
Chapter 9
Voice and Speech Analysis in Search of
States and Traits

Björn Schuller

9.1 Vocal Behavior Analysis—An Introduction

It is the aim of this chapter to introduce the analysis of vocal behaviour and more
general paralinguistics in speech and language. By ‘voice’ we refer to the acoustic
properties of a speakers’ voice—this will be dealt with in Section 9.2. By ‘speech’
we refer more generally to spoken language in the sense of added linguistics—dealt
with in Section 9.3. Obviously, the introduced methods of linguistic analysis can
also be applied to written text, albeit with slightly different pre-processing. Also,
models trained on written text may differ insofar as spoken language is often gram-
matically different and possesses more fragments of words, etc.

9.1.1 A Short Motivation

Paralinguistic speech and language analysis, i. e., the analysis of consciously or un-
consciously expressed non-verbal elements of communication, is constantly devel-
oping into a major field of speech analysis, as new human-machine interaction and
media retrieval systems advance over sheer speech recognition.

The additional information over ‘what’ is being said bears high potential for im-
proved interaction or retrieval of speech files. By such information, social com-
petence is provided to systems that can react more human-like or provide more
human-like information. In addition, this information can also help to better recog-
nise ‘what’ is being said, as acoustic and linguistic models can be adapted to differ-
ent speaker states and traits and non-verbal outbursts are not confused with linguistic
entities [52]. A number of such paralinguistic phenomena is next given.
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9.1.2 From Affection to Zest

One can broadly divide the multifaceted field of paralinguistics into speaker states
and speaker traits and vocal behaviour. Speaker states thereby deal with states
changing over time, such as affection and intimacy [3], deception [14], emotion [7],
interest [48], intoxication [35], sleepiness [24], health state [19], and stress [21] or
zest, while the speaker traits identify permanent speaker characteristics such as age
and gender [44], height [32], likeability [57], or personality [31]. Vocal behaviour
additionally comprises non-linguistic vocal outbursts like sighs and yawns [34],
laughs [10], cries [33], hesitations and consent [48], and coughs [30]. We next deal
with the principle of how to computationally analyse any of these automatically.

9.1.3 Principle

Here we share a unified perspective on the computationally ‘intelligent’ analysis of
speech as a general pattern recognition paradigm.
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Fig. 9.1 Analysis of voice and speech—an overview. Dotted lines indicate the training phase.

Fig. 9.1 gives an overview of the typical steps in such a system. The dotted lines
indicate the training or learning phase that is usually carried out once before us-
ing such a system in practice. It can, however, re-occur during application in the
case of online or unsupervised and semi-supervised adaptation. Interestingly, the
information is partly well suited for online learning based on user feedback, as user
(dis-)satisfaction or similar states and affirmative vocalisations can be used to adapt
models accordingly.

The building blocks of a voice and speech analysis system are:
Pre-processing usually deals with enhancement of signal properties of interest

from input speech. Such speech may be coming from a capture device like an A/D
converter in a live setting, or from offline databases of stored audio files for training
and evaluation purposes. Such enhancement includes de-reverberation and noise
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suppression, e.g., by exploitation of multiple microphones, or separation of multiple
speakers by blind source separation.

Feature Extraction deals with the reduction of information to the relevant char-
acteristics of the problem to be investigated in the sense of a canonical represen-
tation and will be dealt with in more detail—separately for acoustic and linguistic
features.

Classification / Regression assigns the actual label to an unknown test in-
stance. In the case of classification, discrete labels such as Ekman’s ‘big six’ emo-
tion classes (anger, disgust, fear, happiness, sadness, and surprise) or, e. g., binary
low/high labels per each of the ‘big five’ personality dimensions (openness, consci-
entiousness, extraversion, agreeableness, and neuroticism – “OCEAN”) are decided
for. In the case of regression, the output is a continuous value like a speaker’s height
in centimetre or age in years, or—in the case of emotion—dimensions like potency,
arousal, and valence, typically ranging from -1 to +1. We will discuss the frequently
encountered machine learning algorithms in the field later on.

Speech Databases comprise the stored audio of exemplary speech for model
learning and testing. In addition, a transcription of the spoken content may be given
and the labelling of the problem at hand, such as speaker emotion, age, or person-
ality. Usually, one wishes for adequate data in the sense of natural data rather than
elicited or acted in ideal conditions, excluding disruptive influence or well-described
and targeted noise or reverberation, a high total amount—which is rarely given.
Further, data should ideally include a large number of speakers, a meaningful cat-
egorisation, which is usually non-trivial in this field (cf. the emotion categories vs.
dimensions), a reliable annotation either by the speaker herself or a higher number
of annotators to avoid skewness, additional perception tests by independent labellers
to provide a comparison of human performance on the task, balanced distribution
of instances among classes or the dimensional continuum, knowledge of the prior
distribution, high diversity of speakers’ ages, gender, ethnicity, language, etc., and
high spoken content variation. Finally, one wishes for well defined test, develop-
ment, and training partitions without prototypical selection of ‘friendly cases’ for
classification [49], free availability of the data, and well-documented meta-data.

Model Learning is the actual training phase in which the classifier or regressor
model is built, based on labelled data. There are classifiers or regressors that do
not need this phase—so called lazy learners—as they only decide at run-time by
training instances’ properties which class to choose, e.g., by the training instance
with shortest distance in the feature space to test instances [20]. However, these
are seldom used, as they typically do not lead to sufficient accuracy in the rather
complex task of speech analysis.

Feature Selection decides which features actually to keep in the feature space.
This may be of interest if a new task, e.g., estimation of a speaker’s weight from
acoustic properties, is not well known. In such a case, a multiplicity of features can
be ‘brute-forced’, as will be shown. From these, the ones well suited for the task at
hand can be kept.

Parameter Selection fine ‘tunes’ the learning algorithm. Indeed, the performance
of a machine learning algorithm can be significantly influenced by optimal or sub-
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optimal parametrisation. As for the feature selection, it is crucial not to ‘tune’ on
speech instances used for evaluation as obviously this would lead to overestimation
of performance.

Acoustic Models consist of the learnt dependencies between acoustic observa-
tions and classes, or continuous values in the case of regression, stored as binary or
text files.

Language Models resemble acoustic models—yet, they store the learnt depen-
dencies of linguistic observations and according assignments.

9.2 ‘Voice’ — The Acoustic Analysis

In this section we will be dealing with the acoustic properties of the voice ignoring
‘what’ is being said and entirely focusing on ‘how’ it is said (cf. also Chapter 10).
For this analysis, we will first need to chunk the audio stream (for an example see
Fig. 9.2.a) before extracting features for these chunks and then proceed with the
selection of relevant features before the classification/regression, and ‘fine tuning’.

9.2.1 Chunking

Already for the annotation of human behaviour that changes over time, one mostly
needs to ‘chunk’ the speech, which is often stored as a single file ranging over sev-
eral seconds up to hours, into ‘units of analysis’. These chunks may be based on the
‘quasi-stationarity’ of the signal, as given by single frames obtained by applying a
window function to the signal—typically having a length of some 10-30 ms and ap-
plied every 10 ms as the window often has a softening character at its ends, or larger
units of constant duration. Most frequently, though, ‘turns’ are analysed that are
based on speech onset until offset of one speaker in conversations. Onset and offset
of speech are thereby often determined by a simple signal energy-based hysteresis,
i. e., for a given minimum time, the speech pause energy level has to be exceeded to
determine a speech onset and vice versa. While being an objective measure which
is somewhat easy to obtain automatically, such turns may highly vary in length.

Alternatives are either pragmatic units like time slices, or proportions of longer
units obtained by subdivision into parts of relative or absolute equal length, or
‘meaningful’ units with varying lengths, such as syllables, words, phrases. In [4],
the word as the smallest possible, meaningful unit, is favoured for the analysis of
emotion in speech, and in [50] it is shown that stressed syllables alone can be on a
par with words as far as classification performance is concerned.

One may assume that units that are more connected to the task of analysis will
become important in future research. In addition, incremental processing will be
of increasing interest. Such incremental processing means providing an online es-
timate after the onset, updated continuously until the offset—this is often referred
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to as ‘gating’. Additionally, one may want to decide for the optimal unit in a mul-
timodal context if for example also video or physiological information is analysed
that typically investigates different units, but shall be fused in a synergistic man-
ner. In fact, this problem can already arise to a certain extent when we want to
fuse acoustic and linguistic information. Even for processing exclusively acoustic
information, consideration of several temporal units at the same time may be in-
teresting, to benefit from shorter frames in the case of spectral characteristics, but
larger ‘supra-segmental’ units in the case of prosodic features, i. e., features dealing
with intonation, stress, and rhythm, such as speaker’s pitch.

9.2.2 Acoustic Feature Extraction

Arguably the most important step in the automated recognition of speaker states,
traits and vocal behaviour is the extraction of features that are relevant for the task
at hand and providing a compact representation of the problem.

Let us divide features into groups in the following to provide a comprehensive
overview. While there is no unique classification into such groups, the most basic
distinction is technology driven: The main groups are at first acoustic and linguistic
features.

Depending on the type of affective state of vocal behaviour one aims to anal-
yse, different weights will be given to these. To give an obvious example, linguistic
features are of limited interest when assessing non-verbal vocal outbursts such as
laughter, sighs, etc. However, investigating a speaker’s emotion or personality, they
bear high potential.

In the past, the common focus was put on prosodic features, more specifically
on pitch, duration and intensity, and less frequently on voice quality features as
harmonics-to-noise ratio (HNR), jitter, or shimmer. Segmental, spectral features
modelling formants, or cepstral features (MFCC) are also often found in the lit-
erature. More details about these features will be given later.

Until recently, a comparably small feature set (around 20 to 30 features) has usu-
ally been employed. The recent success of systematically generated static feature
vectors is probably justified by the supra-segmental nature of most paralinguistic
phenomena. These features are derived by projection of the low-level descriptors
(LLD, for examples see Fig. 9.2.b–f) on single scalar values by descriptive statis-
tical functionals, such as lower order moments or extrema. As an alternative, LLD
features can be modelled directly. In general, these LLD calculate a value per speech
‘frame’ with a typical frame rate of 100 frames per second (fps, cf. Section 9.2).

The large number of LLD and functionals has recently promoted the extraction of
very large feature vectors (brute-force extraction), up to many thousands of features
obtained either by analytical feature generation or, in a few studies, by evolutionary
generation (note that a similar development can be found in vision analysis, where
large amounts of features are produced and then reduced). Such brute-forcing also
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(a) Wave: <laughter> I take my mind off

(b) Mel spectrogram as grey-scale heat map

(c) MFCC 0 (bottom)–15 (top) as grey scale heat map

(d) Energy (normalised)

(e) Voicing probability

(f) Pitch (normalised)

Fig. 9.2 Exemplary speech wave form over time in ms: laughter (0.0–150 ms) followed by “I take
my mind off” taken from the SAL database (male speaker) and selected low-level descriptors.

often includes hierarchical functional application (e.g., mean of maxima) to better
cope with statistical outliers.

However, also expert-based hand-crafted features still play their role, as these are
lately often crafted with more emphasis put on details hard to find by sheer brute-
forcing such as perceptually more adequate ones, or more complex features such
as articulatory ones, for instance, (de-)centralisation of vowels (i. e., how exact and
constant are vowels articulated). This can thus also be expected as a trend in future
acoustic feature computation.

Let us now introduce the groups of features:
Intensity features usually model the loudness of a sound as perceived by the

human ear, based on the amplitude, whereby different types of normalisation are
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applied. Often, however, simply the frame energy is calculated for simplification, as
human loudness perception requires a complex model respecting effects of duration
and pitch of sound. As the intensity of a stimulus increases, the hearing sensation
grows logarithmically (decibel scale). It is further well-known that sound perception
also depends on the spectral distribution. The loudness contour is thus the sequence
of short-term loudness values extracted on a frame-by-frame basis.

The basics of pitch extraction have largely remained the same over the years;
nearly all Pitch Detection Algorithms (PDA) are built using frame-based analysis:
The speech signal is broken into overlapping frames and a pitch value is inferred
from each segment mostly by the maximum in the autocorrelation function (ACF)
in its manifold variants and derivatives such as Average Magnitude Difference Func-
tion (AMDF). AMDF substitutes the search of a maximum by a minimum search,
as instead of multiplication of the signal with itself, a subtraction is considered for
improved efficiency. Often, the Linear Predictive Coding (LPC) residual or a band
pass filtered version is used over the original signal to exclude other influences from
the vocal tract position. Pitch can also be determined in the time signal which allows
for analysis of micro-perturbations, but is usually more error-prone. Pitch features
are often made perceptually more adequate by logarithmic/semitone transformation,
or normalisation with respect to some (speaker-specific) baseline. Pitch extraction is
error-prone itself, which may influence recognition performance of the actual target
problem [6]. However, the influence is rather small, at least for the current state-of-
the-art in modelling pitch features.

Voice quality is a complicated issue in itself, since there are many different
measures of voice quality [28], mostly clinical in origin and mostly evaluated for
constant vowels only. Other, less well-known voice quality features were intended
towards normal speech from the outset, e. g., those modelling ‘irregular phona-
tion’, cf. [5]. Noise-to-Harmonic Ratio, jitter (micro-perturbation of pitch), shimmer
(micro-perturbation of energy), and further micro-prosodic events are measures of
the quality of the speech signal. Although they depend in part on other LLDs such
as pitch and energy, they reflect peculiar voice quality properties such as breathiness
or harshness.

The spectrum is characterised by formants (spectral maxima depending on the
vocal tract position) modelling spoken content, especially the lower ones. Higher
formants also represent speaker characteristics. Each one is fully represented by po-
sition, amplitude and bandwidth. The estimation of formant frequencies and band-
widths can be based on LPC or on cepstral analysis. A number of further spectral
features can be computed either directly from a spectral transform such as by Fast
Fourier Transform or the LPC spectrum, such as centroid, flux, and roll-off. Further-
more, the long term average spectrum over a unit can be employed: this averages
out formant information, giving general spectral trends.

The cepstrum, i. e., the inverse spectral transform of the logarithm of the spec-
trum, emphasises changes or periodicity in the spectrum, while being relatively
robust against noise. Its basic unit is quefrency. Mel-Frequency Cepstral Coeffi-
cients (MFCCs)—as homomorphic transform with equidistant band-pass-filters on
the Mel-scale—tend to strongly depend on the spoken content. Yet, they have been
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proven beneficial in practically any speech processing task. MFCC are calculated
based on the Fourier transform of a speech frame. Next, overlapping windows—
usually of triangular shape and equidistant on the Mel scale—are used for map-
ping the powers of the obtained spectrogram onto the Mel scale to model human
frequency resolution. Next, the logarithms of the powers are taken per such Mel
frequency filter band—the idea at this point is to decouple the vocal tract transfer
function from the excitation signal of human sound production. Then, the Discrete
Cosine Transform (DCT) of the list of mel log powers is taken for de-correlation
(other transforms are often used as well) to finally obtain the MFCCs as the ampli-
tudes of the resulting DCT spectrum.

Perceptual Linear Predictive (PLP) coefficients and MFCCs are extremely simi-
lar, as they both correspond to a short-term spectrum smoothing—the former by an
autoregressive model, the latter by the cepstrum—and to an approximation of the
auditory system by filter-bank-based methods. At the same time, PLP coefficients
are also an improvement of LPC by using the perceptually based Bark filter bank.
Variants such as Mel Frequency Bands (MFB) that do not decorrelate features as a
final step are also found in this particular field.

Wavelets give a short-term multi-resolution analysis of time, energy and frequen-
cies in a speech signal. Compared to similar parametric representations they are able
to minimise the time-frequency uncertainty.

Duration features model temporal aspects. Relative positions on the time axis of
base contours like energy and pitch such as maxima or on-/off-set positions do not
strictly represent energy and pitch, but duration—because they are measured in sec-
onds, and because they are often highly correlated with duration features. By that,
they can be distinguished according to the way they are extracted: Those that repre-
sent temporal aspects of other acoustic base contours, and those that exclusively rep-
resent the ‘duration’ of higher phonological units, like phonemes, syllables, words,
pauses, or utterances. Duration values are usually correlated with linguistic features:
For instance, function words are shorter on average, content words are longer: This
information can be used for classification, no matter whether the signal is encoded
in linguistic, or acoustic (i. e., duration) features.

Subsequent to the LLD extraction, a number of operators and functionals can be
applied to obtain feature vectors of equal size from each LLD. Functionals provide
a sort of normalisation over time: LLD associated with words (and other units) have
different lengths, depending on the duration of each word and on the dimension
of the window step; with the usage of functionals, we obtain one feature vector per
chunk, with a constant number of elements that can be modelled by a static classifier
or regressor. This cascade procedure, namely LLD extraction followed by functional
application, has two major advantages: Features derived from longer time intervals
can be used to normalise local ones, and the overall number of features might be
opportunely shrunk or expanded with respect to the number of initial LLDs [38].

More intelligent brute-forcing can be obtained by search masks and by a broader
selection of functionals and parameters. In this way, an expert’s experience can be
combined with the freedom of exploration taken by an automatic generation.
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Before functionals are applied, LLDs can be filtered or (perceptually) trans-
formed, and first or second derivatives are often calculated and end up as additional
LLDs. Functionals can range from statistical ones to curve fitting methods. The
most popular statistical functionals cover the first four moments (mean, standard
deviation, skewness and kurtosis), higher order statistics (extreme values and their
temporal information), quartiles, amplitude ranges, zero-crossing rates, roll-on/-off,
on-/off-sets and higher level analysis. Curve fitting methods (mainly linear) produce
regression coefficients, such as the slope of linear regression, and regression errors
(such as the mean square errors between the regression curve and the original LLD).
A comprehensive list of functionals adopted so far in this field can be found in [7].

Fig.9.3 provides an overview of the commonly used features and the principle of
their brute-forcing in several layers.
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Fig. 9.3 Overview on features commonly used for acoustic and linguistic emotion recognition.
Abbreviations: Linear Prediction Cepstral Coefficients (LPCC), Mel Frequency Bands (MFB).

As a typical example, we can have a look at the ‘large’ feature set of the public
open source toolkit openSMILE [16] that is frequently used in the field: Acoustic
feature vectors of 6.552 dimensions are extracted as 39 functionals of 56 acoustic
LLDs, including first and second order delta regression coefficients: Table 9.2 sum-
marizes the statistical functionals which were applied to the LLDs shown in Table
9.1 to map a time series of variable length onto a static feature vector as described
above.



242 Björn Schuller

Table 9.1 33 exemplary typical Low-Level Descriptors (LLD).

Feature Group Features in Group

Raw Signal Zero-crossing-rate
Signal energy Logarithmic
Pitch Fundamental frequency F0 in Hz via Cepstrum and Autocorrelation (ACF).

Exponentially smoothed F0 envelope.
Voice Quality Probability of voicing ( ACF(T0)

ACF(0) )
Spectral Energy in bands 0–250 Hz, 0–650 Hz, 250–650 Hz, 1–4 kHz

25 %, 50 %, 75 %, 90 % roll-off point, centroid, flux, and rel. pos. max. / min.
Mel-spectrum Band 1–26
Cepstral MFCC 0–12

Table 9.2 39 exemplary functionals as typically applied to LLD contours.

Functionals #

Respective rel. position of max./min. value 2
Range (max.-min.) 1
Max. and min. value - arithmetic mean 2
Arithmetic mean, Quadratic mean, Centroid 3
Number of non-zero values 1
Geometric, and quadratic mean of non-zero values 2
Mean of absolute values, Mean of non-zero abs. values 2
Quartiles and inter-quartile ranges 6
95 % and 98 % percentile 2
Std. deviation, variance, kurtosis, skewness 4
Zero-crossing rate 1
# of peaks, mean dist. btwn. peaks, arth. mean of peaks, arth. mean of peaks - overall arth. mean 4
Linear regression coefficients and error 4
Quadratic regression coefficients and error 5

9.2.3 Feature Selection

To improve reliability and performance, but also to obtain more efficient models
in terms of processing speed and memory requirements, one usually has to select
a subset of features that best describe the audio analysis task. A multiplicity of
feature selection strategies have been employed, e.g., for recognition of emotion or
personality, but even for non-linguistic vocalisations, different types of features are
often considered and selected.

Ideally, feature selection methods should not only reveal single (or groups of)
most relevant attributes, but also de-correlate the feature space. Wrapper-based
selection—that is employing a target classifier’s accuracy or regressor’s cross-
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correlation as optimisation criterion in ‘closed loop’—is widely used to tailor the
feature set in match with the machine learning algorithm. However, even for rela-
tively small data-sets, exhaustive selection considering any permutation of features
is still not affordable. Therefore, the search in the feature space must employ some
more restrictive, and thus less optimal, strategies. Probably the most common pro-
cedure chosen is the sequential forward search—a hill climbing selection starting
with an empty set and sequentially adding best features; as this search function is
prone to nesting, an additional floating option should be added: At each step one or
more features are deleted and it is checked if others are more suited.

Apart from wrappers, less computationally expensive ‘filter’ or ‘open loop’ meth-
ods are frequently used if repeated selection is necessary, such as information theo-
retic filters and correlation-based analysis.

There are, however, also classifiers and regressors with ‘embedded’ selection,
such as Decision Trees or Ridge Regression.

As a refinement, hierarchical approaches to feature selection try to optimise the
feature set not globally for all target classes, but for groups of them, mainly couples.

Apart from genuine selection of features, the reduction (i.e. feature extraction)
of the feature space is often considered to reduce the complexity and number of free
parameters to be learnt for the machine learning algorithms while benefiting from
all original feature information. This is achieved by mapping of the input space onto
a less dimensional target space, while keeping as much information as possible.
Principal Component Analysis (PCA) and Linear or Heteroscedastic Discriminant
Analysis (LDA) are the most common techniques.

While PCA is an unsupervised feature reduction method and thus is often sub-
optimal for more complex problems, LDA is a supervised feature reduction method
which searches for the linear transformation that maximises the ratio of the determi-
nants of the between-class covariance matrix and the within-class covariance matrix,
i. e., it is a discriminative method as the name indicates.

In fact, none of these methods is optimal: There is no straight forward way of
knowing the optimal target space size—typically the variance covered is a decisive
measure. Further, a certain degree of normal distribution is expected, and LDA ad-
ditionally demands linear separability of the input space. PCA and LDA are also not
very appropriate for feature mining, as the original features are not retained after the
transformation.

Finally, Independent Component Analysis (ICA) and Non-negative Matrix Fac-
torization (NMF) [25] can be named. ICA maps the feature space onto an orthogonal
space and the target features have the attractive property of being statistically inde-
pendent. NMF is a recent alternative to PCA in which the data and components have
to be non-negative. NMF is at present mainly employed for large linguistic feature
sets.

Also, it seems important to mention that there is a high danger of over-adaptation
to the data that features are selected upon. As a counter-measure, it seems wise to
address feature importance across databases [15].
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9.2.4 Classification and Regression

A number of factors motivate consideration of diverse machine learning algorithms,
the most important being tolerance to high dimensionality, capability of exploiting
sparse data, and handling of skewed classes. In addition, more general considera-
tions such as the ability to solve non-linear problems, discriminative learning, self-
learning of relevant features, high generalisation, on-line adaptation, handling of
missing data, efficiency with respect to computational and memory costs in training
and recognition, etc. can play a decisive role. Further, one may wish for human-
readable learnt models, provision of meaningful confidence measures and handling
of input uncertainties (features like pitch are not determined flawlessly—here an
algorithm may also consider a certainty measure in addition to the predicted pitch
value) for optimal integration in a system context.

As previously mentioned, we can basically differentiate between classifiers that
decide for discrete classes and regressors that estimate a continuous value in the
sense of a function learner. However, practically any classifier can be turned into a
regressor and vice versa, although the result would not necessarily be as efficient
for this task as for its ‘native’ task. Classification using regression methods can for
example be obtained by having each class binarised and one regression model built
for each class value. The other way round, a regression scheme can be realised by
using any classifier on a copy of the data where the continuous ‘class’ is discretised.
The predicted value is the expected value of the mean class value for each discre-
tised interval, based on the predicted probabilities for each interval [58] (also see
‘squashing’ in Chapter 1).

The problem of a high dimensional feature set is usually better addressed by
feature selection and elimination before actual classification takes place. Popular
classifiers such as Linear Discriminant Classifiers (LDCs) and k-Nearest Neighbor
(kNN) classifiers have been used since the very first studies. However, they suffer
from the increasing number of features that leads to regions of the feature space
where data are very sparse (‘curse of dimensionality’). Classifiers such as kNN that
divide the feature space into cells are affected by the curse of dimensionality and
are sensitive to outliers. A natural extension of LDCs are Support Vector Machines
(SVM): they combine discriminative learning and solving of non-linear problems
by a Kernel-based transformation of the feature space. While they may not always
lead to the best result, they provide good generalisation properties, and can be seen
as a sort of state-of-the-art classifier (or regressor, as the related Support Vector
Regression allows for handling of continuous problem descriptions).

Small data sets are, in general, best handled by discriminative classifiers. The
most used non-linear discriminative classifiers apart from SVM are likely to be Arti-
ficial Neural Networks (ANNs) and decision trees. Decision hyperplanes learnt with
ANN might become very complex and depend on the topology of the network (num-
ber of neurons), on the learning algorithm (usually a derivation of the well-known
Backpropagation algorithm) and on the activity rules. For this reason, ANNs are
less robust to over-fitting, and require greater amounts of data to be trained on. The
recent incorporation of a long-short-term memory function seems to be a promising
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future direction [60] that may raise their popularity. Also, multi-task learning is well
established, which may be of particular interest in this field to, e.g., assess emotion
and personality in one pass, benefiting from mutual dependencies.

Decision trees are also characterised by the property of handling non-linearly
separable data; moreover, they are less of a ‘black box’ compared to SVM or neural
networks, since they are based on simple recursive splits (i. e., questions) of the data.
These binary questions are very readable, especially if the tree has been adequately
pruned. As accuracy degrades in case of irrelevant features or noisy patterns, Ran-
dom Forests (RF) can be employed: They consist of an ensemble of trees, each one
accounting for random, small subsets of the input features obtained by sampling
with replacement. They are practically insensitive to the curse of dimensionality,
while, at the same time, still providing all the benefits of classification trees.

As many paralinguistic tasks (such as emotion) are not evenly distributed among
classes in databases, balancing of the training instances with respect to instances per
class is often a necessary step before classification [43]. The balancing of the output
space can be addressed either by considering proper class weights (e. g., priors),
or by resampling, i. e., (random) up- or down-sampling. Class priors are implicitly
taken into account by discriminative classifiers.

As explained above, applying functionals to LLD is done for obtaining the
same number of features for different lengths of units such as turns or words. Dy-
namic classifiers like Hidden Markov Models, Dynamic Bayesian Networks or sim-
ple Dynamic Time Warp allow to skip this step in the computation by implicitly
warping observed feature sequences over time. Among dynamic classifiers, Hid-
den Markov Models (HMM) have been used widely. The performance of static
modelling through functionals is often reported as superior [43], as paralinguistic
tasks are apparently better modelled on a time-scale above frame-level; note that
a combination of static features such as minimum, maximum, onset, offset, dura-
tion, regression, etc. implicitly shape contour dynamics as well. A possibility to use
static classifiers for frame-level feature processing is further given by multi-instance
learning techniques, where a time series of unknown length is handled by SVM or
similar techniques. Also, a combination of static and dynamic processing may help
improve overall accuracy [55].

Ensembles of classifiers combine their individual strengths, and might improve
training stability. There exists a number of different approaches to combine clas-
sifiers. Popular are methods based on majority voting such as Bagging, Boosting
and other variants (e. g., MultiBoosting). More powerful, however, is the combina-
tion of diverse classifiers by the introduction of a meta-classifier that learns ‘which
classifier to trust when’ and is trained only on the output of ‘base-level’ classifiers,
known as Stacking. If confidences are provided on lower level, they can be exploited
as well. Still, the gain over single strong classifiers such as SVM may not justify the
extra computational costs [39].

In line with the different models to describe the named problems, e.g., by
classes or continuous dimensions, also different approaches towards classification
are needed: As real-life application is not limited to prototypical cases, also detec-
tion as opposed to classification can be expected as an alternative paradigm: ‘Out-of-



246 Björn Schuller

vocabulary’ classes need to be handled as well (as an example, imagine the emotions
anger and neutral having been trained, but in the recognition phase joy appears), and
apart from the easiest solution of introducing a garbage class [43], detection allows
for more flexibility. Detection is thereby defined by inheriting a rejection threshold.
In this respect, confidence measurements should be mentioned, which are, however,
not sufficiently explored, yet.

9.2.5 Parameter Tuning

Apart from the selection of features, a crucial factor in optimisation of performance
is the ‘fine tuning’ of classifiers’ parameters on a development partition of the train-
ing data. Typically such parameters comprise the exponent of polynomial Kernels
for Support Vector Machines or the number of nearest neighbors in k nearest neigh-
bor classification, etc. While these can be optimised by equidistant scanning of the
parameter space, more efficient methods exist, of which grid search is the most fre-
quently encountered in the field (e. g., [23]). Grid search is a greedy algorithm that
first performs a rough search over the values and then narrows down on promising
areas in terms of best accuracy for a classifier or cross-correlation for a regressor
in a recursive manner. Obviously, just as for the selection of features, such searches
do not necessarily lead to the global optimum, if the search is not exhaustive. In
addition, they also may differ drastically for different databases, depending on their
size and complexity. Thus, again cross-corpus parameter tuning may help find more
generally valid sets than considering just intra-database variation.

9.3 ‘Speech’ — The (Non-) Linguistic Analysis

As said, in this chapter speech stands for spoken text, i. e., the analysis of textual
cues. Apart from the analysis of linguistic content, non-linguistic vocal outbursts as
laughter are dealt with.

9.3.1 Analysis of linguistic content

Spoken or written text provides cues on emotion, personality or further states and
traits. This is usually reflected in the usage of certain words or grammatical alter-
ations, which means in turn, in the usage of specific higher semantic and prag-
matic entities. A number of approaches exists for this analysis: key-word spot-
ting [12], rule-based modelling [26], Semantic Trees [61], Latent Semantic Anal-
ysis [17], World-knowledge-Modelling, Key-Phrase-Spotting, String Kernels [37],
and Bayesian Networks [8]. Contextual and pragmatic information has been mod-
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elled as well, e.g., dialogue acts [26], or system and user performance [1]. Two
methods seem to be predominant, presumably because they are shallow represen-
tations of linguistic knowledge and have already been frequently employed in au-
tomatic speech processing: (class-based) N-Grams and Bag of Words (vector space
modelling), cf. [41].

N-Grams and Class-based N-Grams are commonly used for general language
modelling. Thereby the posterior probability of a (class of a) word is given by its
predecessors from left to right within a sequence of N words. For recognition of a
target problem such as emotion or personality, the probability of each target class
is determined per N-gram of an utterance. In addition, word-class based N-grams
can be used as well, to better cope with data sparseness. For the example of emotion
recognition, due to data sparseness mostly uni-grams (N=1) have been applied so
far, besides bi-grams (N=2) and trigrams (N=3) [2]. The actual target class is calcu-
lated by the posterior probability of the class given the actual word(s) by maximum
likelihood or a-posteriori estimation. An extension of N-Grams which copes with
data sparseness even better is Character N-Grams; in this case larger histories can
be used.

Bag of Words is a well-known numerical representation form of texts in auto-
matic document categorisation [22]. It has been successfully ported to recognise
sentiments or emotion [41] and can equivalently be used for other target problems.
In this approach each word in the vocabulary adds a dimension to a linguistic vector
representing the term frequency within the actual utterance. Note that easily, very
large feature spaces may occur, which usually require intelligent reduction. The
logarithm of frequency is often used; this value is further better normalised by the
length of the utterance and by the overall (log)frequency within the training corpus.

In addition, exploitation of on-line knowledge sources without domain specific
model training has recently become an interesting alternative or addition [42]—e.g.,
to cope with out-of-vocabulary events. The largely related fields of opinion mining
and sentiment analysis in text bear interesting alternatives and variants of methods.

Although we are considering the analysis from spoken text, only few results for
paralinguistic speaker state and trait recognition rely on automatic speech recog-
nition (ASR) output [40] rather than on manual annotation of the data. As ASR
of affective speech itself is a challenge [52], this step is likely to introduce errors.
To some extent errors deriving from ASR and human transcription can be elimi-
nated by soft-string-matching such as tolerating a number of deletions, insertions,
or substitutions of characters.

To reduce the complexity for the analysis, stopping is usually used. This resem-
bles elimination of irrelevant words. The traditional approach towards stopping is
an expert-based list of words, e. g., of function words. Yet, even for an expert it
seems hard to judge which words can be of importance in view of the target prob-
lem. Data-driven approaches like salience or information gain based reduction are
popular. Another often highly effective way is stopping words that do not exceed a
general minimum frequency of occurrence in the training corpus.

Tokenisation, i. e., chunking of the continuous text string similar to chunking of
the acoustic stream above, can be obtained by mapping the text onto word classes:
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Stemming is the clustering of morphological variants of a word (such as “fight”,
“fights”, “fought”, “fighting”, etc.) by its stem into a lexeme. This reduces the num-
ber of entries in the vocabulary, while at the same time providing more training
instances per class. Thereby also words that were not seen in the training can be
mapped upon their representative morphological variant, for instance by (Iterated)
Lovins or Porter stemmers that are based on suffix lists and rules. Part-of-Speech
(POS) tagging is a very compact approach where classes such as nouns, verbs, ad-
jectives, particles, or more detailed sub-classes are modelled [51]. POS tagging and
stemming have been studied thoroughly [37].

Also sememes, i. e., semantic units represented by lexemes, can be clustered into
higher semantic concepts such as generally positive or negative terms [7]. In addi-
tion, non-linguistic vocalisations can easily be integrated into the vocabulary [48].

9.3.2 Analysis of non-linguistic content

While non-linguistic events such as laughter can be modelled as an extra type of
feature stream or information, a very simple way is to include them in the string
of linguistic events. On the positive side, this can put events like laughter in direct
relation with the words. This may, however, disrupt linguistically meaningful se-
quences of words. Alternatively, frequencies of occurrences normalised to time or
even functionals applied to occurrences are alternative solutions.

9.3.3 (Non-)Linguistic Feature Extraction

While non-linguistic events can be recognised directly in-line with speech as by an
Automatic Speech Recogniser, it seems noteworthy to mention that one can also
use brute-forced features as described above. Interestingly, little to no difference is
reported for these two types of representation [48]. The incorporation into a speech
recogniser has the advantage that speech is recognised with integration of higher-
level knowledge as coming from the language model. However, if non-linguistic
vocalisations are modelled on their own, a richer feature representation can be used
that may unnecessarily increase space complexity for speech recognition. Further-
more, in case of non-linguistic vocalisations such as laughter, these may also appear
‘blended’ with speech, as in the case of ‘speech-laughter’, i. e., laughter while ac-
tually speaking words. This cannot easily be handled in-line with ASR, as the ASR
engine typically would have to decide for phonetically meaningful units or laughter.
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9.3.4 Classification and Regression

In principle, any of the formerly discussed learning algorithms can be used for lin-
guistic analysis, as well. However, different ones may be typically preferred owing
to the slightly different characteristics of linguistic features. In particular, statisti-
cal algorithms and Kernel machines such as Support Vector Machines are popular.
Noteworthy, there are also specific algorithms that may operate directly on string
input such as the String Kernels [27] for Support Vector Machines.

9.4 Data, Benchmarks, and Application Examples

In this section, let us first have a look at some typical databases focusing on affec-
tive speaker states. Next, two examples of systems that analyse vocal behaviour on
different levels will shortly be described.

9.4.1 Frequently Encountered Data-Sets and their Benchmarks

As benchmark databases, nine most frequently encountered databases that span a
range from acted over induced to spontaneous affect portrayals are presented, focus-
ing in particular on affective speaker states. For better comparability of obtained per-
formances among corpora, the diverse affect groups are additionally mapped onto
the two most popular axes in the dimensional emotion model as in [46]: arousal
(i. e., passive (“-”) vs. active (“+”)) and valence (i. e., negative (“-”) vs. positive
(“+”)). Note that these mappings are not straight forward—here we will favour bet-
ter balance among target classes. Let us further discretize into the four quadrants (q)
1–4 of the arousal-valence plane for continuous labelled corpora. In the following,
each set is shortly introduced, including the mapping to binary arousal/valence by
“+” and “-” per emotion and its number of instances in parentheses. Note that the
emotions are referred to as in the original database descriptions.

The Danish Emotional Speech (DES) database [13] is professionally acted and
contains nine sentences, two isolated words, and chunks that are located between
two silent segments of two passages of fluent text. Affective states contain angry
(+/-, 85), happy (+/+, 86), neutral (-/+, 85), sadness (-/-, 84), and surprise (+/+, 79).

The Berlin Emotional Speech Database (EMOD) [9] features professional actors
speaking ten emotionally undefined sentences. 494 phrases are commonly used:
angry (+/-, 127), boredom (-/-, 79), disgust (-/-, 38), fear (+/-, 55), happy (+/+, 64),
neutral (-/+, 78), and sadness (-/-, 53).

The eNTERFACE (eNTER) [29] corpus consists of recordings of subjects from
14 nations speaking pre-defined spoken content in English. The subjects listened
to six successive short stories eliciting a particular emotion out of angry (+/-, 215),
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disgust (-/-, 215), fear (+/-, 215), happy (+/+, 207), sadness (-/-, 210), and surprise
(+/+, 215).

The Airplane Behavior Corpus (ABC) [47] is based on induced mood by pre-
recorded announcements of a vacation (return) flight, consisting of 13 and 10 scenes.
It contains aggressive (+/-, 95), cheerful (+/+, 105), intoxicated (+/-, 33), nervous
(+/-, 93), neutral (-/+, 79), and tired (-/-, 25) speech.

The Speech Under Simulated and Actual Stress (SUSAS) database [21] serves as
a first reference for spontaneous recordings. Speech is additionally partly masked by
field noise in the chosen speech samples of actual stress. SUSAS content is restricted
to 35 English air-commands in the speaker states of high stress (+/-, 1 202), medium
stress (+/-, 1 276), neutral (-/+, 701), and scream (+/-, 414).

The Audiovisual Interest Corpus (AVIC) [48] consists of spontaneous speech and
natural emotion. In its scenario setup, a product presenter leads subjects through a
commercial presentation. AVIC is labelled in “levels of interest” (loi) 1–3 having
loi1 (-/-, 553), loi2 (+/+, 2279), and loi3 (+/+, 170).

The Belfast Sensitive Artificial Listener (SAL) data are part of the HUMAINE
database. The subset used—as in [59]—has an average length of 20 minutes per
speaker of natural human-SAL conversations. The data have been labelled contin-
uously in real time with respect to valence and activation, using a system based on
FEELtrace [11]. The annotations were normalized to zero-mean globally and scaled
so that 98 % of all values are in the range from -1 to +1. The 25 recordings have
been split into turns using energy based Voice Activity Detection. Labels for each
obtained turn are computed by averaging over the complete turn. Per quadrant the
samples are: q1 (+/+, 459), q2 (-/+, 320), q3 (-/-, 564), and q4 (+/-, 349).

The SmartKom (Smart) [53] corpus consists of Wizard-Of-Oz dialogues. For
evaluations, the dialogues recorded during a public environment technical scenario
are used. It is structured into sessions which contain one recording of approximately
4.5 min length with one person, and labelled as anger/irritation (+/-, 220), helpless-
ness (+/-, 161), joy/gratification (+/+, 284), neutral (-/+, 2179), pondering/reflection
(-/+, 643), surprise (+/+, 70), and unidentifiable episodes (-/+, 266).

Finally, the Vera-Am-Mittag (VAM) corpus [18] consists of recordings taken
from a German TV talk show. The audio recordings were manually segmented to the
utterance level, whereas each utterance contains at least one phrase. The labelling
is based on a discrete five point scale for each of the valence, activation, and domi-
nance dimensions. Samples among quadrants are q1 (+/+, 21), q2 (-/+, 50), q3 (-/-,
451), and q4 (+/-, 424).

Further details on the corpora are summarized in Table 9.3 and found in [45].
Looking at the table, some striking facts become evident: most notably, the high
sparseness of data with these sets typically providing only one hour of speech from
only around 10 subjects. In related fields as ASR, several hundreds of hours of
speech and subjects are typically contained. This is one of the major problems in
this field at the moment. In addition, one sees that often such data are rather acted
as opposed to natural and that the linguistic content is often restricted to pre-defined
phrases or words. Obviously, this is rather an annotation challenge, as emotional
speech data per se would be available.
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Table 9.3 Overview on the selected corpora (E/D/G: English/German/Danish, act/ind/nat:
acted/induced/natural, Lab: labellers, Rec: recording environment, f/m: (fe-)male subjects).
Speaker-independent recognition performance benchmarks are provided by weighted (WA) and
unweighted (UA) average accuracy. * indicates results obtained by Support Vector Machines if
these had outperformed Deep Neural Networks as taken in all other cases.

Corpus Speech # All h:mm # m # f # Lab Rec kHz # All # Arousal # Valence
UA WA UA WA UA WA

ABC G fixed act 430 1:15 4 4 3 studio 16 56.1 61.5 69.3 80.6 79.6 79.0
AVIC E free nat 3002 1:47 11 10 4 studio 44 59.9 79.1 75.6 85.3 75.2 85.5
DES D fixed act 419 0:28 2 2 – studio 20 59.9* 60.1* 90.0 90.3 71.7 73.7
EMOD G fixed act 494 0:22 5 5 – studio 16 84.6* 85.6* 97.6 97.4 82.2 87.5
eNTER E fixed ind 1277 1:00 34 8 2 studio 16 72.5* 72.4* 78.1 79.3* 78.6* 80.2*
SAL E free nat 1692 1:41 2 2 4 studio 16 35.9 34.3 65.1 66.4 57.7 53.0
Smart G free nat 3823 7:08 32 47 3 noisy 16 25.0 59.5 55.2 79.2 52.2 89.4
SUSAS E fixed nat 3593 1:01 4 3 – noisy 8 61.4* 56.5* 68.2 83.3 74.4 75.0
VAM G free nat 946 0:47 15 32 6/17 noisy 16 39.3 68.0 78.4 77.1 52.4 92.3

To provide an impression on typical performances in the field, the last columns
of Table 9.3 provide weighted (WA) and unweighted (UA) accuracy of speaker in-
dependent recognition by feature reduction with Deep Neural Networks and sub-
sequent distance classification (DNN) or Support Vector Machines on the original
space (SVM), with the ‘large’ standard feature set of openSMILE introduced in Sec-
tion 9.2. Such speaker independence is obtained by partitioning the data in a ‘leave-
one-speaker-out’, or—for databases with many speakers, here starting at more than
10—‘leave-one-speaker-group-out’ cross-validation manner. This cross-validation
is very popular in this field, as it allows to test on all instances of the very limited
resources. The accuracy of the classifier that produced the higher result on develop-
ment data is presented, each, in the table. Balancing of the training partition is used
to cope with the imbalance of instances in the training set among affective states.
More details are found in [54]. If we now look at these numbers, it seems clear that
acted data are considerably easier to recognise automatically owing to their often
exaggerated display. Naturally, this is more true in the case where the verbal content
is limited. Another interesting but typical fact is that arousal is usually recognised
more reliably. To better handle valence, one would best integrate linguistic feature
information.

To conclude this chapter, let us now have a look at two examples of voice and
speech analysis systems that are currently used in practice and that investigate a
number of different issues in contrast to the above named problems.
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9.4.2 Human-to-Human Conversation Analysis

The AVIC corpus as introduced above and as used in the INTERSPEECH Paralin-
guistic Challenge [44] provides a good example of vocal behaviour analysis in nat-
ural human conversational speech: In [48] an analysis of non-linguistic vocalisa-
tions and speaker’s interest is shown, based on these non-linguistic vocalisations
and further acoustic and linguistic features as introduced above. The acoustic fea-
ture space consists of a brute-force large space with subsequent feature selection
with the classifier in the loop and SVM for classification. Linguistic features are the
described Bag of Words, integrated directly into the feature vector. Non-linguistics
are recognised in a separate recognition pass by the same basis of acoustic features
but optimised for this task. The occurrence of non-linguistics is simply added to the
linguistic feature string.

To demonstrate efficiency over weighted and unweighted accuracies like we pre-
sented in Table 9.3, 40 participants interacted with a virtual product and company
tour that took participants’ interest into account to change topic in case of their bore-
dom. Three variants were used: topic change after a fixed time, with fully automatic
interest recognition with this system or by a human Wizard-of-Oz. The question
“Did you think the system was taking into account your interest?” was positively
answered by 35 % in the first case (no interest recognition), by 63 % in the second
case (fully automatic interest recognition) and by 84 % in the last case (human in-
terest recognition) nicely demonstrating that the technology seems to be generally
working, but that there is also still headroom for improvement to reach human-like
performance.

In our next example, let us switch to human-computer conversation.

9.4.3 Human-to-Agent Conversation Analysis

In the European SEMAINE project, a Sensitive Artificial Listener (SAL)—a mul-
timodal dialogue system with the social interaction skills needed for a sustained
conversation with a human user—was built [36]. Such a system demands for on-line
incremental emotion recognition, in order to select responses as early as possible. In
SEMAINE, the user’s affective state and non-verbal behaviour are the major factors
for deciding upon agent actions. Therefore it is essential to obtain a fast estimate of
the user’s affective state as soon as the user starts speaking, and refine the estimate
as more data are available (for example, in [56] 350 ms are suggested for human-
like back-channelling in certain situations). Moreover, the system needs to know
how reliable the affect dimension predictions are, in order to identify salient parts of
highly affective speech reliably, in order to choose appropriate actions. The verbal
dialogue capabilities of the system are very limited on purpose. They are basically
limited to agreement/disagreement, emotionally relevant keywords, and changing
characters (see below for more information on the four different SEMAINE charac-
ters/personalities).
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In the SEMAINE system, which is freely available as release for research and
tutoring1, Feature extractors analyse low-level audio and video signals, and pro-
vide feature vectors periodically (10 ms) to the analysers, which process the low-
level features and produce a representation of the current user state, in terms of
epistemic-affective states (emotion, interest, etc.). Since, automatic speech recogni-
tion or emotion recognition might benefit from the dialogue context or user profiles
at a higher level, interpreter components are contained in the system to address this
issue. A typical and obvious example is the ‘turn-taking interpreter’, which decides
when it is time for the agent to take the turn. These are examples—the SEMAINE
API goes beyond these capabilities [36].

The next group of components is a set of action proposers which produce agent
action candidates independently from one another. The action proposers take their
input mainly from the user, dialog, and agent state. As for the voice and speech anal-
ysis, the free open source openSMILE2 [16] module extracts state of the art features
stemming from the large feature set described in Section 9.2 for voice activity detec-
tion, prosody analysis, keyword spotting, non-linguistic vocalisation detection, and
an acoustic emotion recognition module. Prosodic features, which are used by other
SEMAINE components (e.g., for turn taking decisions), include pitch contour, en-
ergy/loudness, and per pseudo-syllable pitch direction estimates. Classification and
regression are based on on-line Long Short-Term Memory (LSTM) Recurrent Neu-
ral Networks.

The SEMAINE keyword spotter detects a set of 176 keywords (including the
non-linguistic vocalisations ‘breathing’, ‘laughing’, and ‘sighing’ handled in-line)
which are relevant for the dialogue management and for linguistic emotion recogni-
tion. As system responses have to be prepared already before the user has finished
speaking, the keyword spotter operates incrementally. The acoustic feature extractor
extracts large sets of acoustic features used for recognition of the user”s affective
state (5 continuous dimensions: arousal, expectation, intensity, power, and valence,
and 3 ‘levels of interest’: bored, neutral, interested) incrementally in real-time with
regression models trained on the SEMAINE database. High dimensional acoustic
feature vectors are concatenated with linguistic Bag of Words vectors, which are
computed from the keyword spotter output. An incremental segmentation scheme is
applied to the continuous audio input: analysis is conducted over windows of up to
five seconds length, which are shifted forward in time with a step of two seconds,
thus producing an estimate of the user’s affective state every two seconds. The same
acoustic feature set as for the 5 dimensional affect recognition is used in models
trained on the AVIC corpus, as described in Section 9.4.

1 http://semaine.sourceforge.net/
2 http://www.openaudio.eu
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9.5 Summary

This chapter introduces the principles of analysis of acoustic and linguistic proper-
ties of the voice and speech for the assessment of speaker states, traits, and vocal
behaviour such as laughter. While voice and speech analysis follows the general
pattern recognition paradigm, one of its major peculiarities might be the choice of
features. In particular, brute-forcing of rather large feature spaces and subsequent
selection are common procedure. Further, the type of features—either low-level de-
scriptors that provide a value per short frames of speech (usually around 100 per
second), or functionals per larger units of time—decide on the type of classifier or
regressor. Owing to the diversity of tasks reaching from emotion to personality or
laughter, different machine learning algorithms are preferred and used. Features and
parameters of these learning algorithms can be fine tuned to the problem and data at
hand, yet this comes at the risk of over-adaptation.

Another main peculiarity is the ambiguity of ground truth due to the often very
subjective nature of labelling and to the fact that models for the description of tasks
like emotion or personality prediction are usually non-trivial. Finally, one of the
most decisive limiting factors is typically the ever-present lack of data—in particu-
lar of natural data of a multiplicity of speakers and languages and cultures. However,
reasonably functioning accuracies independent of speakers can already be provided
allowing for first systems to be operated ‘in the wild’. At the same time, further re-
search will usually be needed to achieve human-like performance for cross-database
and task operation potentially in the presence of noise and reverberation.

9.6 Questions

1. Discuss the difference between speaker states and traits and list at least three
examples for each of these two.

2. Name at least five ideal conditions for a collection of speech and voice data.
3. Describe the chain of processing for the analysis of speech and voice including

each block and its function.
4. Explain the difference between Low-Level Descriptors and functionals and name

at least five examples for each of these two.
5. Which units for chunking exist and why is chunking needed?
6. Name at least five ideal conditions for a classification or regression algorithm.
7. How can linguistic information be incorporated in the analysis process? Name at

least two alternative strategies and describe their principle.

9.7 Glossary

• Chunking Segmentation of the audio stream into units of analysis.
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• Low-Level Descriptor Time series of extracted feature values—typically on
frame level.

• Functional Projection of a function onto a scalar value by statistical or other
functions.

• Regression Mapping of a feature input vector onto a real-valued output instead
of discrete classes as in classification.

• Prosody Rhythm, stress, and intonation of speech.
• N-Gram Subsequence (e. g., words or characters) from a given sequence (e. g.,

turns or words) with n consecutive items.
• Bag of Words Representation of text (e. g., of a speaker turn) as numerical feature

representation (e. g., per word or N-Gram of words) without modelling of order
of units.

• Wizard-of-Oz (experiment) The Wizard-of-Oz simulates an autonomous system
by a human response during an experiment, for example to test new technology
and its acceptance before it actually exists or to allow for data collection.

• Arousal Physiological/psychological state of being (re-)active.
• Valence Here used to categorize emotion as ‘positive’ (e. g., joy) or ’negative’

(e. g., anger).
• Non-Linguistic (event) Describes vocal outbursts of non-linguistic character such

as laughter or sigh.
• Pitch Perceived frequency of sound (here speech) as opposed to the fundamen-

tal frequency—perception can vary according to the intensity, duration, and fre-
quency of the stimuli.

• Keyword Spotter Automatic Speech Recogniser that focuses on the highly robust
detection of selected words within a speech or general audio stream.

• Lexeme In linguistics, this roughly subsumes a number of forms (such as flex-
ions) of a single word (such as speak, speaks, spoken as forms of the lexeme
SPEAK).
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