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Abstract

In-silico primer and probe design based on nucleic acid genome sequence data is of
great interest in many areas of research and economy concerning microbial diagnostics,
i.e. molecular identification and detection of bacteria and viruses. Currently available
software tools have reached a performance limit due to the extremely fast growth of pub-
licly available sequence data of microorganisms produced by high throughput sequencing
technology.

The aim of this thesis has been to develop a highly scalable integrated system for micro-
bial in-silico diagnostics based on microbial genome sequence data. The first central com-
ponent is a framework for efficient retrieval and management of sequence and annotation
data from different heterogeneous data sources with the ability to obtain data sets rang-
ing from small subsets to all available microbial genomes. To support fast non-heuristic
oligonucleotide string matching and applications for primer/probe design on this data, re-
quired by computational microbial diagnostics, a new memory independent nucleic acid
sequence index structure is developed as the second central component. In order to handle
the huge amount of available and impending data, central components of the integrated
system have been optimized and parallelized to efficiently utilize multi-core-architectures
and high performance computers as both will continue to multiply the number of com-
puting cores to increase computing power in the future. The integrated system will allow
a large amount of users to continue their work on desktop computers while also enabling
new HPC-based applications and research not possible so far with the currently available
software.
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1 Introduction

1.1 Motivation

According to the Genome OnLine Database (GOLD) [81] more than 2800 complete bacte-
rial genomes are published and for almost 7000 sequencing is ongoing [45]. The over-
all genome sequencing efforts are reflected by a high increase of complete and ongo-
ing projects listed by the GOLD project (figure 1.1). These numbers are likely to further
grow rapidly in the next few years as the latest sequencing technologies, producing large
amounts of molecular sequence data in short time, will soon become standard [85, 90].

Figure 1.1: Development of genome sequencing project numbers (GOLD October 2011
[45])

This genome sequence data is of great interest concerning analysis such as computa-
tional molecular diagnostics (CMD). CMD relies on the in-silico, i.e. performed on a com-
puter, search for molecular markers, primers and probes based on sequence data. It can
lead to a faster development of molecular detection methods for pathogens while reducing
the experimental cost in the wet lab.

On the computational side two major areas are of great interest in order to conduct CMD.
The first area concerns the efficient access and management of the genome sequence and
related data from different sources. Second, as directly processing sequence string searches
on the data is very compute intensive, especially primer/probe design relies on indexing
structures for speeding up string matching. These index structures need to be capable of
dealing with the amount of data available.

1



1 Introduction

The development of computer hardware imposes additional barriers for CMD when try-
ing to deal with the amount of genome sequence data available and impending. Although
the main memory size doubles every 18 to 24 month, the indexing structures widely em-
ployed for CMD already exceed the main memory size of common desktop computers
for the genome sequence data available. In addition, as modern processors increase their
performance by increasing the number of computational cores, algorithms must leverage
parallelism in order to speed up computations of performance critical parts.

Molecular Data Access Prior to conducting extensive analyses it is necessary to build
reliable local databases from own experimental as well as reference sequence data collected
from the public primary or secondary sequence data sources. The latter is provided by
several projects gathering and offering free public access to molecular sequence data like
the EMBL-EBI projects EMBL [70], EnsEMBL [34] and GenomeReviews [67] as well as
projects from other institutions like DDBJ [131] and GenBank [10] among many others. The
different projects employ various schemas and database management systems (DBMS)
and thus differ in the way the data is represented and stored. Access is provided in several
ways ranging from web-interfaces with export to flat files [10, 34, 41], direct downloads
of different flat file packages to database dumps [10, 34, 41] or even direct access to the
database servers [34].

The massive increase of the amount of sequence data together with the heterogeneity of
the sources require efficient solutions for the data management. According to Jagadish and
Olken many home-grown solutions which served well so far do not scale and thus need to
be replaced [63]. It is furthermore necessary to map between different data representations
as well to allow data interchange. Hence Jagadish and Olken demand a standardized
interface for the various available heterogeneous data sources [63].

Existing integrated systems for storing molecular sequence data and identifying molec-
ular markers, primers and probes such as the ARB software environment [84] have major
drawbacks. In case of ARB these drawbacks result from the software being more than 15
years old [130]. For example it utilizes a deeply integrated proprietary database manage-
ment system and the size of databases is limited by the available main memory.

Other sequence data integration approaches are available in form of data warehouses
like BioMart [122] or database integration systems like ACNUC [47] or the Sequence Retrieval
System (SRS) [36]. These systems are targeted to provide data mining capabilities or to
offer read-only data access over web-frontends. Although some provide an application
programming interface (API) as well, they do commonly not offer access to local databases.

The different available bioinformatics frameworks like the Bio* projects (BioJava, BioP-
erl, BioPython and BioRuby) [87] or the C++ APIs like Bio++ [31], Seqan [30, 44] or the
NCBI C++ Toolkit [103, 136] do offer access to sequence data in form of flat file importers
or to selected genome database schemas. Unfortunately, none offers unified access to the
different heterogeneous genome database schemas utilizing different types of DBMS.

For users or application developers this has severe implications. The first option for
them is to rely on the data integration platforms. If sequence analysis data from own
experiments is involved, this means giving up control by uploading the data and relying
on the security and honesty of the service provider. In addition the user is dependent,
i.e. if the service is temporarily not available or discontinued, analysis is not possible any
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1.1 Motivation

more. The second option is to rely on one of the available bioinformatics frameworks. This
may include additional inconvenient manual steps to conduct by the user, for example to
retrieve and convert required data from different heterogeneous sources prior to carrying
out analysis such as primer/probe design on the data.

In-silico Primer/Probe Design Primer and probes are utilized for molecular identifica-
tion and detection for example of bacteria and viruses. The in-silico design and evaluation
of such primers and probes often relies on fast methods for non-heuristic exact and ap-
proximate oligonucleotide string matching. In the field of molecular diagnostics based
on nucleic acid data, indexing structures are widely utilized to speed up computations
[84, 73, 111].

A wide range of different index based solutions exist to design primer and probes based
on genome sequences. The CMD/PSID is capable of identifying signatures based on se-
quence collections [74]. Unfortunately it can deal only with single sequences as a target,
not whole groups of sequences. This is a major drawback limiting its field of application.
Designing primers and probes for detecting and distinguishing organism groups rather
than single organisms is required in applications such as microbial population analysis
and molecular screening for microbial pathogens or indicators.

Two further approaches provide pre-processed signature collections are the web-based
Insignia server [110] and CaSSiS [6]. Both allow to select candidates based on the clus-
tering information which served as pre-processing input. Designing new primer/probe
signature candidates on-the-fly is not possible without repeating the compute intensive
pre-processing of the whole collection with different parameters set.

In contrast an approach capable of conducting on-the-fly primer/probe design based
on a single or a group of sequences in conjunction with evaluation capabilities is the ARB
software environment [84]. It relies on a central index structure supporting molecular
diagnostics, the ARB PT-Server.

The ARB PT-Server is a representative example for an in-memory suffix tree based
index approach. Deeply integrated into ARB and relying on the ARB database as se-
quence source, the PT-Server provides approximate oligonucleotide string matching ca-
pabilities based on the Hamming-distance metric to identify substituted bases. It supports
in-silico primer/probe design and evaluation widely applied in microbiology [4, 119, 68]
and serves as the basic component of the probeCheck server and the comprehensive signa-
ture search tool CaSSiS [83, 6].

The PT-Server operates completely in-memory during construction and application. Al-
though it reduces its memory requirements by truncating the suffix tree, it faces severe
problems in dealing with the increasing amount of sequence data. Furthermore insertions
and deletions (indels) cannot be identified during approximate string matching which
would require the utilization of the Levenshtein-distance metric.

The problem of increasing amounts of genome sequence data has been tackled by many
state-of-the-art indexing techniques. Although not providing full primer/probe design
functionality these techniques, mainly originating from indexing structure theory, are of
interest as a core structure for new developments.

The k-truncated suffix tree (kTST) [120] limits the height of the suffix tree to reduce
its memory requirements like the ARB PT-Server, thus suffering from the same memory
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constraints. The enhanced suffix array (eSA) invented to replace suffix trees, has reduced
memory requirements, but still needs to fit into main memory entirely during applica-
tion [1]. The so called self-indexes, i.e. a compressed representation of the source text
in combination with an index structure, require main memory in the order of the size of
the original input text [102]. Unfortunately, according to Russo and colleagues, approxi-
mate string matching based on self-indexes faces severe slowdowns compared to classical
indexes like suffix trees or arrays [116].

Besides the aforementioned in-memory solutions, several approaches try to deal with
the large amount of data by utilizing secondary storage during index construction and ap-
plication. The disk resident suffix arrays (rSA) offers moderate disk space requirements as
well as providing exact string matching, but no approximate string matching capabilities
[92]. A well studied approach are suffix trees in external memory (eST), recently reviewed
by Barsky and colleagues [8]. They can be constructed with limited main memory effi-
ciently, although memory requirements on secondary storage are high. Furthermore, an
open challenge for the existing eST approaches is the utilization for approximate string
matching. For gene sequence data, C. Hodges conducted a promising preliminary evalu-
ation combining suffix trees on secondary storage with a compression scheme supporting
efficient oligonucleotide approximate string matching [55]. Unfortunately it is not capable
of dealing with genome sequence data.

As the suffix tree is still an essential index structure despite its high memory consump-
tion and construction efforts, several approaches try to speed up construction by utilizing
parallelization of computations, either on shared memory multi-core systems [134] or on
cluster computer systems utilizing the Message Passing Interface (MPI) [42, 88, 141].

Existing integrated systems for comprehensive sequence analysis and primer/probe de-
sign such as the ARB software environment are relying on indexing structures. As a con-
sequence they need to deal with current challenges. Unfortunately, neither the currently
employed nor other existing indexing approaches are able to deal with the demands of
providing low main memory requirements in conjunction with enhanced and fast approx-
imate oligonucleotide string matching.

1.2 Scientific Contribution

The scientific contribution of this thesis is divided into three major parts.
First, the Unified Molecular Data Access (UMDA) framework has been developed. It com-

prises a generic object model as well as abstract interfaces for database access and index
based primer/probe design and evaluation capabilities. For the database interface a query
system allows to select subsets of sequence data entries. A unique plugin system based
on the abstract interfaces allows to develop algorithms independently of specific database
management systems or index structures. With this the UMDA framework significantly
eases the development of future proof applications facing the various existing heteroge-
neous data sources. Furthermore UMDA based applications can benefit from future de-
velopments simply by adding new plugins.

Second, with PTPan a stream-compressed index structure for nucleic acid genome and
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gene sequence data based on a truncated suffix tree on secondary storage has been devel-
oped. It offers enhanced approximate oligonucleotide string matching capabilities based
on either the Hamming- or Levenshtein-distance metric. It is capable of operating with
limited main memory utilizing secondary storage efficiently. Applications with compre-
hensive functionality for primer/probe design and evaluation are incorporated within the
index. A preliminary version has been published in [32]. Optimization and paralleliza-
tion of key components have been conducted in order to speed up construction as well
as application on shared memory systems. In addition, a construction algorithm relying
on MPI enables HPC based analysis of large genome sequence data collections. With PT-
Pan it is now possible to index huge nucleic acid gene and genome sequence collections
even on systems with limited main memory. The PTPan based applications provide good
response times, even compared to competing in-memory solutions. PTPan clearly relaxes
the problems of providing efficient oligonucleotide string matching capabilities facing the
enormous growth of molecular sequence data.

Third, with the UMDA Primer/Probe (UPP) Designer an integrated system for primer and
probe design and evaluation based on the UMDA framework has been developed. It al-
lows the utilization of the sequence data selection offered by the UMDA database interface
query system in conjunction with the primer/probe design and evaluation capabilities of
the UMDA search index interface, for example based on the SII plugin incorporating PTPan.
Utilizing the flexibility of the UMDA framework in conjunction with the sophisticated ca-
pabilities of PTPan, the UPP Designer supports the fast development of molecular detection
methods for pathogens. Scientists can now easily conduct primer/probe design processes
on either a subset or all microbial nucleic acid genome sequences available utilizing a sin-
gle software tool.

The source code of UMDA, UPP Designer and PTPan is available at
http://ptpan.lrr.in.tum.de/. Furthermore, the ARB software environment incor-
porates PTPan http://www.arb-home.de/.

1.3 Structure of the Thesis

The remainder of the thesis is structured as follows: In chapter 2 the relevant background
information is provided. This comprises an overview over nucleic acid sequence and its
related data. Furthermore the problem fields of string matching and indexing structures
are introduced followed by the software related to and employed by this thesis. Finally an
overview over modern hardware architectures and optimization techniques is given. In
chapter 3 the results of this thesis are presented beginning with the Unified Molecular Data
Access (UMDA) framework. Afterwards the PTPan index and the primer/probe design
and evaluation applications relying on it are presented. Finally the software components
developed including UMDA Primer/Probe (UPP) Designer are described. In chapter 4 the
performance evaluation conducted is presented followed by the discussion of the thesis
results in chapter 5. Finally chapter 6 and chapter 7 provide a thesis summary and an
outlook on future work.

5
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2 Basics And Related Work: Genome Data,
Index Structures, Software And Computer
Architecture

The following chapter introduces the important basics and the work related to this thesis,
starting with a brief overview of nucleic acid sequence and its associated data including
the main storage formats as well as some of the most important data providers.

Afterwards an introduction to approximate string matching is given followed by a de-
scription of the relevant indexing structures for speeding up approximate oligonucleotide
pattern matching in large nucleic acid sequence data collections.

Subsequently the relevant software applications including database management sys-
tems and biological data integration platforms, bioinformatic frameworks for nucleic acid
sequence analysis and tools for primer and probe design are presented.

Finally a brief overview over the memory hierarchy of modern computer systems and
an introduction to parallel computer architectures including program optimization and
parallelization techniques and frameworks is given.

2.1 Nucleic Acid Sequence Data

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are biological macromolecules es-
sential for life representing the genetic information. In his definitive book ”Principles of
Nucleic Acid Structure” W. Saenger gives an introduction to their composition and func-
tionality [117].

DNA is the concatenation of so called nucleotides. It carries the genetic information of
an organism commonly in two anti-parallel polymer strands arranged as a double helix,
except for some viruses. Thereby a single DNA strand consists of coding and non-coding
regions. Coding regions are copied into the related nucleic acid RNA. This process is called
transcription. Several types of RNA exist. For example the Messenger RNA (mRNA) en-
codes the structure of a protein for his part consisting of amino acids. The mechanism for
decoding the mRNA into amino acid is provided by the Ribosomal RNA (rRNA). Besides
the latter several other types of RNA exist.

2.1.1 Nucleic Acid Sequence Alphabets

A nucleic acid sequence is actually the primary structure of a certain piece of nucleic acid,
namely the sequence of its nucleotides. The heterocyclic base is the essential informative
component, but it is just one component of a nucleotide. The bases cannot be concatenated
on their own. The formal representation of a nucleic acid sequence is a string of characters
representing the sequence of nucleotides.
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2 Basics And Related Work: Genome Data, Index Structures, Software And Computer
Architecture

A DNA sequence is a concatenation of four different bases only, namely Adenine, Cyto-
sine, Guanine and Thymine which are abbreviated as “A”, “C”, “G” and “T”. RNA sequences
are based on almost the same base characters with only Thymine being replaced by Uracil
(abbreviated as “U”). Several other characters are utilized to represent ambiguous posi-
tions, for example “N” for any base or “R” for an “A” or “G”.

The nucleotide base sequence code names have been standardized by the International
Union of Pure and Applied Chemistry (IUPAC), an international federation which works
on standardizing nomenclature in chemistry and other related science [62].

Within this thesis, two different DNA/RNA alphabet definitions are distinguished. The
DNA4 alphabet consists of the four symbols “A”, “C”, “G” and “T” (or “U” in RNA respec-
tively). The DNA5 alphabet adds the symbol “N” which stands for all non-DNA4 symbols.
This is important to represent the ambiguous bases which are commonly present in many
nucleic acid sequences in public repositories.

2.1.2 Nucleic Acid Sequence Related Data

Besides the nucleic acid sequences itself there are different kinds of related data mostly
derived from sequence analysis.

Sequence order and direction The direction of a nucleic acid sequence is read from the
so called 5’ (five prime) end to the 3’ (three prime) end per convention. The naming is
derived from the structure of the nucleic acids, i.e. the direction in which it is synthesized
by polymerase. This direction is often referred to as ”forward direction”, the reverse order
as ”reverse direction” (3’ to 5’).

For a double-stranded DNA, one of the two strands is considered the sense strand and
the other as antisense strand, i.e. the complementary sequence to the sense strand. The sense
strand is normally the one that has the same sequence as the mRNA. Therefore the strand
that serves as template for mRNA is the antisense strand.

Genome annotations In order to enrich a newly sequenced genome with information
about its functional regions, the sequence is annotated. This process is carried out manu-
ally, semi-automated or automated and produces sequence features. The aim is to ”identify
the key features of the genome - in particular the genes and their product” [128]. Despite
the latter, sequence features comprise also the functional and regulatory elements in the
non-coding regions. On the sequence string, each gene is the name for a coding region,
also named coding sequence (CDS), which is identified by one or more locations comprising
a start and end index. Annotations are stored along with the sequence data in the genomic
sequence databases (refer to section 2.1.5).

Signatures, primers and probes Many biological applications rely on DNA/RNA signa-
tures, i.e. short nucleic acid sequences. A signature is representative for a longer nucleic
acid sequence. Therefore the detection of its presence can stand for the detection of the
whole piece of nucleic acid, i.e. a gene or even a whole genome. A signature can charac-
terize a function but sometimes even an organism or a group of organisms.
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2.1 Nucleic Acid Sequence Data

Depending on the biological application, these signatures can be used to design primers
for polymerase chain reaction (PCR) or probes for organism detection, for example by fluores-
cence in-situ hybridization (FISH). Primer/probes are the reverse complement of a signature.

For signatures respectively primers/probes, sensitivity and specificity are distinguished.
Sensitivity, often denoted as coverage as well, is a measure for how many of the targeted
genes or genomes are covered by a signature. If the specificity of a signature is high, the
number of out-group sequences hit is minimal or at least a high distance is guaranteed.

More information on designing and evaluating primers and probes will be given later
in section 2.4.4.1.

Alignment Another form of sequence analysis is the alignment of two or more sequences.
The aim is to identify regions of similarity. These similar regions can be a hint to show evo-
lutionary relationships between sequences respectively their related organisms [54]. In or-
der to allow the unambiguous representation of similarities as well as differences of equal
or unequal length sequences, the sequences are arranged vertically inserting gap charac-
ters, briefly called gaps. These gaps are denoted by a hyphen (”-”). Some tools utilize dots
(”.”) as well, for example the ARB software (refer to section 2.4.4.2).

Alignments can be represented in form of a ’Compact Idiosyncratic Gapped Alignment Re-
port’ (CIGAR) format string [124] or its extended version [78]. The CIGAR format stores
series of <operation, length> pairs. Operations are match, insertion or deletion. The
length denotes how often this operation is repeated. The gapped alignment representation
can be reconstructed from the sequence string and its corresponding CIGAR string. Figure
2.1 shows two aligned sequences and their respective CIGAR strings.

G A A GA TC
G AT A TC C

M2 I1 M3 I1 M2
M1 D1M5 D1 M1

CIGARAlignment

Figure 2.1: Nucleic acid sequence alignment example for two sequences as well as its
CIGAR representation

Differential alignment In a differential alignment one sequence stretch functions as refer-
ence. One or more other stretches are not shown as a string of DNA bases, but as a se-
quence of characters denoting identical bases or differences. In case of an identical base a
equal sign (”=”) is printed while for a substitution the base of the aligned stretch is shown.
If the aligned stretch contains the wildcard character “N”, it is printed like a substitution
in order to highlight it. The other two edit operations possible, i.e. insertion and deletion,
are symbolized by an asterisk (”*”) respectively an underscore (” ”). In case of insertions
several neighboring characters may be denoted by a single asterisk to keep the vertical
alignment within the size of the reference sequence stretch.

Two examples for differential alignments are shown in figure 2.2. The second example
contains an insertion shadowing another symbol in order to keep the vertical alignment of
corresponding bases.

9
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G A A GA TC
diff = T N _= ==

diff = C = *= ==

reference

Figure 2.2: Differential alignment example with a reference and two sequences aligned to
it. The grey stretches are the sequences for which the differential alignment was
build.

2.1.3 Genome Sequence Database Schemas

There are various different types of biological databases for different kinds of biological
data. An overview has been presented by De Francesco and colleagues including a classifi-
cation for the different types of genomic databases and schemas as well as a list of example
instances [28]. The term database on its own is thereby referring to a logical collection of
data while the term database schema refers to the structure of the database.

In the following some widely used nucleic acid genome sequence database schemas
are presented, although the list is not exhaustive. The schemas rely on different database
management systems which are described later in chapter 2.4.1.

ARBDB The ARB database (ARBDB) schema is part of the ARB software environment
and tightly coupled with the ARB database management system [84]. It is an integrated
hierarchically structured database schema for storing sequence data and its related infor-
mation in individual database fields. The schema differs between two types of databases,
gene and genome. For both reference and taxonomy is included among other meta-data.
For genomes, feature information is included in addition.

BioSQL The BioSQL database schema is a joint effort of the projects participating in the
Open Bioinformatics Foundation (OBF) [106]. It provides a generic relational model for
storing sequence data along with features, annotation for both, literature references and
taxonomy among other data. The schema is available for different relational database
management systems, for example MySQL and PostgreSQL [14].

Chado The Chado relational database schema is part of the GMOD project available for
PostgreSQL [96]. Chado is a generic approach capable of storing molecular sequence data
along with annotation data, for example features, publications and phylogenetic informa-
tion among other data.

EnsEMBL The EnsEMBL genome database project provides a relational database schema
as part of their bioinformatics framework [57]. The EnsEMBL core schema is capable of
storing nucleic acid and assembly sequences, computed features and genes along with
other miscellaneous information [125]. The SQL schema is available for MySQL and can
be downloaded along with MySQL database dumps from the public FTP-server accessible
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via the EnsEMBL website [34]. The schema is utilized by the Ensembl genomes and Genome
Reviews projects [66, 67].

2.1.4 Text File Data Formats

Besides the database schemas presented in section 2.1.3, each relying on a database man-
agement system, there are various text file formats for nucleic acid sequence and feature
data. Often they are denoted as flat file formats as well.

The FASTA-file format contains one or more bare sequence data entries besides some
meta-data in a header for each entry. This header may differ in its composition depending
on the bioinformatics software utilized, although it often contains a sequence identifier. A
FASTA-file with more than one sequence is called multiFASTA-file as well.

With SeqXML a simple XML based format for sequence data was recently proposed by
Schmitt and colleagues [118]. It allows to store the same information as FASTA-files but
with the meta-data in a standardized way.

Besides the simple sequence file formats there is the EMBL-Bank flat file format defined
in the EMBL-Bank User Manual [33]. It comprises sequence data with corresponding fea-
ture information as well as meta-data like literature references. Similar flat file formats are
also offered by DDBJ [65] and GenBank [9].

Besides the EMBL-Bank flat file format there is an EMBL-Bank XML file format as well
which comprises the same content [33].

2.1.5 Sequence Data Provider

There are numerous nucleic acid sequence data provider which are commonly divided
into primary and secondary ones.

The three large primary providers for genome sequence data offer a comprehensive col-
lection of the sequenced genomes available so far. The first is the EMBL EBI with the
projects Ensembl [57] and the newer Ensembl genomes [66]. The other providers are Genbank
[9] and DDBJ [65]. All three collaborate in the International Nucleotide Sequence Database
Collaboration [60] to provide common sequence data feature representations and standards
for annotation practice.

Based on the data provided by the primary sources there are various projects utilizing
the genome sequence data to build curated and non-redundant collections of sequences
targeting specific purposes, i.e. secondary databases. The NCBI’s Reference Sequence (Ref-
Seq) database provides whole genome sequences with their related information [114]. Sim-
ilar, Genome Reviews provides comprehensive views of the genomic sequence of organisms
[129]. Other projects like SILVA [113], Greengenes [29] or RDP [25] are more specialized.
They provide curated gene sequence databases. These are often enriched by some analysis
results, for example phylogenetic trees to document the evolutionary relationship.

A comprehensive list of molecular biology databases including many nucleic acid se-
quence databases has been provided by a recent Nucleic Acids Research Database Issue [39].
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2.2 String Matching

The next sections will give an introduction to the relevant parts of the problem field of
string matching. First string matching is defined. Afterwards the different kinds of string
matching being of interest for this work are described.

2.2.1 Problem Definition

Consider R = r1r2...rN being a string with n = |R| symbols over the alphabet Σ. The
string M with length m = |M | denotes the search pattern over the same alphabet. It is
assumed that m� n in the context of this work. With this, string matching, also known as
pattern matching, is the problem of finding one or all occurrences of M in R.

String matching can be further divided into exact string matching and approximate string
matching (ASM). For exact string matching, all occurrences in R match exactly the pattern
M . In contrast, ASM occurrences can have a certain number of differences to M .

2.2.2 Exact String Matching With Wildcards

Like the common application of wildcards within the search pattern M , it is also possible
to define a character as a universal character in the source text R. In case of a text composed
of the DNA5 alphabet, the “N” character is such a wildcard.

The implication on string matching is the requirement to properly treat the wildcard, for
example by denoting each position of a “N” in a match as N-mismatch. Figure 2.3 shows
an example source text excerpt with an occurrence of a search pattern comprising two
N-mismatches.

G N AT NA TC C

G AT TA TC CC

... ...AT Csource

pattern

Figure 2.3: N-mismatch example showing a source string excerpt and a pattern with two
N-mismatches marked red.

2.2.3 Approximate String Matching

Introductions to the field of approximate string matching (ASM) have been given by Navarro
[99] or Michailidis and Margaritis [91]. Although both works focus on online algorithms,
i.e. operating directly on the source text opposed to utilizing index structures for speeding
up searches, they offer a good overview.

The main goal of ASM is to find all occurrences of M in R with a predefined upper
limit of differences. Thereby different metrics exist to measure the difference between
two strings. Two of the most commonly used are the Hamming-distance metric and the
Levenshtein-distance metric.
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2.2.3.1 Hamming-distance Metric

The Hamming-distance metric originates from the context of error detection and correc-
tion on large scale computing machines and was introduced by R.W. Hamming [53]. He
describes the comparison of two equal-length strings with the aim of identifying all mis-
matches, i.e. positions with altered characters. An example is shown in figure 2.4.

G A AT GA TC C

G AT TA TC CC

Figure 2.4: Hamming-distance metric example with two strings differing in two positions
marked red.

A generalization of the problem to find the mismatches between equal-length strings is
the k-mismatch-problem. The aim is to find all start positions j for the occurrences of M in
R with a number k ≥ 0 of mismatches allowed at maximum. Each of the corresponding
substrings of R starting at j has at most k positions with characters differing from M .

2.2.3.2 Levenshtein-distance Metric

The Levenshtein-distance metric, also originating from the field of error detection and
correction, is a measure for the differences of two input strings. It was introduced by V.I.
Levenshtein [76]. The term edit-distance is often used synonymical, although there are
other edit-distance metrics as well.

The Levenshtein-distance metric considers the following character edit operations as a
difference:

• substitute a character by another
• insert a character
• delete a character

In order to determine which edit operations have to be applied to transform a string R′

into another string M , dynamic programming is utilized. The recursive algorithm shown
in figure 2.5 determines the (m + 1)× (n′ + 1)–matrix D of the two strings R′ and M with
their length n′ and m. Each edit operation has a uniform difference value of 1.

D0,0 = 0

Di,0 = i ∀ i ∈ {1, . . . ,m}
D0,j = j ∀ j ∈ {1, . . . , n′}

Di,j = min


Di−1,j−1 + 0 equal
Di−1,j−1 + 1 substitute
Di−1,j + 1 insert
Di,j−1 + 1 delete

∀ i ∈ {1, . . . ,m} and j ∈ {1, . . . , n′}

Figure 2.5: Levenshtein-distance metric recursive algorithm
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Dm,n′ finally contains the Levenshtein- or edit-distance between R′ and M .
The positions and types of the edit operations can be obtained by backtracking through

the matrix. Figure 2.6 shows an example of two strings differing by a deletion and a sub-
stitution. At first the matrix is utilized to determine the total number of edit operations,
which is two. The second step is to determine the positions of the edit operations by fol-
lowing the path back through the matrix.
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Figure 2.6: Levenshtein-distance metric example showing the backtracking matrix as well as
the two strings in direct comparison with the differences marked red.

The k-difference-problem is the generalization of determining the Levenshtein-distance of
two equal or near-equal length strings. The aim is to find all start positions i for the occur-
rences of M in R with l ≥ 0 differences allowed at maximum. Each of the corresponding
substrings of R starting at i can be obtained from M with at most l edit operations.

2.2.4 Weighted Approximate String Matching

In weighted approximate string matching (WASM) the different edit operations are not treated
equally with a uniform difference value of 1. Instead individual values are assigned de-
pending on the position as well as the source and target character.

In the Hamming-distance metric each substitution gets a weighted mismatch value de-
pending on the source and target character. The position of a substitution within the search
pattern can be taken into account as well, for example by applying a position dependent
correction factor.

In the Levenshtein-distance metric, substitutions are treated in the same way as for the
Hamming-distance metric. In addition, the edit operations insert and delete get a weighted
difference value depending on the character removed or added. The recursive algorithm
to determine the dynamic programming matrix can be adopted to the weighted scheme
(figure 2.7). The fixed mismatch values are replaced by appropriate weighted values. For
each kind of edit operation, the weighted mismatch value is determined by a correspond-
ing function and added to the difference count. These functions return a distance value
depending on either both the source and pattern string character (sub(i, j)) or the source
character only (ins(j) and del(j)). More complex approaches could incorporate context
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information as well.

D0,0 = 0

Di,0 = i ∀ i ∈ {1, . . . ,m}
D0,j = j ∀ j ∈ {1, . . . , n′}

Di,j = min


Di−1,j−1 + 0 equal
Di−1,j−1 + sub(i, j) substitute
Di−1,j + ins(j) insert
Di,j−1 + del(j) delete

∀ i ∈ {1, . . . ,m} and j ∈ {1, . . . , n′}

Figure 2.7: Levenshtein-distance metric weighted recursive algorithm

15



2 Basics And Related Work: Genome Data, Index Structures, Software And Computer
Architecture

2.3 Indexing Structures

In computer science indexing structures are widely used to speed up lookup operations
in large data sets. An index structure is obtained by preprocessing the source data. In
contrast, online algorithms operate directly on it.

For string matching in nucleic acid sequence data, indexing structures have been utilized
for a long time and in many applications. Thereby some structures, for example suffix
trees and suffix arrays, proofed to be well suited to deal with the special characteristic of
sequence data which does not contain any delimiters. Hence a sequence is one large string
of characters instead of separated words making for example the widely utilized inverted
indexes less suitable.

For this reason, the following sections will introduce several indexing structures focus-
ing on the most relevant ones in the context of this work.

2.3.1 Basic Notations

Consider R = r1r2...rN being a string with n = |R| symbols over the alphabet Σ. A
termination symbol $, which is not part of the alphabet, is attached at the end of R.

Each suffix of R beginning at position i, 1 ≤ i ≤ n can be identified by the term
si = R[i, n]. With this, s1 = R and sn = $. Each suffix is uniquely identified by its
starting position i in R.

A generalized index is an index based on a set of strings P1...PM which are all incorpo-
rated into one index. An often utilized technique to construct an index from these parts is
to concatenate all parts to one large string R which is indexed afterwards. The index posi-
tions denoting a border between two parts are stored. This is required for string matching
because otherwise it would not be possible to identify the artificial substrings which are
formed by the concatenation process.

The examples in the follwing sections are based on the nucleic acid sequence string
R =“GATAACCGT$”. When talking about string matching, it is based on the pattern M
with the length m = |M |.

2.3.2 Suffix Tree

The suffix tree (ST) is a well-known index structure which has been of research interest for
a very long time. Back in 1968 Morrison presented the PATRICIA tree [93], an early form
of the ST. As explicit index it was proposed by Weiner in 1973 [138].

For a string R a ST is a tree with labeled non-empty edges. The labels contain one or
more characters, opposed to suffix tries where all edges are labeled with exactly one char-
acter. The paths of the tree, i.e. the concatenation of edge labels from the root to a leaf,
correspond to the suffixes si of R. Their start positions in R, often denoted as occurrences
as well, are stored as leaves. Figure 2.8 shows an example of a suffix tree.

A lot of research has been done on efficient construction algorithms resulting in O(n)
time and space requirements. A recent review by Barsky and colleagues includes a more
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Figure 2.8: Suffix Tree for the example sequence “GATAACCGT$”

detailed description of suffix trees and common construction algorithms [8].
Due to its structure and the suffix position information in the leaves, a suffix tree allows

fast searching of substrings contained in R. It takes time linear to the length m of the search
string M plus the number of occurrences in R to return all exact appearances (O(m+occ)).
However, the memory requirements are a major drawback of suffix trees. Unoptimized
they require at least 10n [8] up to 20n or even more memory [1].

To deal with the huge memory demands, several approaches have been proposed. The
generalized kTruncated Suffix Tree (kTST) [120] and the ARB-PT-Server incorporated in the
ARB software environment [84] truncate the suffixes in order to reduce the size by lim-
iting the height of the suffix tree. Other approaches, recently reviewed by Barsky and
colleagues, utilize secondary storage to circumvent the problem of suffix trees exceeding
main memory size for large data sets [8].

2.3.3 Suffix Array

In order to overcome the disadvantage of high memory requirements of suffix trees Man-
ber and Myers proposed the suffix array (SA) in 1990 [86]. An overview of suffix arrays was
recently given by Grossi [50].

For a string R the corresponding SA is the lexicographically sorted array of the suffix
start positions. The SA space requirements are in the order of 4n. Exact string matching
can be conducted in O(mlogn) time while the construction time is O(nlog2|Σ|) in the best
case. Figure 2.9 shows an example of an suffix array.

A disadvantage of bare suffix arrays has been the inability to perform all operations of
a suffix tree. Hence Abouelhoda and colleagues proposed the enhanced suffix array (eSA) in
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Figure 2.9: Suffix Array for the example DNA sequence “GATAACCGT$”

2004 [1]. It is capable of replacing suffix trees in all applications by adding some additional
tables. An eSA has a memory requirement of 6n and a search complexity for exact matches
O(m + occ) like suffix trees.

Furthermore, research has been conducted on Suffix Arrays on secondary storage in order
to deal with limited main memory sizes. The most recent approach has been proposed by
Moffat and colleagues [92]. The space requirements are about 7n for nucleic acid sequence
data with the search times for exact matches being of the same complexity as for the eSA,
i.e. O(m + occ).

2.3.4 Compressed Index Structures

In order to further reduce the high memory demands of suffix trees and suffix arrays, com-
pressed index structures were invented creating the field of so-called full-text self-indexes. A
self-index contains the original source string R in a compressed representation and allows
fast substring queries as well.

Self-indexes exist in many variations differing in space and time requirements. In their
survey Navarro and Mäkinen give a detailed overview of compressed full-text indexes in-
cluding a detailed introduction to self-indexes [102].

The first self-index is the FM-index invented by Ferragina and Manzini [37]. It is based
on the Burrows-Wheeler transformation (BWT) [19] in combination with the data struc-
ture of suffix arrays. The BWT permutes the order of characters of the original string by
sorting all rotations and taking the last column. This results in a string with clusters of
repeated characters if a single character occurs several times in the original string, making
the transformed string compressable by for example run-length encoding. Reversing the
transformation is possible with only having the transformed string [19]. The FM-index is
often named compressed suffix array (CSA) as well. With respect to the size of the input data,
the search time and space requirements of the FM-index are sublinear.

Another self-index is the LZ-index presented by Navarro in 2004 [100]. It is based on the
LZ78 compression utilizing a dictionary and replacing repeated occurrences of substrings
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by pointers to the dictionary [144]. The LZ-index has space requirements in order of the
original text.

Like enhanced suffix arrays, compressed suffix arrays can be enhanced by adding data
structures to provide full suffix tree functionality. These enhanced CSA are called com-
pressed suffix trees (CST) and were first proposed by Grossi and Vitter [51].

2.3.5 Approximate String Matching With Indexing Structures

As online approximate string matching algorithms face the problem of decreasing perfor-
mance due to increasing text sizes, offline algorithms are of great interest. With the help of
pre-processed indexing structures, the search time can be reduced significantly for single
queries, although the index generation consumes time as well.

For suffix trees Ukkonen was the first who presented different approaches for approxi-
mate string matching [135]. Navarro and colleagues later summarized the three main ASM
approaches for suffix trees and arrays including a brief introduction [101].

The first approach is neighborhood generation. The index is queried for all occurrences of a
pattern within the maximum distance k by comparing the pattern to the paths of the tree.

The second approach is partitioning. The search pattern is divided into pieces and the
index is queried for exact matches of selected pieces. With the original text, the areas
around each occurrence of the approximate hit must be verified afterwards.

The third approach, intermediate partitioning, is a hybrid between the two latter ones. The
index is queried for search pattern pieces allowing fewer errors than for the whole pattern
and the occurrences are verified afterwards.

Although in-memory suffix trees can be utilized efficiently for ASM, Barsky and col-
leagues state that it is still an open challenge for suffix trees on secondary storage [8].

Approximate string matching with the help of compressed indexes has been subject of
research, too. In their study Russo and colleagues presented an approach for ASM utilizing
the LZ-index and other CSAs/CSTs [116]. They observed high slowdowns even for low
error rates.
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2.4 Related Software Applications

In the following sections the software applications and frameworks relevant for this thesis
are presented. First the relevant database management systems are introduced followed
by a presentation of data integration platforms for nucleic acid sequence data. Afterwards
the different bioinformatic application programming interfaces (APIs) of interest, target-
ing sequence analysis, are described. Finally some primer/probe design applications as
well as programs of interest to function as a building block for new developments are
introduced.

2.4.1 Database Management Systems

A collection of logical associated data is called a database. For its electronic management
database management systems (DBMS) are utilized. They allow fast access and guarantee
data integrity, for example by supporting the ACID paradigm (atomicity, consistency, iso-
lation, durability).

Common features offered by many DBMS are handling the concurrent access of several
clients which often requires transaction support as well as a query language for defining,
querying and manipulating data. Furthermore index structures for fast random access to
specific parts of the content, access control, backup and replication support are often pro-
vided.

DBMS utilize different models to store data, for example the relational model. It is the
base of different widely employed Relational DataBase Management Systems (RDBMS) and
goes back to proposals for managing large shared databases by E.F. Codd in 1970 [24].

Instead of storing all data using one large record per data entry, the entries are split up
and stored distributed over several tables. The relations between the parts are stored by
utilizing keys. For data definition, querying and manipulation, many RDBMS support
the Structured Query Language (SQL). There are numerous commercial and open source
RDBMS, for example MySQL, PostgreSQL and SQLite to name just a few popular open
source representatives.

MySQL is an open-source DBMS available for multiple operating systems. It provides
various storage engines for different purposes. Some provide special functionality like
the in-memory engine and the Network Data Base (NDB) engine. The NDB engine is the
base of MySQL Cluster which allows to install the MySQL DBMS on a computer cluster for
fast access and high availability. The MySQL Cluster is often used in environments where
many reads and rare writes are common [97]. Programmatic access is possible utilizing
the MySQL C API or one of the wrappers in other programming languages, for example
MySQL++ for C++ [98].

Another popular open-source RDBMS is PostgreSQL [112]. It is available for Linux,
UNIX derivates and Windows offering native programming interfaces for various pro-
gramming languages. For C++, the library pqxx is available working on top of the libpq C
API [80].

SQLite is a C/C++-library offering a standalone SQL database engine [123]. It does not
provide a server architecture and can be seen more as a management library for flat file
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databases. For different programming languages wrappers for the C API exist.

Other common data models employed in DBMS are the object oriented model and the
hierarchical model. Hierarchical DBMS utilize parent/child relationship to manage data.
An example is the ARBDB which is part of the ARB software environment [84] (refer to
section 2.4.4.2). The ARBDB offers its own C/C++ API including transactions and different
query functionality, although concurrent access by different users is not supported.

2.4.2 Nucleic Acid Data Integration And Access

Various applications and frameworks offer different ways to search and retrieve nucleic
acid sequence data from different repositories or to access and integrate nucleic acid data
into new applications. The following sections will introduce different existing approaches
ranging from web-oriented remote database access, data warehouses to integration plat-
forms.

2.4.2.1 Remote Sequence Database Access

The EMBL EBI, provider of the EnsEMBL and EnsEMBL genomes databases, offers sev-
eral remote APIs to access their databases programmatically. The dbfetch REpresentational
State Transfer (REST) API enables the retrieval of entries by their respective identifier or
a unique accession number [27]. The output format depends on the content type of the
database. For nucleic acid sequence data, the FASTA and the EMBL Bank XML file formats
are supported. The number of concurrently returned entries is limited to 200 per query.
Furthermore, with WSDbfetch a web service Simple Object Access Protocol (SOAP) API
is provided with the same functionality as dbfetch [139]. Additionally several EMBL EBI
databases hosted on MySQL servers are directly accessible utilizing a MySQL API [35].
Finally the databases are available for download as flat file exports and MySQL database
dumps.

The NCBI offers similar access to their databases. The Entrez Programming Utilities
provide a REST API and a Web Service API to access GenBank as well as various other
databases [104]. The database entries are returned as text files. Different formats like for
example FASTA, GenBank flat file and different XML formats are supported.

2.4.2.2 Biological Data Warehouses

One category of data integration platforms are data warehouses. They integrate data from
different sources into a unified schema. This often requires the transformation of the data
representation. The goal of a data warehouse is the support of data analysis by online
analytical processing (OLAP) or data mining, i.e. extracting new patterns and relations.

The existing data warehouses for biological data integrate databases from different fields
of biology, for example nucleic acid sequence and protein data. Their main goal is to sup-
port researchers without deep programming knowledge in performing large scale analy-
sis. This is achieved by providing predefined tools and workflows accessible over web-
interfaces or a web-service API.
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One well established and representative biological oriented data warehouse is BioMart
provided by EMBL EBI [122]. BioMart offers public server access besides web services and
native Java APIs [35]. It has been recently extended to function as a data federation frame-
work for locally distributed databases [143]. It provides a central portal [52] and recently
integrated the databases from the Ensembl Genomes project as well [69].

2.4.2.3 Biological Data Integration Platforms

A different type of integration platform besides data warehouses are integrated frame-
works, for example the Galaxy toolkit for biomedical genome analysis [43]. It is web-based
and aims at providing simplified mechanisms for coupling external data resources with
the available analysis tools. Further enhancements have been developed to cope with the
ongoing fragmentation and specialization of data sources [16].

Another integration platform is the ACNUC biological sequence database system pro-
viding remote access to the database collection at the Pole Bio-Informatique Lyonnais
(PBIL) [47]. Some of the major sequence databases like EMBL or GenBank are cloned
and integrated. For data selection ACNUC provides its own query language. Access is
provided by a range of APIs in different programming languages as well as by a browser
interface. Furthermore ready-to-use programs are provided.

The Sequence Retrieval System (SRS) [36] started as an integration platform for flat file
collections providing a unified text based search interface. Currently SRS provides an in-
tegrated platform for biological data search and retrieval. It currently integrates a wide
range of biological data sources such as databases for protein and nucleic acid sequence
data, protein interactions as well as content generated by studies and other analysis to
name some. In the meantime it evolved to a commercial product distributed by BioWis-
dom Ltd. [15].

The data contained by a SRS server can be queried and accessed utilizing wgetz, a repre-
sentational state transfer (REST) API. For public available SRS-servers, the REST API can
be accessed freely. Other APIs exist, but are only available commercially, for example a
web service SOAP API.

Using the REST API, the SRS system is queried by building a URL providing all required
information comprising the databases to query, the field identifiers and the values to search
for. Some further parameters allow to influence the returned data, for example to get the
matching values in a certain text file format like FASTA or EMBL Bank (refer to section
2.1.4) instead of a HTML-page.

Different approaches exist to provide wrappers for the SRS-APIs allowing the program-
matic access with different programming languages. SRS.php targets web-applications and
provides a wrapper around the SRS SOAP API [7]. Another unpublished approach is the
SrsUrlApi written in Perl [109]. It provides a client library to access the SRS REST API.
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2.4.3 Bioinformatics Application Programming Interfaces

In the field of sequence analysis and data retrieval many different application program-
ming interfaces (APIs) in different programming languages exist. A brief overview is given
by Stajich and Lapp [127].

Some of the most prominent APIs are federated in the Open Bioinformatics Foundation
(OBF) [106], namely BioJava [56], BioPerl [126], BioPython [23] and BioRuby [46]. These are
also called the Bio* projects [87].

All Bio* projects are open-source frameworks providing capabilities for nucleic acid and
protein sequence analysis, manipulation and alignment to name a few. Data access is pro-
vided by routines for loading and storing the common flat file formats (refer to section
2.1.4). One common achievement is the BioSQL database schema (refer to section 2.1.3). It
is part of the Open Biological Database Access (ODBA) initiative which has the defined goal
to establish a generic and standardized way of accessing biological data sources [105]. As
of now, the current status and further development of the OBDA project is unclear as the
last update was back in 2002 [105]. Furthermore at least BioRuby has capabilities to access
remote online resources programmatic, for example the online databases of the three large
primary sequence data providers (refer to section 2.1.5).

Bio++ is a set of object oriented C++ libraries offering APIs for sequence analysis, phy-
logenetics, molecular evolution and population genetics [31]. Data can be loaded and
stored from and to different flat file formats including FASTA and GenBank files. Access
to primary sequence databases is granted indirectly by an access module for the ACNUC
biological sequence database system [47] (refer to section 2.4.2.3).

Seqan is a C++ template library which provides various generic and efficient algorithms
and data structures for sequence analysis [30, 44]. It offers flat file I/O capabilities as well
as several search index implementations like enhanced suffix arrays and suffix trees in-
cluding those on secondary storage. Furthermore, some online approximate string match-
ing algorithms have been implemented.

The NCBI C++ Toolkit provides both general purpose and biotech-related libraries [103,
136]. On the general purpose side there is the DBAPI. It provides a low level API which
abstracts from vendor specific RDBMS APIs. With this API databases can be accessed in
an object oriented manner and queried by SQL queries.

Some features related to bioinformatics and sequence analysis are the object manager
facilitating the access to sequence data. It is responsible for managing the details of loading
data from heterogeneous data sources. The available data loading capabilities are focused
on the NCBI GenBank database and different flat file formats.

2.4.4 Primer/Probe Design Applications

The next sections will first present the main goals in primer/probe design and evaluation.
Afterwards dedicated primer/probe design applications are presented followed by short
read mappers which may be of interest as starting point for developing new approaches.
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2.4.4.1 Primer/Probe Design And Evaluation

Primer and probes are of interest for various biological applications including microbial
diagnostics (refer to section 2.1.2).

In nucleic acid sequence based primer/probe design, several parameters are common.
The aim of them is to predict certain wet-lab behavior to exclude unsuited candidates prior
to in-silico and wet-lab evaluation. The first commonly employed parameter is the num-
ber of “G” and “C” bases a candidate stretch is allowed to contain. This is often referred
to as GC-content and abbreviated G+C. The second metric often utilized is a prediction of
the melting temperature based on the bases contained in a candidate stretch, denoted as
melting temperature. An often utilized simple rule to obtain an estimation is the Wallace
rule [137]:

Td = 2◦C(A + T ) + 4◦C(G + C)

The number of “A” and “T” times two plus the number of “G” and “C” times four is the
estimated melting temperature in degree celcius.

In order to evaluate the sensitivity and specificity of a primer/probe (refer to section 2.1.2),
it is important to get all hits within a defined distance to all sequences incorporated in
the analyzed data collection. Only with a comprehensive list of potential binding sites
the identification of potentially cross-reacting non-target sequences (and respective organ-
isms) is possible.

2.4.4.2 ARB Software Environment

The ARB is a software environment for storing and processing sequence data [84]. It
started as a software for ribosomal RNA data but can be utilized for DNA or protein data
as well. The ARB comprises a graphical user interface as well as command line applica-
tions.

Its first central component is the ARB database (ARBDB), a proprietary hierarchical in-
memory database including a text based search interface. It supports storing sequence
data and its annotations along with processed and descriptive data like clustering infor-
mation in form of phylogenetic trees in one database. Various importer and exporter for
different sequence flat file formats are available.

Another central component is the ARB PT-Server, a search index server based on a trun-
cated suffix tree fully incorporated into the software environment. Relying on an ARB
database as the only valid input source, it is capable of constructing an index comprising
all nucleic acid sequence entries contained. Ambiguous base characters are all treated as
“N”. To be fully functional, the PT-Server requires the corresponding database being avail-
able during application.

Based on the fast query capabilities of the PT-Server, ARB offers software tools for in-
silico oligonucleotide primer and probe design and evaluation.

The application ARB ProbeMatch is capable of identifying all occurrences of a pattern
within the different sequence entries comprised in a database. Utilizing the Hamming-
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distance metric, ProbeMatch is capable of carrying out approximate as well as weighted ap-
proximate string matching with a user-defined maximum number of mismatches allowed.
A list of the matches is returned containing detailed match information. For identifying
the sequence entry hit its database identifier as well as its name are included. Further-
more, for quality assessment, the number of mismatches, the number of N-mismatches,
the weighted mismatch value as well as position information are returned. The position
information takes alignment reference entry information into account if available. Finally
match context information is returned. It is composed out of the match sequence context at
nine positions at 3’ and 5’ ends and a differential alignment representing equal positions,
substituted bases and N-mismatches.

The ARB ProbeDesign application utilizes the ARB PT-Server to search potential primer
and probe target sites for a user selected group of sequence entries. These entries can be
marked by either utilizing the ARB phylogenetic tree viewer, manually selecting sequence
entries in a database entry list view or by utilizing the database search interface. Prior
to running the design process, several parameters can be defined comprising the targeted
length, thermodynamic criteria in form of minimum and maximum melting temperature
and the signature characteristic minimum and maximum GC-content. Further parameters
are the minimum group coverage and the maximum number of outgroup hits allowed.
After the design process finished, a list with signature candidates is returned. Each en-
try of the list is composed of the signature candidate, the target site, the thermodynamic
properties as well as a quality assessment.

2.4.4.3 Further Approaches

Another recent approach for primer/probe design is CMD/PSID. It targets the fast local
on-the-fly computation of unique signatures targeting a single sequence in a set of DNA
sequences [74]. The algorithm relies on the Hamming-distance metric and is not capable
of taking ambiguous base characters into account.

In contrast, Insignia is an online platform capable of comprehensively identifying signa-
tures for gene or genome nucleotide sequence collections [110, 111]. Suffix tree supported
pre-processed comparisons between the sequences are stored in a database and utilized
for signature computation.

Another approach is CaSSiS which pre-computes comprehensive collections of signa-
tures for a given set of nucleic acid gene or genome sequences in conjunction with clus-
tering information like phylogenetic trees [6]. It is based on the ARB PT-Server (refer to
section 2.4.4.2) for fast approximate oligonucleotide string matching enabling the calcula-
tion of perfect signatures, i.e. matching the target sequence or group perfect. If no such
signature exists, candidates with maximal group coverage and minimal out-group hits can
be determined as well.

2.4.4.4 Short Read Mapper

Besides primer and probe design, another field of bioinformatics leveraging index struc-
tures is the assembly of genomes from short reads produced by next-generation sequencers.
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For each short read the best matching position compared to a reference genome sequence is
determined. To accomplish this task, it is sufficient to find one or a few positions where the
edit-distance of the pattern (short read) is minimal. With next-generation sequencers be-
ing capable of producing millions of reads a day [90], the assembly requires many queries
making it a very compute intensive task. In their survey, Li and Homer recently presented
current developments and existing tools for short read mapping [79].

One notable short read mapper is BWA [77]. To speed up the mapping process, an FM-
index of the reference genome is utilized (refer to section 2.3.4). The index is queried
non-heuristically by sampling short substrings of the reference and comparing the query
pattern to them allowing few differences. Depending on the settings, it is capable of return-
ing all exact or approximate matches of a short read. Default is to return only the position
with the lowest difference. Besides the position within the reference genome, some auxil-
iary information is provided. This includes the hit position and a CIGAR string formatted
output of the target site (refer to section 2.1.2).
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2.5 Computer Hardware Architecture

The specific hardware architecture influences the development of an algorithm or pro-
gram. The latter must take care of specific constrains and limitations of the hardware in
order to perform well.

The next sections will give a brief overview of the memory hierarchy of common main-
stream hardware architectures followed by an introduction to parallel architectures of in-
terest within this thesis.

2.5.1 Memory Hierarchy

Development of computer memory and storage faces rivaling aims: memory should be as
fast as possible while being as big as possible. Up to now no technology has been able to
fulfill both goals at once at affordable production costs. Memory tends to be either fast,
small and expensive or slow, huge and cheap.

Modern microprocessors require fast access to data items in main memory to avoid
starving of computations. Computations of the central processing unit (CPU) are carried
out on internal registers, although not all data fits into these as they are very small in the
order of tens of bits depending on the specific architecture and purpose. For example the
x86-64 architecture provides 64-bit general purpose registers. Register access is often pos-
sible in 1 CPU cycle, i.e. less than a nanosecond for common clock rates in the range of 1
to more than 3GHz.

The access time to main memory is rather high compared to registers. In order to soften
this disadvantage, a cache memory hierarchy is utilized, often up to three levels. Caches are
used to reduce the average time to access a data item in memory by storing copies of the
data and providing fast access in the order of a few to tens of CPU cycles, i.e. in a few
nanoseconds. Cache sizes and the number of levels vary from processor to processor, but
some key parameters are fairly the same. The first cache level provides the fastest access,
often divided into data and instruction cache, and has sizes in the order of kilobytes. The
second level is a little bit slower. It is often for all kinds of data and in the size of hundreds
of kilobytes. Some processors incorporate a third level of cache which can be in the size of
megabytes.

The main memory access time is slower compared to the caches and lies in the range of
10s of nanoseconds, although the size is significantly larger. Main memory capacity can
reach up to several 10s of GB. It is referred to as primary storage as well and provides
non-persistent data storage. The CPU can access main memory directly over either a bus
system or utilizing point-to-point connections. The latter approach has become standard
and is available under different names, for example HyperTransport by AMD or Quick-
Path Interconnect (QPI) by Intel. The memory transfer rates reach tens of GB per second
in state of the art processors.

The next level of memory is the secondary storage, sometimes called external memory as
well. It is still dominated by magnetic disk drives providing huge amounts of persistent
storage. Secondary storage can usually not be accessed by the CPU directly. I/O channels
manage the access and transfer of data to and from main memory. Before transferring
data from a magnetic disk drive to main memory, the so called seeking is required, i.e.
the re-positioning of the read/write-head to the correct position on the disk. Afterwards
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the required blocks of data can be transferred. If they are not on consecutive positions
on the disk, a new seek may be required in between. This slows down the transfer for
random access pattern significantly. If the data is transferred from consecutive blocks, the
re-seek is avoided which allows higher transfer rates. Therefore the time to access data on
a magnetic drive is the sum of seeking and transfer times. The access time is in the range
of milliseconds, which is extremely slower compared to main memory. Regarding the size,
common magnetic disks have reached capacities of up to 3 TB and offer read transfer rates
of about 150 MB per second.

Recently the so called solid-state drives (SSD) have become a fast and affordable alterna-
tive to traditional magnetic drives. SSDs have no movable parts, provide better random
I/O and in general higher transfer rates. They are build out of non-volatile flash-memory.
Due to mainly the price and power consumption, the average sizes of SSDs are smaller
than magnetic disks, although they have outreached the TB border as well. The access
time is in the range of 100s of microseconds and the transfer rates outreached 500 MB per
second.

Figure 2.10 shows a simplified overview of the nowadays common memory hierarchy
divided into primary and secondary storage. It also shows the order of the nowadays
common sizes. Further levels like tertiary storage, for example tape drives utilized for
backups, are omitted.
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Figure 2.10: Simplified memory hierarchy overview

2.5.2 Parallel Computer Architectures

In the past the performance of microprocessors has been increased by raising the clock rate
and optimizing the circuit design. Unfortunately, increasing the clock rate is limited by the
fact that the power consumption goes up exponentially at the same time. With a higher
power consumption the heat dissipation rises as well, requiring higher cooling efforts.
Although this trend can be softened by shrinking the processors integrated circuits, a limit
has been reached around 4 GHz where it became economical and ecological problematic
to further continue this way to increase microprocessor performance. The power wall has
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been reached.
Luckily Moore’s law is still valid. It states that the number of transistors in a micropro-

cessor doubles every 18 months. This increase can still be utilized for improving micro-
processor performance by design. Instead of a single core, around the year 2005 the chip
developers started to design mainstream microprocessors with multiple processing cores,
so-called multi-core processors or single chip multiprocessors (CMP). They combine either sev-
eral separate single core dies in one processors or several processor cores on one die. Up
to now, this design has become common for desktop computers and server systems.

Systems with two or more processors sharing the same global main memory and (physi-
cal) address space are denoted shared memory systems. All multi-core processor systems fall
under this category. Formerly shared memory systems have been mainly multi-processor
systems available in high performance computing (HPC) environments and for enterprise
servers.

Shared memory systems are further sub-classified into systems with uniform memory ac-
cess (UMA) and non-uniform memory access (NUMA). For UMA systems all processors are
connected uniformly to the physical memory via a shared bus. Hence they have the same
access latency and share the memory bandwidth. Within NUMA systems, the latency to
access memory depends on its physical location relative to a processor. As most new mi-
croprocessors utilize point-to-point connections to access main memory, for example Intels
QPI or AMDs HyperTransport, current multi-core processors and with this the majority of
newly sold computer systems are NUMA systems.

In contrast to shared memory systems, in distributed memory systems each processor has
its own private memory. Each processor runs its computations utilizing its local memory.
If a processor requires access to remote data, it is necessary to communicate with one or
more remote processors. Data needs to be transferred via a connection system, for example
common ethernet network or InfiniBand communication links. In HPC distributed memory
systems are common. With the advent of multi-core processors, many of the newer cluster
systems are a hybrid between distributed memory and shared memory. This must not be
mixed up with distributed shared memory systems where each node has access to the whole
local and remote memory via a shared global address space.
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2.6 Program Optimization And Parallelization

Optimization and parallelization plays a huge role to improve memory requirements as
well as the runtime performance of computer programs.

The following sections will present techniques for optimization and parallelization start-
ing with compact representations of nucleic acid sequence data. Afterwards general pur-
pose encoding strategies utilized for data compression are introduced. Finally a brief
overview of common parallel programming frameworks and APIs is given including an
introduction to the different sources of parallelism.

2.6.1 Nucleic Acid Sequence Compact Representation

Compact representations are utilized to reduce the amount of memory required to store
nucleic acid sequences.

The DNA4 alphabet with its four symbols can be represented utilizing two bits per base
character allowing four bases per byte. With this it is possible to store 16 base characters in
a 32 bit word or 32 base characters in a 64 bit word. Figure 2.11 shows a possible encoding
and a sample byte.
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00 011011

Figure 2.11: DNA4 alphabet encoding with a sample byte

For the DNA5 alphabet the representation with four bases per byte can not be applied. In
order to provide a compact representation requiring a low number of bits per base, the five
different characters are mapped to an integer representation first: val(“N”) = 0, val(“A”) =
1, val(“C”) = 2, val(“G”) = 3, val(“T”) = val(“U”) = 4. A sequence can now be stored as
the sum of its base characters codes to the base of five:

pval =
∑n

i=1 5n−i ∗ val(Si)

This representation allows to store a sequence of 13 bases in a 32-bit integer value (as
513 < 232) or 27 bases in a 64-bit integer value (as 527 < 264). In both cases one base
character utilizes log 5

log 2 ≈ 2.3 bits. For 32-bit as well as 64-bit integers there is at least one
bit unused by this representation. It can be utilized as a stop bit. This allows to optionally
encode and decode the length of the compact sequence implicitly, i.e. without a separately
stored value. The stop bit enables the storing of leading “N”s which would otherwise get
lost when decoding.

In figure 2.12 the encoding for the sample sequence “AGNTC” including the stop bit is
presented. The position of the stop bit is calculated by solving the inequation 5length < 2x.
For example for a length of 5, the inequation 55 < 2x ⇒ log2 3125 < x results in a stop bit
position of x = 12.
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Figure 2.12: DNA5 compact representation encoding example

To decode the sequence it is necessary to detect and remove the stop bit first. For each
length it is possible to determine the stop bit position as stated above. To decode an 64-bit
integer the iterative length detection checks the compact sequence value for being lower
than the integer value if only the stop bit is set. If true, this process is repeated for the
next smaller length until the compact sequence value is greater or equal. For the compact
representation of the example sequence “AGNTC” this will be the case for 5118 ≥ 212 with
12 being the corresponding stop bit position for the length 5.

The stop bit can now be removed and the sequence can be decoded applying modulo
arithmetics. Figure 2.13 demonstrates the stop bit removal and decoding for the example
sequence “AGNTC”.
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Figure 2.13: DNA5 compact representation decoding example

If the sequence to compress is aligned (refer to section 2.1.2), i.e. it contains dot (”.”) and
hyphen (”-”) symbols in addition to the DNA5 alphabet, a simpler compact representation
scheme can be utilized. Each DNA5 symbol is stored using 3 bits. As dots and hyphens
normally occur in longer stretches, run-length encoding is utilized. If a dot or hyphen
occurs, it is stored in an integer representation followed by the number of occurrences.
This representation can not be used with single integer values as storage. It is meant for
usage in arbitrarily long sequences of consecutive bytes.
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2.6.2 Optimized Data Representation

Different techniques exist to reduce the amount of memory required by certain data. They
are often utilized in data compression, for example.

Prefix codes can be applied to provide variable length payload information after a cor-
responding prefix. All prefixes must conform to the requirement demanding no prefix
being prefix of another one, also known as the Fano condition. A simple example would
be a stream of bits which contains a mix of 31 bit and 63 bit payload items. For this two
prefixes are sufficient, so ”0” and ”1” can be taken. For example ”1” indicates that the pay-
load is 31 bit wide, ”0” indicates a 63 bit payload. Without the prefix, all payloads would
require the size of the largest payload, i.e. 63 bit in the example. With prefix codes the
memory consumption for all 31 bit payload items can be reduced.

Huffman encoding originates from information theory and is used to compress data loss-
less according to its entropy [58]. A simple example would be a tree with labeled edges.
For the labels, a variable length code table is generated. In doing so, more frequently occur-
ring edges are represented by a shorter code. If the tree is now for example transferred into
a flat representation for storing and transferring it, the average output size gets smaller by
replacing the edge labels with their corresponding codes.

Delta encoding is a compression technique where the difference between two consecutive
values in an array is calculated instead of storing the full value each time. For example, a
list of integer values 170200, 170385, 170544 etc. is delta encoded as 170200, 185, 159.

The bit field idiom allows to store multiple logical values in a compact representation.
For trees, it is utilized by so called branch masks where each bit corresponds to an outgoing
edge. If a bit is set, the edge is valid. This allows to store only the valid outgoing references
reducing the average amount of memory required for sparse trees. For example taking
a suffix tree and an alphabet size |Σ|, i.e. the width of the branch mask as well, bit i
corresponds to character i of the alphabet. For DNA5 this results in a mask of five bits. If
there is no downward edge beginning with a base i, the reference is omitted. An additional
benefit of the branch mask in case of the labeled suffix tree edges is that the first character
of every downward edge is already defined implicitly.

2.6.3 Parallel Programming

As multi-core processors are common nowadays and high performance computing is uti-
lized a lot in different scientific and commercial fields, parallel programming for speeding
up computations is in the focus of many programmers. Several existing frameworks and
APIs based on different paradigms try to make parallel programming more convenient.

The next section will introduce the common sources of parallelism. Afterwards, some
widely employed programming frameworks and APIs targeting the different memory ar-
chitectures, i.e. distributed or shared memory, are presented. The focus lies on approaches
for the programming languages C and C++.
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2.6.3.1 Sources Of Parallelism

There are different sources of parallelism in computer programs. Most often three types
are distinguished, instruction level, data level and task level parallelism. In order to utilize
the hardware efficiently, these must be identified and mapped optimally to the available
hardware resources either automatically, for example by the compiler, or manually by the
programmer utilizing parallel programming frameworks and APIs.

The instruction level parallelism (ILP) is commonly utilized without requiring the pro-
grammer to take special care. The compiler provides optimized code which is processed
by the microprocessor. Each instruction is decomposed into instruction fetch, instruction
decode, execute, memory access and write back. Although the actual decomposition de-
pends on the specific processor architecture and may be more fine grained. The distinct
instruction parts not requiring the same functional unit of the processor can be executed
parallel in a pipelined fashion. In case of superscalar processor designs, some of the func-
tional units are available multiple times to allow parallel execution of the same instruction
parts up to a certain degree.

Another source for concurrent execution is the data level parallelism (DLP) also known
as loop-level parallelism as it can be found in program loops. It corresponds to the single
instruction, multiple data streams (SIMD) classification according to Flynn’s taxonomy for
computer architectures [38]. The available data to process is split up and each participat-
ing computational resource processes one or more chunks of data. To each chunk the same
operation is applied. One form of DLP is called embarrassing parallelism. Here the data
items and computations on them are completely independent. No synchronization is re-
quired for parallel execution which makes the distribution among the available resources
easier.

Finally, the task level parallelism (TLP) corresponds to the multiple instructions, multiple
data streams (MIMD) classification within Flynn’s taxonomy [38]. TLP can be either of
the form single program, multiple data (SPMD) or multiple program, multiple data (MPMD).
For SPMD, the same program is executed for different data items, although in contrast to
SIMD, the execution is not performed in lockstep. MPMD is the form where different com-
putations are performed on different data items. An example for a programming strategy
utilizing MPMD is the master/worker approach.

2.6.3.2 Parallel Programming With Threads

For shared memory systems, C/C++ programs can rely on different threading library
implementations, for example pthreads on Linux or the winAPI threads under Windows.
One example for an implementation abstracting from the platform specific ones is the
boost::thread library [18]. Thread libraries provide programming capabilities to leverage
data level or task level parallelism alike.

Threading libraries require the programmer to take care of thread creation, thread de-
struction and synchronization as all threads share the same address space.

To avoid certain thread management tasks, threadpools are utilized to reduce the creation
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and destruction overhead. Threads are created once and can be requested from the pool.
If all threads are occupied, a requester must wait till a thread has completed its work. The
destruction of the threads is issued by the threadpool. An implementation of a threadpool
for boost::threads is provided by boost::threadpool.

Thread synchronization requires the programmer to properly utilize locks which allow
sequential access to certain program parts, i.e. only one thread executing it at a time. When
utilizing different locks at once, deadlocks may occur. Locks are provided as part of the
boost::thread library. In order to avoid waiting times, the access to shared data structures
should be reduced to the minimum by locking at the latest possible moment. In order to
provide proper thread-safe interfaces without so-called self-deadlocks, an important rule
is to avoid calling a public accessible method from any method of the same class.

Another way to synchronize access to shared memory are atomic data structures, short
atomics. Atomics can be utilized for simple data types like integers and are based on the
atomic compare-and-swap (CAS) CPU instruction. Before writing a value to memory, CAS
compares it to the previous value read before the computation to check if it has been altered
in the meantime. If not, the value can be written safely, if yes, the computation has to be
repeated with the new value until it succeeds. The boost::atomic library provides the above
described functionality for the C++ build-in data types.

A different approach would be to avoid synchronization by replicating resources if pos-
sible [2]. With this, locks and atomics can be avoided, although higher memory demands
are a drawback besides further programming effort to recombine computational results.

2.6.3.3 Message Passing Interface (MPI)

The Message-Passing Interface (MPI) has been designed by the members of the MPI Forum
[95], comprising parallel computer vendors and software developers. It offers a portable
message-passing system supporting the development of scalable parallel applications. Its
main target are distributed memory architectures, although it can be utilized on shared
memory systems as well.

Besides commercial implementations, there are different open source implementations
of the MPI standard for the programming language C, for example OpenMPI [48] and
MPICH [49] in its current version MPICH2 [94]. They can be utilized in C++ code as well,
either directly or by employing an object oriented wrapper like the boost::MPI implemen-
tation [18].

The MPI standard currently comprises two parts, the MPI-1 and the MPI-2 functionality.
The MPI-1 standard covers the essential interface for a message-passing system. It can
be divided mainly into four parts: communicators, point-to-point communication, collective
communication and derived datatypes. MPI-2 offers extended functionality like parallel I/O
and remote memory operations [95].

Within MPI, all communication between the participating processes is done via mes-
sages. The messages are transferred utilizing so called communicator objects. The default
communicator MPI COMM WORLD is initialized during MPI startup. All participating pro-
cesses are assigned a unique identifier within each communicator called rank. The pro-
cess with rank 0 is usually the master process taking care of initialization and controlling
of computations, although it is possible to construct hierarchical controlling structures at
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runtime as well.
The communication is done by either point-to-point or collective operations. Point-to-

point operations can be performed either blocking or non-blocking. For each option a set
of functions is available. When utilizing the blocking MPI Send(), the specified receiver
must receive the message with MPI Receive(). After the functions returned on both
sides, the transfer is terminated. The equivalent non-blocking functions MPI Isend()
and MPI Ireceive() return immediately. The receiver must perform an extra operation
MPI Wait() to check whether the data has been transferred.

Besides the point-to-point operations where only two processes participate in a data
transfer, the collective operations allow 1-to-N, N-to-1 or N-to-N communication.

The function MPI Bcast() allows one sender to broadcast a message to a group of
receivers (1-to-N). Sender and receiver call the same function with appropriate parame-
ters. In contrast, the MPI Scatter() function (1-to-N) allows the distribution of a data
vector to a group of processes. A version which allows customization of the distribution
scheme is the MPI Scatterv() function. The data distributed can be gathered by either
MPI Gather() respectively MPI Gatherv() (both N-to-1) to re-build the partitioned vec-
tor, or MPI Reduce() to reduce the gathered data into a smaller vector by applying de-
fined operations.

One important N-to-N operation is the MPI Barrier()which is utilized to synchronize
processes without exchanging data. Each process will continue computations only after
all participating processes have reached the barrier. Further operations for N-to-N data
transfer are MPI Alltoall(), MPI Allgather() and MPI Allreduce().

The data to transfer can be either of a standard or a user defined data type. For each
standard type in C/C++ there is a MPI equivalent datatype like MPI INT, MPI DOUBLE
and MPI CHAR to name some. Furthermore it is possible to define customized data types
using the MPI Type * function, for example for C structures. For all data types transfer-
buffer management is in the responsibility of the programmer, for example the size of the
buffer on the receiving process must be sufficient.

2.6.3.4 Further Approaches

As multi-core processors have become common, various frameworks and APIs are avail-
able trying to ease the efforts of shared memory parallel programming.

Open Multi-Processing (OpenMP) is an API targeting shared multiprocessing with C/C++
or Fortran programs on various platforms, i.e. different microprocessor architectures and
operating systems including Linux and Windows [108]. It relies on multi-threading where
certain tasks are distributed among a number of working threads, and takes care of the
thread management. In order to execute certain parts of the code in parallel, i.e. loops or
nested loops, they need to be marked. The compiler translates the marked regions into
parallel code and the runtime engine takes care of the execution. Only the marked parts
will be executed parallel while the rest of the program runs sequential. OpenMP is capable
of dealing with data as well as task level parallelism.

Intel Threading Building Blocks (Intel TBB) is a C++ template library providing data struc-
tures and algorithms which allow operations to be treated as tasks [61]. It does not require
a programmer to take care of thread-management in contrast to the thread-implementations

35



2 Basics And Related Work: Genome Data, Index Structures, Software And Computer
Architecture

described in section 2.6.3.2. A runtime engine takes care of the distribution of the tasks to
the available cores of a multi-core processor.

Two approaches targeting not only multi-core processors, but for example graphics pro-
cessing units (GPUs) as well, are NVIDIA Compute Unified Device Architecture (CUDA) [26]
or the Open Computing Language (OpenCL) framework [107]. Both offer their own C-based
programming language to write computing kernels. Initially the main goal was to pro-
vide a way to utilize graphics cards for general purpose computations. This goal shifted
towards providing a generic way to access different kinds of resources with one common
interface. Due to its origins, CUDA and OpenCL are more targeted towards data level
parallelism.

2.6.4 Parallel Index Construction Approaches

As the different index structures described in section 2.3 are crucial building blocks in
several fields of computer science in general as well as for bioinformatics aided nucleic
acid sequence analysis, fast index construction is of great interest.

Research in the field of parallel construction of index structures led to numerous ap-
proaches. For parallelization of suffix tree construction these approaches target either
shared memory multi-core systems [134], cluster computer systems [42, 88, 141] or grid
environments [22]. On distributed memory systems MPI is utilized to speed up construc-
tion for large input sequences.

Alternatively, Lee and colleagues focused on transforming suffix arrays into suffix trees
utilizing MPI [75] which can be of interest in conjunction with the MPI driven build of
suffix arrays presented by Kulla and Sanders [71].

For self-index structures, Zhang and colleagues presented a parallel FM-index construc-
tion algorithm on shared memory multi-core systems [142].

36
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The following sections will give an overview over the major results of this thesis. First
the Unified Molecular Data Access (UMDA) framework concepts are presented. Afterwards
the PTPan index is described comprising the structures and construction algorithm. This
is followed by the PTPan based applications supporting molecular diagnostics as well as
the conducted optimization and parallelization efforts. Finally insights on the software
components developed will be given, including the integrated system approach, i.e. the
UMDA Primer/Probe (UPP) Designer.

3.1 Unified Molecular Data Access Framework

3.1.1 Motivation

As presented in section 2.1.3 various different genome database schemas exist. Different
projects rely on them to provide their databases in a structured way (refer to section 2.1.5).
Because of this heterogeneity of data sources, Jagadish and Olken demand a standardized
interface [63]. There are different approaches to allow access to different sequence data
sources.

Various data warehouses and integration platforms (refer to sections 2.4.2.2 and 2.4.2.3)
are aimed at providing a unified view on the data from numerous source databases. The in-
tegration platforms offer data mining capabilities or read-only access over web-frontends
to non-programmer users as stated by Töpel and colleagues [133]. Some approaches pro-
vide an application programming interface (API) as well.

In addition various application programming interfaces offer sequence data access and
analysis capabilities, for example the Bio* projects to the BioSQL database or Bio++ to the
ACNUC data integration platform (refer to section 2.4.3). Besides this, flat file importers
are a common feature. Unfortunately a comprehensive approach abstracting from specific
database management systems and database schemas is not provided by any of these yet.

In order to provide a generic object model for sequence data along with its related infor-
mation (refer to section 2.1.2) and to allow unified access to the different existing sequence
data sources, the Unified Molecular Data Access (UMDA) framework has been developed. In
addition to the data access and management capabilities, UMDA offers a unified interface
to access search index capabilities for primer/probe design and evaluation.

The following sections will introduce the concepts behind UMDA comprising the object
model, the abstract interfaces for data selection and retrieval as well as for search index
capabilities. Afterwards important implementation decisions are presented. This includes
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a short introduction to the incorporated flat file import and export capabilities as well
as the integration of programmatic access to the SRS data integration platform (refer to
section 2.4.2.3).

3.1.2 Object Model

The UMDA object model is divided into two parts: the common objects for ubiquitous pur-
poses and the specific objects targeting mainly nucleic acid sequence data and its analysis.

3.1.2.1 Common Objects

Regarding the manifold possibilities to implement algorithms as well as libraries, a generic
and versatile way of providing library or application specific settings is required. This
helps to deal with for example several different libraries for connecting to database man-
agement systems (DBMS) providing a unified interface to all of them. The same holds true
if different DBMS query systems are employed, for example the SQL language and a pro-
prietary query system such as the one of the ARBDB (refer to section 2.4.1).

The UMDA common objects provide generic objects for query systems as well as appli-
cation parameters and settings, summarized as traits. Figure 3.1 shows the two distinct
object hierarchies, i.e. the query related objects and the trait related objects.
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Figure 3.1: UMDA Object Model overview of the common objects

Query related objects facilitate the development of a generic query system based on the
combination of simple building blocks which are independent of a specific query language.
An all-text query representation is avoided. In addition, it allows easy programmatic pro-
cessing relying on build-in data types of the targeted programming language C++.

This is achieved by a Query object which comprises a ordered list of one or more Query-
Brick objects. The abstract QueryBrick object has four specific subtypes: StringBrick, Int-
Brick, DoubleBrick and BooleanBrick. All subtype objects have some information in common,
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i.e. the FieldType information. It comprises in particular an identifier of the field to search
in, a human readable name or description of the field, its data-type (string, boolean,
integer or double) and the link-type (AND and OR). The link-type specifies in which way
a building block is combined with the previous building blocks.

Furthermore each subtype contains exclusive information. The StringBrick, suited for ex-
act string comparisons and regular expressions, stores a string value and the comparison
mode, i.e. equal or not equal. The BooleanBrick stores a boolean value in addition to the
common information. The two numerical subtypes IntBrick and DoubleBrick store a type
specific numerical value along with an operand. The operand is provided by the inter-
mediate abstract type NumericalBrick and is either equal, not equal, lower, greater,
lower-equal or greater-equal.

Trait related objects are stored within a TraitList container incorporating an arbitrary
number of abstract Trait objects without a specific order. Trait objects are accessed by their
name which functions as an identifier. The abstract Trait object has four specific subtypes:
StringTrait, IntTrait, DoubleTrait and BooleanTrait. Besides a name field, all subtypes have a
description field in common to provide human readable information. Furthermore each
subtype stores specific information in form of a value of the appropriate type, for example
a string for StringTrait objects. Additionally each Trait object contains a default value.

3.1.2.2 Specific Objects

The UMDA object model concept for specific objects shown in figure 3.2 provides the capabil-
ities for representing annotated molecular sequences as well as phylogenetic data, cluster-
ing and structural information and results derived from in-silico analysis. The objects are
classified into three categories: data, definition and result.

Data Objects The SequenceEntry object is the base container for a sequence and its re-
lated meta and annotation data. It comprises the most common fields provided by most
data suppliers as direct members, for example a human readable name, a description, the
sequence alphabet and the accession identifier among others. Information not directly in-
tegrated can be added using different associated objects including Sequence, Feature, biblio-
graphic Reference and Organism. A SequenceEntry can have only one Sequence and Organism
associated to it, but it may contain several Features and bibliographic References.

A Sequence object contains only the bare sequence as text-string without any further
descriptive data. The idea behind the separation of Sequence and SequenceEntry is to allow
a sequence string to be loaded only if required. In the context of whole genomes this is of
great interest as a sequence string may get very large in size.

The Organism object represents the information of the organismal taxonomic classifica-
tion, for example the genus and species.

The Feature object forms a container for sequence features such as genes. It provides
fields for the type and name as well as associated objects for the reference and location in-
formation. The Location object holds the start and end position of a feature on the sequence
as well as the sense.
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Figure 3.2: UMDA Object Model overview of the specific objects

Reference and AbstractProperty objects can be attached to either a SequenceEntry or Fea-
ture object. Reference objects include common literature information such as author, title
and journal which is important to track the origin of data. AbstractProperty objects can
be used to store arbitrary information in a key/value-like manner. An AbstractProperty
can be utilized to store arbitrary additional information not covered by the subset of data
fields available per default, for example to store internal and external database references
or further comments.

In order to facilitate analysis based on selected sequence features, a combined identifier
called RichEntryId has been added to the objects for convenient handling of SequenceEntry-
Feature combinations. A RichEntryId can refer to a SequenceEntry only as well. In this case,
the Feature identifier is left empty.

Definition and Result Objects Partition objects provide the facility to build arbitrary
clusters of SequenceEntry objects, optionally selecting particular Features. The SequenceEntry-
Feature combination is represented by a RichEntryId within each Partition object it is at-
tached to. Furthermore it is possible to build groups inside a Partition. An entry of a
Partition may belong to none or several groups. Special variants of the Partition object
are AlignmentEntry and Tree objects. An AlignmentEntry object in conjunction with Align-
mentSequences is capable of holding alignment information for each entry inside a partition
in form of a ’Compact Idiosyncratic Gapped Alignment Report’ (CIGAR) format string
(refer to section 2.1.2). A Tree object is used for storing the partition in an acyclic graph.
Usually it is a cluster representation such as a phylogenetic or other tree including group
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information at the inner nodes. The entries of the partition are located at the leaves of the
tree. Molecular phylogenetic trees are usually based on a certain alignment. This relation-
ship can be stored by referring from a Tree object to an AlignmentEntry object.

The Alignment Position Associated Property Map (APAPM) object is a container for a string
which assigns an encoding to each position of an alignment along with the information
which function to apply to the different string characters. The latter information is stored
in form of a string which can be used to file the settings in an arbitrary text format. The
information storable in an APAPM ranges from structural information, sequence region
dependent biological, chemical or physical properties, accessibility patterns among other
position dependent information. It can be used by applications in order to analyze specif-
ically labeled alignment positions only, for example for visualizing special sequence seg-
ments such as primer binding sites. Another example application is a coloring of certain
positions when displaying sequences of an alignment using the color scheme provided in
the APAPM settings field.

For nucleotide acid sequence signatures there are the Primer and Probe objects. A Primer
can hold a pair of signature sequence strings as well as information on the strand while a
Probe can hold a single signature string.

The Analysis object is a container for linking information retrieved through computa-
tions with the data the analysis is based on, i.e. a Partition. The computed data ranges from
Primer and Probe objects to defined or computed values such as APAPM, AlignmentEntry
and Tree objects. All mentioned information can be used as input for computations as
well. For example does this approach allow the storing of primers and probes in context of
phylogenetic data. Furthermore the Analysis object provides a text field to store arbitrary
information in a user defined format. This is useful to store for example the settings of
external programs utilized for computations along with pre- and post-calculation steps.

3.1.3 Abstract Interfaces

In computer science, a widely used concept is to define one or more layers of abstraction
to separate a concept from the specific instances. In addition, these abstraction layers offer
levels of indirection utilized to reduce the complexity of solutions relying on it. A promi-
nent example is the ISO/OSI network layer model where the programmer can rely on the
highest layers for data transfer without the need to take care of for example the specific
physical media participating.

Within UMDA, several unified interfaces have been defined in order to provide access
to certain data and functionality without presenting implementation details. The aim is to
provide a versatile and modular system which can be extended avoiding the need to adopt
every algorithm and application build upon it if a new implementation of an interface is
added.

The abstraction layers within UMDA are denoted as abstract interfaces. Abstract inter-
faces have been defined for data access and management, lazy-loading capabilities to defer
costly data transfers as well as search index construction and utilization for primer/probe
design and evaluation. These interfaces will be described in the next sections.
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3.1.3.1 Lazy Object Loading Interface

The lazy-loader interface targets the deferring of load operations of data. This is of interest
for the objects in the UMDA object model which are organized in a hierarchical structure,
for example the SequenceEntry with its child objects including Sequence and Feature objects.

To avoid unnecessary load operations if some child objects are not required in conjunc-
tion with providing a convenient way to retrieve this data later, the abstract LazyLoadObject
has been defined. It provides general purpose method interfaces for loading child objects
as well as methods to check if they have been retrieved already.

The LazyLoadObject is derived by the SequenceEntryLazyLoader and the AlignmentEntry-
LazyLoader abstract interfaces taking care of the specific requirements of SequenceEntry re-
spectively Alignment objects.

3.1.3.2 DataBase Interface (DBI)

The UMDA database interface (DBI) defines a generic interface for querying and accessing
molecular sequence and annotation data within a database. It consists of three interre-
lated functional groups of methods building sub-application programming interfaces: the
ManagementAPI, AccessAPI and QueryAPI which are independet of the utilized database
management system (figure 3.3).
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Figure 3.3: UMDA DBI schema comprising the ManagementAPI, AccessAPI and QueryAPI

The ManagementAPI provides generic database management methods for setting up the
connection properties, connecting and disconnecting to the database. For limiting accessi-
bility to certain databases, there is a read-only mode with the appropriate setup and check
functionality.

As not all settings of a specific program or library can be easily abstracted in a generic
way, for example some DBMS access libraries may support encrypted transfer while others
do not, custom traits for non-generic settings are utilized. A TraitList comprising default
Trait objects (refer to section 3.1) can be obtained. The altered values can be returned to the
DBI which takes care of updating the settings. An implementation may return an empty
TraitList if there are no custom settings required or possible.

The modular AccessAPI offers methods for loading, storing and deleting of single data
objects and so called bulk-methods working on lists for handling several objects at once.
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For objects with children, for example SequenceEntry along with its associated Sequence,
Organism, Features, References and AbstractProperties, it is possible to either cascade the op-
erations or perform them on the single object only.

The interface is centered around database identifiers as keys which are provided by the
methods of the QueryAPI. Given a valid database identifier as parameter, the load method
returns and the delete methods erases a single object. In contrast, the store methods require
a reference to the object to store as input. The bulk-methods work on appropriate lists of
either database identifiers or object references instead of the single parameters.

Due to its modular design, it is not required to implement the AccessAPI for every object
of the object model. In order to facilitate the programmatic checking for supported objects,
appropriate method interfaces are declared.

The QueryAPI is designed to be independent of any specific type of database or query
language. It imposes no restrictions concerning the database management system types. It
provides methods for retrieving lists of database identifiers, either without any constrains
or by a search based on a Query object with its incorporated QueryBricks (refer to section
3.1). Furthermore the QueryAPI offers methods for retrieving the available FieldType infor-
mation required for the QueryBricks of a query.

3.1.3.3 Search Index Interface (SII)

The UMDA search index interface (SII) defines a generic interface for search index based
oligonucleotide pattern matching as well as primer/probe design and evaluation capabil-
ities. It is divided into two sub-APIs: the ManagementAPI and the ApplicationAPI (figure
3.4).
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Figure 3.4: UMDA SII schema comprising the ManagementAPI and ApplicationAPI

The ManagementAPI provides index construction and load capabilities. Construction
can be conducted based on one or more selected SequenceEntry objects which are retrieved
from an UMDA DBI or a multiFASTA file. The index is stored under a provided name in a
user specified directory.

In addition, optional functions for adding SequenceEntry objects to or removing them
from the index are available. Furthermore methods to access sequence data entries in-
corporated into the index are defined. Based on the original data source identifier of a
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sequence entry, its incorporation within the index can be checked as well.
For program or library specific settings, custom traits for non-generic settings are uti-

lized. A TraitList comprising default Trait objects (refer to section 3.1) can be obtained. The
altered values can be returned to the SII which takes care of updating the settings. An
implementation may return an empty TraitList if there are no custom settings.

The ApplicationAPI provides functions for the main targeted field of application, i.e.
oligonucleotide pattern matching, primer/probe design and evaluation capabilities and
sequence similarity query functionality.

For oligonucleotide string matching an interface taking query settings as input (table 3.1)
and returning a match-list (table 3.2) has been defined. Further functions are available
to check for the existence or the number of occurrences of a pattern only. The query set-
tings comprise various parameters besides the pattern to match. One parameter is the
maximum allowed distance of a match, i.e. the number of errors allowed. In addition it is
possible to individually allow only certain types of errors, namely substitutions, insertions
and deletions. Furthermore a flag allows to switch between weighted and non-weighted
approximate string matching. The number of “N”-mismatches can be restricted and it is
possible to query the index for the reverse pattern optionally. Finally there are parameters
to influence the returned hit information, i.e. to optionally include a differential alignment
or sequence feature information if available.

The result of a query is returned as a list offering detailed hit information. For each
hit this is the distance, position and the number of wildcards, substitutions, deletions and
insertions. In addition the position relative to a reference entry and optionally hit informa-
tion related to sequence features as well as a differential alignment are returned.

description type
pattern string
max distance double
reverse search boolean
weighted search boolean
allow substitution boolean
allow insertion boolean
allow deletion boolean
set max wildcards integer
create diff alignment boolean
feature mode boolean

Table 3.1: UMDA SII string match-
ing settings

description type
identifier RichEntryId
position integer
reference position [opt] integer
distance integer
weighted distance double
number of wildcards integer
number of substitutions integer
number of insertions integer
number of deletions integer
reverse hit boolean
differential alignment [opt] string
general hit info [opt] string
feature hits [opt] map

Table 3.2: UMDA SII string matching result
values

Furthermore the ApplicationAPI defines interfaces for index based primer/probe design
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functionality. One method allows to retrieve all oligonucleotides up to a given length. In
addition there is an interface to access primer/probe design capabilities based on several
parameters (table 3.3). For a user defined target group, passed as a list of identifiers, the
desired primer/probe candidate length, group coverage and maximum number of out-
group hits can be defined. In addition parameters for providing a melting temperature
range and borders for the GC-content are provided.

The results of the design process are returned as a list (table 3.3), which can be optionally
truncated. For each designed primer/probe candidate the list comprises the number of in-
group hits as well as the out-group hits for an increasing number of allowed weighted
mismatches. In addition a quality score in conjunction with the melting temperature esti-
mation and the GC-content are included.

description type
target identifiers map
length integer
min group coverage (%) double
max non-group hits integer
min GC-content (%) double
max GC-content (%) double
min melting temperature double
max melting temperature double
min position integer
max position integer
max number of candidates integer
sort mode integer

Table 3.3: UMDA SII design settings

description type
primer/probe candidate string
length integer
in-group hits integer
melting temperature double
GC-content integer
relative position integer
reference position integer
quality double
out-group hits [wmis] vector

Table 3.4: UMDA SII design result values

description type
sequence string
window size integer
fast mode boolean
max distance double
search mode integer
range start integer
range end integer
max return number integer
sort mode integer

Table 3.5: UMDA SII similarity
settings

description type
identifier RichEntryId
number of hits integer
hit percentage double

Table 3.6: UMDA SII similarity result values

Finally, the ApplicationAPI defines an interface for index supported determination of
sequence similarity based on several parameters (table 3.5). A similarity search can be
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conducted for a given sequence which is divided into sub-patterns of a length given as
window size. Additional parameters are the maximum allowed distance for each pattern
as well as options to influence the algorithm, i.e. switches to influence the type of search
to conduct. This can be utilized to reduce the number of queries by omitting patterns or
to conduct several queries for a single pattern by reversing, complementing or reverse-
complementing it. It is also possible to narrow down the sequence region of interest to a
specific target range in order to ignore all query hits lying outside the range.

The results are returned in a list which can be optionally sorted or truncated. The values
returned by a similarity search are defined as a combination of the RichEntryId and two
score values, i.e. the absolute and the relative number of hits (table 3.6).

3.1.4 Implementation

The implementation of the UMDA framework design was influenced by some of the fol-
lowing paradigms for good application programming interfaces (APIs):

• make it easy to use (by a programmer)
• make it consistent
• avoid 3rd-party dependencies if possible
• make it modular

C++ was chosen as programming language as it is said to be among the fastest ones,
although the programmer must be careful to write code which is readable, maintainable
and contains no errors. Other reasons include the possibility to utilize C code from within
C++, for example MPI libraries (refer to section 2.6.3.3). This makes it possible to utilize
high performance computing environments besides common desktop systems.

In order to make the utilization of the UMDA framework for a programmer easier,
the implementation relies heavily on the resource acquisition is initialization (RAII) idiom
thought up by Bjarne Stroustrup, the C++ inventor. With RAII the resource management,
i.e. to a major part the memory allocated, is coupled with a runtime object. RAII is used in
conjunction with reference counted pointers, also known as smart pointers. Smart pointers
free the object they refer to automatically if the counter reaches 0, relieving the program-
mer from many manual tasks when writing a program.

Another simplification for programmers is provided in form of a serialization interface
for all appropriate object types of the UMDA object model as well as the objects defined for
the abstract interfaces. For example objects can be serialized for storing the information in
a file and loading it back into a runtime object. This also enables transferring objects via a
network and deserializing them on the receiving side with minimal effort.

The UMDA framework consists of a mandatory core comprising the UMDA object model
and the abstract interfaces. The UMDA core implementation relies on the standard C++ STL
functionality and the peer-reviewed Boost libraries [18] only.

Specific implementations of the abstract interfaces as well as applications may depend
on further 3rd-party libraries and can be switched on or off individually prior to the
UMDA framework build. The utilized optional libraries comprise the mysql++ library [98],

46



3.1 Unified Molecular Data Access Framework

the pqxx library [80] as well as the ARBDB API (refer to section 2.4.4.2) and the hwloc library
[59]. Finally for GUI components, the Qt framework [115] has been utilized.

3.1.4.1 Object Model

The whole UMDA object model implementation makes use of smart pointers to enable cas-
cading deallocation of objects if a root object, i.e. for example a SequenceEntry, is not ref-
erenced any more. Furthermore, this allows programmers to work on a single copy of an
object in memory instead of copying and synchronizing it all the time. All objects offer a
clone()method for obtaining a copy which does not rely on its origin any more. Further-
more, all objects implement a serialization interface based on the
boost::serialization library.

The UMDA specific objects (refer to section 3.1.2.2) are derived from a base object with
generic functionality. It comprises a callback system as well as object status flags. The
callback system allows to broadcast information up and down the object hierarchy. The
basic object offers status flags for indicating if an object is valid, modified, removed or
marked.

3.1.4.2 DBI And SII Plugins

The UMDA interfaces for accessing databases (DBI) and search index functionality (SII)
are kept abstract to avoid the dependency on specific libraries. In order to further facilitate
the independent and generic design approach, the implementations are encapsulated into
plugins. Each plugin is based on the facade design pattern [40] presenting only the UMDA
DBI for accessing the underlying DBMS, respectively the UMDA SII for accessing a search
index, to the programmer. In particular this is utilized to hide functionality of the libraries
employed for the implementation which is not required, for example the direct access to
the SQL query methods of a RDBMS library.

The plugin mechanism allows to utilize the abstract interfaces without requiring to re-
compile the whole project if a new plugin is added. Hence the DBI and SII implementa-
tions are decoupled from the core project making the dependency unidirectional, i.e. the
plugins rely on the core project but not the other way round.

DBI The UMDA database interface (DBI) has been implemented for various database
schemas and database management systems. Parallel to the DBI development, a new
UMDA-MySQL genome database schema has been developed providing capabilities to
store the UMDA specific objects (section 3.1.2.2) in a MySQL database. Besides this new
UMDA-MySQL schema, none of the other exisiting genome sequence data schemas (refer
to section 2.1.3) supports the full range of UMDA objects. Fortunately the modular design
of the UMDA DBI allowed the implementation of at least the supported objects which in-
cluded for all schemas the SequenceEntry hierarchy. An overview over the available DBI
plugins is given in table 3.7.

The UMDA IMDB (In-Memory DataBase) is a special DBI implementation based on the
standard C++ STL container objects. It can be utilized for temporal in-memory storage
and for testing purposes. The DBI implementation for the Chado schema in conjunction

47



3 Results: Unified Data Access Framework, PTPan Index Structure And Applications

DB schema DBMS DBMS API object support
ARB ARBDB ARBDB API partly
BioSQL MySQL mysql++ partly
Chado PostgreSQL pqxx [prototype]
EnsEMBL MySQL mysql++ partly
UMDA-MySQL MySQL mysql++ full
UMDA IMDB n/a C++ STL full

Table 3.7: UMDA DBI plugins overview

with the PostgreSQL DBMS is currently only available as prototype showing the principal
functionality.

SII The UMDA search index interface (SII) has been implemented prototypically with help
of the Seqan C++ template library [30, 44]. As it is meant as a proof-of-concept, this
SeqanSII prototype implements only the SII string matching interface. For approximate
string matching (ASM) Seqan offers online algorithms, but no implementation based on
the available index structures (personal communication with Manuel Holtgrewe on Seqan
mailinglist).

A complete implementation of the SII has been conducted for the PTPan library (refer to
sections 3.2 and 3.3). Custom traits are utilized for non-generic construction and applica-
tion settings, for example the verbose mode, the number of threads to use and the optional
inclusion of sequence features into the index.

3.1.4.3 DataSet

The DataSet is a proof-of-concept implementation of an in-memory management system
to handle the complete access to a database over a DBI. It is a control instance taking
care of loading, storing and deleting objects. Object modifications are only stored to the
corresponding database on request. The methods exposed to the programmer allow the
retrieval and removal of root objects like SequenceEntry or Tree only. The object callback
system is used to pass over the information about the removal of a child object to the
DataSet which keeps track of all modifications, i.e. new and removed objects. To make
them persistent or revoke them, methods to save or clear are available.

3.1.4.4 Flat File Importers And Exporters

Several flat file importers and exporters have been implemented in the UMDA framework
to provide an easy way to load data from the common formats into the UMDA object model.
For multiFASTA files one or more SequenceEntry objects along with the corresponding Se-
quence are returned while for EMBL-Bank flat files the full related hierarchy is populated
with the loaded data, for example the Feature objects.

The importers and exporters are designed to take a C++ stream as input source. This
allows to utilize them for parsing input data from different sources, for example files or
network streams.
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3.1.4.5 SRS Integration

In order to allow access to the SRS integration platform (refer to section 2.4.2.3) from within
C++ applications, a library has been developed by E. Cai under my supervision [20].

The library handles the communication with the SRS server comprising the retrieval of
available databases and the field lists for each database. During this process, the obtained
HTML-files are transformed into an XML representation omitting all unnecessary infor-
mation. With this information it is possible to build queries which can be submitted to the
SRS server utilizing the wgetz REST API. The results can be retrieved in different formats
like HTML or in different flat file formats such as FASTA or the EMBL-Bank flat file format
(refer to section 2.1.4). If the data is retrieved in an appropriate flat file format, it can be
directly forwarded to a UMDA flat file parser (refer to section 3.1.4.4). This allows the di-
rect import of data into UMDA based applications without the need to store flat files to a
filesystem first.

This library has been incorporated into the UMDA framework. Based on the libraries
capabilities, a GUI employing the Qt-framework has been developed. It allows to query
the SRS system and retrieve the sequence data.

3.1.5 Optimization

The UMDA framework has been optimized to facilitate the utilization in parallel environ-
ments as well as to ease the management of data in main memory.

For parallel environments, internal counters are based on atomic integers to avoid the
application of explicit locks like mutexes (refer to section 2.6.3.2).

Further improvements comprise the reuse of database connections by utilizing a connection-
pool as well as a unique object identifier and a callback system to allow passing infor-
mation from child objects to its parent. This simplifies the management of objects in
main memory and is utilized for example by the DataSet presented above (refer to sec-
tion 3.1.4.3).

In addition each object can be transformed into a serialized representation which allows
to store and reload them in text files or to transfer them via network as stated before.

Many other improvements were integrated during design and implementation as well.
The whole framework was developed in a cyclic agile process.

3.1.6 Summary

The Unified Molecular Data Access (UMDA) framework provides a generic object model
along with abstract interfaces for database access and search index based primer/probe
design and evaluation capabilities.

The database interface (DBI) enables direct access and querying of molecular sequence
data located in different primary databases. This allows to retrieve data in order to build
and curate customized local secondary databases or for further processing by applications.
The conversion of the different data representations is done implicitly by the interface.

Furthermore UMDA allows to store sequence and sequence group related information
such as phylogenetic and secondary structure data as well as primer and probe sequences
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and properties derived from computations in one integrative database. In addition it offers
the possibility to arbitrarily create partitions on the data within the database.

The search index interface (SII) enables utilization of search index based primer/probe de-
sign and evaluation capabilities. The index can be constructed based on selected sequence
entry data retrieved from a DBI or multiFASTA file. Oligonucleotide pattern matching,
primer/probe design and similarity search can be conducted based on user defined pa-
rameters returning meaningful result lists.

An overview of the implemented UMDA framework with its layers is presented in fig-
ure 3.5.
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Figure 3.5: UMDA complete framework overview

Several prototypical and ready-to-use programs as well as the SRS library integration
and the flat file parser have been developed. These prototypes include command line
applications as well as graphical interfaces to demonstrate the functionality provided by
the DBI and SII.

In addition, a fully functional graphical tool, the UMDA Primer/Probe (UPP) Designer,
has been developed. It allows to either construct an index with a DBI or multiFASTA file
as data source or to load a pre-build index. The index is accessed utilizing the SII and all
applications for primer/probe design and evaluation provided by the ApplicationAPI are
supported by appropriate graphical interfaces. More details are provided later in section
3.5.

Finally to facilitate the development and easy regression tests, several unit tests have
been implemented for the whole UMDA object model as well as the abstract DBI. For each
implemented DBI only the unit tests for the supported object types are carried out.
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3.2 PTPan Index Structure

In the following sections first the motivation to develop PTPan is presented followed by
the index structure design. Finally the construction algorithm is described.

3.2.1 Motivation

As revealed by the statistics provided by the Genome OnLine Database (GOLD) [81],
the amount of available genome data, mostly for bacteria, is increasing at a rapid pace
as shown in figure 1.1. The same holds true for gene databases like the collections of
small subunit ribosomal RNA (ssu-rRNA) such as Greengenes [29] or SILVA [113]. The
fast growth will go on in the next few years as the latest sequencing technologies, which
produce large amounts of molecular sequence data in short time, are becoming standard
[85, 90].

This genome sequence data is of great interest concerning in-silico analysis and compu-
tational molecular diagnostics (CMD). CMD is the in-silico search for molecular markers,
primers and probes based on sequence and phylogenetic data and can lead to a faster de-
velopment of molecular detection methods for pathogens while reducing the experimental
cost in the wet lab.

Requirements Primer/probe design applications based on nucleic acid gene or genome
sequence data often utilize indexing structures to speed up computations [73, 84, 111].
Several requirements are imposed on the index structures in order to conduct proper up
to date primer/probe design and evaluation. In order to keep up with the increasing
amount of sequence data, the index should be operable even when the main memory size
is limited.

Furthermore, as the sequence data may contain possible sequencing errors or mutations,
it is necessary to identify insertions or deletions (indels) to avoid misjudgment of the sensi-
tivity of primers or probes. This would otherwise have severe implications to experimen-
tal results as stated by McIlroy and colleagues for fluorescence in situ hybridization (FISH)
[89]. Thus the index should be able to efficiently carry out approximate string matching
based on the Levenshtein-distance metric (refer to section 2.2.3.2).

The handling of ambiguous sequence characters and treating matches at ambiguous
positions in an efficient way is of interest as well. This can be achieved by treating all
ambiguities as wild-card in string matching (refer to section 2.2.2).

Furthermore approximate string matching should support a weight scheme (refer to
section 2.2.4). Weighting approximate matches with respect to type and position of mis-
matches can help to scale the distance between exact and inexact matches as well as to
better rate the specificity and sensitivity of a probe as stated by Yilmaz and colleagues
[140].

For primer/probe evaluation, the incorporation of alignment data should be supported
as well. Beyond the precise comparative positioning of matches, it provides the opportu-
nity to include higher order structure and function information, such as probe accessibility,
in the in-silico design process as discussed by Kumar and colleagues [72].
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Existing solutions A wide range of different index based solutions exist to design primer
and probes based on genome sequences (refer to section 2.4.4.3).

The CMD/PSID is capable of identifying signatures based on sequence collections. Un-
fortunately it can conduct the design process only for single sequences, but not for whole
groups of sequences. This is a major drawback limiting its field of application. Designing
primers and probes for detecting and distinguishing organism groups rather than single
organisms is required in applications such as microbial population analysis and molecular
screening for microbial pathogens or indicators.

Two approaches based on pre-processed collections are the web-based Insignia server
and CaSSiS. Both allow to select candidates based on clustering information the
pre-processing is based on. Designing own candidates on-the-fly is not possible with-
out repeating the compute intensive pre-processing of the whole collection with different
parameters set.

With the ARB PT-Server, incorporated in the ARB software environment [84], a suffix
tree based search index providing many of the aforementioned requirements for oligonu-
cleotide primer/probe design exists. It is capable of conducting approximate string match-
ing in weighted- and non-weighted mode. In addition it respects the wildcard character
“N” and takes into account alignment information if available.

The major drawbacks of the PT-Server are that it has to fit into main memory during
construction and application. Although memory requirements are reduced by utilizing
truncation of the suffix tree, the PT-Server is not capable of dealing with the rapidly grow-
ing databases due to still high main memory demands. In addition, the PT-Server relies
on Hamming-distance metric for approximate string matching concerning primer/probe
design and evaluation. Thus it is not capable of identifying indels which would require the
Levenshtein-distance metric. In addition, the PT-Server can be constructed from an ARB
database only. Furthermore some index based functionality requires the source database
being available during application. This limits the field of application of the PT-Server
strictly to the ARB environment.

The problem of increasing amounts of genome sequence data has been tackled by many
state-of-the-art indexing techniques. These techniques, mainly originating from indexing
structure theory, are of interest as the core structure for new developments.

Several in-memory solutions exist. To reduce its memory requirements, the k-truncated
suffix tree (kTST) [120] limits the height of the suffix tree like the PT-Server does. Hence
it suffers from the same memory constraints. The enhanced suffix array (eSA) invented
to replace suffix trees, has reduced memory requirements, but still needs to fit into main
memory entirely during application [1]. The so called self-indexes combine a compressed
representation of the source text with an index structure. By this they are capable of re-
ducing the memory requirements to the size of the original input text [102]. In the field
of short read mapping, which is related to approximate oligonucleotide string matching,
self-indexes have been successfully employed in tools like BWA [78], a representative map-
ping tool known to be among the fastest ones. Unfortunately, according to Russo and
colleagues, approximate string matching based on self-indexes faces severe slowdowns
compared to classical indexes like suffix trees or arrays [116].

Besides the aforementioned in-memory solutions, several approaches try to deal with
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the large amount of data by utilizing secondary storage during index construction and ap-
plication. The disk resident suffix arrays (rSA) offers moderate disk space requirements
and it provides exact string matching [92]. Unfortunately it is not capable of conducting
approximate string matching. Another well studied approach are suffix trees in external
memory (eST), recently reviewed by Barsky and colleagues [8]. eST can be constructed
with limited main memory efficiently, although memory requirements on secondary stor-
age are high. Furthermore, an open challenge for the existing eST approaches is the uti-
lization for approximate string matching.

In addition several approaches exist to leverage the partitioning of eST to construct stan-
dard suffix trees on secondary storage utilizing parallel shared as well as distributed mem-
ory systems (refer to section 2.6.4).

C. Hodges investigated in his diploma thesis the general possibility of employing com-
pression techniques for eST to handle collections of gene sequences like the SILVA database
[55]. He developed a functional prototype with reduced memory requirements capable
of performing Levenshtein-distance metric based approximate string matching. Unfor-
tunately it is not capable of dealing with genome data. Based on C. Hodges results, J.
Böhnel analyzed in his diploma thesis the possibilities of parallel index construction in
distributed memory environments resulting in a proprietary prototypic client-server ap-
plication [17]. Furthermore he investigated the applicability of his solution for oligonu-
cleotide primer/probe design.

Evaluation result Based on this evaluation of existing approaches, with Levenshtein-
distance metric based approximate oligonucleotide string matching as main purpose in
mind, eST seems the most appealing approach. Nevertheless it has remaining challenges,
namely the memory consumption on secondary storage and the inability to perform ap-
proximate string matching reasonably. The high memory requirements may be partly ad-
dressed by combining eST with truncation employed in kTST and the PT-Server. In addi-
tion a compression scheme can be employed. In addition, the partitioning employed by
eSTs can be leveraged to speed up construction on parallel architectures.

3.2.2 Structure Design

After evaluating the requirements for a nucleic acid sequence data index and reviewing
the existing solutions, PTPan was designed to fulfill the following major goals:

• data source independence
• low main memory demands
• effective Levenshtein-distance based ASM
• persistent storage

Targeting nucleic acid genome sequence data with its lack of delimiters, the index is
based on a partitioned and truncated suffix tree on secondary storage. It is stored in a
compressed format which is optimized to allow DFS based algorithms to perform reason-
ably fast even though the index is larger than main memory and stored on common hard
disk drives. This enables effective Levenshtein-distance based ASM as well as complete
DFS-order tree traversal required for oligonucleotide primer/probe design applications to
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perform well. To obtain independence from the sequence data source, all required data is
incorporated into the index. A previous version of PTPan targeting the efficient handling
of curated gene sequence databases like the one provided by the SILVA project (refer to
section 2.1.5) has been published in [32].

The index is separated into individual parts: the index header and one or more partitions
each corresponding to a prefix. The suffix tree for each specific prefix is stored compressed
within a partition. The next sections describe the structures and the compression in detail.

3.2.2.1 Index Header

The index header contains the basic information about the index. It comprises meta infor-
mation like the truncation depth, the number of sequence entries included as well as the
total number of nucleic acid bases incorporated. If available, a reference sequence entry is
incorporated including its sequence string.

To obtain independence from the sequence data source, for each entry the nucleic acid
sequence is stored in compact representation (refer to section 2.6.1). If the sequence con-
tains alignment information, this is incorporated as well. Besides the sequence string, the
original database identifier as well as a description are stored for each entry. To allow
faster decompression of random sequence parts, jump labels are incorporated. These allow
to start decompressing a sequence at a specific position and omit sequence parts not re-
quired. Additionally, genome sequence feature information can be included into the index
header optionally, i.e. an identifier referring to its source database entry and the range
on the genome within it is located. Finally the index header includes the full list of index
partitions like filenames and prefix information.

3.2.2.2 Suffix Tree Stream Compression

The suffix tree stream-compression serves two purposes: reducing the memory require-
ments and allowing efficient approximate string matching on secondary storage.

The compression is obtained by storing the in-memory suffix tree nodes as compressed
nodes. The order of the nodes is in depth-first-search (DFS) order starting with the root
node. Two kinds of nodes are distinguished: inner and border. Inner nodes have references
to other inner or border nodes, i.e. outgoing edges, while border nodes contain the suffix
occurrences as leaf-array instead.

Each compressed node consists of three consecutive parts:

• ingoing edge label
• branch mask (refer to section 2.6.2)
• outgoing references (inner nodes) or leaf-array (border nodes)

The only exception is the root node which has no in-going edge. For all other nodes,
the compressed in-going edge label differs depending on the length of the edge. Edges up
to a certain threshold are denoted as short edges if their label occurs often enough in the
whole suffix tree. Scarce short edges as well as all edges exceeding the threshold value are
denoted long edge. In order to reduce the average size of the corresponding representations,
Huffman encoding (refer to section 2.6.2) is utilized for the short edges, the lengths of the
long edges as well as the branch masks.
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In the stream-compression, nodes with a short in-going edge are initiated by their ap-
propriate short edge Huffman code, i.e. the edge label is stored directly. The length of
the in-going edge is given implicitly by the Huffman encoding which comprises the orig-
inal label and its length in the mapping table. In contrast the compressed representation
for long edges is headed by the code identifying long edges followed by the Huffman en-
coded edge length. Instead of storing the edge label directly, a dictionary string is utilized.
Hence in the suffix tree stream the next value is the dictionary offset. The long edge label
sequence is the concatenation of the first base defined by the branch mask of the parent
node (refer to section 2.6.2) and the remaining length-1 bases from the dictionary string.

Following the edge information, for inner nodes the branch mask Huffman code is is-
sued. This is succeeded by up to five encoded child reference offsets in DFS order corre-
sponding to the branch mask bits. As the offsets are written in ascending order, they are
stored utilizing delta encoding (refer to section 2.6.2).

For border nodes the child references are replaced by the leaf-array. A special code for
the branch mask is utilized to indicate border nodes. The suffix occurrences are sorted in
ascending order and delta encoded to store the leaf-array more efficiently.

A detailed example of the suffix tree stream compression is shown in figure 3.6. It shows
a suffix tree excerpt with its corresponding stream representation as well as the relevant
data structure excerpts.
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Figure 3.6: PTPan suffix tree excerpt with corresponding stream-compression (derived
from [32] supplementary figure 1) [numbering of the tree nodes for clarifica-
tion only]

Decompressing a stream-compressed suffix tree can be done by inverting the compres-
sion steps. First the ingoing edge information is read and decompressed followed by the
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branch mask. Afterwards for inner nodes the child references and for border nodes the
leaf-array are decompressed.

3.2.2.3 Index Partitions

Each index partition has the same structure. It contains meta information about the index
part it represents as well as the corresponding suffix tree with all data required for de-
compressing. The meta information comprises the prefix of the partition, an identifier to
check if it corresponds to the partition information stored in the index header as well as the
partition index size. The stream-compressed suffix tree is stored along with the Huffman
encodings for short edges, long edge length and branch masks. Furthermore the long edge
dictionary is stored including the maximum number of bits required by a long edge offset.

3.2.3 Construction Algorithm

The PTPan index construction algorithm is divided into three main steps:

1. data retrieval (refer to section 3.2.3.1)
2. data preparation (refer to section 3.2.3.2)
3. index construction (refer to section 3.2.3.3)

The next sections will give insights on all three major steps.

3.2.3.1 Data Retrieval

The first step of the index construction is the data retrieval and incorporation into the index
header (algorithm 1).

Algorithm 1 PTPan data retrieval pseudocode
[...]
header = initializeIndexHeader();
while data interface.hasNextEntry() do

ptpanEntry = data interface.getNextEntry();
ptpanEntry.compactSequenceData();
header.appendAndUpdateGlobalState(ptpanEntry);

end while
header.storeGlobalState();
[...]

The distinct sequence data entries and optional a reference entry as well as the related
feature data, are retrieved over a defined abstract interface. It can be implemented for
different sources and is currently available for the ARBDB API, multiFASTA files and the
UMDA DBI.

After an entry has been retrieved, the sequence is transformed into its compact repre-
sentation (refer to section 2.6.1). The jump labels are determined during this process, too.
Optionally available alignment information, i.e. gap characters, are incorporated as well.
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All other non-DNA5 characters are treated as “N” character. Afterwards, the complete
entry information is stored directly into the index header on disk.

Each time an entry is added to the header, the global counters for the number of entries
and the total number of sequence bases are updated. For each entry, the start position in
a concatenation of all sequences is stored, i.e. the sum of all DNA5 bases retrieved so far.
After all data has been retrieved, these global counters are stored into the index header.

3.2.3.2 Data Preparation

Before the index can be constructed, the gathered data needs to be pre-processed.

Merge sequences The first step is to merge the individual sequences of all retrieved en-
tries into a single temporary raw data file in compact representation (algorithm 2). All gap
characters, if available, are stripped during this process. In order to ease the construction
algorithm (refer to section 3.2.3.3), the raw merged sequence is finally padded with “N”-
characters at the end.

Algorithm 2 PTPan merge sequences pseudocode
[...]
temporaryMergedData = initMergedData();
while header.hasNextEntry() do

ptpanEntry = header.getNextEntry();
temporaryMergedData.stripGapsAndAppend(ptpanEntry);

end whiletemporaryMergedData.padWithN();
[...]

Partition determination The second preparation step is to determine the index partitions
depending on the amount of main memory available and the total number of bases in the
merged raw data (algorithm 3).

The partitions are defined by variable length prefixes. Prior to prefix calculation, the
maximum number of base positions fitting into the available main memory is determined
by a worst case estimation. If the size of the temporary merged raw data is lower than the
estimated value, only one partition is required.

Otherwise the partition prefixes must be calculated. First the data-dependent maximum
prefix length is determined. Second a scan over the merged raw data is conducted count-
ing the occurrences of all possible prefixes of this exact length. The prefixes are stored in a
histogram with their compact representation as key, i.e. an integer value (refer to section
2.6.1). This allows to determine the number of occurrences of each prefix of a prefix by
adding the occurrences within a numerical key range. Taking the fact that 5n >

∑n−1
i=0 4∗5i

the range start and end can be determined as follows: Range start is the character followed
by only “N”s, so the numerical value is val(char)∗5n−1 with n being the prefix length. The
compact representation utilizes n − 1 down to 0 as powers for the base. Range end is the
next characters range start value minus one. Some of the numerical values in between
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Algorithm 3 PTPan partition determination pseudocode
[...]
maxPartitionSize = determineMaxPartitionSize(memorySize,tempMergedDataSize);
if maxPartitionSize < tempMergedDataSize then

finalPartitions = setupOnePartition();
else

maxPrefixLength = determineMaxPrefixLength(memorySize,tempMergedDataSize);
histogram = scan(temporaryMergedData, maxPrefixLength);
initialPartitions = init(prefixLength = 1);
while NOT initialPartitions.empty() do

part = initialPartitions.popFirst();
if histogram.size(part) ≤maxPartitionSize then

finalPartitions.add(part);
else

initialPartitions.pushBack(part.refine());
end if

end while
end if
header.storePartitionInformation(finalPartitions);
[...]

do not represent valid sequences in compact representation. This is no problem as the
number of occurrences for them will be zero. For the last range, the end is given by the
fact that the highest value is lower than 5n in any case. To illustrate this by an example
assume a prefix of all “T”s, which results in the highest possible numerical value for a
compact representation. For a prefix length of five, the compact numerical representation
is

∑5−1
i=0 val(“T”) ∗ 5i = 3124. With 55 = 3125 > 3124 the upper border can be determined

easily.
After building the histogram, a partition candidate of prefix length one is initialized for

each symbol of the alphabet, i.e. five for the DNA5 alphabet, and added to a queue. Next,
while the queue is not empty, the first candidate is removed. With help of the histogram,
the current candidate is checked if it fits into main memory during construction, i.e. the
number of bases in the partition does not exceed the threshold value. If the check succeeds,
the current partition candidate is put into the final partition list. Prefixes not occurring in
the merged raw data are omitted. Otherwise, if the check fails, the partition is refined. It
is extended by one base for each symbol of the alphabet, generating new partition candi-
dates, again five for the DNA5 alphabet. The newly defined partition candidates are added
to the end of the queue. Then the iterative process continues with the next partition in the
queue until no candidates are left.

Figure 3.7 shows an example partition refinement for a maximum prefix length of five.
The question marks denote any of the five DNA5 bases. The ranges are determined as
described above. The refinement is done for “G” by applying the range determination
for prefix length 4 and taking the already determined range start as base counter. For the
example nine partitions are in the final list.

Finally, the partition information is stored into the index header before the partition
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Figure 3.7: PTPan example partition prefix determination with histogram ranges and num-
ber of occurrences [maximum prefix length is 5]

construction starts.

3.2.3.3 Index Construction

After all data has been prepared and the final index header has been stored, the index
partitions are constructed and stored to disk (algorithm 4).

Algorithm 4 PTPan construction pseudocode
[...]
while header.hasNextPartition() do

partition = header.getNextPartition();
tree = initTree();
currentWindow = mergedRawData.begin();
while currentWindow != mergedRawData.end() do

if currentWindow.prefix() == partition.prefix() then
tree.insertOccurrence(currentWindow);

end if
currentWindow.shift();

end while
tree.prepareEdgesAndBranchMasks();
tree.buildLongEdgeDictionary();
tree.relocateReferences();
tree.writeToDisk();

end while

The first step for each partition is the construction of a truncated suffix tree in main
memory for the given pruning length. The in-memory tree structures correspond to the
structures of the stream-compressed tree representation introduced in section 3.2.2.2. Inner
nodes and border nodes are distinguished with their specific layout, i.e. having child
references (inner nodes) or a leaf-array (border nodes). For in-going edges the compact
representation as well as its length are kept.
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Insert prefix occurrence In order to build up the in-memory suffix tree for a partition,
the merged raw data sequence is scanned once. To avoid repeated access to the temporary
file, a sliding window keeps a sufficiently long part of the raw data in main memory to
obtain the window sequence string of length equal to the pruning depth starting at the
current position. This sequence is checked if its prefix matches the partition prefix. If so,
the in-memory suffix tree is traversed down comparing the edge labels with the window
sequence.

If a border node is reached during this process, the current occurrence is added as a
new leaf because the path denoted by the window sequence is already present in the suffix
tree. If a mismatch appears inside an inner node, a new border node including the current
occurrence as leaf is added. The remaining sequence window part not matching the path
traversed down so far is the in-going edge label of this new border node. In contrast,
if the mismatch lies inside an edge label, splitting the latter is required. A new inner
node is added to the suffix tree with the common sequence part as in-going edge and the
downstream node of the edge split is updated. Finally, a new border node with one leaf is
added. Its in-going edge is the remaining part of the current window sequence.

The algorithm continues by shifting the current window sequence by one base either if
it does not match the partitions prefix or after inserting is finished.

In order to speed up the construction algorithm, a hash-map is utilized to store the
suffix-prefixes up to a certain length. The compact numerical representation functions
as key. The payload is a pointer to the appropriate inner node which is reached by travers-
ing the in-memory suffix tree from the root down the path defined by the characters of the
prefix. If a new window sequence is added to the suffix tree, the algorithm first checks if its
prefix is contained in the hash-map. If it is already present, the comparison can continue
at the corresponding inner node avoiding several edge comparisons.

Prepare edges and branch masks After building the in-memory suffix tree, it must be
prepared before transforming it into the stream-compressed representation (refer to sec-
tion 3.2.2.2). First the short edges as well as the frequency of branch mask combinations are
determined by traversing the in-memory suffix tree and counting the occurrences. After-
wards the Huffman encodings for short edges and branch masks are calculated. The short
edge encodings contain a single value to identify long edges as well. A second traver-
sal is conducted to count the long edges and to replace the short edges by their Huffman
representation.

Building the long edge dictionary After all long edges are known, the construction al-
gorithm utilizes a greedy algorithm to build the long edge dictionary.

The first step is to determine all unique long edges by adding each long edge to a hash-
map with its compact representation as key. The first time a long edge key is added, the
reference to the suffix tree node is stored as payload. If for any subsequent long edge
label the compact representation is already present in the hash-map, the suffix tree node is
marked to contain a non-unique edge. The edge label is then updated to point to the first
occurrence respectively the corresponding unique node. This reduces the total number of
edges to process as the same edge label may occur several times in the suffix tree.

As next step, all unique long edge labels given by the hash-map’s key-value pairs are
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sorted in lexicographical order. Equal edges and those which are prefix to other ones are
grouped together and their merged raw data offsets are equated.

A second sort arranges the unique edges by their merged raw data offsets. With the prior
equation step, it is now possible to detect overlapping fragments. These can be concate-
nated into longer chains for the dictionary covering many of the smaller edge fragments.

Afterwards all concatenated long edges are added one after another to the dictionary
string. Next the references of all long edges are updated to point to the dictionary string
offset instead of the merged raw data offset. This is done in two iterations, the first for the
unique long edges and the second for the long edges pointing to a unique one.

Finally, the long edge dictionary string is transformed into its compact representation
and a Huffman encoding is built for the long edge lengths.

Relocating the tree The last step prior to writing the suffix tree into its stream-compressed
representation is the relocation of the suffix tree references. In the final representation, the
downward child pointers of an inner node are stored as delta encoded offsets in the stream
relative to the position right after the current node. This requires that the size of all child
nodes must be available before storing a node. Hence the tree must be traversed in depth-
first-search (DFS) order once before writing in order to determine the size of each node,
i.e. the sub-tree size for which it is the root. During this traversal, each downward child
pointer of an inner node is replaced by the size of the corresponding child node sub-tree.
As the in-memory tree structure is lost by this procedure, the DFS order is kept separately
in an array of pointers.

Writing the stream-compressed suffix tree The suffix tree is written to disk in its stream-
compressed representation (refer to section 3.2.2.2). Each node in the DFS-order array
generated in the relocation step is written one after another into a stream of bits. This
stream is stored into a file.
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3.3 PTPan Applications

Based on the PTPan index structure, several applications supporting nucleic acid genome
sequence based molecular diagnostics have been developed.

The next sections will describe the basic PTPan tree traversal algorithm. It is the base for
the different implemented applications for primer/probe design and evaluation as well as
sequence similarity searches which are described afterwards.

3.3.1 Basic PTPan Tree Traversal

The basic PTPan suffix tree traversal is the starting point of the developed applications.
For each partition, the suffix tree in its stream-compressed representation is recursively
traversed top-down in depth-first search order (algorithm 5).

Algorithm 5 PTPan application: basic tree traversal pseudocode
[...]
root = decompressRoot();
traverse rec(root);
[...]
——–traverse rec(node)——–
if node.isInnerNode() then

while node.hasNextChild() do
child = node.decompressNextChild();
traverse rec(child);

end while
else

handleBorderNode(node);
end if
——–traverse rec()——–

First the root is decompressed as it is located at the beginning of each partition suffix-
tree-stream (refer to section 3.2.2.2). Like all inner nodes, the decompressed root node
reveals the branch mask as well as the available offsets to the child nodes. With this infor-
mation, each child node can be decompressed and processed. The order is thereby given
by the branch mask also indicating which subtrees are missing compared to a fully pop-
ulated tree. If a border node is reached, the recursion stops. An algorithm relying on the
basic traversal can now handle the border node according to its requirements.

3.3.2 ProbeMatch

ProbeMatch is a oligonucleotide string matching algorithm based on the basic tree traversal
(refer to section 3.3.1). It is capable of conducting exact as well as approximate string
matching (ASM) (algorithm 6).
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Algorithm 6 PTPan ProbeMatch pseudocode
[...]
for all partitions do

if partition.prefixRelevant() then
root = partition.decompressRoot();
search rec(root);

end if
end for
results.verifyHits();
results.createDifferentialAlignment();
results.sort();
[...]
——–search rec(node)——–
node.checkRemainingPattern();
if NOT node.reachedMaxErrors() then

if node.reachedPatternEnd() then
results.gatherSubtreeOccurrences(node);

else
if node.isInnerNode() then

while node.hasNextChild() do
child = node.decompressNextChild();
search rec(child);

end while
else

results.verifyAndAddOccurrences(node);
end if

end if
end if
——–search rec()——–

Depending on the settings, ASM can be based either on the Levenshtein- or the Hamming-
distance metric (refer to section 2.2.3). Furthermore, ASM is available in either a basic-
match-mode with uniform error values or in a weighted-match-mode (refer to section 2.2.4).
In both modes, the proper treatment of “N”s as source sequence wildcards is supported
(refer to section 2.2.2).

The index partitions are searched one after another. The results are merged into a sin-
gle list. For each node, the pattern and the ingoing edge label are compared. For the
Hamming-distance metric this is done character by character while for the Levenshtein-
distance metric a comparison matrix is build. For inner nodes the branch mask is utilized
to check the first character of the downward edge before traversing the tree further down.
If the maximum error rate is not exceeded and the pattern end is not reached, the recursion
continues for inner nodes with the child nodes while it stops for border nodes.

If the pattern matches the path down to a node or the pruning depth is reached without
exceeding the error limit, the occurrences are added to the match list. For inner node, this
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requires the gathering of all occurrences by traversing further down to the border nodes.
Each hit crossing an entry border in the merged raw sequence data is filtered out before
adding it to the list. If the pattern exceeds the pruning depth, it is marked in order to verify
it later by comparing it to the decompressed original sequence from the index header. This
enables searching for patterns which exceed the pruning depth of the suffix tree.

The final steps prior to returning the match list are to optionally sort the list and to build
a differential alignment (refer to section 2.1.2) including in addition the sequence context
of the match at nine positions at 3’ and 5’ ends.

The match list returned comprises individual values for each hit (table 3.8). These val-
ues are the entry database identifier, a short human read-able information and the number
of mismatches, i.e. the individual counter for substitutions, insertions and deletions. Fur-
thermore the weighted mismatch value, the number of “N”-mismatches as well as the hit
position within the sequence and optionally in relation to a reference entry are returned.
Optionally the differential alignment with the sequence context is included for each hit as
well.

entry-id entry identifier
entry-info entry information
mis-sub substitution count
mis-ins insertion count
mis-del deletion count
wmis weighted mismatch value
nmis N-mismatches
pos position
refpos [opt] reference entry position
diff-align [opt] differential alignment & context

Table 3.8: PTPan ProbeMatch return values

3.3.3 ProbeDesign

ProbeDesign is a primer/probe design algorithm implemented based on the PTPan basic
tree traversal and ProbeMatch functionality (algorithm 7). The aim is to determine unique
oligonucleotide signature sequences as well as the resulting primer/probe candidate (refer
to section 2.1.2), i.e. to find signatures with a high coverage for a selected single sequence
or group of sequences.

If available in the index, individual genome sequence features can be selected as target
group for primer/probe design instead of the whole genome sequence as well. The corre-
sponding subsequence stretch defined by the feature range will be treated as the selected
sequence.

64



3.3 PTPan Applications

Algorithm 7 PTPan ProbeDesign pseudocode
[...]
for all partitions do

root = partition.decompressRoot();
results.gather rec(root, length);
candidateList.append(results);

end for
for all candidateList do

probeMatch(candidate);
end for
candidateList.calculateQuality();
candidateList.sort();
[...]
——–gather rec(node, length)——–
if node.reachedDepth(length) then

results.gatherVerifyAddSubtreeOccurrences(node);
else

if node.isInnerNode() then
while node.hasNextChild() do

child = node.decompressNextChild();
gather rec(child, length);

end while
end if

end if
——–gather rec()——-

Preferably the selected group should be hit by signatures entirely while avoiding out-
group hits or at least hitting non-group sequence entries only with a high distance. Further
parameters allow to constrain the search. These are the melting temperature, GC-content
and probe length (refer to section 2.4.4.1).

First the algorithm gathers all signature candidates of the targeted length which must
not exceed the pruning depth of the suffix tree. For each partition the suffix tree is tra-
versed based on the basic tree traversal. If the path of a node has a sufficient length, a
candidate has been found. Up to this step, the functionality is available as standalone
function as well. This allows to obtain signatures of a given length contained in at least
one sequence entry within the index.

Before adding a path to the candidate list, it is checked for the temperature and GC-
content constrains. If not outruled, the occurrences of the path are gathered to check the
number of in- and out-group hits. Only if passing all checks, the candidate is appended to
the final candidate list.

After gathering all candidates a ProbeMatch is conducted in weighted-match-mode for each
candidate. The predefined maximum mismatch value is 4.0. From the match result list, an
array of out-group hit numbers for increasing weighted mismatch values in steps of 0.2 is
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obtained. This array is the base for the calculation of the signature sequence quality value.

Finally the candidate list is returned with individual values for each primer/probe can-
didate (table 3.9). Besides the candidate signature stretch and the corresponding primer/probe
candidate, the GC-content and a melting temperature estimation are returned. In addition,
the quality value and the array of out-group hit numbers is included each individual can-
didate.

candidate primer/probe candidate
signature corresponding signature
G+C GC-content
temperature melting temperature estimation
quality quality value
out-grp-wmis out-group hit numbers for increasing wmis values

Table 3.9: PTPan ProbeDesign return values

3.3.4 SimilaritySearch

SimilaritySearch provides a method for sequence similarity determination by oligonucleotide
string matching frequencies (algorithm 8). The aim is to find the most similar sequences
in a dataset without the requirement to conduct more complicated analysis, for example
calculating an alignment.

Algorithm 8 PTPan SimilaritySearch pseudocode
[...]
list.init();
sequenceWindow.init(sequence);
while NOT sequenceWindow.endOfSequenceReached() do

pattern = sequenceWindow.shift();
result = probeMatch(pattern);
list.update(result);

end while
[...]

For an input sequence, all oligonucleotide substrings of a predefined length are gener-
ated by shifting a window frame. For each substring obtained this way, ProbeMatch based
exact or approximate string matching is performed, depending on the presets. The number
of hits are summed up individually for each sequence entry available in the PTPan index.
From the total number and the number of ProbeMatches performed, a hit percentage value
is calculated. Finally the two result value types are returned as a list of individual Similar-
itySearch values for each sequence entry in PTPan (table 3.10). According to the settings,
the list is truncated and sorted by either decreasing hit score or hit percentage.
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entry-id entry identifier
numHits number of hits
hitPercent hit percentage

Table 3.10: PTPan SimilaritySearch return values
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3.4 PTPan Optimization And Parallelization

In his widely known article ”The Free Lunch Is Over” Herb Sutter stated in 2005 that it is
necessary to leverage parallelism of modern processor architectures to speed up the run-
time of a program [132]. The automatic performance gain due to increasing clock rates is
not given any more since the advent of multi-core processors.

In this thesis, for all optimization and parallelization efforts, the initial step has been
a manual code review. This was followed by profiling the code to obtain the parts con-
suming the majority of the overall runtime. This has been done based on test gene and
genome sequence data sets of different sizes, i.e. the overall number of bases. The results
have been utilized to improve the sequential code as well as for parallelization efforts to
remove bottlenecks.

3.4.1 Construction Algorithm

The results of different profiling runs were utilized to improve the sequential construc-
tion code and to parallelize the construction algorithm on shared and distributed memory
systems. The main results are presented in the following sections.

3.4.1.1 Sequential Optimization

Several improvements have been made compared to the previously published version of
PTPan [32]. They are already incorporated in the previous chapters and not mentioned
explicitly again, for example the improved long edge dictionary build process (refer to
section 3.2.3.3).

During profiling of the construction process for different sequence data sets, the main
memory requirements showed to be significantly lower than the worst case memory re-
quirement estimation (refer to section 3.2.3.2 - partition determination). This is the case
if many of the sequence data entries are equal for a significant amount of bases, i.e. they
are homologue. This is the case for highly repetitive databases like the 16S rRNA gene
database SILVA (refer to section 2.1.5).

To adopt the construction algorithm to the actually reduced main memory requirements,
the first addition was an optional output of statistical information about the memory re-
quirements during construction, most important the memory usage rate in percent com-
pared to the worst case estimation. Second an optional memory ratio construction param-
eter has been added. It allows to define the memory utilization ratio with respect to the
worst case prior to index construction. The memory ratio is respected during partition
determination by multiplying the worst-case estimation with it. This results potentially in
a lower partition count and with this in a reduced construction time.

3.4.1.2 Shared Memory Parallelization

The shared memory parallelization efforts are based on boost::threads in combination
with the boost::threadpool for thread lifetime management. OpenMP was neglected

68



3.4 PTPan Optimization And Parallelization

to ease portability and to avoid requirement of an OpenMP aware compiler. In contrast, the
boost libraries can be compiled together with PTPan if necessary as they depend only on
common available libraries. Other options like Intel Threading Building Blocks (TBB) have
been omitted to avoid adding a new dependency. PTPan already utilized different data
structure related boost libraries before parallelizing the construction algorithm.

Profiling revealed the construction of the partitions being the most time consuming part
of the construction algorithm followed by the data retrieval and preparation. Thus the
following sections present the conducted efforts in these parts of the complete construction
algorithm. The modifications compared to the sequential algorithms are highlighted by
printing them italic in the algorithm pseudocode.

Data retrieval To enable parallel data retrieval, the implementation of the abstract inter-
face must be thread-safe. A single sequence entry can be loaded utilizing a thread-safe
retrieve method. Afterwards it is prepared by transforming the sequence into the compact
representation. Finally the index header is locked for writing the entry and updating the
global state variables (algorithm 9).

Algorithm 9 PTPan parallel data retrieval pseudocode
[...]
header = initializeIndexHeader();
for all threads do

while interface.threadSafe hasNextEntry() do
ptpanEntry = interface.threadSafe getNextEntry());
ptpanEntry.compactSequenceData();
header.lock();
header.appendAndUpdateGlobalState(ptpanEntry);
header.unlock();

end while
end for
header.storeGlobalState();
[...]

Data preparation The first step is to merge the individual sequences of all retrieved en-
tries into a single temporary raw data file in compact representation (algorithm 2). For
every set of two consecutive sequence entries, the end of the first and the beginning of
the second sequence share an overlapping region in the final temporary file. Writing these
overlapping parts must be synchronized while there is no need to do this for the non-
overlapping parts, i.e. the majority of the data to write (algorithm 10).

For each sequence entry in the header to add to the merged raw data, the start position
in the merged raw data and the length of the sequence are known beforehand. Hence it
is possible to calculate the number of overlapping bases at the start and the end of each
sequence.

To synchronize the writing of an overlapping part, a map is utilized. The entry number
of the sequence ending in an overlapping region is taken as key while the compact repre-
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sentation of the overlapping part contributed by one of the adjacent sequences is the value.
The first thread reaching an overlapping end puts its part into the map after locking it. The
second thread can now retrieve the part, combine it with its part of the overlapping region
and write it to the merged raw data.

Algorithm 10 PTPan parallel merge sequences pseudocode
[...]
temporaryMergedData = initMergedData();
for all threads do

while header.threadSafe hasNextEntry() do
ptpanEntry = header.threadSafe getNextEntry();
overlapStart = ptpanEntry.getStart();
if overlapStart then

checkAndAdd(overlapStart);
end if
temporaryMergedData.appendNonOverlapping(ptpanEntry);
overlapEnd = ptpanEntry.getEnd();
if overlapEnd then

checkAndAdd(overlapEnd);
end if

end while
end for
[...]
——–checkAndAdd(overlap)——–
overlapMap.lock();
if overlapMap.hasCorrespondingPart(overlap) then

combined = overlapMap.getCorrespondingPartAndCombineWith(overlap);
temporaryMergedData.insertOverlapping(combined);

else
overlapMap.insertPart(overlap);

end if
overlapMap.unlock();
——–checkAndAdd()——-

Partition determination In order to support the parallel construction of partitions on
a shared memory system, the partition determination algorithm has been adopted. The
largest partitions to construct must fit into memory in parallel.

First the partitions are determined in the same way as for a single thread, based on the
same worst case memory requirements estimation. Afterwards the new algorithm checks
if the largest partitions up to the number of threads utilized fit into main memory in par-
allel. If not, the largest partition is removed from the list and refined, i.e. the prefix is
extended by one character for each symbol of the alphabet. Afterwards the memory re-
quirements for the new partitions are determined. This process is repeated until the largest
partitions fit into memory in parallel.
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Algorithm 11 PTPan partition determination for parallel pseudocode
[...]
maxPartitionSize = determineMaxPartitionSize(memorySize,tempMergedDataSize);
if maxPartitionSize < tempMergedDataSize then

finalPartitions = setupOnePartition();
else

maxPrefixLength = determineMaxPrefixLength(memorySize,tempMergedDataSize,
threadCount);
histogram = scan(temporaryMergedData, maxPrefixLength);
initialPartitions = init(length = 1);
while NOT initialPartitions.empty() do

part = initialPartitions.popFirst();
if histogram.size(part) ≤maxPartitionSize then

finalPartitions.sortIn(part);
else

initialPartitions.pushBack(part.refine());
end if

end while
while finalPartitions.sumLargest(maxThreadCount) > maxPartitionSize do

finalPartitions.refineLargest(histogram);
end while

end if
header.storePartitionInformation(finalPartitions);
[...]

Optionally, the algorithm for the thread-count based refinement can be altered by a pa-
rameter. Instead of always taking the maximum number of threads, the partition distri-
bution and thread-count providing the best partitions-per-thread ratio are taken. In order to
achieve this, the best combination is kept separately during refinement (algorithm 12). Af-
ter evaluating all thread-counts, construction is performed based on this best combination.

Partition construction The partition construction itself is an embarrassing parallel prob-
lem (refer to section 2.6.3.1). The partitions are independent and the global structures like
the merged raw data are accessed reading only. The partitions fit into main memory in
parallel which is ensured by the partition determination algorithm for parallel construc-
tion. Thus each participation thread constructs one partition after another as long as there
are candidates remaining in the list. Only the retrieval of the next partition candidate in
the list to construct requires synchronization.

3.4.1.3 Distributed Memory Parallelization

In order to utilize cluster computers to speed up PTPan index construction, a distributed
memory construction algorithm has been developed and implemented based on the Mes-
sage Passing Interface (MPI) (refer to section 2.6.3.3).
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Algorithm 12 PTPan partition determination for parallel optional pseudocode
[...]
tmpPartitions = remember(finalPartitions, 1);
for threadCount := 2 to maxThreadCount do

while finalPartitions.sumLargest(threadCount) > maxPartitionSize do
finalPartitions.refineLargest(histogram);

end while
if tmpPartitions.ratio() > finalPartitions.ratio() then

tmpPartitions = remember(finalPartitions, threadCount);
end if

end for
finalPartitions = tmpPartitions.partitions();
threadCount = tmpPartitions.threadCount();
[...]

Algorithm 13 PTPan parallel construction pseudocode
[...]
for all threads do

while header.threadSafe hasNextPartition() do
partition = header.threadSafe getNextPartition();
tree = initTree();
currentWindow = mergedRawData.begin();
while currentWindow != mergedRawData.end() do

if currentWindow.prefix() = partition.prefix() then
tree.insertOccurrence(currentWindow);

end if
currentWindow.shift();

end while
tree.prepareEdgesAndBranchMasks();
tree.buildLongEdgeDictionary();
tree.relocateReferences();
tree.writeToDisk();

end while
end for
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The participating computing nodes are split up into one master node and all other nodes
as slaves. The master is responsible for handling the data retrieval and preparation as
well as the setup of the slaves. In particular the master distributes the merged raw data
and the information required to construct a suffix tree partition. In contrast, the slaves
are responsible for the construction of the individual partitions. After a slave finished
constructing a partition, it sends statistical information back to the master and receives
the next partition to construct. If no more partitions are to be done, the master sends a
done message to all slaves and gathers the remaining statistics. The slaves shut down
after receiving the done message. Finally the master cleans up remaining structures, for
example the merged raw data file.

Detailed pseudocode of the master and the slave is presented in algorithm 14 and 15.

Algorithm 14 MPI PTPan construction: master pseudocode
[...]
retrieveAndPrepareData();
MPI Barrier 1.wait();
MPI Bcast(send, generalIndexData);
MPI Barrier 2.wait();
for all slaves do

partitionInfo = nextPartition();
MPI Send(partitionInfo);

end for
while partitionsLeft() do
MPI Receive(slaveConstructionResult, slaveId);
partitionInfo = nextPartition();
MPI Send(slaveId, MORE WORK);
MPI Send(slaveId, partitionInfo);

end while
for all slaves do
MPI Receive(slaveConstructionResult);
MPI Send(DONE);

end for
MPI Barrier 3.wait();
cleanUp();
[...]

The implementation prototype developed reads the input data from a multiFASTA file
and assumes a shared file system for all cluster nodes. Furthermore it assumes that each
processing unit has an equal amount of memory available.

3.4.2 Applications

The different applications for primer/probe design and evaluation relying on the PTPan
index structure have been profiled prior to optimization as well.
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Algorithm 15 MPI PTPan construction: slaves pseudocode
[...]
MPI Barrier 1.wait();
MPI Bcast(receive, generalIndexData);
MPI Barrier 2.wait();
while more-work do
MPI Receive(flag);
if flag != DONE then
MPI Receive(partitionInfo);
sequentialPartitionConstruction(partitionInfo);
MPI Send(constructionResult);

else
more-work = false;

end if
end while
MPI Barrier 3.wait();
[...]

ProbeMatch The differential alignment generation showed to be a time consuming part
when carrying out ProbeMatch searches. One reason was the accessing and decompressing
of the original sequence data. It took a long time for genome sequences as they required
to be decompress from the beginning for each hit. By incorporating jump labels (refer to
section 3.2.2.1) large parts of the compact sequence could be omitted during decoding as
this process now starts closer to the region of interest near the hit position.

Second, as the different query hits are independent from each other, the creation of the
differential alignment is an embarrassing parallel problem. It can be parallelized by dis-
tributing the processing of the hits to different threads of execution. The distribution is not
done block-wise to avoid random loading of original sequence data from the index header.
Each thread processes each ith + threadCount hit with i being the thread number. As the
hits are sorted in ascending order, the sequence entries are accessed in the same order they
are stored in the index header preventing random access patterns.

Algorithm 16 PTPan ProbeDesign parallel prototype pseudocode
[...]
for all threads do

while candidateList.threadSafe hasMore() do
candidate = candidateList.threadSafe getNext();
probeMatch(candidate);

end while
end for
[...]

ProbeDesign The ProbeDesign algorithm includes a source of embarrassing parallelism
in the loop conducting the ProbeMatches. A prototypical implementation leverages this (al-

74



3.4 PTPan Optimization And Parallelization

gorithm 16, based on algorithm 7 in section 3.3.3). It is currently suited for PTPan indexes
fitting into main memory only. Parallel on-disk index access results in unfavorable access
patterns.

SimilaritySearch The SimilaritySearch algorithm includes a source of embarrassing par-
allelism in the loop conducting the ProbeMatches, too. A prototypical implementation has
been implemented to leverage this (algorithm 17, based on algorithm 8 in section 3.3.4).
The hit counter for each entry has been adopted to be thread-safe by utilizing an atomic
counter (refer to section 2.6.3.2). This algorithm suffers from the same limitation as the par-
allel ProbeDesign algorithm, i.e. it is currently suited for PTPan indexes fitting into main
memory only.

Algorithm 17 PTPan SimilaritySearch parallel prototype pseudocode
[...]
list.init();
for all threads do

offset = threadCount;
sequenceWindow.init(sequence, offset);
while NOT sequenceWindow.endOfSequenceReached() do

pattern = sequenceWindow.shift(threadCount);
result = probeMatch(pattern);
list.threadSafe update(result);

end while
end for
[...]
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3.5 Software Components

Besides the UMDA framework implementation (refer to section 3.1.4), several software
components have been developed based on the algorithms described in the last chapters.
In the next sections, the PTPan library and its integration into the ARB software envi-
ronment and the UMDA framework are presented. Afterwards the integrated system for
primer/probe design and evaluation based on the UMDA framework with its plugins for
database access and search index application capabilities is described.

3.5.1 PTPan Library

Based on the developed PTPan structures, construction algorithm and applications, a stan-
dalone C++ library has been developed and implemented for 64 bit Linux systems.

The library incorporates an implementation of the abstract PTPan data retrieval inter-
face for multiFASTA files which is provided as default data source for index construction.
The memory size is detected automatically or can be manually passed as parameter. An-
other parameter is the depth of the suffix tree which defaults to 20. The maximum depth
is currently limited to 27 due to the implementation decisions to rely on a single integer
value for the edge label of an in-memory suffix tree node. In compact representation the
maximum number of bases which can be stored in a 64-bit integer value are the aforemen-
tioned 27 bases for the DNA5 alphabet (refer to section 2.6.1). The library supports shared
memory multi-threading to speed up construction and application of the index. The num-
ber of system hardware threads is determined automatically, although the thread-count to
use can be varied by a parameter.

The three PTPan applications (refer to section 3.3) can be accessed utilizing appropriate
methods. The application results are returned in index independent data structures for
further utilization.

Furthermore, the library offers methods to obtain the database identifier list of the incor-
porated sequence entries. The entries can be accessed as well in order to gain access to the
sequence in compact representation or the optionally available sequence features. This is
of interest for ProbeMatch conducted on a genome index incorporating feature information.
The feature hits are not returned directly. Instead, the feature hits can be obtained in a sec-
ond step after the match list has been returned. The PTPan sequence entry corresponding
to a hit provides a function to obtain all features for a given position and length.

3.5.2 ARB PTPan Integration

The PTPan C++ library with its primer/probe design and evaluation functionality has
been integrated into the ARB software environment to complement or replace the ARB
PT-Server (refer to section 2.4.4.2). In order to access the nucleic acid sequence data in an
ARB database, the abstract PTPan data retrieval interface has been implemented for the
ARBDB API. In addition a wrapper has been implemented for the functions of the PT-
Server adopting the PTPan interface to the corresponding PT-Server calls. This allows to
use PTPan as a drop-in replacement. Hence it is not required to modify any PT-Server
based application of the ARB software environment in order to leverage PTPan function-
ality.
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3.5.3 UMDA PTPan Integration

Based on the PTPan C++ library the UMDA search index interface has been implemented
and integrated into the PTPan-SII plugin.

As data source for nucleic acid sequence and annotation data either a multiFASTA file
or a UMDA DBI can be utilized. For multiFASTA files the PTPan library relies on the inte-
grated data retriever implementation. A PTPan data retrieval interface for the UMDA DBI
has been added.

The abstract SII ApplicationAPI has been implemented by mapping the different methods
to the corresponding PTPan library application functions. This incorporates the conversion
of the settings and the result lists between the PTPan library and the UMDA framework
format.

3.5.4 UMDA Primer/Probe Designer

The UMDA Primer/Probe (UPP) Designer is a graphical user interface (GUI) for primer and
probe design and evaluation based on the UMDA framework. It has been developed
to provide easy to use search index construction from heterogeneous sources as well as
UMDA SII based primer/probe design application capabilities. An workflow overview is
given in figure 3.8.

For a user utilizing the UPP Designer the first step is to choose whether to construct and
load a new index or to load an existing one. An index can be constructed from a multi-
FASTA file or a selectable UMDA DBI plugin as input source. In both cases the UMDA
SII to utilize can be selected among the available SII plugins. If a DBI has been chosen as
input source, it is possible to either construct an index for all entries available or to utilize
the QueryAPI of the DBI to choose a subset of entries of the underlying database. Besides
constructing a new index, it is also possible to load an existing index which can be chosen
by a selection dialog.

After either loading or constructing an index, the GUI provides access to the three ap-
plications provided by the UMDA SII ApplicationAPI (refer to section 3.1.3.3).

The pattern matching functionality is provided by a single window which provides ac-
cess to the settings as well as the results at once.

The graphical primer/probe design application interface is split into three parts. First a
selection dialog allows to choose the target group of entries for primer/probe design. The
target group can be selected manually or optionally it can be loaded from a file contain-
ing the database identifiers one per line as well. In the following second dialog window,
the settings like signature length, maximum allowed out-group hits and coverage can be
adjusted. In the last dialog window, after conducting the design process, the result list is
shown. In order to ease further evaluation, it is possible to launch the pattern matching
functionality window for a selected primer/probe candidate which is set as query pattern
automatically.

Finally, the UPP Designer provides access to the similarity search functionality by a dia-
log window for the settings and the result list at once.
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Figure 3.8: UMDA Primer/Probe (UPP) Designer workflow overview
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The next sections provide selected evaluation results gained from testing the index con-
struction, applications and the UPP Designer with real-life data. The presented key perfor-
mance indicators provide the necessary information to assess the index performance.

4.1 Experimental setup

4.1.1 Test Systems

For the tests presented different shared memory systems have been chosen to demonstrate
the performance on average as well as top tier desktop systems:

lapbode123 is an average desktop system (HP EliteBook 8530w) with an Intel Core2Duo
T9400 CPU (2.53 GHz, 2 physical cores), 4 GB DDR2-800 main memory and a Fujitsu
MHZ2250B hard disk drive (SATA2, 250 GB, 5400rpm, 12ms average seek time)

atbode223 is a top tier desktop system with an Intel Core i7 920 CPU (2.67 GHz, 4 phys-
ical cores) on an ASUS P6T SE mainboard and 24 GB DDR2-1066 main memory. As hard
disk drive a Seagate Barracuda LP Series SATA ST31000520AS (SATA2, 1000 GB, 5900rpm,
16ms average seek time) was available.

Both systems run Ubuntu 10.04.3 LTS 64 bit Linux (kernel version 2.6.32). The test compiler
was gcc 4.4.3. The boost libraries were utilized in version 1.40.

In addition for some tests the solid state disk model Crucial M4-CT256M4SSD2 SSD
(SATA 6G, 256 GB, average access time lower 0.1ms) was available in an eSATA case.

For some distributed memory tests the following system was available:

LRR cluster is a custom Linux cluster build of 24 operational AMD Opteron 4-way
nodes, i.e. a total of 96 processors. Each processor is an AMD K8 model 850 single core
(SledgeHammer, 2.4 Ghz). Each node provides 8 GB DDR-400 main memory for its 4 pro-
cessors. The cluster runs under Ubuntu 8.04 64 bit (kernel 2.6.24) with gcc version 4.2.4
and OpenMPI version 1.3.0. The storage system is a 3.4 TB raid system accessible by the
network file system over Gigabit Ethernet.

4.1.2 Test Data

Real life gene and genome test data sets have been chosen for measuring the overall con-
struction as well as the application times.
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Gene data As large example gene database the SSURef 108 SILVA database (referred
to as SSURef108 further on) was selected [113]. It is a successive database of the SILVA
SSURef 104 database chosen for prior tests [32]. The SSURef108 contains more than 618
thousand sequence entries summing up to a total of more than 890 million bases. Further
test databases have been generated containing subsets of the complete SSURef108 database
(table 4.1).

database number of entries number of nucleotides
SSURef108 618 442 890 244 367
SSURef104 512 037 738 883 451

400000 400 000 577 172 089
300000 300 000 432 867 080
200000 200 000 288 562 544
100000 100 000 144 349 921

50000 50 000 72 184 577
20000 20 000 28 824 132
10000 10 000 14 414 461
5000 5 000 7 219 680
2000 2 000 2 884 537
1000 1 000 1 446 632

Table 4.1: SSURef108 gene database and subsets characteristics

database number of entries number of nucleotides
GR130 1 499 4 816 402 998

1000 1 000 3 207 188 199
500 500 1 596 164 902
200 200 624 133 762
100 100 301 861 046
50 50 164 142 352
20 20 67 285 904
10 10 33 720 813

Table 4.2: GR130 genome database and subsets characteristics

Genome data In order to test the PTPan index as well as the UPP Designer capabilities
for genome sequence data, a genome database has been generated in the ARBDB format
based on the GenomeReviews release 130 available as MySQL database dump and as flat file
export [41]. The extracted genome database (referred to as GR130 in the following) con-
tains the cellular prokaryote genomes with annotation data as well as a phylogenetic tree
based on the one incorporated in the SILVA SSURef 108 database (database preparation
done by H. Meier). The GR130 database contains 1499 genome sequence entries summing
up to a total of 4.8 billion bases. Furthermore for some tests an export in the multiFASTA
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file format containing the bare sequences was used. Based on GR130 several subdatabases
have been generated (table 4.2).

For further tests the MySQL dump of the Genome Reviews release 130 has been utilized
(MySQL-GR130). It is based on the EnsEMBL database schema (refer to section 2.1.3) and
provides a comprehensive collection of genomes along with their annotation data.
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4.2 PTPan Index

In the next sections the sequential and parallel PTPan construction times for the different
test databases are presented. The parallel construction times are divided into shared and
distributed memory tests. In addition the influence of the ratio factor is presented. Finally
the index sizes are analyzed.

4.2.1 Sequential Construction

The sequential construction times have been measured on the systems lapbode123 and at-
bode223 for PTPan. As done before in an evaluation based on SILVA SSURef 104 [32], the
ARB PT-Server construction times have been measured for comparison on both systems as
well.

SSURef108 On atbode223 both PTPan and the PT-Server could be constructed for all test
databases. The construction times are almost equal up to the 300 000 sequence entries sub-
database (460 million bases). Afterwards PTPan was constructed faster than the PT-Server.
For the complete SSURef108 a construction time of less than 24 minutes for 21 partitions
was observed for PTPan while the PT-Server required almost 32 minutes to finish. The
cause is an alteration of the PT-Server construction algorithm if reaching a memory depen-
dent sequence bases threshold. This is done in order to circumvent more disadvantageous
memory effects (R. Westram, ARB maintainer, personal communication).

On lapbode123, PTPan was constructed up to the full SSURef108 in about 53 minutes for
a total of 85 partitions. Compared to atbode223 the significantly increased times are caused
by the limited memory size. Furthermore, as the ARB database SSURef108 requires more
than 4 GB main memory, the last run was conducted with a multiFASTA file export of the
SSURef108 database. In contrast, the ARB PT-Server could be build efficiently only up to
the 200 000 sequence entries database. For the larger databases the construction process
started to use swap memory and could not finish within reasonable time.

All construction time values for PTPan and the PT-Server as well as the number of par-
titions for PTPan are presented in table 4.3. Figure 4.1 prints a direct comparison of the PT-
Pan and PT-Server construction times for an increasing amount of nucleotide bases based
on the SSURef108 test database and its subsets.

GR130 In order to compare the performance of PTPan and the ARB PT-Server for genome
databases, the GR130 test database construction times have been measured.

PTPan could be constructed for all genome test databases on atbode223. For the full
GR130 this took 5 hours 53 minutes resulting in 85 partitions. The PT-Server could only
be constructed up to the 500 genomes test database (about 1.6 billion bases) for the same
reasons as for the SSURef108, i.e. the construction algorithm starts utilizing swap memory
on secondary storage. This slows down the construction significantly preventing it from
finishing in reasonable time.

On lapbode123 PTPan could be constructed up to the 200 genome entries database in
about 53 minutes for 84 partitions. The full GR130 was constructed from a multiFASTA
file on lapbode123 taking little less than 22 hours for 448 partitions. In contrast, the ARB

82



4.2 PTPan Index

database PTPan (l) PTPan (a) PT-Server (l) PT-Server (a)
SSURef108 *53.10 (85) 23.42 (21) – 31.67
SSURef104 47.80 (85) 20.51 (21) – 30.69

400000 37.14 (85) 13.81 (9) – 23.74
300000 23.12 (65) 9.85 (5) 41.85 12.18
200000 9.73 (25) 6.55 (5) 28.25 7.96
100000 4.63 (21) 3.33 (1) 6.78 4.13

50000 2.04 (9) 1.64 (1) 3.25 1.90
20000 0.78 (5) 0.65 (1) 0.87 0.74
10000 0.39 (1) 0.33 (1) 0.40 0.37
5000 0.20 (1) 0.17 (1) 0.20 0.18
2000 0.09 (1) 0.07 (1) 0.08 0.07
1000 0.04 (1) 0.04 (1) 0.04 0.04

Table 4.3: SSURef108 sequential construction times [min] for PTPan (with number of parti-
tions) and PT-Server (a = atbode223, l = lapbode123) *[multiFASTA file as source]
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PT-Server could be constructed only up to the 100 genome test database in reasonable
time. Up to this database, the construction times of PT-Server and PTPan are comparable,
slightly favoring the PT-Server.

All construction time values for the genome test database GR130 and its subsets as well
as the number of partitions for PTPan are presented in table 4.4. Figure 4.2 shows the direct
comparison of PTPan and PT-Server construction times on both test systems.

database PTPan (l) PTPan (a) PT-Server (l) PT-Server (a)
GR130 *[1312.40 (448)] 353.00 (85) - -

1000 - (-) 227.35 (81) - -
500 - (-) 78.64 (21) - 87.13
200 52.89 (84) 28.75 (13) - 26.62
100 17.43 (29) 12.90 (5) 15.56 10.31

50 8.64 (21) 6.25 (5) 7.19 5.29
20 3.23 (5) 2.52 (1) 2.41 2.12
10 1.55 (4) 1.28 (1) 1.13 0.87

Table 4.4: GR130 sequential construction times [min] for PTPan (with number of partitions)
and PT-Server (a = atbode223, l = lapbode123) *[multiFASTA file as source]
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4.2.2 Parallel Construction

4.2.2.1 Shared Memory

In order to test the parallel PTPan construction algorithm, runtime tests have been con-
ducted for the shared memory test systems up to their number of physical cores, i.e. four
for atbode223 and two for lapbode123.

SSURef108 For lapbode123 the construction time for one thread is 53 minutes for 85 par-
titions which is better compared to the 97 minutes for 248 partitions with two threads. The
partition determination with automatic optimal thread count selection (refer to section
3.4.1.2) chooses the best value in this case, i.e. one thread with 85 partitions.

For atbode223 the sequential construction time was about 24 minutes for 21 partitions.
Utilizing two, three or four threads results in runtime values ranging in between 13 and 14
minutes for 21, 53 respectively 73 partitions. The speedup factors compared to sequential
construction time for two to four threads are nearly identical ranging from 1.67 to 1.8. The
best runtime and time-to-partitions ratio is achieved with two threads.

Table 4.5 shows all parallel construction time values for SSURef108 on both systems.

system threads partitions time [min] speedup
lapbode123 1 85 53.1 1.00
lapbode123 2 248 97.4 0.55

atbode223 1 21 23.42 1.00
atbode223 2 21 13.03 1.80
atbode223 3 53 14.05 1.67
atbode223 4 73 13.33 1.76

Table 4.5: SSURef108 parallel construction times [bold = automatically chosen]

GR130 The parallel construction tests for GR130 have been conducted on atbode223 only.
The sequential runtime is 353 minutes for 85 partitions, also offering the best threads-to-
partitions ratio. In comparison the parallel construction time for four threads is the lowest
with 248 minutes for 345 partitions. Hence the automatic algorithm would choose one
thread while the optimal thread count is four. Due to the increasing number of partitions,
the overall speedups are low. Utilizing four threads results only in a maximum speedup
of 1.42. Table 4.6 shows all values for parallel GR130 construction on atbode223.

system threads partitions time [min] speedup
atbode223 1 85 353 1.00
atbode223 2 190 312 1.13
atbode223 3 306 294 1.20
atbode223 4 345 248 1.42

Table 4.6: GR130 parallel construction times [bold = automatically chosen]
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4.2.2.2 Distributed Memory

Construction runtime tests on the LRR Cluster have been conducted for both SSURef108
and GR130. With main memory being limited to 2 GB per core, the number of partitions is
fixed regardless the number of cores participating. For SSURef108 205 and for GR130 982
partitions are constructed.

Table 4.7 lists the construction times and speedup factors for an increasing number of
cores from 12 up to 96. Construction time speedups are presented for direct comparison
in figure 4.3 with the time for 12 cores as reference. The runtime for the GR130 database
on 12 nodes is 766 minutes (about 12.8 hours), declining to 108 minutes (1.8 hours) on 96
nodes. For the SSURef108 runtime declines from 33.5 minutes (12 nodes) to 7.2 minutes
(96 nodes).

In the MPI PTPan construction algorithm, one master node is responsible for data re-
trieval and preparation while the other nodes are slaves responsible for index construction.
Having one master regardless of the overall number of nodes participating allows super-
linear speedups when increasing the number of nodes. For example the 7-fold increase of
participating nodes from 12 to 96 for GR130 results in a speedup of 7.1.

database #partitions 12 24 48 96
GR130 982 766 (1.00) 374 (2.05) 191 (4.01) 108 (7.09)

SSURef108 205 33.5 (1.00) 16.9 (1.98) 10.3 (3.25) 7.2 (4.65)

Table 4.7: SSURef108 and GR130 PTPan construction times [min] and speedups on LRR
cluster
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4.2.3 Ratio Factor Influence

In order to test the influence of a varying memory ratio factor (refer to section 3.4.1), several
tests have been performed on the shared memory systems atbode223 and lapbode123.

According to the statistical data gathered during index construction, the worst case es-
timation of memory requirements is not optimal in all cases. For the complete SSURef108,
the total memory used was less than 20 percent of the estimated value. For the complete
GR130, a capacity utilization of 80 percent at maximum was determined.

With these facts and the former observation that an increase in the number of partitions
triggers an increased construction time, the ratio factor is expected to lower the runtime of
sequential and parallel construction.

SSURef108 For SSURef108 the ratio factor influence has been investigated by conducting
measurements on atbode223 and lapbode123 for each combination of hardware thread count
and ratio factors 0.5 and 0.2. The results are shown in table 4.8 together with the sequential
runtime for the default memory requirements estimation.

For lapbode123, utilizing the ratio factors, the number of partitions to construct declined
heavily from 85 to 21 at best. With this the construction time has been lowered to less than
25 minutes. This is significantly less compared to 53 minutes as fastest parallel construc-
tion runtime for the default main memory requirements estimation. The best speedup of
more than factor 2 has been observed for the ratio factor 0.2 with one or two threads. The
automatic thread-count choosing algorithm would pick the slightly faster option with one
thread for 21 partitions. For factor 0.5 the best option is also correctly selected automat-
ically, i.e. two threads constructing 89 partitions in less than 36 minutes which is still a
speedup by factor 1.5.

For atbode223 the results are similar. The number of partitions for sequential and parallel
construction runs declines compared to the default memory requirements estimation when
the ratio factors are applied. With this, the runtime drops to a little more than 8 minutes
for 21 partitions with factor 0.5 respectively about 7.4 minutes for 9 partitions with factor
0.2, both with four threads. The speedup factors are for both ratios higher compared to the
fastest speedup so far, i.e. speedup 2.85 for ratio 0.5 respectively 3.18 for ratio 0.2 compared
to a speedup of 1.8 for default settings. The thread-count selection algorithm would pick
three threads in the case of a ratio of 0.2 which is not the best choice regarding the overall
runtime. Optimal would be a thread count of four. For a ratio of 0.5 it is even worse. One
thread and its runtime of about 19 minutes is chosen while the best choice would be to rely
on all four hardware threads available in the system. This would result in a runtime of a
little more than 8 minutes.

GR130 For the GR130 database measurements have been conducted on atbode223 for all
different hardware thread counts possible in conjunction with a ratio factor of 0.8. The re-
sults are shown in table 4.9 together with the sequential as well as the best parallel runtime
for the default memory requirements estimation.

The construction time and the number of partitions are equal for one thread with and
without the ratio factor, i.e. 354 minutes for 85 partitions. For multiple threads the number
of partitions to construct declines and with it the runtime drops to less than four hours. Re-
garding the automatic thread count selection algorithm, it chooses 2 threads which indeed
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system ratio threads partitions time [min] speedup
lapbode123 1.0 1 85 53.10 1.00

lapbode123 0.5 1 61 42.27 1.26
lapbode123 0.5 2 89 35.83 1.48
lapbode123 0.2 1 21 24.38 2.18
lapbode123 0.2 2 45 24.62 2.16

atbode223 1.0 1 21 23.42 1.00
atbode223 1.0 2 21 13.03 1.80

atbode223 0.5 1 5 18.57 1.26
atbode223 0.5 2 17 12.45 1.88
atbode223 0.5 3 21 9.87 2.37
atbode223 0.5 4 21 8.22 2.85
atbode223 0.2 1 5 18.57 1.26
atbode223 0.2 2 5 10.87 2.15
atbode223 0.2 3 5 9.93 2.36
atbode223 0.2 4 9 7.37 3.18

Table 4.8: SSURef108 sequential and parallel construction times for different ratio factors
[bold = automatically chosen; italic = reference values]

provides the best overall runtime with 216 minutes for 113 partitions. This is a speedup of
1.64 compared to the sequential construction time.

system ratio threads partitions time [min] speedup
atbode223 1.0 1 85 353 1.00
atbode223 1.0 4 345 248 1.42

atbode223 0.8 1 85 354 1.00
atbode223 0.8 2 113 216 1.64
atbode223 0.8 3 268 268 1.32
atbode223 0.8 4 306 225 1.57

Table 4.9: GR130 sequential and parallel construction times with ratio factor [bold = auto-
matically chosen; italic = reference values]

4.2.4 UMDA Based Construction

In order to test the capabilities of building an index with the UPP Designer (refer to sec-
tion 3.5), the PTPan SII has been utilized in conjunction with the EnsEMBL DBI plugin
connecting to the MySQL-GR130 test database.

The database has been queried for subsets of genome sequence entries with help of the
UMDA DBI QueryAPI. The result entries have been taken to construct an index.

Profiling revealed that the overall PTPan index construction time is dominated by the
construction of the partitions. The data retrieval contributes only to a lower amount. Thus
the construction runtime results presented in the previous sections can be conferred to
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other data input sources presented in this work as well. Hence the construction time re-
sults for the different subdatabase selections are not shown explicitly.

4.2.5 Index Size

The index size on disk was analyzed for SSURef108 and GR130. As it proved to be indepen-
dent of the number of partitions, only the values for the indexes constructed on atbode223
with the sequential algorithm are presented.

For comparison to PTPan, the values for the ARB PT-Server are presented as well. As the
ARB PT-Server relies on the original sequence data source for application, the summarized
values of index and database size are presented as well.

PTPan relies on loading only required parts of the index into main memory. Hence the
on-disk memory requirements are not equal to the main memory requirements.

In contrast, the ARB PT-Server must fit into main memory completely for application.
As it is stored compressed, the on-disk size is a rough lower limit for the main memory
requirements.

database PTPan PT-Server
SSURef108 3 413 3 236 (3 922)
SSURef104 3 039 2 790 (3 337)

400000 2 395 2 208 (2 639)
300000 1 818 1 682 (2 010)
200000 1 233 1 148 (1 372)
100000 636 596 (716)
50000 332 310 (379)
20000 141 133 (170)
10000 75 71 (99)
5000 40 39 (60)
2000 17 17 (53)
1000 10 10 (37)

Table 4.10: SSURef108 PTPan and ARB PT-
Server stored index sizes [MB] (in
brackets incl. database size)

database PTPan PT-Server
GR130 39 340 -

1000 27 047 -
500 14 042 -
200 5 907 8 298 (8 963)
100 2 838 4 016 (4 342)
50 1 521 2 209 (2 386)
20 668 907 (982)
10 352 452 (487)

Table 4.11: GR130 PTPan and ARB
PT-Server stored index
sizes [MB] (in brackets
incl. database size)

SSURef108 The index sizes for both PTPan and PT-Server are presented in table 4.10.
Looking at the index only, the sizes are nearly identical for PTPan and PT-Server, although
PTPan includes all data required for application, comprising the original sequence and its
related data. For the complete SSURef108 with its 890 million nucleotides, the PTPan index
is about 3400 MB in size which is less than 4N bytes per nucleotide.

GR130 In table 4.11 the results for the genome databases are presented for both PTPan
and PT-Server. As it can be seen, PTPan has reduced requirements for genome data com-
pared to the PT-Server index size. The overall index size of PTPan for the complete GR130
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with its 4.8 billion nucleotides is slightly less than 40 GB, which is about 8.6N bytes per
base.

4.2.6 Summary

The PTPan index construction capabilities have been evaluated for the sequential algo-
rithm as well as the parallel algorithms for shared and distributed memory systems.

The sequential construction times for the real life gene and genome data sets revealed
PTPan outperforming its competitor, the ARB PT-Server. In addition, PTPan is capable of
dealing with large amounts of sequence data even on computer systems with limited main
memory capacity while the ARB PT-Server reaches its limitations.

The parallel PTPan construction algorithms proofed to reduce the construction times.
However, the increasing amount of partitions to construct when utilizing more than one
computing core on a multi-core system sometimes negate the benefits of parallel construc-
tion. The automatic determination algorithm estimating the best thread-count-to-partition
ratio proofed to ease this problem. It selects the best combination most of the times.

Furthermore the ratio factor parameter, which must be provided manually based on
empiric data, showed its potential to reduce construction times significantly for both kinds
of test data, i.e. gene and genome sequences.

On distributed memory systems, the MPI based PTPan construction algorithm scales
well for an increasing amount of participating computing nodes. With this, the overall
PTPan construction time for large amounts of data has been reduced significantly.

Further tests revealed that the construction time is dominated by the construction of the
partitions. The data retrieval contributes only to a smaller extend. With this, the type of the
sequence data source, for example a relational database or the in-memory ARB database,
does not influence the overall construction time significantly for large data collections.

Finally the PTPan index size increases linear to the amount of gene or genome sequence
data the index is based on. PTPan indexes require less size in sum compared to ARB PT-
Server ones. The latter require that the original source ARB database is available during
application.
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4.3 Applications

In the next sections the evaluation of the primer/probe design and evaluation applications
will be presented. First the ProbeMatch application and its runtime behavior is shown. This
is followed by presenting mass query tests based on the UPP Designer accessing Probe-
Design and SimilaritySearch utilizing the PTPan SII plugin.

4.3.1 PTPan ProbeMatch

PTPan ProbeMatch has been tested utilizing the PTPan ARB integration (refer to section 3.5).
This allows to directly compare the results to the ones obtained for the ARB PT-Server.
All measurements are based on the example probe EUB338, a sequence well known to
have a very high number of entry hits in SILVA databases [3]. As all genomes in GR130
are represented in SSURef108 by their corresponding extracted genes, the EUB338 should
provide a high number of hits in GR130 as well.

All presented tests have been conducted in basic-match-mode (refer to section 3.3.2) for
exact as well as Levenshtein-distance metric based approximate queries up to five allowed
mismatches. Test systems were the two shared memory systems atbode223 and lapbode123
utilizing their internal hard disk drive. For each test query, the index is loaded freshly
to prevent the influence of caching effects provided by the memory management of the
operating system.

For the EUB338 single match queries the runtime utilizing the SSD drive did not differ
significantly from the normal disk drive values. Thus they are not shown explicitly.

SSURef108 The number of hits delivered by PTPan ProbeMatch for the complete SSURef108
are shown in table 4.12. For distances from 0 to 3 the count grows moderately while it starts
increasing faster for distances of 4 and 5.

database max distance hits
SSURef108 0 487 342
SSURef108 1 509 681
SSURef108 2 524 086
SSURef108 3 553 509
SSURef108 4 689 445
SSURef108 5 1 215 486

Table 4.12: SSURef108 ProbeMatch query hits for EUB338

This increase of hit numbers influences the overall runtime as well (table 4.13). For at-
bode223 sequential query times range from 7.3 seconds for 0 mismatches up to 13.9 seconds
for a maximum distance of 4. lapbode123 query times are slower ranging from 8.1 to 15.6
seconds. Utilizing more than one thread decreases the runtime for all tested distances
on both test systems. For direct comparison, the sequential and parallel query times are
shown in figure 4.4 for atbode223 and in figure 4.5 for lapbode123. By this a similar overall
runtime tendency for increasing distance values on both systems is revealed.
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system threads max distance
0 1 2 3 4 5

lapbode123 1 8.1 8.7 9.0 10.0 15.6 86.9
lapbode123 2 5.7 6.1 6.3 6.9 14.1 77.5

atbode223 1 7.3 7.8 8.0 8.7 13.9 52.1
atbode223 2 4.6 5.2 5.2 5.8 9.6 38.6
atbode223 4 3.4 3.8 4.0 4.4 7.3 32.4

Table 4.13: SSURef108 ProbeMatch query times [sec] for EUB338

In figure 4.6 the speedup factors are presented. The slowest runtime functions as refer-
ence, i.e. the one on lapbode123 with one thread. As it can be seen, the runtimes for 0 to
4 allowed mismatches differ only slightly for one thread on both systems. In contrast, the
parallel runs are in favor of atbode223 providing higher speedups. This can be explained by
the faster CPU and the larger main memory. On lapbode123, after conducting the pattern
matching, for building the differential alignment it is necessary to free memory in order to
be able to load the original sequence data into main memory. On atbode223 this is not a big
issue due to the large main memory size.
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For comparison the ARB PT-Server has been tested for the complete SSURef108 on at-
bode223 as well (table 4.14). The results shown reveal query times of 2 to 3 seconds depend-
ing on the number of mismatches allowed. The overall hit numbers for zero mismatches
are almost identical for PTPan and the PT-Server. For 1 to 5 mismatches allowed, they start
to drift apart. This is caused by the fact that the ARB PT-Server relies on the Hamming-
distance metric to identify substitutions. It can not find hits with insertions or deletions
(indels) as PTPan utilizing the Levenshtein-distance metric does.
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Figure 4.6: SSURef108 ProbeMatch query time speedups for EUB338 (l = lapbode123; a =
atbode223; *reference value)

The gap in query times between PTPan and the PT-Server is caused by PTPan requir-
ing to decompress the index during application. In addition PTPan identifies more hits in
contrast to the PT-Server as indels are spotted as well. Compared to the previous evalu-
ation presented in [32], the query times gap between PTPan and the PT-Server has been
narrowed. Instead of slowdown factors from 4 to 15 for 0 to 4 mismatches, it was lowered
to about 4 to 6.5 times comparing the sequential query times observed on lapbode123. For
atbode223 with four threads, the query time gap even narrowed further down to a range of
1.7 to 3 times slowdown.

max distance time hits
0 2.04 487 207
1 2.19 508 183
2 2.53 522 100
3 2.26 532 341
4 2.44 570 920
5 2.91 666 246

Table 4.14: SSURef108 ARB PT-Server query hits and times [sec] for EUB338

GR130 The ProbeMatch runtime tests for GR130 draw a similar picture to the one pre-
sented for SSURef108. The number of hits delivered by PTPan ProbeMatch are shown in
table 4.15. Again, for distances from 0 to 3 the count grows moderately while it starts
increasing faster for distances of 4 and 5.
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database max distance hits
GR130 0 2 967
GR130 1 3 035
GR130 2 3 203
GR130 3 8 719
GR130 4 118 771
GR130 5 1 527 577

Table 4.15: GR130 ProbeMatch query hits for EUB338

This increase of hit numbers influences the overall runtime as well (table 4.16). For
atbode223 and lapbode123 sequential query times are almost identical in the range from 1.1
seconds for 0 mismatches up to about 3.3 seconds for a maximum distance of 3. Starting
with 4 mismatches allowed, the sequential query times start to increase significantly but
are still reasonable. The query times for 5 mismatches are by far larger than the other ones
and can be considered impractical for certain applications as they lie in the range of several
minutes.

The sequential and parallel runtimes are shown in figure 4.7 for atbode223 and in fig-
ure 4.8 for lapbode123 revealing a similar overall runtime tendency for increasing distance
values on both systems.

system threads max distance
0 1 2 3 4 5

lapbode123 1 1.10 1.07 1.20 3.29 67.31 1113.43
lapbode123 2 0.67 0.68 0.72 2.00 37.40 1052.53

atbode223 1 1.12 1.14 1.6 3.20 41.00 533.44
atbode223 2 0.68 0.65 0.73 1.90 22.64 304.87
atbode223 4 0.60 0.64 0.63 1.51 15.88 181.82

Table 4.16: GR130 ProbeMatch query times [sec] for EUB338

In figure 4.9 the speedup factors are presented with the runtime for one thread on lap-
bode123 being the reference. As it can be seen, the runtimes for 0 to 3 allowed mismatches
differ only slightly for one thread on both systems. For a maximum distance of 4 and
5, atbode223 has a clear advantage. Compared to the low error rate queries, the higher
the allowed error rate, the more parts of the index are loaded into main memory. As for
the SSURef108 tests, atbode223 with its 24 GB main memory does not require to free main
memory early. It can keep large parts of the index. The lapbode123 in contrast has to free
main memory which results in a higher overall runtime. The parallel runs are also in favor
of atbode223, although they do not differ much between two and four threads for 0 to 3
maximum distance. In contrast for a maximum distance of 4 and 5, the speedup factors
for four threads are the highest. The lapbode speedup factors with the second thread are
nearly identical at about 1.6 up to 4 allowed mismatches.

The tests for the ARB PT-Server could not be conducted as it was not possible to con-
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struct it for the complete GR130 database even on atbode223 with its large main memory
(refer to section 4.2.1).

Comparison To BWA The preliminary version of PTPan presented in [32] has been com-
pared to the short read mapper BWA [77] (refer to section 2.4.4.4). Test database has been
the SILVA release SSURef 104 gene database. Compared to PTPan BWA showed faster con-
struction times and lower memory demands at the price of increased approximate string
matching times. Furthermore it is not capable of providing all demanded information for
primer/probe design as it does handle only the DNA4 alphabet and not the DNA5 like PT-
Pan does. Furthermore a differential alignment of the single hits is available in the CIGAR
format only which does not show the exact substituted base (refer to section 2.1.2). A
weighted mismatch scheme is not supported either.

The tests for gene databases conducted in [32] have not been repeated with SSURef108.
Instead, in order to see if BWA behaves similar with genome data, query tests have been
conducted based on the GR130 multiFASTA file with BWA version 0.6.1r104 on atbode223.

The BWA index was constructed in 118 minutes which is nearly half the time compared
to PTPans best construction time of 216 minutes with two threads and a ratio factor of 0.8
(refer to section 4.2.3). The final BWA index requires about 8 GB memory on disk.

After construction, the index has been queried for EUB338 the same way described in
[32], i.e. with the settings adopted to return all matches up to the predefined distance, not
only the best one. The query times returned as output by BWA itself are shown in table
4.17 along with the hit numbers. The query times are about 6 times slower compared to
PTPan for maximum allowed distance ranging from 0 to 3.

max distance time [sec] hits
0 6.48 5 301
1 6.53 16 008
2 6.79 32 590
3 18.40 68 702
4 6.90 49 722
5 6.92 49 722

Table 4.17: GR130 BWA query times and hit numbers for EUB338

For higher error rates, the behavior is the same as in the former evaluation [32]. The
query times and hit numbers drop suddenly. Still no adequate explanation for this behav-
ior is available as the query for 4 and 5 allowed mismatches should theoretically include
the matches from the 3 mismatches query as well. The higher hit numbers compared to
PTPan for the lower error rates can be explained by the fact that BWA includes an auto-
matically query on the reverse sequence as well with no way to turn this behavior off. But
even dividing the query times by factor two would result in higher values.
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4.3.2 UPP Designer Based Mass Queries

Besides the single query capabilities of ProbeMatch, the mass query capabilities in form of
ProbeDesign and SimilartitySearch have been tested. The tests have been conducted for the
GR130 based PTPan index on lapbode123 and atbode223 with the internal hard disk drives
as well as the SSD drive (refer to section 4.1.1). As test software the UPP Designer and the
PTPan SII plugin were utilized (refer to sections 3.5.4 and 3.5.3).

SII based ProbeDesign For ProbeDesign (refer to section 3.3.3) two different tests have
been carried out based on the target group of all 1398 genome sequence entries of the
domain bacteria contained in GR130.

First only the seek time has been measured, i.e. the time to obtain all signature can-
didates omitting the subsequent parts of the algorithm, namely the ProbeMatch and the
quality calculation. The times measured are about 36 minutes on lapbode123 respectively
25 minutes on atbode223 (table 4.18). A difference between the internal hard disk drives
and the external SSD has not been observed. This shows that the index performs well
on common HDDs it has been intended for in the first place as well as on modern SSDs
independently of the available main memory size. Furthermore it reflects the same be-
havior concerning index access times for a freshly loaded index as observed in the single
ProbeMatch query tests (refer to section 4.3.1).

system disk drive seek [sec] complete [sec]
lapbode123 HDD 2 166 4 448
lapbode123 SSD 2 134 2 725

atbode223 HDD 1 496 2 511
atbode223 SSD 1 503 1 747

Table 4.18: GR130 ProbeDesign times for seek only and the complete algorithm

As second test, the complete ProbeDesign process has been carried out including the
subsequent ProbeMatch and quality calculation for the seeked candidate list. A significant
difference for the complete ProbeDesign runtimes was determined on both test systems.
Relying on SSDs, the overall runtime speedup was 1.44 on atbode223 and 1.63 on lapbode123
requiring no changes to the application algorithm or code.

SII based SimilaritySearch In order to further test PTPan mass query capabilities, Sim-
ilaritySearch has been conducted for the genome test database GR130 on both atbode223
and lapbode123. The selected test results are based on a genome sequence with more than
2.17 million bases resulting in over 2.17 million queries for the complete SimilaritySearch
process.

On atbode223 the aggregated query time utilizing the internal HDD is about 55 minutes.
Taking the SSD drive it dropped under 21 minutes which is a speedup by factor 2.6. In
contrast, the aggregated query times on lapbode123 with about 7.3 hours for the common
HDD are significantly higher compared to atbode223. This can be explained by the larger
main memory of atbode223 functioning as cache for parts of the index. But as for atbode223,
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system disk drive time [sec]
lapbode123 HDD 26 022
lapbode123 SSD 3 761

atbode223 HDD 3 297
atbode223 SSD 1 233

Table 4.19: GR130 SimilaritySearch times

mass queries on lapbode123 profit from a SSD drive as well, lowering the overall time to
about 63 minutes which is a speedup by almost factor 7. As for the ProbeDesign test, no
algorithmic or code changes have been made to achieve the speedup with the SSD.

4.3.3 Summary

The primer and probe design and evaluation capabilities of PTPan have been tested based
on both the UPP Designer as well as the ARB integration of PTPan.

The results for PTPan ProbeMatch revealed the ability of PTPan to perform well for real
life gene and genome data sets on the various different sized test systems, even when the
index is larger than the available main memory. Comparing the gene data query times for
PTPan and the ARB PT-Server reveals an acceptable slowdown by low factors for PTPan.
This slowdown is caused by PTPan residing on secondary storage, requiring to load and
decompress during application, as well as the utilization of the more compute intensive
Levenshtein-distance metric for approximate string matching. Furthermore PTPan is able
to utilize multicore-architectures to speedup the ProbeMatch query times.

If conducting mass queries, as it is done by PTPan ProbeDesign and SimilaritySearch, PT-
Pan performs well on the different sized test systems. In addition, the utilization of SSDs
as secondary storage results in a significant speedup of the overall mass query runtime,
especially on systems with limited main memory.
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The increasing amounts of available nucleic acid genome sequence data offers new possi-
bilities for sequence based analysis like computational molecular diagnostics (CMD). CMD
is based on the in-silico search for molecular markers, primers and probes based on se-
quence and phylogenetic data and can lead to a faster development of molecular detection
methods for pathogens while reducing the experimental cost in the wet lab.

First the genome data must be accessed and managed efficiently in a unified way and
second it must be processed often supported by index structures. New solutions must
take care of hardware architecture specifics such as limited main memory and multi-core
processors to perform well. In the following sections, the work presented in this thesis is
compared to other existing approaches.

5.1 Unified Molecular Data Access Framework

The presented Unified Molecular Data Access (UMDA) framework concept (refer to section
3.1) introduced an object model suitable for molecular sequence data and related informa-
tion as well as analysis results such as primers and probes. In addition generic abstract
interfaces for database access (DBI) and for search index based primer/probe design and
evaluation capabilities (SII) have been presented. The DBI allows the integration of differ-
ent heterogeneous molecular sequence databases and has been implemented for different
genome database schemas and database management systems (DBMS). The SII allows
generic access to different index types and has been implemented for PTPan (refer to sec-
tion 3.2) and prototypical based on the Seqan framework [30].

The UMDA object model introduced in section 3.1.2 provides a generic and extensible
representation of molecular sequence and related data. Comparing it with other existing
approaches like BioJava [56], BioPerl [126], BioPython [23] and the NCBI C++ Toolkit [103]
reveals that some data objects are common for all APIs, for example SequenceEntry and
Sequence. Most of the APIs offer object types for alignments, although other definition
and result objects like Partition or APAPM are UMDA specific. Furthermore, the UMDA
common objects Trait and QueryBrick are unique (refer to section 3.1.3). The unified UMDA
object model facilitates the development of abstract interfaces like the UMDA DBI and SII
in a way not offered by any other project.

The UMDA DBI, presented in section 3.1.3.2, abstracts from the underlying DBMS and
database schema providing an integrative interface. The abstraction is of central impor-
tance for the AccessAPI defining a single point of integration for specific databases. Only
the programmer of the specific DBI needs to know the underlying database schema. This
facilitates the usage of a database significantly. Furthermore the QueryAPI allows for the
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flexible, database system and schema independent building of queries. This is achieved by
using QueryBricks which do not depend on any specific query system or database schema.
Available fields for querying can be retrieved together with the appropriate brick type.
The bricks are evaluated by the different database interfaces. The latter build a DBMS and
schema specific query using the information provided by the bricks.

A concept comparable to the AccessAPI is the common database interface provided by
the NCBI C++ Toolkit [103]. In contrast to UMDA it abstracts only from the relational
DBMS, but not from the schema used. Hence all queries have to be explicitly designed
by the user. BioJava, BioPerl and BioPython do not currently offer an integrative database
interface [11, 12, 13]. However all projects offer access to BioSQL databases and the estab-
lished flat file formats. In addition BioPerl offers access to EnsEMBL and, with the GMOD
modules, to the Chado genome database schema as well [21]. Furthermore, according to
its documentation, BioPerl offers a limited approach for querying Genbank by providing a
query item with a database-specific argument list [12].

Other sequence data integration approaches are available in form of data warehouses
like BioMart [122] or database integration systems like ACNUC [47] or the Sequence Re-
trieval System (SRS) [36]. All of them integrate data from a large number of publicly ac-
cessible biological databases, including but not limited to molecular sequence databases,
with the goal of making it available for efficient querying or as read-only data sources.
The different systems mostly offer the opportunity for automatic integration and update
of the incorporated data. However the mentioned systems have major drawbacks. Unfor-
tunately most system are complicated to use and require advanced hardware equipment
as stated by Shah et al. [121]. In addition Töpel and colleagues notice that biological ware-
houses are focused on the global integration of a wide range of different biological data
available and are commonly web-oriented [133].

Contrary to these systems the UMDA framework is aimed towards usage in client ap-
plications to build scalable solutions on a wide range of different computer hardware.
Furthermore it can be utilized to access local databases which is of great interest to build
secondary databases with user selected genome sequence entries. The necessary data can
be retrieved from primary sources exploiting the QueryAPI in conjunction with the Acces-
sAPI. In addition this facilitates the inclusion of unpublished results into in-silico analysis.

The UMDA SII, presented in section 3.1.3.3, offers a layer of abstraction for search index
based primer/probe design and evaluation capabilities. It is a unique feature not present
in other applications or APIs so far. The only other Bioinformatics related framework
offering search index capabilities is Seqan [30, 44]. Although it offers implementations of
common index types like the suffix tree and enhanced suffix array in their generic forms
only. It does not comprise a complete application package for primer/probe design and
evaluation.

5.2 PTPan Index And Applications

The presented PTPan index structure (refer to section 3.2) introduced a compressed search
index based on a truncated and partitioned suffix tree on secondary storage. The new suf-
fix tree stream-compression employed reduces the memory requirements and enables effi-

100



5.2 PTPan Index And Applications

cient top-down traversal in depth-first-search (DFS) order. This enables efficient
Levenshtein-distance metric based non-heuristic approximate string matching even when
the index does not fit into main memory. PTPan has been developed and optimized to
support similarity searches and primer/probe design in huge nucleic acid sequence col-
lections, highly demanded in molecular microbial diagnostics.

PTPan is based on suffix trees on secondary storage which the review conducted as part
of this thesis revealed to be the most appealing approach (refer to section 3.2.1). It was
chosen over other approaches utilizing secondary storage as well as over self-indexes like
the CSA successfully employed by the non-heuristic short read mapper BWA aiming at
identifying the best hit for a short read [78]. Nevertheless BWA has been evaluated thor-
oughly for gene sequence data as presented in [32]. The evaluation revealed the beneficial
low memory demands and moderate construction times at the cost of extended approxi-
mate string matching times. This has been an expected result due to the experiments on
self-index based ASM conducted by Russo and colleagues [116]. The comparison of PTPan
and BWA has been repeated based on genome sequence data revealing the same behavior
concerning the relevant performance indicators construction time and ASM query times
(refer to section 4.3.1).

The main competing approach to PTPan is the PT-Server which is part of the ARB
software environment [84]. PTPan has been developed to replace PT-Server in terms of
functionality while dealing with its disadvantages, most important the high main mem-
ory demands and the inability to identify insertions or deletions (indels). For different
primer/probe based analysis identifying indels is of interest, for example for fluorescence
in-situ hybridization (FISH) where indels may lead to false positives recently shown by
McIlroy and colleagues [89].

A deep comparison of the PT-Server and PTPan has be conducted in [32]. It revealed
several common features as well as important differences.

Both deal with ambiguous sequence bases in the source sequence as “N” during con-
struction and as wildcard during string matching (refer to section 2.2.2). The applications
like ProbeDesign and ProbeMatch return meaningful information necessary to evaluate the
results (refer to sections 3.3.3 and 3.3.2). Furthermore both indexes are capable of conduct-
ing queries in basic- or weighted match mode (refer to section 3.3.2).

Besides the similarities there are important differences. As shown in [32], the approxi-
mate string matching capabilities of the PT-Server, utilizing the Hamming-distance metric,
are not capable of identifying insertions or deletions (indels). In contrast, due to PTPan uti-
lizing the Levenshtein-distance metric, it offers advanced approximate string matching ca-
pabilities including indel identification. However, this ability as well as the lower memory
requirements achieved by combining the utilization of secondary storage and compres-
sion, are at the expense of increased query times compared to the ARB PT-Server. The
values presented in [32] revealed a slowdown of factor 4 to 15 for the maximum distance
ranging from 0 to 4 mismatches allowed on a 24 GB system and the SILVA SSURef 104
database [113]. Due to optimizations, these values have been lowered for the more recent
SILVA SSURef 108 database to a slowdown of 3.6 to 6.5 for one hardware thread and even
1.7 to 3 times for four threads, narrowing the gap significantly.

Finally and most important, PTPan has been designed to have low main memory re-
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quirements while the memory requirements of the PT-Server prevent its utilization on low
memory systems. The test for gene data presented in [32] showed the inability to con-
struct the PT-Server for SILVA SSURef 104 database on a system equipped with 4 GB main
memory while PTPan can be constructed and utilized efficiently. The evaluation presented
in section 4.2.1 approved that the PT-Server faces the same problem for genome sequence
databases as well. On a system equipped with 24 GB of main memory, a test database con-
taining genome sequences with more than 4.8 billion bases in total, PT-Server could not be
constructed. In contrast PTPan, based on a partitioned design in conjunction with stream-
compressing the suffix tree on secondary storage, could be constructed in reasonable time
of less than six hours. Furthermore the resulting index could be utilized even on a 4 GB
system although facing acceptable slowdown of operations.

Additionally in order to keep pace with the fast increase of genome sequence data avail-
able, the PTPan construction algorithm has been improved significantly by utilizing paral-
lelization. The evaluation results presented in section 4.2.2 reveal that parallel construction
offers reasonable speedups on distributed memory systems as well as on shared memory
systems. On a system equipped with 24 GB of main memory and 4 processor cores, the
construction time for the largest genome test database dropped to less than four hours.
The measurements also showed that increasing the number of threads in a shared mem-
ory system can lead to a significantly increased amount of partitions to construct with the
current partition determination algorithm. As a consequence, the construction time may
increase although more threads are utilized. In order to prevent this, an automatic detec-
tion of the best partition-to-thread-count-ratio has been implemented. It proofed to be a
good estimation choosing the best combination in most cases for gene as well as genome
sequence data. Regarding the further increase of the amount of sequence data, the MPI
based distributed memory construction algorithm offers the opportunity to construct an
index with the help of HPC and employing it on normal desktop systems.

Besides parallelization a ratio factor parameter has been integrated which allows the user
to provide information about the maximal memory consumption based on the worst case
estimation (refer to section 3.4.1). This can lead to less partitions to construct and thus re-
duce the construction time significantly. The evaluation has shown that the ratio factor can
be indeed of great use to minimize construction times (refer to section 4.2.3). For example
taking a low memory system with 4 GB of main memory, the sequential construction time
for the SILVA SSURef 108 database could be lowered by more than factor two from 53 to
less than 25 minutes. However, currently the ratio factor must be provided by the user as a
parameter as it cannot be determined automatically. It is based on prior obtained empiri-
cal data. However this is still beneficial if the index needs to be reconstructed, for slowly
growing data collections or for homologue sequence databases.

5.3 UMDA Primer/Probe Designer

UMDA Primer/Probe (UPP) Designer, an integrated system for genome sequence data based
microbial in-silico diagnostics, has been presented in section 3.5.4. It is based on the UMDA
framework modules, i.e. the object model, the database interface (DBI) and the search in-
dex interface (SII). The DBI allows flexible access to different heterogeneous sequence data
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sources, for example utilized by SII based index construction. The SII further enables the
utilization of search index based primer/probe design and evaluation capabilities as they
are provided for example by the PTPan SII based on the PTPan library.

An existing software tool capable of performing analysis on molecular sequence data
based on an integrated database is the ARB software environment [84]. Unfortunately ARB
suffers from different problems making it unsuitable for further developments extending
the base system. The ARB database is a deeply integrated proprietary hierarchical in-
memory database design. This implies that at program start an ARB database instance is
loaded completely into main memory. Therefore the size of an ARB database is limited by
the available hardware. Facing the growth of available genome sequence data outpacing
the growth of main memory capacity, this becomes a major drawback. Furthermore ARB
has no clear defined object model and database interface. Therefore an easy enhancement
or replacement of the database without having to adopt the related software tools is not
possible as most of them operate directly on internal data structures of the ARBDB. Finally
the ARB database is the only source for the different analysis and primer/probe design and
evaluation applications like the ARB PT-Server. It is not possible to access other databases
like EnsEMBL or BioSQL schema based ones (refer to section 2.1.3).

In contrast, the UPP Designer avoids these drawbacks according to recommendations
of Jagadish and Olken [63]. Leveraging the UMDA DBI plugins, UPP Designer can ac-
cess different heterogeneous data sources without modification of the source code. It is
now possible to utilize database management systems which do not require to load the
complete database into main memory, for example MySQL or PostgreSQL. This enables
primer/probe design for large databases even on systems with limited main memory. In
addition, by utilizing the UMDA SII, it is possible for the UPP Designer to employ sophis-
ticated index structures and primer/probe design and evaluation capabilities based on it.
For example PTPan, which can be constructed and applied with limited main memory as
well, can now be utilized with all different data sources accessible by the UMDA DBI.

The evaluation of the UPP Designer demonstrates the capabilities to design primer and
probes for large amounts of data even on systems with limited main memory efficiently
(refer to section 4.3.2). For example, based on a PTPan index for the cellular prokaryote
genomes extracted from the GenomeReviews release 130, summing up to a total of more
than 4.8 billion bases, ProbeDesign for the domain of bacteria could be conducted on a 4 GB
computer system in only 74 minutes (refer to section 4.3.2). The same test was conducted
with a solid-state drive (SSD) to analyze the impact of this new technology. The results
are promising as the time measured was less than 46 minutes, which is a speedup of 1.63
without modifying the software. Further tests on other systems as well as PTPan Similari-
tySearch based evaluation confirmed this result.

In summary, the evaluation revealed that the PTPan SII based mass query applications,
accessed from the UPP Designer graphical user interface, perform well on different com-
puter systems from commonly equipped notebooks to top tier desktop systems.
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The in-silico design of primers and probes based on nucleic acid genome sequence data is
of great interest concerning molecular identification and detection of bacteria and viruses
which is applied in many areas of research and economy. Unfortunately the currently
available software tools for designing primers and probes have reached performance limi-
tations. These are caused by the extremely fast growth of publicly available sequence data
of microorganisms which is produced by high throughput sequencing technology.

In this thesis a highly scalable integrated system for microbial in-silico diagnostics based
on microbial genome sequence data has been developed.

The first central component is the Unified Molecular Database Access (UMDA) framework.
It enables the efficient retrieval and management of sequence and annotation data from dif-
ferent heterogeneous data sources with the ability to obtain data sets ranging from small
subsets to all available microbial genomes. This is achieved by providing an enhanced
object model and an abstract database interface. The abstract database interface has been
successfully implemented for different genome database schemas and different database
management systems. Furthermore UMDA offers unified access to primer/probe design
capabilities in form of the abstract search index interface.

To support fast non-heuristic oligonucleotide string matching and applications for primer
and probe design based on sequence data, which are required by computational microbial
diagnostics, a new memory independent nucleic acid sequence index structure called PT-
Pan has been developed as second central component. With suffix trees on secondary stor-
age as core structure, it combines partitioning, truncation and a new stream-compression
technique to obtain a space efficient index. The evaluation conducted revealed the ability
to construct an index for large amounts of genome sequence data efficiently. Furthermore,
even if the index outranges the available main memory, it performs well for approximate
oligonucleotide string matching, probe design and similarity search functions. PTPan,
available as standalone library, has been successfully integrated into the ARB software
environment. Furthermore PTPan has been incorporated into the UMDA framework as
index underlying a search index interface implementation.

Finally, with the UMDA Primer/Probe (UPP) Designer an integrated system for primer
and probe design and evaluation based on the UMDA framework has been developed. It
provides a graphical user interface to utilize the UMDA SII application capabilities intu-
itively. In order to handle the huge amount of available and impending data, the compo-
nents of this integrated system have been optimized and parallelized to efficiently utilize
multi-core-architectures and high performance computers. Evaluation results reveal the
success of these efforts.

The UPP Designer will allow a large amount of users to continue their work on com-
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mon desktop computers. In conjunction with the MPI version of PTPan, it also enables
new HPC-based applications and research not possible so far with the currently available
software.
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In order to keep up with the advancements in bioinformatics and the increase of the
amount of available nucleic acid genome sequence data, the UPP Designer and the compo-
nents it is based on can be further improved.

As stated by Jagadish and Olken, flat-files are widely utilized as a way of storing nucleic
acid sequence data [63]. In addition, the heterogeneity of file formats has recently risen
different standardization efforts to ease exchange of data between different applications.
With SeqXML [118] and BioXSD [64] new promising formats are available. In order to fur-
ther facilitate the data access capabilities of the UMDA framework, support for these file
formats should be integrated. In addition, as collections of flat-files are often utilized as
databases according to Jagadish and Olken [63], a UMDA database interface implementa-
tion based on flat-files may be of interest as well.

In addition, further improvements of the construction algorithm of PTPan are of great
interest to keep up with the growing amount of available genome sequence data. As the
evaluation conducted revealed, constructing a PTPan index with more than one thread on
a shared memory system does not necessarily result in a reduced construction time due
to a higher number of partitions to construct. Although the currently employed partition
determination algorithm offers a good estimation of the best thread count and partition
distribution to use, a sophisticated partition determination algorithm for shared mem-
ory systems is of interest in order to further reduce the overall construction times. One
possibility would be to develop an algorithm capable of finding an ideal distribution of
partitions taking into account the amount of main memory available as well as the thread
count. This problem is not trivial as it is a knapsack problem and therefore NP-complete
to solve exactly.

In addition, it is of interest to research the possibilities of an automatic optimization of
the worst case memory requirements estimation based on the source sequence data. Cur-
rently there is only the possibility to provide an empirical obtained ratio factor parameter
to manually correct the estimation.

Optimizing and enhancing the primer/probe applications offered by PTPan and the in-
tegrated system is of interest as well. Users could benefit by extended application capabil-
ities and reduced runtime.

Furthermore, the length of probes which can be designed by PTPan is limited to the
longest truncation depth of the suffix tree, currently 27 at maximum. Although this is
sufficient for many applications such as polymerase chain reaction (PCR) or fluorescence
in-situ hybridization (FISH) [3], longer probes would increase the field of application. For
example it would facilitate the development of microarrays used for gene expression anal-
ysis. The optimal length in terms of sensitivity and specificity for oligonucleotide probes
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in this field is between 50 and 60 bases [82]. Extending the maximum suffix tree depth to
for example 100 would make designing longer probes possible.

Furthermore, with increasing source sequence data amounts, the index size will con-
tinue to grow as well. In order to speed up oligonucleotide string matching and the mass
query based applications, parallel computations on the index are of interest. One possibil-
ity is to employ distributed computing to speed up pattern matching for a large number
of patterns on cluster computers as demonstrated by Bader and colleagues for the ARB
PT-Server utilizing DUP, a framework for parallel stream processing [5]. This could be the
basic building block of a server component for primer/probe design. Another option is to
further research the parallel query capabilities on shared memory systems in conjunction
with solid state drives.

Finally the UMDA Primer/Probe (UPP) Designer graphical user interface offers space for
improvements as well. It could function as the client application for accessing the above
proposed server component for primer and probe design. Integrating the MPI version
of PTPan as alternative index construction option would simplify the construction of an
search index for large amounts of genome sequence data from within the UPP Designer by
reducing the number of manual steps a user has to conduct. In addition, the integration
of a phylogenetic tree viewer into the UPP Designer primer/probe design process would
enable an easier way to select sequence entries related to organisms within certain domains
of life.
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May, Björn Nonhoff, Boris Reichel, Robert Strehlow, Alexandros Stamatakis, Nor-
bert Stuckmann, Alexander Vilbig, Michael Lenke, Thomas Ludwig, Arndt Bode,
and Karl-Heinz Schleifer. ARB: a software environment for sequence data. Nucleic
Acids Research, 32(4):1363–1371, February 2004.

123

http://pqxx.org/development/libpqxx/


Bibliography

[85] Daniel MacLean, Jonathan D. G. Jones, and David J. Studholme. Application of
’next-generation’ sequencing technologies to microbial genetics. Nature Reviews Mi-
crobiology, 7:287–296, April 2009.

[86] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string
searches. In Proceedings of the first annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’90, pages 319–327, Philadelphia, PA, USA, 1990. Society for Industrial
and Applied Mathematics.

[87] Harry Mangalam. The Bio* toolkits – a brief overview. Briefings in Bioinformatics,
3(3):296–302, 2002.

[88] Essam Mansour, Amin Allam, Spiros Skiadopoulos, and Panos Kalnis. ERA: efficient
serial and parallel suffix tree construction for very long strings. Proc. VLDB Endow.,
5:49–60, September 2011.

[89] Simon J. McIlroy, Daniel Tillett, Steve Petrovski, and Robert J. Seviour. Non-target
sites with single nucleotide insertions or deletions are frequently found in 16S rRNA
sequences and can lead to false positives in fluorescence in situ hybridization (FISH).
Environmental Microbiology, 13(1):33 – 47, January 2011.

[90] Michael L. Metzker. Sequencing technologies - the next generation. Nature Review
Genetics, 11(1):31–46, January 2010.

[91] P. D. Michailidis and K. G. Margaritis. On-line string matching algorithms: survey
and experimental results. International Journal of Computer Mathematics, 76(4):411–
434, 2001.

[92] Alistair Moffat, Simon J. Puglisi, and Ranjan Sinha. Reducing Space Requirements
for Disk Resident Suffix Arrays . In Database Systems for Advanced Applications, vol-
ume 5463/2009 of Lecture Notes in Computer Science, pages 730–744. Springer Berlin
/ Heidelberg, March 2009.

[93] Donald R. Morrison. PATRICIA – Practical Algorithm To Retrieve Information
Coded in Alphanumeric. J. ACM, 15:514–534, October 1968.

[94] MPICH2. http://www.mcs.anl.gov/research/projects/mpich2/, last ac-
cess at 15. December 2011.

[95] Message Passing Interface Forum. http://www.mpi-forum.org, last access at
15. December 2011.

[96] Christopher J. Mungall, David B. Emmert, , and The FlyBase Consortium. A Chado
case study: an ontology-based modular schema for representing genome-associated
biological information. Bioinformatics, 23(13):i337–i346, 2007.

[97] MySQL. http://www.mysql.com/, last access at 14. December 2011.

[98] MySQL++. http://tangentsoft.net/mysql++/, last access at 15. December
2011.

124

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.mpi-forum.org
http://www.mysql.com/
http://tangentsoft.net/mysql++/


Bibliography

[99] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing
Surveys (CSUR), 33(1):31–88, March 2001.

[100] Gonzalo Navarro. Indexing text using the Ziv-Lempel trie. J. of Discrete Algorithms,
2:87–114, March 2004.

[101] Gonzalo Navarro, Ricardo Baeza-yates, Erkki Sutinen, and Jorma Tarhio. Indexing
Methods for Approximate String Matching. IEEE Data Engineering Bulletin, 24:19–27,
2001.
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