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In this paper we consider a continuous-time autoregressive moving average (CARMA)
process (Yt)t∈R driven by a symmetric α-stable Lévy process with α ∈ (0,2] sampled at
a high-frequency time-grid {0, ∆n, 2∆n, . . . , n∆n}, where the observation grid gets finer and
the last observation tends to infinity as n→ ∞. We investigate the normalized periodogram
In,Y ∆n (ω) = |n−1/α

∑
n
k=1 Yk∆n e−iωk|2. Under suitable conditions on ∆n we show the conver-

gence of the finite-dimensional distribution of both ∆
2−2/α
n [In,Y ∆n (ω1∆n), . . . , In,Y ∆n (ωm∆n)]

for (ω1, . . . , ωm)∈ (R\{0})m and of self-normalized versions of it to functions of stable distri-
butions. The limit distributions differ depending on whether ω1, . . . , ωm are linearly dependent
or independent over Z. For the proofs we require methods from the geometry of numbers.

AMS Subject Classification 2010: Primary: 60F05, 62M15
Secondary: 62E20, 60E07, 60G10

Keywords: CARMA process, high-frequency data, lattice, Lévy process, periodogram, self-normalized pe-
riodogram, stable distribution.

1 Introduction
Continuous-time ARMA (CARMA) processes are the continuous-time versions of the well known ARMA
processes in discrete time having short memory. The advantage of continuous-time modelling is that it
allows handling of irregularly spaced time series and in particular of high-frequency data often appearing
in turbulence and finance. In this paper we consider a CARMA process Y = (Yt)t∈R driven by a symmetric
α-stable Lévy process (Lt)t∈R. Before we start with its definition, we recall that a real-valued random
variable X is called symmetric α-stable (SαS) with index of stability α ∈ (0,2], if its characteristic function
is of the form

ΦX (z) = E [exp{i zX}] = exp
{
−σ

α |z|α
}
, z ∈ R,

for some σ ≥ 0, and a real random vector X = (X1, . . . , Xd)
T is SαS, if all linear combinations

∑
d
i=1 ai Xi, (a1, . . . , ad)

T ∈ Rd are SαS; see the monograph of Samorodnitsky and Taqqu [33] for details
on stable distributions. Then a symmetric α-stable Lévy process (Lt)t∈R is a stochastic process with L0 = 0
almost surely, independent and stationary increments which are SαS distributed with characteristic function

ΦLt (z) = E [exp{i zLt}] = exp
{
−|t|σα

L |z|
α
}
, z, t ∈ R,
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for some σL ≥ 0 and almost surely càdlàg sample paths (cf. the book of Sato [34] on Lévy processes). A
symmetric α-stable CARMA process is then defined as follows. Let (Lt)t∈R be a symmetric α-stable Lévy
process. Assume that we have given p, q ∈ N, p > q, and a1, . . . , ap, c0, . . . , cq ∈ R, ap, c0 6= 0, set

A :=


0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1
−ap −ap−1 . . . . . . −a1

 ∈ Rp×p

and let (Xt)t∈R be a strictly stationary solution to the stochastic differential equation

dXt = AXt dt + ep dLt , t ∈ R, (1.1a)

where ep denotes the p-th unit vector in Rp. Then the process

Yt := cT Xt , t ∈ R, (1.1b)

with c = (cq, cq−1, . . . , cq−p+1)
T (where we use the convention c j = 0 for j < 0) is said to be a symmetric

α-stable CARMA process of order (p, q). Necessary and sufficient conditions for the existence of a strictly
stationary CARMA process are given in [11]. A CARMA process can be interpreted as a solution to the
formal p-th order stochastic differential equation

a(D)Yt = c(D)DLt , t ∈ R,

where D denotes the differential operator with respect to t and

a(z) := zp +a1zp−1 + . . .+ap and c(z) := c0zq + c1zq−1 + . . .+ cq

are the autoregressive and the moving average polynomial, respectively. Hence, SαS CARMA processes
can be seen as the continuous-time analog of SαS (discrete-time) ARMA processes. The representation
(1.1) of a CARMA process is the controller canonical state space representation going back to [7]. Alter-
natively there exists also the observer canonical form of a CARMA process (see (2.8) below) as derived in
[28] for multivariate CARMA models. For an overview and a comprehensive list of references on CARMA
processes we refer to [8, 12]. CARMA processes are important for stochastic modelling in many areas of
application as, e.g., signal processing and control (cf. [19, 27]), econometrics (cf. [3, 30]), high-frequency
financial econometrics (cf. [38]) and financial mathematics (cf. [2]). Stable CARMA processes are partic-
ularly relevant in modelling energy markets (cf. [1, 18]).

The aim of this paper is to investigate the sampled sequence Y ∆ := (Yk∆)k∈Z of a causal (i.e., current
values of the process only depend on past values of the driving process) stable CARMA process, meaning
we only observe the underlying CARMA process (Yt)t∈R at equidistant time points 0, ∆, 2∆, . . . with ∆ > 0
small as used for modelling high-frequency data (cf. [10, 15]), and to study the asymptotic behavior of the
sampled process Y ∆ in the frequency domain. In the time domain the autocovariance function

γY (h) =
σ2

L
π

∫
∞

−∞

eihω |c(iω)|2

|a(iω)|2
dω = cT e|h|A γX (0)c, h ∈ R, (1.2)

with γX (0) = 2σ2
L
∫

∞

0 esAepeT
p esAT

ds, gives information about the dependence structure, whereas in the fre-
quency domain the spectral density

fY (ω) =
1

2π

∫
∞

−∞

γY (h)e−ihω dh =
σ2

L
π
· |c(iω)|2

|a(iω)|2
, ω ∈ R, (1.3)

gives information about the periodicities of the CARMA process. Both the spectral density and the autoco-
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variance function exist only for α = 2. The spectral density of the sampled process Y ∆ is

f∆(ω) =
1

2π

∞

∑
k=−∞

γY (k∆)e−ikω =
1
∆

∞

∑
k=−∞

fY
(

ω +2kπ

∆

)
, −π ≤ ω ≤ π, (1.4)

where the second equality follows from [6, p. 206]. It is related to fY by

lim
∆→0

∆ f∆(ω∆)1[− π

∆
, π

∆
](ω) = fY (ω), ω ∈ R, (1.5)

(see p. 12 for a proof). Loosely spoken, this means that in the limit ∆→ 0 we can identify every CARMA
process from its equidistantly sampled observations. The question arises whether this is also true if we
study the empirical version of the spectral density, the periodogram. We investigate normalized and self-
normalized versions. The normalized periodogram of Y ∆ at frequency ω ∈ [−π,π] is given by

In,Y ∆(ω) =
∣∣∣n−1/α

n

∑
k=1

Yk∆ e−iωk
∣∣∣2.

Equation (1.5) suggests that we obtain a non-trivial limit by studying the behavior of the properly rescaled
periodogram In,Y ∆ of the sampled CARMA process at point ω∆. More precisely, we will show that the
finite-dimensional distribution of the periodogram ∆2−2/α [In,Y ∆(ω1∆), . . . , In,Y ∆(ωm∆)] for (ω1, . . . , ωm)∈
(R\{0})m converges weakly to a function of stable distributions, if simultaneously the grid distance ∆ goes
to 0 with a suitable rate and the number of observations n goes to infinity (see Theorem 2.6). A small grid
distance and a huge number of observations reflect the behavior of high-frequency data. A consequence
of this is the fact that the normalized periodogram is not a consistent estimator of the so-called power
transfer function |c(i · )|2/|a(i · )|2. Moreover, if (Lt)t∈R is a Brownian motion then the limit distribution
has independent components. In contrast, if (Lt)t∈R is a SαS-stable Lévy process with α ∈ (0,2) then the
components are dependent. In both cases the limit distributions differ depending on whether ω1, . . . , ωm are
linearly dependent or independent over Z. However, the one-dimensional distributions do not depend on ω .
Our result is comparable to Brockwell and Davis [9, Chapter 10.3] for the finite variance and Klüppelberg
and Mikosch [23, Theorem 2.4] for the stable case, respectively, of an ARMA process in discrete time;
although the α-stable limit distributions are different in the discrete-time and the continuous-time model.

Since the normalized periodogram depends on α , which is in general an unknown parameter, we also
analyze different normalizations. So-called self-normalized periodogram versions are given by

Ĩn,Y ∆(ω) =

∣∣∣∑n
k=1 Yk∆ e−iωk

∣∣∣2
(∑n

k=1 Yk∆)2 and În,Y ∆(ω) =

∣∣∣∑n
k=1 Yk∆ e−iωk

∣∣∣2
∑

n
k=1 Y 2

k∆

, −π ≤ ω ≤ π, (1.6)

having the obvious benefit that they only depend on the data and not on the index of stability α . Again
the finite-dimensional distributions of Ĩn,Y ∆(∆ · ) converge to functions of stable distributions and do not
provide consistent estimators (cf. Theorem 2.10). The limit distribution has similar properties as for the
normalized periodogram. The second version În,Y ∆ has to be rescaled with ∆ as in (1.5) to derive a limit
result (see Theorem 2.11). Our conclusions for the self-normalized periodogram are in analogy to those for
ARMA models in discrete time obtained by Klüppelberg and Mikosch [24].

The paper is structured in the following way. We start with our main results in Section 2. The discrete-
time sampled CARMA process Y ∆ has a representation as an MA process in discrete time where the
noise sequence is p-dependent. In Section 2.1 we investigate this moving average structure in detail. Then
the asymptotic behavior of the normalized and the self-normalized periodogram is topic of Sections 2.2
and 2.3. Finally, in Section 3 we derive results for the characterization of the limit distributions of the
normalized and the self-normalized periodogram versions. These are based on the geometry of numbers
and on manifolds. The proofs of the results are presented in Section 4.
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Notation
We use N∗ and R∗ for the natural and real numbers, respectively, excluding zero and Z for the integers.
For the minimum of two real numbers a, b ∈R we write shortly a∧b and for the maximum a∨b. The real
and imaginary part of a complex number z ∈ C is written as ℜ(z) and ℑ(z), respectively, and its complex
conjugate as z. For two sequences (an)n∈N and (bn)n∈N we say an ∼ bn as n→ ∞ if limn→∞ an/bn = 1. The
transpose of a matrix M is written as MT and the m-dimensional identity matrix shall be denoted by Im.

For a subset S⊆ N and k ∈ N we set (
S
k

)
:= {B⊆ S : |B|= k} .

The orthogonal complement of S⊆ Rm is denoted by S⊥.
On K ∈ {R,C} the Euclidean norm is denoted by | · | whereas on Km it will be usually written as ‖ · ‖.

A scalar product on a linear space is written as 〈 · , · 〉; in Rm and Cm, we usually take the Euclidean one.
If X and Y are normed linear spaces, let B(X ,Y ) be the set of bounded linear operators from X into Y . On
B(X ,Y ) we will usually use the operator norm which, in the case of Y being a Banach space, turns B(X ,Y )
itself into a Banach space. In particular we always equip B(Km,Kn) with the corresponding operator norm
if not stated otherwise.

For two random variables X and Y the notation X D
= Y means equality in distribution. If we consider a

sequence of random variables (Xn)n∈N, we denote convergence in probability to some random variable X

by Xn
P→ X as n→ ∞ and convergence in distribution by Xn

D→ X as n→ ∞.

2 Main Results
Before stating the main results, we establish the moving average structure of the sampled sequence together
with two auxiliary lemmata.

2.1 Moving average structure of the sampled process
The aim of this section is to better understand the structure of the discrete-time sampled process Y ∆. Let
λ1, . . . ,λp denote the eigenvalues of A. By defining the filter Φ∆(B) := ∏

p
j=1

(
1−eλ j∆B

)
where, as usual, B

denotes the backward shift operator and applying it to the sampled sequence Y ∆, we obtain (cf. [11, Lemma
2.1]), for any k ∈ Z,

Z̃k,∆ := Φ
∆(B)Y ∆

k =
p

∑
r=1

Zr
k−r+1,∆, (2.1)

where

Zr
k,∆ :=

∫ k∆

(k−1)∆
cT
(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆A

)
e(k∆−s)A ep dLs, r = 1, . . . , p, (2.2a)

and
Φ

∆
j := (−1) j+1 · ∑

{i1, ..., i j}∈
(
{1, . . . , p}

j

)e∆·∑ j
m=1 λim , j = 0, 1, . . . , p. (2.2b)

It is easy to see that we can rewrite the filter as Φ∆(z) = ∏
p
j=1

(
1− eλ j∆ z

)
= −∑

p
j=0 Φ∆

j z j for any z ∈ C.
In this paper we will suppose that the eigenvalues λ1, . . . , λp of A have strictly negative real parts (see
Assumption 1 below). Under this assumption we observe that Φ∆(z) 6= 0 for all |z| ≤ 1 and thus deduce,
for any |z| ≤ 1,

Ψ
∆(z) := (Φ∆(z))−1 =

∞

∑
j=0

Ψ
∆
j z j with Ψ

∆
j = ∑

j1, ..., jp∈{0,1, ..., j}
∑

p
m=1 jm= j

e∆·∑p
m=1 λm jm , j ∈ N.
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We can hence rewrite eq. (2.1) as
Y ∆

k = Ψ
∆(B) Z̃k,∆, k ∈ Z, (2.3)

showing that the sampled CARMA process Y ∆ is a (discrete-time) moving average process of the noise
sequence Z̃ ∆ := (Z̃k,∆)k∈Z. A challenge is that Z̃ ∆ is not an i.i.d. sequence; it is p-dependent. For this
reason we define, for any k ∈ Z, ω ∈ R and m ∈ {1, . . . , p}, the auxiliary (random) functions

˜̃Zk,∆(ω) :=
p

∑
r=1

Zr
k,∆ e−iω(r−1) and f (m)

∆
(ω) :=

p

∑
r=1

e−iω(r−1)
(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆λm

)
. (2.4)

In contrast to Z̃ ∆ we have now that ˜̃Z∆(ω) := ( ˜̃Zk,∆)k∈Z(ω) is an i.i.d. sequence, and the idea is to rewrite
the periodogram essentially by means of ˜̃Z∆(ω). Then the next auxiliary lemma holds.

Lemma 2.1.

(i) Under the assumption that the eigenvalues λ1, . . . , λp of A are distinct, we have, for any ∆ > 0, r ∈
{1, . . . , p}, k ∈ Z and s ∈ R,

cT
(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆A

)
e(k∆−s)Aep =

p

∑
m=1

c(λm)

a′(λm)

(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆λm

)
e(k∆−s)λm .

(ii) We have, for any λ ∈ C,
1
∆

∫
∆

0

∣∣e(∆−s)λ −1
∣∣α ds→ 0 as ∆→ 0.

(iii) Assume that the eigenvalues λ1, . . . , λp of A possess non-vanishing real parts. We then have, for any
m ∈ {1, . . . , p} and any ω ∈ R,

f (m)
∆

(ω∆)∼ ∆
p−1 a(iω)

1
iω−λm

as ∆→ 0.

(iv) Assume that the eigenvalues λ1, . . . , λp of A are distinct and possess non-vanishing real parts. Then
we have, for any ω ∈ R,

p

∑
m=1

c(λm)

a′(λm)
· 1

iω−λm
=

c(iω)

a(iω)
.

By virtue of Lemma 2.1(i), eqs. (2.2a) and (2.4) we obtain that

( ˜̃Zk,∆
)

k∈Z(ω) =

(∫ k∆

(k−1)∆

p

∑
m=1

c(λm)

a′(λm)
f (m)
∆

(ω)e(k∆−s)λm dLs

)
k∈Z

=:
(∫ k∆

(k−1)∆
g(k)

∆,ω(s)dLs

)
k∈Z

(2.5)

is an i.i.d. sequence of complex SαS random variables since g(k)
∆,ω : R→ C is complex-valued. Recall that

integration of complex-valued deterministic functions with respect to a SαS Lévy process is well defined as
a limit in probability for all functions in Lα(C) := { f : R→C measurable,

∫
R | f (x)|

α dx < ∞} (for further
details, see [33, Section 3.4 and Section 6.2]). The characteristic function of the stable integral

∫
R gdL is

given by

E

[
exp
{

i z1

∫
R

ℜ(g(s))dLs + i z2

∫
R

ℑ(g(s))dLs

}]
= exp

{
−σ

α
L

∫
R
|z1 ℜ(g(x))+ z2 ℑ(g(x))|α dx

}
(2.6)

for any z1, z2 ∈ R (cf. [33, Example 6.1.5 and Proposition 6.2.1 (i)]) such that (ℜ(
∫
R gdL) , ℑ(

∫
R gdL)) is

SαS.
Finally, we require the following conclusions for (Ψ∆

j ) j∈N for the proofs of our results.
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Lemma 2.2. Suppose ∆ = ∆n → 0 as n→ ∞ and that the eigenvalues λ1, . . . , λp of A possess strictly
negative real parts. Then we have:

(i) There is a constant C(p)> 0 such that∣∣∣Ψ∆n
j

∣∣∣≤C(p)∆
−(p−1)
n e∆nλmax j ∀ j ∈ N where λmax := max

k∈{1, ..., p}
ℜ(λk) ∈ (−∞, 0).

(ii) If n∆1+δ
n

n→∞→ ∞ for some δ > 0, then we have

∞

∑
j=n+1

∣∣Ψ∆n
j

∣∣ n→∞→ 0 and
∆α

n

n

−n−1

∑
k=−∞

( n−k

∑
j=1−k

∣∣Ψ∆n
j

∣∣)α
n→∞→ 0.

(iii) If n∆n
n→∞→ ∞, then ∆

α p
n n−1

∑
1−p
k=1−n

(
∑

n
j=1−k

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

(iv) If n∆
α(p−1)+1−α
n

n→∞→ ∞, then

∆α
n

n

−1

∑
k=2−p−n

( n∧(−k)

∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α
n→∞→ 0.

(v) If n∆
α(p−1)
n

n→∞→ ∞, then ∆α
n n−1

∑
0
k=2−p

(
∑

n
j=1

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

2.2 Normalized periodogram
Before we formulate the main limit results for the normalized and the self-normalized periodogram, we
introduce a random vector that will show up in the limits.

Let m ∈ N∗, ω1, . . . , ωm ∈ R∗ and set ω˜ = (ω1, . . . , ωm)
T . We define the (2m+1)-dimensional (stable)

random vector ((Sℜ
j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m}, Sm+1(ω˜)) via its joint characteristic function

E

[
exp

{
i

(
m

∑
j=1

θ j Sℜ
j (ω˜)+ν j Sℑ

j (ω˜)+ τ Sm+1(ω˜)
)}]

= exp{−σ
α
L ·Kω˜ (θ˜, ν˜, τ)}, θ˜, ν˜ ∈ Rm, τ ∈ R,

(2.7a)
with Kω˜ (θ˜, ν˜, τ) given as follows:

(i) If ω1, . . . , ωm are linearly independent over Z (i.e. there is no h ∈ Zm, h 6= 0, such that 〈h, ω˜〉 = 0),
then

Kω˜ (θ˜, ν˜, τ) =
∫
[0,1)m

∣∣∣∣ m

∑
j=1

θ j cos(2πx j)+ν j sin(2πx j)+ τ

∣∣∣∣α d(x1, . . . , xm). (2.7b)

(ii) If ω1, . . . , ωm are linearly dependent over Z, then there is an s ∈ {1, . . . , m−1} such that

Kω˜ (θ˜, ν˜, τ) =
1

H m−s(M )

∫
M

∣∣∣∣ m

∑
j=1

θ j cos(2πx j)+ν j sin(2πx j)+ τ

∣∣∣∣α dH m−s(x1, . . . , xm), (2.7c)

where M =M (ω1, . . . , ωm) is the (m−s)-dimensional linear manifold in [0,1)m defined in eq. (3.2)
below and H m−s is the (m− s)-dimensional Lebesgue (Hausdorff) measure on M (ω1, . . . , ωm) (for
a definition of manifolds, see, e.g., [29, pp. 200-201]).

We start to investigate the normalized periodogram in analogy to [9, 23]. Since we use Lemmata 2.1
and 2.2 for the proofs of the asymptotic behavior of the normalized periodogram we require

Assumption 1. The eigenvalues λ1, . . . , λp of A are distinct and possess strictly negative real parts.
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Moreover, we establish our limit results for the different periodogram versions in the asymptotic framework
of high-frequency data within a long time interval using Lemma 2.2. Thus we need

Assumption 2. There is some δ > 0 such that, with β = max{1+δ , α(p−1)+max{0, 1−α}}, we have
∆ = ∆n→ 0 whereas n∆

β
n → ∞ as n→ ∞.

Remark 2.3.

(i) Note that in the case of a symmetric α-stable Ornstein-Uhlenbeck process (i.e. p = 1), Assumption 2
becomes ∆n→ 0 and n∆1+δ

n → ∞ as n→ ∞ for some δ > 0 and does not depend on α .

(ii) Conversely, if p ≥ 2, the convergence rate of ∆n depends on α . However, one easily verifies that
β ≤ 2p− 1 is always true and thus, if ∆n → 0 and n∆

2p−1
n → ∞ as n→ ∞ hold, Assumption 2 is

satisfied as well. 2

The following is an analog result to the discrete-time ones [9, Theorem 10.3.1] and [23, Proposition 2.1],
respectively.

Proposition 2.4. Let ∆ = ∆n and Y ∆n = (Yk∆n)k∈Z be the sampled SαS CARMA process. Under Assump-
tion 1 the periodogram In,Y ∆n satisfies, for any ω ∈ [−π,π],

In,Y ∆n (ω) =
∣∣Ψ∆n(e−iω)

∣∣2 In, Z̃∆n (ω)+Rn,∆n(ω)

with Z̃∆n := (Z̃k,∆n)k∈Z as given in eq. (2.1). If in addition Assumption 2 holds, then we have for any ω ∈R∗

lim
n→∞

P
(

∆
2− 2

α
n |Rn,∆n(ω∆n)|> ε

)
= 0 for every ε > 0.

This shows that we have to study the limit behavior of the periodogram of Z̃∆n in order to get insight into
the asymptotic properties of In,Y ∆n . The next theorem provides the key result therefore. Note that in terms
of the discrete Fourier transform of Z̃∆n ,

Jn, Z̃∆n (ω) := n−1/α
n

∑
k=1

Z̃k,∆n e−iωk, −π ≤ ω ≤ π,

we can write In, Z̃∆n (ω) = |Jn, Z̃∆n (ω)|2.

Theorem 2.5. If Assumption 1 holds, ∆ = ∆n→ 0 and n∆
1∨α(p−1)
n → ∞ as n→ ∞, then we have, for any

m ∈ N∗ and ω˜ = (ω1, . . . , ωm)
T ∈ (R∗)m,

∆
1−p− 1

α
n

[
Jn, Z̃∆n (ω j∆n)

]
j=1, ...,m

D→
[
c(iω j) ·

(
Sℜ

j (ω˜)− iSℑ

j (ω˜)
)]

j=1, ...,m
as n→ ∞.

The joint characteristic function of the 2m-dimensional stable random vector
(
Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m} is
given in eq. (2.7) (with τ = 0).

Combining now Proposition 2.4 and Theorem 2.5 together with the fact that∣∣Ψ∆n(e−iω∆n)
∣∣2 ∼ ∆

−2p
n |a(iω)|−2 as n→ ∞,

where the latter can be easily derived from the definition of Ψ∆n together with the convergence of ∆n to 0,
we deduce the following main result for the limit behavior of the normalized periodogram.

Theorem 2.6. Suppose α ∈ (0,2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled SαS CARMA(p,q) process.
If Assumptions 1 and 2 hold, then In,Y ∆n satisfies for any m ∈ N∗ and ω˜ = (ω1, . . . , ωm)

T ∈ (R∗)m

∆
2− 2

α
n

[
In,Y ∆n (ω j∆n)

]
j=1, ...,m

D→
[
|c(iω j)|2

|a(iω j)|2
·
([

Sℜ
j (ω˜)]2 + [Sℑ

j (ω˜)]2
)]

j=1, ...,m
as n→ ∞,
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where the stable random vector
(
Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m} has joint characteristic function as given in
eq. (2.7) (with τ = 0).

Remark 2.7.

(i) We highlight two important differences of our limit result to the one in [23] for ARMA models
in discrete time. First, in our paper we do not have to distinguish between rational and irrational
multiples of 2π in the frequency vector ω˜ as it has been the case in discrete time (see, e.g., [23,
Theorem 2.4]). The reason therefore is our asymptotic framework ∆n→ 0 as n→ ∞ which yields that
in the proof of Proposition 3.4 the crucial eq. (4.33) holds for any h∈Zm, h 6= 0, whereas with ∆n :=∆

constant and one frequency component being a rational multiple of 2π , (4.33) could not hold for all
h ∈ Zm, h 6= 0. Secondly, the same equation explains why in our framework the limit distributions
differ depending on whether or not the frequencies ω1, . . . , ωm are linearly dependent over Z (cf.
eq. (2.7)). In discrete time they depend on whether or not 2π, ω1, . . . , ωm (with ω1, . . . , ωm being
irrational multiples of 2π) are linearly dependent over Z (see again [23, Theorem 2.4]). Note that the
latter is also the reason why the manifold M (ω1, . . . ,ωm) in (3.2) is different from the manifold that
appears in the discrete-time result.

(ii) Moreover, for linearly independent ω1, . . . , ωm the distribution of (Sℜ
j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m} does not
depend on ω˜ anymore. In the dependent case, ω˜ determines the manifold, and hence, has an influence
on the limit distribution. The sequence of random variables (Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m} is independent
in the case α = 2, whereas for α < 2 it is dependent; in particular for m = 1 and ω˜ = ω ∈ R∗, the
random variables Sℜ

1 (ω) and Sℑ

1 (ω) are dependent.

(iii) Investigating the special case m = 1, Theorem 2.6 gives for any ω ∈ R∗

∆
2− 2

α
n In,Y ∆n (ω∆n)

D→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)
e2πi s dLs

∣∣∣∣2
as n→ ∞. Hence, the limit distribution factorizes in a parametric factor depending on ω (the so-
called power transfer function) and a random factor, which does not depend on ω anymore. The limit
distribution coincides with the limit distribution of the normalized periodogram of ARMA models if
ω is an irrational multiple of 2π .

(iv) Let α = 2. Then with ω ∈ R∗ as n→ ∞,

∆n In,Y ∆n (ω∆n)
D→ 2π fY (ω)

(
N2

1
2

+
N2

2
2

)
D
= 2π fY (ω)E,

where N1 and N2 are i.i.d. standard normal random variables and E is a standard exponential random
variable. This limit result is the empirical counterpart to (1.5) with scaling factor ∆n and in analogy
to the results for ARMA models (cf. [9, Theorem 10.3.2]). It confirms, that ∆n In,Y ∆n (ω∆n) is not a
consistent estimator for the spectral density.

(v) For any h ∈ R∗, (Sℜ
j (hω˜), Sℑ

j (hω˜)) j∈{1, ...,m}
D
= (Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m}, such that as n→ ∞,

∆
2− 2

α
n

[
In,Y ∆n (hω j∆n)

]
j=1, ...,m

D→
[
|c(ihω j)|2

|a(ihω j)|2
·
([

Sℜ
j (ω˜)]2 + [Sℑ

j (ω˜)]2
)]

j=1, ...,m
.

On the other hand, if ω1, . . . ,ωm are linearly independent over Z, then there exists an h ∈ R with h+
ω1, . . . , h+ωm linearly dependent over Z such that the limit distributions (Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m}

and (Sℜ
j (h1˜+ω˜), Sℑ

j (h1˜+ω˜)) j∈{1, ...,m} are different. Consequently, there is no general result how a
frequency shift influences the limit distribution. 2

Remark 2.8. We conjecture that Assumption 2 is in this formulation not a necessary assumption for The-
orem 2.6. However, it seems to be (close to) necessary for Proposition 2.4, but Proposition 2.4 is not
necessary for Theorem 2.6. 2
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2.3 Self-normalized periodogram

Next we derive the limit behavior of the self-normalized periodogram Ĩn,Y ∆n and În,Y ∆n , respectively, as
given in (1.6), which is comparable to those in [24, Section 3] for ARMA processes. As in the normalized
case they converge to functions of stable distributions as the following two theorems show.

First, we have to state some notation. The observer canonical form of a CARMA process (cf. [28]) is
given under Assumption 1 by the stationary and causal multivariate Ornstein-Uhlenbeck process

Vt =
∫ t

−∞

e(t−s)A
β dLs, t ∈ R, (2.8a)

where the vector β = (β1, . . . ,βp)
T ∈ Rp is defined recursively by

βp− j =−
p−1− j

∑
i=1

aiβp− j−i + cq− j, j = 0, 1, . . . , p−1,

(with the convention c j = 0 for j < 0). Then

Yt=eT
1 Vt , t ∈ R, (2.8b)

where e1 = (1, 0, . . . , 0)T ∈ Rp. Hence, every SαS CARMA process can also be written as a Lévy-driven
moving average process Yt =

∫
∞

−∞
g(t− s)dLs, t ∈ R, with kernel function

g(t) = eT
1 etA

β 1[0,∞)(t). (2.9)

The following proposition is crucial for the asymptotic behavior of the different self-normalized peri-
odogram versions.

Proposition 2.9. Assume α ∈ (0,2] and let Y ∆n =(Yk∆n)k∈Z denote the sampled SαS CARMA(p,q) process.
Moreover, define ∆L(k∆n) := Lk∆n−L(k−1)∆n for k ∈ Z, n ∈N∗. Suppose Assumption 1, ∆n→ 0 and n∆n→
∞ as n→ ∞ hold. Then

(i) ∑
n
k=1 Yk∆n = ∑

∞
j=0 g( j∆n) ·∑n

k=1 ∆L(k∆n)+oP

(
∆−1

n (n∆n)
1
α

)
as n→ ∞,

(ii) ∑
n
k=1 Y 2

k∆n
= ∑

∞
j=0 g2( j∆n) ·∑n

k=1 ∆L(k∆n)
2 +oP

(
∆−1

n (n∆n)
2
α

)
as n→ ∞.

The main limit results are then:

Theorem 2.10. Suppose α ∈ (0,2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled SαS CARMA(p,q) process.
The self-normalized periodogram Ĩn,Y ∆n is as in (1.6). If Assumptions 1 and 2 hold, and in addition cq 6= 0,
then we have for any m ∈ N∗ and ω˜ = (ω1, . . . , ωm)

T ∈ (R∗)m, as n→ ∞,

[
Ĩn,Y ∆n (ω j∆n)

]
j=1, ...,m

D→

[
|c(iω j)|2

(
∫

∞

0 g(s)ds)2 · |a(iω j)|2
·
[
Sℜ

j (ω˜)]2 + [Sℑ

j (ω˜)]2
S2

m+1(ω˜)
]

j=1, ...,m

,

where g is the kernel function of the CARMA process as given in eq. (2.9) and the (2m+ 1)-dimensional
stable random vector

((
Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m}, Sm+1(ω˜)) has joint characteristic function given by
eq. (2.7).

Theorem 2.11. Suppose α ∈ (0,2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled SαS CARMA(p,q) process.
The self-normalized periodogram În,Y ∆n is as in (1.6). If Assumptions 1 and 2 hold, then we have for any
m ∈ N∗ and ω˜ = (ω1, . . . , ωm)

T ∈ (R∗)m, as n→ ∞,

∆n

[
În,Y ∆n (ω j∆n)

]
j=1, ...,m

D→

[
|c(iω j)|2∫

∞

0 g2(s)ds · |a(iω j)|2
·
[
Sℜ

j (ω˜)]2 + [Sℑ

j (ω˜)]2
S2

]
j=1, ...,m

,
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where g is again the kernel function of the CARMA process as given in eq. (2.9), the (2m)-dimensional
stable random vector

(
Sℜ

j (ω˜), Sℑ

j (ω˜)) j∈{1, ...,m} has joint characteristic function as given in eq. (2.7) (with

τ = 0) and S2 is a positive α/2-stable random variable.

Remark 2.12.

(i) Theorems 2.10 and 2.11 show that also the self-normalized periodogram versions do not yield con-
sistent estimators for the (normalized) power transfer function. However, based on that paper we will
show in [16] that applying a smoothing filter to the self-normalized periodogram gives such a con-
sistent estimate. Since the model parameters influence the power transfer function and, causality and
invertibility of the CARMA process preconditioned, the latter uniquely determines those parameters,
it is possible to use that consistent estimator of the normalized power transfer function for statistical
inference on the CARMA parameters.

(ii) We have not specified explicitly the joint characteristic function of the random vector that determines
the limit in Theorem 2.11. However, it is uniquely identifiable from the calculated Laplace transform
in eq. (4.31). Note that the limit distributions in Theorems 2.10 and 2.11 are not the same.

(iii) Moreover, we have to multiply (În,Y ∆n (ω j∆n)) j∈{1, ...,m} in Theorem 2.11 by ∆n to obtain an asymp-
totic limit result. This normalization is not necessary for (Ĩn,Y ∆n (ω j∆n)) j∈{1, ...,m} in Theorem 2.10.
Observing (1.5) the rescaling with ∆n seems to be natural in some way. The point is that with Propo-
sition 2.9 we have for the different normalizations

∆n (∑
n
k=1 Yk∆n)

2

∑
n
k=1 Y 2

k∆n

=

(
∆n ∑

∞
j=0 g( j∆n)

)2

∆n ∑
∞
j=0 g( j∆n)2 ·

(∑n
k=1 ∆L(k∆n))

2

∑
n
k=1 ∆L(k∆n)2 +oP(1)

D→
(
∫

∞

0 g(s)ds)2∫
∞

0 g(s)2 ds
· L2

1
[L,L]1

as n→ ∞, where ([L, L]t)t≥0 is the quadratic variation process of (Lt)t≥0. For this reason ∆n appears
in Theorem 2.11. 2

3 Lattices in Rm and the manifolds M (ω1, . . . ,ωm)

In this section we recall some basic facts about lattices in Rm and use them to construct the manifolds
M (ω1, . . . , ωm) in eq. (2.7c). For more details concerning the theory of lattices we refer the reader to
[14, 20].

Definition 3.1 (Lattice). For S⊆Rm let spanZ(S) and spanR(S), respectively, denote the integer and linear
hull of S. For any linearly independent vectors b1, . . . , bd ∈ Rm the additive subgroup of Rm

L := L (b1, . . . , bd) := spanZ({b1, . . . , bd})

is said to be a lattice and b1, . . . , bd is called a basis of L . The dimension of the lattice L is given by

dim(L ) := dim
(
spanR(L )

)
= d.

We call a subset S in Rm discrete if S has no accumulation point in Rm. It is a classical result that
discreteness characterizes lattices among additive subgroups in Rm.

Theorem 3.2 (cf. [20], § 3.2). A subset S⊆ Rm is a lattice if and only if it is a discrete, additive subgroup
of Rm. In either case the dimension of the lattice is equal to the maximal number of linearly independent
vectors in S.

Suppose that we have given ω1, . . . , ωm ∈ R∗ which are linearly dependent over Z. Let ω˜ =
(ω1, . . . , ωm)

T = 2πη˜. Note that all lattices as well as the manifolds M (ω1, . . . , ωm) in this paper de-
pend on the frequency vector ω˜ and η˜, respectively. We neglect, however, that dependency for ease of
notation. We define

L̃ := {η˜}⊥∩Zm.
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Then L̃ constitutes a discrete, additive subgroup of Rm and since the maximal possible number of linearly
independent vectors in L̃ is m− 1, we apply Theorem 3.2 and obtain an s ∈ {1, . . . , m− 1} and a basis
bm−s+1, . . . , bm ∈ Zm of the lattice L̃ . Now

L := L̃ ⊥∩Zm (3.1)

is a discrete, additive subgroup in Rm as well and hence, again due to Theorem 3.2, it is a lattice generated
by a basis b1, . . . , bm−s ∈Zm. That the dimension of L is indeed m−s (i.e. the maximal possible dimension
of the orthogonal complement of L̃ ) can be seen from the following fact: let

H :=

bT
m−s+1

...
bT

m

 ∈ Zs×m

and note that there has to be an s× s-block with non-vanishing determinant. W.l.o.g. this block is given
by the first s columns of H, denoted by H [s]. We can solve, for any j ∈ {s+1, . . . , m}, the linear systems
H [s]x j = −h j where h j is the j-th column of H and obtain, using Cramer’s rule, solutions x j ∈ Qs with
common denominator det

(
H [s]
)
∈ Z. Hence, the vectors

v j := det
(

H [s]
)
·




x j
0
...
0

+ e j

 ∈ Zm, j ∈ {s+1, . . . , m},

with e j being the j-th unit vector in Rm, are linearly independent and Hv j = 0 for all j ∈ {s+ 1, . . . , m}.
This shows that v j ∈ {bm−s+1, . . . , bm}⊥∩Zm = L for any j ∈ {s+1, . . . , m}, and hence, the dimension
of the lattice L has to be m− s as claimed above. Let

B :=
(
b1 b2 . . . bm−s

)
∈ Zm×(m−s)

and

T : (R mod1)m−s→ (R mod1)m, x = (x1, . . . ,xm−s)
T 7→ Bx mod 1 =

(
m−s

∑
j=1

x j b j

)
mod 1,

where the mod-operator has to be applied componentwise. We then define

M := T
(
(R mod1)m−s), (3.2)

the Gram matrix G := BT B and the set of functions on M

T :=
{

fh : M → C : fh = e2πi〈h, · 〉 ◦T ◦G−1 ◦T−1 for an h ∈L
}
. (3.3)

T is well-defined due to the injectivity of T (see the proof of the upcoming Theorem 3.3(i)). Moreover, it
can be shown that all the functions in T are continuous (mod 1) on M . The following theorem holds.

Theorem 3.3.

(i) M is an (m− s)-dimensional C1-manifold in [0,1)m.

(ii) Let µ˜ ∈ Rm−s be the coordinates of η˜ in the basis B, i.e. η˜ = Bµ˜. Then 〈z, µ˜〉 6= 0 for all z ∈ Zm−s,
z 6= 0.
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(iii) For any fh ∈T with h ∈L , h 6= 0, we have

1
H m−s(M )

∫
M

fh(x)H m−s(dx) = 0,

where H m−s is the (m− s)-dimensional Lebesgue measure on M .

(iv) For any x, y ∈M , x 6= y, there is an h ∈L such that fh(x) 6= fh(y).

Since (R mod1)m and (R mod1)m−s are compact Hausdorff spaces, one immediately obtains that also
M is a compact Hausdorff space. Note that the subalgebra spanC(T ) of the algebra C(M ) of all contin-
uous complex-valued functions on M contains the constant function 1 (take h = 0). Moreover, spanC(T )
is closed under complex conjugation and separates points (see Theorem 3.3(iv)). Applying the Stone-
Weierstraß Theorem (cf. [32, p. 122] or [35, p. 161]), this yields that spanC(T ) is dense in C(M ) with
respect to the topology of uniform convergence.

An application of Theorem 3.3 as given in the next proposition characterizes the limit distributions of
the normalized and the first version of the self-normalized periodogram, respectively, by random vectors
with characteristic functions as given in (2.7).

Proposition 3.4.
Suppose ∆=∆n→ 0 and n∆n→∞ as n→ ∞. Moreover, define for any z1,z2 ∈R the function Ξz1,z2 :C→R
by Ξz1,z2(x) := z1 ℜ(x)+ z2 ℑ(x). Then, for any m ∈ N∗, ω1, . . . , ωm ∈ R∗ and θ˜, ν˜ ∈ Rm,

lim
n→∞

1
n

n−p+1

∑
k=1

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk c(iω j)

)∣∣∣∣∣
α

= Kω˜
((

Ξθ j ,ν j

(
c(iω j)

))
j∈{1, ...,m}

,
(

Ξ−ν j ,θ j

(
c(iω j)

))
j∈{1, ...,m}

, 0
)
,

where Kω˜ is given by eqs. (2.7b) and (2.7c), respectively.

For ω1, . . . , ωm linearly independent over Z a similar result was derived in [25, Corollary 4].
Finally, we shall require Proposition 3.5 from below for the limit result of the second version of the

self-normalized periodogram. The proof of this proposition is based on Theorem 3.3 as well.

Proposition 3.5. Suppose ∆ = ∆n → 0 and n∆n → ∞ as n→ ∞. Let m ∈ N∗, ω1, . . . ,ωm ∈ R∗ and write
ω˜ = (ω1, . . . ,ωm)

T = 2π(η1, . . . ,ηm)
T = 2πη˜. Moreover, suppose that (Nk)k∈N∗ are i.i.d. standard normal

random variables.

(i) If ω1, . . . ,ωm are linearly independent over Z, we assume that we have given a random variable U˜ ,
uniformly distributed on [0,1)m and independent of (Nk)k∈N∗ , and a function f : (R mod1)m×R→R
such that E[ f 2(U˜ , N1)]< ∞ and g(k)(x) := E[ f k(x, N1)], k = 1,2, is continuous on (R mod1)m.

(ii) If ω1, . . . ,ωm are linearly dependent over Z, we assume that we have given a random variable V˜,
uniformly distributed on [0,1)m−s and independent of (Nk)k∈N∗ , and a function f : M ×R→ R such
that E[ f 2(U˜ , N1)] < ∞ and g(k)(x) := E[ f k(x, N1)], k = 1,2, is continuous on M , where U˜ := T (V˜)and T is the parametrization of M .

Then in either case
1
n

n

∑
k=1

f (k∆nη˜ mod 1, Nk)
P→ E

[
f (U˜ , N1)

]
as n→ ∞. (3.4)

4 Proofs

4.1 Proofs of Section 1
Proof of Equation (1.5).
Fix an arbitrary ω ∈ R and assume that ∆ is sufficiently small such that ω∆ ∈ [−π,π]. Then

∆ f∆(ω∆)
(1.4)
=

∆

2π

∞

∑
k=−∞

γY (k∆)e−ikω∆ (1.2)
=

1
2π

cT
(

∆ ·
∞

∑
k=−∞

e|k|∆Ae−ikω∆

)
γX (0)c. (4.1)
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For any ε > 0, there exist an N0 ∈ N and ∆0 > 0 such that∥∥∥∫ ∞

−∞

e|h|Ae−ihω dh−∆ ·
∞

∑
k=−∞

e|k|∆Ae−ikω∆

∥∥∥
≤
∫
|h|≥N0

∥∥e|h|A
∥∥dh+

∥∥∥∥∫ N0

−N0

e|h|Ae−ihω dh−∆ · ∑
|k|≤bN0/∆c

e|k|∆Ae−ikω∆

∥∥∥∥+∆ · ∑
|k|≥bN0/∆c+1

∥∥e|k|∆A∥∥
≤ ε

3
+

∥∥∥∥∫ N0

−N0

e|h|Ae−ihω dh−∆ · ∑
|k|≤bN0/∆c

e|k|∆Ae−ikω∆

∥∥∥∥+ ε

3
(4.2)

for all 0 < ∆≤ ∆0. The second addend on the right-hand side converges to 0 as ∆→ 0 (Riemann sums!), i.e.
there is a ∆1 > 0 such that (4.2) is less or equal to ε for any ∆≤ ∆1. Hence, the right-hand side of eq. (4.1)
converges, as ∆→ 0, to

1
2π

cT
(∫ ∞

−∞

e|h|Ae−ihω dh
)

γX (0)c =
1

2π

∫
∞

−∞

cT e|h|AγX (0)c︸ ︷︷ ︸
(1.2)
= γY (h)

·e−ihω dh
(1.3)
= fY (ω).

4.2 Proofs of Section 2.1
Proof of Lemma 2.1. (i) By virtue of [4, Proposition 11.2.1] we have, for any t ∈ R,

etA =
1

2πi

∫
ρ

(zIp−A)−1etz dz,

where ρ is a simple closed curve in the complex plane enclosing the spectrum of A. Moreover, from [13,
Lemma 3.1] we immediately obtain

cT (zIp−A)−1ep =
c(z)
a(z)

for any z ∈ C\{λ1, . . . , λp}. Hence,

cT
(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆A

)
e(k∆−s)Aep =−

r−1

∑
j=0

Φ
∆
j cT

(
1

2πi

∫
ρ

(zIp−A)−1e(r−1− j)∆z+(k∆−s)z dz
)

ep

=−
r−1

∑
j=0

Φ
∆
j ·

1
2πi

∫
ρ

c(z)
a(z)

e(r−1− j)∆z+(k∆−s)z dz

=
p

∑
m=1

c(λm)

a′(λm)

(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆λm

)
e(k∆−s)λm ,

where the last equality follows from the Residue Formula (see, e.g., [26, Chapter VI, Theorem 1.2 and
Lemma 1.3] or [17, Theorem III.6.3 and Remark III.6.4]) and the fact that the eigenvalues λ1, . . . , λp of A
are supposed to be distinct.

(ii) We obviously have

1
∆

∫
∆

0

∣∣e(∆−s)λ −1
∣∣α ds =

1
∆

∫
∆

0

∣∣esλ −1
∣∣α ds

≤ 2α

∆

∫
∆

0

∣∣esℜ(λ ) cos
(
sℑ(λ )

)
−1
∣∣α +

∣∣esℜ(λ ) sin
(
sℑ(λ )

)∣∣α ds.
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Due to the Mean Value Theorem there exists an ε(∆) ∈ [0,∆] such that

1
∆

∫
∆

0

∣∣esℜ(λ ) cos
(
sℑ(λ )

)
−1
∣∣α ds =

∣∣eε(∆)·ℜ(λ ) cos
(
ε(∆)ℑ(λ )

)
−1
∣∣α . (4.3)

Since ε(∆)→ 0 as ∆→ 0, we immediately obtain that the right-hand side of (4.3) converges to 0 as ∆→ 0.
Likewise we deduce that

1
∆

∫
∆

0

∣∣esℜ(λ ) sin
(
sℑ(λ )

)∣∣α ds→ 0 as ∆→ 0

and hence, (ii) follows.
(iii) By virtue of eq. (2.2b) we have, for any r ∈ {1, . . . , p},

−
r−1

∑
j=0

Φ
∆
j e(r−1− j)∆λm

=−e(r−1)∆λm Φ
∆
0 − e(r−2)∆λm Φ

∆
1 − e(r−3)∆λm Φ

∆
2 − . . .−Φ

∆
r−1

= (−1)2 · e(r−1)∆λm − e(r−2)∆λm · (−1)2 · ∑

{i1}∈
(
{1, . . . , p}

1

)e∆λi1 − e(r−3)∆λm Φ
∆
2 − . . .−Φ

∆
r−1

= (−1)3 · e(r−2)∆λm · ∑

{i1}∈
(
{1, . . . , p}\{m}

1

)e∆λi1 − e(r−3)∆λm · (−1)3 · ∑

{i1, i2}∈
(
{1, . . . , p}

2

)e∆(λi1+λi2 )

− . . .−Φ
∆
r−1

= (−1)4 · e(r−3)∆λm · ∑

{i1, i2}∈
(
{1, . . . , p}\{m}

2

)e∆(λi1+λi2 )− . . .− (−1)r · ∑

{i1, ..., ir−1}∈
(
{1, . . . , p}

r−1

)e∆∑
r−1
s=1 λis

= . . .= (−1)r+1 · ∑

{i1, ..., ir−1}∈
(
{1, . . . , p}\{m}

r−1

)e∆∑
r−1
s=1 λis (4.4)

and hence, due to eq. (2.4),

f (m)
∆

(ω∆) =
p

∑
r=1

e−iω∆(r−1)
(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆λm

)
(4.4)
=

p−1

∑
r=0

(−1)r e−iω∆r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)e∆∑
r
s=1 λis

=
p−1

∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)e∆(∑
r
s=1 λis−iωr)

=
p−1

∑
j=0

∆ j

j!

p−1

∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r

∑
s=1

λis − iωr
) j

+o(∆p−1) as ∆→ 0. (4.5)

Now, since the eigenvalues of A are also the zeros of the autoregressive polynomial a(z), we observe that
in order to show Lemma 2.1(iii) it remains to prove the following

p−1

∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r

∑
s=1

λis − iωr
) j

=


0 if j = 0, 1, . . . , p−2,

(p−1)! ·
p

∏
s=1
s 6=m

(iω−λs) if j = p−1.

(4.6)
If p = 1, one immediately verifies that (4.6) holds since both sides are equal to 1. Hence, we assume
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p > 1 in the following.
For j = 0, due to the Binomial Theorem, the left-hand side of (4.6) is equal to

p−1

∑
r=0

(−1)r
(

p−1
r

)
=
(
1+(−1)

)p−1
= 0.

For j ∈ {1, . . . , p−1} we obtain

p−1

∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r

∑
s=1

λis − iωr
) j

=
p−1

∑
r=1

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r

∑
s=1

(λis − iω)

) j

=
p−1

∑
r=1

(−1)r
j

∑
t=1

(
p−1− t

r− t

) p−1−(t−1)

∑
k1=1

p−1−(t−2)−k1

∑
k2=1

. . .

p−1−(t−(t−1))−∑
t−2
h=1 kh

∑
kt−1=1

(
j

k1

)(
j− k1

k2

)

×·· ·×
(

j−∑
t−2
h=1 kh

kt−1

)
∑

u1, ...,ut∈{1, ..., p}\{m}
u1<u2<...<ut

(λu1 − iω) j−∑
t−1
h=1 kh

t

∏
s=2

(λus − iω)kt+1−s

=
j

∑
t=1

p−1−(t−1)

∑
k1=1

p−1−(t−2)−k1

∑
k2=1

. . .

p−2−∑
t−2
h=1 kh

∑
kt−1=1

(
j

k1

)(
j− k1

k2

)
· · ·
(

j−∑
t−2
h=1 kh

kt−1

)

× ∑
u1, ...,ut∈{1, ..., p}\{m}

u1<u2<...<ut

(λu1 − iω) j−∑
t−1
h=1 kh

t

∏
s=2

(λus − iω)kt+1−s
p−1

∑
r=1

(−1)r
(

p−1− t
r− t

)
. (4.7)

Since
(

n
j

)
= 0 for all n ∈ N and j < 0, we get

p−1

∑
r=1

(−1)r
(

p−1− t
r− t

)
= (−1)t ·

p−1−t

∑
r=0

(−1)r
(

p−1− t
r

)
= (−1)t ·

(
1+(−1)

)p−1−t

=

{
0 if t = 1, . . . , p−2,
(−1)p−1 if t = p−1,

where we used again the Binomial Theorem. Consequently, for any j ∈ {1, . . . , p−2}, the right-hand side
of (4.7) vanishes, whereas for j = p−1 it becomes

(−1)p−1
(

p−1
1

)(
p−2

1

)
· · ·
(

2
1

) p

∏
s=1
s 6=m

(λs− iω) = (p−1)! ·
p

∏
s=1
s6=m

(iω−λs),

which completes the proof of eq. (4.6) and hence, (iii) is shown.
(iv) It is a simple consequence of Liouville’s Theorem (see, for instance, [26, Chapter III, Theorem 7.5])

that any rational function f (z) = q(z)
p(z) with deg(q)< deg(p) can be written as

f (z) = h f (z; λ1)+ . . .+h f (z; λr)

where λ1, . . . , λr are the distinct zeros of p(z) and h f (z; λm) is the principal part of the Laurent series
expansion of f at the point λm.

Again, the eigenvalues of A are also the zeros of the autoregressive polynomial a(z). Consequently, we
can apply the above result to the rational function c(z)/a(z) (note that deg(a) = p > q = deg(c)) and obtain

c(z)
a(z)

= hc/a(z; λ1)+ . . .+hc/a(z; λp).
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Since λ1, . . . , λp are distinct, every λm, m ∈ {1, . . . , p}, is a pole of order 1 of the rational function c/a. In
this case, it is well known (see, e.g., [26, p. 174]) that the principal part of the Laurent series expansion of
c/a at the point λm reduces to

c(λm)

a′(λm)
· 1

z−λm
.

Since λ1, . . . , λp are supposed to have non-vanishing real parts, we have a(iω) 6= 0 for any ω ∈R. Hence,
Lemma 2.1(iv) holds for any ω ∈ R.

Proof of Lemma 2.2. (i) This statement follows easily by induction over p from the definition of the Ψ
∆n
j .

(ii) We deduce from (i) that

∞

∑
j=n+1

∣∣Ψ∆n
j

∣∣≤C(p)∆
−(p−1)
n

∞

∑
j=n+1

e∆nλmax j =C(p)∆
−(p−1)
n

e(n+1)∆nλmax

1− e∆nλmax

∼−C(p)
λmax

e
n∆n

(
λmax−p log(∆n)·∆δ

n
n∆

1+δ
n

)
n→∞→ 0, (4.8)

since ∆n→ 0 and n∆1+δ
n → ∞ as n→ ∞.

If 0 < α ≤ 1, we have (cf. also [23, Proof of Proposition 2.1])

∆α
n

n

−n−1

∑
k=−∞

( n−k

∑
j=1−k

∣∣Ψ∆n
j

∣∣)α

≤ ∆
α
n

∞

∑
j=n+2

∣∣Ψ∆n
j

∣∣α ,
and analogously to (4.8) it can be shown that the right-hand side converges to 0 as n→ ∞. Otherwise, if
1 < α ≤ 2, we set Ψ̃

∆n
j := Ψ

∆n
j /∑

∞
j=n+2

∣∣Ψ∆n
j

∣∣ and obtain

∆α
n

n

−n−1

∑
k=−∞

( n−k

∑
j=1−k

∣∣Ψ∆n
j

∣∣)α

=

(
∞

∑
j=n+2

∣∣Ψ∆n
j

∣∣)α

· ∆
α
n

n

−n−1

∑
k=−∞

( n−k

∑
j=1−k

∣∣Ψ̃∆n
j

∣∣)α

≤
(

∞

∑
j=n+2

∣∣Ψ∆n
j

∣∣)α−1

·∆α
n

∞

∑
j=n+2

∣∣Ψ∆n
j

∣∣ n→∞→ 0

due to eq. (4.8).
(iii) We use again (i) to derive

∆
α p
n

n

1−p

∑
k=1−n

( n

∑
j=1−k

∣∣Ψ∆n
j

∣∣)α

≤ C(p)α ∆α
n

n

n

∑
k=1

( n

∑
j=k

e∆nλmax j
)α

≤ C(p)α ∆α
n

n
(
1− e∆nλmax

)α

n

∑
k=1

eα∆nλmaxk

≤ C(p)α ∆α
n

n
(
1− e∆nλmax

)α ·
1

1− eα∆nλmax
∼ C(p)α

(−λmax)
α ·

1
−αλmaxn∆n

→ 0

as n→ ∞, since we suppose n∆n→ ∞.
(iv) We have, once again due to (i),

∆α
n

n

−1

∑
k=2−p−n

( n∧(−k)

∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α

≤ ∆α
n

n

[
p−2

∑
k=1

( k

∑
j=1

∣∣Ψ∆n
j

∣∣)α

+
n+p−2

∑
k=p−1

( k

∑
j=k+2−p

∣∣Ψ∆n
j

∣∣)α

]

≤ ∆α
n

n

[
(p−2) · (p−1)α p +

(
C(p) · (p−1) ·∆−p+1

n
)α ·

n+p−2

∑
k=p−1

eα∆nλmax(k+2−p)

]

≤ ∆α
n

n

[
(p−2) · (p−1)α p +

(
C(p) · (p−1) ·∆−p+1

n
)α · 1

1− eα∆nλmax

]
,
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where the first summand obviously vanishes as n→ ∞. The second term is asymptotically equivalent to

(C(p) · (p−1))α

−αλmax
· 1

n∆
α(p−2)+1
n

→ 0

as n→ ∞ by assumption.
(v) It is once more (i) that gives

∆α
n

n

0

∑
k=2−p

( n

∑
j=1

∣∣Ψ∆n
j

∣∣)α

≤ (p−1)
∆α

n

n

(
∞

∑
j=1

∣∣Ψ∆n
j

∣∣)α

≤ (p−1)
∆α

n

n
·C(p)α

(
∆
−p+1
n

1− e∆nλmax

)α

∼ C(p)α · (p−1)
(−λmax)α

· 1

n∆
α(p−1)
n

→ 0

as n→ ∞, since we assume that n∆
α(p−1)
n → ∞ as n→ ∞.

4.3 Proofs of Section 2.2
Since the proof of Proposition 2.4 is based on Theorem 2.5, we prove first Theorem 2.5 and then Proposi-
tion 2.4. For the proof of Theorem 2.5 we need the following additional result:

Proposition 4.1. If Assumption 1 holds, ∆ = ∆n→ 0 and n∆
α(p−1)
n → ∞ as n→ ∞, then, for any ω ∈ R,

Jn, Z̃∆n (ω∆n) = J(2)n,∆n
(ω∆n)+oP

(
∆

1
α
+p−1

n

)
as n→ ∞

with J(2)n,∆n
(ω∆n) := n−1/α

∑
n−p+1
k=1

˜̃Zk,∆n(ω∆n)e−iω∆nk and ( ˜̃Zk,∆n)k∈Z as given in eq. (2.4).

Proof. We first observe that

Jn, Z̃∆n (ω∆n) = n−1/α
n

∑
k=1

Z̃k,∆n e−iω∆nk (2.1)
= n−1/α

n

∑
k=1

( p

∑
r=1

Zr
k−r+1,∆n

)
e−iω∆nk

= n−1/α
n

∑
k=2−p

p∧(n+1−k)

∑
r=1∨(2−k)

Zr
k,∆n

e−iω∆n(k+r−1) = J(1)n,∆n
(ω∆n)+ J(2)n,∆n

(ω∆n)+ J(3)n,∆n
(ω∆n) (4.9)

with

J(1)n,∆n
(ω∆n) := n−1/α

0

∑
k=2−p

p

∑
r=2−k

Zr
k,∆n

e−iω∆n(k+r−1),

J(2)n,∆n
(ω∆n) := n−1/α

n−p+1

∑
k=1

p

∑
r=1

Zr
k,∆n

e−iω∆n(k+r−1) (2.4)
= n−1/α

n−p+1

∑
k=1

e−iω∆nk ˜̃Zk,∆n(ω∆n) and

J(3)n,∆n
(ω∆n) := n−1/α

n

∑
k=n−p+2

n+1−k

∑
r=1

Zr
k,∆n

e−iω∆n(k+r−1).

Moreover, we define, for any z1,z2 ∈ R, the function Ξz1,z2 : C→ R, Ξz1,z2(x) := z1 ℜ(x)+ z2 ℑ(x). Then
we have, due to eq. (2.2a) and Lemma 2.1(i),

J(1)n,∆n
(ω∆n)

= n−1/α
0

∑
k=2−p

e−iω∆nk
p

∑
r=2−k

e−iω∆n(r−1)
∫ k∆n

(k−1)∆n

cT
(
−

r−1

∑
j=0

Φ
∆n
j e(r−1− j)∆nA

)
e(k∆n−s)Aep dLs

= n−1/α
0

∑
k=2−p

e−iω∆nk
p

∑
m=1

c(λm)

a′(λm)

p

∑
r=2−k

e−iω∆n(r−1)
(
−

r−1

∑
j=0

Φ
∆n
j e(r−1− j)∆nλm

)∫ k∆n

(k−1)∆n

e(k∆n−s)λm dLs
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= n−1/α
0

∑
k=2−p

∫ k∆n

(k−1)∆n

e−iω∆nk
ζ
(k)
∆n,ω∆n

(s)dLs, (4.10)

where, for any ω ∈ R and ∆ > 0,

ζ
(k)
∆,ω(s) :=

p

∑
m=1

c(λm)

a′(λm)
f (m;2−k)
∆

(ω)e(k∆−s)λm and f (m;2−k)
∆

(ω) :=
p

∑
r=2−k

e−iω∆(r−1)
(
−

r−1

∑
j=0

Φ
∆
j e(r−1− j)∆λm

)
.

Hence, the joint characteristic function of the complex SαS random variable ∆
1−p−1/α
n J(1)n,∆n

(ω∆n) is given
by (cf. (2.6))

Φ
J(1)n,∆n

(z1, z2) = exp

{
−σ

α
L ·

1

n∆
1+α(p−1)
n

0

∑
k=2−p

∫ k∆n

(k−1)∆n

∣∣∣Ξz1,z2

(
e−iω∆nk

ζ
(k)
∆n,ω∆n

(s)
)∣∣∣α ds

}
, z1,z2 ∈ R.

With the same arguments as in eqs. (4.4) and (4.5) we further obtain, as n→ ∞,

f (m;2−k)
∆n

(ω∆n) =
p−1

∑
r=1−k

(−1)r
(

p−1
r

)
+O(∆n) (4.11)

and hence,
∣∣ f (m;2−k)

∆n
(ω∆n)

∣∣ ≤ 2p−1 for any m ∈ {1, . . . , p} and k = 2− p, 3− p, . . . , 0, if only n is suffi-
ciently large. Thus,

1

n∆
1+α(p−1)
n

0

∑
k=2−p

∫ k∆n

(k−1)∆n

∣∣∣Ξz1,z2

(
e−iω∆nk

ζ
(k)
∆n,ω∆n

(s)
)∣∣∣α ds≤ (|z1|+ |z2|)α

n∆
1+α(p−1)
n

0

∑
k=2−p

∫ k∆n

(k−1)∆n

∣∣∣ζ (k)
∆n,ω∆n

(s)
∣∣∣α ds

≤ (p−1)
(|z1|+ |z2|)α

n∆
α(p−1)
n

(
2p−1

p

∑
m=1

|c(λm)|
|a′(λm)|

)α

and the right-hand side converges to 0 as n→ ∞, since we suppose n∆
α(p−1)
n → ∞. This obviously yields

J(1)n,∆n
(ω∆n) = oP

(
∆

1/α+p−1
n

)
as n→ ∞.

Likewise we obtain J(3)n,∆n
(ω∆n) = oP

(
∆

1/α+p−1
n

)
as n→ ∞ which completes the proof of Proposition 4.1.

Proof of Theorem 2.5. We prove that ∆
1−p−1/α
n

[
J(2)n,∆n

(ω j∆n)
]

j=1, ...,m
D→
[
c(iω j) ·

(
Sℜ

j (ω˜)− iSℑ
j (ω˜))] j=1, ...,m

as n→ ∞ and then conclude with Proposition 4.1. By virtue of (2.5) we have

J(2)n,∆n
(ω j∆n) = n−1/α

n−p+1

∑
k=1

∫ k∆n

(k−1)∆n

e−iω j∆nk g(k)
∆n,ω j∆n

(s)dLs (4.12)

for any j ∈ {1, . . . , m} and the joint characteristic function of the complex SαS random vector
∆

1−p−1/α
n

[
J(2)n,∆n

(ω j∆n)
]

j=1, ...,m is given by

Φ
J(2)n,∆n

(
θ˜, ν˜)= exp

{
−σ

α
L ·

1

n∆
1+α(p−1)
n

n−p+1

∑
k=1

∫ k∆n

(k−1)∆n

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk g(k)

∆n,ω j∆n
(s)
)∣∣∣∣∣

α

ds

}
(4.13)

with arbitrary θ˜, ν˜ ∈ Rm. Hence, due to Lévy’s Continuity Theorem, we have to show for any θ˜, ν˜ ∈ Rm

1

n∆
1+α(p−1)
n

n−p+1

∑
k=1

∫ k∆n

(k−1)∆n

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk g(k)

∆n,ω j∆n
(s)
)∣∣∣∣∣

α

ds

n→∞→ Kω˜
((

Ξθ j ,ν j

(
c(iω j)

))
j∈{1, ...,m}

,
(

Ξ−ν j ,θ j

(
c(iω j)

))
j∈{1, ...,m}

, 0
)
, (4.14)
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where Kω˜ has been defined in (2.7b) and (2.7c), respectively.
We first claim∣∣∣∣∣∣1n
n−p+1

∑
k=1

 1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
m

∑
j=1

Ξθ j ,ν j

e−iω j∆nk
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

∣∣∣∣∣∣
α

ds−

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk c(iω j)

)∣∣∣∣∣
α
∣∣∣∣∣∣ n→∞→ 0.

(4.15)

To this end, we use
∣∣|x|α − |y|α ∣∣ ≤ (|x|α/2 + |y|α/2) · |x− y|α/2 for α ∈ (0,2] together with the Cauchy-

Schwarz inequality and obtain∣∣∣∣∣ 1
n∆n

n−p+1

∑
k=1

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
m

∑
j=1

Ξθ j ,ν j

e−iω j∆nk
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

∣∣∣∣∣∣
α

−

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk c(iω j)

)∣∣∣∣∣
α

ds

∣∣∣∣∣
≤ 1

n∆n

n−p+1

∑
k=1

∫ k∆n

(k−1)∆n


∣∣∣∣∣∣

m

∑
j=1

Ξθ j ,ν j

e−iω j∆nk
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

∣∣∣∣∣∣
α
2

+

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk c(iω j)

)∣∣∣∣∣
α
2


×

∣∣∣∣∣∣
m

∑
j=1

Ξθ j ,ν j

e−iω j∆nk

g(k)
∆n,ω j∆n

(s)

∆
p−1
n

− c(iω j)

∣∣∣∣∣∣
α
2

ds

≤

1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

 m

∑
j=1

(∣∣θ j
∣∣+ ∣∣ν j

∣∣) α
2 ·


∣∣∣∣∣∣
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

∣∣∣∣∣∣
α
2

+
∣∣c(iω j)

∣∣ α
2




2

ds


1
2

×

1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
m

∑
j=1

Ξθ j ,ν j

e−iω j∆nk

g(k)
∆n,ω j∆n

(s)

∆
p−1
n

− c(iω j)

∣∣∣∣∣∣
α

ds


1
2

=: I1× I2,

where, due to Assumption 1, eq. (2.5) and Lemma 2.1(iii), there are constants C(ω j) > 0 such that for all
sufficiently large n

I2
1 ≤ 2m2

m

∑
j=1

(∣∣θ j
∣∣+ ∣∣ν j

∣∣)α · 1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

∣∣∣∣∣∣
α

+
∣∣c(iω j)

∣∣α ds

≤ 2m2
m

∑
j=1

(∣∣θ j
∣∣+ ∣∣ν j

∣∣)α ·

((
C(ω j)

p

∑
l=1

|c(λl)|
|a′(λl)|

)α

+
∣∣c(iω j)

∣∣α)< ∞

and hence, I1 is bounded. Setting

h(k)
∆n,ω

(s) :=
p

∑
l=1

c(λl)

a′(λl)

a(iω)

iω−λl
e(k∆n−s)λl , k ∈ {1, . . . , p},

we obtain for the second term

I2
2 ≤ mα

m

∑
j=1

(∣∣θ j
∣∣+ ∣∣ν j

∣∣)α · 1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

− c(iω j)

∣∣∣∣∣∣
α

ds

19



≤ (2m)α
m

∑
j=1

(∣∣θ j
∣∣+ ∣∣ν j

∣∣)α 1
n

n−p+1

∑
k=1

 1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

−h(k)
∆n,ω j

(s)

∣∣∣∣∣∣
α

+
∣∣∣h(k)

∆n,ω j
(s)− c(iω j)

∣∣∣α ds

 .
(4.16)

Then, for any j ∈ {1, . . . , m},

1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣∣
g(k)

∆n,ω j∆n
(s)

∆
p−1
n

−h(k)
∆n,ω j

(s)

∣∣∣∣∣∣
α

ds≤

(
p

∑
l=1

|c(λl)|
|a′(λl)|

·

∣∣∣∣∣ f (l)
∆n
(ω j∆n)

∆
p−1
n

−
a(iω j)

iω j−λl

∣∣∣∣∣
)α

n→∞→ 0

(4.17)
by virtue of Lemma 2.1(iii). Moreover,

1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

∣∣∣h(k)
∆n,ω j

(s)− c(iω j)
∣∣∣α ds =

1
n

n−p+1

∑
k=1

1
∆n

∫ k∆n

(k−1)∆n

∣∣∣∣ p

∑
l=1

c(λl)

a′(λl)

a(iω j)

iω j−λl

(
e(k∆n−s)λl −1

)∣∣∣∣α ds

≤ pα ·
p

∑
l=1

(
|c(λl)|
|a′(λl)|

·
|a(iω j)|
|iω j−λl |

)α 1
∆n

∫
∆n

0

∣∣e(∆n−s)λl −1
∣∣α ds n→∞→ 0, (4.18)

where we used Lemma 2.1(ii) and (iv). Hence, by eqs. (4.17) and (4.18) the right-hand side of (4.16)
converges to 0 as n→ ∞ and thus, (4.15) is shown, as well.

In order to obtain (4.14) and hence, ∆
1−p−1/α
n

[
J(2)n,∆n

(ω j∆n)
]

j=1, ...,m
D→
[
c(iω j) ·

(
Sℜ

j (ω˜)− iSℑ
j (ω˜))] j=1, ...,m

as n→ ∞, it remains to prove that

1
n

n−p+1

∑
k=1

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk c(iω j)

)∣∣∣∣∣
α

n→∞→ Kω˜
((

Ξθ j ,ν j

(
c(iω j)

))
j∈{1, ...,m}

,
(

Ξ−ν j ,θ j

(
c(iω j)

))
j∈{1, ...,m}

, 0
)
.

Since we suppose in particular n∆n→ ∞ as n→ ∞, this follows from Proposition 3.4.
Finally, since also n∆

α(p−1)
n → ∞ as n→ ∞ holds, Proposition 4.1 yields J(1)n,∆n

(ω∆n)+ J(3)n,∆n
(ω∆n) =

oP
(
∆

1/α+p−1
n

)
for any ω ∈R and hence, ∆

1−p−1/α
n

[
Jn, Z̃∆n (ω j∆n)

]
j=1, ...,m

D→
[
c(iω j)·

(
Sℜ

j (ω˜)−iSℑ
j (ω˜))] j=1, ...,m

as n→ ∞. This completes the proof.

Proof of Proposition 2.4. We immediately obtain

Jn,Y ∆n (ω) = n−1/α
n

∑
k=1

Yk∆n e−iωk (2.3)
= n−1/α

n

∑
k=1

(
∞

∑
j=0

Ψ
∆n
j Z̃k− j,∆n

)
e−iωk

= n−1/α
∞

∑
j=0

Ψ
∆n
j e−iω j

( n

∑
k=1

Z̃k,∆n e−iωk +Un, j,∆n(ω)

)
= Ψ

∆n(e−iω)Jn, Z̃∆n (ω)+Wn,∆n(ω),

where

Un, j,∆n(ω) =
n− j

∑
k=1− j

Z̃k,∆n e−iωk−
n

∑
k=1

Z̃k,∆n e−iωk and Wn,∆n(ω) = n−1/α
∞

∑
j=0

Ψ
∆n
j e−iω j Un, j,∆n(ω).

Hence,
In,Y ∆n (ω) =

∣∣Ψ∆n(e−iω)
∣∣2 In, Z̃∆n (ω)+Rn,∆n(ω),

with

Rn,∆n(ω) = Ψ
∆n(e−iω)Jn, Z̃∆n (ω)Wn,∆n(ω)+Ψ∆n(e−iω)Jn, Z̃∆n (ω)Wn,∆n(ω)+ |Wn,∆n(ω)|2.

For the rest of the proof suppose that Assumption 2 holds and fix an arbitrary ω ∈ R∗. We have to show
that ∆

2−2/α
n |Rn,∆n(ω∆n)|

P→ 0 as n→ ∞.
Since Ψ∆n(e−iω∆n) ∼ ∆

−p
n a(iω)−1 as n→ ∞ and since in particular n∆

1∨α(p−1)
n → ∞ if Assumption 2
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holds, it follows from Theorem 2.5 that ∆
1−1/α
n Ψ∆n(e−iω∆n)Jn, Z̃∆n (ω∆n)

D→ c(iω)
a(iω)

(
Sℜ

1 (ω)− iSℑ

1 (ω)
)

as

n→ ∞, where the joint characteristic function of
(
Sℜ

1 (ω), Sℑ

1 (ω)
)

is given by eq. (2.7) (with m = 1 and

τ = 0). Hence, in order to show ∆
2−2/α
n |Rn,∆n(ω∆n)|

P→ 0 as n→ ∞, it is sufficient to prove that

∆
1− 1

α
n Wn,∆n(ω∆n)

P→ 0 as n→ ∞. (4.19)

We shall prove (4.19) by an appropriate decomposition of the sum Wn,∆n(ω∆n), analogously to the one
in [23, Proof of Proposition 2.1]. We write

Wn,∆n(ω∆n) = n−1/α
∞

∑
j=n+1

Ψ
∆n
j e−iω∆n j Un, j,∆n(ω∆n)+n−1/α

n

∑
j=0

Ψ
∆n
j e−iω∆n j Un, j,∆n(ω∆n)

=: W (1)
n,∆n

(ω∆n)+W (2)
n,∆n

(ω∆n)

and

W (1)
n,∆n

(ω∆n) = n−1/α
∞

∑
j=n+1

Ψ
∆n
j e−iω∆n j

(
−

n

∑
k=1

Z̃k,∆n e−iω∆nk
)
+n−1/α

∞

∑
j=n+1

Ψ
∆n
j e−iω∆n j

n− j

∑
k=1− j

Z̃k,∆n e−iω∆nk

=: W (11)
n,∆n

(ω∆n)+W (12)
n,∆n

(ω∆n).

We have

∆
1− 1

α
n

∣∣∣W (11)
n,∆n

(ω∆n)
∣∣∣≤ ∆

1−p− 1
α

n
∣∣Jn, Z̃∆n (ω∆n)

∣∣ ·∆p
n

∞

∑
j=n+1

∣∣Ψ∆n
j

∣∣
and it is again Theorem 2.5 together with the Continuous Mapping Theorem (see, for instance, [21, The-
orem 13.25]) showing ∆

1−p−1/α
n |Jn, Z̃∆n (ω∆n)|

D→ |c(iω)| ·
∣∣Sℜ

1 (ω)− iSℑ

1 (ω)
∣∣ as n→ ∞. Since we have

∑
∞
j=n+1

∣∣Ψ∆n
j

∣∣→ 0 by virtue of Lemma 2.2(ii), we immediately deduce ∆
1−1/α
n W (11)

n,∆n
(ω∆n)

P→ 0 as n→ ∞.

Concerning the term W (12)
n,∆n

(ω∆n) we write

W (12)
n,∆n

(ω∆n) = n−1/α
∞

∑
j=n+1

Ψ
∆n
j e−iω∆n j

n− j

∑
k=1− j

Z̃k,∆n e−iω∆nk

= n−1/α
−1

∑
k=−n

Z̃k,∆n e−iω∆nk
n−k

∑
j=n+1

Ψ
∆n
j e−iω∆n j +n−1/α

−n−1

∑
k=−∞

Z̃k,∆n e−iω∆nk
n−k

∑
j=1−k

Ψ
∆n
j e−iω∆n j

=: W (121)
n,∆n

(ω∆n)+W (122)
n,∆n

(ω∆n)

and obtain for arbitrary ε > 0

P
(

∆
1− 1

α
n

∣∣W (121)
n,∆n

(ω∆n)
∣∣> ε

)
≤

p

∑
r=1

P
(

∆
1− 1

α
n n−

1
α

∣∣∣∣ −1

∑
k=−n

Zr
k−r+1,∆n

n−k

∑
j=n+1

Ψ
∆n
j e−iω∆n(k+ j)

∣∣∣∣> ε

p

)

≤
p

∑
r=1

[
P
(

∆
1− 1

α
n n−

1
α

∣∣∣∣ −1

∑
k=−n

Zr
k−r+1,∆n

·ℜ
( n−k

∑
j=n+1

Ψ
∆n
j e−iω∆n(k+ j)

)∣∣∣∣> ε

2p

)

+P
(

∆
1− 1

α
n n−

1
α

∣∣∣∣ −1

∑
k=−n

Zr
k−r+1,∆n

·ℑ
( n−k

∑
j=n+1

Ψ
∆n
j e−iω∆n(k+ j)

)∣∣∣∣> ε

2p

)]
.

(4.20)

Since, for any r ∈ {1, . . . , p} and n ∈ N∗, the random variables Zr
k−r+1,∆n

, k ∈ {−n,−n+1, . . . ,−1}, are
independent and symmetric we apply [37, Theorem 1.2] and the right-hand side of (4.20) can be bounded
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by

4
p

∑
r=1

P
(

∆
1− 1

α
n n−

1
α ·

2n

∑
j=n+1

∣∣Ψ∆n
j

∣∣ · ∣∣∣∣ −1

∑
k=−n

Zr
k−r+1,∆n

∣∣∣∣> ε

2p

)
. (4.21)

By virtue of (2.2a), (4.4) and Lemma 2.1(i), the characteristic function of ∆
1−1/α
n n−1/α ·∑2n

j=n+1

∣∣Ψ∆n
j

∣∣ ·
∑
−1
k=−n Zr

k−r+1,∆n
is given by

Φ(z1, z2) = exp

{
−σ

α
L ·

∆α
n

n∆n

( 2n

∑
j=n+1

∣∣Ψ∆n
j

∣∣)α

×
−1

∑
k=−n

∫ (k−r+1)∆n

(k−r)∆n

∣∣∣∣Ξz1,z2

( p

∑
m=1

c(λm)

a′(λm)
· ∑

{i1, ..., ir−1}∈
(
{1, . . . , p}\{m}

r−1

)e∆n ∑
r−1
h=1 λih · e((k−r+1)∆n−s)λm

)∣∣∣∣α ds

}

for any z1, z2 ∈ R (see proof of Proposition 4.1 for the definition of Ξz1,z2 ). We then obtain with λmax :=
maxk∈{1, ..., p}ℜ(λk)< 0

∣∣∣∣− 1
σα

L
logΦ(z1, z2)

∣∣∣∣≤ ∆
α
n

( 2n

∑
j=n+1

∣∣Ψ∆n
j

∣∣)α

· (|z1|+ |z2|)α ·

((
p−1
r−1

)
e∆nλmax(r−1)

p

∑
m=1

|c(λm)|
|a′(λm)|

)α

and the right-hand side converges to 0 as n→ ∞ due to Lemma 2.2(ii). Thus, (4.21) converges to 0 as well
and ∆

1−1/α
n W (121)

n,∆n
(ω∆n)

P→ 0 is shown.

In order to get ∆
1−1/α
n W (122)

n,∆n
(ω∆n)

P→ 0, we prove, for any r ∈ {1, . . . , p},

∆
1−1/α
n n−1/α

−n−1

∑
k=−∞

Zr
k−r+1,∆n

n−k

∑
j=1−k

Ψ
∆n
j e−iω∆n(k+ j) P→ 0.

Therefore it is sufficient (using the same arguments as above via characteristic functions) to show that

∆α
n

n

−n−1

∑
k=−∞

( n−k

∑
j=1−k

∣∣Ψ∆n
j

∣∣)α

→ 0

as n→ ∞. This can be found in Lemma 2.2(ii) and hence, ∆
1−1/α
n W (122)

n,∆n
(ω∆n)

P→ 0. All together we have

shown that ∆
1−1/α
n W (1)

n,∆n
(ω∆n) converges to 0 in probability.

It remains to prove that also ∆
1−1/α
n W (2)

n,∆n
(ω∆n)

P→ 0 as n→ ∞. To this end, we define

W (21)
n,∆n

(ω∆n) := n−1/α
n

∑
j=1

Ψ
∆n
j e−iω∆n j

[( − j

∑
k=2−p− j

p

∑
r=2− j−k

+
0

∑
k=2−p

1−k

∑
r=1
−

n− j

∑
k=n+2−p− j

p

∑
r=n+2− j−k

−
n

∑
k=n−p+2

n+1−k

∑
r=1

)
Zr

k,∆n
e−iω∆n(k+r−1)

]
=: W (211)

n,∆n
(ω∆n)+W (212)

n,∆n
(ω∆n)−W (213)

n,∆n
(ω∆n)−W (214)

n,∆n
(ω∆n)

and write

W (2)
n,∆n

(ω∆n) = n−1/α
n

∑
j=1

Ψ
∆n
j e−iω∆n j

( 0

∑
k=1− j

p

∑
r=1

Zr
k−r+1,∆n

e−iω∆nk−
n

∑
k=n− j+1

p

∑
r=1

Zr
k−r+1,∆n

e−iω∆nk
)

= n−1/α
n

∑
j=1

Ψ
∆n
j e−iω∆n j

( 0

∑
k=2−p− j

p∧(1−k)

∑
r=1∨(2− j−k)

Zr
k,∆n

e−iω∆n(k+r−1)
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−
n

∑
k=n+2−p− j

p∧(n+1−k)

∑
r=1∨(n+2− j−k)

Zr
k,∆n

e−iω∆n(k+r−1)
)

=W (21)
n,∆n

(ω∆n)+n−1/α
n

∑
j=1

Ψ
∆n
j e−iω∆n j

[( 1−p

∑
k=1− j

−
n−p+1

∑
k=n− j+1

)
˜̃Zk,∆n(ω∆n)e−iω∆nk

]
=: W (21)

n,∆n
(ω∆n)+W (22)

n,∆n
(ω∆n)−W (23)

n,∆n
(ω∆n).

By virtue of eq. (2.5) we have

∆
1− 1

α
n W (22)

n,∆n
(ω∆n) = ∆

1− 1
α

n n−
1
α

1−p

∑
k=1−n

˜̃Zk,∆n(ω∆n)e−iω∆nk
n

∑
j=1−k

Ψ
∆n
j e−iω∆n j

=
∆n

(n∆n)1/α

1−p

∑
k=1−n

n

∑
j=1−k

Ψ
∆n
j e−iω∆n(k+ j)

∫ k∆n

(k−1)∆n

p

∑
m=1

c(λm)

a′(λm)
f (m)
∆n

(ω∆n)e(k∆n−s)λm dLs.

Since, due to Lemma 2.1(iii), f (m)
∆n

(ω∆n)∼ ∆
p−1
n a(iω) 1

iω−λm
as n→ ∞ for all m ∈ {1, . . . , p}, it is easy to

see by calculating the characteristic function of ∆
1−1/α
n W (22)

n,∆n
(ω∆n) that it is enough to show that

∆
α p
n

n

1−p

∑
k=1−n

( n

∑
j=1−k

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

This follows immediately from Lemma 2.2(iii) and hence also ∆
1−1/α
n W (22)

n,∆n
(ω∆n)

P→ 0 as n→ ∞ holds.

Since the complex SαS random variables
( ˜̃Zk,∆n

)
k∈Z(ω∆n) are i.i.d. (cf. eq. (2.5)), we easily derive

∆
1− 1

α
n W (23)

n,∆n
(ω∆n) = e−iω∆nn ·∆1− 1

α
n n−

1
α

n

∑
j=1

Ψ
∆n
j e−iω∆n j

1−p

∑
k=1− j

˜̃Zk+n,∆n(ω∆n)e−iω∆nk

D
= e−iω∆nn ·∆1− 1

α
n W (22)

n,∆n
(ω∆n)

and thus ∆
1−1/α
n W (23)

n,∆n
(ω∆n)

P→ 0 as n→ ∞, as well.

Finally, we have to prove that ∆
1−1/α
n W (21)

n,∆n
(ω∆n)

P→ 0. Therefore, observe that

∆
1− 1

α
n W (211)

n,∆n
(ω∆n) =

∆n

(n∆n)1/α

−1

∑
k=2−p−n

e−iω∆nk
n∧(−k)

∑
j=1∨(2−p−k)

Ψ
∆n
j e−iω∆n j

p

∑
r=2− j−k

e−iω∆n(r−1) Zr
k,∆n

=
∆n

(n∆n)1/α

−1

∑
k=2−p−n

n∧(−k)

∑
j=1∨(2−p−k)

Ψ
∆n
j e−iω∆n(k+ j)

×
∫ k∆n

(k−1)∆n

p

∑
m=1

c(λm)

a′(λm)
f (m;2− j−k)
∆n

(ω∆n)e(k∆n−s)λm dLs (4.22)

(cf. eq. (4.10)). Using eq. (4.11) and its upper bound (see proof of Proposition 4.1), the joint characteristic
function of the right-hand side of eq. (4.22), denoted once more by Φ, satisfies∣∣∣∣− 1

σα
L

logΦ(z1, z2)

∣∣∣∣≤ (|z1|+ |z2|)α

(
2p−1

p

∑
m=1

|c(λm)|
|a′(λm)|

)α

· ∆
α
n

n

−1

∑
k=2−p−n

( n∧(−k)

∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α

.
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By virtue of Lemma 2.2(iv) we then have

∆α
n

n

−1

∑
k=2−p−n

( n∧(−k)

∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α
n→∞→ 0,

and hence, ∆
1−1/α
n W (211)

n,∆n
(ω∆n)

P→ 0 as n→ ∞.
Likewise, we get

∆
1− 1

α
n W (212)

n,∆n
(ω∆n) =

∆n

(n∆n)1/α

0

∑
k=2−p

e−iω∆nk
n

∑
j=1

Ψ
∆n
j e−iω∆n j

1−k

∑
r=1

e−iω∆n(r−1) Zr
k,∆n

and, as before, one derives that it is sufficient to show that ∆α
n
n ∑

0
k=2−p

(
∑

n
j=1

∣∣Ψ∆n
j

∣∣)α n→∞→ 0. This has been
done in Lemma 2.2(v).

One can show analogously to W (211)
n,∆n

that also ∆
1−1/α
n W (213)

n,∆n
(ω∆n)

P→ 0 and analogously to W (212)
n,∆n

it fol-

lows that ∆
1−1/α
n W (214)

n,∆n
(ω∆n)

P→ 0 as n→∞. Hence, ∆
1−1/α
n W (21)

n,∆n
(ω∆n)

P→ 0 and ∆
1−1/α
n W (2)

n,∆n
(ω∆n)

P→ 0
as n→ ∞, as well. This completes the proof.

4.4 Proofs of Section 2.3
Proof of Proposition 2.9. (i) We first observe that the state vector in eq. (2.8a) can be written as

Vk∆n =
∞

∑
j=0

e j∆nA
ξn,k− j ∀n ∈ N∗, k ∈ Z,

where ξn,k :=
∫ k∆n
(k−1)∆n

e(k∆n−s)Aβ dLs (cf. [15, Proof of Theorem 4.2]). Thus, the Beveridge-Nelson decom-
position (cf. [5]) has the form

Vk∆n =

(
∞

∑
j=0

e j∆nA

)
ξn,k +Ṽn,k−1−Ṽn,k ∀n ∈ N∗, k ∈ Z,

with Ṽn,k := ∑
∞
j=0
(

∑
∞
l= j+1 el∆nA

)
ξn,k− j (see also [15, Proof of Theorem 2.2]). Hence,

n

∑
k=1

Vk∆n =
(

Ip− e∆nA
)−1 n

∑
k=1

ξn,k +Ṽn,0−Ṽn,n,

where Ṽn,0−Ṽn,n =
(
Ip−e∆nA

)−1e∆nA(V0−Vn∆n). Since ∆n
(
Ip−e∆nA

)−1 n→∞→ −A−1 and V0
D
=Vn∆n for any

n ∈ N∗, we obviously get Ṽn,0− Ṽn,n = oP(∆
−1
n (n∆n)

1/α) as n→ ∞. By analog calculations via character-
istic functions (as used in the proofs of Theorem 2.5 and Proposition 4.1), we further obtain ∑

n
k=1 ξn,k =

β ∑
n
k=1 ∆L(k∆n)+oP((n∆n)

1/α) as n→ ∞. Putting all this together, we have

n

∑
k=1

Yk∆n
(2.8b)
= eT

1

n

∑
k=1

Vk∆n = eT
1

(
Ip− e∆nA

)−1
(

β

n

∑
k=1

∆L(k∆n)+oP

(
(n∆n)

1
α

))
+oP

(
∆
−1
n (n∆n)

1
α

)
=

∞

∑
j=0

g( j∆n) ·
n

∑
k=1

∆L(k∆n)+oP

(
∆
−1
n (n∆n)

1
α

)
as n→ ∞

and (i) is shown.
(ii) Let (0, ΣL, νL) denote the characteristic triplet of the underlying Lévy process L. As in the proof of

[15, Proposition 3.3(c)]), we first factorize the Lévy measure νL into two Lévy measures

νL(1)(A) := νL(A\{x∈R : |x| ≤ 1}) and νL(2)(A) := νL(A∩{x∈R : |x| ≤ 1}), for any Borel set A⊆R∗,
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such that νL = νL(1) +νL(2) . We decompose L into two independent Lévy processes L = L(1)+L(2) where
L(1) has characteristic triplet (0, 0, νL(1)) and L(2) has characteristic triplet (0, ΣL, νL(2)).

Then one can show, as in the proof of [15, Theorem 4.5], that

n

∑
k=1

Vk∆nV T
k∆n

=
∞

∑
j=0

e j∆nA

(
n

∑
k=1

ξ
(1)
n,k

(
ξ
(1)
n,k

)T
)

e j∆nAT
+oP

(
∆
−1
n (n∆n)

2
α

)
as n→ ∞, where Vk∆n is the state vector in eq. (2.8a), ξ

(1)
n,k :=

∫ k∆n
(k−1)∆n

e(k∆n−s)Aβ dL(1)
s if α ∈ (0,2) and

ξ
(1)
n,k := ξn,k if α = 2 where ξn,k :=

∫ k∆n
(k−1)∆n

e(k∆n−s)Aβ dLs. Next we claim that, also for α ∈ (0,2),

n

∑
k=1

ξ
(1)
n,k

(
ξ
(1)
n,k

)T
=

n

∑
k=1

ξn,kξ
T
n,k +oP

(
(n∆n)

2
α

)
(4.23)

as n→ ∞. Together with limn→∞ ∆n ∑
∞
j=0 e j∆nABn e j∆nAT

=
∫

∞

0 esABesAT
ds for all matrices Bn, B ∈ Rp×p

with limn→∞ Bn = B, this yields

n

∑
k=1

Vk∆nV T
k∆n

=
∞

∑
j=0

e j∆nA

(
n

∑
k=1

ξn,kξ
T
n,k

)
e j∆nAT

+oP

(
∆
−1
n (n∆n)

2
α

)
(4.24)

as n→ ∞. As to (4.23), we observe with ξ
(2)
n,k := ξn,k−ξ

(1)
n,k =

∫ k∆n
(k−1)∆n

e(k∆n−s)Aβ dL(2)
s that

n

∑
k=1

ξn,kξ
T
n,k =

n

∑
k=1

ξ
(1)
n,k

(
ξ
(1)
n,k

)T
+

n

∑
k=1

ξ
(1)
n,k

(
ξ
(2)
n,k

)T
+

n

∑
k=1

ξ
(2)
n,k

(
ξ
(1)
n,k

)T
+

n

∑
k=1

ξ
(2)
n,k

(
ξ
(2)
n,k

)T

and thus, by virtue of Hölder’s Inequality and taking the norm ‖M‖ := ‖vec(M)‖, we obtain∥∥∥∥∥ n

∑
k=1

ξn,kξ
T
n,k−

n

∑
k=1

ξ
(1)
n,k

(
ξ
(1)
n,k

)T
∥∥∥∥∥≤ 2

(
n

∑
k=1

∥∥∥ξ
(1)
n,k

∥∥∥2
) 1

2

·

(
n

∑
k=1

∥∥∥ξ
(2)
n,k

∥∥∥2
) 1

2

+
n

∑
k=1

∥∥∥ξ
(2)
n,k

∥∥∥2
.

Note that the second Lévy component L(2) has finite moments of any order (cf. [34, Corollary 25.8]) and
hence, we can apply [15, Proposition 3.3(a)] and deduce for some C > 0 and all sufficiently large n

E

[
(n∆n)

− 2
α

n

∑
k=1

∥∥∥ξ
(2)
n,k

∥∥∥2
]
= (n∆n)

− 2
α

n

∑
k=1

E
[∥∥∥ξ

(2)
n,k

∥∥∥2
]
≤C · (n∆n)

1− 2
α ,

where the right-hand side converges to 0, since we suppose n∆n→ ∞ and 1−2/α ∈ (−∞,0) for any α ∈
(0,2). We further obtain by combining [15, Proposition 3.4(a,c)] and [31, Theorem 7.1] that
(n∆n)

−2/α
∑

n
k=1

∥∥ξ
(1)
n,k

∥∥2 converges weakly as n→ ∞ (note that L(1) is a compound Poisson process). This
completes the proof of (4.23) and hence also eq. (4.24) is shown.

Now also
n

∑
k=1

ξn,k ξ
T
n,k = β

n

∑
k=1

∆L(k∆n)
2

β
T +oP

(
(n∆n)

2
α

)
as n→ ∞ (4.25)

holds. For, the (i, j)-th component of ∑
n
k=1 ξn,k ξ T

n,k− β ∑
n
k=1 ∆L(k∆n)

2 β T can be bounded, again due to
Hölder’s Inequality, by∣∣∣∣∣
[ n

∑
k=1

ξn,k ξ
T
n,k−β

n

∑
k=1

∆L(k∆n)
2

β
T
]

i, j

∣∣∣∣∣≤
(

n

∑
k=1

[
ξn,k
]2

i

) 1
2

·

(
n

∑
k=1

([
ξn,k
]

j−β j ∆L(k∆n)
)2
) 1

2
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+

(
n

∑
k=1

(
β j ∆L(k∆n)

)2
) 1

2

·

(
n

∑
k=1

([
ξn,k
]

i−βi ∆L(k∆n)
)2
) 1

2

with
[
ξn,k
]

i and β j being the i-th and j-th component of ξn,k and β , respectively. Similar arguments as

used above for ∑
n
k=1

∥∥ξ
(1)
n,k

∥∥2 yield that (n∆n)
−2/α

∑
n
k=1
[
ξn,k
]2

i as well as (n∆n)
−2/α

∑
n
k=1
(
β j ∆L(k∆n)

)2

converge weakly to positive α/2-stable random variables. In order to obtain eq. (4.25), it hence remains
to prove that, for any i ∈ {1, . . . , p}, the sum (n∆n)

−2/α
∑

n
k=1
([

ξn,k
]

i− βi ∆L(k∆n)
)2 converges to 0 in

probability. This is indeed true, since the random variables
[
ξn,k
]

i−βi ∆L(k∆n), k ∈ {1, . . . , n}, are i.i.d.

symmetric α-stable with scale parameter σL
(∫

∆n
0

∣∣eT
i (e

(∆n−s)A− Ip)β
∣∣α ds

)1/α and ∆−1
n
∫

∆n
0

∣∣eT
i (e

(∆n−s)A−
Ip)β

∣∣α ds→ 0 as n→ ∞ (cf. Lemma 2.1(ii)). We thus deduce

n

∑
k=1

Y 2
k∆n

(2.8b)
= eT

1

( n

∑
k=1

Vk∆nV T
k∆n

)
e1

(4.24)
= eT

1

(
∞

∑
j=0

e j∆nA
( n

∑
k=1

ξn,kξ
T
n,k

)
e j∆nAT

)
e1 +oP

(
∆
−1
n (n∆n)

2
α

)
(4.25)
= eT

1

(
∞

∑
j=0

e j∆nA
(

β

n

∑
k=1

∆L(k∆n)
2

β
T +oP

(
(n∆n)

2
α

))
e j∆nAT

)
e1 +oP

(
∆
−1
n (n∆n)

2
α

)
=

∞

∑
j=0

g2( j∆n) ·
n

∑
k=1

∆L(k∆n)
2 +oP

(
∆
−1
n (n∆n)

2
α

)
as n→ ∞

and (ii) is shown.

Proof of Theorem 2.10. Assume that cq 6= 0. By virtue of [13, Lemma 3.1], the integrated kernel function∫
∞

0 g(s)ds is equal to
∫

∞

0 eT
1 esAβ ds = −eT

1 A−1β = cq a−1
p . Due to Proposition 2.4 we immediately obtain,

for any ω ∈ R∗ and n sufficiently large

Ĩn,Y ∆n (ω∆n) =
∣∣∣Ψ∆n(e−iω∆n)

∣∣∣2 In, Z̃∆n (ω∆n)(
n−1/α

∑
n
k=1 Yk∆n

)2 + R̃n,∆n(ω∆n)

with R̃n,∆n(ω∆n) = Rn,∆n(ω∆n) ·
(
n−1/α

∑
n
k=1 Yk∆n

)−2
. Since Rn,∆n(ω∆n) = oP

(
∆

2/α−2
n

)
as n→ ∞ (see

again Proposition 2.4) and since
(
∆n (n∆n)

−1/α
∑

n
k=1 Yk∆n

)2 D→ (
∫

∞

0 g(s)ds)2 · S2 = c2
q a−2

p · S2 as n→ ∞

with S being a SαS random variable with scale parameter σL (cf. [15, Theorem 5.2(a)]), we have

R̃n,∆n(ω∆n) = oP(1) as n→ ∞. (4.26)

Since
∣∣Ψ∆n(e−iω∆n)

∣∣2 ∼ ∆
−2p
n |a(iω)|−2 and ∆n ∑

∞
j=0 g( j∆n)→

∫
∞

0 g(s)ds as n→ ∞, we combine eq. (4.26),
Proposition 4.1 and Proposition 2.9(i), and observe that, in order to show Theorem 2.10, it remains to prove(

∆
1−p− 1

α
n

[
J(2)

n, Z̃∆n
(ω j∆n)

]
j∈{1, ...,m}

, (n∆n)
− 1

α

n

∑
k=1

∆L(k∆n)

)
D→
([

c(iω j) ·
(

Sℜ
j (ω˜)− iSℑ

j (ω˜)
)]

j∈{1, ...,m}
, Sm+1(ω˜)

)
as n→ ∞ and to apply the Continuous Mapping Theorem (see, e.g., [21, Theorem 13.25]). However, this
weak convergence result can be shown along the lines of the proof of Theorem 2.5.

Proof of Theorem 2.11. Assume w.l.o.g. that
∫

∞

0 g2(s)ds 6= 0 (otherwise the CARMA process would be
trivial). Furthermore, we obtain as in the proof of Theorem 2.10 for all sufficiently large n

În,Y ∆n (ω∆n) =
∣∣∣Ψ∆n(e−iω∆n)

∣∣∣2 In, Z̃∆n (ω∆n)

n−2/α
∑

n
k=1 Y 2

k∆n

+ R̂n,∆n(ω∆n)

with R̂n,∆n(ω∆n) = Rn,∆n(ω∆n) ·
(
n−2/α

∑
n
k=1 Y 2

k∆n

)−1. Since Rn,∆n(ω∆n) = oP
(
∆

2/α−2
n

)
as n→ ∞ (see

Proposition 2.4) and since ∆n (n∆n)
−2/α

∑
n
k=1 Y 2

k∆n

D→
∫

∞

0 g2(s)ds · [L, L]1 as n→ ∞ with ([L, L]t)t≥0 be-
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ing the quadratic variation process of (Lt)t≥0 (cf. [15, Theorem 5.5(a)]), we get

∆n R̂n,∆n(ω∆n) = oP(1) as n→ ∞. (4.27)

Since
∣∣Ψ∆n(e−iω∆n)

∣∣2 ∼ ∆
−2p
n |a(iω)|−2 and ∆n ∑

∞
j=0 g2( j∆n)→

∫
∞

0 g2(s)ds as n→ ∞, we combine (4.27),
Proposition 4.1 and Proposition 2.9(ii), and observe that

∆n În,Y ∆n (ω∆n) = |a(iω)|−2 ·
(∫

∞

0
g2(s)ds

)−1

·
∆

2−2p− 2
α

n

∣∣∣J(2)n,∆n
(ω∆n)

∣∣∣2
(n∆n)

− 2
α ∑

n
k=1 ∆L(k∆n)2

·
(
1+oP(1)

)
as n→ ∞.

(4.28)
In the proof of Theorem 2.5 it has been shown that, for any ω ∈ R∗,

∆
1−p− 1

α
n J(2)n,∆n

(ω∆n)−
c(iω)

(n∆n)
1
α

n

∑
k=1

∆L(k∆n)e−iω∆nk P→ 0 as n→ ∞

(cf. eqs. (4.12), (4.13) and (4.16) to (4.18)). Hence, (4.28) becomes

∆n În,Y ∆n (ω∆n) =
|c(iω)|2∫

∞

0 g2(s)ds · |a(iω)|2
·
∣∣∑n

k=1 ∆L(k∆n)e−iω∆nk
∣∣2

∑
n
k=1 ∆L(k∆n)2 ·

(
1+oP(1)

)
as n→ ∞.

We introduce an i.i.d. sequence (Zk)k∈N∗ of symmetric α-stable random variables with scale parameter σL

and observe that
(
∆L(k∆n)

)
k∈N∗

D
= (∆n)

1/α · (Zk)k∈N∗ . Consequently, to finish the proof of Theorem 2.11,
it is sufficient to show that[∣∣∑n

k=1 Zk e−iω j∆nk
∣∣2

∑
n
k=1 Z2

k

]
j∈{1, ...,m}

D→

[[
Sℜ

j (ω˜)]2 + [Sℑ

j (ω˜)]2
S2

]
j∈{1, ...,m}

as n→ ∞. (4.29)

Since n−2/α
∣∣∑n

k=1 Zk e−iω j∆nk
∣∣2 D→

[
Sℜ

j (ω˜)]2 + [Sℑ

j (ω˜)]2 as n→ ∞, which follows implicitly from the

proofs of Proposition 3.4 and Theorem 2.5, and since n−2/α
∑

n
k=1 Z2

k
D→ S2 as n→ ∞ with S2 being a

positive α/2-stable random variable, which can be easily derived from, e.g., [31, Theorem 7.1], we will
show that also the random vector(

γ
2
n,Z , α

2
n,Z(ω j∆n), β

2
n,Z(ω j∆n)

)
j∈{1, ...,m} , (4.30)

with

γ
2
n,Z := n−2/α

n

∑
k=1

Z2
k , αn,Z(ω j∆n) := n−1/α

n

∑
k=1

Zk cos(ω j∆nk) and βn,Z(ω j∆n) := n−1/α
n

∑
k=1

Zk sin(ω j∆nk),

converges weakly. Note that this implies eq. (4.29).
We take the same approach as in the proof of [24, Proposition 2.2] (which can be found in [22]).

Let (Nk)k∈N∗ , P1, P2, . . . , Pm, M1, M2, . . . , Mm be i.i.d. standard normal random variables, independent of
(Zk)k∈N∗ . Then, with ϕ ≥ 0 and θ˜, ν˜ ∈ [0,∞)m, the Laplace transform of the random vector in (4.30) is
given by

fn,∆n(ϕ, θ˜, ν˜) = E

[
exp

{
−ϕ2

2
γ

2
n,Z−

m

∑
j=1

(
θ 2

j

2
α

2
n,Z(ω j∆n)+

ν2
j

2
β

2
n,Z(ω j∆n)

)}]

= E

(
E

[
exp

{
iϕn−

1
α

n

∑
k=1

Zk Nk + i
m

∑
j=1

(
θ j Pj αn,Z(ω j∆n)+ν j M j βn,Z(ω j∆n)

)}∣∣∣∣(Zk)k∈N∗

])
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= E

[
exp

{
iϕn−

1
α

n

∑
k=1

Zk Nk + i
m

∑
j=1

(
θ j Pj αn,Z(ω j∆n)+ν j M j βn,Z(ω j∆n)

)}]

= E

[
exp

{
in−

1
α

n

∑
k=1

Zk

(
ϕ Nk +

m

∑
j=1

(
θ j Pj cos(ω j∆nk)+ν j M j sin(ω j∆nk)

))}]

= E

exp

in−
1
α Z1

(
n

∑
k=1

∣∣∣∣∣ϕ Nk +
m

∑
j=1

(
θ j Pj cos(ω j∆nk)+ν j M j sin(ω j∆nk)

)∣∣∣∣∣
α) 1

α




= E

[
exp

{
−σα

L
n

n

∑
k=1

∣∣∣∣∣ϕ Nk +
m

∑
j=1

(
θ j Pj cos(ω j∆nk)+ν j M j sin(ω j∆nk)

)∣∣∣∣∣
α}]

=: E
[
exp
{
−σ

α
L ·Kn,∆n(ϕ, θ˜, ν˜)}]

with Kn,∆n(ϕ, θ˜, ν˜) := 1/n ·∑n
k=1

∣∣∣ϕ Nk +∑
m
j=1
(
θ j Pj cos(ω j∆nk)+ν j M j sin(ω j∆nk)

)∣∣∣α . We define the

function h(x, y) :=
∣∣∣ϕ y+∑

m
j=1
(
θ j Pj cos(2πx j)+ν j M j sin(2πx j)

)∣∣∣α , x ∈ Rm, y ∈ R. Note that h satis-

fies the assumptions of Proposition 3.5 for every realization of P˜ = (P1, . . . , Pm)
T and M˜ = (M1, . . . , Mm)

T .
Now, if ω1, . . . ,ωm are linearly independent over Z we obtain by virtue of Proposition 3.5

fn,∆n(ϕ, θ˜, ν˜) n→∞→ E
[
exp
{
−σ

α
L ·E

[
h(U˜ , N1)|P˜, M˜ ]}]

= E

[
exp

{
−σ

α
L ·E

[∣∣∣∣∣ϕ N1 +
m

∑
j=1

(
θ j Pj cos(2πU j)+ν j M j sin(2πU j)

)∣∣∣∣∣
α ∣∣∣∣P˜, M˜

]}]
=: f (ϕ, θ˜, ν˜). (4.31)

Here U1, . . . ,Um are i.i.d. [0,1)-uniform random variables independent of P1, . . . , Pm, M1, . . . , Mm and N1.
If ω1, . . . ,ωm are linearly dependent over Z, then also by virtue of Proposition 3.5 fn,∆n(ϕ, θ˜, ν˜)→f (ϕ, θ˜, ν˜) as n→ ∞ but now U˜ = T (V1, . . . ,Vm−s) with T being the parametrization of the (m− s)-

dimensional manifold M (ω1, . . . ,ωm) (cf. (3.2)) and V1, . . . ,Vm−s are i.i.d. [0,1)-uniform random variables
independent of P˜, M˜ and N1.

Hence, in both cases the Laplace transform fn,∆n(ϕ, θ˜, ν˜) of the random vector (4.30) converges to a
function that is continuous in the origin. This implies that

(
γ 2

n,Z , α2
n,Z(ω j∆n), β 2

n,Z(ω j∆n)
)

j∈{1, ...,m} con-
verges weakly and completes the proof.

4.5 Proofs of Section 3
Proof of Theorem 3.3. For the proof we identify the equivalence classes in (R mod1)m−s and (R mod1)m,
respectively, by their representatives in [0,1)m−s and [0,1)m.

(i) Define

N :=
{

x = (x1, . . . , xm−s)
T ∈ [0,1)m−s : ∃ j ∈ {1, . . . , m− s}, i ∈ {1, . . . , m} such that

x j = k ·
∣∣b(i)j

∣∣−1 for some k ∈ {0, 1, . . . ,
∣∣b(i)j

∣∣−1}
}
,

where b(i)j denotes the i-th component of the vector b j. Clearly H m−s(T (N)) = 0 and T |[0,1)m−s\N is con-
tinuously differentiable with rank(D T |[0,1)m−s\N (x)) = rank(B) = m− s for all x ∈ [0,1)m−s\N. More-
over, T is injective. The reason is the following. Suppose that T (x1, . . . , xm−s) = T (y1, . . . , ym−s) for some
(x1, . . . , xm−s)

T , (y1, . . . , ym−s)
T ∈ [0,1)m−s. Then(

m−s

∑
j=1

x jb j

)
mod 1 =

(
m−s

∑
j=1

y jb j

)
mod 1 ⇐⇒

m−s

∑
j=1

(x j− y j)b j ∈ Zm.
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Since ∑
m−s
j=1 (x j − y j)b j ∈ spanR({b1, . . . , bm−s})∩Zm ⊆ L̃ ⊥ ∩Zm = L = spanZ({b1, . . . , bm−s}), there

exist integers z j, j ∈ {1, . . . , m− s}, such that ∑
m−s
j=1 (x j − y j − z j)b j = 0 and hence, (x j − y j) = z j ∈ Z

for all j ∈ {1, . . . , m− s}. Since x j− y j ∈ (−1,1) we must have x j = y j for all j ∈ {1, . . . , m− s}. This
shows that T is indeed injective. Note that T−1 is continuous (mod 1) on M and thus, T ([0,1)m−s\N) is
an (m− s)-dimensional C1-manifold in [0,1)m (for a definition of manifolds, see, e.g., [29, pp. 200-201]).
Since H m−s(T (N)) = 0, also M is an (m− s)-dimensional C1-manifold and integration over M is the
same as integration over T ([0,1)m−s\N) = M \T (N) (note that T (N) itself is a manifold in [0,1)m from
lower dimension than m− s).

(ii) Suppose there is a z = (z1, . . . , zm−s)
T ∈ Zm−s, z 6= 0, such that 〈z, µ˜〉= 0. W.l.o.g. z1 6= 0. Then

µ1 =−
m−s

∑
i=2

zi

z1
µi and η˜ =

m−s

∑
i=2

µi ·
(
− zi

z1
b1 +bi

)
.

The vectors b̃i :=− zi
z1

b1 +bi ∈Qm, i = 2, . . . , m− s, are obviously linearly independent. Thus,(
spanR

{
b̃2, . . . , b̃m−s

})⊥
⊆ {η˜}⊥⇒

(
spanR

{
b̃2, . . . , b̃m−s

})⊥
∩Zm ⊆ {η˜}⊥∩Zm = L̃ ,

and since the dimension of L̃ is s whereas the dimension of spanR
{

b̃2, . . . , b̃m−s
}⊥∩Zm is s+1 (the latter

can be obtained as in the proof of dim(L ) = m− s on p. 11), we have a contradiction. Hence, 〈z, µ˜〉 6= 0
for all z ∈ Zm−s, z 6= 0.

(iii) We have, with h = Bz and z ∈ Zm−s, z 6= 0,

1
H m−s(M )

∫
M

fh(x)H m−s(dx) =
∫
[0,1)m−s

fh(T (x))dx =
∫
[0,1)m−s

e2πi〈h,T (G−1x)〉 dx

=
∫
[0,1)m−s

e2πi〈h,BG−1x mod 1〉 dx =
∫
[0,1)m−s

e2πi〈z,BT BG−1x〉 dx

=
m−s

∏
j=1

∫ 1

0
e2πi z jx j dx j. (4.32)

Since z 6= 0 there is a j ∈ {1, . . . , m− s} with z j ∈ Z\{0}, and the right-hand side of (4.32) has to be zero.
(iv) Let T (x), T (y) ∈M , T (x) 6= T (y). Since T is injective, there is some j0 ∈ {1, . . . , m− s} such that

x j0 6= y j0 . For h = Be j0 = b j0 we have

fh(T (x)) · fh(T (y))−1 = e2πi〈b j0 ,T (G
−1x)−T (G−1y)〉 = e2πi〈Be j0 ,BG−1(x−y)〉 = e2πi(x j0−y j0 ) 6= 1,

since x j0 − y j0 ∈ (−1,1)\{0}.

Proof of Proposition 3.4. Letting ω˜ = (ω1, . . . , ωm)
T = 2π(η1, . . . , ηm)

T = 2πη˜, we immediately get

1
n

n−p+1

∑
k=1

∣∣∣∣∣ m

∑
j=1

Ξθ j ,ν j

(
e−iω j∆nk c(iω j)

)∣∣∣∣∣
α

n→∞∼ 1
n

n

∑
k=1

∣∣∣∣∣ m

∑
j=1

cos(2π{η j∆nk}) ·Ξθ j ,ν j

(
c(iω j)

)
+ sin(2π{η j∆nk}) ·Ξ−ν j ,θ j

(
c(iω j)

)∣∣∣∣∣
α

.

Let us first consider the case where ω1, . . . , ωm are linearly independent over Z. We claim that, for any
h ∈ Zm, h 6= 0,

1
n

n

∑
k=1

e2πi〈h,η˜〉∆nk→ 0 as n→ ∞. (4.33)
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To this end, note that for n sufficiently large

∣∣∣∣1n n

∑
k=1

e2πi〈h,η˜〉∆nk
∣∣∣∣= 1

n
·

∣∣∣e2πi〈h,η˜〉∆nn−1
∣∣∣∣∣∣e2πi〈h,η˜〉∆n −1
∣∣∣ ≤ 1∣∣〈h, η˜〉

∣∣ · 1
n∆n

and the right-hand side converges to 0 as n→ ∞ since n∆n→ ∞ by assumption and since ω1, . . . , ωm are
supposed to be linearly independent over Z.

However, (4.33) already implies that

1
n

n

∑
k=1

f (∆nk η˜) n→∞→
∫
[0,1)m

f (x)dx (4.34)

for any continuous function f :Rm→C with period 1 in each component variable (more precisely, f should
be seen as a function, mapping from the compact Hausdorff space (R mod1)m to the complex numbers).
An explanation is the following. If we fix ε > 0, we know from the Weierstrass Approximation Theorem
(cf. [36, Theorem 17]) that there exists a trigonometrical polynomial Ψε , i.e. a finite linear combination of
functions of the type e2πi〈h, · 〉, h ∈ Zm, such that supx∈Rm | f (x)−Ψε(x)| ≤ ε . This yields∣∣∣∣∫

[0,1)m
f (x)dx− 1

n

n

∑
k=1

f (∆nk η˜)
∣∣∣∣

≤
∣∣∣∣∫

[0,1)m
( f (x)−Ψε(x))dx

∣∣∣∣︸ ︷︷ ︸
≤ε

+

∣∣∣∣∫
[0,1)m

Ψε(x)dx− 1
n

n

∑
k=1

Ψε(∆nk η˜)
∣∣∣∣+ ∣∣∣∣1n n

∑
k=1

Ψε(∆nk η˜)− f (∆nk η˜)
∣∣∣∣︸ ︷︷ ︸

≤ε

.

(4.35)

Since
∫
[0,1)m e2πi〈h,x〉 dx = 0 for any h ∈ Zm, h 6= 0, eq. (4.33) implies that the second term on the right-hand

side of (4.35) converges to 0 as n→ ∞. This shows that (4.33) already implies (4.34).
We conclude the first part of the proof by applying (4.34) to the function

f (x1, . . . , xm) :=

∣∣∣∣∣ m

∑
j=1

cos(2πx j) ·Ξθ j ,ν j

(
c(iω j)

)
+ sin(2πx j) ·Ξ−ν j ,θ j

(
c(iω j)

)∣∣∣∣∣
α

. (4.36)

In the case where ω1, . . . , ωm are linearly dependent over Z, we first observe that for any fh ∈ T with
h ∈L , h 6= 0,

1
n

n

∑
k=1

fh(∆nk η˜ mod 1)→ 0 as n→ ∞ (4.37)

(where the mod-operator is defined componentwise; for the definition of T and L see (3.1) and (3.3),
respectively). Therefore note that ∆nk η˜ mod 1∈M for any n∈N∗, k ∈ {1, . . . , n}, since (cf. Theorem 3.3)

∆nk η˜ mod 1 = B(∆nk µ˜) mod 1 = B(∆nk µ˜ mod 1︸ ︷︷ ︸
∈[0,1)m−s

) mod 1 = T (∆nk µ˜ mod 1) ∈M . (4.38)

Then, with h = Bz ∈L , z ∈ Zm−s\{0},

1
n

n

∑
k=1

fh(∆nk η˜ mod 1) =
1
n

n

∑
k=1

e2πi〈Bz,BG−1T−1(∆nk η˜ mod 1)〉
=

1
n

n

∑
k=1

e2πi〈z,T−1(∆nk η˜ mod 1)〉

(4.38)
=

1
n

n

∑
k=1

e
2πi〈z,µ˜〉∆nk

,

and since 〈z, µ˜〉 6= 0 for all z ∈ Zm−s\{0} (see Theorem 3.3(ii)), we obtain eq. (4.37) in the same way as
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we have shown (4.33) in the linearly independent case.
Now, in the linearly dependent case (4.37) already implies

1
n

n

∑
k=1

f (∆nk η˜ mod 1) n→∞→ 1
H m−s(M )

∫
M

f (x)H m−s(dx) (4.39)

for any continuous function f : M → C. Indeed, spanC(T ) is a dense subalgebra in C(M ), the alge-
bra of all continuous complex-valued functions on the compact Hausdorff space M , with respect to the
topology of uniform convergence (cf. also comments after Theorem 3.3). Hence, for any continuous func-
tion f : M → C and any fixed ε > 0 there is a finite linear combination Ψε of functions in T such that
supx∈M | f (x)−Ψε(x)| ≤ ε . This yields, analogously to (4.35),∣∣∣∣ 1

H m−s(M )

∫
M

f (x)H m−s(dx)− 1
n

n

∑
k=1

f (∆nk η˜ mod 1)
∣∣∣∣

≤ 2ε +

∣∣∣∣ 1
H m−s(M )

∫
M

Ψε(x)H m−s(dx)− 1
n

n

∑
k=1

Ψε(∆nk η˜ mod 1)
∣∣∣∣,

and the second term on the right-hand side converges to 0 as n→ ∞ by virtue of Theorem 3.3(iii) and
eq. (4.37). This shows (4.39).

We conclude the linearly dependent case by applying eq. (4.39) to the function f |M with the same f as
in the linearly independent case in (4.36).

Proof of Proposition 3.5. We have

1
n

n

∑
k=1

f (k∆nη˜ mod 1, Nk)−E
[

f (U˜ , N1)
]

=
1
n

n

∑
k=1

(
f (k∆nη˜ mod 1, Nk)−E

[
f (k∆nη˜ mod 1, N1)

])
+

1
n

n

∑
k=1

E
[

f (k∆nη˜ mod 1, N1)
]
−E

[
f (U˜ , N1)

]
=: I1 + I2.

We consider first the case where ω1, . . . ,ωm are linearly independent over Z. Then, by virtue of eq. (4.34)
and the assumption that g(1) is continuous on (R mod1)m, we have

I2 =
1
n

n

∑
k=1

g(1)(k∆nη˜ mod 1)−E
[

f (U˜ , N1)
] n→∞→

∫
[0,1)m

g(1)(x)dx−E
[

f (U˜ , N1)
]

=
∫
[0,1)m

E [ f (x, N1)]dx−E
[

f (U˜ , N1)
]
= 0.

With Chebyshev’s Inequality and the assumption that g(2) is continuous on (R mod1)m, we further obtain

P(|I1|> ε)≤ 1
ε2 ·n2

n

∑
k=1

E
[(

f (k∆nη˜ mod 1, N1)−E
[

f (k∆nη˜ mod 1, N1)
])2
]

≤ 1
ε2 ·n2

n

∑
k=1

E
[

f 2(k∆nη˜ mod 1, N1)
]
=

1
ε2 ·n2

n

∑
k=1

g(2)(k∆nη˜ mod 1)

=
1

ε2 ·n

∫
[0,1)m

g(2)(x)dx · (1+o(1)) =
1

ε2 ·n
E[ f 2(U˜ , N1)] · (1+o(1)) n→∞→ 0,

where we used once more (4.34). Hence, eq. (3.4) is shown in the linearly independent case.
Suppose now that ω1, . . . ,ωm are linearly dependent over Z. As above, now due to eq. (4.39),

I2
n→∞→ 1

H m−s(M )

∫
M

g(1)(x)H m−s(dx)−E
[

f (U˜ , N1)
]
=
∫
[0,1)m−s

g(1)(T (x))dx−E
[

f (T (V˜), N1)
]
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=
∫
[0,1)m−s

E [ f (T (x), N1)]dx−E
[

f (T (V˜), N1)
]
= 0

and

P(|I1|> ε)≤ 1
ε2 ·n2

n

∑
k=1

g(2)(k∆nη˜ mod 1) =
1

ε2 ·n
· 1
H m−s(M )

∫
M

g(2)(x)H m−s(dx)︸ ︷︷ ︸
=E[ f 2(T (V˜),N1)]

·(1+o(1)) n→∞→ 0.

Thus, also in the linearly dependent case (3.4) holds.
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[22] KLÜPPELBERG, C., AND MIKOSCH, T. Some limit theory for the self-normalised periodogram of stable pro-
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