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1 Introduction 

1.1 Objective of the study 

Amongst others, planetary gear transmissions offer more options for generating transmis-

sions ratios, more compact, space and weight saving design, noise reduction, higher effi-

ciency, more favorable load distribution and higher load carrying capacity in comparison to 

conventional transmissions. Complex-compound planetary gear transmissions are classi-

fied as special types among the general group of planetary gear transmissions. They fea-

ture more than three shafts, which can be connected to the periphery, and a single planet 

carrier. Complex-compound planetary gear transmissions are frequently used as simple 

speed reduction gears or within multi-speed transmissions. A typical representative is 

shown in Figure 1-1 which occurs both in dated and modern automated transmission con-

cepts. Complex-compound planetary gear transmissions feature particular characteristics 

and advantages in addition to the general ones: 

 High number of available transmission ratios 

 Use of multiple inputs and outputs 

 Expanded operating range in terms of power summation and power partition 

 High efficiency in combination with high transmission ratios 

 Low number of parts and low number of special parts (planet carrier) 

 Low material inventory and low designed space 

 High power density, low weight and costs 

The kinematics and statics as well as the operating behavior of complex-compound plane-

tary gear transmissions are rather complex. Most of the existing analysis methods are non-

transparent, often subject to mistakes or computationally demanding. In many cases, a 

limitation on few selected designs and operating conditions is needed in order to handle 

the diversity. The objective of the present study is to develop easy, plausible and computa-

tionally manageable analysis and synthesis methods that are suitable for the use of de-

signers in early conceptual design phases. These methods are envisioned to be general 

such that they can handle any arbitrary design and operating conditions.  



2 Introduction 

 

Figure 1-1: Complex-compound planetary gear transmission of 

the Ravigneaux type [6_RAV38]  

1.2 Method of solution 

The first part of the study focuses on the analysis and efficiency calculation of complex-

compound planetary gear transmissions. For this purpose, the external and internal power 

flow behaviors are examined in detail. By means of graph theory, the decisive parts and 

physical interrelationships within the complex-compound planetary gear transmission are 

identified. Existing and effective mathematical algorithms are adapted. Furthermore, a 

well-established method using Wolf symbols is augmented for being capable to analyze 

any kind of planetary gear transmission. Special cases and operating conditions such as 

self-locking are treated. Moreover, an efficiency approximation method is proposed to ana-

lyze transmission concepts without knowing their complete design details. 

The second part of the study is dedicated to the synthesis of complex-compound planetary 

gear structures. A dual approach is presented. On the one hand, an abstract lever analogy 

being detached from design aspects is utilized to define desired operating conditions. On 

the other hand, a reference transmission representative of the most complicated structure 

allowed is specified. By means of the efficiency approximation method mentioned above, 

the lever model is detailed. A systematic matching process combining the lever model and 

the reference transmission generates definite transmission structures. The proposed syn-

thesis method avoids creating all possible combinations of solutions but generates only 

those solutions satisfying the desired operating conditions. Finally, a limited, manageable 

amount of feasible and practicable structure variants is disclosed. 
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2 Basics and terminology 

Various terms have evolved over time to describe parts, designs, operating conditions and 

physical interrelationships of or within planetary gear transmissions. For a clear terminolo-

gy a short overview of commonly used planetary gear transmission designs with frequently 

used terms and abbreviations is given. Further, basic formulas, physical values, sign con-

ventions, matrix notations and degrees of freedom are discussed. 

2.1 Single planetary gear transmissions 

The most important component inside a single planetary gear transmission (single PGT) is 

a mechanism providing a transmission ratio between two rotating shafts with a housing 

assumed as being fixed, a so-called basic train. The transmission ratio of this basic train is 

most often generated using spur or helical gears which will be focused in this work. It can 

alternatively be provided using bevel gears, chain or belt drives, hydrostatic transmissions, 

friction wheels, etc.. An example conventional, geared transmission is shown in Figure 2-1 

as schematic representation. It is also known as planetary gear in star arrangement. 

 

Figure 2-1: Example conventional transmission  

output shaft

housing

input shaft



4 Basics and terminology 

The single PGT is developed from an arbitrary conventional transmission by pivoting the 

housing around a common central axis of rotation as additional shaft. Thus, the single 

PGT features exactly three shafts connected to the periphery (Figure 2-2).  

 

Figure 2-2: Example simple PGT 

If the axis of rotation of a gear is the central axis, the gear is referred to as central gear. 

Other gears feature a center distance to the central axis and are called planet gears or 

planets. The planets are mounted on planet shafts which are supported by the planet car-

rier. Alternatively, the planets can be directly supported on a planet pin, which is fixed to 

the carrier. The shafts connected to the central gears and the carrier are called central 

shafts. Mostly, several identical planets are equally spaced around the sun gear in order to 

achieve a favorable load sharing amongst the planets. Schematic representations show 

only one of the planets. A single PGT is termed simple PGT if its planets are single, inter-

mediate gearwheels directly connected to the central gears. 

A planet of a PGT does not have to be performed by only one gearwheel. PGTs can also 

contain stepped planets or multiple meshing planets or rather planet pairs (Figure 2-3). 

These PGTs are named compound PGTs, since their planets are compound of multiple 

gearwheels. In respect of meshing planet pairs, each planet can also be of the stepped 

type, but usually not more than two planets are arranged within a PGT due to lack of 

space for the planets themselves and for the carrier.  

If a PGT features two central gears, the PGT is referred to as reverted PGT, since the gear 

chain of the basic train from one central gear to the other leads back to the same axis of 

rotation, the central axis. The planets do not have a direct link to the periphery. Otherwise, 

if the input and output of the basic train do not share a common axis of rotation, the PGT is 

referred to as open PGT. This type of PGT is seldom used for special applications due to 

the eccentric movement of at least one shaft. An open PGT can also be converted into a 

central gear

(internal gear)

planet gearplanet shaft

planet carrier

central shaft

central gear

(sun gear)

housing

central shaft

(side view)

central axis
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reverted PGT by inserting a universal joint or mechanical feedback (Figure 2-4). By rea-

son of the increased construction effort and torque fluctuations created by the universal 

joint, this type of PGT is not taken into consideration within the course of this work. 

 

Figure 2-3: Example compound PGT with a) stepped planet, b) meshing planet pair 

 

 

Figure 2-4: Example a) open PGT, b) reverted PGT with mechanical feedback 

(meshing)

planet pair

stepped

planet

a) b)

a) b)

mechanical

feedback
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2.2 Complex-compound planetary gear transmissions 

By connecting more than two central gears to a compound planet of a PGT, a so-called 

complex-compound PGT (CCPGT) is achieved. Theoretically, the number of planet 

gearwheels and thus the number of central gears is not limited. CCPGTs are distinguished 

by their number of central shafts. Figure 2-5 shows an example 5-shaft CCPGT. This kind 

of PGT is also known as double-planet system. 

 

Figure 2-5: Example 5-shaft CCPGT 

The CCPGT always features a single planet carrier. Every two central gears are indirectly 

connected via a chain of planet gears. Therefore, multiple sets of single PGTs are included 

in every CCPGT.  

In comparison to single PGTs, CCPGTs offer a larger number of inputs and outputs, a 

higher static degree of freedom (Section 2.6), a larger number of transmission ratios and 

thus an advanced operating range regarding the power flow. Also, CCPGTs are often used 

as high ratio transmissions by only connecting three central shafts to the periphery. In this 

case, the efficiency can be much higher and the designed space can be significantly 

smaller, respectively. 

In many cases, CCPGTs are advantageous compared to coupled PGTs (Section 2.3) due 

to less number of parts, higher efficiency, lower construction effort, lower weight and their 

naturally very compact design. On the other hand, disadvantages in respect of manufac-

turing complexity, load sharing, stiffness and noise are to be accepted depending on the 

final design. 
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2.3 Coupled planetary gear transmissions 

Coupled PGTs contain multiple sets of single PGTs and/or CCPGTs. At least one central 

shaft of every PGT included is either permanently or temporarily connected to a central 

shaft of another PGT. As the number of connections is not strictly prescribed, PGTs can 

be coupled in various ways. An example coupled PGT is shown in Figure 2-6. In contrast 

to CCPGTs, coupled PGTs always feature multiple planet carriers (which can be con-

nected). 

 

Figure 2-6: Example coupled PGT 

As a function of the number of couplings, coupled PGTs increase the kinematic and static 

degree of freedom. Complex designs of single PGTs and CCPGTs can be avoided using 

coupled PGTs consisting of multiple sets of simple PGTs. It is also possible to gain higher 

transmission ratios while increasing the efficiency or ensuring a favorable load sharing 

among the PGTs included. Applying clutches and brakes, coupled PGTs offer multiple 

gear speed ratios between certain input and output members. 

2.4 Basic formulas and sign conventions 

In the context of PGT efficiency calculation, the basic physical parameters are angular 

speeds, torques, power as well as certain efficiency factors and power losses, respective-

ly. In the following, basic formulas for the kinematics and statics analyses are derived as-

suming loss-free conditions. Sign conventions are defined. The efficiency calculation itself 

will be treated from Chapter 3 on. 
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2.4.1 Kinematics analysis 

 

Figure 2-7: Basic gearings 

The transmission ratio of basic gearings shown in Figure 2-7 is defined by the ratio of the 

angular or rotational speeds of its members 1 and 2: 

     
  

  
 

  

  
  

  

  
  

  

  
   

   

   
  

   

   
 ( 2.1 ) 

i [-] transmission ratio 
n [1/s] rotational speed 
ω [rad/s] angular speed 
z [-] number of teeth 

d [mm] diameter of reference circle 
dw [mm] diameter of pitch circle 
db [mm] diameter of base circle 

It is simultaneously defined by the ratio of the numbers of teeth, the diameters of the refer-

ence circles, the pitch circles or the base circles. Numbers of teeth and diameters are to 

be inserted as positive values for external gears and as negative values for internal gears, 

respectively.  

A member’s direction of rotation is to be taken into account by a positive or negative sign 

for its speed. In this regard, it does not matter which direction is defined as positive or 

negative, but the definition has to be maintained for the whole system. According to this 

definition, external gearings provide negative transmission ratios, whereas internal gear-

ings provide positive transmission ratios. 

2.4.1.1 Single planetary gear transmissions 

If the basic gearings in Figure 2-7 are converted into open PGTs (Figure 2-4) by adding a 

carrier s, the motion of the members 1 and 2 relative to the carrier is still characterized by 

their basic transmission ratio: 

1

2

1

2
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          ( 2.2 ) 

i [-] transmission ratio 
  

n [1/s] absolute rotational speed 
n’  [1/s]  rotational speed relative to the carrier 

This equation is formally known as Willis Equation [4_WIL41]. The subscripts of the trans-

mission ratio i indicate the members of the considered gearing whereas the superscript 

indicates the fixed element or the element imagined as being fixed, respectively. A re-

verted, single PGT contains minimum two basic gearings. Thus, for every gearing a Willis 

Equation can be formulated. If the speed of the planets is not of relevance, but only the 

speeds of the central shafts, the single transmission ratios of the basic gearings can be 

multiplied and merged to a single transmission ratio of the whole basic train, called basic 

ratio (Figure 2-8). If the basic ratio of a single PGT is negative, it is referred to as nega-

tive-ratio drive, otherwise it is a positive-ratio drive. 

 

     
  

  
 

   
  

     

      
 

      
  

   
 

   
  

      

      
  

     
  

   
 

  
  

      

     
 

             
     

  

        
       

        
       

  
     

     
 

( 2.3 ) 

 

 

 

 

Figure 2-8: Speed equations for an example 

single PGT 

i [-] transmission ratio 
n [1/s] absolute rotational speed 
n’  [1/s]  rotational speed relative to the carrier 

The motion of a central gear or planet gear can always be interpreted as a combined mo-

tion relative and equal to the carrier:  

                
     

                
     

                   
             

( 2.4 ) 

n [1/s] absolute rotational speed  n’  [1/s]  rotational speed relative to the carrier 

A relative motion of the gears to the carrier causes meshing. Therefore, the state of motion 

with the carrier being fixed and the gears rotating is termed meshing case. If the whole 

p1

p2
p3

2

s

1



10 Basics and terminology 

PGT rotates as a block, meaning that all parts are running with the same speed, no rela-

tive motion occurs. This case of motion is called coupling case. Every general state of mo-

tion of a single PGT, with all three central shafts running with different speeds, can be dis-

tinguished as a superposition of these two special cases, the meshing and the coupling 

case. In this context, the speed of a gear relative to the carrier is termed meshing speed, 

as the speed of the carrier is termed coupling speed. 

Other special states of motion are caused by means of a kinematic or rather epicyclic in-

version, if not the carrier, but a central gear is fixed, for example central gear 1: 

     

         
          

          

    
  

  
     

    
 

    
  

( 2.5 ) 

i [-] transmission ratio n [1/s] absolute rotational speed 

Since every central shaft of a single PGT can be used as input, output or fixed element, 

four definite transmission ratios are derived analogically:      
      

      
  and     

 . These 

transmission ratios with the carrier acting as input or output are termed epicyclc ratios. In 

combination with the basic ratio     
  and its direct inverse     

 , every arbitrary, single PGT 

features four positive basic or epicyclic ratios and two negative ones. If any of these ratios 

is given, all the others can be identified due to their interdependency. Furthermore, none of 

these ratios can have a value of 0 or 1.  

2.4.1.2 Complex-compound planetary gear transmissions 

In respect of the kinematics of a CCPGT, the basics of a single PGT are still valid. Accord-

ing to the number of basic gearings, Willis Equations are formed (Figure 2-9). The trans-

mission ratios can be merged to basic ratios, if the speed of the planets is not of relev-

ance. In this regard, every two central gears are part of a basic train. Thus, three basic 

ratios are derived for the given 4-shaft CCPGT. Not all of these basic ratios are needed for 

a complete system of equations, since a basic ratio does not give additional information if 

it can be derived from other basic ratios, e.g.     
  from     

  and     
 . 
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( 2.6 ) 

 

 

 

 

 

 

Figure 2-9: Speed equations for an example 4-

shaft CCPGT 

i [-] transmission ratio 
n [1/s] absolute rotational speed 
n’  [1/s]  rotational speed relative to the carrier 

Besides basic ratios and epicyclic ratios, CCPGTs offer further definite transmission ratios 

among two central gears x and y, if a third central gear z is fixed instead of the carrier s. 

This ratio is termed compound ratio and can be interpreted as two series-coupled epicyclic 

ratios: 

    
      

      
  

      
 

      
  ( 2.7 ) 

i [-] transmission ratio  

The number of definite transmission ratios of a CCPGT is calculated as follows as a func-

tion of the number of central gears or central shafts: 

      
  
 

     
    

 
  

      
  
 

     
    

 
  

      
  
 

     
    

 
  

( 2.8 ) 

BR [-] number of basic ratios 
ER [-] number of epicyclic ratios 
CR [-] number of compound ratios 

CG [-] number of central gears 
CS [-] number of central shafts 

An overview of transmissions ratios included in a single PGT or CCPGT is provided in Ta-

ble 2-1. For each single PGT or CCPGT one-third of all definite transmission ratios are 

negative and two-thirds are positive. 

p1

p2
p3

2

s

1

3
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CS 3 4 5 6 7 8 9 10 11 

BR 2 6 12 20 30 42 56 72 90 

ER 4 12 24 40 60 84 112 144 180 

CR 0 6 24 60 120 210 336 504 720 

Σ 6 24 60 120 210 336 504 720 990 

BR [-] number of basic ratios 
ER [-] number of epicyclic ratios 

CR [-] number of compound ratios  
CS [-] number of central shafts 

Table 2-1: Number of definite transmission ratios of a CCPGT 

2.4.1.3 Coupled planetary gear transmissions 

Analogically, Willis Equations are formulated for each PGT included in a coupled PGT 

(Figure 2-10). In addition, the speeds of coupled shafts are equalized. 

 

    
  

  
 

  
  

     

     
 

 
   
  

 
 
 

 
 
  

     

     
  

       

       

( 2.9 ) 

 

 

 

Figure 2-10: Speed equations for an example coupled 

PGT 

i [-] transmission ratio 
n [1/s] absolute rotational speed 
n’  [1/s]  rotational speed rel. to the carrier 

2.4.2 Statics analysis 

For a better differentiation regarding the statics analysis, external and internal torques are 

distinguished. External torques are applied on the central shafts from the periphery. Inter-

nal torques are the ones acting on the gears due to mesh forces and balance the external 

torques inside the transmission (Figure 2-11). A torque is defined to be positive if its effec-

tive direction is equal to the direction of rotation defined as positive and vice versa. 
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Figure 2-11: Internal and external torques acting on basic gearings 

In respect of static operating conditions, torques acting on each part must be balanced. 

This is also true for all external torques acting on the gear train system: 

                            

               
( 2.10 ) 

Te [Nm] external torque 
Ti [Nm] internal torque 

Th [Nm] external torque acting on the housing 

For loss-free conditions, the input and output power of a gear mesh are to be balanced, 

too: 

            

  
    

    
    

       

       
 

    

    
      

  
    

    
 

    

    
       

  

  
 

( 2.11 ) 

Pi [W] internal power 
i [-] transmission ratio 
n [1/s] rotational speed 

Te [Nm] external torque 
Ti [Nm] internal torque 
z [-] number of teeth 

Thus, the ratio of the external and internal torques of a basic gearing is given by the num-

bers of teeth and the transmission ratio respectively as a function of the geometry.  
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2.4.2.1 Single planetary gear transmissions 

Neglecting power losses, e.g. churning losses, corresponding external and internal torques 

are equal except their sign. Therefore, mainly external torques are used as operands. In 

the following, internal torques are denoted by subscript ‘i’ explicitly, whereas external tor-

ques are not marked with an ‘e’ any longer. 

 

Figure 2-12: Internal and external torques acting on a simple PGT 

In the absence of a loaded housing, the sum of external torques of a single PGT including 

the carrier must equal zero. The torque ratio of the central gears is given by the basic ratio. 

In this regard, the planet(s) can be seen as the torque balance for the central gears: 

    

    
      

      
    

    
      

   (basic gearings) 

                 (planet) 

                         (central shafts) 

   
  

  
      

      
  

  
     

        
  

  
 

 

    
                    

( 2.12 ) 

T [Nm] external torque 
Ti [Nm] internal torque 

i [-] basic ratio 

One of the external torques of the three central shafts must be the largest. Its sign is op-

posite to the smaller torques. The central shaft charged with the largest torque is termed 

summation shaft, the other two central shafts are termed difference shafts. The summation 

shaft of every negative-ratio drive is the central shaft connected to the carrier. In case of 

positive-ratio drives, it depends on the indexing. The summation shaft is either the central 

shaft connected to central gear 1, if the basic ratio is smaller than 1, or the central shaft 

connected to central 2, if the basic ratio is larger than 1. 

= 0)
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2.4.2.2 Complex-compound planetary gear transmissions 

 

Figure 2-13: Internal and external torques acting on an example 4-shaft CCPGT 

For the example shown in Figure 2-13 the complete system of equations is formed: 

       

    
       

      
     

       
        

      
       

    
       

      
       

    
       

   (basic gearings) 

                                               (planets) 

                                       (central shafts) 

        
        

           
          

                        

( 2.13 ) 

T [Nm] external torque 
Ti [Nm] internal torque 

i [-] transmission ratio 

In contrast to single PGTs, CCPGTs feature minimum one planet which meshes with at 

least three mating gears (e.g. stepped planet in Figure 2-13), since minimum three central 

gears are connected via planets by definition. The torque equilibrium for this planet in 

combination with the external torque equilibrium results in a set of only two conditional eq-

uations for the external torques. Thus, for this example, two external torques are required 

to determine the other two. For this reason, a definite summation shaft and difference 

shafts or definite torque ratios cannot be identified as a function of the geometry. It de-

pends on the operating conditions. 

  

= 0)
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2.4.2.3 Coupled planetary gear transmissions 

 

Figure 2-14: Internal and external torques acting on an example coupled PGT 

In terms of coupled PGTs, the torque equilibria at the cut-free couplings are to be consi-

dered in addition to the system of equations for each PGT included (Figure 2-14): 

  

  
      

     
  

  

   
   
   (basic trains, internal torques included) 

                         (couplings) 

                                     (central shafts) 

          
         

 

 
   
                         

( 2.14 ) 

T [Nm] external torque 
Tc [Nm] coupling torque 

i [-] basic ratio 

2.4.3 Power transfer 

The absolute power transmitted at a certain link is equal to the acting torque multiplied with 

the absolute angular speed. If the power shows a positive sign, the link works as a power 

input, otherwise as a power output: 

              ( 2.15 ) 

P [W] power 
T [Nm] torque 

ω [rad/s] (absolute) angular speed 
n [1/s]  (absolute) rotational speed 

Neglecting power losses, the power sum of all external inputs and outputs of a single or 

complex-compound PGT must be equalized: 

                   ( 2.16 ) 

P [W] (absolute) power of external in- or output  

= 0)
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This is also true for all external torques: 

                   ( 2.17 ) 

T [Nm] external torque  

According to Section 2.4.1, the absolute power of a central gear (as well as of a planet) 

can be grouped into meshing power and coupling power by inserting equation ( 2.4 ) and  

( 2.15 ) into ( 2.16 ): 

                           

                                    

                    
             

         
              

           
( 2.18 ) 

n [1/s] (absolute) rotational speed T [Nm] external torque 

In the context of efficiency calculation, meshing and coupling power are of special impor-

tance. If power is transmitted as meshing power, load-dependent power losses are in-

duced due to relative motion and friction contacts. If power is transmitted as coupling pow-

er, no load-dependent power losses are induced due to no relative motion. The meshing 

and coupling power of a central gear can be smaller or larger than the absolute power de-

pending on the present speeds. 

Inserting equation ( 2.17 ) into ( 2.18 ), power balances both for meshing and coupling are 

gained: 

                               (coupling power) 

                                      (meshing power) 
( 2.19 ) 

n [1/s] (absolute) rotational speed T [Nm] external torque 

In terms of single PGTs with three running central shafts, one of the central shafts has to 

transmit the total input power in case of power division, or the total output power in case of 

power summation. This shaft is termed total-power shaft, the other two shafts are called 

partial-power shafts. The total-power shaft does not have to be the summation shaft. 

CCPGTs or coupled PGTs do not necessarily feature a total-power shaft, if more than 

three central shafts are involved in the power transfer. 

2.5 Matrix notations 

The solving of conditional equations in respect of speeds and torques for loss-free operat-

ing conditions is a linear problem. In order to maintain linearity, power losses, and hence, 

their corresponding calculation equations must show a linear dependency on acting tor-

ques (Chapter 3). For computer-based calculation purposes, the use of matrix notations is 

advantageous. Different matrix notations are possible depending on the indexing and 

enumeration of relevant transmission elements and depending on the states of interest.  
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2.5.1 Kinematics 

The kinematics system of equations can be written as follows: 

              ( 2.20 ) 

S [-] basic speed coefficient matrix 

    [1/s] basic speed state vector 
        [1/s]  basic speed solution / preset vector 

A possibility of a universal notation is achieved, if every single element is given its own 

number and own speed state in the state vector respectively, e.g. used by Stangl 

[4_STA07]. Besides the Willis Equations for basic gearing, the speeds of rigidly coupled 

elements have to be equalized for each element belonging to a connected body by means 

of a separate conditional equation. Thus, a relatively large system of equations is formed. 

The shortest notation for smallest matrix dimension is achieved, if only the states which 

are possibly different are used exclusively, i.e. a whole connected body is given a number 

or rather state, which is appropriate for every belonging element. In any case, an assign-

ment table specifies the relationship of elements and bodies, respectively. 

In general, every basic gearing g features a first geared member x, a mating geared mem-

ber y and a supporting member, the carrier s or the housing. The basic gearing is charac-

terized by its transmission ratio     
 . Every member may only appear once in a certain ba-

sic gearing. Figure 2-15 shows an example configuration including enumeration of all 

connected bodies b.  

 

Figure 2-15: Example coupled PGT with enumeration of bodies 

The corresponding table contains the functional assignments of bodies to each basic gear-

ing: 

 

1

3

4

2

5

6

7

8(clutch)
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basic gear-

ing g 

member 

x 

member 

y 

member 

s 

transmission 

ratio     
  

1 1 2 4     
  

2 2 3 4     
  

3 4 5 3     
  

4 5 6 3     
  

5 6 7 3     
  

6 6 8 3     
  

Table 2-2: Basic gearing assignment table for Figure 2-15 

The speed state vector     contains the speeds of all bodies:  

    

 
 
 
 
 
  

 
  

 
   

 
 
 
 

 ( 2.21 ) 

    [1/s] speed state vector 

nb [1/s] rotational speed of body b 

B [-] total number of bodies 

The entries for the basic speed coefficient matrix are derived from the Willis Equations for 

each basic gearing: 

          
           

          ( 2.22 ) 

i [-] transmission ratio nx [1/s] rotational speed of member x 

Thus, the basic speed matrix contains G rows according to the total number of basic gear-

ings and B columns according to the total number of bodies: 

  

 

 
 

              

      
              

     
               

 
 

             

 
 

 
            

     
            

     
               

     

  ( 2.23 ) 

S [-] basic speed coefficient matrix 

s [-] speed coefficient 
i [-] transmission ratio 

B [-] total number of bodies 
G [-] total number of basic gearings 

The basic speed preset vector contains G entries of zeros: 

         
  

 
  

  ( 2.24 ) 

        [1/s] basic speed solution/preset vector  

In respect of the given example, the whole system of equations reads as follows (housing 

not relevant here): 
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 ( 2.25 ) 

i [-] transmission ratio nx [1/s] rotational speed of body x 

Because of missing preset values, the basic speed coefficient matrix is rectangular as the 

system of equations is under-determined (G < B). By choosing an appropriate number of 

preset values as a function of the kinematic degree of freedom, the resulting speed coeffi-

cient matrix is made quadratic (Section 2.6.1).  

As a special case, a closed clutch rigidly connects two members x and y, e.g. bodies 3 and 

4 in Figure 2-15. Analogically, an assignment table is written: 

clutch cl member x member y constraint 

1 3 4         

Table 2-3: Clutch assignment table for Figure 2-15 

Further, the basic speed coefficient matrix is expanded by additional rows: 

  

 

 
 
 
 
 
 
 
 

              

      
              

     
              

                    

     
                       

     
                        

 
 
 
 
 
 
 
 

                 
             

              
     

  ( 2.26 ) 

S [-] basic speed coefficient matrix 

s [-] speed coefficient 
B [-] total number of bodies 
G [-] total number of basic gearings 
CL [-] total number of (closed) clutches 

For the sake of completeness, it is mentioned that the speed of the housing is not consi-

dered as a state in this example, since it is kinematically isolated from other bodies in re-

spect of rotation. If a member were to be coupled to the housing permanently or temporari-

ly, this would be necessary. 
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2.5.2 Statics 

Likewise, the statics system of equations reads as follows: 

            ( 2.27 ) 

T [-] basic torque coefficient matrix 

   [Nm] basic torque state vector 

       [Nm] basic torque solution / preset vector 

In terms of a basic gearing the torques of the central shafts are depending on each other 

(Section 2.4.2). Thus, one of these torques is sufficient as state for the torque state vector, 

e.g. the inner torque of member x. The states are marked with an additional index g to 

identify the concerning basic gearing:  

                

            
         

            
            

( 2.28 ) 

i [-] transmission ratio Ti,x,g [Nm] internal torque of member x  
  of basic gearing g 

Hence, the torque state vector features as many entries as basic gearings occur: 

   

 
 
 
 
 
      

 
      

 
       

 
 
 
 

 ( 2.29 ) 

   [Nm] basic torque state vector 

G [-] total number of basic gearings 

Ti,x,g [Nm] internal torque of member x  
  of basic gearing g 

In respect of the torque coefficient matrix, its coefficients are derived from equation  

( 2.28 ). Each row of the matrix summates the acting torques on a certain body:  

  

 

 
 

              

      
              

     
               

 
 

             

 
 

 
            

     
            

     
               

     

  ( 2.30 ) 

T [-] basic torque coefficient matrix 

t [-] torque coefficient 
i [-] transmission ratio 

B [-] total number of bodies 
G [-] total number of basic gearings 

The torque constraint vector contains B entries of zeros: 

        
  

 
  

  ( 2.31 ) 

       [Nm] basic torque solution/preset vector  

By means of Table 2-2 the statics system of equations according to Figure 2-15 is formed: 



22 Basics and terminology 

 

 
 
 
 
 
 

      
     

      

      
     

       
       

       
   

    
       

       

       
    

        
   

         
  

          
  

 
 
 
 
 
 

 

 
 
 
 
 
 
 
      

      

      

      

      

       
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 ( 2.32 ) 

i [-] transmission ratio Ti,x,g [Nm] internal torque of member x  
  of basic gearing g 

In contrast to the kinematics system of equations, the rectangular form of the torque coef-

ficient matrix leads to an over-determined statics system (B > G). Due to missing known 

and unknown external torques which are to be added to the concerning bodies, the basic 

torque state vector lacks of states according to the static degree of freedom (Section 

2.6.2). 

In case of closed clutches, the coupling torques of the involved members x and y are of 

the same absolute value, but directed oppositely (Table 2-3). Thus, one of both torques is 

sufficient as extension for the basic torque state vector: 

   

 
 
 
 
 
 
 
 
 
 
 
      

 
      

 
      

      

 
       

 
        

 
 
 
 
 
 
 
 
 
 

 ( 2.33 ) 

   [Nm] basic torque state vector 

Ti,x,g [Nm] internal torque of member x  
  of basic gearing g 

Tc,x,cl [Nm] coupling torque of member x of clutch cl 
G [-] total number of basic gearings 
CL [-] total number of clutches 

Additionally, the basic torque coefficient matrix is expanded by additional columns: 

  

 

 
 

                                    

           
                                    

          
                                     

 
 

   

                 
             

              
     

  

( 2.34 ) 

T [-] basic torque coefficient matrix 

t [-] torque coefficient 
B [-] total number of bodies 
G [-] total number of basic gearings 
CL [-] total number of (closed) clutches 

Comparing equations ( 2.22 ) and ( 2.28 ) or ( 2.26 ) and ( 2.34 ), it is noted that the basic 

speed and torque coefficient matrices are transposes of each other: 
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                 ( 2.35 ) 

T [-] basic torque coefficient matrix 
S [-] basic speed coefficient matrix 

t [-] torque coefficient 
s [-] speed coefficient 

The same conclusion was also stated by Sanger [4_SAN75] or del Castillo [4_DEL02b]. 

Once further constraints and unknown states are inserted (Section 2.6), this relation be-

tween T and S no longer applies, but depends on the type of constraints.  

Regardless of the enumeration method (element by element or body by body), the 

transpose equivalence of both basic matrices can be obtained, if the states are cho-

sen in the manner shown above. Therefore, the basic system of equations has to be 

set up only once. 

2.6 Degree of freedom 

The (operating) degree of freedom (DOFop) of a system is defined as the number of inde-

pendently and arbitrarily presettable parameters or states for a definite operating condition. 

In this context, presettable speeds and torques exist. According to Mueller [2_MUL01] the 

operating DOF of a PGT equals the sum of its kinematic and static DOF: 

                     ( 2.36 ) 

DOFop [-] operating DOF DOFkin [-] kinematic DOF 
DOFstat [-] static DOF 

2.6.1 Kinematic degree of freedom 

The Kutzbach criterion [4_KUT27] reveals that the kinematic DOF of a system or mechan-

ism is equal to the kinematic DOF of each body involved minus the number of constraints 

due to joints:  

                   ( 2.37 ) 

DOFkin [-] kinematic DOF 
cj [-] number of constraints of joint j 

λ [-] degree of freedom of a body 
B [-] total number of bodies (with housing) 

The degree of the freedom λ of a body is on the one hand a function of the space in which 

the mechanism is intended to work and on the other hand a function of the motions that 

are of interest for the viewer. For instance, λ equals six in case of spatial mechanisms or 

three in case of planar mechanisms such as PGTs according to Tsai [5_TSA01]. Often, 

only one rotational, kinematic DOF is of interest in terms of PGTs. Then, λ can be reduced 

to one. The number of bodies B in equation ( 2.37 ) is diminished by one as the housing, 

which is also assumed as a separate body, does not feature any kinematic degrees of 

freedom.  

Tsai postulates that the bodies of PGTs are linked by only two basic groups of joints, revo-

lute joints R and gear pair joints G. Revolute joints allow two elements to rotate with re-

spect to one another about a common axis of the joint whereas all other relative motions 
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are blocked. Here, a gear pair is defined as a joint constraining the relative rotation of 

member x compared to member y about their own axes as a function of the transmission 

ratio. By means of this definition, the number of constraints of a joint yields:  

    
           
           
           

   ;      
           
           
           

  ( 2.38 ) 

cR [-] number of constraints of revolute joints 
cG [-] number of constraints of gear pair joints 

λ [-] degree of freedom of a body 

Assuming the absence of closed clutches, substituting equation ( 2.37 ) into ( 2.38 ) for λ 

equal to one leads to: 

             ( 2.39 ) 

DOFkin [-] kinematic DOF B [-] total number of bodies (with housing) 
G [-] total number of basic gearings 

Thus, the kinematic DOF of a basic gearing equals two as it consists of three bodies whe-

reof two are linked by a gear pair joint. It should be noted that the set of identic planets 

used in the gear set are referred to as a single body within this context. 

2.6.1.1 Single planetary gear transmissions 

A reverted, simple PGT contains two basic gearings and four bodies (compare Figure 

2-2). The kinematic DOFs equal two. Inserting additional planets (Figure 2-3b) the number 

of bodies is likewise increased as the number of basic gearings. The kinematic DOF re-

mains two in any case. 

From another perspective, the kinematic DOF of a single PGT must be two just as well, 

since the rotational motion of the three central shafts is only constrained by one conditional 

Willis Equation ( 2.3 ). For instance, a meshing and coupling speed of a member might be 

available as preset values to define the operating condition (Section 2.4.1.1). 

2.6.1.2 Complex-compound planetary gear transmissions 

The kinematic DOF of a CCPGT does not differ from that of a single PGT. For every addi-

tional central gear, the number of bodies as well as the number of basic gearings is in-

creased by one (Figure 2-5). Likewise, the number of independent Willis Equations and 

basic ratios respectively (cf. Section 2.4.1.2) is increased for which reason equation  

( 2.39 ) can also be written as: 

                     ( 2.40 ) 

DOFkin [-] kinematic DOF CS [-] total number of central shafts 
BRind [-] total number of independent basic ratios 

Analogical to single PGTs, the meshing speed of one central gear predicts the meshing 

speed of the other central gears, since all central gears are connected via planets (Section 

2.2), and a coupling speed can be superimposed. 
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2.6.1.3 Coupled planetary gear transmissions 

The kinematic DOF of a coupled PGT can be derived directly from the dimension of the 

basic speed coefficient matrix ( 2.26 ). Additionally, each closed clutch provides a condi-

tional equation. In this case, equation ( 2.39 ) is expanded as follows: 

                ( 2.41 ) 

DOFkin [-] kinematic DOF 
CL [-] total number of (closed) clutches/brakes 

B [-] total number of bodies 
G [-] total number of basic gearings 

Alternatively, one can imagine that two kinematic DOFs are provided by every PGT in-

cluded and a permanent or temporary paired shaft coupling provides a constraint. Accord-

ing to Mueller [2_MUL01] the kinematic DOF of a coupled PGT is calculated as: 

                ( 2.42 ) 

DOFkin [-] kinematic DOF 
PGT [-] total number of PGTs included 

CL [-] total number of permanent / temporary 
  couplings (or closed clutches/brakes) 

Equations ( 2.41 ) and ( 2.42 ) indicate that the number of simultaneously closed clutches 

in a shiftable transmission is to be kept constant to maintain a constant kinematic DOF.  

To add presets to the system of equations ( 2.26 ), the basic speed coefficient matrix is 

expanded by additional lines and the preset values themselves are attached to the speed 

preset vector: 

 

 
 
 
 
 

      
     
     

              

     
                 

     
                              

 
 
 
 
 

       

 
 
 
 
 
 

 
       
 

     

 
           

 
 
 
 
 

 

               
           

      
  

( 2.43 ) 

S [-] basic speed coefficient matrix 
s [-] speed coefficient 
nb [1/s] rotational speed of body b 

B [-] total number of bodies 
DOFkin [-] kinematic degree of freedom^ 
npr [1/s] speed preset value 

Hence, the speed coefficient matrix is made quadratic and of full order in case of a rea-

sonably defined system and reasonably chosen presets. 
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2.6.2 Static degree of freedom 

In conformity with Mueller [2_MUL01], the operating DOF of a transmission must equal the 

total number of connections to the periphery. In theory, a body and a shaft respectively 

can feature an arbitrary number of load application points. Therefore, it makes sense to 

restrict the number of external torques on a shaft to one. Further, the planets of a reverted 

PGT are not connected to the periphery, so each central shaft can and does feature one 

external torque. Modifying equation ( 2.36 ) yields: 

                              ( 2.44 ) 

DOFop [-] operating DOF 
DOFkin [-] kinematic DOF 
DOFstat [-] static DOF 

B [-] total number of bodies 
P [-] total number of planets 
CS [-] total number of central shafts 

Substituting equation ( 2.41 ) or ( 2.42 ) into ( 2.44 ) leads to: 

                                   ( 2.45 ) 

DOFstat [-] static DOF 
CL [-] total number of (closed) clutches 

B [-] total number of bodies 
P [-] total number of planets 
G [-] total number of basic gearings 

2.6.2.1 Single planetary gear transmissions 

As for single PGTs, the static DOF is always one, since the number of central shafts is 

limited to three and the kinematic DOF is two: 

                                ( 2.46 ) 

DOFstat [-] static DOF 
DOFkin [-] kinematic DOF 
G [-] total number of basic gearings 

B [-] total number of bodies 
P [-] total number of planets 
CS [-] total number of central shafts 

This also corresponds to the number of central shafts less the number of independent 

conditional equations ( 2.12 ). 

2.6.2.2 Complex-compound planetary gear transmissions 

CCPGTs feature a number of static DOFs depending on the number of central shafts. 

There are always two conditional equations for the external torques ( 2.13 ): 

                              ( 2.47 ) 

DOFstat [-] static DOF 
DOFkin [-] kinematic DOF 
G [-] total number of basic gearings 

B [-] total number of bodies 
P [-] total number of planets 
CS [-] total number of central shafts 

2.6.2.3 Coupled planetary gear transmissions 

Term (G – P) in equation ( 2.45 ) points out that the static DOF is not influenced by per-

manent couplings of central shafts since the number of basic gearings and planets re-

mains unchanged. The static DOF can also be expressed by substituting equation  

( 2.42 ) into ( 2.44 ): 
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                              ( 2.48 ) 

DOFkin [-] kinematic DOF 
DOFstat [-] static DOF 

CS [-] total number of central shafts 
CL [-] total number of (closed) clutches 
PGT [-] total number of PGTs included 

If as many external torques are to be predefined as the number of static DOFs, as many 

external torques are unknowns as available kinematic DOFs. The unknown external tor-

ques are attached to the torque state vector as states. Further, the torque coefficient ma-

trix is expanded by additional columns to add the unknown external torques to the body 

which they are acting on. The basic torque coefficient matrix is made quadratic as follows: 

 

 
 

                      

         
                      

        
                       

 
 

  

 
 
 
 
 
 
 
 

 
  

 
      

 
      

 
            

 
 
 
 
 
 
 

        

              
                      
     

  

( 2.49 ) 

T [-] basic torque coefficient matrix 

t [-] torque coefficient 

   [Nm] basic torque state vector 

       [Nm] basic torque solution/preset vector 

B [-] total number of bodies 
DOFkin [-] kinematic DOF 
Te,b,u [Nm] external, unknown torque of body b 

In order to add preset values, it is possible to attach all known external torques as states to 

the torque state vector. Then, additional columns are required for the speed coefficient 

matrix to sum the external torques to the corresponding bodies according to ( 2.49 ). Fur-

ther, additional rows are needed to actually equalize the known states with the preset val-

ues attached to the basic torque preset vector. Hereby, the dimension of the system of 

equation is increased by DOFstat. 

To keep the system dimension as small as possible, it makes sense to directly add the 

known external torques to the appropriate body by modifying the basic torque preset vec-

tor. The zero entry at the b-th position of the basic torque state vector is replaced by the 

known, negative preset value: 

       

 
 
 
 
 

       

 
        

 
              

 
 
 
 

                  
                               

     
  ( 2.50 ) 

       [Nm] torque solution/preset vector 

DOFstat [-] static DOF 

Te,b,pr [Nm] external, known torque of body b 
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3 State of the art 

3.1 Power losses and available calculation methods 

Power losses in transmissions are caused by different components and physical pheno-

mena. As a rough classification, the origin of friction power can be deduced from lubricated 

and loaded contacts of solid bodies rolling and sliding with respect to each other, e.g. in 

the gear mesh, as well as from contacts of spinning solid bodies with surrounding fluids 

leading to windage, churning and pumping effects.   

The overall power loss can be subdivided into component-specific portions and further into 

load-dependent and load-independent portions depending on whether they vary only with 

the speed or also with the load. According to Niemann, Winter and Hoehn [1_NIE03], the 

classification of power losses reads as follows: 

                               ( 3.1 ) 

PL [W] overall power loss 
PLGP [W] load-dependent gear power loss 
PLG0 [W] load-independent gear power loss 
PLS [W] (load-independent) seal power loss 

PLBP [W] load-dependent bearing power loss 
PLB0 [W] load-independent bearing power loss 
PLX [W] (load-independent) power losses of 
  other components 

Various calculation methods, mostly of empirical but also of analytical nature, exist for de-

termining the power loss of each component. A small selection is discussed here. 

3.1.1 Gear power losses 

3.1.1.1 Load-dependent gear power losses 

A significant number of studies attend to the determination and calculation of load-

dependent gear power losses. This sort of power loss occurs due to rolling and sliding in 

the loaded gear mesh. Most studies try to separate the influences into geometry-based 

and tribology-based factors. According to Niemann [1_NIE03] the gear power loss reads: 

               ( 3.2 ) 

PLGP [W] load-dependent gear power loss 
Pin [W] input power to the gear mesh 

   [-] (average) coefficient of friction  

HV [-] tooth loss factor 

Several authors, like e.g. Ohlendorf [3_OHL58], Volmer [2_VOL90], Tuplin [1_TUL62], 

Merritt [1_MER46], Klein [2_KLE62], Pickard [2_PIC81] or Poppinga [2_POP49], only take 

into account sliding effects. Other authors, like e.g. Anderson and Loewenthal [3_AND80b 

and 3_AND83] and Gackstetter [3_GAC68] also consider rolling friction. Based on the 
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work of Ohlendorf, Wimmer [3_WIM06] specifies the tooth loss factor, which rates the spe-

cific sliding, as a function of the number of teeth and the transverse contact ratio: 

   
       

          
                                          ) ( 3.3 ) 

HV [-] tooth loss factor 
u [-] ratio of numbers of teeth (z2/z1) 
z1/2 [-] number of teeth of gear / mating gear 

   [°] helix angle at base circle  

ε1/2 [-] tip contact ratio 
a1…4 [-] coefficients depending on contact ratio 

As the balance of forces changes before and behind the pitch point along the line of action 

as the friction force changes the orientation due to bracing and pulling sliding, Duda 

[3_DUD71] recognizes the power loss unbalance of spur gears. 

The average coefficient of friction is often assumed as being constant for every contact 

point of the engagement region within a range of approximately 0,03 to 0,08. Eiselt 

[3_EIS66], Michaelis [3_MIC88] and Schlenk [3_SCH95] account for more determining 

factors such as oil parameters, sum velocity, normal force, line load, radii of curvature, sur-

face roughness and so on. For instance, the coefficient of friction according to Schlenk is: 

          
   

 
 

 

         
 

   

     
                ( 3.4 ) 

   [-] (average) coefficient of friction  

Fbt [N] circumferential force at base circle 
b [mm] tooth width 
     [m/s] sum velocity at pitch point 

      [mm] radius of curvature at the pitch point 

     [mPas] dynamic oil viscosity 
Ra [μm] arithmetic surface roughness 
XL [-] lubricant factor 

More accurate results are achieved if test rig measure-

ments are available. Doleschel [3_DOL02] proposes an 

approach which extrapolates based on measured val-

ues. Solid and EHD friction are distinguished.  

Figure 3-1 illustrates the simplified assumptions of the 

methods mentioned above. Advanced methods try to 

compute the instantaneous operating conditions by 

making use of higher sophisticated program tools and 

physical models in respect of the load distribution, EHL 

and surface roughness models, e.g. Mihailidis 

[3_MIH02]. 

Wimmer [3_WIM06] proposes a local tooth loss factor 

taking into account elastic deformations and tooth flank 

modifications. Figure 3-2 shows an example line load 

distribution of a corrected helical gear pair. Wimmer 

proves deviations of 30% compared to ( 3.3 ) for some 

worked samples. He also believes that the instantane-

ous friction coefficient is higher at the beginning of con-

tact due to unfavorable lubrication conditions (Figure 

3-3). 

 

Figure 3-1: Simplified load dis-

tribution, friction coefficient and 

sliding speed [3_WIM06] 
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Figure 3-2: Line load distribution of an example corrected 

helical gear pair [3_WIM06] 

Figure 3-3: Instantaneous friction 

coefficient acc. to [3_WIM06] 

Xu and Kahraman [3_KAH07] introduce a new 

friction coefficient model using a validated, 

rough-surface, thermal EHL model in conjunc-

tion with a multiple regression analysis. By 

making use of a gear contact model, the basic 

gear geometry, tooth modifications, operating 

load and speed as well as surface finish and 

manufacturing or assembly errors are or can be 

taken into account. The authors point out that 

the model predictions are within 0,1% deviation 

in respect of the measured values (Figure 3-4). 

The results are also included in an overall effi-

ciency model for manual transmissions by See-

tharaman et al. [3_ROS08]. 

3.1.1.2 Load-independent gear power losses 

Load-independent gear power losses, also called spin power losses, of gears are related 

to churning or windage effects as well as to oil squeezing and pumping in the gear mesh. 

In case of jet lubrication, impact power losses can also occur. Various studies tried to 

quantify these losses and identify the key parameters including basic lubricant and air pa-

rameters, circumferential speed, depth of immersion, geometry parameters and distance 

to the housing and other parts, alignment and direction of rotation of the gears or tip and 

flank clearances. In most cases, results are obtained from empirical investigations using 

an enclosed spur gear pair, e.g. Anderson and Loewenthal [3_AND80a and 3_AND81], 

Boness [3_BON89], Butsch and Ariura [3_BUT89], Changenet and Velex [3_CHA06 and 

3_CHA07], Dawson [3_DAW84 and 3_DAW88], Greiner [3_GRE90], Jaufmann [JAU94], 

Maurer [3_MAU94], Mauz [3_MAU87], Townsend [3_MIZ89], Strasser [3_STR05] and 

Walter [3_WAL82]. Otto [3_OTT09 and 3_HOH07] proposes a lubrication factor to rate the 

effects of minimized lubrication on the temperature of the gears, which influences the load 
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Figure 3-4: Measured and computed friction 

coefficients acc.to [3_KAH07] 
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carrying capacity again. Kettler [4_KET01] modifies the equations of Mauz to comprise 

load-independent gear power losses of simple planetary gear sets. 

Other authors like Marchesse, Changenet, Ville and Velex [3_MAR09] or Gratz [3_GRA99] 

actually try to model these power losses e.g. by using CFD simulations. Seetharaman and 

Kahraman [3_SEE09a and 3_SEE09b] come up with a physics-based and validated fluid 

mechanics model to predict spin power losses of gear pairs. In terms of dip-lubrication, 

churning power losses are subdivided into drag power losses on the periphery and on the 

faces of the gears, oil pocketing power losses from squeezing oil out of the cavities of the 

gear mesh and root filling power losses from filling the tooth spaces with oil when gears 

are partially immersed. In case of jet-lubrication, the windage power losses are related to 

drag and pocketing power losses. 

3.1.2 Bearing power losses 

To provide a brief overview, Figure 

3-5 qualitatively shows the overall 

bearing drag torque and corres-

ponding friction coefficient depend-

ing on the load according to 

[3_BRA95]. Naturally, bearing 

power losses increase with increas-

ing speed and load. 

A widely recognized calculation 

method for determining load-

dependent and load-independent 

bearing power losses is based on 

investigations by Palmgren 

[3_PAL56 and 3_PAL59], which 

were employed by other investigators such as by Dahlke [3_DAH94] or Braendlein et al. 

[3_BRA95]. Further, the method was published in several roller bearing catalogues of dif-

ferent manufacturers, such as FAG [3_FAG99] or SKF [3_SKF94]. Hereafter, the two por-

tions are calculated as function of few application parameters: 

                
 
    

                      

                 
                            

        
    

  

( 3.5 ) 

T0 [Nm] load-independent drag torque 
f0 [-] lubrication and bearing type factor 
ν [mm²/s] kinematic viscosity of lubricant 
n [rpm] rotational speed of bearing 

T1 [Nm] load-dependent drag torque 
P1 [N] decisive bearing load 
dm [mm] middle bearing diameter 
a,b [-] exponents depending on bearing type 

 

Figure 3-5: Drag torque of roller bearings [3_BRA95] 
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Additional drag torques are to be considered for axially loaded roller bearings and sealed 

bearings. The INA bearing catalogue [INA08] modifies the lubrication factor f0 as a function 

of the depth of immersion. 

Harris [3_HAR01] proposes a more precise subdivision of bearing power losses by sepa-

rating losses due to elastic hysteresis, rolling and deformation, sliding friction for the race-

way and rolling element contact as well as for the cage and rolling element contact, visc-

ous drag and so on. The SKF catalogue of 2004 [3_SKF04] introduces a higher sophisti-

cated method which distinguishes the drag torque components as a function of their origin: 

                                 ( 3.6 ) 

TLB [Nm] bearing drag torque 
Trr [Nm] rolling drag torque 
Tsl [Nm] sliding drag torque 
Tseal [Nm] seal drag torque 

Tdrag [Nm] drag torque due to splashing and  
  churning in case of splash lubrication 
Φish [-] lubricant film thickness factor 
Φrs [-] lubricant displacement factor 

3.1.3 Power losses of seals and other components 

Seal power losses are load-independent and can be estimated using ISO norms 

[3_ISO01a and 3_ISO01b] or equations provided by seal manufacturers, such as Simrit. 

Only the shaft speed and diameter as well as the seal type are used as input values. 

Power losses of other components are for instance power losses of planet carriers. For 

this, only very few calculation approaches exist. Kettler [4_KET01] provides an approxima-

tion equation for different designs of planet carriers of simple planetary gears. 

Further power losses, e.g. of shafts, synchronizers, multi-disc or free-wheel clutches and 

other spinning components, are completely neglected, require more significant methods of 

determination or test rig measurements in most cases. 

3.1.4 Approximate quantification of power losses 

An allotment of power losses occurring in transmissions shows a predominant role of load-

dependent gear power losses for nominal load and speed. Only when applying low torques 

and high speeds respectively the load-independent gear and bearing power losses over-

balance, according to Niemann [1_NIE03] (Figure 3-6). Power losses of seals and other 

components almost vanish in comparison.  

Using the FZG efficiency calculation program WTplus [3_KUR08], a prediction of power 

losses of an example 6-speed manual transmission for automotive applications is dis-

closed by Kurth [3_KUR09] in Figure 3-7. Mueller [2_MUL01] states that load-independent 

power losses are only of relevance for planetary gears below approximately 10% of the 

nominal input power (Figure 3-8). Kettler [4_KET01] indicates that more than 85% of all 

power losses of an example two-stage compound planetary gear transmission are related 

to load-dependent effects for nominal operating conditions. 
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Figure 3-6: Power losses of an example spur gear pair [1_NIE03] 

  

Figure 3-7: Predicted power loss of an example 6-

speed manual transmission [3_KUR09] 

Figure 3-8: Approximate power loss of 

planetary gear set [2_MUL01] 

For the purpose of power loss prediction in early design stages when only a few parame-

ters are known, it is generally accepted to merge all power loss portions to an approximate 

efficiency factor multiplied with the input power of the gear set or the basic train. Hardy 

[4_HAR60] chooses an overall basic train efficiency factor of 98% to 99% for his calcula-

tions. Dudley [1_DUD94] indicates a power loss of 0,5% to 3% per mesh of spur and heli-

cal gears. Mueller [2_MUL01] proposes an efficiency of 99% for external gears and 99,5% 

for internal gears as a good approximation: 

         ( 3.7 ) 

   [-] basic train efficiency 

 

     [-] efficiency of external/internal basic  

  gearing included in the basic train 

Looman [1_LOO96] as well as the VDI norm 2157 [4_VDI78] specify power loss factors of 

99% for every loaded gear mesh and 99% to 99,5% for the bearings altogether appearing 

in the basic train. Neussel [4_NEU62] even comes to the conclusion that 99,2% to 99,8% 

is an appropriate value as basic efficiency depending on the gear type included. Load-
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independent power losses are assumed to be included in these efficiency factors whereu-

pon they are hard to determine without having a complete set of detailed parameters 

available. 

3.2 Representation and abstraction methods 

Different representation and abstraction methods were used for simplifying the structural 

analysis of PGTs in general and especially of coupled PGTs. Some methods are suitable 

for the purpose of synthesis and/or allow a check of the designability or the isomorphism in 

respect to similar designs. 

3.2.1 Wolf symbolism 

The Wolf symbolism is a widely-used abstraction method and is to be traced back to the 

work of its eponym Wolf [4_WOL49 and 2_WOL58]. An elementary Wolf symbol consists 

of a circle representing a single PGT and three edges connected to the circle which 

represent the central shafts (Figure 3-9). Often, but not necessarily, the summation shaft 

is marked as a double edge. The edge representing the central shaft of the carrier is ex-

tended into the circle. Then, positive-ratio and negative-ratio PGTs can easily be distin-

guished (cf. Section 0). 

 

Figure 3-9: Elementary Wolf symbols for single PGTs with different basic ratios 

Planets as well as design features do not appear 

in Wolf symbols. Thus, this representation is de-

tached from geometry parameters and offers a 

clear overview of the structure and the internal 

couplings. As an example, Figure 3-10 shows the 

Wolf symbol of the coupled PGT of Figure 2-10. 

According to Mueller [2_MUL01], coupled PGTs 

featuring the Wolf symbol structure of Figure 

3-10 are called elementary coupled PGTs and 

have a kinematic DOF of two. The high abstrac-

tion level of the Wolf symbolism leads to a hin-

dered identification of the resulting transmission 
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Figure 3-10: Wolf symbol of a coupled 

PGT consistent with Figure 2-10 
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ratios of coupled PGTs. Hence, Arnaudow [4_ARN96 and 4_ARN01] proposes to indicate 

the difference shaft, which is charged with the higher torque, with a thick edge. Then, a 

speed increase or reduction as well as a positive or negative ratio can intuitively be identi-

fied by means of torque ratios. 

For a kinematics analysis, the basic ratio must be given for each Wolf symbol. The solving 

of kinematic relationships is carried out by using the methodology outlined in Section 

2.4.1.3. In terms of statics analysis, the Wolf symbols can be cut free and treated similarly 

to Section 2.4.2. There is no special Wolf symbol with more than three central shafts 

known for CCPGTs. 

3.2.2 Kutzbach and Helfer diagram 

Both Kutzbach [4_KUT27] and Helfer [4_HEL66 and 4_HEL67] convert a PGT into an 

equivalent lever model using a lever analogy. Using this lever model, speeds and torques 

can be analyzed conveniently. The central shafts appear as nodes in the lever model 

(Figure 3-11). Translational (vertical) speeds of the nodes correspond to rotational speeds 

of the central shafts. Likewise, (vertical) forces at the nodes correspond to torques at cen-

tral shafts. Therefore, the length of the lever arms is a function of the basic ratio.  

 

i [-] basic ratio a, b [mm] length of lever arm 

Figure 3-11: Representation of a single PGT by an equivalent lever 

In respect of the speeds, it is easy to see whether the ratio is positive or negative and 

whether the speeds are high or low, respectively. Figure 3-12 shows an example for an 

operating condition with three rotating shafts. Corresponding to the single PGT, the lever 

features two kinematic DOF for this model. A pure vertical translation corresponds to the 

coupling case, a pure rotation around the node s corresponds to the meshing case. 
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n [1/s] rotational speed v [m/s] translational speed 

Figure 3-12: Speed equivalency between PGT and lever model  

Regarding the torque and force equivalency, it is noticed that the node representing the 

summation shaft must be located at the middle of the lever to fulfill the requirements con-

cerning the force and torque balance. 

 

T [Nm] torque F [N] force 

Figure 3-13: Torque and force equivalency between PGT and lever model  

Similarly, CCPGTs can also be converted into a lever model (Figure 3-14). The lever fea-

tures the same number kinematic and static DOF. Therefore, the lever model offers a very 

clear illustration of the speed and torque ratios of a CCPGT.  

 

Figure 3-14: Representation of a CCPGT by an equivalent lever 
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3.2.3 Graph theory 

The representation of PGTs by means of graph theory is a common utility for systematic 

structure and kinematics analysis. First derivations of PGT graphs are related to Buch-

sbaum and Freudenstein [4_BUC70]. The authors show that different graph illustrations 

exist, whereupon the most accepted one is discussed here. Tsai published a detailed de-

scription of graph theory for PGTs amongst other things in [5_TSA01]. Hsieh and Tsai 

[4_HSI96b], Olson, Erdman and Riley [4_OLS91], Liu, Chen and Chang [4_LIU04], as well 

as Wojnarowski and Lidwin [4_WOJ75] use graph theory for structure and kinematics 

analysis of PGTs. 

According to the authors mentioned above, a PGT consists of bodies interacting with each 

other by means of links. The relevant links are revolute joints R and gear pair joints G (cf. 

Section 2.6.1). A graph features vertices representing the bodies and edges representing 

the links which connect the vertices in pairs. Frequently, a thick edge acts for a gear pair 

joint and a thin edge stands for a revolute joint. Furthermore, a unique graph representa-

tion can be achieved by a canonical graph. In a canonical graph representation, the hous-

ing vertex is denoted as the root. In addition, the thin edges are marked with an identifier 

standing for the level of the axis of rotation and the center distance, respectively. Figure 

3-15 shows an example. 

 

Figure 3-15: Canonical graph of an example single PGT 

PGTs belong to the group of planar mechanisms according to Tsai. He postulates several 

theorems characterizing the graph of a PGT. The graph obtained by removing all geared 

edges from the graph is a tree (which is a graph without circuits) containing all vertices of 

the original graph. Thus, the number of rotating pairs is equal to the number of vertices 

minus one. Further, all thin edges of the same level in combination with their end vertices 

form a tree. The kinematic DOF is equal to number of rotating pairs minus the number of 

gear pairs.  
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Instead of drawing the graph of a PGT, a matrix representation is useful for computer-

based calculation steps. Different matrix representations exist. Common ones are the ad-

jacency matrix A and the incidence matrix B. The adjacency matrix is symmetric, with a 

dimension that is equal to the number of vertices. Its elements are either 1 if vertex i is di-

rectly connected to vertex j or 0. The incidence matrix relates the vertices and edges. It 

features as many rows as vertices exist and as many columns as edges occur. If vertex i is 

an end vertex of edge j the matrix element is 1, otherwise it is 0. Both matrices constitute a 

unique description of a given graph. Algorithms are known e.g. to find the shortest trace 

between vertices, to check planarity or isomorphism.  

3.3 Direct efficiency calculation methods 

By direct efficiency calculation methods, methods which require a kinematics and statics 

analysis to determine the power flow and its direction are meant. The calculations are car-

ried out taking into account a realistic transmission model. 

To consider power losses according to Section 3.1, different methods exist which are to be 

distinguished in respect of complexity and calculation effort. Here, it is always assumed 

that power losses affect torque ratios only, but not the speeds at least for steady-state op-

erating conditions.  

Simple methods only consider load-dependent power losses. Load-dependent power 

losses occur if meshing power is existent. According to Mueller [2_MUL01] the basic effi-

ciency of single PGTs is defined as the negative power ratio the output and input meshing 

power of the basic train depending on the direction of the meshing power flow: 

    
   

   

   
  

          

          
  

  

  
 

 

    
                        

    
   

   

   
  

          

          
  

  

  
     

                        

( 3.8 ) 

    
      

  [-] basic efficiency  
Pmx [W] meshing power of central shaft x 
n [1/s] speed 

    
  [-] basic ratio 

T  [Nm] (external) torque 

Although,    
  and    

  are not equal in general, this slight difference is often neglected as 

these variables are merged to   . Then, the torque ratio can be written as: 

  

  
      

    
                

            
            
                                

  ( 3.9 ) 

   [-] basic train efficiency  

Pm1 [W] meshing power of central shaft 1 
    
  [-] basic ratio 

   [-] efficiency exponent 

T [Nm] torque 
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As a single PGT only features one static DOF, it is sufficient to know the kinematics as 

well as the inputs and outputs to calculate the overall efficiency. For every operating condi-

tion, the basic efficiency formula for single PGTs reads: 

    
                    

   

    
 ( 3.10 ) 

  [-] overall efficiency  

T1 [Nm] torque of central gear 1 
n1,ns [1/s] speed of central gear 1 / carrier 

   [-] basic train efficiency  

   [-] efficiency exponent 

Pin [W] (absolute) input power 

Equation ( 3.10 ) shows that the overall efficiency is larger than the basic efficiency if the 

meshing power is smaller than the input power and vice versa. The meshing power can 

only be larger than the input power in the presence of certain operating conditions for posi-

tive-ratio drives. 

Many authors like e.g. Brandenberger [4_BRA29], Chen and Angeles [4_CHE07], Foerster 

[4_FOR69], Hock [4_HOC65], Jakobsson [4_JAK66], Krause [4_KRA61], Pennestri and 

Freudenstein [4_PEN93b] and Pasquier [4_PAS94] proposed different formulations, which 

were all based on equation ( 3.10 ). Pennestri and Valentini provided an overview and 

comparison of formulas in [4_PEN03b]. Nikitin and Reschetow [4_NIK53] described an 

even more fundamental method using (friction) forces and lever arms. 

In order to maintain linearity, the basic efficiency itself must not depend on the input power 

and torque respectively. Therefore, the basic efficiency is frequently set as a factor in the 

range of approx. 97% to 99% (cf. Section 3.1.4) for rough and simple calculations. For this, 

Hedman [4_HED88 and 4_HED93] describes a systematic procedure to generate the eq-

uation system for coupled PGTs containing further transmission elements. 

For CCPGTs with more than one static DOF, Maegi [4_MAG74] proposed an analogical 

method by inserting efficiency factors into torque balance equations, not for an entire basic 

train, but for each basic gearing (cf. Section 2.4.2.2). To identify the direction of meshing 

power flow in each basic gearing a loss-free torque analysis is to be performed first. By 

means of loss-free torques and meshing speeds the power flow directions can be deter-

mined assuming that the direction of power flow does not change when power losses are 

considered. Duan [4_DUA01] proposed the same procedure for CCPGTs of the Wolfrom 

type [4_WOL12]. Due to the multitude of basic gearings, this procedure is cumbersome as 

it leads to a large number of somewhat confusing equations. 

If all kind of power losses are to be considered also using non-linear equations, computer-

based calculation methods are proposed by Pennestri and Mantriota [4_PEN03a] as well 

as by Stangl [4_STA07]. A converging iteration helps narrow down torques and load-

dependent power losses. 

As a special characteristic, Stangl [4_STA07] treats every power loss as an additional vir-

tual brake acting on the appropriate body. In case of meshing power losses, a distinction is 

to be made by means of the meshing power flow direction (Figure 3-16). It is easy to see, 
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that the occurrence of power losses does not affect the static DOF, since for every power 

loss an additional conditional equation is to be added to the system. 

 

Figure 3-16: Principle of virtual brakes [4_STA07] 

3.4 Indirect efficiency calculation methods 

Indirect efficiency calculation methods differ from direct methods in respect of the identifi-

cation of the meshing power flow or in respect of the structural representation. 

Li [5_LI93] took into account coupled PGTs with one kinematic DOF and a single in- and 

output. He interpreted the inclusion of basic efficiency factors as a small alteration of the 

(torque) ratio of basic gearings, meaning that the basic ratio is to be multiplied or divided 

by the efficiency factor according to equation ( 3.9 ) depending on the meshing power flow 

direction. It is clear, that the absolute value of the output power has to be smaller com-

pared to the loss-free case due to power losses. After accomplishing a kinematics analysis 

for loss-free operating conditions, a partial derivative of the output to input power ratio in 

respect of the basic ratio of each basic train or basic gearing reveals the meshing power 

flow direction in each basic train or basic gearing: 

  
       

      
 

     
  

 
                                         

( 3.11 ) 

    
  [-] basic ratio 

Poutput [W] output power 

   [-] efficiency exponent 

This distinction of cases can be reached only by forming the expression of the overall 

transmission ratio as a function of the basic ratios. Thus, a statics analysis is not neces-

sary for determining the overall efficiency. 

power flow direction

meshing

power loss
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A more general expression was derived by Kreines [4_KRE43, 4_KRE47 and 4_KRE65], 

later Diaconescu and Duditza [4_DIA94a and 4_DIA94b] as well as del Castillo 

[4_DEL02b] arrive at the same conclusion. Regarding a transmission featuring one kine-

matic DOF and a single input and a single output, the ratio of the meshing power of a cer-

tain basic gearing or basic train to the input power is equal to the partial derivate of the 

overall transmission ratio in respect of the basic ratio multiplied by the quotient of the basic 

ratio and the overall ratio: 

   

      
 

         

     
  

    
 

       
    

           
         

     
  

    
 

       
  

( 3.12 ) 

        [-] overall transmission ratio 

    
  [-] basic ratio 

Poutput [W] output power 

   [-] efficiency exponent 

Pinput [W] input power 
Pm1 [W] meshing power of central gear 1 

This approach is not only valid for single PGTs, but also for coupled PGTs. As a strict pre-

condition, the transmissions must not feature more than one static DOF. After determining 

the meshing power flow direction for each basic gearing or basic train, the statics analysis 

is to be performed according to Section 3.3. 

Another indirect efficiency calculation method replaces the realistic transmission model of 

a CCPGT by a substitution figure using Wolf symbols and is traced back to Wolf 

[2_WOL58]. Thereby, the rather complex structure of a CCPGT is simplified and the sys-

tem of equations is reduced. The method is suitable for determining the efficiency of com-

pound ratios with only three loaded central gears, with the carrier being unloaded. First, 

the basic trains or single PGTs are identified within the CCPGT. Two single PGTs are ne-

cessary to form a substitution figure that is kinematically-equivalent to the CCPGT and 

featuring a kinematic DOF of two. Here, three solutions are obtained. Hence, a CCPGT is 

often regarded as being compound out of single PGTs sharing the carrier and a central 

gear. Figure 3-17 shows a Ravigneaux type CCPGT and its kinematically-equivalent 

substitution figures. 

Among the substitution figures, only one represents the internal power flow of the real 

CCPGT in a correct way as a superposition of power flows of each single PGT included. 

This substitution figure features one summation shaft pointing to the inside and one point-

ing to the outside of the structure and is termed functionally-equivalent. Since only three 

central shafts of the functionally-equivalent substitution figure are loaded, it can be treated 

just like a single PGT. The substitution basic ratio as well as the substitution basic efficien-

cy is easily obtained as a function of the parameters of the single PGTs included if the 

shared central gear is imagined as being fixed. 

Foerster [4_FOR69], Klein [4_KLE82], Looman [4_LOO88 and 4_LOO99] and Mueller 

[2_MUL01] all adopted this method. It offers a simple and clearly represented efficiency 

calculation procedure with a minimum of basic ratios to be considered. Nevertheless, all 
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authors limited themselves to a maximum of four shafts for a CCPGT. There is no substitu-

tion method defined for more than three shafts of a CCPGT being loaded. 

 

Figure 3-17: Kinematically-equivalent substitution figures for the Ravigneaux type CCPGT  

3.5 Special operating conditions and self-locking 

Single PGTs can show very high efficiency values if the coupling power is large in compar-

ison to the meshing power. As a matter of fact, efficiency can also be very low in case of 

positive-ratio drives if the meshing power is explicitly larger than the external power. Fur-

ther, idle power can occur in coupled PGTs reducing the efficiency e.g. according to Ar-

naudow [4_ARN04]. 

As a limit case, self-locking can occur with the whole transmission or at least one shaft 

being blocked. Self-locking was proved theoretically and experimentally for single PGTs by 

several authors like Jakobsson [4_JAK60], Mueller [4_MUL87], Ikejo et al. [4_IKE09]. 

Larsson, Carlsson and Jakobsson [4_LAR57] provide complete efficiency diagrams with 

shaded self-locking range for single PGTs with constant basic efficiency (Figure 3-18). 

As for single PGTs, self-locking can only happen at the central shaft connected to the car-

rier if the basic ratio is within a range defined by the basic efficiency: 

       
  

 

  
 ( 3.13 ) 
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Bouché [4_BOU88] proved that coupled PGTs can be self-locking in one direction whe-

reas in the opposite direction the efficiency can be very high even in the absence of ex-

treme transmission ratios. Neussel [4_NEU62] investigated the self-locking capability of 

coupled and complex-compound PGTs using Wolf symbols. Boettcher and Sierig 

[4_BOT69 and 4_SIE68] as well as Oernhagen [4_ORN63] demonstrated self-locking for 

the Wolfrom type CCPGT if it works as a speed increaser. In these references, only the 

operating conditions with a maximum of three loaded central shafts were taken into ac-

count. 

 

Figure 3-18: Efficiency diagram for single PGTs with 95% basic efficiency acc. to [4_LAR57] 
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3.6 Synthesis of planetary gear transmissions 

The question of which PGT design is best for a certain application or how to combine 

PGTs in the right way is hard to answer. Very often, PGTs are designed based on expe-

rience and expert knowledge. Lists of PGT designs can be found in many standard works 

of such as Mueller [2_MUL01] or Volmer [2_VOL90]. Gibson and Kramer listed 22 essen-

tial single PGTs [5_GIB84]. Early references (e.g. by Altmann [5_ALT27b]) refer to numer-

ous designs of single and coupled PGTs for different purposes. 

If not taking advantage of computer-based calculations, graphical methods were em-

ployed. For instance, Pickard and Koepf [5_PIC76] tried to reverse the Kutzbach diagram 

(cf. Section 3.2.2) to find simple solutions for manageable problems. Other authors like 

Arnaudow and Karaivanov [5_ARN03, 5_ARN05a, 5_ARN05b and 5_ARN10] and Nitescu 

[5_NIT83 and 5_NIT86] used Wolf symbols for a systematic generation of different trans-

mission structures up to a certain complexity level. 

Frequently, synthesis methods are related to particular problems and applications. As 

CCPGTs, especially of the Wolfrom type [4_WOL12], are often used as high ratio drives, 

Gaunitz [5_GAU50], Mulzer [5_MUL09] and Loersch [5_LOR67] created several designs. 

Stahl and Mulzer [6_STA09] came up with a very simple design derived from the Wolfrom 

type CCPGT. Schnetz [5_SCH71 and 5_SCH76] presented a systematic synthesis and 

classification in terms of efficiency and designed space of high-ratio CCPGTs starting from 

chosen predefined designs. Likewise, Dreher [5_DRE83] presented a synthesis for 

coupled PGTs with up to two simple PGTs. 

The problem of generating a reasonable automatic transmission is taken up by many en-

gineers. An early application of a CCPGT in an automatic transmission of the Ford T is 

shown in Figure 3-19. Ott [5_OTT68] illustrated an entire synthesis of 3-speed automatic 

transmissions including up to two single PGTs featuring one plane of mesh engagement. 

Li [5_LI93] showed examples of synthesizing 4- and 5-speed automatic transmissions by 

means of graphical methods. Gumpoltsberger [5_GUM06] made use of computer-based 

combinatorics to create 7-, 8- and 9-speed automatic transmissions including exclusively 

simple PGTs. Here, graph theory is used to check the designability and isomorphism. Ka-

hraman and Ligata [5_KAH04] published a procedure for creating structures of automatic 

transmission without limiting to certain PGT designs. 

Graph theory constitutes another general possibility for PGT synthesis. Many authors such 

as An and Peiwen [5_AN01], Chen and Liu [5_CHE99], del Castillo [5_DEL02a], Hsu 

[5_HSU00], Shin and Krishnamurty [5_SHI93] or Tsai [5_TSA87] dedicated themselves to 

finding reasonable graphs for mechanism with different numbers of kinematic DOF, al-

though, the conclusion to concrete transmission structures was missing or no technical 

problem was specified. Freudenstein [5_FRE71] or Chatterjee and Tsai [5_CHA96] pre-

sented first approaches of a systematic assembly of transmission structures based on 

graphs. Thereby, the generated solutions often lack of practical usability due to their com-

plexity. Wojnarowski [5_WOJ06] provided a descriptive overview of PGT synthesis using 
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graph theory. In another context Domian [5_DOM01] applies graph theory for analyzing 

and generating structures of manual and dual clutch transmissions. 

 

Figure 3-19: Structure of the automatic transmission of the Ford T acc. to [2_MUL01] 
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4 Efficiency determination for complex-

compound planetary gear transmissions 

4.1 Calculation by means of graph theory and graph repre-

sentation 

Graph representation offers a view on CCPGTs reduced to the essentials. By modeling a 

CCPGT as a graph, the relevant connections and interrelationships between bodies come 

forward. Also, the internal power flow considering power losses can be identified and cal-

culated automatically using graph theory algorithms. 

4.1.1 Graph representation of complex-compound planetary gear 

transmissions 

According to equation ( 2.44 ) the number of bodies or vertices in a graph is a function of 

the number of central shafts and planets: 

         ( 4.1 ) 

B [-] total number of bodies 
P [-] total number of planets 

CS [-] total number of central shafts 

Substituting equation ( 4.1 ) into ( 2.47 ) yields: 

             ( 4.2 ) 

G [-] total number of basic gearings 
B [-] total number of bodies 

CS [-] total number of central shafts 
P [-] total number of planets 

The number of basic gearings is identical to the number of geared edges in the graph. The 

number of geared members is equal to the sum of central gears and planets diminished by 

one: 

                ( 4.3 ) 

G [-] total number of basic gearings 
CG [-] total number of central gears 

CS [-] total number of central shafts 
P [-] total number of planets 

Subtracting the number of geared members from the total number of bodies, it is clear that 

there are always two non-geared members in a CCPGT, the carrier and the housing: 
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                                    ( 4.4 ) 

B [-] total number of bodies  
G [-] total number of basic gearings 
CG [-] total number of central gears 

CS [-] total number of central shafts 
P [-] total number of planets 

Naturally, every geared member must be connected to a gear pair edge. Therefore, the 

number of gear pair edges is one less than the number of geared members which means 

that the subgraph of a single PGT or CCPGT consisting only of gear pair edges and their 

end vertices is a coherent tree. Likewise, according to Section 3.2.3, the subgraph ob-

tained by removing all gear pair edges is also tree, but it contains all vertices of the original 

graph. 

 

Figure 4-1: Example subdivision of a single PGT graph 

The graph of the single PGT shown in Figure 4-1 is subdivided into a tree of gear pair 

edges and a tree of turning pair edges. The gear pair edge tree is remarkable because of 

its chained structure representing the basic train. In accord with Section 2.1 the two central 

gears of a single PGT appearing in the gear pair edge subgraph are indirectly connected 

via the planets. Thus, the planets occur as binary vertices in the geared edge subgraph 

featuring exactly two incident gear pair edges, whereupon the number of planets is theo-

retically arbitrary.  

In contrast, CCPGTs contain a least three central gears. Every two central gears are indi-

rectly connected via chain of gear pair edges. This means that there exists at least one 

non-binary planet with at least three incident gear pair edges (Figure 4-2). Again, the 

number of planets is theoretically not limited as well as the number of central gears mesh-

ing with a planet. The shortest trace from one central gear to another represents the cor-

responding basic train.  
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Referred to the definition of a tree, the geared edge subgraph of a single PGT or CCPGT 

does not contain any circuits. Circuits consisting only of geared edges would represent a 

ring closure of transmission ratios which leads to blocking of the mechanism except for a 

ring transmission ratio of exactly +1. This characteristic is valid for PGTs if multiple, iden-

tical planets are equally spaced. These parts are usually not represented due to rotational 

symmetry and redundancy. 

 

Figure 4-2: Example subdivision of a CCPGT graph 

The corresponding matrix notation in terms of a symmetric adjacency matrix for the 

CCPGT shown in Figure 4-2 containing a turning and a gear pair submatrix reads as fol-

lows: 
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  ( 4.5 ) 

A [-] adjacency matrix a/b/c [-] turning pair edge of level a/b/c 
g [-] gear pair edge 

4.1.2 Kinematics analysis 

By means of the adjacency matrix, an automated derivation of the basic speed coefficient 

matrix is feasible. Every gear pair edge element of the adjacency matrix A is characterized 

by its basic transmission ratio     
  and connects the gear pair members x and y. To set up 

the speed coefficient matrix based on equation ( 2.23 ) the corresponding carrier element s 

has to be identified. In regards of a CCPGT, there is only one carrier present which is al-

ready known by means of the modeling process of its graph. However, there is a syste-

matic identification method for the carrier. The end vertices of a gear pair edge are con-

nected by a chain of turning pair edges. Since the subgraph of turning pair edges is a tree, 

there is only one trace of turning pair edges from one end vertex to the other end vertex of 

the focused gear pair edge. The circuit consisting of the turning pair trace and the gear 

pair edge is termed fundamental circuit e.g. by Hsieh and Tsai [4_HSI96b]. Within every 

fundamental circuit one and only one vertex functions as a so-called transfer vertex bridg-

ing the center distance of the gear pair members. This transfer vertex has to be the carrier 

vertex and is easily identified since the level of incident turning pair edges is different. For 

instance, the graph of Figure 4-2 is decomposed into fundamental circuits in Figure 4-3. 

Obviously, vertex 5 is the transfer vertex of each fundamental circuit. 
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Figure 4-3: Example decomposition of a CCPGT graph into fundamental circuits 

Since the adjacency matrix is symmetric, it is sufficient to analyze its upper triangle matrix 

row by row. For every gear pair edge element g, a row is written for the basic speed coeffi-

cient matrix with a 1 at the position x, a       
   at the position y and a      

     at the posi-

tion of the carrier s of the corresponding fundamental circuit analogical to equation  

( 2.22 ). Hence, the basic system of equations for the CCPGT in Figure 4-2 reads: 
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( 4.6 ) 

A [-] adjacency matrix 

a/b/c [-] turning pair edge of level a/b/c 
g [-] gear pair edge 

i [-] basic transmission ratio of gear pair g 
nx [1/s] rotational speed of vertex/body x 

As a CCPGT features two kinematic DOF, two presets are to be inserted (cf. Section 

2.6.1). In addition, the speed of the housing vertex 0 has to be set to zero for this example 

since its rotation is kinematically decoupled from the CCPGT. 

4.1.3 Statics analysis for loss-free operating conditions 

Similar to the kinematics analysis, the statics systems of equations for loss-free operating 

conditions is derived in accordance with equations ( 2.28 ) and ( 2.30 ) for the CCPGT in 

Figure 4-2: 

 

 
 
 
 
 
 

     
     
     
     
     

    
       

       
       

       
   

     
     

      
      

      
      

  

 
 
 
 
 
 

 

 
 
 
 
 
 
      

      

      

      

       
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 ( 4.7 ) 

i [-] basic transmission ratio of gear pair g Ti,x,g [Nm] internal torque of vertex/body x  
  of gear pair edge g 

Every row of the basic torque coefficient matrix sums the acting torques on one vertex. In 

coincidence with Section 2.6.2, two external torques of central shafts are unknown, three 

external torques are to be provided and the housing torque is to be zeroed. 
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4.1.4 Power flow characteristics of complex-compound planetary gear 

transmissions 

Three types of power are to be distinguished for the components of a CCPGT: absolute 

power, meshing power and coupling power. Considering only load-dependent power 

losses (cf. Section 3.1.4) the power balances read as follows: 

                      

                       

                       

             

( 4.8 ) 

P [W] absolute (external) power of central shaft 
PL [W] overall (load-dependent) power loss 

Pm [W] meshing power of central shaft  
Pc [W] coupling power of central shaft 

Herein, the meshing power of a gear pair is 

decisive, since its magnitude and direction 

determines the corresponding power loss 

(cf. Section 3.3). Naturally, meshing power 

can exclusively be transmitted by gear pair 

joints and gear pair edges, respectively. 

Thus, the gear pair subgraph illustrates 

feasible meshing power flow modes.  

In terms of singles PGTs, the gear pair sub-

graph is a chain with the central gears as 

end vertices. The central gear vertices work 

as meshing power input and output whereas 

the intermediate planet vertices work as 

power transmitting elements without con-

nection to the periphery (Figure 4-4). Con-

sidering meshing power flow directions, the 

gear pair subgraph adopts the form of a di-

rected graph. Gear pair edges can only 

transmit meshing power in one direction. 

Otherwise, torque would be transmitted in both directions meaning that the working tooth 

flank as well as the opposite flank were loaded, which does not represent the intended 

operating behavior. 

By contrast, the gear pair subgraph of a CCPGT is a branched tree. Every planet vertex 

can be connected to central gear vertices and other planet vertices. The planets con-

nected to more than two further vertices work as power partition or summation elements, 

otherwise as power transmitting elements. Thus, the structure of the gear pair subgraph of 

a CCPGT can be generalized as follows (Figure 4-5): 
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Figure 4-5: Generalized structure of the gear pair subgraph of a CCPGT 

In this figure the edges are intentionally not directed. The edge directions, especially those 

of edges between planets, depend on the individual power inputs and outputs of the fo-

cused planet. Obviously, multiple operating conditions exist as a function of the number of 

central gears and planets but also as a function of the single quantities of power. Neces-

sarily, at least one central gear vertex has to be a meshing power input and one has to be 

an output, respectively. 

4.1.5 Efficiency calculation by iteration 

An efficiency calculation can be performed by modifying the statics system of equations in 

Section 4.1.3. To determine the direction of the meshing power flow of each basic gearing 

and gear pair edge respectively, a kinematics and statics analysis for loss-free conditions 

have to be performed at first. Internal torques according to the nomenclature of Sections 

2.4.2 and 4.1.3 are used to calculate the meshing power of a gear. If the meshing power of 

the focused gear is negative, it acts as power output of the body and as power input for the 

gear pair mesh, respectively, and vice versa. Thus, the basic ratios in the torque coeffi-

cient matrix are to be replaced by themselves multiplied or divided by the corresponding 

efficiency factors as a function of the sign of the related meshing power: 

    
      

    
                

                       

                       

                      

  ( 4.9 ) 

    
  [-] basic ratio of gear pair g 

   [-] basic efficiency of gear pair g 

   [-] efficiency exponent 

Ti,x,g [Nm] internal torque of vertex/body x  
  of gear pair edge g  
nx [1/s] speed of body/vertex x 
ns [1/s] speed of carrier/transfer vertex s 

meshing power 

input vertices

(central gears)

power partition/ 

power summation/ 

power transmit

vertices (planets)

meshing power 

output vertices

(central gears)

p1

p2 pn pN

1in,1 1in,2 1in,n 1in,N 2in,1 2in,2 2in,n 2in,N Nin,1 Nin,2 Nin,n Nin,N

1out,1 1out,2 1out,n 1out,N 2out,1 2out,2 2out,n 2out,N Nout,1 Nout,2 Nout,n Nout,N
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Considering power losses, the meshing power flow directions do not necessarily have to 

be identical to those of the loss-free case. A change of direction implicates the previous 

assumptions to be wrong, and hence, an incorrect modification of the statics system of 

equations. By means of an iteration, the direction of meshing power flows are checked and 

compared to those of the previous calculation step. If a change is noticed, then the effi-

ciency exponent w1 is switched. The following flow chart illustrates the procedure in prin-

ciple (Figure 4-6). 

 

Figure 4-6: Flow chart for efficiency calculation by iteration 

In case of an isolated CCPGT, the number of unknown meshing power flow directions is 

very limited. Due to the static DOF, there are only two external torques left to be deter-

mined. The other external torques are given as preset values, hence, the directions of the 

gear pair edges connected to these vertices are given from the beginning. In conclusion, 

only the directions of gear pair edges between planet vertices as well as between planet 

vertices and central gear vertices not being predefined are to be modified when indicated. 

Two cases can be distinguished. For the second case, the number of gear pair edge direc-

tions to be determined is one less in comparison to the first case: 
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1. The external torques of two central gear shafts are unknown. 

2. The external torques of one central gear shaft and of the carrier shaft is unknown. 

An iteration that does not converge represents an impossible operating condition. It will be 

discussed in Section 4.4.5. 

Instead of choosing internal torques as states for the basic torque state vector, meshing 

and/or absolute power can be used. Then, the meshing power of a basic gearing does not 

have to be calculated separately. From Section 2.5.2, the meshing power of basic gearing 

member x is chosen as state. The meshing power of member y and the absolute power of 

the carrier result as a function of the meshing power of member x: 

                

            
    

        

                                   
      

     
 

      

     
     

   
      

     
 

    
    

       

     
      

    
    

   

     
 

  

     
         

             

               

               

              

  

( 4.10 ) 

Pm,x/y,g [W] meshing power of central gear x/y of  
  basic gearing g 
Ps,g [W] absolute power of carrier s of  
  basic gearing g 
ωx/y/s [rad/s] angular speed of central gear x/y  
  or carrier s 

Ti,x/y,g [Nm] internal torque of central gear x/y  
  of basic gearing g 
Ts,g [Nm] torque of carrier s of basic gearing g  
     [-] basic efficiency of gear pair g 

     [-] efficiency exponent of basic gearing g 

Using this nomenclature, a preceding kinematics analysis is necessary to insert concern-

ing speeds. Obviously, the absolute power of the carrier cannot be calculated for the 

coupling case as the meshing power of all central gears is zero and no relative speed oc-

curs. 

Due to closeness of the modeling to reality and the correct representation of the meshing 

power flow, both methods and nomenclatures allow a consideration of power losses for 

any number of input and output shafts and arbitrary operating conditions.  

4.1.6 Efficiency calculation by simplex algorithm and network flows 

Numerous solving algorithms for linear problems exist as alternative to the iteration proce-

dure described in the previous section. A very popular and efficient one is the simplex al-

gorithm according to Schrijver [7_SCH00]. The simplex algorithm is a tool for solving and 

optimizing linear problems. It either finds the optimum solution after a finite number of cal-

culation steps or states unboundedness and incalculability. Vanderbei [7_VAN97] indi-

cated that the simplex algorithm is capable of solving problems of the following form with a 



Efficiency determination for complex-compound planetary gear transmissions 57 

target function to be maximized and a matrix-vector-system constraining the solution 

space: 

            

 

   

 

                

 

   

                   

                                            

( 4.11 ) 

x [-] variable 
a [-] constraint function coefficient 
n [-] number of variables 

b [-] constraint value 
c [-] target function coefficient 
m [-] number of constraint functions 

The constraint functions can both be given as inequalities or equations. Graphically, the 

solution space can be imagined as a polyhedron with peripheries defined by the constraint 

functions (Figure 4-7). 

 

Figure 4-7: Simplex polyhedron and solution path 

The simplex algorithm starts with an arbitrary, feasible solution. Subsequently, a single 

variable is systematically altered in a stepwise manner while freezing other variables after 

analyzing the system of equations. The solution path runs along the edges of the polyhe-

dron until the top is reached (Figure 4-7). 

The problem of calculating the efficiency and power flow respectively within a CCPGT is 

not a linear problem as the power loss depends on the direction of the meshing power flow 

from vertex to vertex. However, to avoid distinctions of cases, this problem can be trans-
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formed into a linear optimization problem. For this purpose, the graph in Figure 4-5 is 

modified as follows. Normally, every edge is capable of transferring meshing power in both 

directions. Therefore, each edge is split into two twin edges of opposite directions (Figure 

4-8). Due to this transformation the gear pair subgraph is not a tree any longer and fea-

tures several cycles. 

 

Figure 4-8: Transformed structure of the gear pair subgraph of a CCPGT for linear problem solving 

purposes 

For this system a set of equations based on ( 4.11 ) is assembled with meshing power as 

variable. Each edge features an input and output meshing power and an efficiency factor. 

By definition, all meshing power values are positive: 

     
    

        
                   ( 4.12 ) 

     
  [W] input meshing power of edge e 

      
  [W] output meshing power of edge e 

  
  [-] efficiency factor of edge e 

q [-] number of edges 

Also, the meshing power for each vertex must be balanced: 

          
             

           
            

                     ( 4.13 ) 

         
  [W] internal input meshing power of vertex v 

          
  [W] internal output meshing power of vertex v 

p [-] number of vertices 

         
  [W] external input meshing power of vertex v 

          
  [W] external output meshing power of vertex v 

According to the DOF of the system, external meshing power is to be preset as a con-

straint value. Naturally, planet vertices do not feature external meshing power. In case of 

only one external meshing power of a central gear is unknown, no further constraint func-

tions are to be inserted. If the meshing power of two of central gears are unknown, but the 

torque of the carrier shaft is given, the torque balance of the whole system is the missing 

p2
p1

1in,1 1in,2 1in,n 1in,N

1out,1 1out,2 1out,n 1out,N

2in,1 2in,2 2in,n 2in,N

2out,1 2out,2 2out,n 2out,N

pN

Nin,1 Nin,2 Nin,n Nin,N

Nout,1 Nout,2 Nout,n Nout,N

pn
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constraint function. For this purpose, meshing power is converted into torque using the 

corresponding meshing speed: 

 
 

     
          

   
 

     
           

      ( 4.14 ) 

         
  [W] external input meshing power of vertex v 

          
  [W] external output meshing power of vertex  

ωv [rad/s] angular speed of central gear vertex v 
ωs [rad/s] angular speed of carrier s 
Ts [Nm] external torque of carrier s 

With these constraint functions the simplex algorithm is supposed to minimize the power 

loss. Therefore, the term to be maximized reads: 

              
    

                    ( 4.15 ) 

     
  [W] input meshing power of edge e    

  [-] efficiency factor of edge e 

q [-] number of edges 

As the minimum of power loss is gained if meshing power is not cycling, the twin edges 

vanish as at least one edge does not transfer meshing power in the end. Thus, the result-

ing subgraph is again a tree after removing all unloaded edges and the unknown values 

for the external meshing power are gained.  

The presented problem is not only a linear problem but also a so-called network flow prob-

lem meaning that a certain entity is to be transported from one point to another via given 

routes. According to Ahuja et al. [7_AHU93], a popular and fundamental network flow 

problem is the minimum cost flow problem. Goods are to be transported from a number of 

suppliers to a number of consumers at which shipment costs arise. The shipment costs 

depend linearly on the amount of goods per transport. It is assumed that for the standard 

minimum cost flow problem the entity is neither consumed nor increased while transport-

ing. This is not true for the given power flow problem as the meshing power decreases. 

Therefore, this problem belongs to the group of generalized flow problems whose edges 

are capable of reducing of increasing the transported entity. It can be compared e.g. to 

financial networks or electricity networks with edges featuring power losses.  

Nevertheless, fast solving algorithms have been developed for network flow problems 

based on the simplex algorithm. Here, as many variables as possible are preset according 

to the DOF of the system. Thus, only one feasible solution can be achieved and the given 

problem is not a real optimization problem. It would, for example, also be possible to  

answer the question where to input power in order to satisfy a certain power demand for 

minimum power losses without initializing all DOFs. 

4.1.7 Overall efficiency 

In order to calculate the overall efficiency in the end, the overall input and output power is 

to be determined. The statics analysis considering power losses reveals the values for 

both unknown external torques. Other external torques are given as preset values. The 

formula for the overall efficiency reads: 
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( 4.16 ) 

Pin [W] overall (absolute) input power 
Pout [W] overall (absolute) output power 
η [-] overall efficiency 

Te,x [Nm] external torque of central shaft x 
nx [1/s] (absolute) speed of central shaft x 

4.2 Calculation by means of Wolf symbols 

Substitution figures composed of Wolf symbols offer a simplified and clear view on PGT 

structures (cf. Sections 3.2.1 and 3.4). As for single PGTs and coupled PGTs consisting 

only of single PGTs the Wolf symbol representation is unique. In terms of CCPGTs mul-

tiple Wolf symbol substitution figures may exist. In the following, the kinematics and statics 

analysis for operating conditions with and without power losses are discussed and differ-

ences between single/coupled PGTs and CCPGTs are identified. 

4.2.1 Kinematics analysis and kinematically-equivalent substitution 

figures 

4.2.1.1 Single and coupled planetary gears 

A Wolf symbol corresponding to a single PGT or a coupled PGT derived from combining 

single PGTs strongly orientates on the real transmission structure. Instead of taking into 

account every basic gearing ratio, basic train ratios are used as parameters. Thus, infor-

mation about planets and their rotational speeds and bearing power losses are lost. Apart 

from that, the Wolf symbol does not include any further simplification but illustrates the 

structural assembly in a concise way. 

An example is given in Figure 4-9. It shows the Wolf symbol corresponding to the coupled 

PGT of Figure 2-10 with adjusted numeration. Table 4-1 provides the assignments of the 

members to the individual Wolf symbols and basic trains respectively. By means of the 

procedure of Section 2.5.1, the basic speed system of equations ( 4.17 ) is formed. Since 

the speeds of only four members occur as states instead of the speeds of six bodies of the 

realistic transmission model, the dimension of the system of equations is much smaller as 

a function of the number of contained planets. 
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Figure 4-9: Wolf symbol of a coupled PGT consistent with Figure 2-10 with adjusted numeration 

Wolf symbol member x member y member s transmission ratio     
  

I 1’ 2’ 4’        
  

II 4’ 3’ 2’           
   

Table 4-1: Basic train assignment table for Figure 4-9 

 
         
           

   

   

   

   

    

   
 
 
  ( 4.17 ) 

i [-] basic train ratio nx [1/s] rotational speed of member x 

4.2.1.2 Complex-compound planetary gears 

CCPGTs are often regarded as a composition of single PGTs sharing a common planet 

carrier and common central gears. A kinematically-equivalent substitution figure is built out 

of single PGTs contained in the CCPGT and features the same number of kinematic DOF 

of the CCPGT. The number of central shafts is identical as well as their speeds. Every sin-

gle PGT added to the substitution figure provides three central shafts. The final number of 

central shafts is discounted by the number of permanent couplings: 

               ( 4.18 ) 

CS [-] total number of central shafts 
CL [-] number of permanent paired shaft  
  couplings 

PGTsub [-] number of single PGTs contained in the 
  substitution figure 

As the number of kinematic DOF equals two, substituting equation ( 2.42 ) into ( 4.18 ) 

leads to: 
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( 4.19 ) 

CS [-] total number of central shafts 
CL [-] number of permanent paired shaft  
  couplings 

PGTsub [-] number of single PGTs contained in the 
  substitution figure 
 

Thus, the substitution figure of a CCPGT consists of a definite number of single PGTs and 

permanent paired shaft couplings as a function of the number of central shafts. Per Sec-

tion 2.4.1.2, a CCPGT contains multiple sets of single PGTs. Every two central gears of 

the CCPGT constitute a single PGT in combination with the carrier. Therefore, the number 

of single PGTs contained in a CCPGT equals: 

         
  
 

   
    

 
  

       

         
 ( 4.20 ) 

CS [-] total number of central shafts 
CL [-] number of permanent paired shaft  
  couplings 

PGTincl [-] number of single PGTs contained  
  in a CCPGT 
CG [-] total number of central gears 

Table 4-2 gives an overview of the number of single PGTs included in a CCPGT and the 

corresponding number of single PGTs contained in the substitution figure: 

CS 3 4 5 6 7 8 9 10 11 

PGTincl 1 3 6 10 15 21 28 36 45 

PGTsub 1 2 3 4 5 6 7 8 9 

CS [-] total number of central shafts 
PGTincl. [-] number of single PGTs contained  
  in a CCPGT 

PGTsub. [-] number of single PGTs contained in the 
  substitution figure 

Table 4-2: Number of single PGTs included in a CCPGT and corresponding number of single 

PGTs contained in the substitution figure 

To ensure the same kinematic behavior of the substitution figure in relation to the CCPGT, 

it is not sufficient to select arbitrary single PGTs out of the multitude of single PGTs in-

cluded. Since a CCPGT features a kinematic DOF of only two (the meshing and the coupl-

ing speed), every central gear must either be directly connected to another central gear via 

a basic train or at least via a kinematic chain of basic trains. Then, the meshing speed of 

one central gear dictates the meshing speeds of all other central gears. This means that all 

central gears must occur at least once in a PGT of the substitution figure. According to 

Table 4-2, (CS-2) basic trains are available to connect (CS-1) central gears kinematically. 

Thus, the structure of a virtual subgraph connecting all central gears via basic trains is a 

coherent tree. Figure 4-10 shows a positive and negative example of a 5-shaft CCPGT 

transformed into a kinematically-equivalent and non-equivalent substitution figure and the 

related virtual subgraphs. Since the virtual subgraph of the negative example features a 

ring, it is not a tree and does not contain all central gears. Central gear shafts, being 

member of more than one Wolf symbol, are termed central gear coupling shafts. 
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Figure 4-10: Kinematically-equivalent and non-equivalent substitution figure of an example 5-shaft 

CCPGT 

Obviously, the total number of feasible substitution figures equals the total number of 

trees. According to Cayley [7_AIG10] the number of different trees connecting a certain 

number of vertices is given by the following equation: 
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                         ( 4.21 ) 

SUBkin [-] total number kinematically-equivalent 
  substitution figures 

CS [-] total number of central shafts 
CG [-] total number of central gears 

Table 4-3 provides the number of kinematically-equivalent substitution figures as a func-

tion of the number of central shafts. Due to the exponential growth, the number of kine-

matically-equivalent substitution figures is comparatively high even for small numbers of 

central shafts. 

CS 3 4 5 6 7 8 9 10 11 

SUBkin 1 3 16 125 1.296 16.807 262.144 4.782.969 100.000.000 

SUBkin [-] total number kinematically-equivalent  
  substitution figures 

CS [-] total number of central shafts 
 

Table 4-3: Number of kinematically-equivalent substitution figures 

For computer-based generation of trees the Pruefer algorithm [7_PRU18, 7_WAN97 and 

7_DEO01] can be utilized. For a given number of vertices all feasible trees are built itera-

tively. The Pruefer algorithm is fast as it avoids creating structures other than trees. 

Referring to Section 4.2.1.1 the basic speed system of equations is derived for a given 

substitution figure. For example, the system of equations for the kinematically-equivalent 

substitution figure in Figure 4-10 is written as: 

 

          
            
            

  

 
 
 
 
 
  

  

  

  

   
 
 
 
 

  
 
 
 
  ( 4.22 ) 

i [-] basic train ratio nx [1/s] rotational speed of member x 

Naturally, the dimension of the system is smaller since it features only five states instead 

of seven for the number of bodies of the transmission. In coincidence to the number of ki-

nematic DOF, three Willis Equations are used for the description of the kinematics of the 

CCPGT and two preset values are necessary to complete the system of equations.  

4.2.2 Statics analysis for loss-free operating conditions 

4.2.2.1 Single and coupled planetary gears 

The statics analysis discussed in Section 2.4.2 can be applied to Wolf symbol models ac-

cordingly. For this purpose, it is reasonable to cut free each Wolf symbol and mark the 

shafts ends with internal and external torques. The corresponding torque values of cut-free 

shaft ends have opposite signs. As an example, the Wolf symbol of Figure 4-9 is modified 

in Figure 4-11: 
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Figure 4-11: Wolf symbol of a coupled PGT consistent with Figure 2-10 and cut-free elements 

In accordance with Table 4-1, the basic torque system of equations is set up as: 

 

  
        
     

     

   
       

        
   

 
 
 
 

  ( 4.23 ) 

i [-] basic train ratio Ti,x,w [Nm] internal torque of member x of Wolf 
  symbol / basic train w 

By choosing the applied nomenclature, the basic torque coefficient matrix is the transpose 

of the basic speed coefficient matrix as stated in Section 2.5. 

4.2.2.2 Complex-compound planetary gears 

According to equation ( 2.48 ), the static DOF equals the number of central shafts having a 

connection to the periphery minus the kinematic DOF. Substituting equation ( 4.19 ) into  

( 2.48 ) leads to: 

                              ( 4.24 ) 

DOFkin [-] kinematic DOF 
DOFstat [-] static DOF 

CS [-] total number of central shafts 
PGTsub [-] number of single PGTs contained in the 
  substitution figure 

Herein, the number of permanent paired shaft couplings is defined by equation ( 4.19 ) as 

well. Hence, a kinematically-equivalent substitution figure features the same static DOF as 

the corresponding CCPGT. 

The statics of a CCPGT for loss-free operating conditions can be described using the for-

mulations of equations ( 2.13 ) and ( 2.19 ). First, the sum for all external torques must 

equal zero: 

1‘

2‘

3‘

4‘

I II



66 Efficiency determination for complex-compound planetary gear transmissions 

                   ( 4.25 ) 

Tx [Nm] external of central shaft x  

Secondly, the sum of all meshing power amounts of the central shafts of a CCPGT must 

equal zero. Since the meshing speeds of all central shafts are kinematically coupled in 

pairs via the related basic train ratio, the sum of meshing power can be modified as fol-

lows: 

                                                     

       
     

     
    

     

     
         

 

   
     

 

   
     

( 4.26 ) 

Tx [Nm] external of central shaft x 
Pm [W] meshing power 

nx/s [1/s] speed of central gear x / carrier s 
i [-] basic train ratio 

The substitution figure features the same number of central shafts, and therefore the same 

number of connections to the periphery. Likewise, the sum of its external torques ( 4.25 ) 

must be zero. Since the substitution figure is arranged to have the same kinematic beha-

vior as the CCPGT in terms of the central shaft speeds (cf. Section 4.2.1.2), equation  

( 4.26 ) must be true for every substitution figure just as well. Thus, every kinematically-

equivalent substitution figure can be used to analyze the statics of a CCPGT for 

loss-free operating conditions. In this context, only the external torques of the subs-

titution figure correspond to the real external shaft torques of the CCPGT. Due to 

the division of external torques to multiple Wolf symbols contained in the substitu-

tion figure, the internal torques do not necessarily equal the internal torques of the 

CCPGT and do not necessarily have a physical meaning. As an example, the kinemat-

ically-equivalent substitution figure of Figure 4-10 is cut free in Figure 4-12. 

 

Figure 4-12: Kinematically-equivalent substitution figure consistent with Figure 4-10 and cut-free 

elements 

The related basic statics system of equations reads: 

I
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 ( 4.27 ) 

i [-] basic train ratio Ti,x,w [Nm] internal torque of member x of Wolf 
  symbol / basic train w 

As stated before, the basic torque coefficient matrix is the transpose of the basic speed 

coefficient matrix by means of the applied nomenclature. 

4.2.3 Efficiency calculation by functionally-equivalent substitution fig-

ures  

4.2.3.1 Single and coupled planetary gears 

As for single PGTs and coupled PGTs consisting of single PGTs, the efficiency calculation 

can be carried out based on the kinematics and statics analysis for loss-free operating 

conditions (Section 4.2.2.1). The basic train ratio is to be multiplied or to be divided by its 

corresponding efficiency factor appropriate to the meshing power flow direction in analogy 

to Sections 3.3 and 4.1.5. An iteration and alteration of the efficiency exponents are to be 

applied if necessary. The overall efficiency is calculated according to Section 4.1.7. Since 

no other methodical differences are to be mentioned, the procedure is not repeated here. 

4.2.3.2 Definition of functionally-equivalent substitution figures for complex-

compound planetary gear transmissions 

By definition, a functionally-equivalent substitution figure must exhibit to show the same 

kinematic and static behavior as the corresponding CCPGT. The torques of central gears 

and central shafts, respectively, must be identical, even in case when power losses are 

included. Thus, the overall efficiency is supposed to be identical as well. 

As shown in Sections 4.2.1.2 and 4.2.2.2, the structure of a gear pair subgraph of a 

CCPGT differs fundamentally from the structure of the corresponding virtual subgraph of a 

kinematically-equivalent substitution figure since planets are missing within the substitution 

figures. Therefore, the meshing power flow within substitution figures differs fundamentally 

from the meshing power flow within the CCPGT, too. In a CCPGT, meshing power can 

only be transferred from one central gear to another central gear via planets. Each central 

gear is part of only one gear pair. In contrast, the central gears are directly connected with-

in the substitution figure. Central gears can be part of more than one Wolf symbol and ba-

sic train, respectively (Figure 4-10). 

In order to generate a functionally-equivalent substitution figure, the planets are symboli-

cally removed from the CCPGT gear pair subgraph. In other words, planets are omitted 

and central gear connections are replaced by direct gear pair edges between central 

gears. Hereby, the realistic meshing power flows are split into partial meshing power flows 

belonging to different basic trains and Wolf symbols respectively. To ensure the same 
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functional behavior the substitution figures must fulfill the following rules in respect of the 

corresponding CCPGT: 

1. The substitution figure must be kinematically-equivalent. 

2. The quantities of meshing power must be identical in sum. 

3. Superimposing the partial meshing power flows of the substitution figure on the basis 

of the realistic CCPGT gear pair subgraph, all gear pair edges must feature meshing 

power flows in the same direction. Likewise, a gear pair edge must not feature partial 

meshing flows in opposite directions.  

4. The partial meshing power flows of the substitution figure must be impacted by equiva-

lent efficiency factors. For this purpose, the basic train efficiency of a certain Wolf 

symbol has to be identical to the efficiency of the corresponding path from one central 

gear to the other of the realistic CCPGT gear pair subgraph. Due to the fragmentation 

of meshing power flows, the efficiency factors must not feature any load dependency. 

A simple example shown in Figure 4-13 illustrates the relationship between a directed 

CCPGT gear pair subgraph and a corresponding functionally-equivalent substitution figure. 

Each gear pair edge features a certain efficiency factor. The efficiency factors of basic 

trains result as the product of related gear pair edge efficiency factors. The amounts of 

meshing power are chosen arbitrarily and charted as loss-free values for clarity purposes. 
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Figure 4-13: Example CCPGT gear pair subgraph and functionally-equivalent substitution figure 

By compliance with the rules mentioned above, power losses and overall efficiency of the 

functionally-equivalent substitution figures are identical to those of the actual CCPGT. Due 

to this correspondence, the functionally-equivalent substitution figure cannot feature a bet-

ter overall efficiency or lower power losses.  

A better overall efficiency of a substitution figure can only be derived if rule 4 is violated 

meaning that basic train efficiency factors are chosen in an inconsistent way. Violation of 

either one of rules 2 or 3 results in higher meshing power and/or meshing power is im-

pacted by too low efficiency factors. Both cases lead to much higher power loss and lower 

overall efficiency.  

In the following, two negative examples highlight kinematically-equivalent but functionally-

non-equivalent substitution figures. The first example in Figure 4-14 shows a substitution 

figure with too much meshing power. The basic trains for the substitution figure are chosen 

in an inappropriate manner since meshing power is transferred from central gear 2 to cen-

tral gear 3. Central gear 3 is a meshing power source and its external input meshing power 

is added to the meshing power delivered by central gear 2. Thus, the meshing power flow 

from central gear 3 to central 4 is larger than the external input meshing power provided 
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for central gear 3. In sum, too much meshing power is considered. Meshing power is 

transferred using detours instead of direct and short paths. To avoid detours, meshing 

power may only be transferred directly from meshing power source to meshing power sink. 

There must not exist any direct source to source or sink to sink connections. No central 

gear vertex and central gear coupling shaft respectively may feature meshing power flows 

of opposite directions. Likewise, the sign of all inner torques belonging to one central 

gear coupling shaft must be identical. 

 

Figure 4-14: Negative example of functionally-non-equivalent substitution figure with too much 

meshing power 

The second negative example in Figure 4-15 demonstrates a substitution figure featuring 

too low basic train efficiency factors. Indeed, meshing power flows of all central gear 

coupling shafts are of equal direction but meshing power is transferred using too long 

paths. Superimposing all meshing power flows within the CCPGT gear pair subgraph, it 

becomes obvious that intersecting meshing power flows occur at the planet-planet edge. 

Due to missing information about planets, this case cannot to be recognized directly only 

by analyzing the substitution figure, but it results in too low overall efficiency values. 
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Figure 4-15: Negative example of functionally-non-equivalent substitution figure with too low basic 

train efficiency factors 

In a more general sense, the central gear vertices can be grouped as a function of which 

planet they are belonging to (Figure 4-5). One can imagine that these groups are con-

nected to each other via single planet-planet edges. Therefore, all meshing power flows 

from one group to another must be of the same direction to avoid intersecting meshing 

power flows at the planet-planet edges. 

4.2.3.3 Systematic transformation of directed graphs into functionally-equivalent 

substitution figures 

Directed CCPGT gear pair subgraphs can be transformed into virtual basic train sub-

graphs by means of a systematic procedure discussed as follows. Hence, a functionally-

equivalent substitution figure can be found for any operating condition and any type of 

CCPGT. By applying this procedure the CCPGT gear pair subgraph G is dissembled as 

the virtual basic train subgraph G’ is assembled. G consists of a set of meshing power 

source vertices Q, a set of meshing power sink vertices S, a set of planet vertices P and a 

set of edges E. Each edge e  E features a meshing power Pm(e). G’ consists of the cor-

responding set of meshing power source vertices Q’, the corresponding set of meshing 
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power sink vertices S’ and edges E’. An edge e’  E’ features a meshing power Pm(e’). 

Naturally, G’ does not contain planets. 

Step 1: G is given. Set up the virtual subgraph G’ with sources Q’ and sinks S’ without 

edges. 

Step 2: Remove all edges from G with Pm(e) = 0. 

Step 3: Choose a source q  Q and a sink s  S. 

Step 4: Find the shortest path L between q and s and the involved edges e  L. If no 

path is found go to step 3. 

Step 5: Check the directions of all edges e  L. Path L is feasible it leads from the source 

to the sink. If path L is not feasible go to step 3. 

Step 6: Find the minimum meshing power Pm,min of all edges e  L. Insert a new edge e’ 

into G’ from q’ to s’ with Pm(e’) = Pm,min. 

Step 7: Update G by subtracting Pm,min from all edges e  L. 

Step 8: Go to step 2 until all edges are removed from G. 

Step 9: Insert further edges e’ into G’ to make the substitution figure kinematically-

equivalent if necessary ( optional). 

Step 10: Build functionally-equivalent substitution figure. 

The procedure works for operating conditions with or without power losses. When power 

losses are taken into account, one must consider in finding the minimum meshing power 

Pm.min that the meshing power is decreasing along the path L. 

With every full cycle of steps 2 to 8, at least one edge is removed from G until all edges 

are removed successively. Simultaneously, G’ is assembled featuring edges between 

sources and sinks exclusively as required. As G is of the tree structure, it is cut into two 

further subtrees by every full cycle. Thus, the removed path can be interpreted as a miss-

ing edge connecting two trees. If two trees are connected by a single edge, the originated 

entire graph must be of the tree structure again. Hence, G’ is a tree. 

Figure 4-16 illustrates the transformation of a gear pair subgraph of an example 5-shaft 

CCPGT into a functionally-equivalent substitution figure. The procedure starts with vertex 

2 as selected source and vertex 4 as selected sink. Figure 4-17 shows the transformation 

of the same transmission with the same operating condition, but starting with vertex 1 as 

selected source and vertex 4 as selected sink. Both cases lead to functionally-equivalent 

but different substitution figures. Hence, the representation by means of functionally-

equivalent substitution figures is neither definite nor unique. The question of how many 
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functionally-equivalent substitution figures exist depends on the structure of the CCPGT 

and on the operating condition itself. In any case, at least one functionally-equivalent 

substitution figure must be available. 

Figure 4-18 shows another special case. The meshing power flow is on hand in such a 

manner that only two cycles of steps 2 to 8 are necessary to remove all edges from G. 

However, three basic trains are needed to generate a kinematically-equivalent substitution 

figure. Therefore, an additional (arbitrary) edge is added into G’ by applying step 9. This 

edge does not feature any meshing power. Therefore, it does not influence the efficiency 

calculation, but it establishes a kinematic link. 
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Figure 4-16: An example transformation of a CCPGT gear pair subgraph into a functionally-

equivalent substitution figure 
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Figure 4-17: An example transformation of a CCPGT gear pair subgraph into a functionally-

equivalent substitution figure 
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Figure 4-18: An example transformation of a CCPGT gear pair subgraph into a functionally-

equivalent substitution figure 
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4.2.3.4 Identification of functionally-equivalent substitution figures among kinemat-

ically-equivalent substitution figures 

Carrying out the procedure described in the previous Section 4.2.3.3 does not lead to a 

significant simplification of the efficiency calculation. The dimension of the statics system 

of equations for the functionally-equivalent substitution figure is slightly smaller than that of 

the realistic transmission model as the number of required basic trains is less than the 

number of basic gearings (cf. Sections 4.1.3 and 4.2.2.2). But at this, the transformation 

procedure results in extra computing time. However, the method of generating functionally-

equivalent substitution figures does make sense if these figures are derived directly with-

out performing a transformation procedure. For a limited number of central shafts, substitu-

tion figures constitute a clearly arranged and manually performable calculation tool. 

A possible way to avoid the transformation procedure is to perform the efficiency calcula-

tion using kinematically-equivalent substitution figures which can be derived fast (Section 

4.2.1.2). A kinematics and statics analysis for loss-free operating condition is to be per-

formed first for each kinematically-equivalent substitution figure. After finding out the direc-

tion of meshing power flow for each basic train and Wolf symbol respectively, the basic 

ratios are to multiplied or divided by their basic efficiency factors within the statics system 

of equations. Using the nomenclature of Section 4.2.2.2 the calculation rule reads: 

        
                

                       

                       

                      

  ( 4.28 ) 

   [-] basic ratio of Wolf symbol w 

   [-] basic efficiency of Wolf symbol w 

   [-] efficiency exponent 

Ti,x,w [Nm] internal torque of member x  
  of Wolf symbol w 
nx [1/s] speed of member x 
ns [1/s] speed of carrier s 

As the direction of meshing power flow may change due to inclusion of power losses, an 

iteration is needed analogical to Section 4.1.5 and Figure 4-6. Through this, it is not poss-

ible to preselect potential functionally-equivalent substitution figures by checking the mesh-

ing power flow directions of central gear coupling shafts on the basis of the loss-free anal-

ysis. In other word, kinematically-equivalent substitution figures can turn into functionally-

equivalent substitution figures after considering power losses due to a change of power 

flow directions. This case is discussed in detail within Section 4.4. Finally, the functionally-

equivalent substitution figures are identified amongst the kinematically-equivalent substitu-

tion figures as they feature the best overall efficiency and the lowest overall power loss 

respectively according to Section 4.2.3.2. 

Anyhow, due to the huge number of kinematically-equivalent substitution figures especially 

for large numbers of central shafts (cf. Table 4-3), a grouping of central shafts into mesh-

ing power sources and sinks is feasible after carrying out the statics analysis for loss-free 

operating conditions. It is known that the virtual subgraph of a functionally-equivalent subs-

titution figure is a bipartite tree meaning that all vertices can be divided into two groups, 

here sources and sinks. Only those virtual subgraphs lead to adequate substitution figures 
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whose edges connect sources to sinks exclusively. For a given number of sources and 

sinks, the number of bipartite trees is much smaller than the number of arbitrary trees. Ac-

cording to [7_PAU04 and 7_HAJ10], the number of bipartite trees or the number of poten-

tial functionally-equivalent substitution figures is: 

                 ( 4.29 ) 

SUBbip [-] total number of potential functionally-
  equivalent substitution figures gained 
  from bipartite trees 

Q [-] total number of meshing power sources 
S [-] total number of meshing power sinks 

Table 4-4 lists the number of potential functionally-equivalent substitution figures in com-

parison to the number of kinematically-equivalent substitution figures. For a given number 

of central shafts, the worst case is assumed, meaning that the number of sources is pre-

ferably equal to the number of sinks. Naturally, at least one source and one sink has to 

exist. 

CS 3 4 5 6 7 8 9 10 11 

Q 1 2 2 3 3 4 4 5 5 

S 1 1 2 2 3 3 4 4 5 

SUBbip 1 1 4 12 81 432 4.096 32.000 390.625 

SUBkin 1 3 16 125 1.296 16.807 262.144 4.782.969 100.000.000 

SUBkin [-] total number kinematically-equivalent  
  substitution figures 
CS [-] total number of central shafts 
Q [-] total number of meshing power sources 

SUBbip [-] total number of potential functionally-
  equivalent substitution figures gained 
  from bipartite trees 
S [-] total number of meshing power sinks 

Table 4-4: Number of potential functionally-equivalent substitution figures 

By way of example, normally only 12 substitution figures have to be analyzed instead of 

125 for a 6-shaft CCPGT. This difference rises rapidly with the number of central shafts 

increasing (Figure 4-19). Using up to five central shafts, the division of central gears into 

meshing power sources and sinks becomes of special relevance and is discussed in detail 

within Section 4.2.5. 

When considering power losses, sinks might become sources and vice versa in contrast to 

the loss-free analysis. Therefore, a change of direction of the meshing power in each basic 

train must be observed. If such a change of direction occurs, the previous assumptions 

regarding sources and sinks turns out to be incorrect and the bipartite trees do not lead to 

functionally-equivalent substitution figures. Thus, the grouping of central gear vertices into 

sources and sinks needs to be modified. According to the number of static DOF, only two 

central shaft torques are unknown. This means that either one central gear torque and the 

carrier shaft torque or two central gear torques are unknowns. As such, there are only two 

or four feasible groupings as most of the torques and meshing power flows are predefined. 

For the worst case, four groups of bipartite trees are to be calculated to find the functional-
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ly-equivalent substitution figures. Still, the number of these trees is smaller than the num-

ber of all arbitrary trees. Also, it is not necessary to carry out a complete iteration for a 

substitution figure if a change of direction is observed as this substitution figure belongs to 

a wrong group. Naturally, it is much more efficient to use bipartite trees than to analyze all 

kinematically-equivalent substitution figures. Again, the functionally-equivalent substitution 

figures are identified among the substitution figures gained from bipartite trees as the ones 

featuring the best overall efficiency. Exemplarily, Figure 4-20 illustrates one correct and 

two incorrect bipartite trees.  

 

Figure 4-19: Number of kinematically-equivalent substitution figures SUB_kin and potential func-

tionally-equivalent substitution figures SUB_bip 

 

Figure 4-20: Examples of correct and incorrect directed bipartite trees 
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4.2.4 Overall efficiency 

After performing a statics analysis considering power losses, the overall efficiency for a 

certain substitution figure is derived according to Section 4.1.7. Every row of the statics 

system of equations sums the torques acting on a central shaft (Section 4.2.2.2). Two ex-

ternal torques are unknown and to be found within the torque state vector. Other external 

torques given as preset values are inserted directly in the torque solution vector. The final 

expression for the overall efficiency is identical to ( 4.16 ). 

4.2.5 Special cases for limited number of shafts 

For a limited number of central shafts, only few operating conditions are to be distin-

guished. Also the number of possible substitution figures is limited. In the following, 

CCPGTs with up to five central shafts are discussed and the number of loaded central 

shafts is increased incrementally. 

4.2.5.1 4-shaft CCPGT featuring three loaded shafts 

The substitution figure for a 4-shaft CCPGT consists of two Wolf symbols according to eq-

uation ( 4.19 ). Three basic trains are contained within a 4-shaft CCPGT according to equ-

ation ( 4.20 ). Thus, three feasible and kinematically-equivalent substitution figures can be 

derived in reference to Table 4-3. An example is shown in Figure 3-17.  

Often, CCPGTs are used as speed increasers or speed reducers with only three central 

shafts being loaded (epicyclic ratios or compound ratios). Those three shafts can either be 

two central gear shafts and the carrier shaft or three central gear shafts.  

4.2.5.1.1 Operating conditions with two central gear shafts and the carrier shaft 

being loaded 

The operating case with two central gear shafts and the carrier shaft being loaded is rather 

simple as the 4-shaft CCPGT works like a single PGT with one central gear shaft being 

unloaded. Then, the single PGT featuring the loaded shafts has to occur explicitly within 

the substitution figure. A second Wolf symbol is only needed to set up a kinematic link to 

the unloaded third central gear shaft. Therefore, two functionally-equivalent substitution 

figures exist (Figure 4-21). If the mentioned single PGT does not occur explicitly within the 

substitution figure unloaded shafts have to perform as loaded shafts (central gear 1 in 

Figure 4-21), causing a detour for the meshing power flow. This leads to too much mesh-

ing power. Thus, it is not allowed to substitute a single PGT by a set of PGTs featuring 

central gear shafts with no external load.  
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Figure 4-21: Functionally-equivalent substitution figures for a 4-shaft CCPGT with only two loaded 

central gear shafts and a loaded carrier shaft 

Below, operating cases with unloaded central gear shafts will not be considered. In this 

case, additional Wolf symbols are to be added to the substitution figure to set up an ap-

propriate kinematic link. 

4.2.5.1.2 Operating conditions with three central gear shafts being loaded and the 

carrier shaft being unloaded 

The case of an unloaded carrier shaft and three loaded central gear shafts means that all 

three central gears feature meshing power for the non-trivial case. With respect to the 

meshing power only, two operating conditions are possible: power partition or power 

summation. There are either two meshing power sources and one sink or one source and 

two sinks (Figure 4-22). Thus, only one substitution figure can be functionally-equivalent. 

Furthermore, a 4-shaft CCPGT features a static DOF of two. If the torque of the carrier 

shaft is set to be zero, the unknown torques of two central gears depend on only one cen-

tral gear torque as preset value. Hence, the torque ratios do not change for one of the 

cases of Figure 4-22. 
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Figure 4-22: Virtual subgraphs of substitution figures for CCPGTs with three loaded central gear 

shafts 

Among the kinematically-equivalent substitution figures, the one is to be found featuring 

inner torques with equal signs at the central gear coupling shaft (Figure 4-23). For this 

purpose, the basic structure is cut free. As the external torque of the carrier shaft is equal 

to zero, the signs of the inner torques of the carrier shaft are opposite. Finally, in order to 

get equal signs of the inner torques of the central gear coupling shaft, one Wolf symbol 

must provide a change of signs of its inner torques and the other Wolf symbol must pro-

vide equal signs. This can only be true if one summation shaft belongs to a coupling shaft 

and the other one does not. As a first result, two functionally-equivalent substitution figures 

are gained, which corresponds to the results of Mueller [2_MUL01]. One features a nega-

tive and a positive-ratio drive, the other one features two positive-ratio drives. Which one is 

feasible for which CCPGT depends on the design of the CCPGT. 

The chain of basic train ratios with fixed carrier from central gear 1 to central gear 2 to cen-

tral gear 3 and back to central gear 1 must equal +1. The three basic train ratios of a 4-

shaft CCPGT can either be three positive-ratio drives or two negative-ratio drives and one 

positive-ratio drive. 

Without loss of generality, a 4-shaft CCPGT shall contain two negative-ratio drives and a 

positive-ratio drive with a ratio range defined in Figure 4-24. Among the kinematically-

equivalent substitution figures, only one can be identified as being functionally-equivalent 

according to Figure 4-23 (bottom left). Also without loss of generality, another 4-shaft 

CCPGT shall contain three positive-ratio drives with a ratio range defined in Figure 4-25. 

Again, only one substitution figure can be identified as being functionally-equivalent ac-

cording to Figure 4-23 (bottom right). In sum, for the operating condition with three 

loaded central gear shafts and an unloaded carrier shaft, a definite functionally-

equivalent substitution figure can be identified which does not depend on further 

operating conditions. Only two different solutions are possible as a function of the design 

of the CCPGT. Naturally, the central gear coupling shaft is always the total-meshing-power 

shaft and the other central gear shafts are partial-meshing-power shafts. 
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Figure 4-23: Functionally-equivalent substitution figures for CCPGTs with three loaded central gear 

shafts and unloaded carrier shaft 

 

Figure 4-24: Functionally-equivalent substitution figure for 4-shaft CCPGTs with three loaded cen-

tral gear shafts and unloaded carrier shaft containing two negative-ratio drives and one positive-

ratio drive 
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Figure 4-25: Functionally-equivalent substitution figure for CCPGTs with three loaded central gear 

shafts and unloaded carrier shaft containing three positive-ratio drives 

As for the targeted operating condition, only three central shafts are connected to the peri-

phery. As such, a further substitution helps simplify the efficiency calculation. For this pur-

pose the functionally-equivalent substitution figure is replaced by a virtual 3-shaft single 

PGT (Figure 4-26).  

 

Figure 4-26: Example substitution of a functionally-equivalent substitution figure with three loaded 

central gear shafts and unloaded carrier shaft 

Its virtual basic train ratio is easily obtained as the product of epicyclic ratios of contained 

Wolf symbols: 

   
     

     
            

     
     

  ( 4.30 ) 

   
     

   [-] virtual basic train ratio    
     

     
     

   [-] epicyclic ratio of Wolf Symbol 

The virtual basic train efficiency is derived as the product of corresponding efficiency val-

ues of Wolf symbols for the focused operating condition:  

   
     

     
             

     
     

  ( 4.31 ) 

   
     

   [-] virtual basic train efficiency    
     

     
     

   [-] epicyclic efficiency of Wolf Symbol 
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Figure 4-27: Example functionally-equivalent substitution figures for compound ratios of a 4-shaft 

CCPGT 
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Now, the 3-shaft PGT can be treated just like a real single PGT. But as the 3-shaft single 

PGT is only a virtual PGT, its basic train ratio is not related to a real basic train ratio with 

fixed carrier. The basic train ratio and also the basic efficiency are auxiliary quantities. 

Therefore, symmetry in respect of the basic efficiency values is not to be expected in gen-

eral (   
     

 ). 

As an example, Figure 4-27 shows operating conditions for three different compound ra-

tios of a 4-shaft CCPGT. Within the functionally-equivalent substitution figures, a partition 

of the absolute power is monitored. This power partition does not occur in reality as the 

real CCPGT does not consist of separate basic trains. Also, the meshing power partition or 

summation is located at the planet in reality instead of the coupling shaft in the substitution 

figure (cf. Figure 4-5). 

4.2.5.2 4-shaft CCPGT featuring four loaded shafts 

For the case of three loaded central gear shafts and a loaded carrier shaft, possible oper-

ating conditions are slightly different to those of the previous section. First of all, there has 

to be more than one power input or output shaft. Yet, Figure 4-22 is still valid since only 

three central gears feature meshing power. In contrast to the operating condition with the 

carrier shaft being unloaded, a total-meshing-power shaft cannot be identified without ana-

lyzing kinematics and statics. According to the static DOF, two external torques can be 

selected independently. Thus, the ratio and the signs of inner torques of the central gear 

coupling shaft are also a function of the external torques in addition to being a function of 

the basic train ratios. Figure 4-28 shows all kinematically-equivalent substitution figures of 

a 4-shaft CCPGT. The shafts are marked with a superscript denoting which Wolf symbol 

they belong to. 

 

Figure 4-28: Kinematically-equivalent substitution figures for a 4-shaft CCPGT 

Neglecting power losses, the ratio of inner torques of the coupling shaft can be derived for 

each substitution figure as a function of the basic train ratios and a ratio of external tor-

ques. Here, the external torques of central shaft 1 and the carrier central shaft s shall be 

given as presets without loss of generality: 
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( 4.32 ) 

   [Nm] internal torque 

 

v [-] torque ratio 
i [-] basic train ratio 

The correct functionally-equivalent substitution figures shows a positive torque ratio   ,     

or     . Isolating   , the torque ratios   ,     and      can be expressed as a function of each 

other as: 

           
    

      
 

           
 

      
 

      
  

    
  

     

   
 

( 4.33 ) 

v [-] torque ratio  

In Figure 4-29, the torque ratios     and      are drawn as a function of the torque ratio   . 

It can easily be seen that only one of these ratios can be positive at the same time. Natu-

rally, this result complies with Figure 4-22 since only one central gear shaft can represent 

the total-meshing-power shaft for a certain operating condition. To identify this shaft, a 

loss-free analysis is to be carried out first. Afterwards, the functionally-equivalent substitu-

tion figure can directly be derived. If change of direction of meshing power flows is moni-

tored when the power losses are included, the assumption regarding meshing power 

sources and sinks is to be corrected (cf. Section 4.2.3.4).  

The following definitive numerical example is intended to illustrate the calculation steps. 

Figure 4-30 shows a 4-shaft CCPGT including basic train ratios and basic efficiency val-

ues. For each basic gearing, an efficiency of 99% is assumed. Furthermore, it is assumed 

that the speeds and external torques of central shaft 1 and 2 are predefined according to 

equation ( 4.34 ). Hence, for this example, central shaft 1 is a power input and central shaft 

2 is a power output. 
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Figure 4-29: Ratios of inner torques of the central gear coupling shaft in kinematically-equivalent 

substitution figures for 4-shaft CCPGTs 

 

Figure 4-30: Example 4-shaft CCPGT with predefined values for basic train ratios and basic effi-

ciencies 
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( 4.34 ) 

n [rpm] absolute speed 
 

   [Nm] external torque 

P [W] external (absolute) power 

As the first step, a loss-free analysis is performed using Willis Equations for the kinematics 

as well as equations ( 4.25 ) and ( 4.26 ) for the statics: 

                                                    

                                              
( 4.35 ) 

n [rpm] absolute speed 
 

T [Nm] external torque 
P [W] external (absolute) power 

Here, the carrier shaft acts as an additional power input and central shaft 3 works as a 

power output. Next, meshing speeds and meshing powers are determined: 

  
                   

                   
               

                                           
( 4.36 ) 

n’ [rpm] meshing speed 
 

Pm [W] meshing power 

Consequently, central shaft 3 is the total-meshing-power shaft. The functionally-equivalent 

substitution figure for this operating condition is drawn in Figure 4-31. 

 

Figure 4-31: Functionally-equivalent substitution figure consistent with Figure 4-30 

meshing power
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As the next step, power losses are taken into account by modifying the meshing powers by 

appropriate basic efficiency values. The meshing power of central gear is partitioned and 

flowing to central shafts 1 and 2. As a total-meshing-power shaft exists, the balance of 

meshing powers can easily be modified including basic efficiencies. Also, the sum of all 

external torques must equal zero: 

   

     
 

   

      
       

   
     

 

     
 

     
 

      
      

        
      

     
 

       

      
        

              

( 4.37 ) 

n’ [rpm] absolute speed 
T [Nm] external torque 

Pm [W] meshing power 
    [-] basic train efficiency 

Solving these statics equations again for central shaft 3 and carrier shaft s, the power loss 

conditions are derived: 

                                    

                                             
( 4.38 ) 

T [Nm] external torque  P [W] external (absolute) power 
Pm [W] meshing power 

Obviously, central shaft 3 is still the total-meshing-power shaft. Therefore, the substitution 

figure shown in Figure 4-31 is valid. Finally, the overall efficiency is calculated as follows: 

   
     

     
        ( 4.39 ) 

  [%] overall efficiency  P [W] external (absolute) power 

4.2.5.3 5-shaft CCPGT featuring five loaded shafts 

Analogical to 4-shaft CCPGTs, the overall ratio of a closed loop of basic trains must equal 

+1. In Figure 4-32, the basic trains connecting two central gears in pairs are illustrated 

symbolically. Additionally, possible signs for the basic train ratios are shown. Every ‘trian-

gle’ of basic trains can either contain three positive-ratio drives or two negative-ratio drives 

and one positive-ratio drive. A ‘rectangle’ of basic trains can contain four positive-ratio 

drives, two negative-ratio drives and two positive-ratio drives or four negative-ratio drives. 

In sum, a 5-shaft CCPGT consists out of six positive-ratio drives, three negative-ratio 

drives and three-positive-ratio drives or four negative-ratio drives and two positive-ratio 

drives. Figure 4-33 shows example 5-shaft CCPGTs corresponding to Figure 4-32. 
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Figure 4-32: Signs of the basic train ratios of a 5-shaft CCPGT 

For 5-shaft CCPGTs with four loaded central gear shafts, two categories of substitution 

figures are on hand. If a single meshing power source or sink occurs two virtual subgraphs 

of substitution figures are feasible (Figure 4-34). Thus, the functionally-equivalent substitu-

tion figure is definite and features a single central gear coupling shaft connected to three 

Wolf symbols (Figure 4-35).  
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Figure 4-33: Example 5-shaft CCPGTs corresponding to Figure 4-32 

As for two meshing power sources and two sinks, four different virtual subgraphs are feas-

ible depending on the quantities of meshing power (Figure 4-36). The basic structure of 

the corresponding substitution figure is invariant (Figure 4-37). For this operating condi-

tion, the representation by substitution figures is not necessarily definite. As a function of 

the design of the CCPGT, several substitution figures can be functionally-equivalent at the 

same time (cf. Sections 4.2.3.3 and 4.2.3.4). 
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Figure 4-34: Virtual subgraphs of substitution figures for 5-shaft CCPGTs with four loaded central 

gear shafts (one source and three sinks or one sink and three sources) 

 

Figure 4-35: Substitution figure for 5-shaft CCPGTs with four loaded central gear shafts and single 

meshing power source or sink 
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Figure 4-36: Virtual subgraphs of substitution figures for 5-shaft CCPGTs with four loaded central 

gear shafts (two sources and two sinks) 

 

Figure 4-37: Substitution figures for 5-shaft CCPGTs with four loaded central gear shafts and two 

meshing power sources and sinks 
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4.3 An approximate calculation of efficiency 

The methods presented in the Sections 4.1 and 4.2 allow a precise efficiency calculation 

within their underlying boundaries and assumptions. For it, a fairly detailed modeling of the 

transmission geometry is necessary and the modeling effort is rather high. In addition, the 

single calculation steps are complex. Instead of that, a simple and fast alternative method 

that requires only limited information about the PGT is desired. This is permitted by estab-

lishing further simplifying assumptions at the price of an efficiency approximation in place 

of an exact solution.  

4.3.1 Simplified statics system of equations 

It is stated in Section 4.2.2.2 that any kinematically-equivalent substitution figure is ade-

quate for a statics analysis for loss-free operating conditions. On the basis of this analysis 

functionally-equivalent substitution figures are derived by means of grouping the central 

gears into meshing power sources and sinks and establishing bipartite trees (Section 

4.2.3.4). Functionally-equivalent substitution figures feature at least two Wolf symbols and 

basic trains respectively having different basic train efficiencies in general. Thus, the over-

all power loss is: 

                                                                              ( 4.40 ) 

PL [W] overall power loss 
Pm,in,g [W] input meshing power to basic train g 
     [-] basic efficiency of basic train g 

Ti,x,g [Nm] internal torque of central gear x in  
  basic train g 
ωm,x [rad/s] meshing speed of central gear x 

If it is assumed that every basic train features the same basic efficiency factor, the partial 

meshing power terms from above only differ due to divergent internal torques. Hence, the 

terms corresponding to one central gear can be merged. For this purpose, a global basic 

train efficiency factor is introduced: 

                                                         ( 4.41 ) 

PL,approx [W] approximated overall power loss 
        [-] global basic train efficiency 

Tx [Nm] external torque of central gear x  
ωm,x [rad/s] meshing speed of central gear x 

Likewise, the meshing power terms must equal zero in sum: 

                                                                      ( 4.42 ) 

        [-] global basic train efficiency Tx/y [Nm] external torque of central gear x/y  
ωm,x/y [rad/s] meshing speed of central gear x/y 

Additionally, the sum of external torques must equal zero, too: 

         ( 4.43 ) 

Tx [Nm] external torque of central gear x  Ts [Nm] external torque of carrier shaft s  

Consequently, two conditional equations are available for determining all external torques 

and a simplified basic statics system of equations can be set up: 



96 Efficiency determination for complex-compound planetary gear transmissions 

 
               

                    
                    

     

      
 

 
 
 
 
 
 
  

 
  

 
  

   
 
 
 
 
 

  
 
 
  

             
                   
     

  

( 4.44 ) 

Tx [Nm] external torque of central gear x  
Ts [Nm] external torque of carrier shaft s 
        [-] global basic train efficiency 

w1,x [-] efficiency exponent of central gear x 

ωx [rad/s] angular speed of central gear x 
ωs [rad/s] angular speed of carrier s 
X [-] total number of central gears 

Inserting preset values for all given torques, the simplified statics system of equations be-

comes quadratic and can be solved directly. This approach can be interpreted as a trans-

formation of any gear pair subgraph or functionally-equivalent substitution figure into a 

simplified structure (Figure 4-38). It is not necessary to know the exact design of the 

CCPGT but only the kinematic relationships and basic ratios. Internal torques of Wolf 

symbols are not treated but only external torques. Besides the simplification regarding the 

basic train efficiency, no logical mistake in respect of the internal power flow has to be ac-

cepted. As only the meshing input power is impacted by the global basic train efficiency, 

the correct amount of meshing power leading to power losses is considered (cf. Section 

4.2.3.2). 

Another advantage of this approach is evident from the calculation time required. The di-

mension of the statics system of equations is as small as possible. In addition, only few 

iteration steps are needed in case of a meshing power direction change. According to the 

static DOF of a CCPGT, two external torques are to be calculated. This means that at 

maximum two efficiency exponents might change their value in equation ( 4.44 ) and four 

cases are to be distinguished. Thus, the calculation must converge after a maximum of 

four iteration steps. If not, it is about an impossible operating condition (cf. Section 4.4). 
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Figure 4-38: Simplified CCPGT structure for efficiency approximation 

4.3.2 Approximation accuracy 

The results of the exact efficiency calculation and the approximation deviate as the global 

basic efficiency has to be estimated if the final design of the CCPGT is not known. Also, 

the basic trains included in the CCPGT do not feature equal basic efficiency in general. 

Thus, the application of the approximation method as worst case calculation is most feasi-

ble. For this purpose, a reasonable global ‘worst case’ basic efficiency has to be selected. 

According to Section 3.1.4, an efficiency of 99% per external basic gearing and an effi-

ciency of 99,5% per internal basic gearing is a realistic choice. Considering CCPGTs in 

use, included basic trains with unfavorable basic efficiency feature up to three external 

basic gearings (cf. Figure 3-17, Figure 4-10, Figure 4-30 and Figure 4-33). Thus, a glob-

al basic train efficiency of 97% (~0,99³) is proposed.  

Furthermore, the extent of deviations between the results of different efficiency calculation 

methods depends not only on the design of the CCPGT but also on the present operating 

conditions. The operating DOF of a CCPGT equals its number of central shafts. The out-

come of this is a multidimensional and theoretically unlimited operating range which com-

plicates the quantification of deviations. A general expression of the overall efficiency is: 

 

 

meshing power 

inputs (central gears)

meshing power 

outputs (central gears)

1 2 … n

n+1 N

η0,glob

3

n+2 n+3 …
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 ( 4.45 ) 

  [-] overall efficiency 

   [-] basic gearing / basic train efficiency 

PL [W] overall power loss 
Pinput [W] overall input power 
Pm [W] meshing power 

Herein, the overall power loss is a function of the basic gearing efficiency and the basic 

train efficiency as well as a function of the meshing power. Large deviations in the overall 

efficiency for different basic efficiency factors can only occur if the meshing power is large 

in comparison to the input power. The following examples shall demonstrate deviations for 

selected designs and operating points. 

4.3.2.1 Example 3-shaft PGTs 

In order to capture the whole efficiency range of a 3-shaft PGT, a description similar to 

[4_LAR57] is chosen. As a 3-shaft PGT features a kinematic DOF of two, speed ratios, 

power ratios and the overall efficiency can be expressed as a function of one speed ratio: 

  
  

  
 ( 4.46 ) 

  [-] speed ratio      [-] speed of central shaft 1/2 

The torque ratios of a 3-shaft PGT are constant and defined by the basic ratio for loss-free 

operating condition. Considering power losses, only two cases are available: meshing 

power flows from central gear 1 to central gear 2 and the other way round (w1 = ±1). 

The first example PGT is a negative-ratio drive shown in Figure 4-39. In the following, all 

relevant quantities are calculated depending on λ being varied from minus to plus infinity. It 

is evident from Figure 4-40 that all speed ratios other than λ are varied from minus to plus 

infinity, too. 

 

Figure 4-39: Example negative-ratio drive for efficiency approximation 

1 2

s
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Figure 4-40: Speed ratios of 3-shaft PGT corresponding to Figure 4-39 

For the efficiency calculation, two basic train efficiency values are estimated: a realistic 

one (η0,I) and an (approximated) global one (η0,glob). Figure 4-41 shows the plots of the 

overall efficiency as a function of each basic efficiency. As a matter of fact, both  

plots are qualitatively comparable but small deviations exist. 

 

Figure 4-41: Realistic and approximated efficiency of 3-shaft PGT corresp. to Figure 4-40 
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The deviation between both efficiency plots is defined as: 

                      ( 4.47 ) 

   [-] efficiency deviation 

  [-] overall efficiency 

     [-] realistic basic efficiency 

        [-] global basic efficiency 

According to equation ( 4.46 ), the ratio of input meshing power to absolute input power is 

decisive for the overall efficiency: 

  
      

    
 ( 4.48 ) 

  [-] input power ratio        [W] (sum of) input meshing power 

     [W] (sum of) absolute input power 

Figure 4-42 and Figure 4-43 disclose the strong correlation between θ and Δη. As the 

input meshing power of a negative-ratio drive cannot be larger than the absolute input 

power, the efficiency deviation is rather small meaning that the efficiency approximation is 

quite accurate. 

 

Figure 4-42: Input power ratio of 3-shaft PGT corresponding to Figure 4-40 
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Figure 4-43: Efficiency deviation of 3-shaft PGT corresponding to Figure 4-40 

The second example PGT is a positive-ratio drive with a basic ratio close to +1 (Figure 

4-44). Thus, the input meshing power can be significantly larger the absolute input power. 

Figure 4-45 shows the speed ratio plots as a function of λ. 

 

Figure 4-44: Example positive-ratio drive for efficiency approximation 
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Figure 4-45: Speed ratios of 3-shaft PGT corresponding to Figure 4-44 

The efficiency plots in Figure 4-46 clearly differ from each other in part. Naturally, large 

differences are to be expected whenever the meshing input power is extensively larger 

than the absolute input power (Figure 4-47 and Figure 4-48). 

 

Figure 4-46: Realistic and approximated efficiency of 3-shaft PGT corresp. to Figure 4-44 
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Figure 4-47: Input power ratio of 3-shaft PGT corresponding to Figure 4-44 

 

Figure 4-48: Efficiency deviation of 3-shaft PGT corresponding to Figure 4-44 

4.3.2.2 Example 4-shaft CCPGTs 

In contrast to a 3-shaft PGT, a 4-shaft CCPGT features an additional static DOF. There-

fore, power ratios as well as the overall efficiency are not only a function of λ but also a 

function of an (arbitrary) torque ratio: 
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 ( 4.49 ) 

  [-] torque ratio      [-] external torque of central shaft 1/2 

Again, the meshing power sign of central gear 1 can be positive or negative (w1 = ±1). All 

other torques result from these parameters. 

As a first example, a Ravigneaux set is taken into account (Figure 4-49). Figure 4-50 pro-

vides an overview of the speed ratios depending on λ, Figure 4-51 shows the torque ratios 

as a function of ν for loss-free operating conditions. 

 

Figure 4-49: Example Ravigneaux set for efficiency approximation 

The efficiency deviation is defined analogical to equation ( 4.47 ): 

                                     ( 4.50 ) 

   [-] efficiency deviation 

  [-] overall efficiency 

            [-] realistic basic efficiency 

        [-] global basic efficiency 

The efficiency plot depending on λ and ν is a 3-dimensional field shown in Figure 4-52. As 

before, the efficiency deviation (Figure 4-54) is rather small up to 1,5% as the input power 

ratio (Figure 4-53) does not exceed values beyond 1,2. 
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Figure 4-50: Speed ratios of 4-shaft CCPGT corresponding to Figure 4-49 

 

Figure 4-51: Loss-free torque ratios of 4-shaft CCPGT corresponding to Figure 4-49 
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ηreal [-] 

 

 

Figure 4-52: Realistic efficiency of 4-shaft CCPGT corresponding to Figure 4-49 
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θ [-] 

 

 

Figure 4-53: Input power ratio of 4-shaft CCPGT corresponding to Figure 4-49 
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Δη [-] 

 

 

Figure 4-54: Efficiency deviation of 4-shaft CCPGT corresponding to Figure 4-49 
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Figure 4-55 shows the structure of the second example 4-shaft CCPGT. All basic ratios 

included are near +1. 

 

Figure 4-55: Example 4-shaft CCPGT composed of positive-ratio drives for efficiency approxima-

tion 

Varying λ and ν from minus to plus infinity, all speed and torque ratios run through the 

same range (Figure 4-56 and Figure 4-57). The plot of the realistic overall efficiency is 

shown in Figure 4-58. As the input power ratio (Figure 4-59) exceeds values of 14 at the 

margin, efficiency deviations (Figure 4-60) of up to 15% occur. 

In conclusion, the presented efficiency approximation method for CCPGTs is appropriate 

for qualitative efficiency comparisons. Quantitative statements should only be used if the 

input meshing power is smaller than or close to the absolute input power. For a worst case 

approximation, a low global basic efficiency of about 97% is to be considered. 
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Figure 4-56: Speed ratios of 4-shaft CCPGT corresponding to Figure 4-55 

 

Figure 4-57: Loss-free torque ratios of 4-shaft CCPGT corresponding to Figure 4-55 
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ηreal [-] 

 

 

Figure 4-58: Realistic efficiency of 4-shaft CCPGT corresponding to Figure 4-55 
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θ [-] 

 

 

Figure 4-59: Input power ratio of 4-shaft CCPGT corresponding to Figure 4-55 

2

2

2 2

4

4 4

4

4

2222
4

444
4

6

6

6

6

8

8

8

10

1
0

1
0

6

6

8

1
2

10
12

=T
1
/T

2
 [-]


=

n
1
/n

2
 [

-]

w1=+1

-inf -4 -1.5-1.33 -1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1 1.33 1.5 4 inf
-inf

-4

-1.5

-1.33

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.33

1.5

4

inf

2

2

2 2

4

4

4

4

2222

6

6

6

6

44
4

4

4

8

8

8

6

6

1
0

1
0

8

10

1
2

12

=T
1
/T

2
 [-]


=

n
1
/n

2
 [

-]

w1=-1

-inf -4 -1.5-1.33 -1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1 1.33 1.5 4 inf
-inf

-4

-1.5

-1.33

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.33

1.5

4

inf



Efficiency determination for complex-compound planetary gear transmissions 113 

Δη [-] 

 

 

Figure 4-60: Efficiency deviation of 4-shaft CCPGT corresponding to Figure 4-55 
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4.4 Special operating conditions and self-locking 

PGTs can feature locking and self-locking effects as already mentioned in Section 3.5. 

These effects arise if a change of direction of the power flow of a central shaft is observed 

when power losses are taken into account. Power losses can force an actual output shaft 

to become an input shaft if the remaining input power cannot cover the overall power de-

mand. It is also possible that the iteration described in Sections 4.1.5 and 4.2.3.4 does not 

converge at all. Then, an impossible operating condition is on hand. In this section, locking 

and self-locking effects for basic trains, single PGTs and CCPGTs are discussed. 

4.4.1 Locking effects for basic trains 

Initially, only basic trains with fixed carrier are consi-

dered (Figure 4-61). As for the basic train of an ordi-

nary single PGT it is feasible to assume a basic effi-

ciency larger than 95%. According to equation ( 3.9 ) 

the torque ratio of the central gears is influenced in 

contrast to the loss-free case but the sign of the out-

put torque cannot change since the basic efficiency 

factor is positive. No matter how small the input power 

or the basic efficiency is assumed, output power must 

be existent. The basic train of a single PGT cannot 

feature two (central gear) input shafts at the same 

time. 

The basic train(s) of a CCPGT can feature multiple 

inputs and outputs. The question of which torque ratio 

is influenced by considering power losses depends on 

which inputs and outputs are predefined. Figure 4-62 

shows the basic train structure of a 4-shaft CCPGT 

with fixed carrier. The input power of central gear 1 is given as well as the output power of 

central gear 2 (superscript asterisk). The external power of central gear 3 results from the 

meshing power balance. The torque of the carrier and housing result from the torque bal-

ance. One can imagine that central gear 3 is an output if the input power of central gear 1 

is larger than the output power of central gear 2 for loss-free operating conditions. If power 

losses occur and the input power of central gear 1 multiplied by the related basic efficiency 

is not enough to satisfy the power demand of central gear 2, central gear 3 has to assume 

the role of an input shaft. In order to enable this operating condition, central gear 3 must 

be connected to an appropriate drive unit. Otherwise, the transmission is locking as the 

output power is larger than the available input power in a mathematical sense.  

 

Figure 4-61: Example basic train of a 

single PGT 

2

0

1



Efficiency determination for complex-compound planetary gear transmissions 115 

 

Figure 4-62: Example basic train structure of a 4-shaft CCPGT 

This operating condition can also be compared 

to a driven shaft being braked (Figure 4-63). 

The shaft won’t start to turn unless the input 

torque is larger than the maximum brake tor-

que. Neglecting the material strength, it is al-

ways possible to overcome the locking effect 

by increasing the input power and input torque 

respectively as long as the brake torque is not 

increasing simultaneously.  

4.4.2 Single planetary gear trans-

missions and self-locking 

In contrast to basic trains with fixed carrier, single PGTs can show self-locking only for the 

carrier shaft. Self-locking means that a shaft switches to an input shaft considering 

power losses, which cannot be reversed by increasing the input power of another 

shaft. In case of self-locking, power losses increase proportionally with the input power 

increasing. Thus self-locking of a (single) PGT can only be overcome by driving the locked 

shaft directly. The basic equations for the torque of the carrier shaft depending as a func-

tion of a central gear torque read as follows: 

 

 

 

 

1 23 1 23

(power losses neglected) (power losses considered)

Pm1*

Pm3

Pm2*
Pm1* Pm2*

Pm3

 

Figure 4-63: Shaft with brake 

(brake)
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( 4.51 ) 

   [-] basic train efficiency  

    
  [-] basic ratio 

   [-] efficiency exponent 

T1/2/s [Nm] external torque of central gear 1/2 or 
  carrier shaft s 

Obviously, the sign of the carrier shaft torque switches in comparison to loss-free condi-

tions for one of the following two cases: 

1.     
               

 

    
                

2.       
                   

                
( 4.52 ) 

   [-] basic train efficiency  

    
  [-] basic ratio 

   [-] efficiency exponent 

The sign of w1 is a function of given speeds and torques, but it is not relevant whether the 

single PGT features two or three running shafts. If only two shafts are running, namely one 

central gear shaft and the carrier shaft, self-locking can be identified by calculating the 

overall efficiency. If the overall efficiency is equal to zero, self-locking is on hand. In order 

to keep the PGT running, it is necessary to drive the carrier shaft directly. Some authors, 

e.g. Mueller [2_MUL01], also indicate negative overall efficiency values as the carrier shaft 

is still interpreted as an output shaft.  

In case of three running shafts, it is not sufficient only to consider the overall effi-

ciency. The following example shows that the overall efficiency can still be larger than ze-

ro with a self-locking carrier shaft. The parameters of the given positive-ratio drive are: 

    
       

        
( 4.53 ) 

    
  [-] basic ratio    [-] basic train efficiency  

The kinematics of the PGT is predefined as follows: 

                                             ( 4.54 ) 

n1/2/s [rpm] absolute speed of central shaft 1/2/s  

The torques of central shafts 2 and s result from the torque of central shaft 1, which is 

supposed to be preset (loss-free operating conditions): 

                                       

                                           
( 4.55 ) 

T1/2/s [Nm] external torque of central shaft 1/2/s P1/2/s [W] external power of central shaft 1/2/s 

Hence, central shaft 1 is an input shaft while central shaft 2 is an output shaft as well as 

the carrier shaft s. The efficiency exponent w1 equals +1. 

Now, power losses are taken into account. The resulting torques of central shafts 2 and s 

are influenced: 
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( 4.56 ) 

T1/2/s [Nm] external torque of central shaft 1/2/s P1/2/s [W] external power of central shaft 1/2/s 

As a matter of fact, the sign of the torque of the carrier shaft switches and the carrier turns 

into an input shaft. Consequently, central shaft s has to be driven to maintain the prede-

fined conditions. In contrast, central shaft 2 is still an output. Thus, the overall efficiency is 

larger than zero: 

   
    

   
       ( 4.57 ) 

η [-] overall efficiency Pin [W] overall (absolute) input power 
Pout [W] overall (absolute) output power 

Expressing the power of central shaft s and the power loss as a function of the input pow-

er, it can easily be seen that central shaft s cannot be turned into an output shaft by in-

creasing the input power and power losses are linearly depending on the input power: 

                      
           

  

  
         

        
  

             
  

              
  

    

                                              
     

               
  

    

          
  

    

( 4.58 ) 

    
  [-] basic ratio 

   [-] basic train efficiency 
n1/s [rpm] absolute speed of central shaft 1/s  

T1/s [Nm] external torque of central shaft 1/s 
P1/s [W] absolute power of central shaft 1/s 
Pm1 [W] meshing power of central shaft 1 
PL [W] absolute power loss 

4.4.3 Complex-compound planetary gear transmissions, locking and 

self-locking 

It was shown in Section 4.4.1 that self-locking is not possible for central gears of CCPGTs 

with fixed carrier. The locking effect can always be overcome by increasing the input 

meshing power. Anyhow, self-locking can occur for centrals gears of CCPGTs with rotating 

carrier. A common example is the Wolfrom type CCPGT working as speed increaser with 

one internal gear being fixed, the other internal gear as input and the sun gear as output 

(Figure 4-64). The carrier is without external load.  
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Figure 4-64: Wolfrom type CCPGT working as speed increaser 

The overall transmission ratio results from equation ( 2.7 ): 

   
  

  
     

  
      

 

      
   

 

   
 ( 4.59 ) 

   [-] overall transmission ratio 

    
  [-] basic ratio 

    
  [-] compound ratio 

As central gear 1 is supposed to be a power input, its speed and external torque are posi-

tive. Carrying out a kinematics and statics analysis for loss-free operating conditions leads 

to the functionally equivalent substitution figure (Figure 4-65). It is valid as long as the ex-

ternal torque of central gear 3 is greater than zero. 

 

Figure 4-65: Functionally-equivalent substitution figure corresponding to Figure 4-64 for operating 

conditions without self-locking 
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The meshing power of central gear 1 is partitioned to central gear 2 and 3. Thus the mesh-

ing power balance with power losses included reads: 

    
   

    
  

   

    
    

              
          

    
  

          

    
    

( 4.60 ) 

    [W] meshing power of central gear x 

      [rpm] absolute speed of central gear x / carrier s 

   [Nm] external torque of central gear x 

    
  [-] basic efficiency 

Additionally, the sum of torques must equal zero: 

            
  

   
( 4.61 ) 

      [Nm] external torque of central gear x / carrier s  

Substituting equations ( 4.59 ) and ( 4.61 ) into ( 4.60 ) leads to the power ratio between 

central gear 3 and 1: 

  

  
 

     

     
 

       
      

        
      

      
      

               
  

     
      

         
  

      
      

      
      

                 
  

 
 

   
  

               
          

  ( 4.62 ) 

   [W] absolute power of central gear x 

    [rpm] absolute speed of central gear x 

   [-] overall transmission ratio 

   [Nm] external torque of central gear x 

    
  [-] basic ratio 

    
  [-] basic efficiency 

As for the limit case, the numerator and the power of central gear 3 can become zero for: 

      
      

    

       
  

 

    
  

( 4.63 ) 

    
  [-] basic ratio     

  [-] basic efficiency 

Then, self-locking occurs for central gear 3 and its external torque equals zero. Beyond 

this limit case, power has to be supplied to central gear 3 and the external torque of central 

gear 3 has to be less than zero. Thus, the substitution figure is to be modified in order to 

be functionally-equivalent (Figure 4-66). 
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Figure 4-66: Functionally-equivalent substitution figure corresponding to Figure 4-64 for operating 

conditions with self-locking 

Now, the meshing power balance reads: 

    
              

        

       
                            

               
( 4.64 ) 

    [W] meshing power of central gear x 

      [rpm] absolute speed of central gear x / carrier s 

   [Nm] external torque of central gear x 

    
  [-] basic efficiency 

Substituting equations ( 4.59 ) and ( 4.61 ) into ( 4.64 ) leads to the new power ratio be-

tween central gear 3 and 1, which is positive: 

  

  
 

     

     
 

       
      

       
  
  

    
      

      
 

         
  

 
 

   
  

               
          

  ( 4.65 ) 

   [W] absolute power of central gear x 

    [rpm] absolute speed of central gear x 

   [-] overall transmission ratio 

   [Nm] external torque of central gear x 

    
  [-] basic ratio 

    
  [-] basic efficiency 

Hence, increasing the absolute input power and/or the input meshing power of central gear 

1 does not cause central gear 3 to become an output again like for loss-free operating 

conditions. However, the phenomenon of self-locking is not induced by central gear 3 itself 

but by the carrier. Imagining central gear 3 to be unloaded and carrier s to be the actual 

output shaft leads to a single positive-ratio drive featuring two internal gears (Figure 4-67). 

s s

1 3

22

absolute power

meshing power
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Figure 4-67: Positive-ratio drive derived from Figure 4-64 working as speed increaser 

The power ratio between the output shaft s and the input shaft 1 is: 

  

  
 

     

     
 

      
      

 

    
        

  

    
                  

          
 

                  
          

 
  

( 4.66 ) 

     [W] absolute power of central gear x / carrier s 

     [rpm] absolute speed of central gear x / carrier s 

    
  [-] basic ratio 

     [Nm] external torque of central gear x /  

  carrier s 
    

  [-] basic efficiency 

Obviously, the self-locking limit case is identical to equation ( 4.63 ). The existence or ab-

sence of central gear 3 does not influence self-locking of the given CCPGT. Thus, self-

locking is also possible for central gears in presence of a self-locking carrier. 

In the following, it is assumed that an additional external input is applied to the carrier shaft 

in Figure 4-64. Hence, all four shafts are loaded. The input of the carrier shall be rather 

small such that input power is still needed to be supplied to central shaft 3 in order to keep 

the transmission in motion. Figure 4-68 shows the functionally-equivalent substitution fig-

ure for this operating condition. The external power of central shaft can be expressed as a 

function of the external power of central shaft 1 and carrier shaft s: 

             
        

        
  

    
      

      
 

         
  

         
      

           
           

          
 

 
 

   
  

    
  

 
  

   
  

    
  

  ( 4.67 ) 

     [W] absolute power of central gear x / carrier s 

      [rpm] absolute speed of central gear x / carrier s 

   [-] overall transmission ratio 

   [Nm] external torque of central gear x 

    
  [-] basic ratio 

    
  [-] basic efficiency 
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s
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Figure 4-68: Functionally-equivalent substitution figure corresponding to Figure 4-64 for operating 

conditions with self-locking with additional input at the carrier shaft 

Equation ( 4.67 ) reveals that it is possible to turn central shaft 3 into an output shaft by 

increasing the input power at the carrier s but not at central shaft 1. Thus, central shaft 3 is 

self-locking in respect of central shaft 1 that can be overcome by driving the carrier s. Self-

locking depends on which shafts are driven and on the superposition of power flow in case 

of CCPGTs with multiple static DOFs. 

4.4.4 General self-locking criterion 

In order to check whether or not self-locking does occur for a given PGT with its operating 

condition, the following steps are to be carried out. First, it is to be monitored if an actual 

output shaft turns into an input shaft by considering power losses. In case power cannot 

be supplied to this shaft, the intended operating condition cannot be achieved. Anyhow, it 

can be tested if the ‘lack of power’ can be handled by increasing the input power and de-

creasing the output power respectively of another shaft if available. For this purpose, the 

partial derivative of the power of the ‘locked’ shaft with respect to the power of another 

shaft must be negative to turn it back into an output shaft. In this context speeds are inter-

preted as constants: 

        

        
   ( 4.68 ) 

        [W] absolute power of the ‘locked’ shaft 

 

        [W] absolute power of another in-/output 

  shaft 

Consequently, if no task helps overcome the locking effect the intended operating condi-

tion has to be modified by setting the power of the ‘locked’ shaft to zero. Unloaded, 

‘dragged’ central gears are not of further relevance for self-locking. In the end, it is only 

s s

1 3

22

absolute power

meshing power
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relevant if it is possible to keep the carrier shaft in motion. Hence, it must be possible to 

generate output power at the carrier shaft (cf. Sections 4.4.2 and 4.4.3). In case this does 

not succeed, self-locking is existent. 

4.4.5 Impossible operating conditions 

Besides self-locking, impossible operating conditions can theoretically be created by 

choosing unfavorable set point values. Impossible operating conditions appear if the 

amount of output power demanded cannot be provided due to too low efficiency and lock-

ing effects. For the example single PGT given in Section 4.4.2, which features self-locking 

for the carrier shaft, it is impossible to demand output power from the carrier shaft. In any 

case, as the single PGT offers two kinematic and one static DOF, output power can theo-

retically be demanded by selecting predefined speeds and torques. If so, the iteration pro-

cedure for solving torques under power loss conditions (cf. Sections 4.1.5 and 4.2.3.4) 

does not converge. As already mentioned, the number of iteration steps is very limited as 

only two central gear torques at maximum are unknown. It is necessary to monitor repeti-

tive iteration steps to identify impossible operating conditions and to avoid infinite loops. 
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5 Synthesis by means of Helfer diagrams and 

equivalent lever models 

The efficiency calculation methods discussed in the previous chapter are useful for analyz-

ing given CCPGTs. A synthesis method is needed to find a suitable transmission concept 

corresponding to a predefined task and operating condition respectively. As mentioned in 

Section 3.6, existing synthesis methods are often aimed at finding transmissions for specif-

ic applications, e.g. automated transmissions, at which CCPGTs are excluded by the ma-

jority. Only very few references concentrate on the synthesis of CCPGTs.  

In general, the problem of PGT synthesis implicates a huge and frequently unmanageable 

solution space. Therefore, authors focus on limiting the solution space by imposing con-

straints in respect of designs, applications and operating conditions. Almost exclusively, 

systematic combinatorics is used to produce variants considering predefined constraints. 

Afterwards, it is checked if the variants meet the demands of the intended task. Naturally, 

procedures like these cannot be efficient as many variants will not even comply with the 

demands. Furthermore, variants generated are too complex in regard to the design and 

thus not practicable. 

Within the scope of this chapter, a synthesis method for basic CCPGT structures is dis-

cussed. It features two main modules (Figure 5-1). On the one hand, an abstract model is 

generated from predefined, desired operating conditions. The model is based on the Kutz-

bach and Helfer diagram and on an equivalent lever (cf. Section 3.2.2). It is independent 

from a specific CCPGT structure, and therefore, does not limit the solution space to specif-

ic designs. In addition, it allows one to define arbitrary operating conditions matching the 

DOF of a CCPGT. On the other hand, CCPGT structures are derived from the equivalent 

lever model as well as from a reference CCPGT, which contains all feasible CCPGT struc-

tures regarding the design complexity. Thereby, those and only those solutions which are 

able to perform the predefined demands and which are reasonable in principle from a de-

signer’s point of view are created. Hence, the generated solution space is kept small while 

featuring all relevant CCPGT structures. 
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Figure 5-1: Basic principle of proposed CCPGT synthesis method 

5.1 Basics of the equivalent lever model 

By means of the Helfer diagram a CCGT is transformed into an equivalent lever model. 

This transformation is definite. Every CCPGT corresponds to a definite lever model. The 

other way round, a particular lever model corresponds to all kinematically-equivalent 

CCPGTs. In the following, the most important details are mentioned. 

 

Figure 5-2: Example lever model of a 5-shaft CCPGT with speeds 
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(definition of operating conditions)

reference transmission

(definition of feasible designs)

synthesis of

CCPGT structures

1 2
4

s

3

1 234 sx

v



Synthesis by means of Helfer diagrams and equivalent lever models 127 

Figure 5-2 shows a lever model corresponding to a 5-shaft CCPGT. The lever model is 

arranged such that rotational speeds of the CCPGT correspond to translational speeds v 

of the lever in case of pure vertical movement. The central shafts are represented by 

nodes on the lever being characterized by a coordinate x. The lever is to be interpreted as 

being rigid, i.e. no bending or deformations are allowed to occur. The lever features two 

kinematic DOF. It can accomplish a translational and a rotational movement. Two prede-

fined speeds determine the speeds of all other nodes. One can imagine that the speed 

ratios of the central gears with the carrier being fixed are a function of the basic ratios of 

the CCPGT. If node s is fixed and all other nodes are rotating around node s the speed 

ratios are functions of the leverages: 

        

   
     

     
     

  
     

     
 

     

     
 

( 5.1 ) 

     [rpm] rotational speed of central shaft i/j 

   [rpm] rotational speed of carrier s 

    
  [-] basic ratio 

     [m/s] translational speed of node i/j 

   [m/s] translational speed of node s 

     [m] coordinate of node i/j 

   [m] coordinate of node s 

Thus, the (relative) coordinates x are defined by the basic ratios of the CCPGT. A pure 

rotation of the lever around s matches the meshing case of the CCPGT, a pure translation 

matches the coupling case. 

 

Figure 5-3: Example lever model of a 5-shaft CCPGT with forces 

Further, if the lever is loaded with vertical forces at the nodes, the force, torque and power 

balance respectively must be satisfied for static operating conditions (Figure 5-3). This is 

true for the transmission as well as for the lever: 
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( 5.2 ) 

   [Nm] external torque at central shaft i 

   [rpm] rotational speed of central shaft i 

   [rpm] rotational speed of carrier s 

   [N] (vertical) force at node i 

   [m/s] translational speed of node i 

   [m] coordinate of node i 

A 3-node lever features one static DOF as one force determines the other two forces via 

the force and torque balance. Every additional node increases the static DOF by one. 

Hence, the kinematic and static DOF of an equivalent lever is identical to the kinematic 

and static DOF of the CCPGT. The lever as well as the CCPGT can feature multiple in- 

and outputs. 

In conclusion, the lever model is suitable for the complete representation and illustration of 

speeds and torques of a CCPGT. It offers a clear view on the speed and torque ratios ir-

respective of the CCPGT geometry. For synthesis purposes it is useful to define a lever via 

one or multiple operating conditions without focusing on a specific PGT layout. It ‘contains’ 

all kinematically-equivalent CCPGTs which are able to match the intended operating con-

ditions basically. Then, an adequate CCPGT can be found. 

It is worth mentioning that the lever model is also suitable for analyzing coupled PGTs as 

long as its basic structure features a kinematic DOF of two. Helfer [4_HEL67] provides a 

descriptive example including a 3-speed automatic transmission (Figure 5-4). The single 

PGTs forming the gear train are coupled twice with each other such that they can be inter-

preted as a single rigid lever. 

 

Figure 5-4: DIWA transmission 501 JSR with corresponding lever model [4_HEL67] 
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5.2 Generation of an equivalent lever model for one operat-

ing condition 

A variety of possibilities for the definition of a lever model is thinkable. The leverages de-

pend on coordinates x, transmission ratios, speeds, torques and power. For a proper cha-

racterization of an operating condition it is useful to provide speeds and torques. Hereby, 

efficiency analysis can be carried out later.  

In order to choose a nomenclature independent from design aspects, lever nodes are as-

signed capital letters. As a PGT or CCPGT features minimum three central shafts, three 

lever nodes are to be defined at least. Without loss of generality, nodes A and B are al-

ways activated. As only ratios are of relevance but no absolute coordinates, the coordinate 

of node A is set to zero, the coordinate of node B equals one: 

     

     
( 5.3 ) 

     [m] coordinate of node A/B  

By presetting all desired speeds, equation ( 5.2 ) is used to find the coordinate of every 

additional node. In this regard, no two nodes should feature identical speeds as they would 

overlay each other and result in redundant central shafts and central gears with identical 

kinematic characteristics: 

     

     
 

     

     
 

      
     

     
    

( 5.4 ) 

       [m] coordinate of node i/A/B        [rpm] speed of node i/A/B 

Next, the operating condition torques are to be defined. Two torques have to remain as 

unknowns according to the static DOF of the lever. They are determined by using the force 

and torque balance from equation ( 5.2 ). Since torques at central shafts directly corres-

pond to forces at the nodes of the lever model, it is possible to write: 

      

         
( 5.5 ) 

   [Nm] external torque (force) at node i    [m] coordinate of node i 

Carrying out this procedure, an overall lever model for one operating condition is estab-

lished. Alternatively, one speed of a node can remain unknown if an additional torque pre-

set is available. If so, the missing coordinate is derived from equation ( 5.5 ). Afterwards, 

the missing speed is determined using equation ( 5.4 ). In case the coordinate of node A or 

B is missing the resulting coordinate must not equal zero and one respectively. A subse-

quent linear stretch or strain helps being consistent with ( 5.3 ). 
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A special case exists if three nodes in total are to be defined. For this case, three torque 

presets are sufficient to determine all coordinates as two coordinates are already defined 

by ( 5.3 ) and the third coordinate is gained from ( 5.5 ). If more than three nodes are 

needed, it is not possible to determine all coordinates only by defining desired torques as 

the number of conditional equations is insufficient.  

5.3 Definition of multiple operating conditions 

A CCPGT is able to satisfy multiple operating conditions. Multiple partial levers corres-

ponding to different operating conditions may be collapsed into a single lever representing 

the final CCPGT. Hence, the partial levers must be assembled in such a manner that the 

final overall lever is rigid and consistent with the DOF of the CCPGT. A definite overall lev-

er is generated if at least two nodes of a novel partial lever are identical with the existing 

final overall lever (Figure 5-5). Here, the vertical links are interpreted as jointed rods ana-

logical to Figure 5-4. If only one node was identical, the two levers would be freely scala-

ble independent of each other such that no definite overall lever could be assembled.  

 

Figure 5-5: Example definition of multiple operating conditions 

The definition of novel partial levers is carried out in accordance with Section 5.2. If only 

two nodes are identical with those of the existing overall lever, speed and torques are free-

ly presettable. If more than two nodes are already defined, the speed of a third, already 

defined node k results from the speeds of two other already defined nodes i and j as: 

   
     

     
            ( 5.6 ) 

   [rpm] unknown speed of defined node k 

     [rpm] known speeds of defined nodes i/j 

       [m] coordinates of nodes i/j/k 

partial lever 1

partial lever 2

partial lever 3

partial lever 4

overall lever

A B C D E F
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When integrating novel partial levers into the overall lever, two exceptions should be 

watched. One is that novel nodes coincide with existing nodes. As stated in Section 5.2, 

this case would lead to central shafts with identical kinematic characteristic and should be 

avoided for the benefit of simplicity of the resulting CCPGT. The other is that the novel 

lever or at least parts of it are already contained within the existing overall lever. If so, it 

might be possible to match desired operating conditions with existing nodes and central 

shafts respectively and thus to simplify the CCPGT.  

In order to check a correlation between two levers, the characteristic leverages are to be 

compared. A 3-node lever features one characteristic leverage (Figure 5-6). The segment 

between the middle node and an end node is referred to the overall length of the lever: 

    
     

     
 ( 5.7 ) 

    [-] characteristic leverage of 3-node lever        [m] coordinates of nodes A/B/C 

 

Figure 5-6: 3-node lever 

Every additional node leads to an additional characteristic leverage. Hence an n-node lev-

er features n-2 characteristic leverages. For instance, a 4-node lever (Figure 5-7) has: 

    
     

     
 

    
     

     
 

( 5.8 ) 

    [-] first characteristic leverage of 4-node lever 

    [-] second characteristic leverage of 4-node lever 

         [m] coordinates of nodes A/B/C/D 

 

Figure 5-7: 4-node lever 

In general, segments could also be related to other arbitrary segments. The ratio of the 

lengths of segments to the overall length of the lever implicates the advantage that charac-

teristic leverages do not reach extremely high values. For a systematic correlation check, 

parts of the novel lever and the existing lever are compared starting with a maximum num-

ber of nodes and finishing with a minimum number of three nodes. For this purpose, the 

same number of nodes is picked from each lever: 

x

xA xB xC

x

xA xB xC xD
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( 5.9 ) 

               [-] number of levers contained in the overall lever 

             [-] number of levers contained in the novel lever 

  [-] number of nodes picked for comparison 

          [-] number of nodes of the overall lever 

          [-] number of nodes of the novel lever 

Further, a coordinate vector is formed both for the part of the overall and the novel lever 

with the coordinates in ascending order: 

            

          

          

 
          

  

          

        

        

 
        

  

( 5.10 ) 

           [m] coordinate vector for the overall lever part 

         [m] coordinate vector for the novel lever part 

  [-] number of nodes picked for comparison 

           [m] coordinate of node i of the overall lever part 

         [m] coordinate of node i of the novel lever part 

Hereby, the vectors of characteristic leverages are built as: 

          

 
 
 
 

          

          

 
             

 
 
 
 

 
 
 
 
 
 
 

                     

                     
                     

                     

 
                       

                      
 
 
 
 
 
 

 

        

 
 
 
 

        

        

 
           

 
 
 
 

 
 
 
 
 
 
 

                 

                 
                 

                 

 
                   

                  
 
 
 
 
 
 

 

( 5.11 ) 

          [-] leverage vector for the overall lever part 

        [-] leverage vector for the novel lever part 

  [-] number of nodes picked for comparison 

           [-] char. leverage l of the overall lever part 

         [-] char. leverage l of the novel lever part 

           [m] coordinate of node i of the overall lever part 

         [m] coordinate of node i of the novel lever part 

In order to prove if the reversed novel lever part matches the overall lever part as well, a 

second, reversed vector of characteristic leverages is calculated: 
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           ( 5.12 ) 

            [-] rev. leverage vector for the novel lever part 

        [-] leverage vector for the novel lever part 
  [-] number of nodes picked for comparison 

             [-] rev. char. leverage l of the novel lever part 

         [m] coordinate of node i of the novel lever part 

 

Now, the characteristic leverages can be compared by pairs: 

          
                   

          
  

        
                       

          
  

                

( 5.13 ) 

   [-] deviation of leverages 

       [-] deviation of leverages (reversed) 

  [-] number of nodes picked for comparison 

           [-] char. leverage l of the overall lever part 

         [-] char. leverage l of the novel lever part 

             [-] rev. char. leverage l of the novel lever part 

If all deviations d equal zero, both parts of the levers match each other exactly, which sel-

dom occurs. The correlation is detected up to a certain limit value defined by the designer 

(say 1%). Whether or not a correlation is detected, different cases are to be distinguished.  

No correlation means that, by definition, two nodes match and no further nodes overlay 

each other (Figure 5-8). It is reasonable to integrate the novel lever into the existing over-

all lever. For this, the novel lever is scaled such that matching nodes are aligned.  

 

Figure 5-8: Integration of novel lever into existing overall lever without correlation 

If a correlation is detected, two or more identical nodes exist and further nodes with differ-

ent indices match each other, the selection of nodes and indices respectively should be 

changed (Figure 5-9). Otherwise, kinematic redundancies occur and the resulting CCPGT 

tends to be more complex than necessary. 

existing overall lever
A B C D E F

D E G
novel lever
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Figure 5-9: Useless correlation of novel and existing overall lever 

In the event of a correlation detection with matching nodes whose indices are not identical, 

it is to be evaluated by the designer whether a permutation of connections is acceptable 

for the benefit of reducing the number of central shafts or not (Figure 5-10). If so, the se-

lection of nodes for the novel lever can be modified.  

 

Figure 5-10: Reasonable correlation of novel and existing overall lever 

5.4 Efficiency approximation and carrier node localization 

So far, the abstract nodes of the overall lever model represent central shafts of a corres-

ponding CCPGT. The concrete type of a node in terms of sun gears, internal gears or car-

rier is unknown. In respect of the localization of the carrier, two cases may be distin-

guished. The carrier node can either be identical to an existing node of the overall lever or 

be an additional node. Figure 5-11 shows an example for the first case, Figure 5-12 

shows an example for the second. If the carrier node is an additional node, then it has no 

external load as it is not connected to the periphery for any of the defined operating condi-

tions. Logically, it is useless to define additional, unused central gear nodes. 

 

Figure 5-11: Overall lever with carrier node being identical to existing node 

existing overall lever
A B C D E F

D E G
novel lever

existing overall lever
A B C D E F

B D G
novel lever

overall lever
A B C D=s E F
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Figure 5-12: Overall lever with additional carrier node 

In theory, there are infinite possibilities for the position of the carrier node. The position of 

the carrier node strongly influences the design of the CCPGT as it has impact on the basic 

ratios. Hence, infinite designs of CCPGTs can be found which all satisfy the desired oper-

ating conditions in terms of kinematics and statics without power loss. 

Furthermore, the position of the carrier node affects the efficiency of the CCPGT drastical-

ly. Indeed, the basic efficiency of a gearing is a function of its design (external, internal 

gearing and parameters) but the meshing speed of a central gear node and its meshing 

power are dependent on the position of its node relative to the carrier node. The meshing 

power of a central node is given as: 

                        ( 5.14 ) 

Pm,i [W] meshing power of central gear node i 
   [Nm] external torque of central gear node i 

   [1/s] speed of central gear node i 

   [1/s] speed of carrier node s 

The speed of the carrier node is a function of its position. Also, the question of whether the 

meshing power of a central gear node is positive or negative is up to the sign of its torque 

on the one hand and up to its relative position to the carrier on the other hand. In case, a 

central gear node and the carrier node overlay each other, the meshing power of this cen-

tral gear node equals zero. 

Although the finalized design of the CCPGT is unknown yet, its efficiency can be approx-

imated using the method presented in Section 4.3. For this purpose, speeds, external 

loads and a global, approximated basic efficiency are required disregarding information 

about the CCPGT design parameters. The outcome of this is the efficiency depending on 

the position/coordinate of the carrier node for every operating condition. By means of this 

approximation, a statement can be made about where to place the carrier node for the 

best efficiency performance. Hence, the solution space of adequate CCPGTs can be re-

duced reasonably and remarkably.  

A typical characteristic of the approximated overall efficiency for an example operating 

condition of a lever as a function of the carrier node position is shown in Figure 5-13. Val-

ues marked with an asterisk are used to define the lever model and the operating condition 

respectively. The torque values are valid for the loss-free case. The overall efficiency is 

high if the transferred meshing power is small. Thus, high efficiency is expected for the 

carrier node being located close to the existing nodes. The farther away the carrier node is 

located compared to the other nodes, the smaller the efficiency becomes as the relative 

(meshing) speed as well as the meshing power with power loss increases. 

overall lever
A B C D E Fs
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Figure 5-13: Characteristic of the approximated overall efficiency of a lever model for an example 

operating condition 

To find an appropriate position for the carrier node in case of multiple operating conditions, 

it is useful to weight their efficiency values: 

         

 

             

 

   ( 5.15 ) 

   [-] weighted overall efficiency 

   [-] efficiency for operating condition i 

   [-] weighting factor for operating condition i 

The weighting factors can be chosen, for instance, according to the importance or the time 

slice of an operating condition. Alternatively, the sum of power losses multiplied by the 

time slice helps evaluate the carrier node position for a minimum overall loss of energy: 

   

 

                 
 

 ( 5.16 ) 

   [J] loss of energy of operating condition i 

   [-] efficiency for operating condition i 

      [W] input power of operating condition i 

   [s] time slice of operating condition i 

If an appropriate position is found for the carrier node, a grouping of the remaining nodes 

is possible. The nodes to the left and to the right of the carrier node feature different direc-

tions of rotation with respect to the speed to the carrier node. Thus, the directions of rota-

tion of all central gears of a corresponding CCPGT must be consistent with the specifica-

tion of the lever model. Figure 5-14 shows an example. 
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Figure 5-14: Example grouping of central gear nodes with defined carrier node 

5.5 Generation of CCPGT structures 

In this section, the final generation of CCPGT structures is presented. Introducing different 

synthesis possibilities, the most favorable one is identified and discussed in detail.  

5.5.1 Principles of structure synthesis 

There are several possibilities for generating CCPGT structures on the basis of a lever 

model. The easiest but most computationally intensive one is the incremental variation of 

the geometry of a reference CCPGT in combination with a comparison to the predefined 

lever model. The variants of the reference CCPGT are transformed into single ‘local’ lever 

models. Afterwards, it is checked if a ‘local’ lever model matches the predefined one. A 

reference CCPGT may look like in Figure 5-15. It consists of two meshing planet assem-

blies, five planes of action (I to V), five sun gears (SGI to SGV), five internal gears (IGI to 

IGV) and five planet gears (PGI to PGV) and eleven central shafts including the carrier s. It 

is defined by two center distances (cd1 and cd2) as well as the diameters of the central 

gears and the planet gears, respectively. If the planet assemblies are in extended position, 

the angle α indicates their relative position. Defining two center distances and five planet 

gear diameters the whole transmission with its basic ratios is specified in principle. The 

reference CCPGT shown contains common designs of single PGTs and CCPGTs with up 

to two meshing planets and a maximum of three planet gears per planet assembly. If it is 

transformed into an 11-node lever, at least parts of it may match the predefined lever. 

Nodes and central gears that are not matching any node of the predefined lever are re-

moved.  
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Figure 5-15: Example reference CCPGT 

The basic problem of this procedure is the huge diversity of generated structures. For a 

maximum of only ten incremental steps per one of the seven needed parameters, ten mil-

lion CCPGT variants are created. Due to the incremental breakdown, the local levers will 

not match the predefined lever exactly. Also, a very large set of redundant variants is 

created. Next, it is not sure if matching variants are jumped over as a result of too large 

incremental steps.  

A further synthesis possibility is to fractionalize the predefined lever into connected 3-node 

levers, to look for single PGTs matching the 3-node levers and to check if the reassembly 

of a CCPGT out of the single PGTs is possible. This procedure is related to the approach 

of many authors such as Mueller [2_MUL01] who attempted to find common components 

of jointed single PGTs in order to ‘reduce’ them into a CCPGT. Analogical to Figure 5-4, 

the 3-node levers of the fractionized overall lever must be coupled twice to keep the kine-

matic DOF of two. Also, the 3-node levers must feature a common carrier node s (Figure 

5-16). Multiple fractionations exist. The generation of fractionized levers is totally equiva-

lent to the generation of kinematically-equivalent substitution figures in principle (cf. Sec-

tion 4.2.1). Hence, Table 4-3 is valid for the number of fractionized levers, too. By way of 

example, 16 ‘kinematically-equivalent’ fractionations are available for a 5-node lever.  

I II III IV V

SGI

IGI

PGI
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PGIII
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IGIII
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Figure 5-16: Example fractionation of a 4-node lever into connected 3-node levers  

Each 3-node lever corresponds to a single PGT. Gibson and Kramer [5_GIB84] list 22 sin-

gle PGTs to be distinguished whereof at least eight PGTs can be indicated as being con-

ventional. Thus, it is to be checked if any combination of single PGTs corresponding to the 

3-node levers leads to a CCPGT. For this purpose, the possible basic train ratio of a fo-

cused single PGT has to match the characteristic leverage and basic ratio of the 3-node 

lever. Additionally, the central gears of jointed central gear nodes have to be of the same 

type (external or internal gear). Furthermore, the central gears have to mesh with ade-

quate planets. A total of two or three planet assemblies is acceptable. Obviously, the com-

bination of single PGTs will not result in CCPGTs for most cases. However, a huge num-

ber of variants has to be checked. Considering a 5-node lever with 16 feasible fractiona-

tions, three 3-node levers per fractionation and eight possible single PGTs per 3-node lev-

er, the number of variants is 384. Besides, a systematic and computerized check is difficult 

to realize due to the geometric diversity.  

Another synthesis method, which will be pursued from now on, features a direct determi-

nation of central and planet gear diameters on basis of the predefined lever. For it, a refer-

ence CCPGT of Figure 5-15 is needed, which demonstrates the most complicated 

CCPGT to be considered. The reference CCPGT is transformed into a reference lever 

whose number of nodes is larger than or equal to the number of nodes of the predefined 

lever. Afterwards, nodes of both levers are combinatorially assigned by pairs. Here, un-

used nodes of the reference lever are discarded. The ‘remaining’ structure of the reference 

CCPGT is analyzed in regard to the feasibility of predefined lever. Thereby, diameters of 

the central and planet gears are calculated as a function of the characteristic leverages of 

the predefined lever and structures with inapplicable diameters are omitted again. Finally, 

a small number of potential CCPGT structures is filtered out.  

5.5.2 Reference CCPGT and characteristics 

In order to generate feasible CCPGT structures, it is necessary to analyze the reference 

CCPGT in detail. The essential parameters of the reference CCPGT model shown in Fig-

ure 5-15 are slightly simplified in comparison to a real CCPGT. The specified diameters 

are to be interpreted as pitch diameters. However, in reality a planet gear features multiple 

overall lever
s

ss s
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and different pitch diameters due to addendum modification if meshing with multiple mat-

ing gears. These pitch diameters differ marginally and impact the relationship between the 

basic ratio and the center distance(s) of a basic train. Anyhow, deviations in respect of the 

target basic ratios have to be accepted as it is not possible in general to find numbers of 

teeth resulting in the desired basic ratios intimately. Numbers of teeth can only be integer, 

installation conditions must be met and numbers of teeth are to chosen considering load 

carrying capacity aspects last but not least. 

The reference CCPGT features eleven central shafts. A maximum of two meshing planet 

assemblies is regarded as being reasonable from a designer’s view. The corresponding 

lever model is shown in Figure 5-17. It features two groups of central gear nodes in anal-

ogy with Figure 5-14. Apparently, five nodes are located to the right and to the left of the 

carrier node s. Predefined levers featuring more than five nodes per group cannot match 

the reference CCPGT and its lever respectively. 

 

Figure 5-17: Lever model corresponding to the reference CCPGT of Figure 5-15  

Frequently, if the predefined lever is comparatively small, it is useful to ‘deactivate’ certain 

central gears of the reference CCPGT from the beginning and not to allow all PGT struc-

tures included in the model in order to avoid unfavorable designs. If so, the corresponding 

lever model is reduced accordingly. 

 

Figure 5-18: Isolated negative-ratio drive derived from reference CCPGT in Figure 5-15  

s

Group 1

(SGI, SGII, SGIII, IGIV, IGV)

Group 2

(IGI, IGII, IGIII, SGIV, SGV)

PG

IG

SG
cd

dIG

dPG

dSGs



Synthesis by means of Helfer diagrams and equivalent lever models 141 

Isolating components and assembly groups of the reference CCPGT, the geometric cha-

racteristics become clear. A single negative-ratio basic train containing one sun gear, one 

planet and one internal gear is defined by two geometric parameters e.g. the center dis-

tance and one diameter ratio. All other diameters can be calculated depending on these 

parameters (Figure 5-18). The center distance can be interpreted as a scaling factor. Its 

absolute value is not of relevance for the structure in principle. Further, the diameter ratio 

of the internal gear to the sun gear is a function of the basic ratio: 

   

   
       

  
         

        
 

             
      
   

      
   

 

                 

                  

( 5.17 ) 

      
  [-] basic ratio of central gears SG and IG 

   [m] center distance 

    [m] diameter of sun gear SG 

    [m] diameter of planet gear PG 

    [m] diameter of internal gear IG 

Choosing an adequate scaling factor, the system is determined by one parameter, the ba-

sic ratio. Adding further basic gearings each consisting of one connected planet and one 

central gear, the system is still determined if one more basic ratio per basic gearing is 

available (Figure 5-19).  

 

Figure 5-19: Determined CCPGT system derived from reference CCPGT in Figure 5-15  

After the gear diameters of plane I are calculated using equation ( 5.17 ), the remaining 

diameters are derived as follows: 
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( 5.18 ) 

         

  [-] basic ratio of central gears SGI and IGII 

          

  [-] basic ratio of central gears SGI and SGIII 

   [m] center distance 

           [m] diameter of sun gear SGI/III 

           
 [m] diameter of planet gear PGI/II/III 

     
 [m] diameter of internal gear IGII 

An over-determined system is in hand if one planet assembly features more than one neg-

ative-ratio drive like in Figure 5-18. Generally, it is not possible to meet all basic ratio re-

quirements of the predefined lever exactly with an over-determined CCPGT structure. 

Figure 5-20 shows such a system. One can imagine that the diameters of all gears except 

sun gear SGII are calculated analogical to Figure 5-19. If so, the diameter of sun gear SGII 

results from the others as there is no further degree of freedom for the geometry design. In 

contrast, the corresponding node within the lever can be moved freely with respect to the 

remaining nodes.  

 

Figure 5-20: Over-determined CCPGT system derived from reference CCPGT in Figure 5-15  

The structure of Figure 5-20 is one time over-determined. Adding a further negative-ratio 

drive, the system is twice over-determined. In order design a structure being as close to 

the requirements as possible, a quality criterion is to be set up. The structure is designed 

such that the deviations between desired and performed basic ratios are minimized. For it, 

the planet diameters are varied. All basic ratios of the over-determined system are consi-

dered. 
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The most complicated system is the under-determined system, which occurs in the ab-

sence of negative-ratio drives analogical to Figure 5-18. Besides the center distance, one 

more diameter ratio can be selected freely (Figure 5-21). Other diameter ratios result from 

the desired basic ratios and the diameter ratio, which was selected first according to equa-

tion ( 5.18 ). 

 

Figure 5-21: One time under-determined CCPGT system derived from reference CCPGT in Figure 

5-15  

 

Figure 5-22: Four times under-determined CCPGT system derived from reference CCPGT in Fig-

ure 5-15  
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A meshing planet pair increases the degree of under-determinacy by one. Further, if no 

central gears are in mesh with the planet gear pair, additional degrees of freedom regard-

ing the structure geometry are available. Figure 5-22 shows a CCPGT structure featuring 

the maximum degree of under-determinacy of four. All planet gear diameters are indepen-

dently selectable. With one center distance as scaling factor, the other center distance, the 

relative position of the planet assemblies (angle α in Figure 5-15) and the central gear di-

ameters result from the desired basic ratio and the planet gear diameters. A high degree of 

under-determinacy occurs above all if explicitly more central shafts of the reference 

CCPGT are ‘activated’ than nodes of the predefined lever exist. These solutions are often 

not of relevance as the structures are more complex than they have to be. 

For each degree of under-determinacy one diameter ratio can be optimized e.g. with refer-

ence to the following aims: 

1. low design space or outer diameter 

2. avoidance of extreme gear ratios 

3. generation of same parts 

4. avoidance of interferences of planets 

5. avoidance of stepping of planet assemblies in favor of short overall length and easy 

manufacturing 

Depending on the requirements, an adequate solution is to found for this optimization 

problem. For a first preliminary structure design, the diameters can be chosen as follows if 

possible: 

       
     

    
     

      
 

   

 
 

     
 

   

 
 

( 5.19 ) 

    
 [m] diameter of planet gear PGx       [m] center distance 1/2 

Hereby, interference of planets PGIII and PGIV are avoided and the size of all other planets 

is identical to size of their mating sun gears.  

It is reasonable to define freely selectable diameter ratios in a certain order. First, the gear 

diameters of internal gearings are to be defined, subsequently the gear diameters of ex-

ternal gearings (Figure 5-23). The theoretical range of an internal gearing ratio is limited 

as the planet gear can only be of the same size of the internal gear at maximum. The 

range of an external gearing ratio is not limited as the diameters of the planet gear and the 

sun gear do not restrict each other. Hence, every basic ratio can be generated if this pro-

cedure is followed and no basically working structure is excluded due to unfavorably cho-

sen planet diameters. 
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Figure 5-23: Ratio range of internal and external gearings 

5.5.3 Synthesis by systematic matching of lever model and reference 

CCPGT 

For the final synthesis of CCPGT structures, the ‘activated’ central gears of the reference 

are combinatorially assigned to the central gear nodes of the predefined lever. Naturally, at 

least as many central gears have to be activated per group as central gear nodes exist (cf. 

Figure 5-14 and Figure 5-17). Considering one group, the appropriate number of central 

gears is picked out of the activated ones. Every permutation of an assortment of these 

central gears constitutes a possible assignment: 

           
           

             
                 

            

                            
 ( 5.20 ) 

          [-] number of assignment variants with  

  group x of the reference CCPGT and 
  group y of the predefined lever  

            [-] number of central gears of the reference 

  CCPGT in group x 

              [-] number of central gear nodes of the 

  predefined lever in group y 

Table 5-1 lists the resulting number of variants. In case of up to three activated central 

gears the number of potential structure variants is very limited. Only for very complex 

CCPGTs with more than four central gears per group, a high number of variants is to be 

expected. The total number of variants results from equation ( 5.21 ). At maximum, if every 

group assignment features 120 variants and if the groups are switched in addition, the total 

number of variants equals 28800. Assuming that only three central gears are activated per 

group of the reference CCPGT and only two nodes are located to the left and to the right 

of the predefined lever (5-node lever), a total number of potential structures of only 72 re-

sults. 
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1 2 3 4 5 

              

1 1 2 3 4 5 

2  2 6 12 20 

3   6 24 60 

4    24 120 

5     120 

          [-] number of assignment variants with  

  group x of the reference CCPGT and 
  group y of the predefined lever  

            [-] number of central gears of the reference  

  CCPGT in group x 

              [-] number of central gear nodes of the  

  predefined lever in group y 

 Table 5-1: Number of assignment variants of central gears of group x of the reference 

CCPGT to nodes of group y of the predefined lever 

           
            

                            
 

            

                            

 
            

                            
 

            

                            
 

( 5.21 ) 

           [-] total number of assignment variants for 

  every group assignment possible 

              [-] number of central gears of the reference 

  CCPGT in group 1/2 
                [-] number of central gear nodes of the 

  predefined lever in group 1/2 

Among the potential structure variants it is to be checked which ones lead to feasible 

CCPGT structures. A calculation of resulting gear diameters using equations ( 5.17 ) and  

( 5.18 ) reveals if a structure is feasible or not. Detecting any geometrical violation such as 

negative planet or sun gear diameters, positive internal gear diameters, negative center 

distances or non-meshing planet pairs, the structure is dismissed. In general, the number 

of feasible structures is significantly smaller than the number of potential structures for this 

reason. 

In order to design structures that are as close to the requirements as possible, the synthe-

sis is performed considering the following order: 

1. Geometry calculation for over-determined (sub-) structures 

2. Geometry calculation for determined (sub-) structures 

3. Geometry calculation for under-determined (sub-) structures 

According to Section 5.5.2, the number of isolated negative-ratio drives per planet assem-

bly like in Figure 5-18 is decisive for a structure or substructure being determined or over- 
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or under-determined. If the structure or a part of it is over-determined, the diameters of 

relevant planets of negative-ratio drives are varied incrementally to find an approximate 

solution. The desired basic ratios are gained from the leverages of the predefined lever: 

        
  

       

       
 ( 5.22 ) 

        
  [-] basic ratio of central gears CG1  

  and CG2 

       [m] coordinate of central gear node CG1/2 

   [m] coordinate of carrier node s 

As quality criterion the method of least-squares can be applied. Every basic ratio included 

in the over-determined structure is considered: 

    
         
          

 

        
 

 

 

 ( 5.23 ) 

  [-] error square of basic ratios of  

  over-determined structure including k 
  basic ratios 

         
  [-] k-th basic ratio of potential structure 

        
  [-] k-th basic ratio of predefined lever 

After an appropriate geometry for the over-determined structure is found, the determined 

(sub-) structure is designed followed by the under-determined (sub-) structure. The ratios 

of these (sub-) structures correspond exactly to those of the predefined lever.  

The number of remaining structures depends on the concrete configuration of the prede-

fined lever and the activated central gears of the reference CCPGT. For instance, taking 

into account a predefined 5-node lever shown in Figure 5-24 and a reference CCPGT with 

only six central gears activated like in Figure 5-25, the number of potential structures is 

72. After the geometry calculation, only four determined, one over-determined and ten un-

der-determined structures are left. Examples in Chapter 6 demonstrate the practical appli-

cation of the presented synthesis method. 

 

Figure 5-24: Example lever model for structure synthesis 
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Figure 5-25: Reference CCPGT with reduced number of activated central gears 
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6 Application examples 

Some application examples are presented in this chapter to demonstrate the use of the 

methods presented in the previous chapters. These application examples consist of three 

automotive devices.  

6.1 Active Differential and electric vehicle MUTE 

The electric vehicle ‘MUTE’ was developed by TU München and presented at the Interna-

tional Motor Show (IAA) in 2011 (Figure 6-1). It is a small, rear-driven two-seater with a 

limited drive power of 15 kW and a net mass of 400 kg without energy storage. It is 

equipped with a rechargeable lithium-ion-battery with a capacity of approx. 10 kWh and a 

second, scalable and recyclable ‘range-extender-battery’ guaranteeing a range of at least 

100 km in combination. Further details can be found in [6_HOH11]. 

 

Figure 6-1: Design of the electric vehicle MUTE 

For the benefit of efficiency, driving dynamics, safety, traction and comfort, MUTE features 

a torque vectoring system allowing a controllable redistribution of torque from one wheel to 

the other. The applied torque vectoring system is fully electrically driven. Its structure is 

shown in Figure 6-2. It contains an electric drive machine, an axle drive, a spur gear diffe-

rential and a superimposing unit with a superimposing gear and electric machine. The 

combination of spur gear differential and superimposing gear is called ‘Active Differential’. 
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Figure 6-2: Structure of the MUTE power train [6_HOH11] 

Only the electric drive machine provides drive power. Its torque is converted by the axle 

gear and distributed to the output shafts by the spur gear differential. The basic torque dis-

tribution ratio of the differential is 50:50 in normal operating mode when torque vectoring is 

deactivated and the superimposing electric machine as well as the superimposing gear is 

without any load. If torque vectoring is be activated, the superimposing electric machine 

works as an actuator for the superimposing gear and generates torque, which is converted 

by the superimposing gear. The unit interacts with the interconnecting sun gear, changing 

the basic torque distribution ratio continuously within the differential. It is also worth men-

tioning that the superimposing electric machine does not rotate if both wheels are running 

at the same speed. 

A kinematic configuration that is equivalent to this system and the corresponding lever 

model are shown in Figure 6-3. The spur gear differential in combination with the inter-

connecting sun gear constitutes a CCPGT. It is intended to find alternative structures in 

the following. Four operating conditions are defined (Figure 6-4): two conventional diffe-

rential modes and two torque vectoring modes (left turn / right turn). As the conventional 

differential modes are the most important and most frequently used ones, they are 

weighted each with 40%, the others are weighted each with 10%. Approximated efficiency 

values with a global basic efficiency of 97% show that nodes B, C or D are favorable to 

choose as the carrier node.  
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Figure 6-3: Kinematic configuration that is equivalent to Figure 6-2 and the corresponding lever 

model 
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Figure 6-4: Operating conditions and lever definition for MUTE differential 

As the differential is supposed not to be too complex with regard to the robustness and the 

manufacturing costs, structures without stepped planets are of special interest. Therefore, 

a simple reference CCPGT is considered featuring only two sun gears and two internal 

gears (Figure 6-5). As there are only two central gear nodes available per group for this 

reference CCPGT, node D cannot be taken as the carrier node. Carrying out the synthesis 

procedure of Section 5.5.3 indicates that only two basic, under-determined structures are 

capable of satisfying the predefined requirements. One of them is the known, current con-

figuration that is installed in MUTE (Figure 6-6 left). The other one is somewhat more 

complex in comparison, as one more internal gear is required (Figure 6-6 right). A more 
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and 99,5% per internal gearing discloses that the second solution is slightly more advan-

tageous in terms of its power loss. 

 

Figure 6-5: Reference CCPGT considered for MUTE differential 

 

Figure 6-6: Synthesis solutions for MUTE differential 
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6.2 Electrified continuously variable transmission 

Electrified continuously variable transmissions (E-CVT) provides several advantages com-

pared to conventional CVTs due to their hybrid functionalities. Well-known representatives 

are the Toyota Prius and the BMW X6 Active Hybrid / Mercedes-Benz ML 450 Hybrid. A 

study was completed to investigate if similar transmission concepts are useful for compact 

cars. A sample car was considered featuring front-wheel drive and a net mass of 1070 kg. 

The car is equipped with a 3-cylinder Diesel-ICE having a maximum power of 70 kW and a 

maximum torque of 210 Nm. Thus, the maximum speed is limited to about 180 km/h. 

Two electric machines are applied to the transmission. These machines are required to be 

small to keep the required torque and power as small as possible as well. Hence, a maxi-

mum torque of 65 Nm and a maximum power of 36 kW are allowed. The basic scheme is 

shown in Figure 6-7.  

 

Figure 6-7: Scheme of the E-CVT power train 

 

Figure 6-8: Lever configuration for E-CVT transmission 
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DOF of two. The torque provided by the ICE is converted by the electric machines why the 

torque at the output / final drive is variable. Here, the torque of one electric machine is 

‘free’ to choose. Also, the speeds of the ICE and the output are independent. Therefore, 

the transmission ratio is continuous and variable: 

   
    

    
 ( 6.1 ) 

   [-] E-CVT transmission ratio      [rpm] speed of ICE 

     [rpm] speed of transmission output 

For the steady state operating condition, the (mechanical) power of one electric machine 

must balance the other. In addition, a ratio of the power of one electric machine relative to 

the power of the ICE is defined: 

         

  
   

    
 

( 6.2 ) 

  [-] power ratio 

     [W] power of ICE 

      [W] mechanical power of electric  

  machine E1/2 

The power ratio is a function of the lever configuration and the transmission ratio: 

  
       

  
 
                     

                     
 

    

  
 
          

         
                               

 
          

         
 

           

         
 

( 6.3 ) 

  [-] power ratio 

   [-] E-CVT transmission ratio 

         [m] node coordinates of output/ICE 

      [m] node coordinates of E1/2 

By means of the proposed lever configuration, it is possible to limit the power ratio within a 

range of ±30% if the transmission ratio is kept within a range of approx. 0,4 to 2,6. This 

corresponds to a spread of 6,5 (Figure 6-9). Definite transmission ratios can easily be 

generated by applying brakes at the electric machine nodes (for one electric machine 

standing still) or by applying a clutch C for the coupling case. Choosing a final drive ratio of 

2,5, the coupling case corresponds to the maximum speed gear (it = 1). Engaging brake 

B1 provides an overdrive gear (it = 0,6) while engaging brake B2 results in a definite gear 

for low speeds (it = 2). 
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Figure 6-9: Power ratio ε depending on the E-CVT transmission ratio it 

The main disadvantage of the presented 4-node lever design is that the driveaway torque 

at the beginning is low. Assuming that all three machines are driving, the maximum axle 

torque equals approx. 550 Nm. The driveaway torque can easily be increased by adding 

another node to the lever being fixed by brake B3 (Figure 6-10). This node functions as 

support and supplies an additional static DOF to allow independent machine torques. 

 

Figure 6-10: Improved lever configuration for E-CVT transmission with additional brake 
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Figure 6-11: Operating conditions and lever definition for E-CVT transmission 

 

Figure 6-12: The most desirable synthesis solution for E-CVT transmission 
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6.3 TVhybrid axle 

The ‘TVhybrid axle’ is a drive unit for parallel hybrid vehicles which was published first by 

Höhn, Wirth and Kurth [6_HOH10]. It is to be installed at the rear axle of a car with the 

front axle being driven by the ICE. The TVhybrid axle features a hybrid mode at which both 

wheels of the rear axle are driven with equal torque. A second torque vectoring mode is 

used to generate opposite torque at the rear wheels in order to cause a yaw momentum. A 

single electric machine works as actuator and drive machine. In addition, a shifting device 

is needed to switch between both modes. Figure 6-13 shows a workable structure.  

 

Figure 6-13: Structure of the TVhybrid axle [6_HOH10] 

The transmission of the TVhybrid axle can be subdivided into a superimposing gear work-
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The transmission ratios are chosen such that an overall transmission ratio of 8 is generat-

ed for the hybrid mode. Thus, the hybrid mode can be used for vehicle speeds up to about 

120 km/h until the maximum electric machine speed reaches 8000 rpm. Switching to the 

torque vectoring mode, the electric machine is standing still if both wheels are running with 

equal speeds. Hence, the torque vectoring mode can be activated regardless of the ve-

hicle speed (maximum vehicle speed ~ 250 km/h). The electric machine is assumed to 

deliver a maximum torque of 125 Nm and a maximum power of 30 kW. 

Depending on the superimposing gear basic ratio, the reverse gear is supposed to function 

as a 2-speed transmission with definite ratios of ±4/3, which can be achieved by means of 

a 4-shaft CCPGT. Three different lever configurations are thinkable: alternating fixed 

shafts (Figure 6-15), alternating input shafts (Figure 6-16) or alternating output shafts 

(Figure 6-17). Each mode is considered for straight-ahead driving at its maximum vehicle 

speed in order to identify fast turning elements. For every lever configuration the node be-

ing fixed in hybrid mode fits best as carrier node. Considering the reference CCPGT 

shown in Figure 5-25, the synthesis produces a total of 8 determined and 39 under-

determined structures. Among these structures, the one featuring the best overall 

weighted efficiency of 98,60% is shown in Figure 6-18. In contrast, the reverse gear con-

tained in Figure 6-13 results in an overall weighted efficiency of only 95,69% for identical 

operating conditions but much simpler design. 

 

Figure 6-15: Operating conditions and lever definition for TVhybrid reverse gear with alternating 
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Figure 6-16: Operating conditions and lever definition for TVhybrid reverse gear with alternating 

input shafts 

 

Figure 6-17: Operating conditions and lever definition for TVhybrid reverse gear with alternating 

output shafts 
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Figure 6-18: Synthesis solution with the best overall efficiency for TVhybrid reverse gear 
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7 Conclusions and outlook 

Complex-compound planetary gear transmissions can feature particular and significant 

advantages in comparison to standard planetary gears or spur gear trains. However, anal-

ysis and synthesis of complex-compound planetary gear transmissions are rather com-

plex. Hence, the question of which structure matches an intended application the best and 

how this structure behaves in terms of its power loss performance is difficult to answer. 

This study is dedicated to the calculation of kinematics and statics for loss-free conditions 

and operating conditions with power losses as well as to the structure synthesis of com-

plex-compound planetary gears during the early design phases. 

Planetary gear transmissions can be represented by graphs. Graphs are abstract models 

containing the main information needed to facilitate required analyses. Relevant compo-

nents in the gear train are mapped to nodes, the physical interrelationships such as gear-

ing or bearing correlations are represented by edges connecting nodes. Once a graph is 

assembled, an automated derivation of kinematics and statics systems of equations is 

possible. The graph representation also helps understand the internal power flow. As 

meshing power can only be transferred via gear pair edges and all gear pair edges of a 

complex-compound planetary gear set form a tree, the flow of meshing power is without 

circuits and can be compared to network flow problems. Powerful mathematical algorithms 

like the simplex algorithm are suitable to solve these problems. For this purpose, the effi-

ciency of single gearings is to be taken as a constant in order to maintain linearity. Further 

boundary conditions are needed depending on the system’s degree of freedom.  

It is shown that another well-established representation method known as ‘Wolf symbols’ 

can also be used for efficiency computations. By means of Wolf symbols, planetary gears 

are converted into substitution figures. Feasible substitution figures are either kinematical-

ly-equivalent or functionally-equivalent. Kinematically-equivalent substitution figures allow 

a correct determination of speeds and torques for loss-free operating conditions. More-

over, functionally-equivalent substitution figures feature correct torques in consideration of 

power losses. Substitution figures offer a clear view of the transmission structure while 

reducing the number of parameters to be determined. However, the Wolf symbol represen-

tation is not unique for complex-compound planetary gear sets. In general, multiple func-

tionally-equivalent substation figures are available as a function of the given structure and 

the present operating conditions. With the aid of a classification of central gears to mesh-

ing power sources or sinks, the number of substitution figures to be analyzed is reduced 

significantly making the Wolf symbol method appropriate for complex-compound planetary 

gear transmission with up to five central shafts. 
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An efficiency approximation method is derived. Only limited information about the trans-

mission is needed by taking into account a global basic train efficiency instead of individual 

values for each basic train. Without knowledge of the exact structure, the efficiency is ap-

proximated quite accurately with regard to a structure synthesis.  

Planetary gear transmissions can feature very high as well as very low efficiency values. 

Self-locking is an extreme case occurring for special designs and operating conditions. As 

for complex-compound planetary gear transmissions, self-locking can also occur only ap-

parently for unfavorably chosen boundary conditions. A procedure is proposed revealing if 

an operating condition and central shaft respectively is self-locking or not. 

Planetary gear synthesis is a major problem in the face of the diversity of available struc-

tures and possible combinations. For this reason, synthesis methods being confined to 

specific designs and applications are prevalently suggested. Many developers build all 

solutions within a certain range by means of combinatorics and check their applicability 

subsequently. At this, useless solutions are also produced. A universal structure synthesis 

method for complex-compound planetary gear transmissions is proposed within this study. 

This method takes advantage of a lever analogy, which is detached from design aspects 

and used to define desired operating conditions. These operating conditions can be of any 

kind, even having multiple inputs and outputs. A simple and clear lever model is derived 

from these operating conditions. The lever is specified furthermore by means of the effi-

ciency approximation method mentioned above in order to diminish the number of result-

ing solutions in advance. In addition, a reference transmission structure is to be defined 

indicating the most complicated structure to be considered. Hereby, the number of solu-

tions is likewise decreased and impractical solutions are avoided. A systematic matching 

process combining the lever model and the reference transmission generates definite 

transmission structures. In sum, only feasible structures satisfying the desired operating 

conditions are created. The number of these structures is explicitly limited. Examples of 

use show that the synthesis method is well-suited for finding new transmission concepts 

containing complex-compound planetary gears. 

The proposed synthesis method can be refined by adding further design steps. An auto-

mated dimensioning considering loads of the predefined operating conditions is feasible. A 

value benefit analysis considering weight, designed space, manufacturing costs and so on 

would help decrease the number of structures even more. The lever analogy being used is 

qualified for transmissions with a basic structure featuring a kinematic degree of freedom 

of two. For the synthesis of more complex structures a more general approach is required. 

Numerous examples of systems being composed with the aid of graph theory can be 

found. For this purpose, the requirements regarding a new transmission application are to 

be formulated as (linear) target functions and edge conditions limiting the solution space. 

Then, an efficient algorithm can be used to generate solutions without combinatorics. This 

author believes that this approach would present the most promising potential for an as 

universal as possible synthesis method. 
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