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ABSTRACT

Multivariate copulas are commonly used in economics, finance and risk man-
agement. They allow for very flexible dependency structures, even though
they are applied to transformed financial data after marginal time depen-
dencies are removed. This is necessary to facilitate statistical parameter
estimation. In this paper we consider a very flexible class of mixed C-vines,
which allows the variables to be ordered according to their influence. Vines
are build from bivariate copulas only and the term “mixed” refers to allowing
the pair-copula family to be chosen individually for each term. In addition
there are many C-vine structure specifications possible and therefore we pro-
pose a novel data driven sequential selection procedure, which selects both
the C-vine structure and its attached pair-copula families with parameters.
After the model selection ML estimation of the parameters is facilitated us-
ing the above found sequential estimates as starting values. An extensive
simulation study shows a satisfactory performance of ML estimates in small
samples. Finally an application involving US-exchange rates demonstrates
the need for mixed C-vine models.

Keywords: copulas, C-vine, maximum likelihood estimation, pair-copula
construction, US-exchange rates



1 Introduction

Pairwise construction principals have been very useful for building multi-
variate distributions. The first such pairwise construction was given by Joe
(1996) based on the famous Sklar theorem (Sklar (1959)) using cumulative
distribution functions (cdf). Bedford and Cooke (2001, 2002) realized that
there were many such constructions possible, thus they organized them in
graphical way by sequentially designing trees which identify the bivariate
copula densities needed to make up a d-dimensional density. It involves only
products of bivariate copulas, which we call pair-copulas. Since the trees
are intrinsically related they called these distributions regular vines. Their
primary interest was to use vines in the modeling of large networks so they
restricted themselves to the case of Gaussian pair-copulas.

Aas et al. (2009) were the first to recognize that this construction principle
can be extended by using arbitrary pair-copulas, since the construction prin-
ciple has no restriction on the choice of pair-copulas. They developed stan-
dard maximum likelihood (ML) estimation for special vine copulas, where
the challenge was to provide a good starting point for the required high di-
mensional optimization. Vine copulas are vine distributions with uniform
margins. Regular vines include two simple tree structures, such as line trees
and star trees, the first one corresponds to D-vines, while the second one
corresponds to C-vines. Czado (2010) showed that C- and D-vines can be
constructed by simple recursive conditioning frequently used in time series.
Similar recursive conditioning arguments are used in time series.

Aas et al. (2009) used a sequential estimation procedure to provide starting
values for the ML estimation in C- and D-vines. They utilized D-vines as
a building block for a two step risk model for financial assets. The mar-
gins were estimated by standard ARMA-GARCH models and standardized
residuals were formed. In a second step copula data is formed using a para-
metric or a non-parametric innovation specification. This allows to have an
approximately i.i.d. sample for copula estimation. The parametric transfor-
mation was suggested by Joe (2005), while a rank based transformation was
used by Genest et al. (1995). Both approaches follow a two step parameter
estimation approach, first estimating marginal parameters and then copula
parameters. To improve efficiency in the semi-parametric approach of Genest
et al. (1995), Chen and Fan (2006) and Chan et al. (2009) based their infer-
ence for the copula parameters on the Kullback-Leibler information criteria.
Later Min and Czado (2010c) extended their approach to D-vines and sim-
ple R-vine specifications using only t-copulas as pair-copulas. While such an
approach allows for different symmetric tail behavior for pairs of variables, it
does not allow for non-symmetric tail behavior such as provided by a Clay-



ton or Gumbel copula. This is the starting point for this paper. We want
to allow for different pair-copula families and concentrate on C-vines, which
have not been investigated in applications so far.

Such mixed C-vines have several selection problems attached to them. First
we need to select the appropriate C-vine structure, since there exist as for
example Aas et al. (2009) showed d!/2 different C-vines and additionally to
choose from a catalogue of pair-copula families for each required pair-copula.
At the moment only selection procedures within specified D-vine structures
exist. Min and Czado (2010b) use reversible jump MCMC to simplify a
D-vine with specific single pair-copula family by discovering conditional in-
dependences, while Smith et al. (2010) use indicator variables for identifying
conditional independence in a Bayesian setup.

The goal of this paper is to provide a comprehensive solution to the selec-
tion of C-vines by identifying an appropriate C-vine structure and selecting
a fitting pair-copula family. To accomplish this a sequential approach is de-
veloped based on the cardinality of the conditioning variables in conjunction
with individual choices for each pair-copula as a best fitting pair-copula fam-
ily from a large catalogue of families. The catalogue of pair-copula families
includes elliptical copulas such as Gaussian and t-copulas, single parameter
Archimedean copulas such as Gumbel and Clayton, as well as two parameter
families such as BB1 and BB7 of Joe (1997). Finally the Joe and Frank
copula are included as well. For the copula family selection a goodness-of-fit
procedure studied in Genest et al. (2006), Genest et al. (2009) and Berg
(2009) is used, as well as model comparison tests based on Vuong (1989) and
Clarke (2007) suitable for non-nested model comparison. In addition, scatter
and contour plots, as well as plots of the A-function introduced by Genest
and Rivest (1993) are evaluated.

The selection of a C-vine structure and its pair-copulas is determined by
developing an appropriate sequential estimation procedure which is used as
starting value for the ML estimation. A large simulation study shows very
good small sample performance of the ML estimation in mixed C-vines. Fi-
nally the usefulness of these models is demonstrated in an application in-
volving US-exchange rates by using model comparison criteria as AIC, BIC,
Vuong and Clarke tests suitable to compare joint copula models.

In summary the main contributions of this paper are

1. Development and implementation of sequential and ML estimation pro-
cedures for copula parameters in a previously specified mixed C-vine.

2. Development of a data driven sequential selection procedure for jointly
choosing the C-vine structure and pair-copula families.



The paper is organized as follows: In Section 2 we discuss bivariate copula
families, while Section 3 introduces the mixed C-vine copula model. Here
also sequential and ML estimation of copula parameters are studied. In Sec-
tion 4 the data driven sequential procedure for jointly selecting the C-vine
structure with pair-copula families is developed. In Section 5 a simulation
study investigates the small sample performance of the ML procedure for
mixed C-vines. A second study in Section 6 demonstrates the satisfactory
performance of the C-vine selection method. A mixed C-vine is chosen and
investigated in Section 7 to model the dependencies among the standard-
ized residuals in US-exchange rates. The paper closes with a summary and
discussion section.

2 Bivariate copula families

A d-dimensional copula is a multivariate distribution function C'(us, ..., ug)
defined on the unit cube [0, 1]¢, with uniformly distributed marginals. It
can be used to characterize the dependency between d random variables,
while allowing for arbitrary marginal distributions. In the next section we
develop multivariate copulas using only bivariate copulas as building blocks,
therefore we concentrate here on d = 2. In particular the famous theorem of
Sklar (1959) gives the connection between marginals and copula to the joint
distribution. For this let F'(-, ) denote a bivariate cdf with marginal cdf’s F}
and Fj, respectively, then there exists a two dimensional copula cdf C(-,-),

such that for all (zq,x9) € R’
F(z1,29) = C(Fi(x1), Fy(z2)) (2.1)
holds. For continuous F; and Fy, C(-,-) is unique and is defined through
C(x1,29) = F(F (1), Fy ' (22)).

If F' is in addition absolutely continuous then the copula density is well
defined and given by
820(U1,U,2)

8u18u2 ’

For details see Joe (1997) and Nelsen (2006).

The most important and most commonly used copulas in finance are the
Gaussian and the t-copula. Both belong to the class of elliptical copulas and
for a precise definition see for example Frahm et al. (2003), who discuss their
applicability and limitations. Another class often discussed and utilized are
Archimedean copulas; see for example Embrechts et al. (2003) or Nelsen

e, 1) =
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(2006). Non-linear dependence is often measured using Kendall’s 7 (see e.g.
Kruskal (1958)), while dependence in the tail is measured by upper and lower
tail dependence coefficients (see e.g. Joe (1997)) as

1 —2u+ C(u,u)

AU:}}/II% T :11L1/rriP(U1>u|U2>u)
and )
. u,u .
AL:}}{% " :l%P(Ul < u|Uy < ).

While the Gaussian copula has Ay = Ay, = 0, the tail dependence coefficients
for the t-copula are symmetric, i.e.

A=Ay = AL

The Archimedean Clayton and Gumbel copula are reflection-asymmetric.
They allow either for lower by no upper tail dependence and vise versa. In
particular for the Clayton copula we have A\ > 0, but \yy = 0 and for the
Gumbel copula A, = 0 but Ay > 0. Therefore Joe (1997, Section 5.2) intro-
duced two bivariate copula families called BB1 and BB7, respectively, which
allow for different Ap > 0 and Ay > 0 simultaneously. We will utilize these bi-
variate copula families as possible building blocks in our mixed C-vine. Since
they are not so commonly discussed, we summarize their definition and prop-
erties in Table 1. In addition top panel of Figure 1 visualizes a scatter plot
of a bivariate random sample of size n = 1000 from a BB1 (left top panel)
and a BB7 (right top panel) copula distribution. In the lower panels the cor-
responding contour plots of the transformed vector Z = (®~1(U;), @~ 1(Uy))
are given, where (Uy,Us) follows a BB1 and a BB7 copula distribution, re-
spectively. Here ®~1(-) denotes the quantile function of a standard normal
random variable. Note that Z has standard normal margins and the copula
dependence structure is not changed under these monotone transformations.

3 Pair-copula construction (PCC) of mixed
C-vines

Using two-dimensional copulas it is possible to construct general multivari-
ate distributions by specifying the dependence and conditional dependence
of selected pairs of random variables and all marginal distribution functions.
We will define such a construction in this section. Our presentation follows
Aas et al. (2009) and Czado (2010), but the idea was first developed by Joe
(1996) for cdf’s and organized graphically using densities and a sequence of
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Figure 1: Top row: scatter plot BB1 (left) with # = 0.3 and § = 2.1(7 =
0.59, A\, = 0.33, \y = 0.61) and BB7 (right) with = 2.1 and § = 0.3(7 =
0.43, A\, = 0.72, \y = 0.61). Bottom row: Contour plots of Z transformed
from BB1 with # = 0.3 and § = 2.1 (left) and BB7 with § = 2.1 and § = 0.3
(right).



BB1
cdf C(u,v;0,0) = {1 +[(u?—=1)° + (v — 1)5]%}75
0>00>1
1 _%_2
density c(u,v;0,0) = {1 +[(u? =1) + (v? 1)5]3}
X[(u™? = 1) 4 (v = 1)%]572
x{06+1+46(5 — )[(u o 1)+ ( —1)]"5}
X(u—e _ 1)6—1u—9 1(?) 1)5 1 _
Kendall's 7 |7=1— ﬁ
upper/lower | \yy = 2 — 21/°
tail A = 2-1/(0)
dependence
BB7
cdf Clu,v;0,0) =
L= (1 —[(1—=1=w)) P+ (1= (1-v))"°— 1]%)5
0>1,6>0
density C(u,?}; 07 6) = (_%)(% -1 h%_deh duh — % h%_lduvh
h=1-(1-(1-u’)"+1—(1-v))2=1)s
duh = —0((1—(1—-uw)?)° - (1—-(1—-v))— 1)%—1
x(1— (1 —u)?)=0=11 —u)!
dvh = —6((1 ~ (1 — )’} — (1~ (1 = o)) — )i~
X(l _ (1 _ U)&)—d—l(l BIPAYZS
duvh = H(~4 = 1)((1 = (1= )~
—(1=(1=v)")? =1)572% duS - dvS
duS = —06(1 — (1 —w)?)=0=1(1 — u)?~!
dvS = —95(1 — (1 =)0 (1 —wv)!
Kendall's 7 | 7 =1 — 55 9)+926B(2 2-20 4 1, 5+2)
with Beta-function B(x,y) f o1 — )yt
upper /lower | A\ = 2 — 21/¢
tail A\, =271/0
dependence

Table 1: Cdf, density, Kendall’s 7, upper and lower tail dependence coeffi-

cients of the BB1 and BB7 copula, respectively.

nested trees by Bedford and Cooke (2002). The class of multivariate copulas

constructed in such a way are called regular vines.

D-vines are subclasses of regular vines.

The so called C- and



Our general assumption is that all joint, marginal and conditional distri-
butions are absolutely continuous with corresponding densities. Under this
regularity condition, Czado (2010) showed that a multivariate density can
be constructed as a product of pair-copulas, acting on several different con-
ditional probability distributions. Given the recursive decomposition of the
conditional distribution of (X;_1, X}) given Xi,..., X; 5 as

f(il?t|$€1, e 7xt71) = C—141,..t—2 " f($t|331, cee 7$t72)7 (3-1)

fort =2,...,d, Czado (2010) showed that the joint distribution is

d d—1d—j
[z, zq) = H f(xg) x H ch,jﬂ\l,...,jfla (32)
k=1 j=11i=1

where she used the following abbreviation for a bivariate conditional copula
density of X; and X given z;,,...,x;,

Cijliv,yipy — Cz‘,j\il,...,ik(F($z‘|$il, N, ,%‘k), F(%‘|$i1, e 7xzk))

for arbitrary distinct indices ¢, 7,71,...,7 with ¢ < j and i1 < ... < 1.
Here f(:|-) and F(:|-) denote conditional densities and distribution functions,
respectively. According to Bedford and Cooke (2002) this PCC (3.2) is called
a canonical vine distribution or short C-vine.

For d = 4 the C-vine density (3.2) can, for example, be written as

d

f($1; T2, $37$4) = H f($k> *C12 - C13 * C14 - Co3|1 * C24)1 * C34/12- (3-3)
k=1

Both in (3.2) and (3.3) the choice for the bivariate pair-copulas cgj;,,...i, is
completely arbitrary and in this paper we allow for an individual choice for
each of these pair-copulas from a catalogue of copula families. We call such
a C-vine a mixed C-vine. It is also clear that the construction is iterative
by nature, and that given a specific factorization in (3.2), there are many
different orderings of the variables yielding different C-vines.

In (3.1) we implicitly assume that the bivariate conditional copula does
not depend on the specific values of the conditioning variables, other than
through its arguments given by conditional distribution functions. This re-
striction is however not so severe, see Haff et al. (2010).

It should be mentioned that even with this restriction the class of possible
C-vines covers a huge range of dependencies among variables, since we are al-
lowed to use arbitrary pair-copula families in (3.2), thus extending the range



of available multivariate distributions enormously. In this paper we there-
fore want to find the best approximating C-vine model out of this class, while
maintaining tractability of estimation and model selection. This is currently
no longer the case if one wants to allow for additional dependencies on the
value of the conditioning variables.

We note that under the assumption of no further dependency on x.;_1) =
(z1,...,xj_1) of the pair-copula term

Cjjtiltyj—1 (F(x5]21.(j-1)), F(2j1i|21.(j—1))) than through the two arguments,
the corresponding multivariate density in (3.2) does not need any further re-
strictions on the pair-copula specifications. If a Gaussian bivariate copula
with correlation parameter p; ;... ;-1 for each ¢;j .. j—1 is chosen, the
parameter p; ;1. j—1 can be interpreted as a partial correlation of the vari-
ables X; and Xj; given the variables X;,..., X;_;. Partial correlations
of Gaussian variables are unrestricted in [—1,1] and always induce a posi-
tive definite correlation matrix (Kurowicka and Cooke (2006, pp 101) and
Kurowicka and Cooke (2001, Prop 3.19)). This means that a C-vine with all
Gaussian pair-copulas is just a multivariate Gaussian distribution. The above
property shows the advantage of using a C-vine representation of multivariate
Gaussian variables. Similarly, a multivariate t-distribution with a common
degree of freedom can be represented as a C-vine with all t-pair-copulas with
some restrictions on the degrees of freedom for each t-pair-copula (Min and
Czado (2010c¢)).

Here we concentrate on C-vines, however a similar argument can be used to
derive the class of D-vines (see Czado (2010)). C-vines are especially useful,
when there exists a variable order with sequentially decreasing driving force.
More precisely the order starts with a variable X;, which has the highest de-
pendency with all other variables. Now conditioning all remaining variables
on X;,, the next variable X, has highest dependency with all other variables.
Similarly, variable X;, has highest dependency with all variables conditional
on variables X;, and X;,, etc. In (3.2) one observes that the variable X, is
mostly involved in all pair-copulas, then the variable X, is second mostly
involved in all pair-copulas and so on. Thus the above described behavior is
captured by (3.2) with the order X;,, X;,,..., X

ig—2*
For the pair-copula construction marginal conditional distributions of the
form F(z|v) are needed. For every v; in the vector v F'(z|v) can be written

as
- aCa},vﬂv_j{F(‘rlv—j)?F(Uj’V—J)}

F(z|v) = (3.4)
OF (v|v—;)
with C ,,|v_; an arbitrary bivariate copula cdf (see Aas et al. (2009)).
Since we will apply representation (3.2) to copula data u = (uq, ..., uq)" on



Copula h-function
aussian ulv: p) = 2 (w)—p2 t(v)
€ hlulosp) = o 1 )
) _ ty (W —pty * (v)
t h(ulv; p,v) = t, 41 \/(U+(t;1(:+))2)<1_p2)
BBI h:( (o ) =) o
(=1 7 =P et
BBT | h=(1-[1—(1-u)) +<1—<1—v>9>*6—1]-%)9
A=A -w) P+ 1= (1—0v)) -1 5!
(1= (1= 0)") 1 =0

Table 2: h-functions of the Gaussian, the t-, the BB1 and BB7 copula

[0, 1]¢ we denote (3.2) in this case as C-vine copula density. Note that in this
case f(u;) = 1 and F(u;) = u; Vi = 1,...,d. In the following we assume
a parametric specification for Cj j;, .4 given by an appropriate parameter
(vector) 6. For parametric pair-copula densities and univariate conditioning
set (3.4) simplifies to

0C, »(u,v;0)

h(ulv; @) == F(ulv; 8) = 5 :
v

where 0 is the parameter vector for C,,,.

Table 2 gives the h-functions of the Gaussian, the t-, the BB1 and the BB7
copula, respectively. Here p is the parameter of the Gaussian copula and
®~1(-) is the inverse of the standard normal distribution function. Further
t1(+) in the t-copula case is the quantile-function of the univariate standard
t distribution with v degrees of freedom, expected value 0 and variance —*5
for v > 2.

(3.5)

To illustrate the usefulness of (3.4) and (3.5) we derive the conditional cdf
F(us|uy, ug; @31, 012,013) needed as argument for cgqpo in a 4 dimensional
C-vine copula density (compare to (3.3) ). First (3.4) implies that

acus,uz\m(F(USWl;913)7F(U2’U1; 012); 923\1)
8F(u2|u17 012)

F(u3|u1,u2; 923|1,912, 913) =

holds. Now using (3.5)

F(U3|U1; 913) = h(“S’“l; 913) and F(U2’U1; 912) = h(U2|U1; 912)>

10



it follows that
F(U3|U17U2; 923|1, 012, 913) = h(h(u3|u1; 913)\}1(162’“1; 912); 923|1)-

Here 63,0, and 0,31 denote the parameters of ci3,c12 and ca3)1, respec-
tively. Therefore higher order conditioning requires recursive application of
appropriate h-functions.

We now turn to parameter estimation in C-vines. Let 6; be the vector of
all pair-copulas in (3.2), which involve a conditioning set of cardinality ¢ for
i=0,...,d—2. For the C-vine in (3.3), 8y contains the parameters of the
pair-copulas ci2, c13 and ci4, 6 the parameters of cy3); and ¢4y and 65 the pa-
rameters of csq1o. More generally ; = (0%, ... ,03_(%1),1.)2 where 0, is the
parameter vector of ¢; 11 j1iy11,. - Finally we denote by 6 = @5,...,0, )
the set of all parameters to be estimated.

We present two estimation methods, one is a sequential estimator (SE) and
the other one is the maximum likelihood estimator (MLE). Suppose i.i.d.
data w; := (u1y,...,uqq)’ for t = 1,...,T is available. For SE the pa-
rameters of unconditional copulas are first estimated then they are used to
estimate parameters of pair-copulas with single conditioning variable. These
estimates will then be used for estimation of pair-copula parameters with
two conditioning variables. We proceed sequentially until all parameters are
estimated.

More precisely for 6, of ¢ ;41 estimate 8 based on data (w1, uji14),t =

1,....,T for j =1,...,d — 1. For one-parameter families with a known re-
lationship to Kendall’s 7, one can invert the empirical Kendall’s 7 based on
(w1, ujs14),t =1,...,T. Alternatively one can maximize the corresponding

-5
bivariate likelihood to get 6, for j =1,...,d — 1.
In the next step we want to estimate 6;; corresponding to ¢y o1 for j =
1,...,d — 2. Define
A A5 ;
Dot o= Flugglur; 0, ) = hugglur g 0, )

A 55 >
Ujt21,t = F(ujyo,|ur e 9j+170) = h(wjto.|ur; 0j+1,0)

for j=1,...,d—2. Use data (014, 0j4211,¢), t = 1,...,T to estimate 6, for
-5

J=1,...,d — 2 and denote these estimates by 6,,. For ;2 corresponding

to C3,5+3]1,2 for ] = 1, Ce ,d — 3, define

N N . ~S
V31,2t -— h(U3|1,t|’U2|1,t; 9171)
R R . A5
Vj43|1,2,t *= h(Uj+3\1,t|Uz|1,t; 0j+171)

11



and estimate 05 based on (031,24, Vjsapn2), t=1,..., T forj=1,...,d-3.

For general 0;;,7 = 1,...,d — 2 base estimation on
R R R ~S
Vit1)1,...5,t = h(vi—&-l\l,...,i—l,t|Ui|1,...,i—1,t§ 91,1-_1)
. R N ~S
Vjtit1[1,... it = (Uj+i+1|1,...,i—1,t‘Ui+1|1,‘..,i—1,t; 0j+17i71>

fort = 1,...,T and j = 1,...,d — (i + 1). These sequential estimates
Oii,i =0,...,d—2,7=1,...,d — 2 can be used on their own, they are
asymptotically normal under regularity conditions as recently shown by Haff
(2010). However their asymptotic covariance expression is intractable. To
improve efficiency one can use MLE’s, which require high dimensional opti-
mization of the log-likelihood. Here the sequential estimates can be used as

starting values for the optimization.

We now turn to the determination of MLE’s of the parameters of a C-vine
copula distribution. For this the corresponding representation (3.2) can be
used to construct the log-likelihood for an i.i.d. d-variate copula sample
w = (Urg, ... uqe)’ for t = 1,...,7. Let u = (u},...,u})" and O the
parameter vector to be estimated, then the log-likelihood can be written as

T rd-1
16.w) = 3 | S togfetuns w630}
t=1 L j=1 36
d—2 d—(i+1) (3.6)
+ Z Z log{c(Visi1,.its Viriti1,.it €50) }
i=1 j=1
where

Uj+2|1,t = h(uﬂg,t\ul,t; 0j+1,0> j = O, . ,d -2 (37)
Vjtit1)1,.. 0t +— h(”i+j+1\1,...,z‘—1,t|Ui+1|1,...,i—1; 0j+1,z‘—1) (3 8)

i=1,...,d—2j=1,...,d—(i+1)
The log-likelihood (3.6) together with definition (3.7) and (3.8) can now be

~

numerically optimized using the sequential estimates 8, as starting values.
~MLE 5
We denote the MLE’s by ,;  to distinguish them from 6, ,.

4 Selection of vine copula models

As already noted there are many different orderings of the variables in C-vine
models possible. Aas et al. (2009) have shown that there exactly d!/2 dif-
ferent C-vines and thus C-vine copulas available. In a mixed C-vine copula

12



model we need in addition to choose a bivariate copula family for each of the
d(d — 1)/2 pair-copulas. We will now consider these selection problems.

As noted in Aas et al. (2009) it is preferable to choose models with high de-
pendence in the bivariate conditional distribution characterized by c¢; jji, ... i,
where the number of conditioning variables k is small. This suggests a data
driven sequential approach starting with determining the d — 1 uncondi-
tional pair-copulas needed in a C-vine copula. For this estimate all pairwise
Kendall’s 7; ; values by 7; ; and find the variable ¢* which maximizes

d
Sy = Z |71 (4.1)
j=1

over 1 = 1,...,d. Here we set 7;,; =1 for i = 1,...,d. To ease notation we
reorder the variables in such a way that the first variable is now ¢*. For this
reordering ¢y ;41,7 = 1,...,d — 1 are selected as unconditional pair-copulas.
We call variable 1 also the root of all unconditional pair-copulas. Before
determining the pair-copulas with the single conditioning variable 1, a choice
of the pair-copula family and its parameter value for ¢; j4; forj =1,...,d—1
has to be made. We will discuss this choice later and assume at this point

5
that we are able to choose a pair-copula family with parameter estimate 6,
for ¢y j41 for j =1,...,d—1. As in the sequential estimation procedure d — 1
transformed variables

" A5 .
VitoI1,t = h(uHQ,t\ul,t; 0j+1,0) ] = O, c ,d — 2,t = 1, c. ,T (42)

are defined. Again (d — 1) data samples of size T" are used and all pairwise
Kendall’s 7 values are estimated and we can find the corresponding maximum
as in (4.1) based now d — 1 variables. Assume that this maximum is obtained
at ¢** and again reorder the variables + = 2,...,d in such a way that ¢** is
now variable 2. We select now ¢y j o1 for j = 1,...,d — 2 as pair-copulas
with single conditioning variable 1. Here 2 = ¢** can be considered as root of
Ca,j42i1 for j =1,...,d—2. We continue now with this procedure with trans-
formed variables as defined in (4.2) until we have all pair-copulas and their

sequential estimates éfs determined. Note that this sequential procedure
both determines the C-vine copula structure and corresponding parameter
estimates.

We now consider the problem of choosing the copula family. This has been a
well studied problem and many procedures have been suggested. Note that
for the sequential selection procedure we only require a copula selection in
two dimensions. Copula goodness-of-fit tests have been studied by Genest
et al. (2009), Genest et al. (2006) and Berg (2009). One recommended test
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is based on the Cramér-von-Mises statistics, which we will utilize later. It
is implemented in the R-package “copula”. Genest et al. (2009) introduced
and studied a A-function based on the Kendall’s process. This A-function is
especially easy for Archimedean copulas.

Joe (1997, Section 10.3) proposed a model selection based on the Akaike
information criterion (AIC) of Akaike (1974).

AIC = —QZlog flxi;0) + 2k,
i=1

where 0 denotes the estimate of @ and k is the number of parameter 6 =
(01,...,0,)" in the model. Specifying the AIC to a specific copula with
density ¢ we get

AIC = —ZZlog c(ug, wig; 9) + 2k,

i=1

which can be used as a copula selection criterion. The advantage of this se-
lection method is that it can be automatized in a copula selection program.
Additionally we also look at likelihood ratio based tests suggested by Vuong
(1989) and Clarke (2007) suitable for non-nested model comparison. Finally
bivariate scatter plots of the copula data and empirical contour plots of the
transformed copula data with normal margins are examined.

For our implementation for the copula family choice we consider the Gaus-
sian, t-, Clayton, Gumbel, Frank, BB1 and BB7 copula family, which cover
a wide range of dependence behavior.

Since the Vuong and Clarke tests require two specified copula models to be
compared to, we first specify a copula model, denoted by A, we conduct
then tests comparing A to any other copula family considered. A score for A
is determined as follows; each time model A is preferred to another model,
the score is increased by 1. If model A cannot be distinguished from the
other model, the score is left unchanged. If the other model is preferred to
A, then 1 is subtracted from the score. This scoring is done for considered
copulas and the model with highest score is chosen. We note that the copula
goodness-of-fit tests have a more general alternative, while the Vuong and
Clarke tests consider a single parametric copula in the alternative.
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Scenario

T2 T13 Ti4 | T231  T24|1 | T3412
1 H H H H H H
2 L L L L L L
3 H H H L L L
4 L L L H H H

Table 3: Choice of conditional Kendall’s 7 for 4 scenarios in a four dimen-
sional C-vine copula model (H ={7 = 0.8}, L={7 = 0.2})

5 Small sample performance of the ML esti-
mates in a fully specified C-vine with dif-
ferent pair-copula types

We investigated the accuracy, stability and robustness of the maximum like-
lihood estimation described in the previous section by performing a small
simulation study in R for different sample sizes, different C-vine dimensions
and different copula family combinations. For this we used the R-routines
written by Schepsmeier (2010), which contains the MLE algorithm as well as
a routine for the simulation of C-vines (see Aas et al. (2009)).

The advantage of this R-package is that mixed C-vine copula models can be
used. Unlike Aas et al. (2009), Min and Czado (2010a) or Nikoloulopoulos
et al. (2011) one is not limited to simple models with only one copula family
for all pair-copulas in a C-vine PCC. In this paper we give a summary of our
simulation study of the ML estimates in a fully specified C-vine. Note that in
this simulation study the C-vine and copula selection methods are not used,
i.e. the C-vine structure as well as the pair-copula families are fixed. Detailed
results of this small sample performance study can be found in Appendix C
of Schepsmeier (2010). First we restrict to a four dimensional C-vine copula
set. In this case six pair-copulas have to be chosen. As a common measure
of dependence across pair-copula families we used Kendall’'s 7. Two choices,
7 =0.2(L) and 7 = 0.8(H), are investigated. To be more precise, the four
scenarios of Table 3 are determined.

Possible pair-copula families were Gaussian (N), t-copula with v degrees of
freedom (¢,), Clayton (C), Gumbel (G), Frank (F), Joe (J), BB1 and BB7.
As sample size n = 500, 1000 and 2000 were investigated. In a first setup we
used the same pair-copula family for each of the six pair-copulas, while in a
second setup we allowed for mixed C-vine copulas and investigated a total
of 8 combinations given in Table 4.

For the one parameter pair-copulas the choice of Kendall’s 7 determines the
corresponding parameter. For the two parameter families BB1 and BB7 an
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Model | ¢12 3 cus Ca3j1  C24)1 | C34/12
1 N C G F J t3
t3 G J G N J
C ts F G N J
G ts5 J C to F
BB7 to F
BB1 5 J BB7 tg F
BB7 t5 F N tio | BB1
BB1 N BB7 | BBI1 ts BB7

O ~J O U = W N
Z
Q
oS}
oS
—

Table 4: Mixed copula models investigated

additional constraint is needed to fix the two parameter values. Here we used
the following constraints: A\, = Ay (symmetric) or 2\, = Ay (asymmetric).

As performance measure we considered average and 5% trimmed average of
the estimated parameter values or corresponding Kendall’s 7 value for each
pair-copula. Further, bias, variance and mean squared error of these quan-
tities are estimated. All performance measures are based on 100 data sets
simulated from each Kendall’s 7 scenario and C-vine copula model. The de-
tailed results for n = 500 are contained in Schepsmeier (2010) in Appendix C.

We now summarize the results of Schepsmeier (2010) for C-vine MLE’s:
strength of dependence:

MLE’s of Kendall’s 7 are about equally well estimated for high and low depen-
dence. Parameter values are better estimated for smaller values of Kendall’s
7. For the t-copula the degree of freedom parameter v is slightly overesti-
mated. Overestimation increases as v increases as to be expected since ¢, is
close to the normal distribution for values v > 25. For the BB1/BB7 the
asymmetric case performs worse for high dependencies.

mixed versus non-mixed:

There no significant difference in the performance.

conditional versus non-conditional:

The performance slightly decreases as the number of conditioning variables
increases. Therefore additionally five dimensional mixed C-vine copula mod-
els are simulated and analyzed.

sequential versus MLE estimates:

Except for the degrees of freedom parameter v in the t-copula, which are
. . . - . . )
estimated by a bivariate maximum likelihood, the sequential estimates 0

~MLE
are close to the d-variate optimized maximum likelihood estimates 6 .
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Similar to the simulation tests described above and run by Schepsmeier
(2010) we run four new simulation tests to investigate the performance of
the implemented MLE algorithm with respect to the number of observa-
tions. For more stable results we used 500 simulated data sets instead of
100, for a non-mixed four dimensional C-vine with BB1 pair-copulas and a
mixed C-vine with copulas as in Model 7 in Table 4. Table 5 summarizes
the performance by reporting the average estimated relative MSE of the pa-
rameters ]\mml(d) and the corresponding relative MSE of the Kendall’s 7s

A?S'\Em(%). In the left panel simulated data sets of n = 500 are used while
the right panels are for n = 2000. From this we see that the relative MSE is
generally small and decreases as n increases.

In summary the simulation shows that satisfactory performance of ML esti-
mation procedure for mixed/non-mixed C-vine copula models with a large
catalogue of pair-copula families under small/high pairwise (conditional) de-
pendence is possible for moderate sample sizes.

6 Small sample performance of the C-vine se-
lection method

In the previous section we fixed the C-vine structure as well as the pair-copula
families. In a second simulation study, performed in R, we investigated the
C-vine and copula selection methods described in Section 4 with respect to
their fitting accuracy using the absolute difference of pairwise Kendall’s 7-
matrices as an evaluation criterion. If one does not fix the C-vine structure
but selects it by our method a different C-vine structure to the true one
can emerge. Thus different pair-copulas occur which have to be selected
too. Again we restrict to a four dimensional C-vine copula set. As already
mentioned in Section 5 six pair-copula families have to be chosen in this case,
which is done sequentially by the AIC selection method of Section 4.

As evaluation criterion for our model selection method we utilized absolute
differences of pairwise Kendall’s 7s between the estimated Kendall’s 7-matrix

of simulated data Uy = (ug1,-..,%04),%0; = (Uo1js--->Uomg;). for j =
1,...,d, of a true model, denoted by 7y, and the estimated Kendall’s 7-
matrix of simulated data Uy = (w11,...,%14),U1; = (U1 s Uiy )

for j = 1,...,d, of the selected model, denoted by 7;. The procedure is as
follows:

1. Select the structure, pair-copula families and pair-copula parameters
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non-mixed C-vine (BB1)

True values n = 500 n = 2000
a=(0,0) () MSE,ei(&)  MSEya(#) || MSE,a(&)  MSEya()
015 = 0.80 712 = 0.80 3.36% 0.01% 0.97% < 0.00%
019 = 3.56 0.44% 0.11%

013 = 0.80 713 = 0.80 5.67% 0.01% 1.51% < 0.00%

014 = 0.80 714 = 0.80 7.67% 0.01% 2.46% < 0.00%
014 = 3.56 0.80% 0.18%

Oo31 = 0.29 7931 = 0.20 9.85% 2.12% 2.38% 0.46%
dagn = 1.09 0.18% 0.04%

Ooap = 0.29 7141 = 0.20 9.78% 2.17% 2.52% 0.50%
do41 = 1.09 0.18% 0.05%

O3ap12 = 0.29 73412 = 0.20 10.83% 1.89% 2.68% 0.56%
034112 = 1.09 0.18% 0.05%

mixed C-vine (BB7,t5,F,N,t10,BB1)
True values n = 500 n = 2000

a T MSE,e(&) MSE,(7) | MSE,(&) MSE, (%)

0o =1.18 712 = 0.80 0.32% < 0.00% 0.05% < 0.00%
012 = 8.40 0.52% 0.11%

p13 = 0.95 713 =0.80 | <0.00% < 0.00% | <0.00% < 0.00%
13 = 5.00 0.68% 0.14%

014 = 18.10 714 = 0.80 0.31% < 0.00% 0.08% < 0.00%

p231 = 0.95  Te31 = 0.80 0.01% 0.03% || < 0.00% 0.01%

p241 = 0.95 7941 = 0.80 0.01% 0.03% || < 0.00% 0.01%
Va1 = 10.00 21.84% 4.24%

O3ap12 = 6.48 3412 = 0.80 11.83% 0.02% 3.14% 0.01%
O34 = 1.17 1.23% 0.29%

Table 5: Top: Average estimated relative MSE of parameters and Kendall’s
7 for non-mixed C-vine with BB1 pair-copulas, assuming A\* = AV based
on 500 simulated data sets, (n=500 (left) and n=2000 (right)). Bottom:
Average estimated relative MSE of parameters and Kendall’s 7 for mixed
C-vine (BB7,t5,F,N,t10,BB1), assuming Al = 0.2 for the bivariate copula
families based on 500 simulated data sets, (n=500 (left) and n=2000 (right)).

of the true C-vine model.

2. Simulate data U of the true model with length ny.
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3. Perform the model selection algorithm to choose the order of roots in
a C-vine, the pair-copula families and estimate the copula parameters.

4. Simulate data U, of the selected model with length n;.

5. Sum up the absolute differences of the estimated Kendall’s 7-matrices
7A'0 and 7A'1.

6. Repeat step 1. - 4. R times.

Note that ny should be much larger that ny (ny > n;) to ensure that the
influence of the simulation error is negligible. Next we calculated the repli-
cation average of the mean absolute pairwise Kendall’s 7 differences by

Fe=Y Y upaup) - Fugug),

pairs in {1,...,d}.

Our simulation study deals with the eight models 1-8 of Table 4 with four
scenarios each described in Table 3 and Section 5, all in all 32 different
models. The described procedure was run for R = 100,n; = 1,000 and ny, =
10,000. In Table 6 we give the calculated values of T based on sequential pair-
copula estimates of the selected model (left panel) and joint ML estimates
(right panel), respectively.

sequential estimation ML estimation
Model 1 2 3 4 1 2 3 4
1 0.04 0.07 0.03 0.10 | 0.05 0.07 0.03 0.09
2 0.25 0.06 0.03 0.05]0.28 0.08 0.03 0.08
3 0.02 0.06 0.03 0.05|0.03 0.06 0.03 0.05
4 0.11 0.06 0.03 0.06 | 0.11 0.06 0.03 0.07
5 0.17 0.06 0.03 0.05|0.18 0.07 0.04 0.05
6 0.05 0.06 0.03 0.06 | 0.05 0.07 0.04 0.07
7 0.02 0.06 0.03 0.03|0.04 0.06 0.03 0.06
8 0.09 0.05 0.04 0.06 | 0.09 0.06 0.04 0.06

Table 6: Estimated mean of absolute pairwise Kendall’'s 7 differences for
Model 1-8 of Table 4 with 4 scenarios (3) each. Left panel: based on sequen-
tial estimates, right panel: based on joint MLE after selection step.

Beside two larger values in Scenario 1 of Model 2 and 5, all mean absolute
pairwise Kendall’s 7 differences are quite small, i.e. our model selection
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method performs quite well. The additional joint ML step for the copula
parameters after fitting the C-vine model with sequential estimates does not
improve the fitting of the Kendall’s 7 matrix. For the two outliers we have
no obvious explanation. One reason may be the numerical restrictions in the
implementation of the MLE and selection algorithm for high Kendall’s 7s.

7 Application: US-Exchange rates

We apply now our mixed C-vine model to 8 time series of US-exchange
rates from different countries from July 22, 2005 until July 17, 2009. There-
fore we have 1007 daily values available for each country considered. The
US-exchange rates are quoted in the home currency, e.g. 1 US-Dollar =
0.8466 Euro. For simplification we use the following abbreviations: EUR
(Euro-area), UK (United Kingdom), CAN (Canada), AUS (Australia), BRA
(Brazil), JPN (Japan), SZ (Switzerland) and IN (India).

First of all for each marginal exchange rate series an appropriate ARMA (P,Q)-
GARCH(p,q) model, developed by Bollerslev (1986), is determined. Ljung-
Box tests (Ljung and Box (1978)) for serial independence applied to the es-
timated standardized residuals show that ARMA(1,1)-GARCH(1,1) models
are sufficient to remove the time dependence in each of the individual US-
exchange rates. The corresponding p-value of the Ljung-Box tests as well as
additional QQ-Plots can be found in Chapter 5 of Schepsmeier (2010). The
QQ-Plots provide evidence that the residuals are fat tailed and t- or skewed
t-innovations in the GARCH(1,1) part is needed. The resulting standardized
residuals of these models are transformed using the empirical probability
integral transformation and a scaling factor = to copula data on (0,1)%.
Figure 2 shows scatter plots and the estimated Kendall’s 7 for the copula
data. We can detect some stronger dependencies between the standardized
residual US-exchange rates, especially between the EURO and UK, EURO
and AUS, EURO and SZ. Further, we can see that some standardized resid-
ual US-exchange rates are almost independent as for example AUS and JPN
and IN and SZ. A next interesting fact is, that almost all dependencies are
positive beside the pair BRA - JPN and CAN - JPN.

We apply now the sequential procedure to select an appropriate C-vine copula
for the US-exchange rate copula data. Table 7 gives the empirical Kendall’s
7 matrix and the sum of their absolute values, denoted by S (compare to
(4.1)). From this we see that EUR is the first root variable. Given this first
root variable and the sequential C-vine identification procedure from pre-
vious chapter the next root variable AUS followed by SZ, BRA, CAN and
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Figure 2: Pairsplot of the copula data (top, right) formed from transformed
standardized residual US-exchange rates and the corresponding estimated
Kendall’s 7 (bottom, left)

finally IN can be identified. Table 8 displays now the empirical Kendall’s 7
matrix of the variables given EUR as first root and copula families and pa-
rameters as in Table 9 (i=0), and sum over the absolute entries of each row.
As possible copula families we allowed the eight copula families utilized in
the simulation study. Since the sequential selection procedure identifies the
pair-copula types and provides sequential estimates 65 , we use those as start-
ing values to determine the corresponding MLE #MLE The resulting mixed
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EUR UK CAN AUS BRA JPN SZ IN S

EUR | 1.00 051 0.29 044 0.19 024 0.69 0.16 | 3.54
UK 0.51 1.00 0.28 041 0.17 0.13 043 0.15| 3.12
CAN | 0.29 0.28 1.00 0.35 0.24 -0.02 0.20 0.14 | 2.56
AUS | 044 041 035 1.00 031 0.06 032 0.19 | 3.12
BRA | 0.19 0.17 0.24 0.31 1.00 -0.11 0.07 0.14 | 2.27
JPN | 024 0.13 -0.02 0.06 -0.11 1.00 0.37 0.01 | 1.97
SZ 0.69 043 020 0.32 0.0r 037 1.00 0.09 | 3.21
8 | IN 0.16 0.15 0.14 0.19 0.14 0.01 0.09 1.00 | 1.92

~N O T W N~

Table 7: Empirical Kendall’s 7 matrix and the sum over the absolute entries
of each row for the exchange rate data set

EUR,AUS EUR,SZ EUR,BRA EUR,CAN EUR,IN EUR,JPN EUR,UK S

evravs | 1.00  -0.14  0.25 023 013 -0.11 0.17 | 2.03
EUR,SZ -0.14 1.00 -0.21 -0.12  -0.09 0.34 0.00 | 1.90
evrera | 0.25  -0.21  1.00 0.18 0.11 -0.20 0.04 | 1.99
eurcan [ 0.23  -0.12  0.18 1.00 0.07 -0.15 0.10 | 1.85
EUR,IN 0.13  -0.09 0.11 0.07 1.00 -0.04 0.60 | 1.50
evropny | -0.11 034 -0.20 -0.15 -0.04 1.00 -0.03 | 1.87
EUR,UK 0.17  0.00 0.04 0.10 0.60 -0.03 1.00 | 1.40

N O Ol Wi

Table 8: Empirical Kendall’s 7 matrix and the sum over the absolute entries
of each row for the exchange rate data set given EUR as first root

C-vine copula model we denote by M1. The sequential and ML estimates for
M1 are provided in Table 9. Note that the variable ¢ indicates the number
of variables in the conditioning set and the pair-copula family type chosen.
Here we use N(Gaussian), t(t-), C(Clayton), G(Gumbel) and F(Frank) as
abbreviations. Surprisingly, the flexibility of two parameter bivariate copula
families such as the BB1 and BB7 was not required for this data set.

In particular only a few strong non-symmetric dependencies among the stan-
dardized residuals are detected, i.e. BRA and AUS given EU and CAN and
BRA given EU, AUS and SZ. For the first conditional dependency we provide
exemplarily the exploratory copula selection analysis in Table 10. This in-
cludes also the goodness-of-fit statistic and p-value of the Cramer-von Mises
test. Similar results are given for all pair-copula terms up to conditioning on
3 variables can be found in Schepsmeier (2010).

From Table 9 we see that often very low dependence is estimated. Therefore
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M1 M4

i | Parameter Copula és 9MLE @S 9MLE

0 | pEUR,AUS t 0.64 0.63 | 0.64 0.64
VEUR,AUS 10.16 13.29
PEUR,SZ t 0.89 0.89 | 0.89 0.87
VEUR,SZ 4.00 4.68
PEUR,BRA t 0.30 0.31 | 0.30 0.31
VEUR,BRA 6.39 7.42
PEUR,CAN t 0.46 0.46 | 0.45 0.46
VEUR,CAN 8.44 8.75
PEUR,IN N 0.25 0.26 | 0.25 0.26
PEUR,JPN t 0.36 0.37 | 0.37 0.34
VEUR,JPN 4.38 5.88
PEURUK t 0.72 0.72 | 0.73 0.72
VEURUK 8.49 9.21

1 PSZ,AUS|EUR t -0.24 -0.23 | -0.22 -0.25
VS7Z AUS|EUR 11.36 16.49
GBRA7AUS|EUR G 1.33 1.30 | 0.37 0.39
PCAN,AUS|EUR N 0.35 0.35 | 0.35 0.36
O1N,AUS|EUR F 1.19 1.19 | 0.20 | 0.19
PJPN,AUS|EUR t -0.18 -0.18 | -0.17 | -0.22
VjPN,AUS|EUR 6.86 7.89
PUK,AUS|EUR t 0.26 0.26 | 0.27 0.27
VUK,AUS|EUR 11.77 | 12.29

2 | OBRA,SZ|EUR,AUS F -1.48 | -1.52 | -0.27 | -0.24
0caN,SZ|EUR,AUS F -0.75 -0.79 | -0.13 | -0.11
PIN,SZ|EUR,AUS t -0.11 -0.11 | -0.11 | -0.11
VIN,SZ|EUR,AUS 50.00 | 135.05
PJPN,SZ|EUR,AUS t 0.48 0.49 | 0.51 0.50
VJPN,SZ|EUR,AUS 11.91 | 12.28
OuK.s2|EURAUS F* 0.26 0.26 | 0.04 | -0.02

3 QCAN,BRA|EUR,AUS,SZ G 1.10 1.10 | 0.16 0.15
PIN,BRA|EUR,AUS,SZ N 0.08 0.09 | 0.08 0.09
9JPN,BRA|EUR,AUS,SZ F -0.87 -0.88 | -0.17 -0.15
PUK,BRA|EUR,AUS,SZ N* -0.05 | -0.05|-0.04 | -0.04

4 pIN,CAN|EUR,AUS,BRA,SZ N* 0.02 0.05 0.02 0.05
PJPN,CAN|EUR,AUS,BRA,SZ N -0.13 | -0.12 | -0.13 | -0.13
PUK,CAN|EUR,AUS,BRA,SZ N 0.08 0.09 | 0.08 0.10

5 | PJPN,IN|EUR,CAN,AUS,BRA,SZ N* 0.02 0.02 | 0.03 0.02
PUK,IN|EUR,CAN,AUS,BRA,SZ N* 0.05 0.05 | 0.05| 0.05

6 | PUK JPN|EURCAN,AUS,BRA,SZ,IN N* -0.03 | -0.02 | -0.03 | -0.03

Table 9: Sequential and ML estimates for C-vine copula models M1 and M4
(* = independence copula in M2).
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Copula CBRA,AUS\EUR (7A' = 025)
: /
Gaussian t Clayton Gumbel Frank
Cramer-von Mises stat. 0.033 0.035 0.262 0.019 0.047
p-value 0.049 0.036 0.000 0.448 0.003
Gaussian t Clayton Gumbel Frank BB1 BB7
Vuong 1 1 -6 1 1 2 0
Clarke -6 6 -3 4 -1 1 -1
Possible copula(s): Selected copula:
G, BB1, BB7 G

Table 10: Pairs-plot, normalized contour plot, A-function and goodness-of-fit
test scores for the conditional copula cpra avspur of the US-exchange rate
data.

for each pair-copula a test for independence is performed to decide whether
the corresponding pair-copula has to be replaced with the independence
copula or not. As independence test we used a test based on Kendall's 7
discussed in Genest and Favre (2007) utilizing the asymptotic distribution
of empirical Kendall’'s 7 under independence (Kendall (1938)). If the test
fails to reject the null hypothesis of independence an independence copula
(c(uy,uz) = 1) is chosen. Otherwise the sequential selection procedure is
left unchanged. We call the resulting model M2. Comparing M1 to M2 we
see that copula indices are the same up to a conditioning set of size 5. The
remaining root variable for M2 is then JPN, while IN was chosen for M1.
In Table 9 those pairs chosen to be the independence copula in M2 are in-
dicated by an asterisk *. For brevity the corresponding parameter estimates
for M2 are not shown. It should be noted that M2 has only 33 parameters
compared to 39 for M1. To investigate if a mixed C-vine copula is neces-
sary for this data set we also fit a C-vine copula with the same structure as
M1 but only with t pair-copulas. This model is referred as M3. Finally we
also want to investigate if a C-vine specification is needed at all. Therefore
we set all pair-copulas in M1 to a Gaussian copula and denote this model
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Model | Model type Model selection

M1 mixed C-vine sequential selection without independence test
M2 mixed C-vine sequential selection with independence test

M3 C-vine t-copula | same as M1 but all pair-copulas are t-copulas
M4 Gauss copula same as M1 but all pair-copulas are Gaussian

copulas

Table 11: Summary of models investigated

by M4. Table 11 summarizes the specification of the four models investigated.

Model comparison is performed based on the AIC (Akaike (1974)) and BIC
(Schwarz (1978)) criteria. The AIC and BIC values has been computed also

using the sequential estimates és as a proxy for 9MLE, to see how close the
sequential estimates are to the MLE’s with respect to these criteria. Table
12 gives the results. Thus the model M2 is the clearly preferred over all
remaining models showing that a mixed C-vine copula is fitting best. The

same conclusions can be drawn if one uses 95 as proxy for 0 E, which is
not surprising since és is consistent for 6.
M1 M2 M3 M4

Log-likelihood seq. | 2203.4 | 2198.5 | 2212.1 | 2077.0

Log-likelihood MLE | 2207.5 | 2202.4 | 2217.5 | 2088.0

# of parameters 39 33 56 28

AIC seq. -4328.8 | -4331.0 | -4312.2 | -4098.0

AIC MLE -4337.0 | -4338.8 | -4323.0 | -4120.0

BIC seq. -4137.1 | -4168.8 | -4037.2 | -3960.4

BIC MLE -4145.3 | -4176.6 | -4047.8 | -3982.4

Table 12: Log-likelihood, number of parameters,

M1-M4 using ML or sequential estimates.

AIC and BIC for models

In Table 12 we ignore the fact that only M3 and M4 are nested models,
while the other pairs are not. Therefore we conducted appropriate Vuong
and Clarke tests with Schwarz correction and the corresponding results are
given in Table 13. These also support decisively the conclusion that M2 is
the preferred model. In summary a mixed C-vine copula is needed to model
the dependencies among the standardized US-exchange rate residuals.
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Null Alternative
Hypothesis | Method M2 M3 M4
M1 Vuong statistics —4.7 4.94 3.16
p-value < 0.000 < 0.000 0.002
decision | M2 > M1 | M1 > M3 | M1 > M4
Clarke statistics 389 616 556
p-value < 0.000 < 0.000 0.001
decision | M2 > M1 | M1 > M3 | M1 > M4
M2 Vuong statistics 6.15 3.76
p-value < 0.000 < 0.000
decision M2 > M3 | M2 > M4
Clarke statistics 629 578
p-value < 0.000 < 0.000
decision M2 > M3 | M2 > M4
M3 Vuong statistics 1.28
p-value 0.202
decision M3 = M4
Clarke statistics 473
p-value 0.029
decision M4 > M3

Table 13: Pairwise non-nested model comparison using Vuong and Clarke

tests with Schwarz correction.

8 Summary and Outlook

In this paper we introduced the class of mixed C-vine copulas and provided
sequential and ML estimation procedures for the unknown parameters. Two
extensive simulation studies showed very satisfactory behavior of the ML es-
timation for many different mixed and non-mixed C-vine copulas and our
model selection method, respectively.

In contrast to earlier papers on vines we considered the problem of jointly
estimating the C-vine structure together with the choice of bivariate cop-
ula families. We developed a data driven sequential approach, which follows
the heuristic of wanting to achieve parsimonious and simple model speci-
fications. Following these considerations C-vine structures are selected so
that most of the dependence as measured by the sum absolute empirical
pairwise Kendall’s 7 values occurs early in the conditioning procedure. The
computational complexity of the log-likelihood is increased as the number
of conditioning variables is increased, since the required conditional cdf’s
require higher recursions. For the selection of the appropriate pair-copula
families we followed standard test approaches involving goodness-of-fit tests
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for bivariate copulas, Vuong and Clarke tests suitable for non-nested models
and finally explorative tools based on scatter and contour plots as well as the
empirical A-function of Genest and Rivest (1993).

Finally we considered an application involving US-exchange rates. Here
mixed C-vines are used to model the dependencies among standardized resid-
uals, which are formed from univariate time series models. This allows to
have pseudo copula data available which is approximately i.i.d. Therefore a
standard two-step estimation procedure is followed, which however allows via
simulation to consider value at risk of arbitrary portfolios. The advantage of
this two part joint model (marginal + copula model) is that simulation has
to be conducted only once for all portfolio’s considered, while allowing for
very flexible non Gaussian dependencies in contrast for example to a CCC
model of Bollerslev (1990).

We like to note that our experience with joint estimation methods of mod-
els with regression marginals (Lanzendorfer (2009)), with AR(1) marginals
(Czado et al. (2010)) and GARCH(1,1) (Hofmann and Czado (2010)) cou-
pled with D-vine copula models have shown that the loss in efficiency when
two step estimation is done is small. In these papers a Bayesian approach was
followed, which allows for credible intervals for parameters and quantities of
interest depending on parameters. These interval estimates are difficult to
obtain in a ML setup. The mentioned papers in this paragraph are exten-
sions of the Bayesian approach followed by Min and Czado (2010a),

In the future we like to investigate the severeness of the restrictions imposed
by the heuristic C-vine structure search. For this a discrepancy measure be-
tween the fitted C-vine structure and the true model has to be considered.
A general statistical discrepancy measure would be the Kulback-Leibler dis-
tance, which however is difficult to obtain in these complex models. Therefore
simpler discrepancy measures have to be developed. Another future area of
research is the development of search algorithms for D-vines and more gener-
ally for regular vines. Using the simplified pair-copula construction we loose
the direct influence of the conditional variables on the copula density and
thus on the copula parameter estimation. One way would be to allow the
parameter of the pair-copula to depend on the value of conditioning variables
in a regression setup, i.e. the use of these values as covariates. This will be
the topic of future research.
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