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ABSTRACT

Recent research developments show that the concept of bidi-
rectional relaying significantly improves the performance in
wireless networks. This applies to three-node networks,
where a half-duplex relay node establishes a bidirectional
communication between two other nodes using a decode-and-
forward protocol. In this work we assume multiple transmit
and receive antennas and consider the scenario when in the
broadcast phase the relay transmits additional confidential in-
formation to one node, which should be kept completely se-
cret from the other, non-intended node. This is the MIMO
Gaussian bidirectional broadcast channel with confidential
messages for which we establish the secrecy capacity region.

1. INTRODUCTION

The use of relays seems to be attractive since they can im-
prove the performance of wireless networks. Unfortunately,
current hardware cannot enable transmission and reception at
the same time and frequency. But the inherent loss in spectral
efficiency can be reduced if bidirectional communication is
considered. Further, since spatial MIMO techniques improve
the performance, we assume multiple antennas at all nodes.

Further, current cellular system operators offer for sev-
eral users different services simultaneously subject to certain
secrecy constraints. Due to the broadcast nature of the wire-
less medium, a transmitted signal is received by the intended
user but can also be overheard by non-intended users. Con-
sequently, the design of systems that enable secure communi-
cation to certain receivers becomes an important issue espe-
cially for the transmission of confidential information, where
non-legitimated receivers should be kept ignorant of it.

In his seminal work [1] Wyner characterized the secure
communication problem for a single source-destination link
with an eavesdropper, the so called wiretap channel. In [2]
Csiszár and Körner generalized this model and studied the
broadcast channel with confidential messages. Recently, this
was extended to the MIMO case by Ly et.al. [3].
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Fig. 1. MIMO bidirectional relaying where the relay trans-
mits an additional confidential message in the BBC phase.

We consider bidirectional relaying in a three-node net-
work, where a relay establishes a bidirectional communica-
tion between two other nodes using a two-phase decode-and-
forward protocol and thereby adds an own confidential mes-
sage to the communication as shown in Fig. 1. In this work,
we concentrate on the broadcast phase, where the relay has
successfully decoded the two messages that it received in the
previous multiple access (MAC) phase. The task of the relay
is then to transmit both messages and an additional confiden-
tial message to one node, which should be kept secret from the
other, non-intended node. For decoding the receiving nodes
can exploit the messages they have sent in the previous phase
as side information so that this channel differs from the classi-
cal broadcast channel with confidential messages and is there-
fore called MIMO Gaussian bidirectional broadcast channel
(BBC) with confidential messages. Note that this differs from
the wiretap scenario where the bidirectional communication
itself should be secure from possible eavesdroppers outside
of the network as for example studied in [4, 5].

For the MIMO Gaussian BBC without confidential mes-
sages [6], the capacity-achieving strategy combines both in-
dividual messages based on the network coding idea. Here,
we have an additional confidential communication so that the
optimal processing is by no means self-evident. Interestingly
it shows that a superposition strategy that superimposes two
signals, one for the bidirectional and one for the confidential
communication, achieves the desired secrecy. The analysis of
the secrecy capacity is the indispensable basis for the design
of further signal processing applications and algorithms.1

1Notation: Mutual information and differential entropy are denoted by
I(·; ·) and h(·); (·)−1 and (·)T denote inverse and transpose; tr(·) is the
trace of a matrix; Q � 0 means the matrix Q is positive semidefinite.



2. MIMO BIDIRECTIONAL BROADCAST
CHANNEL WITH CONFIDENTIAL MESSAGES

We assume NR antennas at the relay node and Ni antennas
at node i, i = 1, 2, as shown in Fig. 1. In the bidirectional
broadcast (BBC) phase, the input-output relation between the
relay node and node i is given by

yi =Hix+ ni, (1)

where yi ∈ RNi×1 denotes the output at node i, Hi ∈
RNi×NR the multiplicative channel matrix, x ∈ RNR×1 the
input of the relay node, and ni ∈ RNi×1 the independent ad-
ditive noise according to a Gaussian distribution N (0, INi)
with zero mean and identity covariance matrix. We assume
perfect channel state information at all nodes.

As in [3, 7] we consider two different kinds of power
constraints: an average power constraint and a more gen-
eral matrix power constraint. An input sequence xn =
(x1,x2, ...,xn) satisfies an average power constraint P if

1

n

n∑
k=1

xTk xk ≤ P (2)

holds. Similarly, xn satisfies a matrix power constraint S if

1

n

n∑
k=1

xkx
T
k � S (3)

where S is a positive semidefinite matrix.
For the BBC phase we assume that the relay has success-

fully decoded the individual messages m1 from node 1 and
m2 from node 2 that it received in the previous MAC phase.
Then the relay transmits both individual messages to the cor-
responding nodes and an additional confidential message mc

to node 1 which has to be kept secret from node 2. The ig-
norance of node 2 about the confidential message mc is mea-
sured by the concept of secrecy [1, 2], i.e., we require

1

n
I(Mc;Y

n
2 )→ 0 (4)

as n → ∞ where Mc denotes the random variable that is
uniformly distributed over the set of confidential messages
and Yn

2 = (Y2,1,Y2,2, ...,Y2,n).
In our previous work [8] we analyzed the discrete memo-

ryless case with finite input and output alphabets. There, we
established the corresponding secrecy capacity region.

Theorem 1 ([8]). The secrecy capacity region of the discrete
memoryless BBC with confidential messages is the set of all
rate triples (Rc, R1, R2) ∈ R3

+ satisfying

Rc ≤ I(V;Y1|U)− I(V;Y2|U),

Ri ≤ I(U;Yi), i = 1, 2
(5)

for some U → V → X → (Y1,Y2), where U and V are
auxiliary random variables, cf. [8] for details.

Here, we extend this to MIMO Gaussian channels and es-
tablish the corresponding secrecy capacity region under ma-
trix and average power constraints.

Theorem 2. The secrecy capacity region CBBC(S) of the
MIMO Gaussian BBC with confidential messages under the
matrix power constraintS is given by the set of all rate triples
(Rc, R1, R2) ∈ R3

+ that satisfy

Rc ≤
1

2
log
∣∣∣IN1+H1Q

(c)HT
1

∣∣∣− 1

2
log
∣∣∣IN2+H2Q

(c)HT
2

∣∣∣
Ri ≤

1

2
log

∣∣∣∣∣ INi+HiSH
T
i

INi
+HiQ

(c)HT
i

∣∣∣∣∣ , i = 1, 2

for some 0 � Q(c) � S.

Having [7, Lemma 1] in mind, we immediately obtain
from Theorem 2 with a matrix power constraint (3) the corre-
sponding result for an average power constraint (2) which, of
course, characterizes the practically more relevant case.

Corollary 1. The secrecy capacity region CBBC(P ) of the
MIMO Gaussian BBC with confidential messages under the
average power constraint P is given by the set of all rate
triples (Rc, R1, R2) ∈ R3

+ that satisfy

Rc ≤
1

2
log
∣∣∣IN1

+H1Q
(c)HT

1

∣∣∣− 1

2
log
∣∣∣IN2

+H2Q
(c)HT

2

∣∣∣
Ri ≤

1

2
log

∣∣∣∣∣INi+Hi(Q
(c)+Q(12))HT

i

INi+HiQ
(c)HT

i

∣∣∣∣∣ , i = 1, 2

for someQ(c) � 0 andQ(12) � 0 with tr(Q(c)+Q(12)) ≤ P .

3. SECRECY-ACHIEVING STRATEGY

To prove Theorem 2 we present a secrecy-achieving strategy
and, more important, prove its optimality. The main idea
is to restrict the channel matrices to be square and invert-
ible and prove the corresponding result by contradiction us-
ing channel-enhancement arguments. Then, the extension to
arbitrary channel matrices follows from approximation argu-
ments similarly as in [3, 7] for the classical MIMO Gaussian
broadcast channel (with and without confidential messages).

3.1. Aligned MIMO Bidirectional Broadcast Channel

First, we consider the case where the channel matrices H1

and H2 are square and invertible. Then, the channel model
(1) can equivalently be expressed as

yi = x+ ni (6)

where yi,x,ni ∈ RNR×1 but the additive noise ni is now
Gaussian distributed with zero mean and covariance matrix

Σi =H
−1
i H

−T
i ∈ RNR×NR ,



i.e., ni ∼ N (0,Σi). We follow the notation as used in [3, 7]
and call the scenario (6) the aligned MIMO Gaussian BBC
and (1) the general MIMO Gaussian BBC.

Theorem 3. The secrecy capacity region Caligned
BBC (S) of the

aligned MIMO Gaussian BBC with confidential messages un-
der the matrix power constraint S is given by the set of all
rate triples (Rc, R1, R2) ∈ R3

+ that satisfy

Rc ≤
1

2
log

∣∣∣∣∣Q(c) + Σ1

Σ1

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q(c) + Σ2

Σ2

∣∣∣∣∣ (7a)

Ri ≤
1

2
log

∣∣∣∣ S + Σi

Q(c) + Σi

∣∣∣∣ , i = 1, 2 (7b)

for some 0 � Q(c) � S.

Proof. Similarly as for the classical aligned MIMO Gaussian
broadcast channel [3] the proof of achievability is a straight-
forward extension of its discrete counterpart. To obtain the
desired region (7) for the aligned MIMO Gaussian BBC we
follow the proof of the discrete case restated in Theorem 1,
cf. also [8], with a proper choice of auxiliary and input ran-
dom variables. More precisely, with G ∼ N (0,Q(c)) and
U ∼ N (0,S − Q(c)) with G and U are independent, and
further V = X = U+G, the region (7) follows immediately
from (5). Therefore we omit the details for brevity.

Remark 1. Interestingly, a simple superposition strategy that
superimposes two signals, one for the bidirectional and one
for the confidential communication, suffices to achieve capac-
ity. Moreover, an additional randomization as in the discrete
case, realized by the auxiliary random variable V in Theorem
1, is no longer needed for MIMO Gaussian channels.

It remains to show that this strategy is already optimal.
In the following we show this by contradiction. Therefore,
we construct a rate triple (Roc , R

o
1, R

o
2) ∈ R3

+ that lies out-
side the desired region (7) and assume that this rate triple is
achievable by an arbitrary strategy (not necessarily the one
presented above) for the aligned MIMO Gaussian BBC with
confidential messages. Without loss of generality, we can as-
sume that the matrix power constraint fulfills S � 0, cf. [7,
Lemma 2] for a detailed discussion.

First, we observe that achievable (individual) ratesRo1 and
Ro2 are bounded from above by Roi ≤ 1

2 log |
S+Σi

Σi
|, i = 1, 2.

We note that for Roc = 0 setting Q(c) = 0 in (7) actually
achieves the upper bound. Further, for given achievable rates
Ro1 and Ro2 the maximal achievable confidential rate R∗

c can
be characterized by the following optimization problem

max
Q(c)

1

2
log

∣∣∣∣∣Q(c) + Σ1

Σ1

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q(c) + Σ2

Σ2

∣∣∣∣∣ (8)

s.t.
1

2
log

∣∣∣∣ S + Σi

Q(c) + Σi

∣∣∣∣ ≥ Roi , i = 1, 2

0 � Q(c) � S.

Finally, we setRoc = R∗
c+δ for some δ > 0 to ensure that the

rate triple (Roc , R
o
1, R

o
2) lies outside the region (7) as required.

Then the Lagrangian for the corresponding minimization
problem of (8) is given by

L(Q(c),µ,Ψ1,Ψ2) =
1

2
log

∣∣∣∣∣Q(c)+Σ2

Σ2

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q(c)+Σ1

Σ1

∣∣∣∣∣
+

2∑
i=1

µi

(
Roi −

1

2
log

∣∣∣∣ S + Σi

Q(c) + Σi

∣∣∣∣ )
− tr(Q(c)Ψ1) + tr

(
(Q(c) − S)Ψ2

)
with Lagrange multipliers µ = (µ1, µ2) ∈ R2, and Ψi �
0, i = 1, 2. Then, we know from the Karush-Kuhn-Tucker
(KKT) conditions that the derivative of the Lagrangian must
vanish at an optimal Q(c)

opt , i.e., ∇Q(c)L(Q(c),µ,Ψ1,Ψ2) =

0, which yields2

µ1

2
(Q

(c)
opt+Σ1)

−1 +
µ2 + 1

2
(Q

(c)
opt+Σ2)

−1 + Ψ2

=
1

2
(Q

(c)
opt+Σ1)

−1 + Ψ1

(9)

while the optimal Q(c)
opt further has to satisfy the complemen-

tary slackness conditions

µi

(
Roi −

1

2
log

∣∣∣∣∣ S + Σi

Q
(c)
opt + Σi

∣∣∣∣∣ ) = 0, i = 1, 2 (10)

Q
(c)
opt Ψ1 = 0, (S −Q(c)

opt )Ψ2 = 0 (11)

with µi ≥ 0 , i = 1, 2.
From (8) and (10) we get that the weighted secrecy sum-

capacity for the rate triple (Roc , R
o
1, R

o
2) is given by

Roc+ µ1R
o
1+ µ2R

o
2=

1

2
log

∣∣∣∣∣Q
(c)
opt+Σ1

Σ1

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q
(c)
opt+Σ2

Σ2

∣∣∣∣∣
+

2∑
i=1

µi
2

log

∣∣∣∣∣ S + Σi

Q
(c)
opt+Σi

∣∣∣∣∣+ δ. (12)

But in the following we show that for any achievable rate
triple (Rc, R1, R2) the weighted secrecy sum-capacity is
bounded from above by

Rc+ µ1R1+ µ2R2≤
1

2
log

∣∣∣∣∣Q
(c)
opt+Σ1

Σ1

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q
(c)
opt+Σ2

Σ2

∣∣∣∣∣
+

2∑
i=1

µi
2

log

∣∣∣∣∣ S + Σi

Q
(c)
opt+Σi

∣∣∣∣∣ (13)

which establishes the desired contradiction to (12).
2Similarly as in [7, Appendix IV] or [3] one can easily show that a set of

constraint qualifications hold for the optimization problem (8). This implies
that the KKT conditions hold and are necessary for characterizing the optimal
transmit covariance matrix.



3.2. Reinterpretation of Legitimate Receiver

It is beneficial to reinterpret this scenario by splitting the le-
gitimate node 1 into two virtual receivers: one for the individ-
ual and one for the confidential message. Then, the aligned
MIMO Gaussian BBC can be equivalently represented by

y1a = x+ n1a (14a)
y1b = x+ n1b (14b)
y2 = x+ n2 (14c)

with n1a,n1b ∼ N (0,Σ1) and n2 ∼ N (0,Σ2). Now, each
(virtual) receiver is only interested in one message. Receiver
1a wants to know the confidential messagemc, receiver 1b the
individual messagem2, and receiver 2 the individual message
m1. Again, mc has to be kept secret from receiver 2, but, of
course, need not be kept secret from the (virtual) receiver 1b.

Note that the noise of the (virtual) receivers 1a and 1b has
the same covariance matrix Σ1 as the noise of the legitimate
node 1 in (6). Similarly, the noise of receiver 2 has the same
covariance matrix Σ2 as the one of the non-legitimated node
2 in (6). Therefore, any strategy that achieves a certain rate
triple for (6) will do likewise for (14), and vice versa, so that
both scenarios have the same secrecy capacity region.

3.3. Channel Enhancement

Next, we use this to construct an enhanced MIMO Gaussian
BBC that reveals some kind of degradedness. For this purpose
let Σ̃1 be a real symmetric matrix that satisfies

1

2
(Q

(c)
opt + Σ̃1)

−1 =
1

2
(Q

(c)
opt + Σ1)

−1 + Ψ1. (15)

Then we know from [7, Lemma 11] that

0 ≺ Σ̃1 � Σ1 (16)

and ∣∣∣∣∣Q
(c)
opt + Σ̃1

Σ̃1

∣∣∣∣∣ =
∣∣∣∣∣Q

(c)
opt + Σ1

Σ1

∣∣∣∣∣ (17)

hold. With (15) Equation (9) becomes

µ1

2
(Q

(c)
opt+Σ1)

−1 +
µ2 + 1

2
(Q

(c)
opt+Σ2)

−1 + Ψ2

=
1

2
(Q

(c)
opt+Σ̃1)

−1. (18)

Since the matrices (Q(c)
opt + Σ1)

−1, (Q(c)
opt + Σ2)

−1, and Ψ2

on the left hand side of (18) are all positive semidefinite, it
follows immediately that 1

2 (Q
(c)
opt +Σ̃1)

−1 � 1
2 (Q

(c)
opt +Σ2)

−1

and consequently
Σ̃1 � Σ2. (19)

This allows us to construct an enhanced MIMO Gaussian
BBC by replacing the noise covariance matrix Σ1 of the (vir-
tual) receiver 1a with its enhanced version Σ̃1, cf. (16). Then,
(14a) becomes

ỹ1a = x+ ñ1a (20)

with ñ1a ∼ N (0, Σ̃1), while the channels for receiver 1b and
2 remain the same. Since Σ̃1 � Σ1, cf. (16), the covariance
matrix of the noise for receiving mc for the enhanced BBC
(20) is ”smaller” than for the aligned BBC (14). Hence, its
secrecy capacity region is at least as large as of the aligned
MIMO Gaussian BBC. Moreover, (16) and (19) yield

0 � Σ̃1 � Σi, i = 1, 2 (21)

which means that not only the received signal y1b at the (vir-
tual) receiver 1b but also y2 at the receiver 2 are (stochasti-
cally) degraded with respect to the received signal ỹ1a at the
(virtual) receiver 1a.

Similarly as in [3] for the classical MIMO Gaussian
broadcast channel with confidential messages one can show
that for the enhanced BBC it holds

Rc ≤ I(X; Ỹ1a|U)− I(X;Y2|U) (22a)
R1 ≤ I(U;Y1b), R2 ≤ I(U;Y2) (22b)

for some U → X → (Ỹ1a,Y1b,Y2). Similarly as in [3,
Proposition 1] the proof uses the same ideas and techniques
as used for the non-degraded case [8] taking the characteristic
of the bidirectional communication into account. Therefore,
only slight adaptations are needed.

Remark 2. In contrast to the non-degraded case, cf. Theorem
1, we only need one auxiliary random variable instead of two.
Since the channels already reveal Markov chain properties,
prefix coding realized by V in Theorem 1 is no longer needed.

3.4. Weighted Secrecy Sum-Capacity

Finally, we bound the weighted secrecy sum-capacity of the
enhanced MIMO Gaussian BBC to obtain the desired bound
(13). This will establish the required contradiction to (12).
From (22) we get for any rate triple (Rc, R1, R2) ∈ R3

+ for
the enhanced channel (20)

Rc + µ1R1 + µ2R2

≤ I(X;Ỹ1a|U)−I(X;Y2|U)+µ1I(U;Y1b)+µ2I(U;Y2)

= h(N2)− h(Ñ1a) + µ1h(X + N1b) + µ2h(X + N2)

+h(X+Ñ1a|U)−µ1h(X+N1b|U)−(µ2+1)h(X+N2|U)

≤ 1

2
log|2πeΣ2|−

1

2
log|2πeΣ̃1|+

2∑
i=1

µi
2

log|2πe(S+Σi)|

+h(X+Ñ1a|U)−µ1h(X+N1b|U)−(µ2+1)h(X+N2|U)
(23)

where the last inequality follows from h(Ñ1a) =
1
2 log |2πeΣ̃1|, h(N2) =

1
2 log |2πeΣ2| and h(X + N1b) ≤

1
2 log |2πe(S + Σ1)|, h(X + N2) ≤ 1

2 log |2πe(S + Σ2)|.
As in [3] we can apply an extremal inequality first used

in [9, Corollary 4] to analyze the degraded MIMO compound



broadcast channel. With this and µ = µ1 + µ2 + 1, λ =
µ1

µ1+µ2+1 we get from (18)

h(X+Ñ1a|U)−µ1h(X+N1b|U)−(µ2+1)h(X+N2|U)

≤ 1

2
log |2πe(Q(c)

opt+Σ̃1)| −
µ1

2
log |2πe(Q(c)

opt+Σ1)|

− µ2 + 1

2
log |2πe(Q(c)

opt+Σ2)|.

Substituting this into (23) we end up with

Rc+

2∑
i=1

µiRi ≤
1

2
log

∣∣∣∣∣Q
(c)
opt +Σ̃1

Σ̃1

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q
(c)
opt +Σ2

Σ2

∣∣∣∣∣
+

2∑
i=1

µi
2

log

∣∣∣∣∣ S+Σi

Q
(c)
opt +Σi

∣∣∣∣∣
=

1

2
log

∣∣∣∣∣Q
(c)
opt +Σ1

Σ1

∣∣∣∣∣− 1

2
log

∣∣∣∣∣Q
(c)
opt +Σ2

Σ2

∣∣∣∣∣
+

2∑
i=1

µi
2

log

∣∣∣∣∣ S+Σi

Q
(c)
opt +Σi

∣∣∣∣∣ (24)

where the equality follows from (17), cf. [7, Lemma 11].
Since the secrecy capacity region of the aligned BBC

(6) is contained in the corresponding region of the enhanced
BBC (20), cf. Sec. 3.3, it is clear that for any rate triple
(Rc, R1, R2) the upper bound on the weighted secrecy sum-
capacity (24) – established above for the enhanced BBC –
holds, of course, also for the aligned BBC. Since δ > 0, this
contradicts (12) and completes the proof of the optimality.
Therewith the secrecy capacity region of the aligned MIMO
Gaussian BBC with confidential messages is established.

3.5. General MIMO Bidirectional Broadcast Channel

Finally, to prove Theorem 2 it remains to extend the secrecy
capacity region of the aligned BBC (6) from the previous sec-
tion to the general case (1), where the channel matrices H1

and H2 need not be necessarily square and invertible. Ba-
sically, this is done by approximating the (arbitrary) channel
matrices by square and invertible matrices so that Theorem 3
for the aligned case is applicable. The approximation follows
[3, Sec. IV], where the corresponding result is proved for the
classical broadcast channel with confidential messages.

As an example Fig. 2 depicts the secrecy capacity region
of the MISO Gaussian BBC with confidential messages.

4. CONCLUSION

We analyzed secrecy in bidirectional relay networks and char-
acterized the secrecy capacity region where it shows that a
strategy that superimposes two signals – one for the bidirec-
tional and one for the confidential communication – is opti-
mal. This is surprising insofar as in contrast to the discrete
counterpart [8] no additional randomization is needed.
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