —1
DI CR TR VIR I
r=1 j=n+1 k

> t
— ’ 2p)°
By virtue of (2.2a), {#.4) and Lemma 1) the characteristic function of A}~ Ve, ~1/a ): o |\pAn
Z:I<=—n Zl:7r+1,An is given by

4.21)
<I>(Zl722):eXP{UL A, ( )
Jj= n+]

—1 (k—r+1)A, 14 2’
X Z / HZl Zz( Z C m
k=—n —

(k—r)A, n ]a’ A,m

{in,
maxk€{1

M, ,e<(k7r+1>Anfs)M> ads}
}6({1 ----- P}\{m}>
for any z1, zo € R (see proof of Proposition for the definition of E;, ,,). We then obtain with Apax ==
et R() <O
’ 1

2n
——g log®(z1, 22) gA,‘f( Y |y
or j=nt1

’ p—1 p
) (el ((r 1) el Y
and Al ”"‘W(m)((oA )3015 showiL

o
[¢(Am)|
=y 1d (Am)|
and the right-hand side converges to 0 as 1 — oo due to Lemma [2.2{ii). Thus, (&.21)) converges to 0 as well
In order to get Al Ve

Wn(122)(wAn) — 0, we prove, forany r € {1, ..., p},
—n—1

A1/ -1/ Z ZLiia, Z \PAn e oA (k+)) B
k=—o0 j=1-k

Therefore it is sufficient (using the same arguments as above via characteristic functions) to show that

STk

n—k o
A ( Y | ) =0
nol\
as n — oo, This can be found in Lemma |2 11) and hence, Al l/a Wn(’lAznz) (oA,
shown that Al l/a W( ) (a)A ) converges to 0 in probability

It remains to prove that also Al la

) — 0. All together we have
W( ) (@A) = 0 asn — oo. To this end, we define

n —Jj 4 1-k n—j P
_1/azlp?ne—im,,j{( Z Z + Z*
j=1 k=

Wn< A,?((DA )=

2—p—jr=2—j—k

—pr=1  k=n+2—p—j r=n+2—j—k
n n+1—
_ Z Z ) o 10 (ktr— 1)}
k=n—p+2 r=1
211 212 213 21
= WA (@A) + W2 (0a,) - WY (08,) - WY (oA
and write
()
WnﬁAn

1t

r —i0Ak
Zk—ri1.0,€ "

Jj=1

Z ZZk r1,4, € mm"k)
k=n—j+1 r=

0 PA(1—k)

Y

Z]: A, efiwAn(k+r71)
2= p—j r=1V(2—j—k)
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n PA(n+1-k)

_ Z Z Z]}; A eiwAn(k+rl))

k=n+2—p—j r=1V(n+2—j—k)

n ) ) n—p+1
Wéﬁ)(wmw—”“Z‘P;‘-"e"‘”"’[( Y- ¥ )Zk 5, (0B, 'm""]

| T ke
=W, (O8) + W, (0) =W, (0.
By virtue of eq. (Z.3) we have

_1 _1 = n o
A W @A) =By “n T Y Zia (@A) e IONE Y g eiof
' k=1-n j=1—k

Ay YOO b oA, (k+j) o c(Am) (kAn—3)A,
(nA )1/akzl: leklpjne ' / Z Arm fAn (DA ) mdL.

Since, due to Lemma [2 111) fA ( ) ~ A (i) lw_llm asn—ooforallme {1,..., p},itiseasy to
=1/ Wn(zAzj (wA,,) that it is enough to show that

see by calculating the characteristic function of A,

TR )T

This follows immediately from Lemma 111) and hence also Al /e ( >(a)A ) % 0as n — oo holds.
Since the complex SauS random variables (Zk7 An) x ez(wAﬂ) are 1.i.d. (cf. eq. ), we easily derive

1 . _1 n
A,ll o Wn(zjn)(wAn) _ e—twA,ln.A:l oy -1 Z leAn e i0AL] Z Zk+n A,,(wA ) —ioAk
' j=1 k=1—j
. 1
2 o AL b 0,
and thus Ay~ 1/OCW )(wA ) 5 0as n — oo, as well.
Finally, we have to prove that Ay, 1/ aW( )(a)A ) — % 0. Therefore, observe that
Al Olt W(211>( A ) _ An _Zl e—iCOA,,k n/\fk) \PAn e—iCOAnj i e—iwA,,(r—l) Zr
n n,Ap n (nAn)l/O‘ = _ - j = k, An
k=2—p—n J=1v(2—p—k) 2—j—k
2 i nA£k> ()
« b e e
(}’lA )1/(1 k=2—p—n j=1V(2—p—k) !
kn S C(lm) (m;2—j—k) ;
X ’ wA,) e b= g, 4.22
\/(k71>An mZ::1 a/()ym)f ( n) S ( )

(cf. eq. (#10)). Using eq. (#.TT) and its upper bound (see proof of Proposition @), the joint characteristic
function of the right-hand side of eq. (¢.22)), denoted once more by P, satisfies

a
1% (A AZ - nA(—k) a
< (la1] +[z2))* <2p 'Y ||a/((a ))|> ) ( )y |‘Pf'n|) .
m k=2—p—n \j )

m=1 j=1vV(2—p—k

1
—G—glogcb(z], 2)
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By virtue of Lemma[2.2{iv) we then have

AY —1 nA(—k) aﬁ)w
Sn w5,
L (Y )

N p=2"p—n \ j=1v(2—p—k)

1-1/a ,(211)

and hence, A, Wi, (wA,) E0asn— oo
Likewise, we get

1-L - (212) Ap o0 Ak X Ay it ] o A (r—1
Ay OW, ‘A, (0A,) = 7(}1An)1/0‘k ; e o Zl‘Pj —i0A Ze A (r—1) kA,,
=2-p = =

)Ot n—yoo

o
and, as before, one derives that it is sufficient to show that Aﬁ ):2:27 » ( ;?:1 |‘P;‘-” 0. This has been

done in Lemmal[Z.2[v).

One can show analogously to W( ) that also Al /e W(213) (wA,) 5 0and analogously to W(212) it fol-
lows that Ay~ l/OCWnZAM)(a)A ) % 0as n — oo. Hence, Ay~ ]/aW( )(a)An) “+0and Ay~ UaW A, (©A,) 5o
as n — oo, as well. This completes the proof. O

4.4 Proofs of Section 2.3

Proof of Proposition (i) We first observe that the state vector in eq. (2.84a) can be written as

=)

Via, = Y. e, ;  VneN' keZ,
j=0

where &, 4 := (];i"]) A e(kBn=s)A B dL; (cf. [15} Proof of Theorem 4.2]). Thus, the Beveridge-Nelson decom-

position (cf. [5]) has the form
VkA” = (Z ejA”A> §n7k+‘7,,,k,1 —‘7,,’]( VHEN*,](EZ,
Jj=0

with V,, k= Z/ —0 (Zl 1 eld )én «—j (see also [15, Proof of Theorem 2.2]). Hence,

n 1 n _ _
Z VkA,, = (Ip - eA,1A> Z 6n,k + Vn,O - Vn,na
k=1 k=1

where Vi, 0 — V.o = = (I, - A"A) Lend (Vo = Vya,)- Since A, (I, — eA"A)71 "2 _ A and Vy 2 V,a, for any
n € N*, we obviously get V,, 0—=Von= = op(A, 1 (nA, )l/“) as n — . By analog calculations via character-
istic functions (as used in the proofs of Theorem [2.5/and Proposition [4.1), we further obtain Y} _, &, x =

BYr_ AL(kA,) + op((nA,)"/¥) as n — co. Putting all this together, we have
n n _1 n 1 1
Z Yia, ) eIT Z Via, = eIT (Ip —eA"A) ([3 Z AL(kA,) +op ((nAn)a)> +op (A;l (nA,,)H)
k=1 k=1 k=1
oo n
= Zg(jAn)-ZAL(kA +0p<A (nAy) @ ) asn— oo
j=0

k=1

and (i) is shown.
(ii) Let (0,X;, v;,) denote the characteristic triplet of the underlying Lévy process L. As in the proof of
[L5} Proposition 3.3(c)]), we first factorize the Lévy measure vy, into two Lévy measures

viy(A):=ve(A\{xeR: [x[<1}) and v, (A):=vi(AN{xeR: x| <1}), for any Borel set A C R,
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such that v, = v, 1) + vV, 2. We decompose L into two independent Lévy processes L = LY 4+ L?) where

L) has characteristic triplet (0, 0, v, (1)) and L®?) has characteristic triplet (0, X7, Vi)
Then one can show, as in the proof of [[15, Theorem 4.5], that

1l n
Z VkAndTAn - Z JAnd (Z ( ) > ejAnAT +op (AIII(YZA")%)
k=1

Jj=0

as n — oo, where Vi, is the state vector in eq. (2.8a)), fn P = ka" (kA"_S)AB arlV if a € (0,2) and

5,5 ¢ = Ep i if @ =2 where §,  := f(];{Ajl)A ekAn=s)AB d . Next we clalm that, also for @ € (0,2),

n T n
1) (01 2
Y &l (5,513) =Y Ei&l i +op ((nAn) a) (4.23)
k=1 ' k=1
as n — eo. Together with lim, ;. A, Y7o e/* B, e/tnA” — [ eABeA” s for all matrices B,, B € RP*P

with lim,,_,. B;, = B, this yields
n i . n . T 2
Y Via VA = Y e [V &, 4&T, ) e 4o, (A;l (nAy) a) (4.24)
k=1 j=0 k=1

as n — oo, As to ([#23), we observe with é %= Gk én L= f(];A”l) AL e(kd=9)48 41> that

n

;énvkérzk;é&z( ) Z ( ) i (nlk) +Z§nk( )

and thus, by virtue of Holder’s Inequality and taking the norm ||M|| := ||vec(M)||, we obtain

<) (£ 1s8r) « & el

Note that the second Lévy component L(?) has finite moments of any order (cf. [34, Corollary 25.8]) and
hence, we can apply [[15, Proposition 3.3(a)] and deduce for some C > 0 and all sufficiently large n

l 4 e nkH] o4 $5

where the right-hand side converges to 0, since we suppose nA, — 0 and 1 —2/a € (—o0,0) for any @ €
(0,2). We further obtain by combining [15, Proposition 3.4(a,c)] and [31, Theorem 7.1] that
(nA,)~ 2/ Yioi H<§n 4 H converges weakly as n — oo (note that LW isa compound Poisson process). This
completes the proof of @23) and hence also eq. #.24) is shown.

Now also

k:lén,kgnT.k Z gn k ( . k)

(g

6] <c-mn-i

Xn:égn,k;{k —B Zn:AL(kAn)ZﬁT+0p ((nAn)%) as 11— oo (4.25)
k=1 k=1

holds. For, the (i, j)-th component of Y, &, &7, — BY}_; AL(kA,)* BT can be bounded, again due to
Holder’s Inequality, by '

l 1

YL (6] ) <k21< &, <kAn>)2>2

[f el - BY AL(kAn>2ﬁT]
k=1 k=1 i,j

/—\
=
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(I; (B/AL(A,)) ) <i( &)~ BAL(KA, ))2>%

with [én k] and f; being the i-th and j-th component of 5,, « and B3, respectively. Similar arguments as
used above for Y _, ||§n7k || yield that (nA,)~2/*Y"_| [én’k]i as well as (nA,)~2/* Y7, (B;AL(kA n))2
converge weakly to positive o¢/2-stable random variables. In order to obtain eq. (4.25)), it hence remains
to prove that, for any i € {1, ..., p}, the sum (nA,)~>/*Y1_, ([&n.k]; — BiAL(KA,))” converges to 0 in
probability. This is indeed true, since the random variables [&, ;] .~ BiAL(kA,), k€ {1, ..., n}, are i.id.
symmetric a-stable with scale parameter oy ( f;" | (e/4~94 —1,)B|“ ds) V% and A Jivn lel (eldn=9A —
I,)B |ads —0asn— oo (cf. Lemmaii)). We thus deduce

K

=) ) n . T B
Z YkA 6’1 ( Z VkAndA,l) 2 el (Z e/h ( Z én,kérfk) e/inA ) el +op (An (nAy) )
=0 =1

@ (Z (b % avua 257 +on (1)) )) ertor (8, (1) %)
= Y (8- X LA+ o (8 (18)3)  asn oo
j=0 k=1

and (ii) is shown. O

Proof of Theorem[2.10] Assume that ¢, # 0. By virtue of [13] Lemma 3.1], the integrated kernel function
J5"8(s)ds is equal to [i"e]e**Bds = —efA™'B = c a,". Due to Proposition [2.4| we immediately obtain,
for any ® € R* and n sufficiently large

ZAn (wA )
(n VL Yea,)

~ . 2
In’yAn ((x)An) _ ’\PA;«L (e*lwAn)

2 +§n,A,, (wAn)

with ﬁn,A”(a)An) = Ry A, (0A,) - (n_l/o‘ ZZZIYkAn)_Z. Since R, a,(@A,) = OP( AY ) as n— oo (see

again Proposition and since (A, (nA,)~V* ¥R YkAn)Z A (Jeg(s)ds)?- 82 = cga,® ST asn— oo

with S being a Sa.S random variable with scale parameter oy, (cf. [15, Theorem 5.2(a)]), we have

Rua, (0A,) = 0p(1) asn— oo. (4.26)

Since |WAn (e~ @A) 2O A la(i®)|~% and A, Y Og(]A ) — o g(s)ds as n — eo, we combine eq. ||
Proposition[d.T|and Proposition[2.9(i), and observe that, in order to show Theoremlﬂ_q it remains to prove

(mﬁ”é @] ) ;Aumn)) % ([etio- (7@ -is3@)] _, Swar()

as n — oo and to apply the Continuous Mapping Theorem (see, e.g., [21, Theorem 13.25]). However, this
weak convergence result can be shown along the lines of the proof of Theorem [2.3] O

Proof of Theorem2.11) Assume w.l.o.g. that [;°g2(s)ds # O (otherwise the CARMA process would be
trivial). Furthermore, we obtain as in the proof of Theorem [2.10|for all sufficiently large n

2 nZAn(wA )
W + R, (04,)

n7

T yon (@A) = “PA" (e=i0n)

with §n7An(wAn) = Ry,a, (0A,) - (n “2/ayn Ysz )_1. Since Ry, a,(®A,;) = op(A; M ) as n — oo (see
Proposition and since A, (nA,)~%¢* Yio1 kA,, Iy o & (s)ds-[L, L], as n — oo with ([L, L],)i>0 be-
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ing the quadratic variation process of (L;),>¢ (cf. [15} Theorem 5.5(a)]), we get

AR, A, (0A,) = 0p(1) asn — oo, 4.27)

Since |PAr (e~ /@An) >~ AV |a(io)| % and A, Y7082 (jAn) = Jo &%(s)ds as n — oo, we combine [@#.27),
Proposition 4.1 and Proposition 2.9[ii), and observe that

- AW 12 (0A,) ?
AnT, ya (0A,) = |a(i 2-( 2 d) : . ” “(1+0p(1 oo,
v (@) =latio) /0 goe (nAn)~ @ Yi_; AL(kA,)? ( o )) e

(4.28)

In the proof of Theorem[2.3]it has been shown that, for any ® € R¥,

H n
A”’aj“(wA) clio) Z (kAy)e @k 50 aspn — oo

(cf. eqs. (@12), @I13) and @T6) to @18)). Hence, (@28) becomes

@) |Ti ALk e
J () ds-a(@)P Xi_, AL(kA,)?

We introduce an i.i.d. sequence (Z; )ren+ of symmetric a-stable random variables with scale parameter oy

and observe that (AL(kA,)) reN Z (An)"® . (Z)ken+. Consequently, to finish the proof of Theorem [2.11

it is sufficient to show that

A, I YA,,((DA )

(140p(1)) asn—oo.

n, Z efiijnk 2
[‘Zkl K as 1 — oo, (4.29)

] B [[s;ﬁ(@)]z +[57 (@)
ZZ:I Zl% je{l,...,m}

S2
je{l,...,m}
Since n~2/¢ |Xh_| Zge @ik > 2 [Sjg{(gg)}z + [S?(gg)]z as n — oo, which follows implicitly from the

proofs of Proposition (3.4 and Theorem and since n=2/*y1_ 72 2 52 as n — oo with S2 being a
positive o /2-stable random variable, which can be easily derived from, e.g., [31, Theorem 7.1], we will
show that also the random vector

('}/nz,Z7 nZ(wJ ) ﬁnZ(ij >)j€{l,...,m}7 (4-30)

with

n n n
V2, =n"2 ) 72, 04 z(@jA,) =01/ Y 7 cos(wjAk) and B, z(wjA,) = nl/e Y 7 sin(w;Ak),
k=1 k=1 k=1

converges weakly. Note that this implies eq. (4.29).

We take the same approach as in the proof of [24, Proposition 2.2] (which can be found in [22]).
Let (Ni)ken+s Pis Payeo oy Pyy My, My, ..., My, be ii.d. standard normal random variables, independent of
(Z)ken+. Then, with ¢ >0 and 6, v € [0 o)™, the Laplace transform of the random vector in (#.30) is
given by

0? m (g2 v2
Jua (@, 0,v)=E lexp {—Zﬁz -y (21 » 2(©jA,) + gﬁriz(ijn)> H

j=1
=E (]E

exp{i(pn‘ér iZka+ii (6, Pj 0y, z(w;A,) +Vijﬁn,z(ijn))} ’(Zk)keN*]>

k=1 j=1
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=E |expqion a ZZka-‘v-lZ 9 Pjoy, Z(a)]A )"‘Vijﬁn,Z(ijn)) }1

oof
s exp{ma
§

=E [exp(in a21<

7 ((pN;A—Z (; P; cos(®jAk) + Vi M; sin(@;Ak)) )H

£ ]

»
Ill“‘ B
-

QN+ Z (6, Pj cos(w;Auk) + viM; sin(w;Auk))

. )

a
with K, o, (9, 0,v) :=1/n-Y}_, "PNk+ZT:1 (6, P; cos(w;Ak) +ViM; sin(a)jAnk))‘ . We define the

™=

k= J=1
=k [exp {—GL K, (0, 6, X)}]

=E exp{ . Z (kaJrZ (6, Pj cos(w;Auk) + viM; sin(w;Aqk))

o
function A(x, y) := ’(per 1 (6 Pj cos(2mx;) + viM; sin(27x;)) |
fies the assumptions of Proposmonnfor every realization of P = (P|,..., P,)" and M = (My,..., M,).

Now, if @i, ..., @, are linearly independent over Z we obtain by virtue of Proposition 3.3]
f"hAn((Pu Q? Y,) "j;" E [exp {_GI(‘I ‘E [h(g7 N1)|Bv M} }]
o
=FE lexp{ N1+ Y (6P cos(2nU;) + v;M; sin(27U;))| |P, AN/I] }]
j=1

=: f((pa Qv !) (4.31)

Here Uy, ..., Uy, are i.i.d. [0, 1)-uniform random variables independent of P, ..., By, M,..., M,, and Nj.
If w,...,0, are linearly dependent over Z, then also by virtue of Proposition Sfon, (9,6,v) —
f(@,6,v) as n— o but now U = T(Vy,...,V,_,) with T being the parametrization of the (m — s)-
dimensional manifold .# (o, ..., ®,,) (cf. @])) and Vy,..., V,,_, are i.i.d. [0, 1)-uniform random variables
independent of P, M and N;.
Hence, in both cases the Laplace transform f;, o, (¢, 8, v) of the random vector (4.30) converges to a

function that is continuous in the origin. This implies that (7, o 2 (wiAy), Bn Z((DJA )

x € R™, y € R. Note that & satis-

m

) €ON-
verges weakly and completes the proof.

4.5 Proofs of Section[3

Proof of Theorem For the proof we identify the equivalence classes in (R mod 1)”~* and (R mod 1)™,
respectively, by their representatives in [0,1)”* and [0, 1)™.
(i) Define

Ni={x=(x1,...,xm) €[0,)"*: 3je{l,...,m—s},i€{l,...,m} such that
xj=k- |by)|_1 for some k € {0, 1, ..., |b5.i)| —1}},

where by) denotes the i-th component of the vector b;. Clearly 2™ *(T(N)) = 0 and T - is con-
tinuously differentiable with rank(D T'[g ym-—s\y (x)) = rank(B) = m — s for all x € [0,1)"*\N. More-
over, T is injective. The reason is the following. Suppose that T'(xj, ..., Xpu—s) = T (¥1, ..., ym—s) for some
Xty s Xmes) T, 1y oy ym—s)T €[0,1)™75. Then

m—s m—s
(ij )mod1_<2y, )modl = Z —yj)bj € Z".

28



Since Y77 (x; —y;)b; € span®({b1, ..., by })NZ" C L+ N7Z" = L = span’ ({by, ..., by_s}), there
exist integers zj, j € {1,...,m— s}, such that Y77 (x; —y; —z;)b; = 0 and hence, (x; —y;) = z; € Z
forall je{l,...,m—s}. Smce xj—y; € (-1 1) we must have x; = y; for all j € {1,...,m—s}. This
shows that T is indeed injective. Note that T’1 is continuous (mod 1) on .# and thus, T([0,1)"*\N) is
an (m — s)-dimensional C I_manifold in [0, 1)™ (for a definition of manifolds, see, e.g., [29} pp. 200-201]).
Since #™5(T(N)) = 0, also .# is an (m — s)-dimensional C'-manifold and integration over .# is the
same as integration over T([0,1)"*\N) = .#\T(N) (note that T(N) itself is a manifold in [0,1)" from
lower dimension than m — s).
(ii) Suppose thereisaz = (z1,...,2u_s)] € Z"5, z#0, such that (z, u) = 0. W.L.o.g. z; # 0. Then

m—s zi m—s zi
m=-Y = and n=y (—Zlbl +bi> :
The vectors Zi = —Zz—;bl +b;,eQ",i=2,...,m—s, are obviously linearly independent. Thus,

(span]R {52, ...7Em_s}>L - {Q}L = (span]R {52, ...,Zm_s})LﬂZm C {Q}LQZ’" = .:27,

and since the dimension of g is s whereas the dimension of span]R {Zz, e Nm ‘}J‘ NZ™ is s+ 1 (the latter
can be obtained as in the proof of dim(.#) = m — s on p. |l 1), we have a contradiction. Hence, (z, 1) # 0
forall z € Z™ 5,z #0.

(iii) We have, with h = Bz and z € Z"%, 7 £ 0,

/ fh %m S( ):/[‘ ) fh(T(x))dx: 62ﬂi<h,T(G’1x)>dx
0’1 m—s S

%m s [0,])”‘*‘

_ 2mi(h,BG~'x mod 1 _
= e dx =
[0,1)m—s [0,1)m=s

m—s 1 X
-11 / 2% . (4.32)
=170

: T —1
eZm(z,B BG x)dx

Since z # O thereis a j € {1,..., m—s} with z; € Z\{0}, and the right-hand side of (4.32)) has to be zero.
(iv) Let T (x), T(y) € 4, T(x) # T(y). Since T is injective, there is some jo € {1, ..., m —s} such that
Xj, #¥j,- For h=Bej, = bj, we have

Fu(T(x)- Fu(T ()™ 1 _ 2m<b/0,T(G x)=T (G~ y)) :eZﬂ:i<Bej0,BG71(x7y)) — o2mi(xjg—j) A1,
since xj, —yj, € (—1,1)\{0}. O
Proof of Proposition[3.4} Letting ® = (@, ..., 0,)" =27(n1, ..., M) = 271, we immediately get

ln p+1 «

. L

m

Z \_‘9 zcojA,,k C(ia)j))

o

i cos (2m{n;Ank}) - Ee,. v, (c(iw;)) +sin (2m{N;A.k}) - E E vi0 ( (io;))

1 n
L

Let us first consider the case where @y, ..., @, are linearly independent over Z. We claim that, for any
heZ™ h+#0,
1 ¢ '
— Y AR 0 asn— e, 4.33)
=
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To this end, note that for n sufficiently large

2mih,m)Apn
1 ’e o 1’ 1 1
= — <

1 & 2 Ak A
n ‘e2ﬂi(h,ﬂ>An _ 1‘ B |<ha 11>| nln

=

and the right-hand side converges to 0 as n — oo since nA, — o by assumption and since @, ..., @, are
supposed to be linearly independent over Z.
However, (4.33) already implies that

; /[o,wm f(x)dx (4.34)

for any continuous function f : R™ — C with period 1 in each component variable (more precisely, f should
be seen as a function, mapping from the compact Hausdorff space (R mod1)™ to the complex numbers).
An explanation is the following. If we fix € > 0, we know from the Weierstrass Approximation Theorem
(cf. [36, Theorem 17]) that there exists a trigonometrical polynomial W, i.e. a finite linear combination of
functions of the type e?™ "), h € Z/", such that sup,cpm | f(x) — Ve (x)| < €. This yields

flx defAkn‘

‘ [0,1)™

<|[, - wad| [ e dx—Z‘PsAkn‘

<& <e

SM—‘

Xj: (Ankm) — f(Ankm)|.

(4.35)

Since _[[0 1y e2mihx) dy = 0 for any h € Z", h # 0, eq. l) implies that the second term on the right-hand
side of converges to 0 as n — oo. This shows that .33) already implies (.34).
We conclude the first part of the proof by applying (@.34) to the function

o
m
S, xm) == | Y cos (271x)) - Eg, v, (c(i))) +sin (270x)) - 2y, 9, (c(i®;)) (4.36)
Jj=1
In the case where @y, ..., @, are linearly dependent over Z, we first observe that for any f;, € .7 with
he L, h#0,
1 n
=Y fu(Askn mod 1) -0 asn— oo 4.37)
3 -

(where the mod-operator is defined componentwise; for the definition of .7 and £ see (3.1) and (3.3),
respectively). Therefore note that A,,k?l mod 1 € .# foranyn € N*, k€ {1, ..., n}, since (cf. Theorem

Ankn mod 1 = B(Aykp) mod 1 = B(Aykp mod 1) mod 1 =T (Aykpt mod 1) € 4. (4.38)

————
€[0,1)m=s

Then, with h = Bz € .Z, z € Z"*\{0},
n

1 & 1 & . —1p—1 1 : -1
1 Z fh(Ankn mod 1) _ 2 Z eZm(Bz,BG T7 " (Ankn mod 1)) _ 2t Z e2m(z,T (Ankn mod 1))
Ly - 2 k=1

@1i it )k

and since (z, 1) # 0 for all z € Z"~*\ {0} (see Theorem ii)), we obtain eq. li in the same way as
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we have shown (@33) in the linearly independent case.
Now, in the linearly dependent case already implies

1 n n*) s
Ekg’lf(Ankrlmodl) W/ f(x) 2™ (dx) (4.39)

for any continuous function f : .# — C. Indeed, span®(.7) is a dense subalgebra in C(.#), the alge-
bra of all continuous complex-valued functions on the compact Hausdorff space .#, with respect to the
topology of uniform convergence (cf. also comments after Theorem [3.3)). Hence, for any continuous func-
tion f : .# — C and any fixed € > 0 there is a finite linear combination ¥, of functions in 7 such that
Sup,c_y | f(x) = Pe(x)| < &. This yields, analogously to (#.33),

‘W/ f %ms —*g Ak?lmodl)‘

1 n
§28+’ We(x) 27" (dx HZ (Apkm mod 1),

i

and the second term on the right-hand side converges to 0 as n — oo by virtue of Theorem [3.3[iii) and

eq. (@37). This shows @-39).
We conclude the linearly dependent case by applying eq. (4.39) to the function f| , with the same f as
in the linearly independent case in (@.36). O

Proof of Proposition[3.3] We have
1 n

- Zf(kA”H mod 1, Ny) —E [f(U, Ny)]
=1

1y (k81 mod 1, M) ~E [ (ke mod 1,N)]) + - Y E [/ (kam mod 1,N)| ~E [£(U, M)
= - - = -
=L+Db.

We consider first the case where @ .. ., @, are linearly independent over Z. Then, by virtue of eq. (4.34)
and the assumption that g(!) is continuous on (R mod 1), we have

B= 1 ¥ kA mod )= E [fWN)] " [ ) ac— B (U M)
niZ -
= Joup B M)l dr—E [f(U,N)] =0.

With Chebyshev’s Inequality and the assumption that g is continuous on (R mod 1)™, we further obtain

P(|Il| > 8

{( f(kA,m mod 1, Ny) —E {f(kAnﬂ mod I’NI)DZ]

n

E[/2(kaum mod 1, M)] = LY @ (kA mod 1)
&< -n =1 ~

L
i

_ 1
T e2.p [0,1ym

gD dr (1+0(1)) = B, M) (1+0(1) 570,

where we used once more {#.34). Hence, eq. (3.4) is shown in the linearly independent case.
Suppose now that @, ..., ®, are linearly dependent over Z. As above, now due to eq. (&.39),

B e | g0 @B ) = [ @) B T v). )

[Oyl)mﬁ»
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- /[0,1)mfsE[f(T(x)’ N)]dx—E [f(T(V), N1)] =0

and
B(ln| > &)< - ¥ g@kAmmod 1) = 1.1 / ¢ () A5 () (1 + 0(1)) "5 0,
e -n* = ~ e-n HmS(M) )
=E[f2(T(V),N)]
Thus, also in the linearly dependent case (3.4)) holds. O
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