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Abstract

In this thesis a class of trust-region multilevel methods for the solution of high-dimensional
nonlinear optimization problems with convex constraints is investigated. Typical applications are
discretizations of infinite-dimensional problems. Besides the actual objective function, the methods
use models that can be evaluated more cheaply, for instance discretizations with less degrees of
freedom. A comprehensive global convergence result is shown, where particular attention is paid
to make all assertions largely independent of the problem’s dimension. In a typical Sobolev space
setting, it is further discussed under which conditions smoothing steps, that can be calculated
cheaply, produce a sufficient descent. If these conditions are not met, the coarser models can
be used instead. The application to typical problem classes is shown and numerical results of
different examples, amongst others a 3D contact problem with nonlinear material model, confirm
the excellent properties of the algorithm.

Zusammenfassung

Die vorliegende Arbeit befasst sich mit einer Klasse von Trust-Region Multilevelverfahren zum
Lösen hochdimensionaler nichtlinearer Optimierungsprobleme mit konvexen Nebenbedingungen.
Typische Anwendungsbeispiele sind Diskretisierungen unendlich-dimensionaler Optimierungsprob-
leme. Die untersuchten Verfahren verwenden neben der eigentlichen Zielfunktion auch günstiger zu
berechnende Modelle, etwa Diskretisierungen mit weniger Freiheitsgraden. Für diese Klasse wird
ein umfassendes globales Konvergenzresultat gezeigt. Hierbei wird besonders darauf geachtet, alle
Aussagen weitgehend unabhängig von der Dimension der Probleme zu halten. Im weiteren Verlauf
wird in dem typischen Fall, dass der zugrundeliegenden Raum ein Sobolev-Raum ist, untersucht,
unter welchen Voraussetzungen numerisch günstige Glättungsschritte einen hinreichenden Abstieg
liefern oder ob stattdessen Schritte auf einem anderen Modell gemacht werden sollten. Die
Anwendung auf typische Problemklassen wird diskutiert und numerische Ergebnisse verschiedener
Beispiele, unter anderem von einem 3D-Kontaktproblem mit nichtlinearen Materialmodell, bestäti-
gen die guten Eigenschaften des Verfahrens.
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1. Introduction

In this thesis we analyse a class of trust-region algorithms for the solution of convexly constrained
optimization problems. Our main interest are objective functions that are discretized versions of
a nonlinear functional which acts on an infinite dimensional space. A typical example of such an
infinite dimensional problem from the calculus of variations is

min
u∈C

∫
Ω
j
(
x, u(x),∇u(x)

)
dx (VP)

where C is a closed and convex subset of the Sobolev space H1(Ω), Ω ⊂ Rd, and j : Ω× R× Rd
a nonlinear function. These problems are typically large scale and therefore not well suited for
standard optimization algorithms. Furthermore, the condition of the Hessians of these problems
becomes large when the degrees of freedom grow due to a finer discretization. In this case, a simple
steepest descent method requires more and more steps to reach a predefined precision. A simple
example that illustrates this effect in one dimension was given in [Neu97, Chapter 2]. Contrary
to that, it can be shown that (inexact) Newton’s methods often behaves independent of the
discretization [All86, WSD05]; but if no special care is taken, the effort for the computation of one
Newton iteration grows more than proportional with the degrees of freedom. One of our major goals
is to create an algorithm that does not exhibit this behaviour.

In the unconstrained case, the first-order optimality systems of problems of the type (VP) often
corresponds to a (nonlinear) partial differential equation (PDE). For linear elliptic PDEs, Multigrid
or Multilevel algorithms are computational optimal in the sense that the number of operations
needed to reach a predefined precision depends only linearly on the degrees of freedom. These
methods were first introduced in the early sixties by Fedorenko [Fed61, Fed64]. In the West, the
first works on multilevel algorithms came from Brandt in 1973. First theoretical insights were
given by the works of Nicolaides and Hackbusch. Since then multigrid methods attract a lot
of attention and are still an active field of research. An elaborate description of the historical
development till 1994 can be found in [Bra95].

Multigrid methods employ a hierarchy of discretizations with increasing degrees of freedom. The
main observation that leads to the development of multigrid methods for linear systems was
that cheap iterative solvers often effectively reduce the high frequencies of the error quickly
but fail to diminish the low frequencies. The idea is to transfer the problem to a coarser
grid where the error again has high frequency error components – in relation to the coarser
discretization – which can be reduced effectively by the iterative methods. This is done in
a recursively fashion on the complete hierarchy and leads to very effective solvers. A good
overview over the theory and practice of multigrid methods can be found in the monographs
[Hac85, Wes92, TOS01, BZ00].

Multigrid methods were also applied to solve nonlinear PDEs. Several different approaches are
available to achieve this. The first one, often called Newton Multigrid algorithm, uses an outer
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1. Introduction

Newton iteration where the linear system is solved either directly by multigrid methods or with a
preconditioned conjugated gradient algorithm where multigrid iterations are used as preconditioner.
There is a large set of literature about these methods, for example [BR82, BVW03, Hac85]. These
methods were also used to solve optimization problems where the multigrid algorithm is applied to
the KKT-system [DW97, Kor01, DMS00] and, in particular, to solve PDE constrained optimization
problems, see [BS09] and the references therein. Similarly, in [BHT09] the authors use multigrid
methods to approximately solve the perturbed KKT-systems that occur in every iteration of an
interior point algorithm.

Another approach used for unconstrained and constrained convex optimization problems are
subspace correction methods where the function is successively minimized over a large series of
simple – often one dimensional – subspaces [Tai03, Bad06, BTW03, Kor94, GK09b]. The basis for
these algorithms is a different interpretation of multilevel algorithms, namely as subspace correction
algorithms [Xu92, Yse93]. In [Tai03, Bad06], the authors show that the number of iterations
needed to reach a given precision is bounded independently of the fineness of the discretization if
the problem is unconstrained and bounded by a constant that depends weakly on the degrees of
freedom if the problem is constrained by simple pointwise bounds.

Finally, there are methods where the multigrid iteration is directly applied to the nonlinear
problems. The two main methods are FAS (Full Approximation Scheme), proposed in [Bra77],
and NMGM (Nonlinear Multigrid Method) [Hac85, HR89]. Extensions were also used to solve
variational inequalities [Hop87, BC83, Man84]. Based on these methods, in [Nas00] the MG/Opt
algorithm was introduced. Here, for the first time, we have a truly nonlinear multigrid method
for unconstrained convex optimization problems that is independent of a PDE setting. MG/Opt
formulates the FAS method for optimization problems and uses a line search algorithm to ensure
global convergence. An improved variant of the algorithm was introduced in [LN05] where the
length of the lower-level steps is bounded similar to a trust-region approach. In the short note
[Bor05], the global convergence of MG/Opt was shown for strictly convex problems by applying
the theory of [HR89]. In [WG09] a more elaborate convergence theory of an algorithm similar
to MG/Opt was made, which also includes an estimate of the total number of iterations needed
to obtain a given precision if the objective function is uniformly convex. However, this estimate
depends on the condition of the Hessian matrices and is of the same order as the number of steps
needed in a steepest descent algorithm.

Instead of a line search, the algorithm RMTR (Recursive Multiscale Trust-Region algorithm)
[GST08] uses a trust region for globalization. A comprehensive convergence analysis was made,
which does not need the convexity of the objective function. For the first time, the usage of
coarser models was restricted to cases where one can expect good steps. We emphasize this point
since it will become important in our analysis. The algorithm was extended to box-constrained
problems in [GMTWM08, GMS+10]. A variant which needs less differentiability assumptions was
considered later in [GK09a].

These more recent multilevel optimization algorithms were all formulated in a typical Euclidean,
finite dimensional setting, which allows a broad usage for many optimization problems as long as
a suitable level hierarchy is available. The often infinite dimensional structure of the underlying
problem is not taken into account. Therefore, the constants that appear in the statements
often depend on the discretization, which leads to estimates that are highly level-dependent.
This distinguishes the analysis of these class of optimization algorithms from other multilevel

2



methods where the special structure is heavily used to show level-independent convergence
behaviour.

In this thesis we try to bridge this gap and bring – at least partially – these different approaches
closer together. The main algorithm we analyze in this thesis is based on RMTR and RMTR∞,
which is the version for box-constrained problems. However, we generalize these algorithms
in various ways. Not only classical multilevel settings fit in our framework but also domain
decomposition methods or a combination of both are possible. In theory, we are not limited to
bound constrained problems, but allow general convex feasible sets. But most importantly, we
analyse the algorithm with the infinite dimensional setting in mind. That means we work directly
in abstract Hilbert spaces whenever possible and carefully pay attention whether constants depend
on the dimension of the problem. Furthermore, we later restrict ourselves to a more concrete
setting and consider cheap-to-calculate multigrid smoothers for the calculation of steps and analyse
the descent that we obtain. To this end, we will use results from the theory of subspace correction
methods.

We end this introduction by summarizing the contents of the upcoming chapters.

We start Chapter 2 by introducing the abstract setting we are going to consider and present a
trust-region multilevel algorithm for convexly constrained problems. We continue to show the
convergence to first-order critical points under quite general assumptions on the function and the
hierarchy. The theory is a lot more general than it is needed for the chapters that follows where
we restrict ourselves to a more concrete setting. However, we hope to identify the important
assumptions that must be satisfied to show global convergence and that allows one to easily use
the theory for other problem classes.

In Chapter 3 we consider unconstrained problems in a setting that one typically has if the function
hierarchy was created by discretization of an infinite dimensional problem with finite elements.
This variational setting will be introduced first, and an important connection between smoothness
and estimates of certain norms will be pointed out. Then we analyze the descent which we obtain
by typical smoothing methods for convex and non-convex problems. For this we use the abstract
theory of subspace corrections algorithms. We finish this chapter with some remarks about the
concrete implementation of the smoothers.

Chapter 4 considers problems where the feasible set is a closed and convex proper subset of the
whole space. We start by introducing a continuous stationarity measure that can be calculated
with a reasonable effort. Similarly to the second chapter, we then analyse the descent produced of
various smoothing methods. Finally, we turn to a special class of feasible sets, boxes, and show
how the abstract choices of lower-level sets introduced in Chapter 2 can be implemented. In this
case we will also present an active-set strategy which can greatly improve the convergence speed
of the method.

In Chapter 5 we will consider concrete classes of infinite dimensional problems and establish the
various assumptions that we made so far.

Finally, in the last chapter, we will show convincing numerical results of the algorithm on selected
2D and 3D examples and different choices of parameters.
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2. A multilevel trust-region algorithm

In this chapter we will introduce a multilevel trust-region algorithm which is applicable to a wide
range of problems. It is evolved from the algorithms RMTR [GST08] and RMTR∞ [GMTWM08].
Before we state the algorithm, we will give a motivation of its ingredients and show how to choose
them in some common settings. We finally show the global convergence to first-order stationary
points.

We start by introducing some basic notation that we will use subsequently.

2.1. Notation

Let X be a normed vector space over R. The dual space, X∗ denotes the space of all bounded
and linear mappings of X to R, L(X, R). Instead of the notation g(x) for g ∈ X∗ we often use
the dual pairing

〈g, x〉X∗,X .

In most cases, we omit the spaces in the above notation and just write 〈g, x〉. X∗ equipped with
the norm

‖g‖X∗ := sup
x∈X
‖x‖X=1

〈g, x〉X∗,X

is a Banach space. It follows from the definition of the dual norm that

〈g, x〉X∗,X ≤ ‖x‖X‖g‖X∗ . (2.1)

By L(X, Y ) we denote the space of linear continuous operators between two normed vector
spaces X and Y . Every operator P ∈ L(X, Y ) is bounded, i.e., there exists a positive constant
M such that ‖Px‖Y ≤ M‖x‖X for all x ∈ X. The operator norm on this space is given
by

‖P‖X,Y := sup
‖x‖X=1

‖Px‖Y .

The dual or adjoint operator of P ∈ L(X, Y ) is denoted by P ∗ ∈ L(Y ∗, X∗) and satis-
fies

〈g, Px〉Y ∗,Y = 〈P ∗g, x〉X∗,X for all x ∈ X, g ∈ Y ∗.

If X is reflexive, Y = X∗ and P fulfills

〈Py, x〉X∗,X = 〈Px, y〉X∗,X for all x, y ∈ X,

we call the operator P symmetric or self-adjoint.

5



2. A multilevel trust-region algorithm

2.1.1. Lebesgue and Sobolev spaces

Let Ω ⊂ Rd, d ≥ 1, be a domain with Lipschitz-continuous boundary ∂Ω. We use the standard
notations Lp(Ω) with 1 ≤ p <∞ for the Lebesgue spaces consisting of p-th power integrable func-
tions and L∞(Ω) for the space of essentially bounded functions. Let Wm,p(Ω) ⊂ Lp(Ω) be the set
of all functions having weak derivatives Dαu ∈ Lp(Ω) for |α| ≤ m:

Wm,p(Ω) := {u ∈ Lp(Ω) |Dαu ∈ Lp(Ω) for |α| ≤ m} .

The set Wm,p(Ω) with the norm

‖u‖Wm,p(Ω) :=

 ∑
|α|≤m

‖Dαu‖pLp(Ω)

1/p

, p ∈ [1,∞),

‖u‖Wm,∞(Ω) :=
∑
|α|≤m

‖Dαu‖L∞(Ω).

forms a Banach space and is called Sobolev space of index (m, p). In the special case p = 2,
Hm(Ω) := Wm,2(Ω) with the inner product

(u, v)Hm(Ω) :=
∑
|α|≤m

(Dαu,Dαv)

is a Hilbert space. We will often work in the space H1
0 (Ω), which can be characterized

by
H1

0 (Ω) = {u ∈ H1(Ω)| tru = 0 on ∂Ω}.

Here, tr : H1(Ω) → L2(∂Ω) is a continuous linear mapping with tr v = v|∂Ω for all v ∈ C1(Ω)
called the trace operator. This mapping exists under the assumptions on the domain Ω. When no
confusion arises, we simply write tru = u.

2.1.2. Gelfand triple

Let V be a reflexive Banach space that densely and continuously embeds into a Hilbert space
U . By the Riesz representation theorem we can identify U with U∗ by means of the embedding
ιU : U → U∗, u 7→ (·, u)U . Then U∗ = U is embedded continuously and densely into the dual space
V∗. The chain V ↪→ U ↪→ V∗ is called a Gelfand triple. The continuous extension of the scalar
product (·, ·)U to V × V∗ results in the dual form 〈·, ·〉V∗,V . Hence, we use the notation (g, v)U for
v, g ∈ U as well as g ∈ V∗, v ∈ V.

An example for a Gelfand triple is

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) := H1

0 (Ω)∗.

6



2.2. Problem setting

2.2. Problem setting

In this chapter we present a multilevel trust-region algorithm for convexly constrained problems
and prove global convergence. Let Cr be a closed and convex subset of a Banach space Vr. We
consider the problem

min
xr∈Cr

fr(xr). (2.2)

We assume that the function fr : Vr → R is continuously differentiable and that the second-order
Gateï¿½ux derivative exists and the mappings xr 7→ f ′′r (xr)[h, h] are continuous for all h ∈ Vr.
This is satisfied if, for instance, fr is twice continuously differentiable. Since f ′′r (xr) ∈ L(Vr,V∗r ),
we also use the notation 〈f ′′r (xr)h, h〉.

We are interested in cases where (2.2) is a large-scale optimization problem and where besides the
objective function fr there are auxiliary functions

fi : Wi × Vi → R, i = 1, . . . , r − 1

defined on – normally lower dimensional – spaces Vi and Wi, which are somehow connected to fr.
For every xi ∈ Wi, the functions fi(xi, ·) : Vi → R are assumed to have the same differentiability
properties as fr. Each of these functions serves as a model of fr at a point xr and we suppose that
evaluating the auxiliary functions is cheaper in terms of computational effort than evaluating fr.
Each time a lower-level function fi is used to obtain a new iterate, the point xi ∈ Wi is fixed. This
allows us to use different spaces Wi and Vi for the “development points” and the search directions.
However, in many applications the spaces Wi are equal to Vi and fi(xi, vi) := f̂i(xi + vi) with
f̂i : Vi → R holds.

A typical example is when the spaces Vi form a nested sequence of finite dimensional spaces with
increasing dimension, e.g., constructed by a successive refinement process and the functions fi are
approximations of fr on Vi. This is similar to a classical multigrid setting. Throughout this work
we are mostly concerned with such multigrid hierarchies and hence we will often use the terms
coarse and fine to distinguish between the spaces Vi.

Besides multigrid hierarchies, other choices of Vi and fi are possible. Domain decomposition
methods like the alternating Schwarz method use a divide and conquer methodology to solve
problems (typically PDE’s) that are defined on a large domain by splitting it into smaller parts.
On each subdomain an approximation of the original problem is solved and its solutions are
merged to obtain an approximate solution of the problem on the whole domain. Assume that Vr
is a finite dimensional function space over a domain Ω. We split Ω into (not necessarily disjunct)
subdomains {Ωi}i and define Vi as a suitable function space over Ωi for all i. Since the elements
of Vi are only defined on a part of the whole domain, the functions fi must be chosen suitably to
approximate fr on Vi. A concrete choice is given in Example 2.1.

Combinations of multilevel and domain decomposition approaches are also possible, e.g., an overlap-
ping domain decomposition approach with an additional coarse space.

7
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Figure 2.1.: Two examples of a hierarchy

2.2.1. Function hierarchies

To use the auxiliary functions, they must be connected to fr and proper transfer operators between
the spaces must exists.

In order to treat all levels the same, we set Wr = Vr and define the function fr : Wr × Vr → R by
fr(xr, vr) := fr(xr + vr), where the right-hand side is given by the objective function of problem
(2.2). Although both functions have the same name, no confusion should arise since the number
of arguments is different.

To describe the hierarchy, we define for every level index i the set of direct children nodes
N(i) ⊂ {1, . . . , r}, which can be empty. We use the relation j ≺ i to indicate that there is a path
connecting level j and level i. More precisely, there is a sequence or chain of levels (j, l1, . . . , lm, i)
such that

j ∈ N(l1), lk−1 ∈ N(lk), k = 2, . . . ,m and lm ∈ N(i). (2.3)

From the definition it is clear that≺ is transitive, i.e., from j ≺ i and i ≺ l follows j ≺ l.

We require the hierarchy to be a tree with level r as root node in the sense of graph theory. This
means especially that the path between two levels j, i with j ≺ i is unique and that i ≺ r for all
i = 1, . . . , r − 1. Furthermore a tree is circle free, i.e., from j ≺ i follows i 6≺ j. This and the fact
that the number of levels is finite imply that every chain between two levels is finite. By ]i we denote
the maximum length of a level-chain that ends at level i, i.e.,

]i := max
{
0, max
s∈S(i)

|s|
}
, S(i) := {(l1, . . . , lm) | lm ∈ N(i), lk−1 ∈ N(lk) ∀k = 2, . . . ,m} .

Here, |s| denotes the number of elements in s. If N(i) = ∅, we get ]i = 0. For j ∈ N(i) it is easy
to see that ]j ≤ ]i− 1 and hence ]r ≥ ]i for all levels i.

Remark 2.1 We will often assume a multigrid level structure, where the levels are numbered
increasingly from the coarsest to the finest. In this case, we set N(i) = {i− 1}, i = 2, . . . , r, and
N(1) = ∅. Then j ≺ i is equivalent to j < i and ]i = i− 1.

8



2.2. Problem setting

To connect the levels, for every pair (i, j) with j ∈ N(i) there must be a restriction opera-
tor

Rji : Wi × Vi →Wj

and a linear and continuous prolongation operator

P ij : Vj → Vi.

As a natural extension, we define a prolongation for every pair of levels (i, k) with i ≺ k by
successive prolongation from i to k:

Pki = P klm · · ·P
l2
l1
P l1i

where (i, l1, . . . , lm, k) describes the unique sequence of levels from i to k in the sense of
(2.3).

In general, we allow that the prolongation operators P ij are not fixed, but depend on the current
iterate on level i. An example for this will be the active-set strategy for bound constrained
problems where we use slight modifications of the standard prolongation operators. Of course
this will also affect the operators Pki , which then depend on all iterates of the intermediate levels.
To simplify the notation we omit an additional iteration index.

The following examples will show how to concretely choose the spaces, the auxiliary functions
and the transfer operators in two different settings.

Example 2.1 (Obstacle problem) Let us consider a membrane with uniform tension τ at-
tached to the boundary ∂Ω of a domain Ω ⊂ R2 above a rigid obstacle ϕ ∈ H2(Ω) with ϕ ≤ 0 on
∂Ω. A vertical force with density τf , f ∈ L2(Ω), is acting on the membrane. If we consider only
small strains, the vertical displacement u of the membrane is the function that minimizes the
membrane energy

J(u) := 1
2

∫
Ω
‖∇u‖2 dx−

∫
Ω
fudx

over the set U := {u ∈ H1
0 (Ω) |u ≥ ϕ a.e. in Ω} of admissible displacements. Since U is closed

and convex, it follows directly from the Lax-Milgram lemma (see for instance [Bra07]) that this
problem has a unique solution.

ϕ
u

f

Figure 2.2.: Obstacle problem

In the following, let Ω be polygonal. To discretize the problem, we start with a triangulation T1
of Ω with simplices t of diameter less than h1. Starting from this coarse triangulation, a sequence
of triangulations T2, . . . , Tr of Ω is created by uniform refinement with mesh sizes h2, . . . , hr. This

9



2. A multilevel trust-region algorithm

ensures that the sets of nodes Ni, i = 1, . . . , r, which consist of all vertices of Ti, are nested. On
the triangulations we define conforming finite element spaces

Si := {u ∈ C0(Ω) |u = 0 on ∂Ω, u restricted to t is affine linear for all t ∈ Ti}.

Since the sets of nodes Ni are nested, S1 ⊂ S2 ⊂ · · · ⊂ Sr ⊂ H1
0 (Ω) holds. We now consider the

discrete problem
min
ur∈Cr

Jr(ur) := 1
2

∫
Ω
‖∇ur‖2 dx−

∫
Ω
fur dx

with the feasible set Cr = Ur := {u ∈ Sr |u ≥ ϕr in Ω} where ϕr ∈ Sr is the nodal interpolant of
the obstacle ϕ satisfying ϕr(x) = ϕ(x) for x ∈ Nr. Notice that in general Ur 6⊂ U . In the same
way, we can define functionals Ji : Si → R on the coarser grids.

If Ω is convex, one can show the estimate ‖u∗−u∗r‖H1(Ω) ≤ C(u∗, f, ϕ)hr for the error between the
continuous solution u∗ and the solution u∗r of the discretized problem, where hr is the maximum
diameter of the triangles in Tr (cf. [Cia78, Section 5.1]). The constant C(u∗, f, ϕ) is independent
of the mesh size.

We now construct a valid multilevel hierarchy according to Section 2.2.1. The child sets N(i),
i = 1, . . . , r, are set as in Remark 2.1. We show two different ways how to define the spaces Vi
and Wi and the transfer operators between adjacent levels:

1. Set Vr = Sr, fr(vr) := Jr(vr) and

Vi =Wi = Si, fi(xi, vi) := Ji(xi + vi) for i = 1, . . . , r − 1.

Since the spaces Vi are nested, we can use the identity idi−1 : Vi−1 → Vi as prolongation
operator P ii−1. An element ui ∈ Si can be restricted to Si−1 by means of a nodal in-
terpolation Ii−1 : H1

0 (Ω) → Si−1, i.e., ui−1 = Ii−1u is the unique element that satisfies
ui−1(xi−1) = u(xi−1) for all xi−1 ∈ Ni−1. The restriction operators are now defined by
Ri−1
i (xi, vi) := Ii−1(xi + vi).

2. Alternatively, one can use the coarser spaces Si together with the functional on level r. Set
Vr = Sr, fr(vr) := Jr(vr) and

Vi = Si, Wi = Sr, fi(xi, vi) := Jr(xi + vi) for i = 1, . . . , r − 1.

In this case, we can use the identity by means of Ri−1
i (xi, vi) := xi + vi as restriction and,

as in the first case, the identity as prolongation operator.

The second approach has the disadvantage that in general the evaluation of fi is as expensive as
of fr.

Alternatively, we can also build a hierarchy for an overlapping domain decomposition approach.
For this let the domain Ω be partitioned into r−1 polygonal subdomains Ωi such that Ω = ⋃r−1

i=1 Ωi

holds. The intersection of two neighbouring subdomains is assumed to be non-empty. We set
N(r) = {1, . . . , r− 1} and N(i) = ∅ for i = 1, . . . , r− 1. For simplicity, we assume that we have a
triangulation T of Ω that is consistent with the triangulations of the subdomains, i.e., there are
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2.2. Problem setting

subsets Ti of T such that Ωi = ⋃
t∈Ti t. The set of nodes of Ti is denoted by Ni. On each Ωi we

define a finite dimensional function space by

Si := {u ∈ C0(Ωi) |u restricted to t is affine linear for all t ∈ Ti, u = 0 on ∂Ω ∩ ∂Ωi}

for i = 1, . . . , r − 1, and by Sr ⊂ H1
0 (Ω) the linear finite element space on Ω. Furthermore, we

set Si,0 := Si ∩H1
0 (Ωi) for i = 1, . . . , r − 1. There are natural extension operators Pi : Si,0 → Sr,

which take local functions on Ωi with zero boundary conditions and extend them by zero on
Ω \ Ωi:

Pi : Si,0 → Sr, (Piui)(x) :=
{
ui(x) if x ∈ Ωi,

0 if x ∈ Ω \ Ωi.

Similarly, we define for the restriction of elements ur ∈ Sr the operators Ri : Sr → Si, Riur = ur|Ωi .
Both Pi and Ri are linear and well-defined since the triangulations are consistent. In the case of
nonmatching grids, the operators Ri and Pi can be defined by interpolation.

As in the multilevel scenario, at least two different possible constructions of hierarchies are possible:

1. Set Vr = Sr, Wi = Si and Vi = Si,0 for i = 1, . . . , r − 1. Define fi by

fi(wi, vi) := 1
2

∫
Ωi
‖∇(wi + vi)‖2 dx−

∫
Ωi
f · (wi + vi) dx,

the prolongations by P ri = Pi and the restrictions by Rir = Ri.

2. Set Vr = Sr, Wi = Sr and Vi = Si,0 for i = 1, . . . , r − 1. Define the functions fi by
fi(xi, vi) := Jr(xi + Pivi). As in the multilevel case, the identity can be used as restrictions
Rir. The prolongations are chosen as in the first setting.

Example 2.2 (Obstacle Bratu problem) We consider the nonlinear problem suggested in
[Mor90] given by

−∆u ≤ λeu in Ω, u = 0 on ∂Ω, (2.4)
u ≤ ψ and (−∆u− λeu)(u− ψ) = 0 in Ω (2.5)

where Ω = (0, 1)2 is the unit square, λ ∈ R a parameter and C0(Ω) 3 ψ ≥ 0 an obstacle function.
We introduce a regular grid with mesh width (hx, hy) on Ω and ∂Ω by

Ωh := {(x, y) ∈ Ω |x = i · hx, y = j · hy, i, j ∈ Z},
∂Ωh := {(x, y) ∈ ∂Ω |x = i · hx, y = j · hy, i, j ∈ Z}.

For simplicity, we assume that h = hx = hy and that for every (x, y) ∈ Ωh the neighbouring
points (x± hx, y ± hy) are contained in Ωh ∪ ∂Ωh. We are interested in approximate solutions
uh : Ωh ∪ ∂Ωh → R of (2.4) on the grid Ωh. We discretize the system by means of

−∆huh ≤ λeuh , in Ωh, uh = 0 on ∂Ωh,

uh ≤ ψh and (−∆huh − λeuh)(uh − ψh) = 0 in Ωh.

11
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(x− h, y)

(x+ h, y)

(x, y)(x, y − h) (x, y + h)

Figure 2.3.: Stencil notation and different grids for h3 = 1/8, h2 = 1/4 and h1 = 1/2.

ψh : Ωh → R is a grid function with ψh(x, y) = ψ(x, y) for (x, y) ∈ Ωh. For the discretization ∆h

of the Laplace operator, we use the classical five-point approximation:

−(∆huh)(x, y) = 1
h2 [4uh(x, y)− uh(x− h, y)− uh(x+ h, y)− uh(x, y − h)− uh(x, y + h)]

= 1
h2

 −1
−1 4 −1

−1


h

uh(x, y).

The formula of the last line uses the descriptive stencil notation (cf., e.g., [TOS01, Wes92]). By
ordering the values of Ωh lexicographically, there is a unique representation of a grid function
uh ∈ Ωh by a vector ũh ∈ Rn with length n = |Ωh|. Other orderings of the grid points, e.g.,
red-black ordering, are also possible. In the following, we will not distinguish between the grid
function and its vector representation and simply write uh for ũh and ψh for ψ̃h when no confusion
can arise.

The operator −∆h is linear and can be represented by a symmetric matrix h−2Ah ∈ Rn×n. Here,
the values of uh on the boundary of Ω are considered to be zero, which is compatible with the
Dirichlet boundary condition. Finally we arrive at the following nonlinear system in Rn:

h−2Ahuh ≤ λeuh , uh ≤ ψh and
(
h−2Ahuh − λeuh , uh − ψh

)
= 0. (2.6)

Here, (·, ·) denotes the standard inner product on Rn. It is well known that Ah is irreducibly
diagonal dominant and hence positive definite [Hac92, Criterion 4.3.24]. If λ ≤ 0, the nonlinear
operator

Φh(uh) := h−2Ahuh − eλuh

is monotone in the sense that

(Φh(uh)− Φh(ūh), uh − ūh) ≥ 0 ∀uh, ūh ∈ Rn.

Φh is the gradient of the function φh(uh) := 1
2h
−2 (uh, Ahuh)−λ∑n

i=1 e
uih and since Φh is monotone,

φh is a convex function.
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2.2. Problem setting

In order to show that solving the discretized problem is equivalent to an optimization problem,
we use the following well-known characterization of the solutions of bound constrained problems:

Lemma 2.1 Let B := [l, u] ⊂ Rn be a box with bounds l ∈ Rn ∪ {−∞} and u ∈ Rn ∪ {∞} 1. If
x∗ is a local solution of

min
x∈B

f(x)

and f is differentiable in x∗, then

x∗ ∈ B and ∇f(x∗)i


= 0 for li < (x∗)i < bi,

≤ 0 for ui = (x∗)i,
≥ 0 for li = (x∗)i

for i = 1, . . . , n (2.7)

is satisfied. Moreover, if l ≡ −∞ (analogously: u ≡ ∞), (2.7) can equivalently be written as

x∗ ∈ B, ∇f(x∗) ≤ 0 and (u− x∗,∇f(x∗)) = 0. (2.8)

If f is convex and (2.7) or (2.8) is satisfied for x∗ ∈ B, then x∗ is a global solution of the
minimization problem.

A proof can be found for instance in [UUH99, Thm. 4.1].

Using φh, (2.6) can be written as

∇φh(uh) ≤ 0, uh ≤ ψh and (∇φh(uh), uh − ψh) = 0.

Accordingly, Lemma 2.1 yields that solving (2.6) is equivalent to finding a solution of the problem

min
uh∈Rn

φh(uh) subject to uh ≤ ψh,

which is a bound constrained optimization problem in Rn.

Let us now assume that we have different grids Ωhi , i = 1, . . . , r, and the grid-sizes satisfy the
relation 2hi+1 = hi for i = 1, . . . , r − 1; cf. Figure 2.3 for an example. We denote the associated
coefficient spaces by Rni . A grid function uhi ∈ Ωhi can be prolongated to Ωhi+1 by standard
bilinear interpolation (Figure 2.4). In stencil notation we can write this operator as

[
P i+1
i

]
= 1

4

1 2 1
2 4 2
1 2 1


hi→hi+1

.

If we use a properly scaled inner product on Rni ,

(·, ·)hi := h2
i (·, ·) ,

the adjoint operator relative to (·, ·)hi and (·, ·)hi+1 is the full weighting operator, which in stencil
notation reads [

(P ii+1)∗
]

= 1
16

1 2 1
2 4 2
1 2 1


hi+1→hi

.

1The notation [l, u] = {x ∈ Rn | l ≤ x ≤ u} is meant componentwise.
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1 2 1
242

121

Figure 2.4.: Prolongation by bilinear interpolation

To restrict a point we can use the full weighting operator or a simple injection which is defined by

Iii+1(uhi+1)(x, y) = uhi+1(x, y) ∀ (x, y) ∈ Ωhi .

In our trust-region algorithm we compare the reduction achieved by a step on a lower grid with
the reduction of the prolongated step. This suggests that the functions of our hierarchy should be
scaled such that φhi(uhi) ≈ φhi+1(P i+1

i uhi). This is not the case for the functions φhi , which is
easy to see when setting uhi = 0 where we obtain a factor 4 for each level. This can be avoided
by multiplying φhi by h2

i , which leads to the functions

φ̂hi(uhi) := 1
2u

T
hiAhiuhi − λh

2
i

ni∑
j=1

e
uj
hi , i = 1, . . . , r.

The construction of a multilevel hierarchy is straightforward. Set N(i) as proposed in Remark 2.1,
Vi =Wi = Rni with the inner product (·, ·)hi and fi(xi, vi) := φ̂hi(xi + vi) for i = 1, . . . , r. The
restriction operators are defined by Ri−1

i (xi, vi) := Ii−1
i (xi + vi).

2.3. A trust-region algorithm

The algorithm we present in this chapter uses a trust-region framework to ensure global convergence
to first-order stationary points. A comprehensive presentation of trust-region algorithms can be
found in the monograph [CGT00].

In each iteration, a trust-region method minimizes a simple local model of the objective func-
tion around the current iterate. Since the model is assumed to be a good approximation
only in a neighborhood of the current iterate, we seek for trial steps that lie inside a trust
region. The size of this trust region is adaptively controlled by the quality of the model’s
predictions.

Applied to problem (2.2), in each iteration k on level r a trial step sr,k is calculated which is an
approximate solution of the trust-region subproblem:

min
sr,k∈Vr

mr,k(sr,k) subject to ‖sr,k‖r ≤ ∆r,k, vr,k + sr,k ∈ Cr, (2.9)
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2.3. A trust-region algorithm

where mr,k is a model of the objective function fr at the current iterate vr,k ∈ Cr, ‖·‖r is a suitable
trust-region norm and ∆r,k > 0 is the trust-region radius. The trial step is required to produce a
“sufficient” decrease

predr,k = mr,k(0)−mr,k(sr,k)

of the model function, which is called predicted reduction. Whether the algorithm accepts the
step, depends on the ratio ρr,k between the actual reduction

aredr,k = fr(vr,k)− fr(vr,k + sr,k)

and its prediction predr,k. If the actual reduction is a sufficiently large fraction of the predicted
reduction, i.e., ρr,k ≥ η1 > 0, the step is accepted. Otherwise, the size of the trust region was too
optimistic and the trust-region radius for the next iteration is decreased by a factor γ2 < 1 and
the step is rejected. If ρr,k is close to one, i.e., it satisfies ρr,k ≥ η2 > η1, the trust-region radius
for the next iteration is increased by a factor γ1 > 1.

A common choice for the model function mr,k is the quadratic Taylor approximation of fr at vr,k.
This leads to the quadratic trust-region subproblem

min
sr,k∈Vr

qr,k(sr,k) := 〈gr,k, sr,k〉 + 1
2〈Hr,ksr,k, sr,k〉

subject to ‖sr,k‖r ≤ ∆r,k, vr,k + sr,k ∈ Cr,
(2.10)

where gr,k := f ′r(vr,k) is the first Frï¿½chet derivative of fr at vr,k and Hr,k ∈ L(Vr,V∗r ) the second-
order Gateï¿½ux derivative, or a suitable symmetric approximation of it.

Depending on the structure of the feasible set Cr, there are many well-known algorithms to
find good approximate minimizers of the subproblem (2.10), e.g., for problems with simple
bounds [CL96, Ulb01]. If, however, the number of unknowns is large, these algorithms become
expensive. In the multilevel trust-region algorithm one would like to use the coarser spaces
Vi, i ∈ N(r), and the auxiliary functions fi by defining a lower-level trust-region subprob-
lem

min
si∈Vi

hi(si) subject to ‖P ri si‖r ≤ C∆r,k, vr,k + P ri si ∈ Cr, (2.11)

where hi is a model of fr on the space Vi near the current iterate vr,k and C > 0 a constant. Besides
the quadratic subproblem, (2.11) can also be used to calculate trial steps if it “is appropriate”2. A
step si,∗ that approximately solves this problem is then prolongated to level r. As in the standard
case, the size of the ratio between the reductions of hi and fr decides whether the step is accepted
and how to change the trust-region radius.

An obvious drawback of (2.11) is the fact that the evaluations of the constraints are made on
the finer level, which generally is too expensive. Therefore, we do not use this problem directly.
Instead, we relax the constraints such that its evaluation can be solely done on the lower level
and the new feasible set is a subset of the feasible set of problem (2.11). This will be discussed in
the next sections. Before that we render more precisely what properties the lower-level models hi
must satisfy.

2We will discuss a sufficient condition when to use such models in Section 2.3.5
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2.3.1. The lower-level model

Contrary to the first conjecture, the function fi itself in general is not appropriate as model
function hi on the subspace Vi. Without being as general as possible, we will now motivate a
condition that must be satisfied by the lower-level models. The idea of trust-region methods is
that the agreement between the model and the function increases as the trust-region radius tends
to zero. At least, we would expect that in descent directions si of the model the fraction ρr,k
of the actual and the predicted reduction tends to one if the length of the step tends to zero,
i.e.,

lim
‖si‖→0

〈h′i(0), si〉<0

fr(vr,k + P ri si)− fr(vr,k)
hi(si)− hi(0) = 1. (2.12)

From the assumptions that fr and hi are Frï¿½chet differentiable and the prolongation P ri is
linear and continuous, we obtain

lim
‖si‖→0

〈h′i(0), si〉<0

fr(vr,k + P ri si)− fr(vr,k)
hi(si)− hi(0) = lim

‖si‖→0
〈h′i(0), si〉<0

〈f ′r(vr,k), P ri si〉 + o(‖P ri si‖)
〈h′i(0), si〉 + o(‖si‖)

= 〈f
′
r(vr,k), P ri si〉
〈h′i(0), si〉

.

Hence, a necessary and sufficient condition for (2.12) to hold is 〈f ′r(vr,k), P ri si〉 = 〈h′i(0), si〉 for all
si ∈ Vi with 〈h′i(0), si〉 6= 0. This leads to the following definition:

Definition 2.1 A continuously differentiable function hj : Vj → R is a lower-level model of
hi : Vi → R at vi,k if j ∈ N(i) and

〈h′j(0), sj〉 = 〈h′i(vi,k), P ijsj〉 ∀ sj ∈ Vj . (2.13)

Remark 2.2 This condition is slightly stronger than it is necessary to prove global convergence.
It would be enough to demand that the error

〈h′j(0)− (P ij )∗h′i(vi,k), sj〉

is small in a certain sense, see, e.g., [CGT00, Section 8.4] for conditions in the standard case. In
practice it is no strong restriction to assume (2.13) instead.

A trivial example for a lower-level model of fr at an iterate vr,k is given by the function
hi(si) := fr(vr,k + P ri si), which has the obvious disadvantage that its evaluation is in general as
expensive as evaluating the original function.

A more reasonable lower-level model of fr consists of the function fi and an additional first-order
correction term:

hi(si) := fi(xi, si) +
〈
(P ri )∗f ′r(vr,k)− f ′i(xi, 0), si

〉
, (2.14)

where xi := Rir(0, vr,k) is the development point. Besides models of fr, we also (recursively)
need models of models. Assume that hi is a model on level i and xi ∈ Wi its development
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point. Then the first-order corrected model on level j ∈ N(i) at the point vi,k is given
by

hj(sj) := fj(xj , sj) +
〈
(P ij )∗h′i(vi,k)− f ′j(xj , 0), sj

〉
, xj = Rji (xi, vi,k). (2.15)

These models are widely used in multilevel optimization methods, for example in [Nas00, GST08,
WG09].

Remark 2.3 First-order consistent models are also commonly used in approximation/model
management optimization (AMMO) [AL01]. Here, low-fidelity models flo are used to calculate
steps for a high-fidelity model fhi inside an optimization algorithm. To ensure first-order consis-
tency, a modification of flo similar to (2.15) is often used, the β-correlation approach [CHGK93].
For this, one defines the scaling factor β(si) := fr(vr,k +P ri si)/fi(Rir(0, vr,k), si) and builds a local
model βc of β at si = 0:

βc(si) = β(0) + 〈∇β(0), si〉.

A straightforward calculation shows that hβi (si) := βc(si)fi(Rir(0, vr,k), si) is a lower-level model
of fr at vi,k which satisfies (2.13). In comparison to (2.15), these models can only be used when
fi(Rir(0, vr,k), si) 6= 0 holds.

In [GMS+10], lower-level models that are second-order correct were introduced. Besides (2.13),
these models also satisfy

〈h′′j (0)sj , sj〉 = 〈h′′i (vi,k)P ijsj , P ijsj〉 ∀ sj ∈ Vj . (2.16)

By appending an additional second-order correction term to (2.15), we obtain a second-order
corrected model of hi at vi,k:

h̄j(sj) := fj(xj , sj) +
〈
(P ij )∗h′i(vi,k)− f ′j(xj , 0), sj

〉
+ 1

2
〈(

(P ij )∗h′′i (vi,k)P ij − f ′′j (xj , 0)
)
sj , sj

〉
, xj = Rji (xi, vi,k).

(2.17)

Remark 2.4 The models (2.15) are also implicitly used in standard nonlinear multigrid methods,
e.g., the Full Approximation Scheme (FAS) (cf. [Bra77]) or the Nonlinear Multi-Grid Method
(NMGM) described by Hackbusch in [Hac85, Ch. 9]. For simplicity, we will illustrate the connection
only on the basis of a two-grid FAS method, the transfer to more levels is straightforward.

FAS is a method to solve nonlinear systems of the form L2(v∗2) = 0, where L2 : Rn2 → Rn2 is
the discretization of a nonlinear differential operator. A typical example is the mildly nonlinear
operator Φh2 introduced in Example 2.2. It assumes that a coarser discretization L1 : Rn1 → Rn1 ,
n1 < n2, of L2 and proper prolongation and restriction operators exist. Starting from an iterate
v2,0 the two-grid iteration consists of two steps:

1. Smoothing: v2,1 = S2(v2,0), where S2 is a smoothing operator, e.g., a nonlinear version of
the Gauï¿½-Seidel iteration.

2. Coarse-grid correction: The current iterate is restricted to the coarser grid, x1 = R1
2v2,1,

and a step v∗1 that (approximately) solves the system

L1(x1 + v1) = L1(x1)− (P 2
1 )∗L2(v2,1) (2.18)

is calculated. Set v2,2 = v2,1 + P 2
1 v
∗
1.
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2. A multilevel trust-region algorithm

As we have done it here, it is possible to choose different restrictions for the residual L2(v2,·)
and the point v2,·. Typically, the adjoint of the prolongation operator with respect to a properly
scaled Euclidean inner products is used to restrict the residual (cf. Example 2.2).

We will now formulate the FAS method in our (unconstrained) optimization context. For this
purpose, we assume that the equations Li(v∗i ) = 0, i = 1, 2, can be written as f ′i(v∗i ) = 0 where f ′i
is the derivative of a function fi (cf. Example 2.2). The nonlinear Gauï¿½-Seidel step can be
formulated as cyclic coordinate search: Starting with i = 1 and v2,0,0 = v2,0 we successively seek
for all i = 1, . . . , n2 a minimizer t∗i of the function φi(t) := f2(v2,0,i−1 + tei), where ei is the i-th
coordinate direction, and set v2,0,i = v2,0,i−1 + t∗i ei. The iterate v2,1 is then set to the resulting
vector v2,0,n2 . For the coarse-grid correction, we define a lower-level model of the type (2.15)
by h1(v1) := f1(x1 + v1) + (v1, (P 2

1 )∗f ′2(v2,1)− f ′1(x1)), where x1 = R1
2v2,1. A solution v∗1 of the

problem
min
v1∈Rn1

h1(v1)

satisfies h′1(v∗1) = 0 and hence

f ′1(x1 + v1) = f ′1(x1)− P ∗2 f ′2(v2,1), (2.19)

which is equivalent to (2.18).

Remark 2.5 If we use the second-order corrected models (2.17) instead of (2.15) in the previous
remark, we obtain a different nonlinear multigrid method. A straightforward calculation shows
that the resulting algorithm is just the method MNM (Multilevel Nonlinear Method) proposed in
[YD06].

2.3.2. The lower-level trust-region subproblem

The lower-level trust-region subproblem (2.11) has some disadvantages that make it hard to solve:
On the one hand, both the trust-region and the feasibility condition are evaluated on the space
Vr, which is contrary to the effort of using a space with lower dimension for the subproblem. On
the other hand, the trust-region condition is not in standard form, which could make it hard to
handle.

Therefore, we simplify the subproblem in the following way: First, we introduce level dependent
norms ‖·‖i that are compatible with the prolongation operators in the sense that

‖P ijsj‖i ≤ CP‖sj‖j for all sj ∈ Cj and j ≺ i (2.20)

with a level-independent constant CP ≥ 1. We call a constant level-independent if it does not
depend on the level and does not deteriorate if the number of levels goes to infinity. We replace
the first constraint of (2.11) by

‖si‖i ≤ ∆r,k.

All iterates that satisfy these conditions also satisfy the original trust-region constraint with the
constant C = CP .

Second, the constraint
vr,k + P ri si ∈ Cr
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2.3. A trust-region algorithm

of problem (2.11) is replaced by the requirement si ∈ Ci, where Ci ⊂ Vi is a closed and convex
set that satisfies

0 ∈ Ci and vr,k + P ri si ∈ Cr for all si ∈ Ci. (2.21)

An obvious choice for Ci is the convex set Cmax
i (vr,k) := {si ∈ Vi | vr,k + P ri si ∈ Cr}, which is

just the set used in (2.11). This choice has in general some computational disadvantages: To
check whether an element of Vi is also an element of Cmax

i , we must prolongate the element
and make an evaluation on the fine level, which is expensive. Furthermore, if the set Cr has
a special structure, for instance is given by pointwise bounds on the variables, the set Cmax

i

will in general lose this structure. This is in most cases not desired, because then we have to
use a different class of algorithms to solve the trust-region subproblems. We will discuss in
Section 4.3 how to construct suitable lower-level sets for the typical case that Cr is given by
pointwise bounds.

Summarizing the above, we obtain a simplified lower-level trust-region subproblem

min
si∈Vi

hi(si)

s.t. ‖si‖i ≤ ∆r,k, si ∈ Ci,
(2.22)

where all evaluations are made on the space Vi. In the following, if we use these subproblems,
we call the resulting step a multilevel step. Otherwise, if (2.10) was used, we call it a Taylor or
smoothing step.

In general, hi is a non-quadratic function so that we cannot use standard trust-region subproblem
techniques to compute a step for (2.22). However, the problem is similar to (2.2), except for
the additional trust-region constraint. Therefore, we calculate steps for (2.22) using the same
trust-region method, where we use either a quadratic model of hi or again recursively a lower-level
model of hi on a level j ∈ N(i). This is achieved by calling the algorithm on level i with the
function hi, the convex set Ci and by setting the initial trust-region radius ∆i,0 to ∆r,k. In order
to ensure the trust-region constraint in (2.22) for the final step, we demand that every successive
radius ∆i,k′ satisfies ∆i,k′ ≤ ∆i,0 − ‖vi,k′ − vi,0‖i.

Remark 2.6 Another way of dealing with the additional trust-region constraint is to merge it
into Ci by defining the new feasible and convex set C̃i = Ci ∩ {si | ‖si‖i ≤ ∆i,0}. This was done in
[GMTWM08] where problems in Rn with pointwise bounds were considered and the trust-region
norm on every level was given by the maximum norm ‖·‖∞. In this case, the resulting set C̃i
can also easily be described by pointwise bounds. In general however, the disadvantage of this
approach is that if Ci has a special structure, the set C̃i will lose it. As an example, consider
the case in Rn of an Euclidean trust-region norm and a box Ci. In particular, this could lead to
problems when constructing a new lower-level set Cj , j ∈ N(i).

Level dependent norms

As outlined in the last section, the simplified lower-level problems use level dependent norms.
Because of condition (2.20), they depend on the norm on level r.
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2. A multilevel trust-region algorithm

If Vi, i = 1, . . . , r, are Hilbert spaces with inner product (·, ·)i, we can identify the dual space
V∗i with Vi, which follows from the Riesz representation theorem. In this case we assume
that the prolongation operators P ij maps from Vj to Vi ∼= V∗i and the adjoint (P ij )∗ satisfies
(gi, P ijsj)i = ((P ij )∗gi, sj)j . In this setting, one can use the norms defined by ‖si‖i :=

√
(M r

i si, si)i
with the self-adjoint operator M r

i := (Pri )∗Pri . The norm is well defined if Pri is injective
and it is easy to see that (2.20) with CP = 1 holds. This type of level dependent norms was
first introduced in [GST08] for the special case of the Euclidean norm in Rn. As we will later
see in the case of bound constrained programs, our prolongation operator can change in each
iteration. This leads to higher computational costs because the operatorM r

i has to be recalculated
every time a coarser grid is entered. Even worse, it can happen that the prolongation is not
injective and thus the norm is not well defined anymore. In these cases other norms are more
suitable.

In a typical multilevel scenario, the spaces Vi form a nested sequence as for instance in Example 2.1.
In this case, the natural prolongation operator is the identity. Hence, every norm on the finest
space Vr could be used as level-dependent trust-region norm. Obviously, (2.20) is satisfied in this
case. In Example 2.1 the H1(Ω)-norm would be a feasible choice.

Let A ∈ Rn×m be a matrix. The operator norm ‖A‖z, z ∈ {1, 2,∞}, that is induced by the
corresponding vector norm ‖·‖z is given by

‖A‖z := sup
x∈Rm

‖Ax‖z
‖x‖z

.

In the setting of Example 2.2, it is easy to see that the operator norm of the prolongation operators
satisfies ‖P i+1

i ‖∞ = 1. Hence, if the maximum-norm is chosen as trust-region norm on each level,
(2.20) is valid with CP = 1 because

‖Pki si‖k = ‖Pki si‖∞ = ‖P klm · · ·P
l2
ll1
P l1i si‖∞ ≤ ‖P

k
lm‖∞ · · · ‖P

l1
i ‖∞‖si‖∞ = ‖si‖i.

The well known inequality ‖A‖22 ≤ ‖A‖∞‖A‖1 (see for instance [GVL96, Corollary 2.3.2]) allows us
to estimate the Euclidean norm of the prolongation operators by ‖P i+1

i ‖22 ≤ ‖P i+1
i ‖∞‖P i+1

i ‖1 ≤ 4.
This is what we expect considering that ni+1 ≈ 4ni. If we choose ‖·‖i = ‖·‖2 for i = 1, . . . , r,
assumption (2.20) is satisfied but only with the level dependent constant CP = 2]r. A better choice
are the norms induced by the level dependent inner products (·, ·)hi , i.e., ‖·‖i :=

√
(·, ·)hi = hi‖·‖2.

They satisfy

‖P i+1
i si‖i+1 ≤ hi+1‖P i+1

i ‖2‖si‖2 ≤ hi‖si‖2 = ‖si‖i, i = 1, . . . , r − 1,

and thus (2.20) with CP = 1.

2.3.3. Stationarity measures

Before we introduce stationarity measures, we recapitulate the first-order necessary optimality
condition for the problem

min
si∈Ci

hi(si), (2.23)

where Ci is a closed and convex set.
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2.3. A trust-region algorithm

Lemma 2.2 Assume hi : Ci → R, Ci 6= ∅ convex, is a Gï¿½teaux differentiable function and let
s∗i be a local solution of (2.23), then

s∗i ∈ Ci and 〈h′i(s∗i ), si − s∗i 〉 ≥ 0 for all si ∈ Ci. (2.24)

Proof See, for instance [HPUU09, Theorem 1.46].

We call a point s∗i that satisfies (2.24) a stationary orKKT point of (2.23).

In this thesis, we use the concept of stationarity measures to check for first-order convergence:

Definition 2.2 A continuous function χi : Ci → R+, Ci convex, is called a stationarity measure
for problem (2.23) if it satisfies

χi(si) = 0 if and only if si is a KKT-Point of (2.23). (2.25)

In the unconstrained case, i.e., if Ci = Vi, the norm of the derivative is the most commonly used
stationarity measure:

χi(si) = ‖h′i(si)‖V∗i .

Depending on the concrete setting, other choices for the norm are possible.

If Vi is a Hilbert space, an example of a stationarity measure in the constrained case is the norm
of the projected gradient:

χi(si) := ‖si − ProjCi(si −∇Vihi(si))‖Vi . (2.26)

Here, ∇Vihi(si) is the representation of h′i(si) with respect to the inner product on Vi, i.e., we
have the identity

〈h′i(si), vi〉 = (∇Vihi(si), vi)Vi for all vi ∈ Vi.

The existence of such an element is just the assertion of the Riesz representation theorem.
By

ProjCi(di) = arg min
ui∈Ci

‖ui − di‖Vi

we denote here the Vi-orthogonal projection of di onto Ci.

Another measure mentioned in [CGT00] in the case of Rn, which was also used in conjunction
with multgrid optimization in [GMTWM08], is defined by

χθi (si) :=

∣∣∣∣∣∣∣ inf
si+di∈Ci
‖di‖Vi≤θ

〈h′i(si), di〉

∣∣∣∣∣∣∣ , (2.27)

where θ > 0 is a fixed constant.

Lemma 2.3 Let Ci ⊂ Vi be a nonempty, closed and convex set and hi : Ci → R a continuously
differentiable function.
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2. A multilevel trust-region algorithm

1. Let Vi be a Banach space. The function χθi defined by (2.27) is a stationarity measure.

2. Let Vi be a Hilbert space. Furthermore, let ∇Vihi(v) be the representation of h′i(v) ∈ V∗i
with respect to the inner product on Vi. The function χi defined by (2.26) is a stationarity
measure.

Proof 1. We first show that χθi is well-defined. We set

F θi (si) := inf
si+di∈Ci
‖di‖Vi≤θ

〈h′i(si), di〉.

For a fixed si ∈ Ci, F θi (si) is bounded below by −θ‖h′i(si)‖V∗i because

|〈h′i(si), di〉| ≤ ‖di‖Vi‖h′i(si)‖V∗i ≤ θ‖h
′
i(si)‖V∗i .

Hence, χθi <∞ is satisfied.

Inserting di = 0 in the definition of Fi shows that F θi (si) ≤ 0 for all si ∈ Ci. This gives
χθi (s∗i ) = 0 ⇔ 〈h′i(s∗i ), di〉 ≥ 0 for all di with s∗i + di ∈ Ci and ‖di‖Vi ≤ θ. Because Ci is
convex, this is equivalent to (2.24).

It remains to prove that χθi is continuous, which is equivalent to the continuity of F θi . Let
si ∈ Ci and ε > 0 arbitrary. Since h′i is continuous we get for ε̂ = ε/(2θ), a δ̂ > 0 such that
‖h′i(si)− h′i(s̄i)‖V∗i ≤ ε̂ and M ≥ 0 with ‖h′i(s̄i)‖V∗i ≤M for all

s̄i ∈ Bδ̂(si) := {s ∈ Vi | ‖s− si‖Vi ≤ δ̂}.

Set δ = min{δ̂, ε/(4M)}. Let s̄i ∈ Bδ(si) ∩ Ci and (dki )k∈N ⊂ D(si) := {di ∈ Vi | si + di ∈
Ci, ‖di‖Vi ≤ θ} be a sequence such that 〈h′i(si), dki 〉 → F θi (si) for k →∞. For each dki we set
d̄ki := θ/(δ + θ)(dki + si − s̄i). Note that d̄ki ∈ D(s̄i) because Ci is convex and θ/(δ + θ) ≤ 1.
We estimate

|〈h′i(si), dki 〉 − 〈h′i(s̄i), d̄ki 〉| =
∣∣∣〈h′i(si)− h′i(s̄i), dki 〉
+ (δ + θ)−1

[
δ〈h′i(s̄i), dki 〉 − θ〈h′i(s̄i), si − s̄i〉

] ∣∣∣
≤ ε̂θ +M(δ + θ)−12δθ ≤ ε/2 + 2Mδ ≤ ε.

Since (dki ) is a minimizing sequence and F θi (s̄i) ≤ 〈h′i(s̄i), dki 〉 for all k, it follows that
F θi (s̄i) ≤ F θi (si) + ε. Similar by considering a minimizing sequence (d̄ki )k∈N for 〈h′i(s̄i), ·〉
and choosing suitable dki , we obtain F θi (si) ≤ F θi (s̄i) + ε with the same ε. This shows
|F θi (si)− F θi (s̄i)| ≤ ε for all s̄i ∈ Bδ(si) ∩ Ci and thus the continuity of χθi .

2. Let s∗i ∈ Vi with χi(s∗i ) = 0. From the definition of χi follows

χi(s∗i ) = 0⇔ ‖s∗i − ProjCi(s
∗
i −∇Vihi(s∗i ))‖Vi = 0⇔ ProjCi(s

∗
i −∇Vihi(s∗i )) = s∗i .

Now let si ∈ Ci, then with the Projection Theorem A.2 we obtain

〈h′i(s∗i ), si − s∗i 〉 = (∇Vihi(s∗i ), si − s∗i )Vi = ((s∗i −∇Vihi(s∗i ))− s∗i , s∗i − si)Vi ≥ 0.

22



2.3. A trust-region algorithm

Hence, s∗i is a KKT-Point. On the other hand if (s∗i − ∇hi(s∗i ) − s∗i , s∗i − si)Vi ≥ 0 for
all si ∈ Ci, from the alternative definition in the Projection Theorem it follows that
s∗i = ProjCi(s

∗
i −∇Vihi(s∗i )). Hence, χi(s∗i ) = 0 if s∗i is a KKT-Point.

The projection in a Hilbert space on a closed and convex set is continuous (cf. Lemma A.1)
and since hi is continuously differentiable, the continuity of χi follows. �

Remark 2.7 If Vi is a reflexive Banach space, then for every si ∈ Vi exists d∗i ∈ Ci with
‖d∗i ‖Vi ≤ θ that realizes the minimum of (2.27), i.e.,

〈h′i(si), d∗i 〉 = min
si+di∈Ci
‖di‖Vi≤θ

〈h′i(si), di〉.

This result is a straightforward conclusion of Theorem A.3 and Lemma A.2.

The next lemma shows that if the projected gradient is well defined, there is a correlation between
both stationary measures.
Lemma 2.4 Let Vi be a Hilbert space. Under the assumptions of Lemma 2.3 2., the projected
gradient p(si) := ProjCi(si −∇Vihi(si))− si is a solution of

min
si+di∈Ci
‖di‖Vi≤θ

〈h′i(si), di〉 = min
si+di∈Ci
‖di‖Vi≤θ

(∇Vihi(si), di)Vi (2.28)

with θ = ‖p(si)‖Vi.
Proof In the following we use the set Di := {di ∈ Vi | si + di ∈ Ci, ‖di‖Vi ≤ θ}. If d∗i ∈ Di is a
solution of (2.28), then

(∇Vihi(si), d∗i )Vi ≤ (∇Vihi(si), di)Vi ⇔ (−∇Vihi(si), d∗i − di)Vi ≥ 0 for all di ∈ Di.

Let d̄i ∈ Di be an element with ‖d̄i‖Vi = θ. For every di ∈ Di,

(−∇Vihi(si), d̄i − di)Vi = (−∇Vihi(si)− d̄i, d̄i − di)Vi + (d̄i, d̄i − di)Vi
holds. Since

0 ≤ ‖d̄i − di‖2Vi = ‖d̄i‖2Vi + ‖di‖2Vi − 2(d̄i, di)Vi ⇒ (d̄i, di)Vi ≤ θ2,

it follows that (−∇Vihi(si), d̄i− di)Vi ≥ (−∇Vihi(si)− d̄i, d̄i− di)Vi . Setting d̄i = p(si) and using
the Projection Theorem (A.2) yields

(si−∇Vihi(si)−ProjCi(si−∇Vihi(si)),ProjCi(si−∇Vihi(si))−(si+di))Vi ≥ 0 for all si+di ∈ Ci.

Hence, we get (−∇Vihi(si), p(si)− di)Vi ≥ 0 for all di ∈ Di, which shows that p(si) is a solution
of (2.28). �

Both stationarity measure can be quite expensive to evaluate depending on the space Vi. In our
typical setting, where Vi is a finite dimensional subset of H1(Ω), the computation of the projected
gradient involves the calculation of a representation and the projection with respect to the inner
product on H1(Ω), which is very expensive. In Chapter 4, we will therefore consider a typical
multilevel setting and introduce a multilevel stationarity measure which is well suited and could
be evaluated relatively cheap in a concrete implementation.
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2.3.4. Cauchy decrease condition

A trust-region algorithm is expected to converge to a local solution only if the trial steps produce
a sufficiently large decrease of the model function. A well-establish way to impose such a
condition is the requirement that the decrease provided by the trial step should be at least a
fraction of the Cauchy decrease. In the unconstrained case, the Cauchy decrease denotes the
maximum model reduction along the steepest descent direction of the trust-region subproblem.
We impose the following fraction of Cauchy decrease condition for every Taylor step si,k in our
algorithm:

predi,k = −qi,k(si,k) ≥ κmdc χi(vi,k) min
[
1, χi(vi,k)

βC
,∆i,k

]
. (2.29)

with constants κmdc > 0 and βC ≥ 1. One of our goals in the construction of the algorithm is
the level-independence in examples like Example 2.1 or 2.2. For this it is necessary that the
constants which appear in the condition must not depend on the level and the mesh-size of the
discretization. In Chapters 3 and 4 we will analyse various algorithms that approximately solve
the trust-region subproblems, which satisfy (2.29).

We will see in the convergence proof of the trust-region method that a condition similar to
(2.29) with different constants also automatically holds for the multilevel steps in our algo-
rithm.

2.3.5. Smoothness property

In classical multigrid theory, the usage of coarser grids is only reasonable if the error is smooth
enough. A similar problem occurs for the multilevel step. From the definition of the lower-level
models follows for the derivative at the origin of a model hj

h′j(0) = (P ij )∗h′i(vi,k).

In most applications, the kernel of (P ij )∗ is much larger than its range. In Example 2.4 the
prolongation operators P i+1

i map from Rni → Rni+1 where 4ni ≈ ni+1. The prolongation is
injective and hence from ker((P i+1

i )∗) = image(P i+1
i )⊥ follows dim(ker((P i+1

i )∗)) ≈ 3ni. So it is
possible that the origin is already a (nearly) stationary point of the lower-level model hj . In this
case, we cannot expect a good step that produces a reasonable descent of the lower-level model.

A similar problem can occur if the feasible set Cj of the simplified lower level problem (2.22)
is too small compared to Ci. This depends of course on the construction of the lower-level set,
but even in the case Cj = Cmax

j the set could be equal to {0}. Consider as an example for this
Figure 2.5, where on level 2 the set C2 = [l2, u2], the shaded area, consists of pointwise bounds
on the steps. As prolongation we use standard linear interpolation. There are non-zero steps in
this set, e.g., the step s2 as shown in the figure. But on the lower level, every step in Cmax

1 must
be equal to zero, because otherwise it would violate either the lower or the upper bound at the
nodes that are also on the coarse grid.
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Level 2

u2
s2

l2

Level 1
l1 = u1

11
2

1
2

Figure 2.5.: Example of a zero set Cmax
1 on level 1

These considerations motivates that we only should use the lower-level models on level j ∈ N(i)
when its origin is not “too stationary” in comparison to the current iterate. Indeed, it turns out
that a sufficient condition, which guarantees an adequate descent of the multilevel step, is the
following smoothness property:

χj(0) ≥ κχχi(vi,k), 0 < κχ ≤ 1. (2.30)

When this condition is not satisfied, we make a Taylor iteration. In comparison to usual trust-
region methods we will not try to solve the trust-region subproblem as good as possible. Instead,
we use a cheaper algorithm that has a smoothing effect such that (2.30) is more likely to be fulfilled
in the next iteration. Of course these steps must satisfies the Cauchy decrease condition. We will
see in Chapter 3 and Chapter 4 that the violation of the smoothness property is important to show
(2.29) for the smoothing steps. The situation is different for Taylor steps on the coarsest levels
where N(i) = ∅. In this case we use a standard algorithm to obtain a step which approximately
solves the trust-region subproblem.

2.3.6. The algorithm TRMLConv

After these preliminaries, we formulate the complete algorithm:

Algorithm 2.1 (TRMLConv(i, hi, ∆i,0, x̂i, Ci))
Choose 0 < η1 < η2 ≤ 1, γ1 > 1, γ2 < 1, κχ ∈ (0, 1] and

εχi > 0, 0 < ε∆
i < 1 for i = 1, . . . , r.

Step 0: Initialization
Set k = 0. If i = r, set vr,0 = x̂r and xr = 0, otherwise set vi,0 = 0 and xi = x̂i.
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2. A multilevel trust-region algorithm

Step 1: Model choice
If N(i) = ∅ (coarsest level), go to Step 3 (Taylor step). If (2.30) and

χj(0) ≥ εχj (2.31)

are satisfied for at least one j ∈ N(i), go to Step 2 (Multilevel step) or Step 3. Otherwise,
go to Step 3.

Step 2: Multilevel step computation
Choose j ∈ N(i) and define a lower-level model hj of hi at vi,k, such that (2.30) and
(2.31) are satisfied. Furthermore, determine a transfer operator P ij : Vj → Vi and a
convex set Cj such that conditions (2.21) are satisfied. Call

TRMLConv(j, hj ,∆i,k, R
j
i (xi, vi,k), Cj)

which returns with a step vj,∗.
Set si,k = P ijvj,∗ and predi,k = hj(0)− hj(vj,∗). Go to Step 4.

Step 3: Taylor step computation
Choose an approximation Hi,k ∈ L(Vi, V∗i ) of h′′i (vi,k). Compute an approximate
solution si,k of the trust-region subproblem

min
si,k∈Vi

qi,k(si,k) := 〈h′i(vi,k), si,k〉 + 1
2〈Hi,ksi,k, si,k〉

subject to ‖si,k‖i ≤ ∆i,k, vi,k + si,k ∈ Ci,
(2.32)

that satisfies the fraction of Cauchy decrease condition (2.29). Set predi,k = −qi,k(si,k).

Step 4: Acceptance of the trial point
Set aredi,k = hi(vi,k)− hi(vi,k + si,k) and ρi,k = aredi,k/predi,k.
If ρi,k ≥ η1, set vi,k+1 = vi,k + si,k, otherwise set vi,k+1 = vi,k. Define

∆+
i,k :=


γ1∆i,k if ρi,k ≥ η2,
∆i,k if η1 ≤ ρi,k < η2,
γ2∆i,k if ρi,k < η1,

(2.33)

and set

∆i,k+1 =
{

min
{
∆+
i,k,∆i,0 − ‖vi,k+1‖i

}
if i < r,

∆+
i,k if i = r.

(2.34)

Step 5: Termination
If χi(vi,k+1) ≤ εχi or if i < r and

‖vi,k+1‖i > (1− ε∆
i )∆i,0, (2.35)

return with vi,k+1. Otherwise, set k ← k + 1 and go to Step 1.
One is also free to terminate if i < r and at least one successful step was already made.
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2.4. Global convergence

The algorithm on level r is started by calling TRMLConv(r, fr, ∆r,0, x̂r, Cr), where ∆r,0 is the ini-
tial trust-region radius and x̂r the initial point of the algorithm.

Remark 2.8 For the evaluation of (2.30) in Step 1 we actually have to construct the lower-level
model hj and the convex set Cj , which must be the same as in Step 2 of the algorithm.

Remark 2.9 If we make a multilevel step at level i in iteration k and enter level j ∈ N(i), the
initial trust-region radius ∆j,0 satisfies ∆j,0 = ∆i,k. This fact will often be used in the following.

Remark 2.10 The trust-region update rule (2.33) can be altered in various ways without changing
the global convergence properties of the algorithm. For instance we could allow the following,
more general update rule:

Choose ∆+
i,k ∈


(∆i,k, γ1∆i,k] if ρi,k ≥ η2,

[γ2∆i,k,∆i,k] if η1 ≤ ρi,k < η2,

(γ3∆i,k, γ2∆i,k] if ρi,k < η1,

with an additional constant γ3 < γ2.

Remark 2.11 Condition (2.31) ensures that we have to make at least one successful step on the
coarser level before the algorithm terminates.

In the following, we call an iteration (i, k) successful (very successful) if ρi,k ≥ η1 (ρi,k ≥ η2) in
Step 4 of the algorithm, otherwise we call it unsuccessful.

2.4. Global convergence

The proof of global convergence follows the classical proofs of trust-region methods, but the
methods are more technical. On the one hand, this is because of the multilevel setting, on the
other hand it comes from the need to obtain estimates that are independent from constants that
become worse as the number of levels increases. One example is the norm of the Hessian matrices
of the fine level function. In the classical theory it is common to demand that these norms are
bounded by a constant that occurs in many places of the proof. For multilevel optimization
problems like Example 2.1 the discrete L2-norm of the Hessians is of size O(h−2) where h is equal
to the mesh size. As we will see later, this is also important for the choices of the stationarity
measure and the level dependent trust-region norms.

The first lemma shows that a step generated by Algorithm 2.1 violates the trust-region condition
at most by the factor CP from (2.20).

Lemma 2.5 Let the trust-region norms ‖·‖i satisfy (2.20) and let si,k be generated by Step 2 or
Step 3 of Algorithm 2.1. Then ‖si,k‖i ≤ CP∆i,k holds.

Proof If si,k is generated by Step 2 of the algorithm, the assumption follows directly from
(2.22). Hence, in the following we assume that (i, k) is a multilevel iteration on level j ∈ N(i) and
si,k = P ijvj,∗. Without loss of generality, we assume that iteration (∗ − 1) is the last successful
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2. A multilevel trust-region algorithm

iteration on each level. Therefore, si,k = P ijvj,∗ = P ij (vj,∗−1 + sj,∗−1). If sj,∗−1 is a Taylor step,
we obtain

‖si,k‖i ≤ CP‖vj,∗−1 + sj,∗−1‖j ≤ CP(‖vj,∗−1‖j + ∆j,∗−1).

From (2.34) it follows that ∆j,∗−1 ≤ ∆j,0 − ‖vj,∗−1‖j and thus ‖si,k‖i ≤ CP∆i,k.

If instead sj,∗−1 is a multilevel step, we further decompose the iteration until we reach a level lm,
lm ≺ l1 = j, where the last successful step was a Taylor step. We get

si,k = P il1
(
vl1,∗−1 + P l1l2 (vl2,∗−1 + P l2l3 (. . .+ P

lm−1
lm

(vlm,∗−1 + slm,∗−1) . . .))
)

=
m∑
k=1
P ilkvlk,∗−1 + P ilmslm,∗−1.

With (2.20) follows

‖si,k‖i ≤
m∑
k=1
‖P ilkvlk,∗−1‖i + ‖P ilmslm,∗−1‖i ≤ CP

m∑
k=1

(‖vlk,∗−1‖lk + ‖slm,∗−1‖lm)

≤ CP
m∑
k=1

(‖vlk,∗−1‖lk + ∆lm,∗−1).

Repeated application of (2.34) for the iteration ∗ − 1 on levels lm, lm−1, . . . , l1 yields

‖si,k‖i ≤ CP
m−1∑
k=1

(‖vlk,∗−1‖lk + ∆lm,0) = CP

m−1∑
k=1

(‖vlk,∗−1‖lk + ∆lm−1,∗−1)

≤ . . . = CP(‖vj,∗−1‖j + ∆j,∗−1) ≤ CP∆i,k. �

Corollary 2.1 All iterates vj,k with j < r generated by Algorithm 2.1 satisfy ‖vj,k‖j ≤ CP∆j,0.
In particular, if si,k = P ijvj,∗ is a multilevel step, ‖vj,∗‖j ≤ CP∆i,k holds.

Proof Since vj,0 = 0, the assertion is true for k = 0. Hence, we assume k > 0. Using the
previous lemma, (2.34) and CP ≥ 1 we conclude

‖vj,k‖j ≤ ‖vj,k−1‖j + ‖sj,k−1‖j ≤ ‖vj,k−1‖j + CP∆j,k−1

≤ (1− CP)‖vj,k−1‖j + CP∆j,0 ≤ CP∆j,0.

The second statement now follows directly from Remark 2.9. �

For the global convergence theory we need further assumptions on the lower-level model functions
hi. First of all, we assume that hi possesses the same differentiability properties as the functions
vi 7→ fi(xi, vi). This means that all models hi are continuously differentiable and that the
second-order Gateï¿½ux derivatives exist and the mappings vi 7→ h′′i (vi)[s, s] are continuous for
all directions s ∈ Vi. This is obviously satisfied for the first- and second-order corrected models
(2.15) and (2.17).
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2.4. Global convergence

The other assumptions concern the approximation of the Hessian used in the quadratic model.
We assume that there exists a constant β1 ≥ 0 such that for all i ∈ {1, . . . , r}, iterates vi,k ∈ Ci,
feasible steps si,k and t ∈ [0, 1]∣∣〈(Hi,k − h′′i (vi,k + tsi,k))si,k, si,k

〉∣∣ ≤ 2β1‖si,k‖2i (2.36a)

is satisfied, where Hi,k is the approximation used in the quadratic trust-region subproblem (2.32)
at the point vi,k. Note that from the definition of the algorithm hr = fr follows. The second
assumption is needed for the multilevel step and demands that for all i with N(i) 6= ∅ and all k
the Hessians of the lower-level models hj of hi at vi,k are related in the sense that for all vj ∈ Cj
and t ∈ [0, 1] ∣∣〈(h′′j (tvj)− (P ij )∗h′′i (vi,k + tP ijvj)P ij )vj , vj

〉∣∣ ≤ 2β2‖vj‖2j (2.36b)

holds.

Remark 2.12 If (2.36a) is satisfied for Hi,k = h′′i (vi,k) and∣∣〈(h′′j (0)− (P ij )∗h′′i (vi,k)P ij )vj , vj
〉∣∣ ≤ C‖vj‖2j for all vj ∈ Cj (2.37)

holds for all iterates vi,k, assumption (2.36b) is also satisfied:∣∣〈(h′′j (tvj)− (P ij )∗h′′i (vi,k + tP ijvj)P ij )vj , vj〉
∣∣

≤
∣∣〈(h′′j (tvj)− (P ij )∗h′′i (vi,k)P ij )vj , vj〉

∣∣+ ∣∣〈(P ij )∗(h′′i (vi,k)− h′′i (vi,k + tP ijvj)
)
P ijvj , vj〉

∣∣
≤
∣∣〈(h′′j (tvj)− h′′j (0))vj , vj〉

∣∣+ ∣∣〈(h′′j (0)− (P ij )∗h′′i (vi,k)P ij )vj , vj〉
∣∣+ 2β1‖P ijvj‖2i

≤ 2β1‖vj‖2j + C‖vj‖2j + 2β1C
2
P‖vj‖2j ≤ (2β1(1 + C2

P) + C)‖vj‖2j .

This shows (2.36b) with β2 = 2β1(1 +C2
P) +C. In the case of second-order corrected models, e.g.,

when using the model defined by (2.17), assumption (2.37) is satisfied with C = 0, which follows
directly from (2.16).

The last assumption on the models is only needed to ensure that the algorithm terminates after a
finite amount of time and is always satisfied if the spaces Vi are finite dimensional, which is the
typical case. The models hi must be bounded below on every ball B∆(0) := {vi ∈ Vi | ‖vi‖i ≤ ∆}
with 0 < ∆ < ∞. If Vi is infinite dimensional, this must not necessarily be true since balls
are not compact. However, even in this case the assumption can be shown for the first- and
second-order corrected models if all functions fi are bounded below and the trust-region norms
‖·‖i satisfies ‖vi‖Vi ≤ C‖vi‖i with a fixed constant C > 0. Let hj , j ∈ N(i), be a second-
order corrected model of hi at vi. Since fj and hi are twice Gï¿½teaux differentiable, we can
estimate

hj(vj) = fj(xj , vj) + 〈(P ij )∗h′i(vi)− f ′j(xj , 0), vj〉 + 1
2〈((P

i
j )∗h′′i (vi)P ij − f ′′j (xj , 0))sj , sj〉

≥ fj(xj , vj)− ‖(P ij )∗h′i(vi)− f ′j(xj , 0)‖V∗i ‖vj‖Vi − ‖(P
i
j )∗h′′i (vi)P ij − f ′′j (xj , 0)‖L(Vi,V∗i )‖vj‖2Vi

≥ fj(xj , vj)− C(vi, xj) max
{
1,∆2},

where C(vi, xj) is a constant that does not depend on vj . Since fj is bounded below, this shows
the assertion for second-order corrected models. The argumentation for the first-order corrected
models is nearly identical.
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2. A multilevel trust-region algorithm

For the upcoming results, we generally assume that all lower-level models used in Algorithm 2.1
satisfy (2.36a) and (2.36b).

Lemma 2.6 The estimate
|predi,k − aredi,k| ≤ β∆2

i,k

with β := C2
P max{1, β1, β2} holds in every iteration of Algorithm 2.1.

Proof We have to distinguish whether si,k is a multilevel or a smoothing step. Suppose si,k was
generated by Step 2. Then the predicted reduction predi,k is equal to

predi,k = −qi,k(si,k) = −〈h′i(vi,k), si,k〉 −
1
2〈Hi,ksi,k, si,k〉

= −〈h′i(vi,k), si,k〉 −
∫ 1

0
(1− t)〈Hi,ksi,k, si,k〉 dt.

By Taylor’s Theorem with integral remainder term (cf. Lemma A.3), we obtain for the actual
reduction

aredi,k = hi(vi,k)− hi(vi,k + si,k) = −〈h′i(vi,k), si,k〉 −
∫ 1

0
(1− t)〈h′′i (vi,k + tsi,k)si,k, si,k〉 dt.

With assumption (2.36a) and Lemma 2.5, the rest follows straightforward:

|predi,k − aredi,k| =
∣∣∣∣∫ 1

0
(1− t)〈(Hi,k − h′′i (vi,k + tsi,k))si,k, si,k〉 dt

∣∣∣∣
≤ 2

∫ 1

0
(1− t)β1‖si,k‖2i dt ≤ β1‖si,k‖2i

≤ β1‖si,k‖2i ≤ β1C
2
P∆2

i,k.

Let us now consider the case where si,k = P ijvj,∗ is a multilevel step. We use Taylor’s Theorem
for both the actual and the predicted reduction:

aredi,k = hi(vi,k)− hi(vi,k + P ijvj,∗)

= −〈h′i(vi,k), P ijvj,∗〉 −
∫ 1

0
(1− t)〈h′′i (vi,k + tP ijvj,∗)P ijvj,∗, P ijvj,∗〉 dt,

predi,k = hj(0)− hj(vj,∗)

= −〈h′j(0), vj,∗〉 −
∫ 1

0
(1− t)〈h′′j (tvj,∗)vj,∗, vj,∗〉 dt.

From the definition of the lower-level models (2.13), it follows that 〈h′j(0), vj,∗〉 = 〈h′i(vi,k), P ijvj,∗〉.
Thus, we get for the difference

|predi,k − aredi,k| =
∣∣∣∣∫ 1

0
(1− t)〈(h′′j (tvj,∗)− (P ij )∗h′′i (vi,k + tP ijvj,∗)P ij )vj,∗, vj,∗〉 dt

∣∣∣∣ .
Using (2.36b) and Corollary 2.1 we get by the same argument as in the first case:

|predi,k − aredi,k| ≤ β2‖vj,∗‖2j ≤ β2C
2
P∆2

i,k.

Taking the maximum of the estimates finishes the proof. �
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2.4. Global convergence

The previous lemma shows that the prediction error between a function hi and its model decreases
at least quadratically with the size of the trust-region. This holds in both cases if we use the
quadratic approximation and the multilevel model, where for the latter property (2.13) is essential.

Remark 2.13 For the proof of the global convergence we are only interested in the difference of
the reductions for “small” steps, i.e., how the models behave locally. Therefore, it is enough to
demand that (2.36a) and (2.36b) hold for steps si,k resp. vj whose norms are bounded by a fixed
positive constant.

The next lemma shows that every step of our algorithm is very successful, whenever the trust
region is small enough.
Lemma 2.7 Let si,k be a step generated by Algorithm 2.1. Iteration (i, k) is very successful and

aredi,k = hi(vi,k)− hi(vi,k + si,k) ≥ η]i+1
2 κmdc κ

]i
χχi(vi,k)∆i,k (2.38)

holds whenever

∆i,k ≤ min
{

1, κmdc
η]i2 κ

]i
χχi(vi,k)(1− η2)

β
,
κ]iχχi(vi,k)

βC

}
. (2.39)

Proof We first consider the case where si,k is a Taylor-step. It satisfies the fraction of Cauchy
decrease condition (2.29) and because ∆i,k ≤ min{1, χi(vi,k)/βC} we obtain for the predicted
reduction

predi,k = −qi,k(si,k) ≥ κmdc χi(vi,k)∆i,k.

Using Lemma 2.6, (2.39) and η2, κχ ≤ 1 we estimate

predi,k − aredi,k
predi,k

≤
β∆2

i,k

κmdc χi(vi,k)∆i,k
≤ κ]iχη

]i
2 (1− η2) ≤ (1− η2),

which leads to
ρi,k = aredi,k

predi,k
≥ η2.

Therefore, the step is very successful and

hi(vi,k)− hi(vi,k + si,k) ≥ −η2qi,k(si,k) ≥ η2κmdc χi(vi,k)∆i,k ≥ η]i+1
2 κmdc κ

]i
χχi(vi,k)∆i,k.

We use induction to prove the multilevel case. Note that at the latest on levels l with N(l) = ∅,
we have to make Taylor steps for which the lemma was already proven. So in the following, we
assume that the statement of the lemma holds on level j ∈ N(i), which was entered in iteration
(i, k).

In this case, the smoothness property (2.30) is satisfied for j. Thus, by assumption (2.39) follows

∆j,0 = ∆i,k ≤ min
{

1, κmdc
η]i2 κ

]i
χχi(vi,k)(1− η2)

β
,
κ]iχχi(vi,k)

βC

}

≤ min
{

1, κmdc
η]j2 κ

]j
χ χj(0)(1− η2)

β
,
κ]jχ χj(0)
βC

}
.
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(2, k − 1)

(1, 0)

(0, 0) (0, 1) (0, 0) (0, 1)

(1, 3)(1, 1) (1, 2)

(2, k)

successful unsuccessful

Figure 2.6.: Example iteration graph

This allows us to use the induction assumption at level j which yields that the first step sj,0 is
very successful and assertion (2.38) holds. Using (2.30) and ]j ≤ ]i − 1, we can estimate the
actual reduction on level j by

hj(vj,0)− hj(vj,0 + sj,0) ≥ η]j+1
2 κmdc κ

]j
χ χj(vj,0)∆j,0 ≥ η]i2 κmdc κ

]i
χχi(vi,k)∆i,k. (2.40)

Let us assume that we make m ≥ 0 more steps on the j-th level and terminate afterwards. The
algorithm is a descent method, which follows from the update rule in Step 4 of the algorithm.
Therefore,

predi,k = hj(vj,0)− hj(vj,m) ≥ hj(vj,0)− hj(vj,0 + sj,0).

From Lemma 2.6 and (2.39) we infer

predi,k − aredi,k
predi,k

≤ β∆i,k

η]i2 κmdc κ
]i
χχi(xi, vi,k)

≤ (1− η2)

and hence
ρi,k = aredi,k

predi,k
≥ η2.

This shows that the step is very successful. Assumption (2.38) now follows immediately from
(2.40). �

Remark 2.14 It is noteworthy that in the multilevel case the previous proof only uses the
reduction of the first successful step on the coarser grid. This justifies the additional termination
criteria after one successful step in Step 5 of the algorithm.

For the upcoming analysis we need to establish some additional notation. We say a multilevel
iteration (i, k) generates another iteration (j, l) if (j, l) occurs in the recursion started and ended in
iteration (i, k). Furthermore, let p be a function that returns the predecessor of a given iteration
(j, l). This is either (j, l − 1) if l > 0, or the multilevel iteration (i, k) in which level j was
entered.

We are interested in every sub-step on lower levels of which the final multilevel step consists. Here,
it is important that all steps generated by non successful multilevel iterations have no influence,

32



2.4. Global convergence

because the final step that they have contributed to is rejected. Thus we ignore these steps and
denote by Ĩ(i, k) the chronological sequence of iterations that were generated by (i, k) without
steps generated by non successful multilevel iterations. In case that (i, k) is a Taylor step, Ĩ(i, k)
consists only of (i, k). An example with three levels is shown in Figure 2.6. Here, the sequence for
iteration (2, k) is

Ĩ(2, k) =
(
(2, k), (1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (1, 3)

)
.

The first two iterations (0, 0) and (0, 1) on level 0 are not included, because the multilevel step
(1, 1) was not successful. Note that the numbering of the iterations is ambiguous since we normally
enter a level more than once. In the following, it should be clear from the context, which iteration
is meant.

We denote the first successful Taylor step of a sequence Ĩ(i, k) by α(i, k). The algorithm ensures
that if (i, k) is successful, there is at least one successful Taylor iteration in every sequence
Ĩ(i, k). This is because after entering a level j with N(j) = ∅ a successful Taylor step must be
made before the algorithm is allowed to return. Furthermore, let I(i, k) the first part of Ĩ(i, k)
until the step α(i, k). In the example iteration from Figure 2.6 we have α(2, k) = (0, 0) and
I(2, k) =

(
(2, k), (1, 0), (1, 1), (1, 2), (0, 0)

)
.

In the following we will omit the level index if we are on level r. We use a superscript to enumerate
the tuples in the ordered sets I(i, k).

Remark 2.15 For I(i, k) holds:

∆I(i,k)j+1 ≤ ∆I(i,k)j ≤ ∆i,k, j = 1, . . . , |I(i, k)| − 1.

Furthermore, let (j, l) ∈ I(i, k) then

χj(vj,l) ≥ κ]i−]jχ χi(vi,k),

because vj,l is either vi,k if j = i, or vj,l = 0 and condition (2.30) is satisfied.

Remark 2.16 If (j, l) ∈ I(i, k) is a successful multilevel iteration, then I(j, l) ⊂ I(i, k).

The next lemma shows that if the stationarity measure is bounded below on a set of iterations,
then the trust-region radius cannot become arbitrary small.

Lemma 2.8 Let χi(vi,k) ≥ ε > 0 for all iterations k on level i, then

∆i,k ≥ B∆(ε) := γ2 min
{

1, κmdc
κ]rχ η

]r
2 (1− η2)
β

ε,
κ]rχ
βC

ε

}
if i = r,

∆i,k ≥ min{B∆(ε), ε∆
i ∆i,0} if i < r.

(2.41a)

Moreover, for a multilevel step (i, k) we have for all (j, l) ∈ I(i, k):

∆j,l ≥ B∆(ε) if i = r,

∆j,l ≥ min{B∆(ε), ε∆
i ∆i,0} if i < r.

(2.41b)
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2. A multilevel trust-region algorithm

Proof We first show (2.41a) for i = r. Suppose the statement of the lemma was false and the
k-th iteration is the first one where

∆k < B∆(ε).
Then the preceding iteration must have been unsuccessful and it follows from the update rule
(2.34) that

∆k−1 = ∆k

γ2
< min

{
1, κmdc

κ]rχ η
]r
2 (1− η2)
β

ε,
κ]rχ
βC

ε

}
.

However, since ε ≤ χr(vk−1), the fact that iteration k − 1 is unsuccessful is a contradiction to
Lemma 2.7 and therefore ∆k ≥ B∆(ε).

We now turn to the case i < r, where we also assume that the assertion of the lemma is false and
the k-th iteration is the first in which (2.41a) is violated. Since ε∆

i < 1, the statement is obviously
true for k = 0. If k > 0 and iteration k − 1 is successful, it follows from (2.34) that

∆i,k = min{c∆i,k−1,∆i,0 − ‖vi,k‖i}

with c = 1 or c = γ1 > 1. Since ∆i,k < ∆i,k−1, we conclude that

∆i,k = ∆i,0 − ‖vi,k‖i.

From ∆i,k < ε∆
i ∆i,0 follows ε∆

i ∆i,0 > ∆i,0−‖vi,k−vi,0‖i. Hence, in iteration k−1 the termination
criterion (2.35) was already satisfied contrary to the fact that there exists an iteration k. If,
however, iteration k − 1 is unsuccessful we get from (2.34), because of vi,k−1 = vi,k and γ2 < 1,
that ∆i,k = γ2∆i,k−1. As in the case i = r, we can now derive a contradiction to Lemma 2.7. This
completes the proof of (2.41a).

We also prove the last bound by contradiction. We assume that there exists a first iteration
(j, l) ∈ I(i, k) where (2.41b) does not hold. From (2.41a) it follows that (j, l) 6= (i, k). Furthermore
l > 0, because otherwise the previous iteration p(j, 0) were the first one where the bound is
violated (cf. Remark 2.9). From the definition of α it follows that (j, l − 1) is not a successful
Taylor iteration. It also cannot be a successful multilevel iteration, since then there would have to
be a successful Taylor step in I(j, l− 1) and in this case (j, l) 6∈ I(i, k). Hence, it was unsuccessful.
Using ε ≤ χi(vi,k) ≤ χj(vj,l−1)/κ]i−]jχ , which follows from Remark 2.15, one obtains

∆j,l−1 < min
{

1, κmdc
κ]rχ η

]r
2 (1− η2)
β

ε,
κ]rχ
βC

ε

}

≤ min
{

1, κmdc
κ]r−]i+]jχ η]j2 (1− η2)

β
χj(vj,l−1),

κ]r−]i+]jχ

βC
χj(vj,l−1)

}

≤ min
{

1, κmdc
κ]jχ η

]j
2 (1− η2)
β

χj(vj,l−1),
κ]jχ
βC

χj(vj,l−1)
}
.

This is a contradiction, because again according to Lemma 2.7 iteration (i, j − 1) has to be
successful. �

We next show that part of the descent that is obtained by the first successful Taylor step in a
multilevel iteration carries over to the outgoing level.
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Lemma 2.9 Every successful iteration (i, k) leads to an actual reduction of

hi(vi,k)− hi(vi,k+1) ≥ η]i−]j+1
1 κmdc κ

]i−]j
χ χi(vi,k) min

[
1,
κ]i−]jχ χi(vi,k)

βC
,∆j,l

]
, (2.42)

where (j, l) = α(i, k).

Proof Let us first suppose that (i, k) is a Taylor iteration. In this case, (j, l) = (i, k) holds. By
assumption, the step is successful and thus from the fraction of Cauchy decrease condition (2.29)
it follows that

hi(vi,k)− hi(vi,k+1) ≥ η1κmdc χi(vi,k) min
[
1, χi(vi,k)

βC
,∆i,k

]
.

Since κχ < 1 and η1 < 1, (2.42) is proven in this case.

Now let j ≺ i. From the definition of α, it follows that the step (j, l) is the first successful one
on level j and a Taylor step. Due to this, because of vj,l = vj,0 and (2.29), we obtain the actual
reduction

hj(vj,0)− hj(vj,l+1) ≥ η1κmdc χj(vj,0) min
[
1, χj(vj,0)

βC
,∆j,l

]
.

The algorithm is a descent method and therefore the reduction achieved by the final step on level j,
s∗j = vj,∗−vj,0, is also greater than or equal to the right hand side of the last inequality. According
to the definition of I(i, k), the prolongation of the step s∗j is successful. Let (j̄, l̄) = p(j, 0). For
the iteration (j̄, l̄) to be valid, (2.30) must have been satisfied. This yields

hj̄(vj̄,l̄)− hj̄(vj̄,l̄ + P j̄j s
∗
j ) = hj̄(vj̄,l̄)− hj̄(vj̄,l̄+1)

≥ η2
1κmdc κχχj̄(vj̄,l̄) min

[
1,
κχχj̄(vj̄,l̄)

βC
,∆j,l

]
.

If j̄ = i, then l̄ = k and the proof were completed. Otherwise if j̄ ≺ i we know from the definition
of α that l̄ is the first successful iteration on j̄ and therefore vj̄,l̄ = vj̄,0. The rest of the proof
follows straightforwardly by applying the above arguments inductively. For every level in the
sequence between i and j we get the additional factors κχ and η1 which explains the factor κ]i−]jχ

and η]i−]j+1
1 in (2.42). �

Up to now, we have always assumed that it is possible to generate multilevel steps, which means
that if we make a multilevel step, at least one termination criterion of the algorithm is satisfied
after a finite number of iterations on the lower levels. The next lemma shows that this is indeed
guaranteed.

Lemma 2.10 Let all lower-level models hi be bounded below on all balls {vi ∈ Ci | ‖vi‖i ≤ ∆}
with 0 ≤ ∆ <∞. Then every multilevel step (i, k) is well defined, i.e., always generates only a
finite number of iterations on the lower levels.
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2. A multilevel trust-region algorithm

Proof We first show that we only make a finite number of iterations if we enter a level i with
N(i) = ∅, i.e., a level where every step is a Taylor step. Suppose the assertion is false, then for
every iteration (j, l) the termination criterion is not satisfied and therefore

χj(vj,l) > εχj and ‖vj,l − vj,0‖j < (1− ε∆
j )∆j,0 for all iterations l.

From Lemma 2.8 follows ∆j,l ≥ min{B∆(εχj ), ε∆
j ∆j,0} =: C and consequently we make infinitely

many successful steps. Every successful step satisfies the fraction of Cauchy decrease condition
(2.29), so we can estimate the actual reduction by

aredj,l = hj(vj,l)− hj(vj,l+1) ≥ η1 κmdc ε
χ
j min

[
1, εχj /βC , C

]
.

Let θ(l) be the number of successful steps till the l − th iteration, then we get

hj(vj,0)− hj(vj,l) =
l−1∑
ν=0

(hj(vj,ν)− hj(vj,ν+1))

≥ θ(k) η1 κmdc ε
χ
j min

[
1, εχj /βC , C

]
→∞ for k →∞.

Because all iterates lie in the set {vj ∈ Cj | ‖vj − vj,0‖j ≤ ∆j,0}, which is a subset of the ball
{vj ∈ Cj | ‖vj‖j ≤ ∆j,0 + ‖vj,0‖j}, this is a contradiction to the boundedness from below of hj on
balls.

Now we suppose that the assumption holds for all multilevel iterations on level j that was entered
in iteration (i, k). Again, we assume that the termination criteria in Step 5 of Algorithm 1 are
never satisfied. As in the case N(j) = ∅, it follows from Lemma 2.8 that all trust-region radii ∆j,l

are bounded below by a constant C and therefore we make infinite many successful steps. From
the induction assumption we already now that every multilevel iteration is finished after a finite
amount of time. So it suffices to show that we only make a finite number of iterations on level j.
For a successful iteration (j, l), it follows from Lemma (2.9) that

hj(vj,l)− hj(vj,l+1) ≥ η]j−]j̄+1
1 κmdc κ

]j−]j̄
χ χj(vj,l) min

[
1,
κ]j−]j̄χ χj(vj,l)

βC
,∆j̄,l̄

]

with (j̄, l̄) = α(j, l). According to the second assertion of Lemma 2.8, ∆j̄,l̄ ≥ C and thus with
χj(vj,l) ≥ εχj

hj(vj,l)− hj(vj,l+1) ≥ C ′

with a constant C ′ that does not depend on k. By the same argument as in the case N(i) = ∅, we
can derive a contradiction to the boundedness of hj on balls and the lemma is proven. �

Remark 2.17 The previous lemma is obviously satisfied without any further assumptions if we
add an additional termination condition in Step 5 of the algorithm: Return when i < r and the
number of successful steps θ(k) on this level is greater or equal a fixed constant kmax ∈ N.

We will now analyse the convergence behavior of the algorithm on the finest level. To this end,
we assume that εχr = 0 and we show that the sequence (χr(vr,k))k∈N generated by Algorithm 2.1
converges to zero. We first prove that, provided there are only finitely many successful iterations,
the last successful iteration belongs to a stationary point.

36



2.4. Global convergence

Lemma 2.11 Let (vk)k∈N be a sequence generated by Algorithm 2.1. Suppose that εχr = 0 and that
there are only finitely many successful iterations on the finest grid. Then vk = v∗ for sufficiently
large k and χr(v∗) = 0.

Proof Assume that the algorithm generates infinitely many iterations. From the assumptions
follows the existence of a last successful iteration on the finest grid, which we denote by (r, ∗).
Since all remaining iterations are unsuccessful, γ2 < 1 implies ∆r,k → 0, k →∞ and vr,k = vr,∗
for k > ∗. If χr(vr,∗) > 0, it follows from Lemma 2.7 that there exists a successful iteration (r, k)
with k > ∗, which is contrary to the assumption. Hence χr(vr,∗) = 0. �

If we make infinitely many successful steps, the next result states that there is at least one
subsequence that converges to a stationary point.

Theorem 2.1 Let fr be bounded below on Cr and let (vk)N be a sequence generated by Algo-
rithm 2.1. Furthermore, let εχr = 0. If the algorithm does not terminate after a finite number of
iterations, then

lim inf
k→∞

χr(vr,k) = 0. (2.43)

Proof Lemma 2.11 implies that the algorithm generates infinitely many successful steps. Suppose
that the assumption does not hold. Then there exists an ε > 0 such that

χr(vr,k) ≥ ε for all k.

Hence, Lemma 2.8 gives a lower bound on the trust-region radii ∆k. Similar to the second part of
the proof of Lemma 2.10 one shows that

lim
k→∞

(fr(xr + vr,0)− fr(xr + vr,k)) ≥ C ′ lim
k→∞

θ(k) =∞

where θ(k) denotes the number of successful steps until the kth iteration. Because vr,k ∈ Cr for
all k, this is a contradiction to the boundedness of fr on Cr. �

Lemma 2.12 The descent of a successful step k on level r satisfies

fr(xr + vr,k)− fr(xr + vr,k+1) ≥ η]r+1
1 κmdc κ

]r
χ χr(vr,k) min

[
∆r,k, B∆(χr(vr,k))

]
,

where B∆ is defined as in (2.41a).

Proof On level r, the model hr(vr,k) is equal to the function fr(xr + vr,k). Because iteration
(r, k) is successful, we use estimate (2.42) from Lemma 2.9 with (j, l) = α(r, k) to obtain

fr(xr + vr,k)− fr(xr + vr,k+1) ≥ η]r−]j+1
1 κmdc κ

]r−]j
χ χr(vr,k) min

[
1,∆j,l,

κ]r−]lχ χr(vr,k)
βC

]
≥ η]r+1

1 κmdc κ
]r
χ χr(vr,k) min [∆j,l, B∆(χr(vr,k)),∆r,k] ,

(2.44)

where the second inequality follows from B∆(χr(vr,k)) ≤ 1, B∆(χr(vr,k)) ≤ κ]rχ χr(vr,k)
βC

and
∆j,l ≤ ∆r,k. Without loss of generality, we can demand that either j = r or l > 0, because
otherwise since ∆j,0 = ∆p(j,0), we can replace (j, l) by p(j, 0) in (2.44) as long as j ≺ r and l = 0.
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2. A multilevel trust-region algorithm

If ∆j,l ≥ B∆(χr(vr,k)) or j = r, the assertion is true. Let us now suppose ∆j,l < B∆(χr(vr,k)) and
l > 0. The definition of the function α implies that iteration (j, l− 1) was unsuccessful and hence

∆j,l−1 <
B∆(χr(vr,k))

γ2
.

After inserting the definition of B∆ and using χj(vj,l−1) = χj(vj,l) ≥ κ]r−]jχ χr(vr,k), we obtain

∆j,l−1 < min
{

1, κmdc
κ]jχ η

]j
2 (1− η2)
β

χj(vj,0),
κ]jχ χj(vj,0)

βC

}
.

Therefore, the unsuccessfulness of step vj,l−1 is a contradiction to Lemma 2.7 and it follows that
∆j,l ≥ B∆(χr(vr,k)). �

Now we can prove the global convergence of the algorithm under the additional assump-
tion that the stationarity measure χr is uniformly continuous on a suitable subset of Cr.

Theorem 2.2 Let fr be bounded below on Cr and let χr be uniformly continuous on a set S ⊂ Cr
that contains the sequence of iterates (vr,k)k∈N. Then

lim
k→∞

χr(vr,k) = 0. (2.45)

Proof We denote by S the set of successful iterations on level r.

Let us assume that (2.45) is not true. Then there exists ε > 0 such that χr(vr,k) ≥ 2ε for infinitely
many k ∈ S. Since (2.43) holds, we thus find increasing sequences (j′i)i≥0 ⊂ S and (k′i)i≥0 ⊂ S
with j′i < k′i < j′i+1 and

χr(vr,j′i) ≥ 2ε χr(vr,k) > ε ∀ k ∈ S with j′i < k < k′i, χr(vr,k′i) ≤ ε.

Setting S′ = ⋃∞
i=0 S

′
i with S′i = {k ∈ S; j′i ≤ k < k′i}, we have

lim inf
S′3k→∞

χr(vr,k) ≥ ε.

Using Lemma 2.12 we deduce for k ∈ S′ that

fr(xr + vr,k)− fr(xr + vr,k+1) ≥ η]r+1
1 κmdc κ

]r
χ εmin[∆r,k, B∆(ε)]. (2.46)

The sequence {fr(xr+vr,k)}k is monotonically decreasing and bounded below, hence it is convergent
and the left-hand side of (2.46) must tend to zero when k tends to infinity. This gives

lim
S′3k→∞

∆k = 0.

As a consequence, the first term dominates in the minimum of (2.46) and we obtain that, for
k ∈ S′ sufficiently large,

∆k ≤
1

η]r+1
1 κmdc κ

]r
χ ε

[fr(xr + vr,k)− fr(xr + vr,k+1)].
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2.4. Global convergence

We then deduce from this bound that, for i sufficiently large,

‖vr,j′i − vr,k′i‖r ≤
k′i∑

j∈S′, j=j′i

‖vr,j − vr,j+1‖r ≤
k′i∑

j∈S′, j=j′i

CP∆r,j

≤ CP

η]r+1
1 κmdc κ

]r
χ ε

[fr(xr + vr,j′i)− fr(xr + vr,k′1)].

The right hand side of this inequality must converge to zero, and therefore ‖vr,j′i − vr,k′i‖r tends to
zero as i tends to infinity. By uniform continuity of χr, we thus deduce that χr(vr,j′i)− χr(vr,k′i)
tends to zero. However this is impossible, because of the definition of (j′i) and (k′i), which imply
that χr(vr,j′i)− χr(vr,k′i) ≥ ε. �
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3. Unconstrained problems

In this chapter we consider unconstrained problems, i.e., where Ci = Vi holds, in a typical
multilevel setting. Since h′i(vi,k) ∈ V∗i , the natural stationarity measure is the (dual)-norm of the
derivative, i.e.,

χi(vi,k) = ‖h′i(vi,k)‖V∗i . (3.1)

We assume that the spaces Vi, i = 1, . . . , r, are finite dimensional and subsets of a suitable
chosen Hilbert space U . In this setting we will first show an important norm equivalence if the
smoothness property (2.30) does not hold. Further, we analyze different possibilities how to
implement the Taylor step computation in the trust-region algorithm. In the case of convex
trust-region subproblems, we show that classical smoothing algorithms, like Gauß-Seidel or Jacobi
smoothers, can be used to calculate an approximate solution. Our main result is that provided
the smoothness assumption (2.30) is not satisfied, a typical smoothing step achieves a descent
satisfying the fraction of Cauchy decrease condition (2.29) where the constant κmdc is independent
of the level i.

Throughout this chapter we will use a generic constant C which neither depends on the level i nor
the number of levels r. C may assume different values in the inequalities and is assumed to be large
enough, such that the inequality is satisfied. In general we call a quantity level-independent if it does
not depend on the level i and also does not deteriorate for r →∞.

3.1. The variational setting

Let U be a Hilbert space with an inner product (·, ·) and associated norm ‖·‖ =
√

(·, ·). Further-
more, let V ↪→ U be a dense and continuously embedded Hilbert subspace with inner product (·, ·)V .
Then V ⊂ U ⊂ V∗ forms a Gelfand triple (cf. Section 2.1.2).

We assume that we have a nested sequence of finite dimensional subspaces V1 ⊂ V2 ⊂ . . . ⊂ Vr ⊂ V
with dimensions n1, . . . , nr and norms ‖·‖Vi := ‖·‖V . We suppose a multilevel hierarchy as in
Remark 2.1. Furthermore, let {φji}

ni
j=1 be a basis of Vi for every i = 1, . . . , r. Every element vi ∈ Vi

can be represented by vi = ∑ni
j=1 ṽ

j
iφ

j
i where ṽi ∈ Rni denotes the associated coefficient vector. As

in Example 2.1, we suppose that the identity between Vi and Vi+1 is used as prolongation P i+1
i .

We will often regard an element of U as element of its dual space by means of the embedding
ιU : U → U∗, v 7→ (v, ·).

In the following, we need the U-orthogonal projection onto the space Vi, which we denote by
Qi : U → Vi. According to Theorem A.2, it satisfies the relation

(Qiu, vi) = (u, vi) for all vi ∈ Vi and u ∈ U . (3.2)
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3. Unconstrained problems

In this setting, there exist representations gi,k ∈ Vi and Hi,k : Vi → Vi such that the quadratic func-
tion qi,k of the trust-region subproblem (2.32) can be written as

qi,k(si,k) = (si,k, gi,k) + 1
2(si,k, Hi,ksi,k).

This is shown by the following lemma:

Lemma 3.1 Let g ∈ V∗i and Vi a finite dimensional subspace of a Hilbert space U . Then there
exists an element gi ∈ Vi such that

(vi, gi) = 〈g, vi〉 ∀ vi ∈ Vi. (3.3)

Proof Since Vi is finite dimensional, Vi equipped with the inner product (·, ·) forms a Hilbert
space. From the Riesz representation theorem follows the existence of an element gi that satisfies
(3.3). �

Remark 3.1 The choice of gi does not seem to be natural when V is a Hilbert space. Instead
one would like to use the representation with regard to (·, ·)V . The main difficulty lies in the fact
that the calculation of this representation is often expensive whereas the one of Lemma 3.1 comes
for free in many applications. See Chapter 5 for details. This is a major difference to Sobolev
gradient methods where, in case that V is a Sobolev space, a gradient representation with regard
to (·, ·)V is used, cf., e.g., [Neu97].

Let gi = ∇Uhi(vi,k) be the representative of h′i(vi,k) according to Lemma 3.1. The representation
of the adjoint of the prolongation operator P ii−1 : Vi−1 → Vi is given by the U -orthogonal projection
Qi−1 since

〈(P ii−1)∗h′i(vi,k), vi−1〉 = 〈h′i(vi,k), vi−1〉 = (gi, vi−1) = (Qi−1gi, vi−1) = 〈ιU (Qi−1gi), vi−1〉.

Furthermore, due to the choice of the stationarity measure, it follows directly from Definition 2.1
of the lower-level models that

χi−1(0) = ‖h′i−1(0)‖V∗i−1
= sup

vi−1∈Vi−1

〈h′i−1(0), vi−1〉
‖vi−1‖Vi−1

= sup
vi−1∈Vi−1

〈(P ii−1)∗h′i(vi,k), vi−1〉
‖vi−1‖Vi−1

= sup
vi−1∈Vi−1

(Qi−1gi, vi−1)
‖vi−1‖Vi−1

= ‖ιU (Qi−1gi)‖V∗i−1
.

As a tool for our analysis, we define for i = 1, . . . , r the linear operators Vi : Vi → Vi by

(Vivi, wi) = (vi, wi)V for all vi, wi ∈ Vi. (3.4)

Remark 3.2 The operators Vi satisfy Vi = QiVr because

(Vivi, wi) = (vi, wi)V = (Vrvi, wi) = (QiVrvi, wi).
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3.1. The variational setting

From the definition it follows that the operators Vi are symmetric and positive definite, i.e.,

(Vivi, wi) = (vi, Viwi) for all vi, wi ∈ Vi,
(vi, Vivi) = ‖vi‖2V > 0 for all 0 6= vi ∈ Vi.

Therefore, the powers V s
i , s ∈ R, are well-defined and we can define a scale of norms by

‖|v|‖i,s :=
√

(V s
i v, v). (3.5)

Directly from the definition it follows ‖|vi|‖i,0 = ‖vi‖ and ‖|vi|‖i,1 = ‖vi‖V for vi ∈ Vi.

The next lemma shows that the dual norms of ‖·‖Vi and ‖·‖V are equivalent on the space
{ιU (vi) | vi ∈ Vi} for suitable spaces U :

Lemma 3.2 1. For all i = 1, . . . , r and gi ∈ Vi we have ‖|gi|‖i,−1 = ‖ιU (gi)‖V∗i .

2. Let the projection Qi be stable in V, i.e., there exists a level-independent constant CQ ≥ 0
such that

‖Qiv‖V ≤ CQ‖v‖V for all v ∈ V. (3.6)

Then the norms ‖·‖V∗i and ‖·‖V∗ are equivalent on Vi, more precisely

‖ιU (gi)‖V∗i ≤ ‖ιU (gi)‖V∗ ≤ CQ‖ιU (gi)‖V∗i for all gi ∈ Vi. (3.7)

Proof 1. Let gi ∈ Vi. We first remark that ‖vi‖V = ‖V 1/2
i vi‖ for vi ∈ Vi. From the definition

of the dual norm we infer

‖ιU (gi)‖V∗i = sup
vi∈Vi

(gi, vi)
‖vi‖V

= sup
vi∈Vi

(V −1/2
i gi, V

1/2
i vi)

‖V 1/2
i vi‖

.

Since vi 7→ V
1/2
i vi is surjective, we have

‖ιU (gi)‖V∗i = sup
wi∈Vi

(V −1/2
i gi, wi)
‖wi‖

= ‖V −1/2
i gi‖ = ‖|gi|‖i,−1.

2. Using the definition of the dual norm and that Vi ⊂ V we obtain

‖ιU (gi)‖V∗i = sup
vi∈Vi

(gi, vi)
‖vi‖Vi

≤ sup
v∈V

(gi, v)
‖v‖V

= ‖ιU (gi)‖V∗ .

To verify the second inequality, we use (3.2) and the stability of Qi:

‖ιU (gi)‖V∗ = sup
v∈V

(gi, v)
‖v‖V

≤ CQ sup
v∈V

(gi, Qiv)
‖Qiv‖V

= CQ sup
v∈Vi

(gi, vi)
‖vi‖V

= CQ‖ιU (gi)‖V∗i . �
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Figure 3.1.: Twice uniform refinement of a triangle

We do not assume that the norms on U and V are equivalent. Thus, on the finite dimensional
spaces Vi the equivalence constants of these norms are in general level-dependent. We demand
that the constants do not grow too fast, i.e., there exists a constant τ , independent of i, such
that

λmax
i

λmax
i−1
≤ τ, for all i = 1, . . . , r, (3.8)

where

λmax
j := sup

vj∈Vj

‖vj‖2V
‖vj‖2

. (3.9)

Without loss of generality we assume λmax
j ≥ 1.

The following example describes a typical setting which we will often consider throughout this
thesis:

Example 3.1 Let Ω ⊂ Rd be a bounded polygonal domain, V = H1
0 (Ω) and U = L2(Ω). It

is well known that H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω) forms a Gelfand triple. As in Example 2.1 let

T1 ⊂ {Th1} be a conforming triangulation of Ω with simplices of diameter less than or equal to
h1. We assume that the family of triangulations {Th1} is quasi-uniform, i.e., there are constants
σ1, σ2 > 0 such that

max
t∈T1

ht
ρt
≤ σ1,

maxt∈T1 ht
mint∈T1 ht

≤ σ2 ∀h1 ≥ 0, (3.10)

where ht denotes the diameter of t and ρt the diameter of the largest ball contained in t. Let
N1 be the set of nodes of T1 that are not on the boundary ∂Ω. We create a sequence T1, . . . , Tr
with corresponding node sets N1, . . . ,Nr obtained from T1 by regular subdivision (cf. Figure 3.1).
Therefore, with hj = maxt∈Tj diam(t), we have the following relation between the mesh sizes:

h1 = 2j−1hj .

On each triangulation we define a finite element space Vi that consists of continuous functions
which are linear on each triangle t ∈ Ti and vanish on ∂Ω. Since the triangulations are nested, we
have

V1 ⊂ V1 ⊂ . . . ⊂ Vr ⊂ H1
0 (Ω).

44



3.2. Level-independent Cauchy decrease
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Figure 3.2.: The nodal basis functions for two consecutive levels in one dimension

For each node xji ∈ Ni, there exists a unique function φji ∈ Vi satisfying

φji (xki ) = δjk for all xki ∈ Ni. (3.11)

The set {φji}
ni
j=1 ⊂W

1,∞
0 (Ω) forms a basis of Vi. A basis satisfying (3.11) for j = 1, . . . , ni will in

the following be referred to as nodal basis.

The largest eigenvalue of Vi can be estimated by

λmax
i = sup

vi∈Vi

‖vi‖2H1(Ω)
‖vi‖2L2(Ω)

≤ Ch−2
i , (3.12)

which follows directly from an inverse inequality (see for instance [Cia78, Thm. 3.2.6]). This
upper bound cannot be improved, which can be seen by setting vi = φji in the above fraction.
Therefore, assumption (3.8) is fulfilled in this setting. The H1

0 -stability of the L2-orthogonal
projector, necessary for (3.6) to hold, is a well known fact. A rigorous proof can be found for
instance in [BX91, Thm. 3.4].

3.2. Level-independent Cauchy decrease

In this section we show that under certain assumptions the fraction of Cauchy decrease condition
(2.29) is satisfied by a very simple and cheap smoothing step. We are in particular interested in a
decrease that is independent of the number of levels and the mesh size h of the discretizations.
This was not examined in other multilevel optimization works, e.g., [GST08, GMTWM08, WG09,
Nas00] where level dependent factors like the Euclidean norm of the stiffness matrices or the
dimensions of the finite element spaces appear in estimates.

We will first analyse how the violation of the smoothness property allows us to derive an estimate
for the dual norms. This is done in two cases.

3.2.1. The regular case

We will first assume that a strong regularity assumption is satisfied. We need the Vi-orthogonal
projection, which we denote by Pi. We use this notation, although it is similar to the prolongation
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3. Unconstrained problems

operators, since it is quite common in the literature and is only needed in this section. The
operator Pi : V → Vi is defined by the relation

(Piu, vi)V = (u, vi)V for all vi ∈ Vi.

We assume that it also satisfies the relation

‖ei − Pi−1ei‖2 ≤ C(λmax
i−1 )−1‖ei − Pi−1ei‖2V for all ei ∈ Vi and i = 2, . . . , r. (3.13)

We will later discuss when this assumption holds in the setting of Example 3.1.

For the following lemma we use the identity Qi−1Vi = Vi−1Pi−1|Vi , which can be shown easily:
Let ei ∈ Vi, then for all vi−1 ∈ Vi−1 we have

(Vi−1Pi−1ei, vi−1) = (Pi−1ei, vi−1)V = (ei, vi−1)V = (Viei, vi−1) = (Qi−1Viei, vi−1).

Lemma 3.3 Let (3.13) be satisfied and let gi ∈ Vi be not smooth, i.e., it holds:

‖ιU (Qi−1gi)‖V∗i−1
< κχ‖ιU (gi)‖V∗i . (3.14)

Then there exists a level-independent constant C such that the following estimate is satisfied:

‖gi‖2 ≥ C−1τ−1(1− κ2
χ)λmax

i ‖ιU (gi)‖2V∗i (3.15)

Proof Set ei = V −1
i gi. The element ei − Pi−1ei is V-orthogonal on Vi−1, hence

‖ei − Pi−1ei‖2V = (ei − Pi−1ei, ei − Pi−1ei)V = (ei − Pi−1ei, Viei) ≤ ‖ei − Pi−1ei‖‖Viei‖.

Inserting the approximation property (3.13) yields

‖ei − Pi−1ei‖2V ≤ C1/2(λmax
i−1 )−1/2‖ei − Pi−1ei‖V‖gi‖.

After dividing by ‖ei − Pi−1ei‖V and using (3.8), we obtain

‖ei − Pi−1ei‖2V ≤ Cτ(λmax
i )−1‖gi‖2. (3.16)

By definition of ei it follows from Lemma 3.2 1., that ‖ei‖V = ‖ιU (gi)‖V∗i holds. Furthermore, we
have

‖ιU (Qi−1gi)‖V∗i−1
= ‖ιU (Qi−1Viei)‖V∗i−1

= ‖ιU (Vi−1Pi−1ei)‖V∗i−1
= ‖Pi−1ei‖V .

Again the V-orthogonality of the operator Pi−1 implies

‖ei − Pi−1ei‖2V = ‖ei‖2V + ‖Pi−1ei‖2V − 2(ei, Pi−1ei)V = ‖ei‖2V − ‖Pi−1ei‖2V .

Inserting the last identity in (3.16) and using (3.14) finally yields

Cτ(λmax
i )−1‖gi‖2 ≥ ‖ei‖2V − ‖Pi−1ei‖2V ≥ (1− κ2

χ)‖ei‖2Vi ,

which is equivalent to the assertion. �
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3.2. Level-independent Cauchy decrease

In the context of Example 3.1, estimate (3.16) is also often called Approximation Property in the lit-
erature (cf., e.g., [BS08, Sec. 6.4]). In this case, assumption (3.13) is strongly related to elliptic regu-
larity and holds whenever for each g ∈ L2(Ω) the variational problem

find w ∈ H1
0 (Ω) with (∇w,∇u) = (g, u) for all u ∈ H1

0 (Ω)

has a solution w ∈ H2(Ω) that satisfies

|w|H2(Ω) ≤ C‖g‖L2(Ω). (3.17)

For a proof see for instance [BS08, Thm. 5.4.8]. Whether elliptic regularity holds depends on
the domain Ω. It is well known that it is satisfied when Ω is polygonal and convex but not for
polygonal domains with reentrant corners.

3.2.2. The case without regularity

In this section we derive a result similar to Lemma 3.3 but without demanding the strong
assumption (3.13). Instead, we assume that the following approximation property for the U-
orthogonal projections holds:

‖v −Qiv‖2 ≤ C(λmax
i )−1‖v‖2V for v ∈ V. (3.18)

Considering the setting of Example 3.1, in comparison to the approximation property (3.13), (3.18)
holds for general Lipschitz domains Ω ⊂ Rd, d ≤ 3, triangulated by a family of quasi-uniform
meshes. This was shown for instance in [BX91, Thm. 3.2].

The error estimate remains true if both norms are “shifted”. Let g ∈ U , then

‖ιU (g −Qig)‖V∗ = sup
v∈V

((I −Qi)g, v)
‖v‖V

≤ sup
v∈V

‖g‖‖(I −Qi)v‖
‖v‖V

≤ C√
λmax
i

‖g‖.

Here, we have used the approximation property (3.18) and that Qi is self-adjoint as operator in
U , i.e., (Qiu, v) = (u,Qiv) holds for all u, v ∈ U , which follows directly from (3.2). This proves
the next lemma:

Lemma 3.4 From the approximation property (3.18) follows

‖ιU (g −Qig)‖V∗ ≤
C√
λmax
i

‖g‖ for all g ∈ U . (3.19)

If we consider non-smooth elements gi ∈ Vi where Qi−1gi = 0, we obtain from the previous lemma
that

‖ιU (gi)‖V∗ = ‖ιU (gi −Qi−1gi)‖V∗ ≤
C√
λmax
i−1
‖gi‖ = C

√
τ√

λmax
i

‖gi‖. (3.20)
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3. Unconstrained problems

On the other hand, we get for the U-norm

‖gi‖ = sup
u∈U

(u, gi)
‖u‖

≤ sup
u∈U

(Qiu, gi)
‖Qiu‖

= sup
ui∈Vi

(ui, gi)
‖ui‖

≤
√
λmax
i sup

ui∈Vi

(ui, gi)
‖ui‖V

≤
√
λmax
i sup

v∈V

(v, gi)
‖v‖V

=
√
λmax
i ‖ιU (gi)‖V∗ ,

where we have used that ‖Qiu‖ ≤ ‖u‖ for all u ∈ U , which follows directly from the orthogonality
of the projection (3.2). This shows that on the space of oscillatory functions the U - and V∗-norm
are equivalent with constants that are level dependent but share the same asymptotic behaviour
for λmax

i →∞: √
λmax
i

C
√
τ
‖ιU (gi)‖V∗ ≤ ‖gi‖ ≤

√
λmax
i ‖ιU (gi)‖V∗ . (3.21)

A similar observation leads to

Lemma 3.5 Let (3.8), (3.18) and (3.6) be satisfied. Furthermore, let κχ > 0 be chosen such that
CQκχ < 1, where CQ denotes the stability constant from (3.6). If gi ∈ Vi is an element that is
not smooth, i.e., (3.14) holds, then

‖gi‖2 ≥ C−1τ−1(1− CQκχ)2λmax
i ‖ιU (gi)‖2V∗i .

Proof With the inverse triangle inequality, (3.7) from Lemma 3.2, and (3.14) follows

‖ιU (gi −Qi−1gi)‖V∗ ≥ ‖ιU (gi)‖V∗ − ‖ιU (Qi−1gi)‖V∗ ≥ ‖ιU (gi)‖V∗i − CQ‖ιU (Qi−1gi)‖V∗i−1

≥ (1− CQκχ)‖ιU (gi)‖V∗i .

Now the assertion follows directly from Lemma 3.4 and (3.8). �

We emphasize that in comparison to the regular case we have the stronger assumption that
CQκχ < 1, which limits the choice of κχ. In Section 3.3.2 we will derive a result similar
to the regular case with a different choice of the stationarity measure without this restric-
tion.

3.2.3. An abstract smoothing algorithm

We will consider smoothing algorithms for the quadratic trust-region subproblem

min
si∈Vi

qi(si) := (si, gi) + 1
2(si, Hisi)

subject to ‖si‖i ≤ ∆i.

(3.22)

In the following, we always assume that Hi : Vi → Vi is a linear and symmetric operator which
satisfies

(vi, Hiui) ≤ CHλmax
i ‖vi‖‖ui‖ for all ui, vi ∈ Vi (3.23)
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3.2. Level-independent Cauchy decrease

with a level-independent constant CH . We note that often the stronger assumption

(vi, Hiui) ≤ CH‖vi‖V‖ui‖V for all ui, vi ∈ Vi

is true, which just says that the bilinear form induced by the operator Hi is bounded. Justified by
Lemma 3.3 and Lemma 3.5 we make the following assumption:

Assumption 3.1 If vi ∈ Vi violates the smoothness property (2.30), i.e.,

χi−1(0) < κχχi(vi) (3.24)

holds, then
‖gi‖2 ≥ c(κχ, τ)2λmax

i χi(vi)2

is satisfied, where gi ∈ Vi is the representation of h′i(vi) according to Lemma 3.1. The constant
c(κχ, τ) > 0 must be level-independent but could depend on κχ and τ .

Lemma 3.6 Let Assumption 3.1 hold. Suppose B−1
i : Vi → Vi is a linear operator that satisfies

(B−1
i gi, HiB

−1
i gi) ≤ θ(gi, B−1

i gi) (3.25a)

with θ ∈ (0, 2),

(gi, B−1
i gi) ≥ C−1(λmax

i )−1‖gi‖2 (3.25b)

and

(gi, B−1
i gi)

‖B−1
i gi‖i

≥ C−1(λmax
i )−1/2‖gi‖, (3.25c)

where ‖·‖i denotes the trust-region norm on level i. Then si = −tB−1
i gi with stepsize

t =
{

min{1,∆i/‖B−1
i gi‖i} if (B−1

i gi, HiB
−1
i gi) > 0,

∆i/‖B−1
i gi‖i otherwise

is a feasible step of the trust-region subproblem (3.22). Moreover, if gi is not smooth in the sense
that (3.24) holds, then

−qi(si) ≥ C−1c(κχ, τ)(1− θ/2)χi(vi) min
{
∆i, c(κχ, τ)χi(vi)

}
is satisfied for the predicted reduction of the step si.

Proof The feasibility of si follows straightforwardly from the definition of t.

Inserting si in −qi yields

−qi(−tB−1
i gi) = − t

2

2 (B−1
i gi, HiB

−1
i gi)i + t(gi, B−1

i gi).

If (B−1
i gi, HiB

−1
i gi) ≤ 0, it follows from the choice of the stepsize t and (3.25c):

−qi(−tB−1
i gi) ≥ t(gi, B−1

i gi) = ∆i
(gi, B−1

i gi)
‖B−1

i gi‖i
≥ C−1(λmax

i )−1/2∆i‖gi‖.
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3. Unconstrained problems

By Assumption 3.1 and θ ≥ 0, we further obtain

−qi(−tB−1
i gi) ≥ C−1∆ic(κχ, τ)χi(vi) ≥ C−1∆ic(κχ, τ)(1− θ/2)χi(vi).

Hence, in this case the assertion is valid.

Let us now assume that (B−1
i gi, HiB

−1
i gi) > 0. Then from (3.25a) and t ≤ 1 we infer

−qi(−tB−1
i gi) ≥ −t2

θ

2(gi, B−1
i gi) + t(gi, B−1

i gi) ≥ t(1− θ/2)(gi, B−1
i gi). (3.26)

For a full step (t = 1) we obtain from (3.25b) and Assumption 3.1:

−qi(−B−1
i gi) ≥ C−1(1− θ/2)(λmax

i )−1‖gi‖2 ≥ C−1c(κχ, τ)2(1− θ/2)χi(vi)2.

On the other hand, if t = ∆i/‖B−1
i gi‖i, the full step is not feasible and instead we stop at the

boundary of the trust region. From (3.26), (3.25c) and Assumption 3.1 follows:

−qi(−tB−1
i gi) ≥ C−1∆i(1− θ/2)(λmax

i )−1/2‖gi‖
≥ C−1∆ic(κχ, τ)(1− θ/2)χi(vi).

Taking the minimum of the estimates completes the proof. �

The choice of the smoothing operator B−1
i is crucial. A simple example is the following operator

which returns a steepest descent step. If the curvature of qi in gradient direction is positive,
the step that minimizes (3.22) neglecting the trust-region condition in direction −gi is given
by

si = − ‖gi‖2

(gi, Higi)︸ ︷︷ ︸
=:ωi

gi. (3.27)

If (gi, Higi) ≤ 0, the quadratic function qi is not bounded from below in direction −gi, and as
a consequence, the step that achieves the maximum descent lies on the boundary of the trust
region. The next lemma shows that an operator B−1

i based on this considerations satisfies the
assumptions of Lemma 3.6.

Lemma 3.7 Let

‖vi‖i ≤ C
√
λmax
i ‖vi‖ (3.28)

and (3.23) hold. Then the operator

B−1
i =

{
ωiIi if (gi, Higi) > 0,
Ii else,

where ωi is defined as in (3.27) and Ii denotes the identity operator on Vi, satisfies (3.25a)
to (3.25c).
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3.2. Level-independent Cauchy decrease

Proof We first consider the case (gi, Higi) > 0. From (3.23) we infer

(gi, B−1
i gi) ≥

‖gi‖4

CHλmax
i ‖gi‖2

≥ C−1
H (λmax

i )−1‖gi‖2,

which shows (3.25b) with C = CH . Furthermore,

(B−1
i gi, HiB

−1
i gi) = ‖gi‖4

(gi, Higi)
= (gi, B−1

i gi)

holds, which implies (3.25a) with θ = 1.

Finally, from ωi > 0 and (3.28) we obtain

(gi, B−1
i gi)

‖B−1
i gi‖i

= ‖gi‖
2

‖gi‖i
≥ C−1(λmax

i )−1/2‖gi‖,

which shows (3.25c).

If (gi, Higi) ≤ 0, then also (B−1
i gi, HiB

−1
i gi) ≤ 0. Since (gi, B−1

i gi) = ‖gi‖2 ≥ 0, (3.25a) is
obviously true for every θ ∈ (0, 2). We recall that we postulated λmax

i ≥ 1 and hence (3.25b) and
(3.25c) are also satisfied with C = 1. �

Remark 3.3 The step that is induced by the operator B−1
i from the last lemma happens to

be just the standard Cauchy step. It satisfies si = −t∗gi, where t∗ is the solution of the one
dimensional problem

min
t>0

qi(−tgi) subject to t‖gi‖i ≤ ∆i.

If we choose instead ωi = βλ−1
i in (3.27) with β ∈ (0, 2) and λi as the maximal eigenvalue of Hi,

the smoother corresponds to the Richardson method applied to the equation Hisi = −gi. The
proof of Lemma 3.7 for this choice of ωi is straightforward.

3.2.4. Smoothers for strictly convex trust-region
subproblems

Lemma 3.7 shows that a properly scaled gradient step can achieve a level-independent Cauchy
decrease. However, numerical tests suggests that this type of step is inadequate, because it does not
smooth the gradient very well and hence a lot of steps are necessary before the smoothness property
(2.30) is satisfied. Better results are obtained by algorithms that are based on subspace correction
methods. In classical multigrid theory, these correspond to smoothers obtained by matrix splittings
as for example the (block) Jacobi or Gauss-Seidel methods. We will formulate these smoothers in
an abstract setting which is based on [BZ00, Xu92, Yse93].

In this section we assume that the quadratic problem is strictly convex. This is the case if
and only if Hi is positive definite, i.e., (si, Hisi) > 0 for all 0 6= si ∈ Vi. We show, using the
theory in [BZ00], that for a large class of operators B−1

i the assumptions in Lemma 3.6 are
satisfied. We consider methods that minimize the function qi either in parallel or successively
over certain subspaces. This leads to two different types of smoothers: additive and multiplicative
smoothers.
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3. Unconstrained problems

We assume a decomposition of the space Vi into li subspaces V1
i , . . . ,V

li
i such that

Vi =
li∑
j=1
Vji .

Note that this does not have to be a direct sum. Every element gi ∈ Vi is represented by at least
one sum of elements in Vji , i.e.,

gi =
li∑
j=1

gji with gji ∈ V
j
i .

This sum may or may not be unique. For each j we define operators Hj
i : Vji → V

j
i by the

relation
(vji , H

j
i u

j
i ) = (vji , Hiu

j
i ) for all uji , v

j
i ∈ V

j
i

and the U-orthogonal projections Qji : Vi → Vji by

(Qjigi, v
j
i ) = (gi, vji ) for all vji ∈ V

j
i and gi ∈ Vi.

The additive smoother is defined as the sum of the minima of qi on each subspace Vji damped by
a factor ω. It can be calculated by the following algorithm:

Algorithm 3.1 (ASmoother)
Choose a damping factor ω > 0.

Step 1 Minimize ϕi(sji ) := (Qjigi, s
j
i ) + 1

2(sji , H
j
i s
j
i ) on Vji for all j = 1, . . . , li and denote the

solutions by sj∗i .

Step 2 Set si := ω
∑li
j=1 s

j∗
i and return with si.

The minimum of the function ϕi on the space Vji is attained at sj∗i = −(Hj
i )−1Qjigi. Therefore,

the algorithm above corresponds to the operator defined by

B̃−1
i := ω

li∑
j=1

(Hj
i )−1Qji , (3.29)

and si = −B̃−1
i gi holds. The operators Hj

i are symmetric, which follows from the symmetry of
Hi. Hence, from

(wi, B̃−1
i gi) = ω

li∑
j=1

(wi, (Hj
i )−1Qjigi) = ω

li∑
j=1

((Hj
i )−1Qjiwi, Q

j
igi) = (B̃−1

i wi, gi)

follows the symmetry of B̃−1
i Furthermore, because of

(gi, B̃−1
i gi) = ω

li∑
j=1

(gi, (Hj
i )−1Qjigi) = ω

li∑
i=1

(Qjigi, (H
j
i )−1Qjigi) ≥ 0,
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3.2. Level-independent Cauchy decrease

it is positive semi-definite. If (gi, B̃−1
i gi) = 0, it follows from the positive definiteness of Hj

i that
Qjigi = 0 for all j. Now using gi = ∑li

j=1 g
j
i we obtain

(gi, gi) =
li∑
j=1

(gi, gji ) =
li∑
j=1

(Qjigi, g
j
i ) = 0.

Hence, gi = 0 and the operator B̃−1
i is positive definite.

All subspace minimizations are independent from each other and can thus be calculated in
parallel. For this reason these additive methods are often also called parallel subspace correction
methods.

Instead of minimizing the functions independently on each subspace, it is also possible to update the
step after each iteration. This leads to multiplicative smoothers:

Algorithm 3.2 (MSmoother)
Step 0 Set si = 0 and j = 1.

Step 1 Minimize ϕi(sji ) := (gi, si + sji ) + 1
2(si + sji , Hi(si + sji )) on Vji and denote the solution

by sj∗i .

Step 2 Update si ← si + sj∗i . If j < li, set j ← j + 1 and go to Step 1, otherwise return with
si.

Since the quadratic problems in Step 1 are strictly convex, the solutions sj∗i can be expressed
by

sj∗i = −(Hj
i )−1Qji (gi +Hisi). (3.30)

As in the previous case, the algorithm induces a linear operator:

B−1
i :=

I − li∏
j=1

(
I − (H li−j+1

i )−1Qli−j+1
i Hi

)H−1
i , (3.31)

and si = −B−1
i gi holds. This can be seen as follows: Define wji by w

j
i := ∑j

k=1 s
k∗
i for j = 1, . . . , li

and w0
i := 0. Then with s∗i := −H−1

i gi we obtain

wji − s
∗
i = wj−1

i + sj∗i − s
∗
i = wj−1

i − (Hj
i )−1Qji (gi +Hiw

j−1
i )− s∗i

= (I − (Hj
i )−1QjiHi)wj−1

i + (Hj
i )−1QjiHis

∗
i − s∗i = (I − (Hj

i )−1QjiHi)(wj−1
i − s∗i ).

Hence, the final step si satisfies,

si = wlii − s
∗
i + s∗i =

I − li∏
j=1

(
I − (H li−j+1

i )−1Qli−j+1
i Hi

) s∗i = −B−1
i gi.
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3. Unconstrained problems

The multiplicative operator B−1
i is not symmetric in general. A symmetric version can be con-

structed by additionally minimizing qi on the subspaces in reverse order. This leads to

B̄−1
i =

I − li∏
j=1

(
I − (Hj

i )−1QjiHi

) li∏
j=1

(
I − (H li−j+1

i )−1Qli−j+1
i Hi

)H−1
i . (3.32)

Another representation of the symmetric variant is

B̄−1
i = B−Ti +B−1

i −B
−T
i HiB

−1
i ,

which can be shown by a straightforward calculation.

Remark 3.4 For the following theory it is not strictly necessary to solve the optimization
problems on each subspace in Algorithms 3.1 and 3.2 exactly. Instead, one can replace the inverse
operator (Hj

i )−1 in (3.30) by an approximation Rji . Suppose, there is θ̃ ∈ (0, 2) and ω̃ > 0 such
that

(Rjiv
j
i , H

j
iR

j
iv
j
i ) ≤ θ̃(v

j
i , R

j
iv
j
i ) for all vji ∈ V

j
i ,

(vji , R̄
j
iv
j
i ) ≥

ω̃

λi
(vji , v

j
i ) for all vji ∈ V

j
i ,

where R̄ji = Rji + (Rji )T − (Rji )TH
j
iR

j
i and λi denotes the largest eigenvalue of Hi. Under these

assumptions on Rji , Theorem 3.1 can also be proven (cf. [BZ00, Thm. 8.3, Thm. 8.4]). As a
simple example consider Rji = θj(Hj

i )−1, θj ∈ (0, 2), which clearly satisfies the assumptions. This
allows us to use SOR (successive overrelaxation) type smoothers.

Example 3.2 A simple but important example is the direct decomposition of Vi into the one
dimensional spaces spanned by the li = ni basis functions φji , i.e., setting V

j
i = {αφji |α ∈ R}. In

this case the operators Hj
i and Qji are given by

Hj
i v
j
i = (φji , Hiφ

j
i )

(φji , φ
j
i )

vji and Qjigi = (φji , gi)
(φji , φ

j
i )
φji . (3.33)

The additive smoother becomes

B̃−1
i gi = ω

li∑
j=1

(gi, φji )
(φji , Hiφ

j
i )
φji .

Let us assume that we have representations
≈
Hi ∈ Rni×ni of Hi and ∼gi ∈ Rni of gi, which have

the entries
≈
Hjk
i = (φji , Hiφ

k
i ) and

∼
gji = (gi, φji ). These are the typical representations when using

finite element discretizations (cf. Section 3.4 for more details). Using the additive smoother, we
get for the j-th entry of the coefficient vector s̃ji = −ω

∼
gji /≈H

jj
i and thus s̃i = −ωDiag(

≈
Hi)−1

∼
gi.

This is exactly one damped Jacobi iteration applied to the linear optimality system
≈
His̃i = −

∼
gi.

In a similar way, the multiplicative smoother is connected to a Gauss-Seidel algorithm, or to a
symmetric Gauss-Seidel algorithm when using the symmetric variant. From an optimization point
of view we minimize the quadratic function successively along the coordinate directions. This is
also known as sequential coordinate minimization. More details on the classical algorithms can be
found, e.g., in [Var62] or [Saa03]. It should be noted that the effort to calculate one iteration of
the multiplicative algorithm for this decomposition is of order of a single matrix-vector product.
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3.2. Level-independent Cauchy decrease

Not every space decomposition leads to smoothers that satisfy the assumptions from Lemma 3.6.
For this we need to impose certain requirements. Let the matrix γ1 be defined by

γjk1 =
{

0 if (vji , Hiv
k
i ) = 0 for all vji ∈ V

j
i , v

k
i ∈ Vki ,

1 otherwise.
(3.34)

We assume that there exists a constant ν1 ≥ 1, independent of i, such that

‖γ1‖∞ ≤ ν1. (3.35)

This condition says that, independent of the level, only a fixed number of subspaces are not
orthogonal with respect to the inner product induced by the operator Hi. In many cases the
number ν1 is small compared to the number of subspaces. Note that if ν1 = 1, we have an
orthogonal decomposition of Vi and one iteration of Algorithm 3.1 or 3.2 returns a step si that
exactly minimizes qi.

The second assumption is that for every gi ∈ Vi there exists a decomposition gi = ∑li
j=1 g

j
i ,

gji ∈ V
j
i , such that

li∑
j=1
‖gji ‖

2 ≤ C‖gi‖2 (3.36)

with a constant C independent of i.

Under these two assumptions, the following theorem can be proven:

Theorem 3.1 Let {Vji }
li
j=1 be a decomposition of Vi such that (3.35) and (3.36) are satisfied.

Then it holds:

1. The additive smoother B̃−1
i , defined by (3.29), satisfies (3.25a) and (3.25b) for ω = θ/ν1.

2. The smoother B̄−1
i , defined by (3.32), satisfies assumptions (3.25a) and (3.25b).

Proof Instead of (3.25b), we show

(gi, B−1
i gi) ≥ Cλ−1

i ‖gi‖
2 (3.37)

where λi denotes the largest eigenvalue of Hi. The estimate (3.37) implies (3.25b) because of
λi ≤ CHλmax

i , which follows from (3.23):

λi = sup
vi∈Vi

(vi, Hivi)
‖vi‖2

≤ CHλmax
i .

Under the stated assumptions, for the additive smoother (3.25a) follows directly from Theorem 8.1,
and (3.37) from Theorem 8.7 in [BZ00].

In Theorem 8.2 in [BZ00] it is shown that (3.25a) is satisfied for the multiplicative smoother and
(3.37) for the symmetric smoother provided that assumptions (3.35) and (3.36) are satisfied. We
can formulate the symmetric multiplicative smoother (3.32) by the definition of the multiplicative
smoother on a new decomposition of Vi into 2li subspaces, with V̄ji = Vji for j ≤ li and
V̄ji = V2li+1−j

i for j > li. This decomposition satisfies assumption (3.35) with ν̄1 ≤ 2ν1 and (3.36)
with the same constant C. Hence, (3.25a) holds also in the symmetric case. �
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3. Unconstrained problems

Whether assumption (3.25c) is satisfied depends also on the choice of the trust-region norm ‖·‖i.
The nnext lemma shows that if the trust-region norm is not stronger than the norm induced by
the operator Hi, (3.25c) holds without additional assumptions. This for instance is the case when
‖·‖i = ‖·‖V and the norm induced by Hi is equivalent to ‖·‖V : There exists an α > 0 independent
of i such that

(si, Hisi) ≥ α‖si‖2V for all si ∈ Vi.
The last assumption is satisfied for example if Hi is a suitable discretization of an elliptic operator
on V, e.g., the negative Laplace operator.

Lemma 3.8 Let ‖gi‖i ≤ C
√

(gi, Higi) for all gi ∈ Vi. If B−1
i satisfies (3.25b) and (3.25a), then

condition (3.25c) holds as well.
Proof

(gi, B−1
i gi)

‖B−1
i gi‖i

≥ C−1 (gi, B−1
i gi)√

(B−1
i gi, HiB

−1
i gi)

≥ C−1
√
θ

√
(gi, B−1

i gi) ≥
C−1
√
θ

(λmax
i )−1/2‖gi‖.

�

If the trust-region norm only satisfies

‖si‖i ≤ C
√
λi‖si‖ for all si ∈ Vi, (3.38)

where λi denotes the largest eigenvalue of Hi, we can show (3.25c) under a stronger con-
dition on the decomposition of V. For this we define similar to γ1 a matrix γ0 with en-
tries

γjk0 =
{

0 if (vji , vki ) = 0 for all vji ∈ V
j
i , v

k
i ∈ Vki ,

1 otherwise.

We demand

‖γ0‖∞ ≤ ν0, (3.39)

with a constant ν0 independent of i.

Lemma 3.9 Let the space decomposition of Vi satisfy (3.35), (3.36), (3.38), (3.39) and

λi
C
‖vji ‖

2 ≤ (vji , H
j
i v
j
i ) ≤ Cλi‖v

j
i ‖

2 for all vji ∈ V
j
i and j = 1, . . . , li. (3.40)

Then both the operator B−1
i = B̃−1

i defined by (3.29) and B−1
i = B̄−1

i defined by (3.32) satisfy
(3.25c).

Proof By Theorem 8.8 in [BZ00] it follows that under the stated assumptions

(vi, B−1
i vi) ≤ Cλ−1

i ‖vi‖
2 for all vi ∈ Vi (3.41)

holds for B−1
i = B̃−1

i and B−1
i = B̄−1

i . From (3.38) follows ‖B−1
i gi‖2i ≤ Cλi‖B

−1
i gi‖2. Since B−1

i

is symmetric and positive definite, we obtain from (3.41):

‖B−1
i gi‖2i ≤ Cλi(B

−1/2
i gi, B

−1
i B

−1/2
i gi) ≤ C(gi, B−1

i gi).
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3.2. Level-independent Cauchy decrease

Hence, from (3.25b) it follows

(gi, B−1
i gi)

‖B−1
i gi‖i

≥ C−1 (gi, B−1
i gi)√

(gi, B−1
i gi)

≥ C−1√
λmax
i

‖gi‖.
�

Remark 3.5 The statement of Lemma 3.9 stays true if the operators (Hj
i )−1 are replaced by

approximations Rji as defined in Remark 3.4 in the definition of B̃−1
i and B̄−1

i and assumption
(3.40).

Example 3.3 The decomposition from Example 3.2 satisfies (3.35) when the number of non-zero
entries in each row of the stiffness matrix (φji , Hiφ

k
i )jk and the mass matrix (φji , φki )jk is bounded

independently of i. This is true in the majority of cases when using finite elements for the
discretization, since the support of the nodal basis functions is bounded to a small number of
simplices. To show (3.36), we assume that the Euclidean norm of the coefficient vectors ṽi of an
element vi ∈ Vi fulfills

1
C
cdi ‖vi‖2 ≤ ‖ṽi‖22 ≤ Ccdi ‖vi‖2, vi =

ni∑
j=1

ṽjiφ
j
i , (3.42)

where cdi is a level-dependent constant. In the setting of Example 3.1 this is a well-known fact with
cdi = h−di . It follows from the shape regularity of the triangulation, cf., e.g., [Bra07, Thm. 2.5].
With (3.42) we can estimate

li∑
j=1
‖ṽjiφ

j
i‖

2 =
li∑
j=1
|ṽji |

2‖φji‖
2 ≤ C(cdi )−1

li∑
j=1
|ṽji |

2 ≤ C‖vi‖2. (3.43)

The lower bound in (3.40) is satisfied for instance if the norm induced by Hi is equivalent to ‖·‖V
and ‖φji‖2V ≥ C−1λmax

i ‖φji‖2 holds. The last inequality says that the nodal basis functions are
not completely smooth but have a fixed and level independent non-smooth part. If the estimate
‖φji‖ ≤ C‖φ

j
i −Qi−1φ

j
i‖ is satisfied, it follows directly from the approximation property (3.18).

3.2.5. A smoother for non-convex problems

The techniques used in the convex case cannot be transferred one-to-one to the non-convex case.
One reason is that in the proofs a Cauchy-Schwarz type inequality for the Hi inner product
is heavily used, which does not hold in the non-convex case. Moreover, the following simple
example in R2 shows that we cannot expect a sufficient minimum decrease for general subspace
minimization algorithms like Algorithm 3.2:

Example 3.4 Let ε ∈ (0, 1) and q : R2 → R,

q(x) = gTx+ 1
2x

THx :=
(
ε
1

)T
x+ 1

2x
T

(
ε 1
1 1

)
x.
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3. Unconstrained problems

Independent of ε, the eigenvalues of H are in the interval

[(1−
√

5)/2, 2]

and therefore (3.23) is satisfied with CH = 2 for the choice ‖·‖ = ‖·‖V = ‖·‖2. We apply the
multiplicative subspace correction algorithm (Algorithm 3.2) to q where we use the decomposition
of R2 into the subspaces which are spanned by the unit vectors e1 = (1, 0)T and e2 = (0, 1)T . This
decomposition satisfies (3.35) and (3.36). We assume that the trust region is large enough to not
influence the step that we calculate in the following.

• We start with s = 0 and j = 1. In the first minimization in Step 1 we obtain the solution
s1∗ = − gT e1

eT1 He1
e1 = −e1. The update in Step 2 yields s = −e1.

• Since ∇q(s) = 0, s is a stationary point. The curvature in direction e2 is positive and
therefore t = 0 is the global minimum of t 7→ q(s+ te2). So Algorithm 3.2 returns with the
step s = −e1.

• The descent of this step, however, is q(0)− q(s) = 0 + ε− ε
2 = ε

2 ≤
ε
2‖g‖

2
2. Therefore, the

descent becomes arbitrary small for ε→ 0 and we cannot guarantee a minimum decrease
that only depends on ‖g‖2 and ‖H‖2.

We have already seen that the steepest descent step achieves level-independent Cauchy decrease
even in the non-convex case. The goal of this section is to establish a smoothing algorithm that is
more similar to the classical additive and multiplicative smoothers introduced in the last section.
For this, we assume that we have a decomposition of Vi into subspaces Vji ⊂ Vi, j = 1, . . . , p,
where each subspace is the linear span of lji basis functions

Φj
i := {φj1i , φ

j2
i , . . . , φ

jlji
i } ⊂ {φ

j
i , |, j = 1, . . . , ni}.

Furthermore, we suppose that the basis functions in Φj
i are pairwise Hi-orthogonal, i.e, for all

j = 1, . . . , p it holds

(φji , Hiφ
j
i

′) = 0 for φji , φ
j
i

′ ∈ Φj
i with φ

j
i 6= φji

′
. (3.44)

We stress that the number p is assumed to be level-independent.

In a typical finite element setting the support of the nodal basis functions are small which leads
to a sparse stiffness matrix, i.e., for a fixed j, (φji , Hiφ

k
i ) 6= 0 only for a small number of different

k. This number does not depend on the meshsize of the triangulation (cf. also Example 3.3) and
is level-independent for shape-regular triangulations. By graph coloring arguments it follows that
in this case a decomposition that satisfies (3.44) exists (cf. Section 3.4.1 for more details). An
example is given in Figure 3.3, where we assume that the support of each nodal basis function
consists only of the triangles surrounding the node. This is the case for piecewise linear finite
elements. The supports of the nodal basis functions belonging to the same color are disjunct
and hence (3.44) with p = 4 is satisfied. Note that in this case the functions in Φj

i are also
U-orthogonal. Another typical example is the red-black or checkerboard coloring, which can be
used in the finite differences setting of Example 2.2. Here the grid is divided into red and black
points (like on a checkerboard) and each unit vector corresponding to a red resp. black point is
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3.2. Level-independent Cauchy decrease

support

Figure 3.3.: Example coloring of a triangulation with four colors

independent in the sense of (3.44). More details about this classical coloring in the context of
finite differences can be found for instance in [TOS01].

Using this decomposition we consider the following partial successive subspace correction algo-
rithm:

Algorithm 3.3 (PSSC ({Φj
i }j, Hi, gi))

Choose constants α > 0, θ ∈ (0, 2) and Cα ≥ α.

Step 0 For every j ∈ {1, . . . , p} calculate Θj = ∑
φji∈Φji

(φji , gi)2. Define the ordered set of
indices J = (J1, . . . , Jp) such that ΘJk ≥ ΘJk+1 for k = 1, . . . , p− 1. Set k = 1, j = J1

and s0
i = 0.

Step 1 For every element φji ∈ Φj
i calculate the step size

t
φji

= −(gi +His
k−1
i , φji )/w(φji , Hi)

where

w(φji , Hi) :=
{

(φji , Hiφ
j
i ) if (φji , Hiφ

j
i ) > αλmax

i ‖φji‖2,
Cαλ

max
i ‖φji‖2 else.

Step 2 Set ski = sk−1
i + θ

∑
φji∈Φji

t
φji
φji .

Step 3 If ‖ski ‖i ≤ ∆i and k < p, set k ← k + 1, j = Jk and go to Step 1. If ‖ski ‖i ≤ ∆i and
k = p, return with ski .

Step 4 Set ŝki = sk−1
i +t(ski −sk−1

i ) with the maximal stepsize 0 < t ≤ 1 such that ‖ŝki ‖i ≤ ∆i

holds. If −qi(ŝki ) ≥ −qi(sk−1
i ), return with ŝki , otherwise with sk−1

i .

The main idea of the algorithm is to identify a partition where we could expect a good descent.
We then make a step in each basis direction in this partition as in the additive smoother. If
(φji , Hiφ

j
i ) > α‖φji‖2V , the step length t

φji
is chosen such that t

φji
φji minimizes the quadratic function

in the direction φji , i.e., solves mint ϕji (t) := qi(sk−1
i + tφji ). In the other case, the curvature of qi

59



3. Unconstrained problems

in this direction is small, or even negative. The algorithm exploits this fact, but it is necessary
to limit the length of the step in this direction. Since the elements of Φj

i are Hi-orthogonal, the
optimizations along these are independent of each other and we can successfully handle the case
where the curvature is negative. Because of the ordering of the partition, the step ŝ1

i already
achieves (under suitable assumptions) enough descent to show the fraction of Cauchy decrease
condition.

To show that a step calculated by Algorithm 3.3 satisfies the Cauchy decrease condition, we need
another assumption similar to (3.39): For each j = 1, . . . , p define the matrix γ0,j ∈ {0, 1}l

j
i×l

j
i

by

γkk
′

0,j :=
{

0 if (φjki , φ
jk′

i ) = 0,
1 otherwise.

We assume that there is a level-independent constant ν0 with

ν0 ≥ ‖γ0,j‖∞ for all j = 1, . . . , p. (3.45)

This is a rather weak assumption, which is satisfied with ν0 = 1 for instance if the basis functions
in each set Φj

i are also U-orthogonal. Furthermore, if (3.39) is satisfied for the decomposition of
Vi into the spaces spanned by the nodal basis functions, then (3.45) holds as well with ν̂0 = ν0.
The following Cauchy-Schwarz type inequality, which was similarly proven in [BZ00], is the main
reason for this assumption:

Lemma 3.10 Let X be an inner product space and vi, ui ∈ X, i = 1, . . . , n. Define γ ∈ {0, 1}n×n
by

γij =
{

0 if (vi, uj)X = 0,
1 else.

The following estimate holds with ν = max{‖γ‖∞, ‖γ‖1}:

n∑
i,j=1
|(vi, uj)X | ≤ ν

√√√√ n∑
i=1

(vi, vi)X

√√√√ n∑
j=1

(ui, ui)X .

If γ is symmetric, we have ν = ‖γ‖∞.

Proof Note that∑n
j=1 γ

ij ≤ ν for all i and similar∑n
i=1 γ

ij ≤ ν for all j. We set ‖·‖X =
√

(·, ·)X .
Using the Cauchy-Schwarz inequality we obtain

n∑
i,j=1
|(vi, uj)X | ≤

n∑
i,j=1

γij‖vi‖X‖uj‖X ≤

√√√√ n∑
i,j=1

γij‖vi‖2X

√√√√ n∑
i,j=1

γij‖uj‖2X

≤

√√√√ν n∑
i=1
‖vi‖2X

√√√√ν n∑
j=1
‖uj‖2X = ν

√√√√ n∑
i=1

(vi, vi)X

√√√√ n∑
j=1

(ui, ui)X . �

For the following theorem, we suppose that (3.42) holds, i.e.,

1
C
cdi ‖vi‖2 ≤ ‖ṽi‖22 ≤ Ccdi ‖vi‖2 for all vi =

ni∑
j=1

ṽjiφ
j
i
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3.2. Level-independent Cauchy decrease

is satisfied. A simple consequence is the following upper bound on the V-norm of the basis
functions:

‖φji‖
2
V ≤ λmax

i ‖φji‖
2 ≤ C

cdi
λmax
i . (3.46)

Furthermore, from

‖vi‖2 = (vi,
ni∑
m=1

ṽmi φ
m
i ) =

ni∑
m=1

ṽmi (vi, φmi ) ≤ ‖ṽi‖2

√√√√ ni∑
m=1

(vi, φmi )2 ≤
√
Ccdi ‖vi‖

√√√√ ni∑
m=1

(vi, φmi )2,

we infer
ni∑
m=1

(vi, φmi )2 ≥ 1
Ccdi
‖vi‖2. (3.47)

The next theorem shows that a step generated by Algorithm 3.3 achieves a level-independent
Cauchy decrease, when the gradient is not smooth.

Theorem 3.2 Let assumptions (3.23), (3.8), (3.18), (3.42) and (3.45) hold. Furthermore, assume
that Cα ≤ CH and

‖vi‖i ≤ C
√
λmax
i ‖vi‖ for all vi ∈ Vi. (3.48)

Then the step ŝi generated by Algorithm 3.3 is feasible for the trust-region subproblem. Moreover,
if Assumption 3.1 and (3.14) hold, the predicted reduction of the step satisfies

−qi(ŝi) ≥ C−1p−1/2 2θ − θ2

2CH
c(κχ, τ)χi(vi) min

{
p−1/2c(κχ, τ)χi(vi),

α

θ
√
ν̂0

∆i

}
with a level-independent constant C > 0.

Proof The feasibility follows directly from the conditions in Step 3 and Step 4 of the algorithm.

To show the bound on the predicted reduction of qi, we start by estimating the descent of the
step ŝ1

i after the first iteration. It is given by

ŝ1
i := ts1

i = tθ
∑
φji∈Φji

t
φji
φji

where t := min{1,∆i/‖s1
i ‖i}. Inserting the step into the quadratic function yields

−qi(ŝ1
i ) = tθ

lji∑
m=1

(gi, φjmi )2

w(φjmi , Hi)
− t2θ2

2

 lji∑
m=1

(gi, φjmi )
w(φjmi , Hi)

φjmi ,

lji∑
m′=1

(gi, φjm
′

i )
w(φjm′i , Hi)

Hiφ
jm′

i

 .
Since all basis functions in Φj

i are Hi-orthogonal, the last expression simplifies to

−qi(ŝ1
i ) =

lji∑
m=1

[
tθ

(gi, φjmi )2

w(φjmi , Hi)
− t2θ2

2
(gi, φjmi )2

w(φjmi , Hi)2

(
φjmi , Hiφ

jm
i

) ]
.
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3. Unconstrained problems

Now, we look at a fixed term of the sum. From the definition of the function w and (3.23) follows

am := tθ
(gi, φjmi )2

w(φjmi , Hi)
− t2θ2

2
(gi, φjmi )2

w(φjmi , Hi)2

(
φjmi , Hiφ

jm
i

)
=
(
tθ − t2θ2

2

)
(gi, φjmi )2

(φjmi , Hiφ
jm
i )

≥ t2θ − θ
2

2
(gi, φjmi )2

CHλmax
i ‖φjmi ‖2

if (φjmi , Hiφ
jm
i ) > αλmax

i ‖φjmi ‖2. In the case (φjmi , Hiφ
jm
i ) ≤ αλmax

i ‖φjmi ‖2, we can derive the
same estimate:

am ≥ tθ
(gi, φjmi )2

Cαλmax
i ‖φjmi ‖2

− t2θ2

2
(gi, φjmi )2

(λmax
i )2C2

α‖φ
jm
i ‖4

αλmax
i ‖φjmi ‖

2 ≥ t2θ − θ
2

2
(gi, φjmi )2

CHλmax
i ‖φjmi ‖2

.

Hence, we have

−qi(ŝ1
i ) ≥ t

2θ − θ2

2CHλmax
i

( lji∑
m=1

(gi, φjmi )2

‖φjmi ‖2

)
. (3.49)

Using the estimates (3.46), (3.47) and ΘJ1 ≥ ΘJk for all k = 1, . . . , p we conclude

lji∑
m=1

(gi, φjmi )2

‖φjmi ‖2
≥ cdi
C

ΘJ1 ≥ cdi
pC

ni∑
m=1

(gi, φmi )2 ≥ C−1p−1‖gi‖2

≥ C−1p−1c(κχ, τ)2λmax
i χi(vi)2,

(3.50)

where we have used Assumption 3.1 to derive the last estimate. If we make the full step, i.e.,
t = 1, we hence obtain for the predicted reduction

−qi(s1
i ) ≥

2θ − θ2

2CH
C−1p−1c(κχ, τ)2χi(vi)2. (3.51)

On the other hand, if t = ∆i/‖s1
i ‖i, it follows from (3.48) that t ≥ ∆i/(C

√
λmax
i ‖s1

i ‖) holds.
Lemma 3.10 applied to Vji then yields

‖s1
i ‖2 = θ2

lji∑
m,m′

(t
φjmi

φjmi , t
φjm

′
i

φjm
′

i ) ≤ θ2ν̂0

lji∑
m=1

(t
φjmi

)2‖φjmi ‖
2.

From the definition of w it follows that w(φjmi , Hi) ≥ αλmax
i ‖φjmi ‖2 for m = 1, . . . , lji . Therefore,

‖s1
i ‖2 ≤ θ2ν̂0

lji∑
m=1

(gi, φjmi )2

w(φjmi , Hi)2
‖φjmi ‖

2 ≤ θ2ν̂0
α2λmax

i

lji∑
m=1

(gi, φjmi )2

λmax
i ‖φjmi ‖2

.

Inserting t in (3.49) yields

− 2CH
2θ − θ2 qi(ŝ

1
i ) ≥

∆i

C
√
λmax
i ‖s1

i ‖

 lji∑
m=1

(gi, φjmi )2

λmax
i ‖φjmi ‖2

 ≥ ∆iα

Cθ
√
ν̂0λmax

i

√√√√√ lji∑
m=1

(gi, φjmi )2

‖φjmi ‖2
.
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3.3. Estimating the dual norm

We can estimate the sum in the last expression by (3.50) and finally obtain

−qi(ŝ1
i ) ≥ C−1p−1/2 2θ − θ2

2CH
c(κχ, τ)χi(vi)

α

θ
√
ν̂0

∆i. (3.52)

By taking the minimum of (3.51) and (3.52) it follows that if the algorithm returns with s1
i or ŝ1

i ,
the assertion is true.

Let us now assume that we have just finished the (k− 1)th iteration with a step sk−1
i that satisfies

‖sk−1
i ‖i < ∆i. Then the next step, ski , has a lower function value than sk−1

i . This can be seen as
follows: First note that with δs := θ

∑
φji∈Φji

t
φji
φji , j = Jk it follows

−qi(sk−1
i + δs) = −qi(sk−1

i )− (gi +His
k−1
i , δs)− 1

2(δs,Hiδs).

By the same techniques as for the first step, we can now prove that the descent produced by
the step δs for the quadratic function qk−1

i (δs) := (gi + His
k−1
i , δs) + (δs,Hiδs)/2 is positive

and hence −qi(ski ) = −qi(sk−1
i + δs) ≥ −qi(sk−1

i ). The test −qi(ŝki ) ≥ −qi(sk−1
i ) in Step 4 of the

algorithm ensures that if ‖ski ‖i > ∆i, the final step will at least be as good as sk−1
i and therefore,

by induction, it obtains at least the descent of s1
i . This completes the proof. �

3.3. Estimating the dual norm

As we have seen in the previous section, we gain level-independent descent through a smoothing
step if the gradient gi is rough in the sense of (3.14). If, on the other hand, the gradient is smooth,
a successful multilevel step also achieves a descent in the objective function that is similar to
a successful smoothing step (cf. Lemma 2.9). Up to this point we have always assumed that
we can check whether (3.14) is satisfied in an iteration. However, in a concrete implementation
this task can be very expensive depending on the normed space V. In our typical setting, V is a
subspace of H1(Ω). For example let V = H1

0 (Ω), Vi ⊂ V be an finite dimensional subspace and
gi ∈ Vi. The value of the dual norm ‖ιU (gi)‖V∗i is equal to |vi|H1(Ω), where vi ∈ Vi is the solution
of

(∇vi,∇ui)L2(Ω) = (gi, ui)L2(Ω) for all u ∈ H1
0 (Ω). (3.53)

This follows from

‖ιU (gi)‖V∗i = sup
06=ui∈Vi

(gi, ui)L2(Ω)
|ui|H1(Ω)

= sup
06=ui∈Vi

(∇vi,∇ui)L2(Ω)
|ui|H1(Ω)

= |vi|H1(Ω),

where the last equality is a consequence of the Cauchy-Schwarz inequality. The solution of the dis-
crete variational equality (3.53) is in general too expensive to calculate since the condition of the re-
sulting linear system grows quadratically with the dimension of Vi.

So instead of doing an exact calculation of the quotient

‖ιU (Qi−1gi)‖V∗i−1
/‖ιU (gi)‖V∗i , (3.54)

we will approximate it in a suitable way. Based on this approximation we will then present a
new multilevel stationarity measure that can be used as a substitution for the dual norm of the
derivative.
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3.3.1. Additive multilevel preconditioner

In this section we restrict ourselves to the setting of Example 3.1. We emphasize that in this
setting, besides Ω being polygonal, no additional assumption about the domain Ω was made. In
particular, we do not make any regularity assumptions.

One way of estimating the dual norm of the gradient is to use additive multilevel preconditioners.
The idea is to apply the operator that represents one cycle of the additive smoothing algorithm
(Algorithm 3.1) using a special multilevel space decomposition. As in Example 3.2 we decompose
Vi into one dimensional subspaces spanned by the nodal basis functions. But instead of using only
φji , j = 1, . . . , ni, we also add all basis functions of the coarser spaces Vk, k < i. More precisely,
we assume the decomposition

Vi =
i∑

k=1

nk∑
j=1
Vjk, Vjk = {αφjk |α ∈ R}.

If Hi is positive definite, Algorithm 3.1 applied to this decomposition leads to the symmetric
and positive definite operator B̃−1

i (3.29) which can be used as preconditioner for instance in a
conjugate gradient (CG) algorithm. The important feature of this simple preconditioner is that
the condition number of the operator B̃−1

i Hi is bounded level-independently in many scenarios.
Moreover, even when replacing (Hj

i )−1 in (3.29) by a suitable scaling, a level-independent condition
number can be shown.

Since we want to replace the evaluation of the dual norm, we consider these method for the simple
Laplace equation (3.53).

We first look at the MDS (Multilevel diagonal scaling)-method proposed in [Zha92], which is just
Algorithm 3.1 applied to the multilevel nodal decomposition.

Theorem 3.3 In the setting of Example 3.1, the MDS preconditioner M̃−1
i : Vi → Vi defined by

M̃−1
i gi :=

i∑
k=1

nk∑
j=1

(gi, φjk)
(φjk, φ

j
k)V

φjk

satisfies
1
C

(vi, Vivi) ≤ (M̃−1
i Vivi, Vivi) ≤ C(vi, Vivi) for all vi ∈ Vi

with a constant C that is independent of i and hi.

Proof A proof is given in [Zha92, Thm. 3.1] or [Osw94, Thm. 19]. �

From the previous theorem it follows that

1
C

(gi, V −1
i gi) ≤ (gi, M̃−1

i gi) ≤ C(gi, V −1
i gi)

and hence with Lemma 3.2 we get

1
C
‖ιU (gi)‖2V∗i ≤ (gi, M̃−1

i gi) ≤ C‖ιU (gi)‖2V∗i .
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3.3. Estimating the dual norm

Therefore, the norm induced by M̃−1
i is equivalent to the dual norm and we can replace the

smoothness condition by√
(Qi−1gi, M̃

−1
i−1Qi−1gi)√

(gi, M̃−1
i gi)

=

∑i−1
k=1

∑nk
j=1

(Qi−1gi,φ
j
k
)2

(φj
k
,φj
k
)V∑i

k=1
∑nk
j=1

(gi,φjk)2

(φj
k
,φj
k
)V

≥ κ̃χ

with a suitably chosen κ̃χ.

A similar level-independent condition holds also for the even more simple BPX preconditioner
(named after its inventors Bramble, Pasciak and Xu) presented in [BPX90]:

Theorem 3.4 Under the assumptions of Example 3.1, the multilevel nodal basis preconditioner
M̂−1
i defined by

M̂−1
i gi :=

i∑
k=1

h2−d
k

nk∑
j=1

(gi, φjk)φ
j
k

satisfies
1
C

(vi, Vivi) ≤ (M̂−1
i Vivi, Vivi) ≤ C(vi, Vivi) for all vi ∈ Vi,

with a constant C that is independent of i and hi.

Proof There are various proofs of this theorem, cf., e.g., [Zha92, Thm. 3.1] , [Osw94, Thm. 19].�

Remark 3.6 Both preconditioners can be modified without changing the level-independent
condition number, by solving the coarse grid problem exactly. This leads to

M̃−1
i gi = V −1

1 Q1gi +
i∑

k=2

nk∑
j=1

(gi, φjk)
(φjk, φ

j
k)V

φjk resp. M̂−1
i gi = V −1

1 Q1gi +
i∑

k=2
h2−d
k

nk∑
j=1

(gi, φjk)φ
j
k.

3.3.2. A multilevel stationarity measure

A natural question is whether we can directly use the multilevel norms applied to gi, examined in the
last section, as stationarity measures. Since they are equivalent to the dual norm of the derivative,
they clearly induce a continuous stationarity measure in the sense of Definition 2.2. Furthermore,
Assumption 3.1 is satisfied as we will show in the next lemma.

Lemma 3.11 Assume that χi is a stationarity measure defined by

χi(vi) :=

 i∑
k=1

nk∑
j=1

〈
h′i(vi), φ

j
k

〉2
n(φjk)

1/2

, (3.55)

where n : Vi → R satisfies n(φji ) ≤ C(λmax
i )−1‖φji‖−2 for all j = 1, . . . , ni. Furthermore, let (3.42)

and (3.39) hold. Then Assumption 3.1 is satisfied with

c(κχ, τ) = C−1ν−1
0

√
1− κ2

χ.
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3. Unconstrained problems

Proof By definition of the lower-level models it follows that for all k = 1, . . . , i − 1 and
j = 1, . . . , nk

〈h′i−1(0), φjk〉 = 〈(P ii−1)∗h′i(vi), φ
j
k〉 = 〈h′i(vi), φ

j
k〉

holds which implies

χi−1(0)2 =
i−1∑
k=1

nk∑
j=1

〈
h′i(vi), φ

j
k

〉2
n(φjk).

Suppose that vi ∈ Vi satisfies (3.24). This means

i∑
k=1

nk∑
j=1

〈
h′i(vi), φ

j
k

〉2
n(φjk)−

ni∑
j=1

〈
h′i(vi), φ

j
i

〉2
n(φji ) < κ2

χ

i∑
k=1

nk∑
j=1

〈
h′i(vi), φ

j
k

〉2
n(φjk),

which is equivalent to

(1− κ2
χ)χ2

i (vi) <
ni∑
j=1

〈
h′i(vi), φ

j
i

〉2
n(φji ). (3.56)

As usual we denote the representation of h′i(vi) with respect to (·, ·) by gi. Since gi ∈ Vi, there
exists a coefficient vector g̃i with gi = ∑ni

k=1 g̃
k
i φ

k
i . Using this representation and the entries of the

matrix γ0 from (3.39), we obtain

ni∑
j=1

(gi, φji )2n(φji ) ≤ C(λmax
i )−1

ni∑
j=1

( ni∑
k=1

γjk0 (g̃ki φki , φ
j
i )‖φ

j
i‖
−1
)2

≤ C(λmax
i )−1

ni∑
j=1

( ni∑
k=1

γjk0 ‖g̃
k
i φ

k
i ‖
)2

where we have used the Cauchy-Schwarz inequality in the last step. We recall that for real
numbers am ≥ 0 ( n∑

m=1
am
)2
≤ n

n∑
m=1

a2
m

holds, which follows directly from Jensen’s inequality. Since ‖γ0‖∞ ≤ ν0, the inner sum has at
most ν0 non-zero terms for each j. Hence, we can further deduce

ni∑
j=1

(gi, φji )2n(φji ) ≤ C(λmax
i )−1ν0

ni∑
j=1

ni∑
k=1

γjk0 ‖g̃
k
i φ

k
i ‖2 ≤ C(λmax

i )−1ν2
0

ni∑
j=1
‖g̃jiφ

j
i‖

2.

Using (3.43), which follows from (3.42), to estimate the last sum we finally have

ni∑
j=1

(gi, φji )2n(φji ) ≤ C(λmax
i )−1ν2

0‖gi‖2.

Inserting this result in (3.56) yields the assertion. �
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3.4. Implementation

If the function n in (3.55) is given by

n(φjk) = (φjk, φ
j
k)
−1
V or n(φjk) = h2−d

k ,

we obtain the preconditioners of Theorem 3.3 and 3.4. Hence, it is convenient to use these
directly instead of the dual norms. Another benefit is that Assumption 3.1 is satisfied for all
κχ ∈ (0, 1) in comparison to the non-regular case, where we had to assume κχ < C−1

Q (cf.
Lemma 3.5).

Before we finish this section, we present a result that can be used in a practical implementation. As-
sume that χi, i = 1, . . . , r, are chosen as in Lemma 3.11 and that

1− κ2
χ

κ2
χ

i−1∑
k=s

nk∑
j=1

〈
h′i(vi), φ

j
k

〉2
n(φjk)

2 ≥
ni∑
j=1

〈
h′i(vi), φ

j
i

〉2
n(φji )2

holds for some s ∈ {1, . . . , i− 1}. Then it follows directly that

χi−1(0)2 ≥ κ2
χχi(vi)2

and hence the violation of the smoothness property. This can be used as a “quick test” for s near
i− 1.

3.4. Implementation

In this section we will give a short summary on how the smoothing algorithms and the dual norm
estimates can be implemented efficiently. This is important since one smoothing iteration should
be inexpensive in terms of computational costs. The same should hold for the (approximate)
evaluation of the smoothness quotient (3.54). We will show that by a suitable implementation
the number of floating point operations (flops) for the typical decomposition of Vi into the one
dimensional spaces generated by the ni basis functions (cf. Example 3.2) is of order O(ni) on
level i.

We assume that an element vi ∈ Vi is represented in terms of its coefficient vector ṽi ∈ Rni with
respect to the basis {φji}j=1,...,ni ⊂ Vi, vi = ∑ni

j=1 ṽ
j
iφ

j
i . For elements that have their origin in the

dual space, the canonical representation is given by their action on the basis. Hence, the gradient
gi is not represented by its coefficients, but by the vector

∼
gi ∈ Rni whose entries are

∼
gji = (φji , gi),

j = 1, . . . , ni.

The operators Hi are identified by matrices
≈
Hi ∈ Rni×ni such that (vi, Hiui) = ṽTi ≈Hiũi is satisfied.

Obviously, the matrices with elements
≈
Hjk
i = (φji , Hiφ

k
i ) have this property. Similarly, we have

matrices
≈
Vi for the operators Vi and furthermore we define the Gram matrix or mass matrix

≈
Gi

by
≈
Gjki = (φji , φki ). Since (ui, vi) = ũTi ≈Giṽi, these are used to calculate the inner product and the

norm on U .

With this notation the quadratic function (3.22) can be evaluated by

q̃i(s̃i) := s̃Ti ∼
gi + 1

2 s̃
T
i ≈
His̃i.
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3. Unconstrained problems

The standard Euclidean gradient of q̃i in Rni , ∇q̃i(s̃i) = (∂q̃i(s̃i)
s̃1i

, . . . , ∂q̃i(s̃i)
∂s̃
ni
i

)T , corresponds directly
to the U-representation of the Fréchet derivative of qi, i.e., for vi ∈ Vi with coefficient vector
ṽi ∈ Rni we have the identity

〈q′i(si), vi〉 = (∇Uqi(si), vi) = ∇q̃i(s̃i)T ṽi.

3.4.1. Smoothers

We will first analyze how the smoothers in this chapter and the estimates of the dual-norm can
be implemented and estimate their computational complexity.

Steepest descent step

The simple step si = −t‖gi‖2/(gi, Higi)gi, which corresponds to the minimization in direction
of the steepest descent with t as in Lemma 3.6, is surprisingly expensive to implement. The
coefficient vector s̃i of si is given by

s̃i = −t ∼
gTi ≈G

−1
i ∼
gi

(
≈
G−1
i ∼
gi)T ≈Hi≈

G−1
i ∼
gi
≈
G−1
i ∼
gi.

Due to this, we have to solve the linear system g̃i =
≈
G−1
i ∼
gi in each step. Although the dimension

of the matrix
≈
Gi depends on ni, the condition number is often level-independent, for example

in the setting of Example 3.1. Therefore, a simple iterative algorithm like a conjugate gradient
method should give an adequate approximation after a fixed number of steps independent of ni.
If we further assume that

≈
Hi and ≈

Gi are sparse, i.e., the number of entries per row is bounded
independently of i, we get that a good approximation of the step can be calculated in O(ni)
operations. However, although the condition number of

≈
Gi is level-independent, the approximate

solution of
≈
Gig̃i =

∼
gi is still quite expensive.

An alternative steepest descent step

Instead of minimizing q in the direction gi, an alternative is to search for a minimizer in direction∑ni
j=1∼

giφ
j
i . This leads to the step

si = −t
‖
∼
gi‖22

∼
gTi ≈Hi∼

gi

ni∑
j=1

(gi, φji )φ
j
i . (3.57)

As usual we denote by ‖·‖2 the Euclidean norm. The corresponding coefficient vector of the step
is hence given by

s̃i = −t
‖
∼
gi‖22

∼
gTi ≈Hi∼

gi∼
gi

and can thus be calculated without inverting the Gram matrix. Under the assumption that
≈
Hi is

sparse, the evaluation needs O(ni) flops. The next lemma gives us a result similar to Lemma 3.7
for this choice.

68



3.4. Implementation

Lemma 3.12 Let Assumption 3.1, (3.42) and (3.28) be satisfied. Furthermore, let B−1
i be defined

by

B−1
i gi := ωi

ni∑
j=1

(gi, φji )φ
j
i

with

ωi :=


‖
∼
gi‖22

∼
gTi ≈
Hi∼
gi

if
∼
gTi ≈Hi∼

gi > 0,

cdi otherwise.

Then the step si = −tB−1
i gi with

t =

min
{
1, ∆i/‖B−1

i gi‖i
}

if
∼
gTi ≈Hi∼

gi > 0,
∆i/‖B−1

i gi‖i otherwise,

fulfills
−qi(si) ≥ C−1C(κχ, τ)(1− θ/2)χi(vi) min

{
∆i, C(κχ, τ)χi(vi)

}
.

Proof We will show that the operator satisfies (3.25a)–(3.25c); then the assertion follows directly
from Lemma 3.6.

First, assume that
∼
gTi ≈Hi∼

gi > 0. Since

(B−1
i gi, HiB

−1
i gi) =

‖
∼
gi‖42

(
∼
gTi ≈Hi∼

gi)2

 nj∑
j=1

∼
gjiφ

j
i , Hi

nj∑
j=1

∼
gjiφ

j
i

 =
‖
∼
gi‖42

∼
gTi ≈Hi∼

gi
= (gi, B−1

i gi),

(3.25a) holds with θ = 1.

Furthermore, we have

(gi, B−1
i gi) =

‖
∼
gi‖42

∼
gTi ≈Hi∼

gi
≥

‖
∼
gi‖22

λmax(
≈
Hi)

,

where λmax(
≈
Hi) denotes the largest eigenvalue of the stiffness matrix. From the definition of λmax

i

and (3.23) follows

ṽTi ≈Hiṽi ≤ CHλmax
i ‖vi‖2 for all vi =

ni∑
j=1

ṽjiφ
j
i .

Let ũi be an eigenvector of
≈
Hi to the eigenvalue λmax(

≈
Hi). Then using (3.42) we obtain

ũTi ≈Hiũi = λmax(
≈
Hi)‖ũi‖22 ≥ C−1λmax(

≈
Hi)cdi ‖ui‖2

and thus the following upper bound on λmax(
≈
Hi):

λmax(
≈
Hi) ≤ CCH

λmax
i

cdi
.
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3. Unconstrained problems

Together with (3.47), which is a consequence of (3.42), this shows (3.25b):

(gi, B−1
i gi) ≥

cdi ‖∼gi‖
2
2

CCHλmax
i

≥ C−1(λmax
i )−1‖gi‖2.

From the definition of
≈
Gi and (3.42) we infer

ṽTi ≈Giṽi =
ni∑
j=1

ni∑
k=1

ṽji (φ
j
i , φ

k
i )ṽki = ‖vi‖2 ≤ C(cdi )−1‖ṽi‖22 for all ṽi ∈ Rni . (3.58)

From (3.28), i.e.,
‖si‖i ≤ C

√
λmax
i ‖si‖ for all si ∈ Vi,

(3.58) and (3.47) it further follows that

(gi, B−1
i gi)

‖B−1
i gi‖i

≥ 1
C
√
λmax
i

‖
∼
gi‖22√
∼
gTi ≈Gi∼

gi
≥ 1
C
√
λmax
i

√
cdi ‖∼gi‖2 ≥

1
C
√
λmax
i

‖gi‖,

which proves (3.25c).

Now, let
∼
gTi ≈Hi∼

gi ≤ 0. This is equivalent to (B−1
i gi, HiB

−1
i gi) ≤ 0 and since cdi > 0, (3.25a) follows.

To prove (3.25b), we use (3.47) again:

(gi, B−1
i gi) = cdi ‖∼gi‖

2
2 ≥ C−1‖gi‖2 ≥ C−1(λmax

i )−1‖gi‖2.

Note that we have used λmax
i ≥ 1, which holds by definition. Property (3.25c) follows as in the

other case. This finishes the proof. �

Remark 3.7 The direction used in the previous lemma corresponds to an Euclidean steepest
descent direction of q̃i at s̃i = 0. In contrast, the direction of Lemma 3.7 is a steepest descent
direction of q̃i at s̃i = 0 corresponding to the inner product (ũi, ṽi)

≈
Gi := ũTi ≈Giṽi.

Additive and multiplicative smoothers

The implementation of the smoothers presented in Section 3.2.4 depends on the decomposition
{Vji }j . Let us consider the simple decomposition into the basis functions as presented in Exam-
ple 3.2. In this case the additive smoother B̃−1

i gi can simply be evaluated by

ṽi = ωDiag(
≈
Hi)−1

∼
gi,

which obviously needs only O(ni) operations. By Diag(
≈
Hi) we denote the matrix in Rni×ni that

consists only of the diagonal entries of
≈
Hi.

For the implementation of the multiplicative smoother (Algorithm 3.2), we use the following
algorithm:
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3.4. Implementation

Algorithm 3.4
Step 0 Set ∼ri =

∼
gi, s̃i = 0 and j = 1.

Step 1 Calculate s̃ji = − ∼r
j
i

≈
Hjj
i

.

Step 2 Update ∼ri ← ∼ri + s̃ji ≈Hie
j
i , where e

j
i ∈ Rni denotes the j-th unit vector.

Step 3 If j < ni, set j ← j + 1 and go to Step 1. Otherwise return with s̃i.

To show that the algorithm indeed calculates the correct step, we use the representation (3.30)
of the intermediate steps sj∗i . Since we use the splitting into the spaces spanned by the basis
functions, the operators Hj

i and Qji are given by (3.33). Thus we obtain with w0
i = 0 and

wji = ∑j
k=1 s

k∗
i :

sj∗i = −(gi +Hiw
j−1
i , φji )

(φji , Hiφ
j
i )

φji .

Hence, in the corresponding coefficient vector only the j-th entry is not equal zero. This implies that
the entries of the coefficient vector of the final step are simply given by

s̃ji = −(gi +Hiw
j−1
i , φji )

(φji , Hiφ
j
i )

for j = 1, . . . , ni.

It is left to show that in Step 1 of the algorithm∼rki = (gi+Hiw
j−1
i , φki ) holds for all k = 1, . . . , ni. We

prove this by induction. Since w0
i = 0 and ∼ri is initialized by

∼
gi this is true for j = 1. Now suppose

that the assumption is true for fixed j. The vector ∼ri is updated in Step 2. From the induction
hypothesis we infer for the corresponding element ri ∈ Vi

ri = gi +Hiw
j−1
i + s̃jiHiφ

j
i = gi +Hi(wj−1

i + s̃jiφ
j
i ) = gi +Hi(wj−1

i + sj∗i ). = gi +Hiw
j
i

This shows that in the next iteration the assumption holds, which finishes the induction.

Assumptions (3.35) implies that the numbers of entries in each column of the matrix
≈
Hi is bounded

independently of i. Therefore, the matrix-vector product in Step 2 can be implemented with
O(1) operations and the whole algorithm requires O(ni) operations. The same is true for the
symmetric variant.

Remark 3.8 In Step 2 of the algorithm it is not necessary to update the whole vector ∼ri. It
is enough to consider only the components ∼rki with k = j + 1, . . . , ni, which are needed for the
further iterations.

Remark 3.9 Suppose the typical matrix splitting
≈
Hi =

≈
Di − ≈Li − ≈L

T
i in a diagonal and a lower

left triangular matrix. By a simple induction one can show that the application of Algorithm 3.4
can also be expressed by

s̃i = (
≈
Di − ≈Li)

−1
∼
gi.

This corresponds to one iteration of the classical Gauss-Seidel algorithm applied to the linear
system

≈
His̃i =

∼
gi. Similarly, one iteration of the symmetric variant is given by

s̃i = (
≈
Di − ≈L

T
i )−1

≈
Di(≈Di − ≈Li)

−1
∼
gi.
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3. Unconstrained problems

Graph coloring

To use Algorithm 3.3, we need to group the nodal basis functions, such that all entries in each parti-
tion are pairwise orthogonal with respect to the bilinear form (·, Hi·). Given the matrix representa-
tion

≈
Hi of the operator Hi, we seek index sets I1, . . . , Ip such that

(ekj )T ≈Hie
k′
j = 0 for all k, k′ ∈ Ij , k 6= k′.

Here, ekj ∈ Rni denotes the unit vector, which is one at the k-th entry of Ij and zero otherwise.
This property depends only on the sparsity pattern of the matrix, which in most applications
does not change during the iterations since it is determined by the discretization and does not
depend on the point vi,k. In this case, we have to define these sets just once for each level when
we enter it for the first time.

In order to obtain such index sets, graph coloring algorithms can be used. Then each set consists
of nodes that have the same color. For this we interpret

≈
Hi as adjacency matrix where we assume

a connection between two nodes k and k′ if the entry
≈
Hkk′
i is not equal to zero. This is just

the matrix γ1 defined by (3.34). Consider for example a simple greedy algorithm, where one
takes an arbitrary ordering of the nodes and iteratively color each node with the first available
color not already used in the neighbourhood. Obviously, this algorithm needs at most p = ν1 + 1
colors, where ν1 is given by (3.35). Hence, the number of colors can be chosen independent
of the level i as long as (3.35) is satisfied. Using the lexicographic ordering, the complexity of
this algorithm is of order O(ni) since the number of neighbours of each node is bounded. More
sophisticated algorithms can decrease the number of colors even further, see for instance [PMX98]
for a survey.

3.4.2. Dual norm estimates

We now consider the implementation of the multilevel preconditioners in Section 3.3.1 and the
multilevel stationarity measure from Section 3.3.2. For this we have to calculate the scalar
products (gi, φjk) for k = 1, . . . , i and j = 1, . . . , nk. For k = i these are just the entries of

∼
gi.

Hence, we now suppose k < i. From the definition of the U-orthogonal projection Qk it follows
that (gi, φjk) = (Qkgi, φjk). Since Qk is also used as restriction in this setting, we analyze the
complexity of this operation.

The spaces Vi are nested, which allows us to express each basis function φji−1 ∈ Vi−1 in terms
of the basis of Vi, i.e., φji−1 = ∑ni

l=1 aljφ
l
i. Let us denote the matrix with the entries alj by

Iii−1 ∈ Rni×ni−1 . Then it holds:

(gi, φji−1) = (gi,
ni∑
l=1

aljφ
l
i) =

ni∑
l=1

alj(gi, φli) =
ni∑
l=1

alj∼
gli.

This shows that the restriction of gi represented by
∼
gi can be calculated by

∼
gi−1 := Qi−1gi

˜
= (Iii−1)T

∼
gi.
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3.4. Implementation

In most applications the matrix Iii−1 is sparse and cheap to assemble. For example in the case of
a linear nodal basis that satisfies

φji (xli) = δjl for all xli ∈ Ni and j = 1, . . . , ni,

the entries match the values at the nodes, i.e., alj = φji−1(xli).

A step si−1 ∈ Vi−1 is prolongated by means of the identity. Given a coefficient vector s̃i−1 ∈ Rni−1 ,
we seek the element in Rni that correspond to the same element in Vi. From

si−1 =
ni−1∑
j=1

s̃ji−1φ
j
i−1 =

ni−1∑
j=1

(
s̃ji−1

ni∑
l=1

aljφ
l
i

)
=

ni∑
l=1

(
φli

ni−1∑
j=1

s̃ji−1alj
)
.

we obtain that the entries of the coefficient vector are given by ṽli = ∑ni−1
j=1 alj s̃

j
i−1 and therefore

ṽi = Iii−1s̃i−1 holds.

Remark 3.10 The matrices Iii−1 and (Iii−1)T are similar to the restriction and interpolation
operators in multigrid theory for finite differences. See also Example 2.2.

In the same way we can construct the matrices Iik for k = 1, . . . , i− 2. Note that we also have the
identity

Iik = Ik+1
k · · · Iii−1 (3.59)

With these preliminaries we can formulate the preconditioners in terms of matrices and vectors.
For ease of notation we set Iii ∈ Rni×ni to the identity matrix. The MDS preconditioner can be
evaluated by

(gi, M̃−1
i gi) =

i∑
k=1

nk∑
j=1

(gi, φjk)2

(φjk, φ
j
k)V

=
i∑

k=1
((Iik)T∼gi)

T Diag(
≈
Vk)−1(Iik)T∼gi,

and for the BPX preconditioner we obtain

(gi, M̂−1
i gi) =

i∑
k=1

h2−d
k ‖(Iik)T∼gi‖

2
2.

We assume that there exists a δ < 1, not depending on i or r, such that the number of unknowns
satisfy nk−1 ≤ δnk for k = 1, . . . , r. Typically, if we use uniform refinement, we get δ = 2−d. The
evaluation of one summand in the preconditioner can be implemented using (3.59) with Cnk
operations and hence in total

ops =
i∑

k=1
Cnk ≤ C

i∑
k=1

δi−kni = Cni

i−1∑
k=0

δk ≤ C 1
1− δni.

So, independent of the number of levels, the costs for one evaluation is O(ni).
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4. Convexly constrained problems

In this chapter we consider problems whose feasible sets are convex. As in the preceding chapter,
we will derive conditions under which smoothing steps yield a decrease of the quadratic model
function that satisfies the fraction of Cauchy decrease condition (2.29) where the constant κmdc
and βC are level-independent. Furthermore, we will turn to a special class of constrained problems
where the feasible set is a box. Here, we will show how to construct suitable lower-level boxes.
Additionally, we will introduce an active-set strategy which changes the prolongation operators so
that more directions are allowed in these lower-level boxes.

4.1. A level-independent stationarity measure

Considering our model setting from Example 3.1, we see that the projected gradient (2.26) as
introduced in Chapter 2 is very expensive to evaluate. This has two main reasons: First, the
gradient must be calculated with respect to the H1

0 (Ω) inner product on V, which involves the
solution of a PDE. Second, the projection on the feasible set must also be done with respect to
the norm on H1

0 (Ω), which is even more expensive. What one would like to have is a stationarity
measure where the gradient and the projection can be estimated cheaply at least for simple convex
sets as for example pointwise bounds.

Similarly to the stationarity measure in the unconstrained case, one could try to use the dual
norm of the projected gradient where both the representation as well as the projection is with
respect to the U-norm. It can be shown that such a measure is indeed a stationarity measure in
the sense of Definition 2.2, but even in simple examples the continuity depends strongly on the
fineness of the mesh, in comparison to the case without constraints. Since we are interested in
level-independent quantities, we need a different measure.

4.1.1. A multilevel stationarity measure

In this section we introduce a new stationarity measure that uses the whole level hierarchy in the
style of the measures introduced in Section 3.3.2.

We assume the variational setting from Section 3.1. Additionally, we introduce on each space Vi a
level-dependent inner product ((·, ·))i and its associated norm ‖| · |‖i :=

√
((·, ·))i. We require the

norm to be level-independently equivalent to the norm on U , i.e., there exists a constant C > 0
such that

1
C
‖ui‖ ≤ ‖|ui|‖i ≤ C‖ui‖ for all ui ∈ Vi, i = 1, . . . , r. (4.1)
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4. Convexly constrained problems

As in the previous chapter, we denote by C a generic constant, which is level-independent and is
allowed to take different values in inequalities.

We define orthogonal projectors Qji : Vi → Vj , j ≤ i, with respect to these inner products. This
means they satisfy

((Qjivi, vj))j = ((vi, vj))i for all vj ∈ Vj and vi ∈ Vi. (4.2)
In the first section no additional assumptions on the inner products are made. Hence, one is free
to choose ((·, ·))i = (·, ·). The main reason why we introduce these norms will become clear when
we turn to box-constrained problems in Section 4.2.2.

The following assumption is fundamental for the multilevel stationarity measure we are going to
introduce:
Assumption 4.1 Let gi ∈ Vi. There exists a level-independent constant C such that

C−1‖ιU (gi)‖2V∗i ≤
i∑

j=1
(λmax
j )−1‖Qjgi‖2 ≤ C‖ιU (gi)‖2V∗i for all gi ∈ Vi, i = 1, . . . , r

is satisfied. As in the preceding chapter we denote by Qj the U-orthogonal projection onto Vj.

Remark 4.1 Let {λmax
j }j satisfy the growth condition

λmax
j

λmax
j−1
≥ τ̄ > 1 for all j = 2, . . . , r.

Then, in the setting of Example 3.1, Assumption 4.1 follows from the famous equivalence (cf. for
instance [Osw94, Yse93, BY93])

C−1‖vi‖2Vi ≤ λ
max
1 ‖Q1vi‖2 +

i∑
j=1

λmax
j ‖(Qj −Qj−1)vi‖2 ≤ C‖vi‖2Vi for all vi ∈ Vi (4.3)

by duality arguments. To verify this, first note that we can rewrite vi ∈ Vi as

vi = Q1vi +
i∑

j=2
(Qj −Qj−1)vi,

and since (Qj −Qj−1)vi is orthogonal on Vj−1, we have

(vi, wi) = (Q1vi, Q1wi) +
i∑

j=2
((Qj −Qj−1)vi, (Qj −Qj−1)wi).

Using the Cauchy-Schwarz inequality twice, we obtain
(vi, wi) ≤ (λmax

1 )−1/2‖Q1vi‖(λmax
1 )1/2‖Q1wi‖

+
i∑

j=2
(λmax
j )−1/2‖(Qj −Qj−1)vi‖(λmax

j )1/2‖(Qj −Qj−1)wi‖

≤
(
(λmax

1 )−1‖Q1vi‖2 +
i∑

j=2
(λmax
j )−1‖(Qj −Qj−1)vi‖2

)1/2

·
(
λmax

1 ‖Q1wi‖2 +
i∑

j=2
λmax
j ‖(Qj −Qj−1)wi‖2

)1/2
.
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4.1. A level-independent stationarity measure

By definition of the dual norm, (4.3) and the last estimate it follows

‖ιU (gi)‖V∗i = sup
06=wi∈Vi

(gi, wi)
‖wi‖Vi

≤ C sup
06=wi∈Vi

(gi, wi)(
λmax

1 ‖Q1wi‖2 +∑i
j=1 λ

max
j ‖(Qj −Qj−1)wi‖2

)1/2

≤ C
(
(λmax

1 )−1‖Q1gi‖2 +
i∑

j=2
(λmax
j )−1‖(Qj −Qj−1)gi‖2

)1/2
.

To show the other direction, we set

w̄i = (λmax
1 )−1Q1gi +

i∑
j=2

(λmax
j )−1(Qj −Qj−1)gi.

Note that (Qk−Qk−1)w̄i = (λmax
k )−1(Qk−Qk−1)gi and Q1w̄i = (λmax

1 )−1Q1gi holds. Furthermore,

(w̄i, gi) = (λmax
1 )−1‖Q1gi‖2 +

i∑
j=2

(λmax
j )−1‖(Qj −Qj−1)gi‖2.

Using this special element and (4.3), one obtains the other inequality:

‖ιU (gi)‖V∗i ≥
(gi, w̄i)
‖w̄i‖Vi

≥ 1
C

(gi, w̄i)(
λmax

1 ‖Q1w̄i‖2 +∑i
j=1 λ

max
j ‖(Qj −Qj−1)w̄i‖2

)1/2

= 1
C

(
(λmax

1 )−1‖Q1gi‖2 +
i∑

j=2
(λmax
j )−1‖(Qj −Qj−1)gi‖2

)1/2
.

We finish this remark by noting that

(λmax
1 )−1‖Q1gi‖2 +

i∑
j=2

(λmax
j )−1‖(Qj −Qj−1)gi‖2 =

i−1∑
j=1

((λmax
j )−1 − (λmax

j+1 )−1)‖Qjgi‖2

+ (λmax
i )−1‖Qigi‖2

≥ (1− τ̄−1)
i∑

j=1
(λmax
j )−1‖Qjgi‖2

and
i−1∑
j=1

((λmax
j )−1 − (λmax

j+1 )−1)‖Qjgi‖2 + (λmax
i )−1‖Qigi‖2 ≤

i∑
j=1

(λmax
j )−1‖Qjgi‖2

holds.

Given the problem

min
vi∈Ci

hi(vi), (4.4)
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4. Convexly constrained problems

with a closed, convex and nonempty set Ci ⊂ Vi we define the multilevel stationarity measure
χML
i : Ci → R+ to (4.4) by

χML
i (vi) :=

( i∑
j=1

(λmax
j )−1‖|ProjCj(vi)(−Q

j
i∇hi(vi))|‖2j

)1/2
, (4.5)

where Ci(vi) := Ci−vi, and Cj(vi) ⊂ Vj are closed convex sets that satisfy

0 ∈ Cj(vi) and sj ∈ Cj(vi)⇒ vi + sj ∈ Ci.

The gradient ∇hi(vi) ∈ Vi denotes here the representation of h′i(vi) with respect to ((·, ·))i,
i.e.,

〈h′i(vi), ui〉 = ((∇hi(vi), ui))i for all ui ∈ Vi.

The operator ProjCj(vi) is assumed to be the orthogonal projection onto Cj(vi) with respect to
((·, ·))j for all j.

We start our analysis of χML
i by showing that it satisfies (2.25).

Lemma 4.1 The function χML
i satisfies

χML
i (v∗i ) = 0 if and only if v∗i is a KKT-Point of min

vi∈Ci
hi(vi).

Proof We first show the following implication:

‖|ProjCi(v∗i )(−∇hi(v∗i ))|‖i = 0 ⇒ ‖|ProjCj(v∗i )(−Q
j
i∇hi(v∗i ))|‖j = 0 for j = 1, . . . , i− 1.

(4.6)

By definition of the sets Cj(v∗i ), Cj(v∗i ) ⊂ Ci(v∗i ) holds. If ProjCi(v∗i )(−∇hi(v∗i ))) = 0, it follows
from the Projection Theorem A.2 that

((∇hi(v∗i ), vi))i ≥ 0 for all vi ∈ Ci(v∗i ),

and hence for j = 1, . . . , i− 1

0 ≤ ((∇hi(v∗i ), vj))i = ((Qji∇hi(v∗i ), vj))j for all vj ∈ Cj(v∗i )

is satisfied. Another application of the Projection Theorem yields assertion (4.6).

After this prerequisite, it remains to show that ProjCi(v∗i )(−∇hi(v∗i )) = 0 iff v∗i is a KKT-Point.
Let v∗i be a KKT-Point, i.e., it satisfies

0 ≤ 〈h′i(v∗i ), vi − v∗i 〉 = ((∇hi(v∗i ), vi − v∗i ))i for all vi ∈ Ci.

Using the set Ci(v∗i ), this can be written as

0 ≤ ((∇hi(v∗i ), vi))i for all vi ∈ Ci(v∗i ).

According to the Projection Theorem, this is equivalent to ProjCi(v∗i )(−∇hi(v∗i )) = 0. �
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4.1. A level-independent stationarity measure

If the problem is unconstrained, the measure is equivalent to the dual norm of the derivative.
This is the assertion of the next lemma.

Lemma 4.2 Let Assumption 4.1 hold. Then

1
C
‖h′i(vi)‖2V∗i ≤

i∑
j=1

(λmax
j )−1‖|Qji∇hi(vi)|‖2j ≤ C‖h′i(vi)‖2V∗i for all vi ∈ Vi

is satisfied. Moreover, if Ci = Vi and the lower-level feasible sets are chosen as Cj(vi) = Vj, then
there holds

1
C
‖h′i(vi)‖V∗i ≤ χ

ML
i (vi) ≤ C‖h′i(vi)‖V∗i for all vi ∈ Vi.

Proof Assume that gi and ḡi are elements of Vi that satisfy

(gi, vi) = ((ḡi, vi))i for all vi ∈ Vi.

Using the definitions of Qj and Qji we have for all vj ∈ Vj :

(Qjgi, vj) = (gi, vj) = ((ḡi, vj))i = ((Qji ḡi, vj))j .

The equivalence of the norms ‖| · |‖j and ‖·‖ on Vj yields

‖Qjgi‖ = max
06=vj∈Vj

(Qjgi, vj)
‖vj‖

= max
06=vj∈Vj

((Qji ḡi, vj))j
‖vj‖

≤ C max
06=vj∈Vj

((Qji ḡi, vj))j
‖|vj |‖j

= C‖|Qji ḡi|‖j .

In the same way, one shows ‖|Qji ḡi|‖j ≤ C‖Qjgi‖. Hence, if we replace ‖|Qji∇hi(vi)|‖j by
‖Qi∇Uhi(vi)‖, where ∇Uhi(vi) is the U -representation of h′i(vi), we obtain an equivalent station-
arity measure. Using Assumption 4.1 now shows the assertion.

The second assertion follows directly from the fact that under the stated assumptions the
stationarity measure becomes

χML
i (vi) =

( i∑
j=1

(λmax
j )−1‖|Qji∇hi(vi)|‖2j

)1/2
.

�

4.1.2. Continuity of χML
i

In order to analyse the continuity of the new stationarity measure χML
i , we need a concept of

continuity for set-valued mappings.

Definition 4.1 Let M be a normed space. The Hausdorff distance dH : P(M)×P(M)→ [0,∞]1
of two sets A,B ⊂M is defined by

dH(A,B) := max
{

sup
v∈A

d(v,B), sup
v∈B

d(v,A)
}
,

1By P(M) := {A |A ⊂M} we denote the powerset of M .
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4. Convexly constrained problems

where the distance d is given by

d(v,A) := inf
w∈A
‖v − w‖.

A sequence of sets (An)n∈N, An ⊂M converges to a set A in the Hausdorff sense iff

lim
n→∞

dH(An, A) = 0.

The next lemma gives an estimate for the distance between the projections on different sets.

Lemma 4.3 Let H be a Hilbert space and A and B be closed convex subsets of H that both
contain 0. Then it holds for all x, y ∈ H:

‖ProjA(x)− ProjB(y)‖ ≤
√

2 min{‖x‖, ‖y‖}dH(A,B) + ‖x− y‖,

where ProjA (ProjB) denotes the H-orthogonal projection onto A (B).
Proof We recall that the projection on a closed convex set is well-defined and unique, since H
is a Hilbert space (cf. Theorem A.2). We first derive an estimate for the simpler case x = y. We
have

‖ProjA(x)− ProjB(x)‖2 = (ProjA(x)− ProjB(x),ProjA(x)− ProjB(x))
= (ProjA(x)− x,ProjA(x)− ProjB(x))

+ (ProjB(x)− x,ProjB(x)− ProjA(x)).

From the definition of the Hausdorff distance follows the existence of an element z1 ∈ A with
‖z1 − ProjB(x)‖ ≤ dH(A,B). Using z1, we estimate

(ProjA(x)− x,ProjA(x)− ProjB(x)) = (ProjA(x)− x,ProjA(x)− z1)
+ (ProjA(x)− x, z1 − ProjB(x))
≤ ‖ProjA(x)− x‖dH(A,B),

where we have used that the first term is negative, which follows from the Projection Theorem A.2.
Since 0 ∈ A, it follows further that

‖ProjA(x)− x‖ = min
y∈A
‖y − x‖ ≤ ‖0− x‖

holds and hence
(ProjA(x)− x,ProjA(x)− ProjB(x)) ≤ ‖x‖dH(A,B).

In the same way, we obtain

(ProjB(x)− x,ProjB(x)− ProjA(x)) ≤ ‖x‖dH(A,B).

Hence, we have

‖ProjA(x)− ProjB(x)‖2 ≤ 2‖x‖dH(A,B). (4.7)

In the case x 6= y we use triangle inequality and the Lipschitz continuity of the projection (cf.
Lemma A.1):

‖ProjA(x)− ProjB(y)‖ ≤ ‖ProjA(x)− ProjB(x)‖ + ‖x− y‖ ≤
√

2‖x‖dH(A,B) + ‖x− y‖.

The observation that we can switch the roles of x and y finishes the proof. �
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4.1. A level-independent stationarity measure

Remark 4.2 A similar estimate was proved in [AN95] for the more general case of projections
in Banach spaces, which is a lot more technical compared to our setting.

The following simple lemma is needed for our main theorem:
Lemma 4.4 Let (ak)nk=1 and (bk)nk=1 be sequences with elements ak, bk belonging to a Banach
space with norm ‖·‖. The following estimate holds:∣∣∣ n∑

k=1

(
‖ak‖2 − ‖bk‖2

)∣∣∣ ≤ n∑
k=1
‖ak − bk‖2 + 2

( n∑
k=1
‖bk‖2

)1/2( n∑
k=1
‖ak − bk‖2

)1/2
.

Proof The assertion follows easily with the inverse triangle and the Cauchy-Schwarz inequality:∣∣∣ n∑
k=1

(
‖ak‖2 − ‖bk‖2

)∣∣∣ ≤ n∑
k=1

∣∣(‖ak‖ − ‖bk‖)2 + 2‖bk‖(‖ak‖ − ‖bk‖)
∣∣

≤
n∑
k=1
‖ak − bk‖2 + 2

( n∑
k=1
‖bk‖2

)1/2( n∑
k=1

(
‖ak‖ − ‖bk‖

)2)1/2

≤
n∑
k=1
‖ak − bk‖2 + 2

( n∑
k=1
‖bk‖2

)1/2( n∑
k=1
‖ak − bk‖2

)1/2
. �

We now show the continuity of χML
i under suitable assumptions. Since we are interested in the

continuity with respect to the level i, we explicitly estimate the size of the δ in the ε-δ definition
of continuity. We will later use these estimates to make a more extensive analysis in the special
case of box-constrained problems.
Theorem 4.1 Assume that h′i : Ci → V∗i is continuous, i.e., for every εg > 0 and every vi ∈ Ci
exists a δg(vi, εg) > 0 such that

‖h′i(vi)− h′i(ui)‖V∗i ≤ εg for all ui ∈ Ci with ‖vi − ui‖Vi ≤ δg(vi, εg). (4.8)

Furthermore, suppose that

dH(Cj(vi), Cj(ui)) ≤ Ccj‖vi − ui‖Vi for all j = 1, . . . , i− 1, (4.9)

where cj is a constant which depends on j. Then χML
i is continuous on Ci, more precisely for

every ε > 0 and every vi ∈ Ci it holds:

|χML
i (vi)− χML

i (ui)| ≤ ε for all ui ∈ Ci with ‖vi − ui‖Vi ≤ δ(vi, ε), (4.10)

where δ(vi, ε) := min{ε2
g, δg(vi, εg)} with

εg := min
{

1, ε2

C max
{
1, ‖h′i(vi)‖

3/2
V∗i

}
(Bi + 1)

}
(4.11)

and

B2
i := max

{
1,

i∑
j=1

(λmax
j )−1c2

j

}
. (4.12)
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Proof For brevity we set gj(vi) = Qji∇hi(vi). We start by estimating the difference
‖|ProjCj(vi)(−gj(vi))− ProjCj(ui)(−gj(ui))|‖

2
j using Lemma 4.3 and (4.9):

‖|ProjCj(vi)(−gj(vi))− ProjCj(ui)(−gj(ui))|‖
2
j ≤

(√
2‖|gj(vi)|‖jdH(Cj(vi), Cj(ui))

+ ‖|gj(vi)− gj(ui)|‖j
)2

≤ 4‖|gj(vi)|‖jdH(Cj(vi), Cj(ui)) + 2‖|gj(vi)− gj(ui)|‖2j
≤ Ccj‖|gj(vi)|‖j‖ui − vi‖Vi + 2‖|gj(vi)− gj(ui)|‖2j .

Although pessimistic, this estimate is also true for j = i. Summing over all levels and using the
Cauchy-Schwarz inequality yields

A2 :=
i∑

j=1
(λmax
j )−1‖|ProjCj(vi)(−gj(vi))− ProjCj(ui)(−gj(ui))|‖

2
j

≤ C‖ui − vi‖Vi
( i∑
j=1

(λmax
j )−1‖|gj(vi)|‖2j

)1/2( i∑
j=1

(λmax
j )−1c2

j

)1/2

+ 2
i∑

j=1
(λmax
j )−1‖|gj(vi)− gj(ui)|‖2j

≤ C‖ui − vi‖Vi‖h′i(vi)‖V∗i Bi + 2C‖h′i(vi)− h′i(ui)‖2V∗i .

Note that we have used Lemma 4.2 in the last step.

Let 0 < εg ≤ 1 be arbitrary. From the continuity of h′i follows

A2 ≤ C
(
‖h′i(vi)‖V∗i δg(vi, εg)Bi + ε2

g

)
for all ui with ‖ui − vi‖Vi ≤ δg(vi, εg).

In the following, we assume that ‖ui − vi‖Vi ≤ δg(vi, εg) holds. Since χML
i is non-negative, we

have∣∣χML
i (vi)− χML

i (ui)
∣∣2 ≤ ∣∣χML

i (vi)2 − χML
i (ui)2∣∣

=
∣∣∣ i∑
j=1

(λmax
j )−1(‖|ProjCj(vi)(−gj(vi))|‖2j − ‖|ProjCj(ui)(−gj(ui))|‖2j)∣∣∣.

From the previous technical lemma we infer

∣∣χML
i (vi)− χML

i (ui)
∣∣2 ≤ A2 + 2

( i∑
j=1

(λmax
j )−1‖|ProjCj(vi)(−gj(vi))|‖

2
j

)1/2
A.

Inserting our estimate of A in the last expression and using that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0,

yields ∣∣χML
i (vi)− χML

i (ui)
∣∣2 ≤ C(‖h′i(vi)‖V∗i δg(vi, εg)Bi + ε2

g

)
+ CχML

i (vi)
(
‖h′i(vi)‖

1/2
V∗i
δg(vi, εg)1/2B

1/2
i + εg

)
.
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4.2. Level independent Cauchy decrease

Since 0 ∈ Cj(vi) and the projection is Lipschitz continuous with Lipschitz constant one, we can
estimate

χML
i (vi)2 =

i∑
j=1

(λmax
j )−1(‖|ProjCj(vi)(−gj(vi))|‖j − ‖|ProjCj(vi)(0)|‖j

)2
≤

i∑
j=1

(λmax
j )−1‖|gj(vi)|‖2j ≤ C‖h′i(vi)‖2V∗i .

(4.13)

Without loss of generality, we assume that δg(vi, εg) ≤ ε2
g and since εg ≤ 1 we also have ε2

g ≤ εg.
Hence, using (4.13) we obtain

|χML
i (vi)− χML

i (ui)|2 ≤ Cεg max{1, ‖h′i(vi)‖
3/2
V∗i
}(Bi + 1).

Inserting (4.11) into the last statement with a suitable constant C, yields |χML
i (vi)−χML

i (ui)| ≤ ε
for all ui with ‖ui − vi‖Vi ≤ δ(vi, ε) := min{ε2

g, δg(vi, εg)}. This finishes the proof. �

Under the assumptions of the last theorem, it follows with Lemma 4.1 that χML
i is a stationarity

measure according to Definition 2.2.

We finally analyze in which cases we have the stronger property that χML
i is uniformly continuous,

which is needed for the strong convergence result in Theorem 2.2. This is the assertion of the
following corollary:

Corollary 4.1 Let h′i be uniformly continuous on a set Si ⊂ Vi, i.e., there exists δg(εg) > 0
independent of vi such that (4.8) holds with δg(vi, εg) ≥ δg(εg) for all vi ∈ Si. If furthermore
‖h′i(vi)‖V∗i is bounded by a constant βi for all vi ∈ Si, then χML

i is uniformly continuous on Si.

Proof If ‖h′i(vi)‖V∗i is bounded, the choice of εg in the previous theorem can be done in-
dependent of vi. From the uniform continuity of h′i finally follows then that we can choose
δ(ε) ≤ min{ε2

g, δg(εg)} independent of vi ∈ Si such that (4.10) is satisfied with δ(ε, vi) ≥ δ(ε). �

We are also interested, whether the uniform continuity is level-independent, meaning that the
choice of δ(ε) does not depend on the mesh-size hi or the number of levels used. In a typical
setting where the underlying infinite dimensional functional is uniform continuous, the answer to
this question depends mainly on the construction of the lower-level sets. We will analyse the level
dependency for our typical setting in Section 4.3.1.

4.2. Level independent Cauchy decrease

For a given iterate vi,k, we consider the quadratic trust-region subproblem

min
si∈Vi

qi(si) := ((si, gi))i + 1
2((si, Hisi))i

subject to ‖si‖i ≤ ∆i, si ∈ Ci.
(4.14)
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Here, gi ∈ Vi is the gradient of hi in terms of the new inner product, i.e., ((si, gi))i = 〈h′i(vi,k), si〉
holds for all si ∈ Vi. The linear operator Hi : Vi → Vi is an approximation of the second derivative
of hi(vi,k). As in the unconstrained case we demand that Hi is symmetric and satisfies (3.23),
i.e.,

((ui, Hivi))i ≤ CHλmax
i ‖ui‖‖vi‖ for all ui, vi ∈ Vi.

From the norm equivalence follows

((ui, Hivi))i ≤ CCHλmax
i ‖|ui|‖i‖|vi|‖i. (4.15)

Note that in contrast to problem (2.32), we assume without loss of generality vi,k = 0 in the con-
straints. This can be achieved by replacing Ci in (2.32) by the convex set

Ci(vi,k) := {si ∈ Vi | vi,k + si ∈ Ci}.

We always assume 0 ∈ Ci.

For the rest of this section, we will consider algorithms that approximately solve the trust-region
problem (4.14). To show a level-independent Cauchy-decrease, we demand an assumption similar
to Assumption 3.1 in the unconstrained case:

Assumption 4.2 If vi,k ∈ Vi violates the smoothness property (2.30), i.e.

χi−1(0) < κχχi(vi,k) (4.16)

holds, then
‖|pi|‖2i ≥ c(κχ, τ)2λmax

i χi(vi,k)2

is satisfied, where pi = ProjCi(vi)(−∇hi(vi,k)) is the projected gradient with respect to ((·, ·))i.
c(κχ, τ) > 0 denotes a level-independent constant that depends on κχ and τ .

The proof of the following lemma is omitted, since it follows directly from the definition of χML
i .

Lemma 4.5 The stationarity measure χML
i satisfies Assumption 4.2 with c(κχ, τ) =

√
1− κ2

χ.

Since we consider a trust-region subproblem in a fixed iteration k, we omit this index in the
following.

4.2.1. A projected gradient step

Similarly to the unconstrained case, we first consider the simple step s∗i = t∗pi where t∗ is the
solution of the one dimensional problem

min
t∈R+

ψi(t) := qi(tpi) = t((pi, gi))i + t2

2 ((pi, Hipi))i

subject to t ≤ ∆i

‖pi‖i
, tpi ∈ Ci,

(4.17)
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4.2. Level independent Cauchy decrease

and
pi := ProjCi(−gi).

If pi is not smooth, the next lemma shows that the fraction of Cauchy decrease condition (2.29)
holds for the step s∗i with constants that are level-independent.

Lemma 4.6 Let χi satisfy Assumption 4.2. Suppose that t∗ is the solution of (4.17) and let the
trust-region norms satisfy

‖vi‖i ≤ Cλmax
i ‖|vi|‖i for all vi ∈ Vi. (4.18)

If (4.16) holds, the step s∗i := t∗pi satisfies (2.29); more precisely the predicted reduction can be
estimated by

−qi(s∗i ) ≥ C−1c(κχ, τ)χi(vi) min
{

∆i,
c(κχ, τ)
CH

χi(vi)
}
,

with a level-independent constant C.

Proof We first analyse the case ((pi, Hipi))i > 0. A simple calculation shows that

t̂ := − ((pi, gi))i
((pi, Hipi))i

is the global minimum of ψi. From (4.15) we obtain

ψi(t̂) = −1
2

((pi, gi))2
i

((pi, Hipi))i
≤ − 1

CCHλmax
i

((pi, gi))2
i

‖|pi|‖2i
.

From the Projection Theorem (A.2), it follows

‖|pi|‖2i = ((−gi, pi))i − ((−gi − pi, pi))i︸ ︷︷ ︸
≥0

≤ ((−gi, pi))i (4.19)

and thus −ψi(t̂) ≥ 1
CC̃λmax

i

‖|pi|‖2i . Let us now assume that t∗ < t̂, which is the case when the
step lies on the boundary of the feasible set. Then from the definition of t̂ follows −((pi, gi))i >
t∗((pi, Hi, pi))i and hence with (4.19):

ψi(t∗) = t∗((pi, gi))i + t∗

2 ((pi, Hi, pi))i <
t∗

2 ((pi, gi))i ≤ −
t∗

2 ‖|pi|‖
2
i .

When the stepsize is limited by the trust-region condition, i.e., t∗ = ∆i
‖pi‖i , it follows from (4.18)

that
−ψi(t∗) ≥

∆i

2
‖|pi|‖2i
‖pi‖i

≥ ∆i

C
√
λmax
i

‖|pi|‖i

holds. Otherwise, if the step length t∗ is limited by the convex set, i.e., t∗ = max{t > 0 | tpi ∈ Ci},
we infer from the definition of pi that t∗ ≥ 1 and hence

−ψi(t∗) ≥
1
2‖|pi|‖

2
i .
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4. Convexly constrained problems

We recall that by definition λmax
i ≥ 1 and therefore, in either case, we can estimate the descent of

t∗pi by

−ψi(t∗) = −qi(t∗pi) ≥
1

C
√
λmax
i

‖|pi|‖i min
{

∆i,
‖|pi|‖i

CH
√
λmax
i

}
. (4.20)

If the curvature of Hi in direction pi is not positive, i.e., ((pi, Hipi))i ≤ 0, ψi is unbounded for
t → ∞ and therefore the minimum lies at the boundary of the feasible set. As above we have
t∗ ≥ min{∆i/‖pi‖i, 1}. This leads to

−ψi(t∗) ≥ −t∗((pi, gi))i ≥
1
C

min
{

∆i√
λmax
i

, ‖|pi|‖i

}
‖|pi|‖i.

Thus the step also satisfies (4.20) in this case. Now the final descent estimate follows from (4.16)
and by applying Assumption 4.2 to (4.20). �

Instead of the step s∗i from the preceding lemma, another common choice is an approximate
minimizer of the trust-region subproblem along the projected gradient path si(t) := ProjCi(−tgi),
t > 0. Such algorithms were studied for instance in [Toi88] or [CGT00, Sec. 12.2]. We will outline
a method presented in [Mor88].

Let 0 < µ0, µ1 < 1, α > 0 and β ∈ (0, 1) be given constants. Assume that we have a step size
t ≥ min{α, βt̄} such that

qi(si(t)) ≤ µ0((si(t), gi))i and ‖si(t)‖i ≤ ∆i (4.21)

holds, where t̄ > 0 satisfies

qi(si(t̄)) > µ0((si(t̄), gi))i or ‖si(t̄)‖i ≥ µ1∆i.

Such a step size exists and can be calculated with a finite number of evaluations of s(·) by a
simple backtracking technique similar to the Armijo rule.

Lemma 4.7 Let Assumption 4.2 and (4.18) hold. If pi = ProjCi(−gi) is not smooth, i.e., (4.16)
is satisfied, each step si(t) where t satisfies (4.21) achieves the descent

−qi(si(t)) ≥ C−1c(κχ, τ)χi(vi) min
{

∆i,
c(κχ, τ)
CH

χi(vi)
}
.

The constant C is independent of i but depends on the parameters µ0, µ1, α and β.

Proof The proof of this lemma runs along the lines of the proof of Theorem 4.4 in [Mor88].
Only simple modifications are necessary; we leave the details to the reader. As in Lemma 4.6 the
non-smoothness of the projected gradient must be used to change the norm of pi. �
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4.2. Level independent Cauchy decrease

4.2.2. Separable constrained problems

From now on for the rest of this chapter, we suppose that the finite dimensional spaces Vi
and feasible sets Ci have a particular structure. We assume that Vi can be decomposed
as

Vi =
ni∑
j=1
Vji ,

such that the decomposition is orthogonal with respect to ((·, ·))i, i.e.,

((vji , vki ))i = 0 for all vji ∈ V
j
i , v

k
i ∈ Vki , j 6= k. (4.22)

Because of the orthogonality, the representation of an element vi ∈ Vi as vi = ∑ni
j=1 v

j
i , v

j
i ∈ V

j
i ,

is unique and moreover ‖|vi|‖2i = ∑ni
j=1 ‖|v

j
i |‖2i holds. In the following, a superscript as in uji

denotes the orthogonal projection of ui onto Vji . Notice that ni need not necessarily be equal
to the dimension of Vi but is allowed to be smaller. Since we will exclusively use it in cases
where each Vji is spanned by a single basis vector, we will stick to this notation in the follow-
ing.

We assume feasible sets Ci ⊂ Vi that are the sum of convex subsets of Vji , more precisely:

Ci =
ni∑
j=1

Cji , Cji ⊂ V
j
i closed and convex.

A simple consequence of the orthogonality of the subspaces Vji and the special structure
of Ci is that the projection onto Ci is just the sum of the projections onto each subspace.

Lemma 4.8 In the setting depicted above, the projection of an element vi = ∑ni
j=1 v

j
i ∈ Vi onto

the convex set Ci satisfies:

ProjCi(vi) =
ni∑
j=1

Proj
Cji

(vi).

Proof Let ui = ∑ni
j=1 u

j
i , u

j
i ∈ C

j
i . Then((

vi −
ni∑
k=1

ProjCki (vi),
ni∑
j=1

Proj
Cji

(vi)− ui
))
i

=
ni∑
j=1

((
vi −

ni∑
k=1

ProjCki (vi),ProjCji (vi)− u
j
i

))
i

=
ni∑
j=1

((vi − Proj
Cji

(vi),ProjCji (vi)− u
j
i ))i.

From the Projection Theorem A.2, it follows that each summand is non-negative and hence
((
vi −

ni∑
k=1

ProjCki (vi),
ni∑
j=1

Proj
Cji

(vi)− ui
))
i
≥ 0.

Now the second part of the Projection Theorem proves the assertion. �
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Example 4.1 Consider the setting from Example 3.1. The finite element spaces Vi can be written
as the sum of the one-dimensional spaces that are generated by the nodal basis functions φji ,

Vi =
ni∑
j=1
Vji , Vji := {αφji |α ∈ R}.

The standard L2(Ω)-inner product does not satisfy the orthogonality property (3.44). Two
common choices (cf. for example [BS08, Sec. 6.2] or [Bra07, Ch. V, Sec. 2]) for an equivalent
inner product for d = 2 are

((ui, vi))i := 1
3
∑
t∈Ti
|t|
(
ui(xt,1)vi(xt,1) + ui(xt,2)vi(xt,2) + ui(xt,3)vi(xt,3)

)
or even simpler

((ui, vi))i := hdi
∑
xki ∈Ni

ui(xki )vi(xki ).

Here |t| denotes the area of the triangle t and xt,l, l = 1, 2, 3, its vertices. Since φji (xki ) = δjk for
xki ∈ Ni, it is obvious that both products satisfy the orthogonality assumption (3.44).

In this setting, each closed and convex subset Cji ⊂ V
j
i can be written as an interval in the

coefficient space, i.e., Cji = {αφji |α ∈ [l̃ji , ũ
j
i ]} with suitable lower and upper bounds l̃i, ũi ∈ Rni .

Since the elements in Vi are piecewise linear, the sets

Ci = {vi ∈ Vi | li ≤ vi ≤ ui} and {vi ∈ Vi | li(xji ) ≤ vi(x
j
i ) ≤ ui(x

j
i ), x

j
i ∈ Ni}

coincide for li, ui ∈ Vi. Hence, we can decompose such sets using the coefficient vectors l̃i and ũi:

Ci =
ni∑
j=1

Cji , Cji := {αφji | l̃
j
i ≤ α ≤ ũ

j
i}.

The special form of the inner product makes the projection a cheap operation. Given an element
vi ∈ Vi with associated coefficient vector ṽi, the coefficient vector of the projection wi = ProjCi(vi)
is due to Lemma 4.8 just

w̃ji = min
{
ũji , max{l̃ji , ṽ

j
i }
}
, j = 1, . . . , ni.

Notice that the projection of an element in regards to the standard inner product is vastly more
expensive.

4.2.3. Smoothers in the strictly convex case

In this section we analyze a projected (block) successive relaxation algorithm to approximately
solve the trust-region subproblem (4.14). Under the additional assumption that the operator Hi is
positive definite, we will show that each step satisfies the fraction of Cauchy decrease condition if
the smoothness property (2.30) is violated, i.e., (4.16) holds. If Ci = Vi and θ = 1, the algorithm
coincides with the multiplicative subspace correction algorithm, Algorithm 3.2, considered in the
previous chapter.
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4.2. Level independent Cauchy decrease

Algorithm 4.1 (PSR)
Choose θ ∈ (0, 2), set k = 1 and yi,0 = 0.

Step 1 Find sk∗i ∈ Cki such that

qi(yi,k−1 + sk∗i ) ≤ qi(yi,k−1 + uki ) ∀uki ∈ Cki .

Step 2 Set yi,k = yi,k−1 +θks
k∗
i with θk = min

{
θ, max{t ≥ 1 | yi,k−1 + tsk∗i ∈ Ci}

}
. If k < ni,

set k ← k + 1 and go to Step 1.

Step 3 If ‖yi,ni‖i > ∆i, set si = ∆i
‖yi,ni‖i

yi,ni , otherwise set si = yi,ni . Return with si.

Notice that the optimization problems in Step 2 possess a unique solution, because qi is uniformly
convex if Hi is positive definite.

Remark 4.3 Algorithm 4.1 can easily be modified to allow more than one optimization sweep
through the subspaces:

Repeat m times: Instead of going to Step 3 when k = ni holds, restart the algorithm
but use yi,0 = yi,ni .

Since every step sk∗i produces descent, each yi,ni has a lower function value than the preceding
one.

Remark 4.4 The order in which we process the subspaces in Step 1 can be chosen arbitrarily.

As for unconstrained problems (cf. (3.35)), we impose the sparsity condition

‖γ1‖∞ ≤ ν1 (4.23)

with a positive and level-independent constant ν1. Here, γ1 ∈ Rni×ni is the interaction matrix
with entries

γjk1 =
{

0 if ((vji , Hiv
k
i ))i = 0 for all vji ∈ V

j
i , v

k
i ∈ Vki ,

1 otherwise.

Theorem 4.2 Let si be a step generated by algorithm PSR. Assume that Hi is positive definite
and that

((uji , Hiu
j
i ))i ≥ (CCHλmax

i )−1‖|uji |‖
2
i for all uji ∈ C

j
i , j = 1, . . . , ni (4.24)

is satisfied. Let furthermore (4.23) and

‖ui‖2i ≤ C

 ni∑
j=1

((uji , Hiu
j
i ))i

 ∀ui ∈ Ci (4.25)

89



4. Convexly constrained problems

hold. Then si is a feasible step of the trust-region subproblem (4.14). Moreover, if Assumption
4.2 and (4.16) is satisfied, it yields the descent

−qi(si) ≥ C−1 2− θ
2 c(CH , ν1, θ)c(κχ, τ)χi(vi) min

{
∆i, θc(κχ, τ)c(CH , ν1, θ)χi(vi)

}
with c(CH , ν1, θ) =

[√
CH

(
1 + (|1− θ|+√ν1θ)

)]−1.

Proof We first show the feasibility. Each partial step ski is element of Cki . The definition of θk
guarantees θkski ∈ Cki and hence yi,ni = ∑ni

k=1 θks
k∗
i ∈ Ci follows. The scaling in Step 3 ensures

‖si‖i ≤ ∆i and from the convexity of Ci follows si ∈ Ci and thus the feasibility of si.

To show the second assertion, we start by estimating the descent achieved by one iteration of
Algorithm 4.1. For 1 ≤ k ≤ ni, we have

qi(yi,k−1)− qi(yi,k) = −θk((sk∗i , gi))i + 1
2
(
((yi,k − θkski , Hi(yi,k − θkski )))i − ((yi,k, Hiyi,k))i

)
= θk((sk∗i , gi +Hiyi,k))i + θ2

k

2 ((sk∗i , His
k∗
i ))i

= −θk((sk∗i , gi +Hi(yi,k−1 + sk∗i − (1− θk)sk∗i )))i + θ2
k

2 ((ski , His
k
i ))i

= −θk((sk∗i , gi +Hi(yi,k−1 + sk∗i )))i + 2θk − θ2
k

2 ((ski , His
k
i ))i.

sk∗i is the solution of the convex optimization problem

min
uki ∈C

k
i

ψ(uki ), ψ(uki ) := qi(yi,k−1 + uki ) (4.26)

and hence, due to Lemma 2.2, satisfies the necessary optimality condition (2.24). Since 0 ∈ Cki ,
we obtain

0 ≤ ((0− sk∗i ,∇ψ(sk∗i )))i = −((sk∗i , gi +Hi(yi,k−1 + sk∗i )))i
and thus

qi(yi,k−1)− qi(yi,k) ≥
2θk − θ2

k

2 ((ski , His
k
i ))i.

The definition of θk implies θk = θ for θ ∈ (0, 1] and 1 ≤ θk ≤ θ for θ > 1. The function
θk 7→ 1

2(2θk − θ2
k) is monotone decreasing for θk ∈ [1, 2). Hence,

qi(yi,k−1)− qi(yi,k) ≥
2θ − θ2

2 ((ski , His
k
i ))i

is satisfied for all θ ∈ (0, 2). Representing the difference of the function values as telescope sum
yields

qi(0)− qi(yi,ni) ≥
2θ − θ2

2

ni∑
k=1

((ski , His
k
i ))i. (4.27)

Taking into account that sk∗i is the optimal solution of (4.26), we get

((−∇ψi(sk∗i ), sk∗i − uki ))i ≥ 0⇔ (((ski −∇ψi(sk∗i ))− sk∗i , sk∗i − uki ))i ≥ 0 ∀uki ∈ Cki .
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4.2. Level independent Cauchy decrease

The Projection Theorem now shows that

sk∗i = ProjCki (sk∗i −∇ψi(sk∗i )) = ProjCki (sk∗i − (gi +H(yi,k−1 + sk∗i )). (4.28)

Using Lemma 4.8, (4.28) and the Cauchy-Schwarz inequality we obtain

‖|pi|‖2i =
ni∑
k=1

((
ProjCi(−gi), p

k
i

))
i

=
ni∑
k=1

((
ProjCki (−gi) +

[
sk∗i − ProjCki (sk∗i − (gi +Hi(yi,k−1 + sk∗i ))

]
, pki

))
i

≤
ni∑
k=1

[
‖|sk∗i |‖i + ‖|ProjCki (sk∗i − (gi +Hi(yi,k−1 + sk∗i )))− ProjCki (−gi)|‖i

]
‖|pki |‖i

=
ni∑
k=1

[
‖|sk∗i |‖i + ‖|ProjCki (sk∗i − (gi +Hi(yi,k−1 + sk∗i ))k)− ProjCki (−gki )|‖i

]
‖|pki |‖i.

Note the use of ProjCki (vi) = ProjCki (vki ) in the last step. From the Lipschitz continuity of the
projection (cf. Lemma A.1) follows

‖|pi|‖2i ≤
ni∑
k=1

[
2‖|sk∗i |‖i + ‖|

(
Hi(yi,k−1 + sk∗i )

)k|‖i] ‖|pki |‖i.
Since yi,k is the sum of the (scaled) steps, i.e., yi,k = ∑k

j=1 θjs
j
i , we further have

‖|pi|‖2i ≤ 2
(

ni∑
k=1
‖|sk∗i |‖i‖|pki |‖i

)
+

ni∑
k=1

∥∥∥∣∣∣[Hi

k∑
j=1

θjs
j
i + (1− θj)His

k∗
i

]k∣∣∣∥∥∥
i
‖|pki |‖i

≤ 2
(

ni∑
k=1
‖|sk∗i |‖i‖|pki |‖i

)
+ θ

ni∑
k=1

k∑
j=1
‖|(His

j
i )k|‖i‖|pki |‖i + |1− θ|

ni∑
k=1
‖|(His

k∗
i )k|‖i‖|pki |‖i.

(4.29)

Note that we have used the triangle inequality and |1− θj | ≤ |1− θ|. In the next step, we derive
upper bounds for the three sums of the last expression separately.

With the Cauchy-Schwarz inequality, the orthogonality of the decomposition, and (4.24) we can
estimate the first term of the sum:

2
ni∑
k=1
‖|sk∗i |‖i‖|pki |‖i ≤ 2

(
ni∑
k=1
‖|sk∗i |‖2i

)1/2( ni∑
k=1
‖|pki |‖2i

)1/2

≤
(
CCHλ

max
i

ni∑
k=1

((sk∗i , His
k∗
i ))i

)1/2

‖|pi|‖i.

Since Hi is positive definite, we conclude from (4.15) that ‖|Hiui|‖2i ≤ CCHλmax
i ((ui, Hiui))i for

ui ∈ Vi. Furthermore, we have

‖|(His
k∗
i )k|‖2 ≤

ni∑
j=1
‖|(His

k∗
i )j |‖2 = ‖|His

k∗
i |‖2.

91



4. Convexly constrained problems

Using the Cauchy-Schwarz inequality, the previous estimate and (4.24), we obtain for the last
term:

|1− θ|
ni∑
k=1
‖|(His

k∗
i )k|‖i‖|pki |‖i ≤ |1− θ|

(
ni∑
k=1
‖|His

k∗
i |‖2i

)1/2

‖|pi|‖i

≤ |1− θ|
(
CCHλ

max
i

ni∑
k=1

((sk∗i , His
k∗
i ))i

)1/2

‖|pi|‖i.

Assumption (4.23) implies ∑ni
k=1 γ

kj
1 ≤ ν1 for 1 ≤ j ≤ ni. Thus, similarly to the proof of

Lemma 3.10, it follows that

θ
ni∑
k=1

j∑
j=1

γkj1 ‖|(His
j
i )k|‖i‖|pki |‖i ≤ θ

 ni∑
j=1

ni∑
k=1
‖|(His

j
i )k|‖2i

1/2 ni∑
k=1

ni∑
j=1

γkj1 ‖|p
k
i |‖2i

1/2

≤ θ
(

ni∑
k=1
‖|His

k∗
i |‖2i

)1/2( ni∑
k=1

ν1‖|pki |‖2i

)1/2

≤ θ
√
ν1

(
CCHλ

max
i

ni∑
k=1

((sk∗i , His
k∗
i ))i

)1/2

‖|pi|‖i.

Combining these estimates with (4.29) gives

‖|pi|‖i ≤ C
[√

CH
(
1 + (|1− θ|+√ν1θ)

)]√
λmax
i

(
ni∑
k=1

((ski , His
k
i ))i
)1/2

, (4.30)

and finally because of (4.27):

qi(0)− qi(yi,ni) ≥
2θ − θ2

2
1
C

[√
CH

(
1 + (|1− θ|+√ν1θ)

)]−2 1
λmax
i

‖|pi|‖2i . (4.31)

If ‖yi,ni‖i ≤ ∆i, the proof is finished after applying

‖|pi|‖2i
λmax
i

≥ c(κχ, τ)2χi(vi)2, (4.32)

which follows from Assumption 4.2 and (4.16).

Let us now turn to the case ‖yi,ni‖i > ∆i. This implies that si = tyi,ni with t = ∆i
‖yi,ni‖i

< 1. Since
Hi is positive definite, we have

−qi(si) = −t((gi, yi,ni))i −
t2

2 ((yi,ni , Hiyi,ni))i ≥ −t((gi, yi,ni))i −
t

2((yi,ni , Hiyi,ni))i = −tqi(yi,ni).

92



4.2. Level independent Cauchy decrease

From (4.27) and assumption (4.25) follows

−qi(si) ≥
2θ − θ2

2
∆

‖yi,ni‖i

ni∑
k=1

((ski , His
k
i ))i

≥ 2− θ
2

∆
‖yi,ni‖i

(
ni∑
k=1

((ski , His
k
i ))i
)1/2( ni∑

k=1
((θkski , Hiθks

k
i ))i
)1/2

≥ 2− θ
2

∆
C

(
ni∑
k=1

((ski , His
k
i ))i
)1/2

.

Now we use (4.30) and obtain

−qi(si) ≥
∆
C

2− θ
2

[√
CH

(
1 + (|1− θ|+√ν1θ)

)]−1
(λmax
i )−1/2 ‖|pi|‖i.

Combining the last estimate with (4.31) and (4.32) we obtain the assertion. �

Remark 4.5 In the special case that the trust-region norm is given by

‖ui‖i = max{‖uki ‖∗,k | k = 1, . . . , ni},

where ‖·‖∗,k are arbitrary, we can modify Algorithm PSR to incorporate the trust-region condition
in the first step. Instead of seeking the optimal step in the set Cki , we consider the set

Cki ∩ {uki ∈ Vki | ‖uki ‖∗,k ≤ ∆i}.

Obviously, the final iterate yi,ni then always satisfies ‖yi,ni‖i ≤ ∆i, and the scaling in Step 3 of
the algorithm is not necessary. In the setting of Example 4.1, the L∞(Ω)-norm is of this type.
We strongly conjecture that a result similar to Theorem 4.2 can be shown for this variant of the
algorithm.

Remark 4.6 Instead of this successive algorithm, one can also use a parallel method similar to
Algorithm 3.1. The proof of the minimum descent for this variant is similar to the proof of the
preceding theorem.

The next lemma shows that (4.24) and (4.25) from the last theorem hold under assumptions
that were similarly postulated in Lemma 3.8 and Lemma 3.9 for unconstrained problems.

Lemma 4.9 1. Let ‖ui‖i ≤ C
√

((ui, Hiui))i and (4.23) be satisfied. Then (4.25) holds.

2. Let ‖ui‖2i ≤ Cλi‖|ui|‖2i and

((uji , Hiu
j
i ))i ≥

1
C
λi‖|uji |‖

2
i for all uji ∈ C

j
i and j = 1, . . . , ni (4.33)

be satisfied, where λi denotes the largest eigenvalue of Hi. Then (4.25) and (4.24) hold.
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4. Convexly constrained problems

Proof 1. Since Hi is positive definite and (4.23) is satisfied, we obtain by Lemma 3.10:

((ui, Hiui))i =
ni∑
j=1

ni∑
k=1

((uji , Hiu
k
i ))i ≤ ν1

ni∑
k=1

((uki , Hiu
k
i ))i.

(4.25) now follows directly by the assumption on the trust-region norm.

2. Assumption (4.33) implies (4.24). Furthermore,
ni∑
k=1

((uki , Hiu
k
i ))i ≥

1
C
λi

ni∑
k=1
‖|uki |‖2i = 1

C
λi‖|ui|‖2i ≥

1
C
‖ui‖2i

holds, which shows (4.25). �

4.2.4. Non-convex trust-region subproblems

If Hi is not positive definite, we cannot prove the fraction of Cauchy decrease condition for a
step generated by the PSR algorithm (cf. Example 3.4). Since the simple projected gradient
step does not have a good smoothing effect, we combine both algorithms by a strategy motivated
by the classical Dogleg method due to [Pow70] for the approximate solution of trust-region
subproblems.

Algorithm 4.2 (DoglegSmoothing(m))
Choose θ ∈ (0, 2), set j = 1 and k = 1.

Step 1 Calculate a solution t∗ of problem (4.17) and set ŝi = si,C = t∗ProjCi(−gi).

Step 2 Find sk∗i ∈ Cki ∩Bk
i , where Bk

i ⊂ Vki is an arbitrary compact set, such that

qi(ŝi + sk∗i ) ≤ qi(ŝi + uki ) ∀uki ∈ Cki ∩Bk
i .

Step 3 Update ŝi ← ŝi + θks
k∗
i with θk = min

{
θ, max{t ≥ 1 | ŝi + tsk∗i ∈ Ci}

}
. If k = ni and

j = m go to Step 4, otherwise set k ← k + 1 if k < ni or k = 1 and j ← j + 1 if k = ni.
Go to Step 2.

Step 4 Find the solution t∗i of the trust-region subproblem (4.14) on the path

s(t) = si,C + t(ŝi − si,C), t ∈ [0, 1],

and return with s∗i = s(t∗).

The compact sets Bk
i are needed to ensure the solvability of the problems in Step 2, since the

sets Cki need not be compact. One possibility is to use the trust-region condition by setting
Bk
i = {uki ∈ Vki | ‖uki ‖i ≤ ∆i}. From Lemma 4.6 it follows that the step si,C generated by

Algorithm 4.2 satisfies the fraction of Cauchy decrease condition under the assumption postulated
in the lemma. Since the descent produced by the final step s∗i is even larger, it also satisfies
(2.29).
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4.3. Construction of lower-level boxes

Remark 4.7 In our numerical implementation we use a slightly different version of the above
algorithm: If ‖ŝi‖i > ∆i in Step 4, we also calculate the point s̄i = ∆i/‖ŝi‖iŝi, and return with s̄i
if qi(s̄i) < qi(s∗i ) holds.

It should be possible to construct a pure subspace correction algorithm, similar to Algorithm 3.3,
if Hi is not positive definite. However, even in the unconstrained case, our numerical tests show
that Algorithm 4.2 is superior to Algorithm 3.3, and hence we have not studied it further for
unconstrained problems.

4.3. Construction of lower-level boxes

Both, for the trust-region algorithm (Algorithm 2.1) and the multilevel stationarity measure χML
i ,

it is necessary to construct feasible sets on the lower-levels. Let k be the current iteration index
of Algorithm 2.1 on level i and j ∈ N(i). Before we enter level j in step 2, we have to construct a
closed and convex set Cj(vi,k) that satisfies

0 ∈ Cj(vi,k) and vi,k + P ijsj ∈ Ci for all sj ∈ Cj(vi,k). (4.34)

It is favorable that the lower-level set Cj(vi,k) has the same structure as the feasible set Ci. In order
to simplify notation, we assume without loss of generality vi,k = 0.

In this section we consider a special class of convex sets that occurs frequently, and show how to
construct suitable lower-level sets.

Let {φki }
ni
k=1 ⊂ Vi be a basis of Vi. We call a set Ci a box if there exist l̃i ∈ {R ∪ {−∞}}ni and

ũi ∈ {R ∪ {∞}}ni such that

Ci =
{
vi ∈ Vi | vi =

ni∑
k=1

ṽki φ
k
i , l̃i ≤ ṽi ≤ ũi

}
. (4.35)

Here and in the following, the inequality between two vectors is applied component wise. Note that
these are just the type of sets we have considered in Example 4.1.

We will present two possibilities for the construction of lower-level boxes. We make the analysis
using an arbitrary transfer operator T ij : Vj → Vi instead of the prolongation P ij . This is because
we will introduce a slight variation of the algorithm in Section 4.3.2, where P ij is replaced by a
modified prolongation operator.

We denote by T̃ ij ∈ Rni×nj the matrix representation of T ij that operates on the coefficient vectors.
That means, given the bases {φki } and {φkj } of Vi and Vj , we have the identity

T ijvj =
ni∑
k=1

(T̃ ij ṽj)kφki , for all vj =
nj∑
k=1

ṽkj φ
k
j .

Throughout this section we always use a tilde to denote the associated coefficient vector.

95



4. Convexly constrained problems

Let Ci be a box with bound vectors l̃i ∈ {R ∪ {−∞}}ni and ũi ∈ {R ∪ {∞}}ni . Together with
the prior assumptions, condition (4.34) translates as follows: Seek l̃j ∈ {R ∪ {−∞}}nj and
ũj ∈ {R ∪ {∞}}nj such that

l̃j ≤ 0 ≤ ũj and l̃i ≤ T̃ ij ṽj ≤ ũi for all ṽj ∈ [l̃j , ũj ]. (4.36)

The first lemma describes a well-known construction that can be found in various papers, e.g.,
[GMTWM08, Man84, Kor97, Tai03]. For notational clarity, we often omit the level indices of
the transfer operators in the remainder of the section. By T̃ lk we denote the entry in row l and
column k of T̃ .

Lemma 4.10 Let Ci a box of the form (4.35) that satisfies 0 ∈ Ci. Let furthermore j ∈ N(i)
and T : Vj → Vi be a linear transfer operator with corresponding matrix T̃ . Assume l̃j and ũj are
defined by

ũkj := min

∞, min
m=1,...,ni
T̃mk>0

{
ũmi
τm

}
, min
m=1,...,ni
T̃mk<0

{
−l̃mi
τm

} , (4.37a)

l̃kj := max

−∞, max
m=1,...,ni
T̃mk>0

{
l̃mi
τm

}
, max
m=1,...,ni
T̃mk<0

{−ũmi
τm

} (4.37b)

for k = 1, . . . , nj, where τm := ∑nj
k=1 |T̃mk|. Then l̃j and ũj satisfy (4.36).

Proof Let m ∈ {1, . . . , ni} arbitrary. A simple calculation using (4.37a) and (4.37b) shows that
(T̃ s̃j)m = T̃ ls̃j ≤ ũmi holds:

(T̃ s̃j)m =
nj∑
k=1

T̃mks̃kj =
∑

k=1,...,nj
T̃mk>0

T̃mks̃kj +
∑

k=1,...,nj
T̃mk<0

T̃mks̃kj

≤
∑

k=1,...,nj
T̃mk>0

T̃mk
ũmi
τm

+
∑

k=1,...,nj
T̃mk<0

(−T̃mk) ũ
m
i

τm
= ũmi
τm

nj∑
k=1
|T̃mk| = ũmi

In the same way one shows that (T̃ s̃j)l ≥ l̃li. This establishes the second condition in (4.36). The
first condition is a direct consequence of the assumption 0 ∈ Ci. �

Although the result seems rather technical at first glance, the next example shows in a concrete
case that the construction of the bounds is quite natural.

Example 4.2 We assume the setting of Example 3.1, where the spaces Vi consists of continuous
and piecewise linear functions. Since we have a nodal basis {φki }k=1,...,ni with φki (xli) = δkl for all
xli ∈ Ni, a box Ci can be written as

Ci =
{
vi ∈ Vi | l̃li ≤ vi(xli) ≤ ũli ∀l = 1, . . . , ni

}
.
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4.3. Construction of lower-level boxes

u2

u1

ω2
1

Level 2 nodes
Level 1 nodes

Figure 4.1.: Example of a smooth upper bound u2 and its lower-level approximation according to
(4.38).

We assume that l̃li > −∞ and ũli <∞ for all l = 1, . . . , ni. Then Ci satisfies

Ci = {vi ∈ Vi | li ≤ vi ≤ ui}

with li, ui ∈ Vi, because the finite elements are piecewise linear.

Now let j ∈ N(i) and T ij be the identity from Vj → Vi. The support of a given basis function φkj
is given by

ωkj = {x ∈ Ω |φkj (x) 6= 0}.

It is easy to see that the entries of l̃j and ũj given by (4.37a) and (4.37b) satisfy

l̃kj = max
{
li(xi) |xi ∈ Ni ∩ ωkj

}
,

ũkj = min
{
uj(xi) |xi ∈ Ni ∩ ωkj

}
.

(4.38)

It is clear that these bounds satisfy the necessary conditions.

In the case of pointwise bounds, we can interpret the procedure of constructing uj as application
of a nonlinear operator I	j : Vr → Vj to the upper bound ui. Similarly, we can denote the
construction of the lower bound by an operator I⊕j . These operators are exactly the ones analyzed
by Tai in [Tai03].

This approach of obtaining lower-level bounds is cheap to calculate but has a serious disadvantage:
If the bounds on the fine grid are smooth in the sense that ui ∈ Vj resp. li ∈ Vj , the bounds
created by (4.38) are in general too pessimistic (cf. Figure 4.1 for an example).

We next describe a more advanced construction of the boxes, which uses a successive ap-
proach to determine the lower-level box. The method is a generalization of a construction
proposed by Kornhuber in [Kor97, Sec. 3.1.3], who uses it in the case of linear finite ele-
ments.

For the sake of clarity, we restrict ourselves to the case of transfer matrices T̃ ij whose entries are
non-negative, which is the case when using nested linear finite element spaces or finite differences
and the typical bilinear interpolation as prolongation. The extension to more general transfer
operators is possible but more technical.
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4. Convexly constrained problems

Algorithm 4.3 (CreateCorseBounds(ũi, T̃ ))
Step 0 Create an initial guess uj ∈ Vj with ũj ≥ 0. Set m = 1.

Step 1 If ∑nj
k=1 T̃

mkũkj ≤ ũmi , go to Step 4.

Step 2 Set τm := ∑nj
k=1 T̃

mk. Define the index sets

I≤ :=
{
k = 1, . . . , nj | T̃mk > 0, τmũkj ≤ ũmi

}
,

I> :=
{
k = 1, . . . , nj | T̃mk > 0, τmũkj > ũmi

}
.

Step 3 For k ∈ I> set

ũkj = min
{
ũkj ,

(
ũmi −

∑
l∈I≤

T̃mlũlj

)( ∑
l∈I>

T̃ml
)−1

}
. (4.39)

Step 4 If m < ni, set m← m+ 1 and go to Step 2. Otherwise return with ũj .

Remark 4.8 The algorithm can also be used to calculate a lower bound vector l̃j by starting it
with −l̃i instead of ũi and by setting l̃j = −CreateCorseBounds(−l̃i, j, T̃ ).

Remark 4.9 The first guess in Step 0 can be chosen arbitrarily. One obvious choice is to use
the restriction operator Rji if Wj = Vj holds.

In Figure 4.2 the execution of Algorithm 4.3 is demonstrated on a simple one dimensional example.
The identity is used as transfer operator. The corresponding matrix satisfies τk = 1 for all
k = 1, . . . , ni. Given the upper bound u2, the algorithm starts with a lower-level approximation
u1 of the bound u2. In the example we use the pointwise interpolant. For k ∈ {1, 3, 5, 7} the
algorithm does not enter Step 2 and 3 since the values at the nodes already satisfy u1(k) ≤ u2(k).
For k = 2 we have I≤ = {1} and I> = {3}. The value of u1 at x = 3 is reduced such that
u1(2) = u2(2). The same happens for k = 4 with u1(5). For k = 6, we have u1(6) < u2(6) and
hence we do not enter Step 2. The function û1 in the last graph is the upper bound obtained by
the construction in Lemma 4.10, which is far more pessimistic than the bound u1 obtained by
Algorithm 4.3.

The next lemma proves that Algorithm 4.3 creates suitable lower-level bounds.

Lemma 4.11 Let Ci be a box of the form (4.35) that satisfies 0 ∈ Ci. Let j ∈ N(i) and
T : Vj → Vi be a linear transfer operator with associated matrix T̃ whose entries are non-negative.
Let the coefficient vectors ũj and l̃j be generated by Algorithm 4.3 (see also Remark 4.8). Then l̃j
and ũj satisfy (4.36).

Proof Let ũj be the coefficient vector in Step 4 of iteration m. Since (4.39) holds for all k ∈ I>,
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1 2 3 4 5 6 7

u2

u1

1 2 3 4 5 6 7

u2u1

1 2 3 4 5 6 7

u2
u1

û1

Figure 4.2.: Successive approach of determining the lower-level bound

a simple calculation yields

(T̃ ũj)m =
∑
k∈I≤

T̃mkũkj +
∑
k∈I>

T̃mkũkj ≤
∑
k∈I≤

T̃mkũkj +
∑
k∈I>

T̃mk(ũmi − ∑
l∈I≤

T̃mlũlj

)( ∑
l∈I>

T̃ml
)−1


≤
∑
k∈I≤

T̃mkũkj +
(
ũmi −

∑
l∈I≤

T̃mlũlj

)( ∑
l∈I>

T̃ml
)−1( ∑

k∈I>
T̃mk

)
= ũmi .

Obviously, the algorithm never increases the entries of ũj . So, if (T̃ ũj)m ≤ umi holds after iteration
m, it is also satisfied for the final vector, which follows from the non-negativity of T̃ . This shows
T̃ ũj ≤ ũi. The lower-level bound l̃j is the result of −CreateCorseBounds(−l̃i, j, T̃ ) and hence
(−T̃ l̃j)m ≤ −l̃mi ⇔ (T̃ l̃j)m ≥ l̃mi holds. This proves the second condition in (4.36).

It is left to show that l̃j ≤ 0 ≤ ũj . The first guess of ũj in Step 0 is non negative and by assumption
ũi ≥ 0 holds. From the definition of I≤ and τm follows∑

k∈I≤

T̃mkũkj ≤
ũmi
τm

∑
k∈I≤

T̃mk ≤ ũmi .

Hence, (
ũmi −

∑
k∈I≤

T̃mkũkj

)( ∑
k∈I>

T̃mk
)−1
≥ 0

and thus

min

ũmj , (ũmi − ∑
k∈I≤

T̃mkũkj

)( ∑
k∈I>

T̃mk
)−1

 ≥ 0.

This shows that after each iteration all entries in ũj are non-negative. As a consequence of the
construction of l̃j this also proves −l̃j ≥ 0, which completes the proof. �

Remark 4.10 Note that the proof of the algorithm does not depend on the order in which the
entries k are processed. The final bound ũj , however, is in general different when choosing a
different order.
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4. Convexly constrained problems

Finally, we show that the bounds obtained by Algorithm 4.3 are at least as good as the bounds
defined by (4.37a)–(4.37b).

Lemma 4.12 Let the assumptions of Lemma 4.11 hold. If the initial guess in Step 0 of Algo-
rithm 4.3 satisfies

ũkj ≥ min
m=1,...,ni
T̃mk>0

{
ũmi
τm

}
for all k = 1, . . . , nj , (4.40)

then it also holds for the final bound.

Proof We prove this result by induction. From the assumption it follows that the inequality
(4.40) holds for ũj in Step 1 in the first iteration of Algorithm 4.3. Now, assume that the assertion
is true for iteration m. The only place where ũj is altered is in Step 3. From the definition of the
set I≤ we obtain

ũmi −
∑
k∈I≤

T̃mkũkj ≥ ũmi −
ũmi
τm

∑
k∈I≤

T̃mk = ũmi
τm

∑
k∈I>

T̃mk.

Hence, it follows from the induction hypothesis that the new ũkj , k ∈ I>, after Step 3 still satisfy

ũkj ≥
ũmi
τm
≥ min

m=1,...,ni
T̃mk>0

{
ũmi
τm

}
.

Therefore, the assertion is true for m← m+ 1. This finishes the proof. �

4.3.1. Uniform continuity of χML
i

We now come back to the question how strong the continuity of the multilevel stationarity
measure χML

i depends on the level. We consider the typical setting of Example 4.2 where the
feasible set is given by a box Ci := {vi ∈ Vi | li ≤ vi ≤ ui} with lower and upper bounds
li, ui ∈ Vi.

As already mentioned in Example 4.2, Tai studied in [Tai03] the interpolation operators I	j and
I⊕j . We recall that the lower-level feasible sets Cj(vi) using the bounds of Lemma 4.10 can be
written as

Cj(vi) = {vj ∈ Vj | lj := I⊕j (li − vi) ≤ vj ≤ I	j (ui − vi)}. (4.41)

The following error estimate are shown in [Tai03, Theorem 2]:

Theorem 4.3 For any vi, wi ∈ Vi ⊂ H1(Ω) it holds

‖I	j (vi)− I	j (wi)− (vi − wi)‖L2(Ω) ≤ cdhj |vi − wi|H1(Ω),

‖I⊕j (vi)− I⊕j (wi)− (vi − wi)‖L2(Ω) ≤ cdhj |vi − wi|H1(Ω)

with cd = C if d = 1, cd = C
(
1 + | log hj/hi|1/2) if d = 2 and cd = C(hj/hi)1/2 if d = 3.
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The next corollary follows directly by using the inverse triangle inequality:

Corollary 4.2 For any vi, wi ∈ Vi ⊂ H1(Ω) it holds

‖I	j (vi)− I	j (wi)‖L2(Ω) ≤ (C + cdhj)‖vi − wi‖H1(Ω),

‖I⊕j (vi)− I⊕j (wi)‖L2(Ω) ≤ (C + cdhj)‖vi − wi‖H1(Ω)

with cd as in Theorem 4.3.

The Hausdorff distance of two boxes can easily be written in terms of the bounds:

Lemma 4.13 Let Sk := {v ∈ Vi | lk ≤ v ≤ uk}, k = 1, 2, be nonempty sets with lk ≤ uk. Then
the following estimate holds:

dH(S1, S2) ≤
(
‖|l1 − l2|‖2i + ‖|u1 − u2|‖2i

)1/2
,

where the Hausdorff distance is measured with respect to ‖| · |‖i.

Proof Let v1 ∈ S1 be arbitrary. The distance to the set S2 is given by

d(v1, S2) = ‖|ProjS2(v1)− v1|‖i.

In the following we set v∗2 := ProjS2(v1). Using Lemma 4.8 and the orthogonality of the subspaces
Vji := {αφji |α ∈ R} with respect to ((·, ·))i it follows:

d(v1, S2)2 =
ni∑
j=1
‖|Proj

Sj1
(v1)− vj1|‖2i =

ni∑
j=1
|(ṽ∗2)j − ṽj1|2‖|φ

j
i |‖

2
i .

If l̃j2 ≤ ṽ
j
1 ≤ ũ

j
2, we obviously have 0 = |(ṽ∗2)j − ṽj1| ≤ max{|l̃j2 − l̃

j
1|, |ũ

j
2 − ũ

j
1|}. If (ṽ∗2)j < ṽj1, then

(ṽ∗2)j = ũj2 holds and because of ṽj1 ≤ ũj1 we can estimate |(ṽ∗2)j − ṽj1| ≤ |ũ
j
2 − ũ

j
1|. Similarly, if

(ṽ∗2)j > ṽj1 we have |(ṽ∗2)j − ṽj1| ≤ |l̃
j
2 − l̃

j
1|. Thus, we obtain for the distance the estimate

d(v1, S2)2 ≤
ni∑
j=1

max{|l̃j2 − l̃
j
1|, |ũ

j
2 − ũ

j
1|}

2‖|φji |‖
2
i ≤ ‖|l2 − l1|‖2i + ‖|u2 − u1|‖2i .

By the same argumentation, we obtain the identical bound for d(S1, v2)2, v2 ∈ S2. This finishes
the proof. �

Using the previous lemma, we can estimate the Hausdorff distance of two sets Cj(vi) and Cj(wi)
which were generated according to Lemma 4.10 by

dH(Cj(vi), Cj(wi))2 ≤ ‖|I	j (ui − vi)− I	j (ui − wi)|‖2j + ‖|I⊕j (li − vi)− I⊕j (li − wi)|‖2j .

From the level-independent equivalence of the norms ‖·‖ and ‖| · |‖i on Vj and Corollary 4.2, it
further follows

dH(Cj(vi), Cj(wi))2 ≤ (C + cdhj)2‖vi − wi‖2Vi .
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We recall that this estimates shows that assumption (4.9) of Theorem 4.1 is satisfied with
cj = (1 + cdhj).

To analyze the amount of which the constants δ(ε) in Corollary 4.1 depends on the level i and
the meshsize hi, we assume that h′i is uniformly continuous and that the mapping εg 7→ δ(εg) is
level-independent. Furthermore, we assume that also the constant βi does not depend on i. These
assumptions are not very restrictive if we suppose that the functions fi are discrete versions of a
uniformly continuous differentiable non-linear functional f : V → R, whose derivatives are bounded.
If this is not satisfied, we would also not expect that the fi and the derived lower-level models
hi are having this features (level-independently). Note that for the global convergence proof of
the trust-region algorithm ( Theorem 2.2) we only need the uniform continuity of χr, which is
independent of the concrete choice of the lower-level models.

Under these assumptions, the only term left that depends on the level is the constant Bi which
was defined in Theorem 4.1 by

B2
i := max

{
1,

i∑
j=1

(
(λmax
j )−1c2

j

)}
.

We recall that in the current setting, λmax
j ≥ C−1h−2

j holds and hence B2
i − 1 ≤ C∑i

j=1 h
2
jc

2
j is

satisfied.

We assume that there exists a constant γ < 1 with hj ≈ γhj−1 for all j = 2, . . . , r. We
typically have γ = 1/2 in the case of uniform refinement. Thus we get cj = (1 + cdh1γ

j−1)
and

B2
i − 1 ≤ C

i∑
j=1

h2
jc

2
j ≤ Ch2

1

( i∑
j=1

h2
1c

2
dγ

4(j−1) +
i∑

j=1
γ2(j−1)

)

≤ Ch4
1

i∑
j=1

c2
dγ

4(j−1) + Ch2
1(1− γ2)−1.

The second term does not depend on i, therefore we only consider the first term in the following.
Since cd is constant for d = 1, the sum in the first term is bounded by means of the geometric
series. Hence, B2

i and thus also the uniform continuity does not depend on i or on the meshsize
hi. For d > 1 we obtain a weak dependence on i:

d=2:

Ch4
1

i∑
j=1

c2
dγ

4(j−1) ≤ Ch4
1

i∑
j=1

(1 + log |hj/hi|)γ4(j−1)

≤ Ch4
1

i∑
j=1

(1 + i− j)γ4(j−1) ≤ Ch4
1i(1− γ4)−1

d=3:

Ch4
1

i∑
j=1

c2
dγ

4(j−1) ≤ Ch4
1

i∑
j=1

hj/hiγ
4(j−1) = Ch5

1(hi)−1
i∑

j=1
γ5(j−1)

≤ Ch5
1h
−1
i (1− γ5)−1
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Although we have a dependency on the number of levels used, it is rather weak. If we consider the es-
timates derived in Theorem 4.1 respectively Corollary 4.1 we have the bounds

δ(ε) ≤ Cε4β3
i h
−4
1 i−1 if d = 2 and δ(ε) ≤ Cε4β3

i h
−5
1 γi if d = 3.

Remark 4.11 Unfortunately, we cannot show a result like Corollary 4.2 for the construction
according to Algorithm 4.3. This comes from the fact that a small difference in one point can
propagate and leads to completely different lower level bounds. As an example consider the
functions in Figure 4.11. Although the bounds u2 and ū2 differ only in the node x2, the resulting
lower-level bounds u1 and ū1 are different in any coarse grid point. A straightforward calculation,
using an example like this, shows that the results of Corollary 4.2 do not hold.

1 2 3 4 5 6 7 8

ū2

u2
1 3 5 7

ū1

u1

Figure 4.3.: Construction of two lower-level bounds by Algorithm 4.3

However, we can use these lower-level bounds for the calculation of the step in the lower-level
trust-region subproblem.

4.3.2. Active sets

Even the best algorithms for constructing lower-level bounds will not succeed in providing a good
approximation if the bounds are oscillatory (cf. Figure 2.5). Another source of poor lower-level
bounds are active fine grid components. We call an index m ∈ {1, . . . , ni} of a coefficient vector
ṽi ∈ Rni active if ṽli = ũli or ṽli = l̃li holds. If Vi is equipped with a nodal basis, each active
coefficient ṽli corresponds to an active node xli ∈ Ni, i.e., vi(xli) = li(xli) or vi(xli) = ui(xli) is
satisfied.

Why active components can lead to small feasible sets on lower levels is illustrated on a simple
multilevel example in one dimension using piecewise linear functions (Figure 4.4). The upper bound
u3 on level 3 is active at x = 2 in this example. Due to this, every feasible step si, i = 1, 2, 3, must
satisfy si(2) ≤ 0. Since the functions are piecewise linear, s2(2) = 0.5

(
s2(1) + s2(3)

)
≤ 0 holds and

therefore also u2(1) + u2(3) ≤ 0. Because u2 must be non-negative, this yields u2(1) = u2(3) = 0.
Similarly, u1(1) = u1(5) = 0 follows for the upper bound on level 1. Hence, no steps with positive
step sizes are possible in this interval. We will now discuss two modifications that stops the
“spread of activeness”.
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Level

1 2 3 4 5

u3

3

1 3 5

u2

2

1 5

u1

1

1 2 3 4 5

u3

1 3 5

u2

1 5

u1

Figure 4.4.: Upper bounds with and without active set strategy

Truncated basis methods

The truncated basis method was first presented by Kornhuber in [Kor94] in the context of monotone
multigrid methods (see also [Kor97]). The idea is to truncate each coarse grid basis function such
that it is zero at active fine-grid points.

Assume Vj ⊂ Vi for all i, j with j ∈ N(i). As usual in this setting, the identity is supposed to
be used as prolongation. Each coarse grid basis function φmj can then be written as a linear
combination of fine grid nodal basis functions, i.e., we have

φmj (x) =
ni∑
l=1

plmφli(x) (4.42)

where the plm are the entries of the prolongation matrix P̃ ij . Let the current iterate be vi,k and
denote the set of active indices by Ai,k ⊂ {1, . . . , ni}. The truncated coarse grid functions in
iteration k are now defined by setting plm = 0 in (4.42) for each l ∈ Ai,k and m = 1, . . . , nj . This
can be written as follows: Let Ñi,k = Diag(di,k) a diagonal matrix where the elements of di,k
are

dli,k =
{

0 if l ∈ Ai,k,
1 otherwise.

The truncated basis functions φ̂mj are now defined by

(φ̂1
j , φ̂

2
j , . . . , φ̂

nj
j )T = (P̃ ij )T Ñi,k(φ1

i , φ
2
i , . . . , φ

ni
i )T . (4.43)
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1 2 3 4 5

Figure 4.5.: Example of a truncated basis function (solid) in comparison to the usual nodal basis
function (dashed) if one node is active

We set V̂j = span({φ̂kj }
nj
k=1). The important property of this space is that the prolongation of

a step ŝj ∈ V̂j is zero at active components. Therefore, the active points are irrelevant when
determining the lower-level bounds. By (4.43) it also follows that T̃ ij = Ñi,kP̃

i
j is the transfer

operator for the coefficient vectors. Note that the prolongation is not changed, only its matrix
representation with regard to the truncated generating system {φ̂kj }k, which need not be a basis
anymore.

The truncated space V̂j is a subset of Vi, but it is in general different from Vj and even V̂j 6⊂ Vj
holds in most cases. Therefore, we cannot directly use the functions fj(xj , ·) since they are
defined on Vj . In many cases, however, it is possible to define the functions also on the truncated
space V̂j , but the calculation of the function values for a given coefficient vector can be more
expensive. This is the case, for instance, in a finite element setting, since the truncated functions
φ̂lj are in general not piecewise linear on each coarse grid triangle anymore. Therefore, often
more sophisticated and expensive quadrature formulas must be used to obtain the same accuracy.
Another problem is that already existing finite element software must be adapted to support these
basis functions.

One example where this method is applicable without further modifications is if fj ≡ 0 for
j 6= r and the second-order corrected model (2.17) is used: Let vi,k be the current iterate and
gi,k = ∇hi(vi,k) and Hi,k : Vi → Vi be the gradient and the Hessian approximation of hi at vi,k. On
level j, j ∈ N(i), we obtain a simple quadratic model hj : V̂j → R,

hj(sj) = ((sj , gi,k))i + 1
2((sj , Hi,ksj))i.

In particular, the representation with regard to the coefficient vectors of V̂j is given by:

h̃j(s̃j) = s̃Tj (T̃ ij )T∼gi,k + 1
2 s̃

T
j (T̃ ij )T ≈Hi,kT̃

i
j s̃j .

Therefore, we only have to calculate the vector
∼
gj = (T̃ ij )T∼gi,k and the matrix

≈
Hj = (T̃ ij )T ≈Hi,kT̃

i
j

when entering level j.

Remark 4.12 It is obvious that if we use the lower-level sets obtained by the truncated basis
method to calculate the stationarity measure χML

i , we lose the continuity since the active set
changes discontinuously, which influence both, the lower-level sets and the projection operator Qji .
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Active set strategy

Our second approach is also applicable if the lower-level functions fi cannot be changed as
necessary for the truncated basis ansatz or the spaces Vi are not nested as, for instance, in
Example 2.2. The idea is simple: Instead of changing the lower-level basis, we just use a modified
prolongation operator, which sets the coefficients of active indices to zero. This is achieved by the
transfer operator used in the truncated basis method. Instead of just considering active points,
we use a larger set of ε-active points: Let gi,k = ∇hi(vi,k). Define

Aεi,k := A−i,k ∪ A
+
i,k, A

−
i,k := {0 ≤ j ≤ ni| ṽji,k − l̃

j
i ≤ ε

A
i,k and −g̃ji,k ≤ 0},

A+
i,k := {0 ≤ j ≤ ni| ũji − ṽ

j
i,k ≤ ε

A
i,k and −g̃ji,k ≥ 0}.

(4.44)

The motivation behind this definition is that for a suitable choice of εAi,k, e.g., εAi,k = εA‖g̃i,k‖∞
with εA ∈ (0, 1), we expect that Aεi,k is a better approximation of the set of indices that
are active in the solution than the indices in Ai,k. When we enter Step 2 in iteration (i, k)
of Algorithm 2.1 we define the transfer operator T i,kj : Vj → Vi that is given by its matrix
representation

T̃ i,kj = Ñi,kP̃
i
j . (4.45)

The matrix Ñi,k = Diag(di,k) is diagonal and the entries of the vector di,k ∈ {0, 1}ni are given
by

dli,k =
{

0 if l ∈ Aεi,k,
1 if l 6∈ Aεi,k.

This new transfer operator first prolongates the step using the standard prolongation and afterwards
sets all active indices to zero. This shows that active indices on the fine level do not limit steps
on the lower level. Now the transfer operators T i,kj are used in Algorithm 2.1 instead of the
prolongations P ji . In particular, (4.34) becomes

0 ∈ Cj and l̃i ≤ ṽi,k + T̃ i,kj s̃j ≤ ũi for all sj ∈ Cj . (4.46)

A lower bound that satisfies (4.46) in our example using T̃ 2
1 = Diag((1, 0, 1, 1, 1))P̃ 2

1 is shown on
the right side of Figure 4.4. We see that the new bound is far less restrictive, the “activeness” does
not spread. In general, assumption (4.46) allows larger lower-level sets than (4.34), i.e., each closed
and convex set Cj satisfying (4.34) also satisfies (4.46): Consider a box Ci with bounds li and ui.
For a step sj with vi,k + P ijsj ∈ Ci, we obtain for the coefficients

(ṽi,k + T̃ i,kj s̃j)m = ṽmi,k + dmi,k(P̃ ij s̃j)m =
{
ṽmi,k if m ∈ Aεi,k,
(ṽi,k + P̃ ijsj)m if m 6∈ Aεi,k,

∈ [l̃mi , ũmi ]

for all m = 1, . . . , ni and therefore vi,k + T ji sj ∈ Ci holds.

One downside of this approach is that contrary to the truncated basis method, there could be
steps sj 6= 0 with T i,kj sj = 0 for which hj(sj) 6= 0. This results in a poor performance of the
lower-level steps and the trust regions become small. This is not surprising: Consider the case
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where all fine-grid bounds are active, then by (4.46) we are allowed to use Cj = Vj , which is
obviously not a good approximation of Ci on the coarse grid. One way to prevent this is to
constraint the lower-level set Cj besides (4.46) so that no direction sj 6= 0 is included that satisfies
T i,kj sj = 0. For the case of nodal basis functions where the set of lower-level nodes Nj is a subset
of Ni, this can be achieved by setting l̃mj = ũmj = 0 for indices m for which (T ijφmj )(xmj ) = 0,
xmj ∈ Nj , holds.

Additional attention must be paid to the choice of the trust-region norm since assumption (2.20)
must hold for the new transfer operators. In the case of linear finite elements, the Lp(Ω)-norms
for p = 1, . . . ,∞ obviously satisfy the assumption. The same is true if Vi = Rni , P̃ ij ≥ 0, and the
trust-region norms are similar to ‖·‖p, p ∈ {1, 2,∞} (properly scaled if necessary). However, if the
trust-region norm is ‖·‖H1(Ω), the assumption is in general not satisfied, since setting the step to
zero at singular nodes can introduce oscillations, which increase its norm. This happens only at the
boundary of the active set which in most cases consists just of a small number of nodes and hence
the effect of the additional oscillations is negligible. In our numerical implementation we added a
watchdog, which refuses a lower-level step that violates the trust-region condition on the originating
level too much. In this case, the multilevel iteration is repeated using the standard prolongation.
However, in our numerical tests this never happened.
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In this chapter we analyze concrete examples and show how the different parts of the trust-region
algorithm can be chosen, such that the assumptions necessary for global convergence of the
algorithm are satisfied.

Most assumptions we have made so far were concerned with the function spaces and their
discretization. We have showed that in the case that we have suitable discretizations ofH1(Ω), most
of them are satisfied. Hence, we concentrate in this chapter on the assumptions that are related to
the functions fr and the lower-level models hi. Let us recall them:

(H1) The function fr and all lower-level models hi, i = 1, . . . , r−1, are continuously differentiable.
Furthermore, they are twice Gâteaux differentiable and the mappings vr 7→ f ′′r (vr)[dr, dr],
dr ∈ Vr, and vi 7→ h′′i (vi)[di, di], di ∈ Vi, are continuous.

(H2) There exists a level-independent constant β1 such that∣∣〈(Hi,k − h′′i (vi,k + tsi,k))si,k, si,k
〉∣∣ ≤ 2β1‖si,k‖2i

holds for all t ∈ [0, 1], iterations vi,k ∈ Vi and steps si,k generated by Algorithm 2.1.

(H3) There exists a level-independent constant β2 such that∣∣〈(h′′j (tvj)− (P ij )∗h′′i (vi,k + tP ijvj)P ij )vj , vj
〉∣∣ ≤ 2β2‖vj‖2j

is satisfied for all t ∈ [0, 1], multilevel iterations vi,k ∈ Vi and steps vj generated by Algorithm
2.1. Here, hj is the lower-level model of hi at vi,k.

(H4) The following estimate holds for all Hessian-approximations Hi,k with a level-independent
constant CH :

〈vi, Hi,kui〉 ≤ CHλmax
i ‖ui‖‖vi‖ for all ui, vi ∈ Vi.

(H5) f ′r is uniformly continuous on a set S ⊂ Cr that contains the sequence of iterates (vr,k)k∈N,
i.e. for all ε > 0 there is a δ > 0 such that

‖f ′r(vr)− f ′r(ur)‖V∗r ≤ ε for all vr, ur ∈ S with ‖vr − ur‖Vr ≤ δ.

Assumption (H5) is essential to show the uniform continuity of the stationarity measures, which
is needed to show the strong convergence in Theorem 2.2.

In the examples that we are considering in this chapter, we assume an underlying infinite
dimensional problem with an objective function f : V → R. Furthermore, we suppose that
the level hierarchy consists of the same problem considered on nested and finite dimensional
subspaces with increasing degrees of freedom. More precisely, we assume the following set-
ting:
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Assumption 5.1 1. The spaces Vi are finite dimensional, Vi ⊂ Vi+1 for i = 1, . . . , r − 1 and
Vr ⊂ V holds.

2. The identity is used as prolongation.

3. Wi = Vi and fi(xi, vi) := f(xi + vi).

4. The first-order corrected model (2.15) are used as lower-level model.

5. The Hessian approximation Hi,k in the quadratic models qi,k is the exact Hessian of hi at
vi,k.

In this case, the assumptions (H1)–(H4) can be simplified:

(H1') The function f is continuously differentiable. Furthermore, it is twice Gâteaux differentiable
and the mappings v 7→ f ′′(v)[d, d] are continuous for all d ∈ V.

(H2') There exists a level-independent constant β1 such that∣∣〈(f ′′(xi + vi,k)− f ′′(xi + vi,k + tsi,k))si,k, si,k〉
∣∣ ≤ 2β1‖si,k‖2i

holds for all t ∈ [0, 1], iterations vi,k ∈ Vi, and steps si,k generated by Algorithm 2.1.

(H3') There exists a level-independent constant β3 such that∣∣〈(f ′′(xi−1)− f ′′(xi + vi,k))vi−1, vi−1〉
∣∣ ≤ β3‖vi−1‖2i−1 for all vi−1 ∈ Ci−1

with xi−1 = Ri−1
i (xi, vi,k) is satisfied for all iterations xi + vi,k ∈ Vi generated by Algo-

rithm 2.1.

(H4') There is a level independent constant CH such that for all iterates xi + vi,k the estimate

〈vi, f ′′(xi + vi,k)ui〉 ≤ CHλmax
i ‖ui‖‖vi‖ for all ui, vi ∈ Vi.

is satisfied.

Lemma 5.1 Assumptions 5.1 and (H1') - (H4') imply (H1) - (H4).

Proof Obviously, when the first- or second-order corrected models are used, the differentiability
assumptions on f imply (H1). By inserting the definition of the first-order model in (H2), we
directly obtain (H2').

To establish (H3), it follows from Remark 2.12 that it is sufficient to show∣∣〈(h′′i−1(0)− (P ii−1)∗h′′i (vi,k)P ii−1)vi−1, vi−1
〉∣∣ ≤ C‖vi−1‖2i−1 for all vi−1 ∈ Ci−1. (5.1)

Since the identity is used as prolongation, we obtain using (H3')∣∣〈vi−1, (h′′i−1(0)− (P ii−1)∗h′′i (vi,k)P ii−1)vi−1
〉∣∣ =

∣∣〈vi−1, (h′′i−1(0)− h′′i (vi,k))vi−1
〉∣∣

=
∣∣〈(f ′′(Ri−1

i (xi, vi,k))− f ′′(xi + vi,k))vi−1, vi−1
〉∣∣

≤ β3‖vi−1‖2i−1,

which shows the assertion. Finally, (H4) follows directly from Hi,k = h′′i (vi,k) = f ′′(xi + vi,k). �
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In this chapter we shall only consider bounded domains Ω with Lipschitz-boundary. Hence,
from Theorem A.1 we infer the continuous embedding of H1(Ω) into Lp(Ω) (H1(Ω) ↪→ Lp(Ω))
for

p ∈
{

[1,∞) for d = 2
[1, p∗] for d ≥ 3

, p∗ := 2d
d− 2 .

In these cases, the inequality ‖u‖Lp(Ω) ≤ C‖u‖H1(Ω) holds true for all u ∈ H1(Ω).

As in the previous chapters, we use a generic constant C which may take different values in the
inequalities. It is always assumed to be level-independent and sufficiently large. We sometimes
omit the domain Ω in the notation when this information is obvious from the context, i.e., we
write L2 instead of L2(Ω).

5.1. Example 1

Let Ω ⊂ Rd, d ≤ 3, be a bounded domain with Lipschitz-boundary. Furthermore, let a ∈ L2(Ω),
b ∈ L∞(Ω) be real valued functions and A : Ω → Rd×d be such that A(x) is symmetric for
all x ∈ Ω and the entries satisfy aij ∈ L∞(Ω) for i, j = 1, . . . , d. We consider the prob-
lem

min
u∈C

J1(u), J1 : H1(Ω)→ R, u 7→
∫

Ω
j1(x, u(x),∇u(x)) dx,

j1 : Ω× R× Rd → R, j1(x, u, z) := 1
2
(
zTA(x)z + b(x)u2)+ a(x)u+ ϕ(x, u),

(5.2)

where ϕ : Ω× R→ R is measurable in x ∈ Ω for each u and twice continuously differentiable in u
for almost all x ∈ Ω. We assume C ⊂ V := H1(Ω) to be a nonempty, closed and convex set with
the property

u ∈ C, ξ ∈ R, u+ ξ ∈ C ⇒ |ξ| < C, (5.3)

where the constant C is independent of u and ξ. Examples of feasible sets that satisfies this
assumption are subsets of H1(Ω) with Dirichlet boundary conditions on (a part of) the boundary.
Other examples are sets with pointwise constraints, i.e.,

{v ∈ H1(Ω) | lb(x) ≤ v(x) ≤ ub(x) for x ∈ Ω a.e.}

with L∞(Ω)-functions lb, ub that satisfy lb ≤ ub a.e. in Ω. Under this assumptions on the feasible
set, the generalized Poincaré’s inequality (cf., e.g., [Alt06, Section 6.16]) is satisfied, i.e., it exists
a constant C > 0 such that

‖u‖L2(Ω) ≤ C(‖∇u‖L2(Ω) + 1) for all u ∈ C. (5.4)

In the following, let p ≥ 2 be chosen such that H1(Ω) ↪→ Lp(Ω). Then, from the embedding and
(5.4) we infer

‖u‖Lp(Ω) ≤ C‖u‖H1(Ω) ≤ C(‖∇u‖L2(Ω) + 1) ∀u ∈ C. (5.5)
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A, a, b and ϕ shall be chosen such that J1 admits a minimizer. We are going to consider the case
that there exist ε > 0, 1 ≤ s < 2 and C ≥ 0 such that

zTA(x)z ≥ εzT z ∀x ∈ Ω and z ∈ Rd,
b(x) ≥ 0 ∀x ∈ Ω,

ϕ(x, u) ≥ −C(|u|s + 1) ∀x ∈ Ω and u ∈ R.

Under these assumptions, by using the generalized Poincaré’s inequality and Hölder’s inequality,
we can estimate

J1(u) ≥
∫

Ω

(
ε‖∇u‖2 − |a(x)||u| − C(|u|s + 1)

)
dx

≥ ε‖∇u‖2L2(Ω) − ‖a‖L2(Ω)‖u‖L2(Ω) − C
(
‖u‖sLs(Ω) + area(Ω)

)
≥ ε‖∇u‖2L2(Ω) − C‖a‖L2(Ω)‖∇u‖L2(Ω) − C

(
‖∇u‖sL2(Ω) + area(Ω)

)
− C

→∞ as ‖∇u‖L2(Ω) →∞.

This shows that J1 is a coercive function. Together with the weak lower semicontinuity of J1
(cf. Theorem A.7 and Remark A.4), Theorem A.6 yields the existence of a minimizer u∗ of
problem (5.2).

To ensure the necessary differentiability of J1, we further assume the following growth assumptions:

|ϕ(x, u)| ≤ C(g1(x) + |u|q), g1 ∈ L1(Ω) (5.6a)
|ϕu(x, u)| ≤ C(g2(x) + |u|q−1), g2 ∈ Lq/(q−1)(Ω) (5.6b)
|ϕuu(x, u)| ≤ C(g3(x) + |u|q−2), g3 ∈ Lq/(q−2)(Ω). (5.6c)

with 2 ≤ q ≤ p. Here and subsequently, we often denote the partial derivatives by in-
dices as for example ϕu = ∂ϕ/∂u. If ϕuu(x, u) is bounded, we can set q = 2 and have
Lq/(q−2)(Ω) = L∞(Ω).

The next lemma shows that the functional J1 satisfies the differentiability assumptions (H1').

Lemma 5.2 Under the assumptions (5.6), the functional J1 is twice Gâteaux differentiable on
H1(Ω). Furthermore, the first derivative is continuous and the operator u 7→ J ′′1 (u)[d, d] is
continuous for every fixed direction d ∈ H1(Ω).

Proof We show that the function j1 satisfies assumptions (A.4). Using the growth condition
(5.6a) and Young’s inequality, we obtain for almost all x ∈ Ω:

|j1(x, u, z)| ≤ ‖A(x)‖‖z‖2 + |b(x)|u2 + a(x)|u|+ C(g1(x) + |u|q)

≤ ‖A‖L∞(Ω)d×d‖z‖
2 + ‖b‖L∞(Ω)u

2 + 1
2(a(x)2 + u2) + C(g1(x) + |u|q).

Since q ≥ 2 and a ∈ L2(Ω), there exists a constant C and a L1(Ω)-function ḡ1 such that the
following bound holds:

|j1(x, u, z)| ≤ C(ḡ1(x) + ‖z‖2 + |u|q) a.e. on Ω.
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Similarly, we obtain with ḡ2 being a suitable Lq/(q−1)(Ω)-function the following estimates for the
partial derivatives almost everywhere on Ω:

∣∣∣∂j1
∂u

(x, u, z)
∣∣∣ = |b(x)u+ a(x) + ϕu(x, u)| ≤ C(ḡ2(x) + |u|q−1),∥∥∥∥∂j1∂z (x, u, z)
∥∥∥∥ = ‖A(x)z‖ ≤ C‖z‖.

Together with Remark A.2, Theorem A.4 shows that J1 is continuously differentiable.

In the same way, one estimates the second-order partial derivatives of j1 and uses Theorem A.5 in
consideration of Remark A.3 to obtain the second-order differentiability. �

The next lemma shows that J ′1 satisfies (H5) under suitable assumptions on ϕu.

Lemma 5.3 Let Φu with Φu(u)(x) := ϕu(x, u(x)) be uniformly continuous as mapping from
Lq(Ω) to Lq/(q−1)(Ω), 2 ≤ q ≤ p, on a set S ⊂ H1(Ω), i.e., for all εΦu > 0 exists a δΦu > 0 such
that

‖Φu(u)− Φu(v)‖Lq/(q−1)(Ω) ≤ εΦu for all u, v ∈ S with ‖u− v‖Lq(Ω) ≤ δΦu .

Then J ′1 is uniformly continuous on S.

Proof Let ε > 0. We set εΦu = ε/(2C), where C must be chosen large enough such that
‖w‖Lq(Ω) ≤ C‖w‖H1(Ω) for all w ∈ H1(Ω) hold. The existence of such a constant is assured by
the embedding H1(Ω) ↪→ Lq(Ω). We denote by δΦu the corresponding δ of the uniform continuity
of Φu. The definition of the dual norm, Hölder’s inequality and the embedding of H1(Ω) into
Lq(Ω) yield

‖J ′1(u)− J ′1(v)‖V∗ = sup
‖d‖V=1

〈J ′1(u)− J ′1(v), d〉

=
∫

Ω

(
∇dTA(x)(∇u−∇v) + b(x)d(u− v) + d

(
ϕu(x, u)− ϕu(x, v)

))
dx

≤ ‖A‖L∞d×d‖∇u−∇v‖L2‖∇d‖L2 + ‖b‖L∞‖d‖L2‖u− v‖L2

+ ‖d‖Lq‖Φu(u)− Φu(v)‖Lq/(q−1)

≤ ‖A‖L∞d×d‖∇u−∇v‖L2 + ‖b‖L∞‖u− v‖L2 + C‖Φu(u)− Φu(v)‖Lq/(q−1) .

Now let u, v ∈ S arbitrary with

‖u− v‖V ≤ δ := min
{
δΦu ,

ε

2(‖A‖L∞d×d + ‖b‖L∞)−1
}
.

Then we have

‖J ′1(u)− J ′1(v)‖V∗ ≤
(
‖A‖L∞d×d + ‖b‖L∞

)
δ + CεΦu ≤ ε,

which shows the assertion. �
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Remark 5.1 The uniform continuity of Φu is weaker than demanding that the function ϕu(x, ·)
is uniformly continuous for almost all x ∈ Ω. As an example consider the function ϕ(x, u) := uq/q,
q > 2, for which ϕu(x, ·) is not uniformly continuous on R. But if we assume that ‖u‖Lq ≤ C for
all u ∈ S, one can show, using the inequality (uq−1 − vq−1) ≤ (q − 1)(|u|q−2 + |v|q−2)|u− v|, that
there exists a C > 0 such that

‖Φu(u)− Φu(v)‖Lq/(q−1) = ‖uq−1 − vq−1‖Lq/(q−1) ≤ C‖u− v‖Lq ,

which shows the uniform continuity of Φu in the sense of the previous lemma.

We continue to verify the remaining assumptions (H2')–(H4') for which we need the second-order
directional derivatives, which are given by

J ′′1 (u)[d1, d2] =
∫

Ω

(
∇d2

TA(x)∇d1 +
(
b(x) + ϕuu(x, u(x))

)
d1d2

)
dx. (5.7)

We now show that the induced bilinear form is bounded on H1(Ω) for all iterates of Algorithm 2.1,
i.e., there is a constant CH independent of i, k and t such that

J ′′1 (xi + vi,k + tsi,k)[d1, d2] ≤ CH‖d1‖H1(Ω)‖d2‖H1(Ω).

To show this, we define Φuu(u)(x) := ϕuu(x, u(x)) and assume that it is bounded in Lq/(q−2)(Ω) for
all iterates generated by Algorithm 2.1, i.e., there exists a constant CΦ such that

‖Φuu(xi + vi,k + tsi,k)‖Lq/(q−2)(Ω) ≤ CΦ for all t ∈ [0, 1], i = 1, . . . , r and all iterations k = 1, . . . .
(5.8)

Now Hölder’s inequality and the embeddingH1(Ω) ↪→ Lq(Ω) yield for t ∈ [0, 1]

J ′′1 (xi + vi,k + tsi,k)[d1, d2] ≤ ‖A‖L∞d×d‖∇d1‖L2‖∇d2‖L2 + ‖b‖L∞‖d1‖L2‖d2‖L2

+ ‖Φuu(xi + vi,k + tsi,k)‖Lq/(q−2)‖d1‖Lq‖d2‖Lq
≤ CH‖d1‖H1‖d2‖H1 ,

(5.9)

where CH = max{‖A‖L∞d×d , ‖b‖L∞} + CCΦ. With the definition of λmax
i , (3.12), follows

(H4').

In the next step, we want to determine how to choose a trust-region norm such that (H2')
and (H3') are satisfied. It follows immediately from (5.9) that both assumptions hold with
β1 = β3 = 2CH if ‖·‖H1(Ω) is chosen as trust-region norm. We will now show that it is also
possible to choose a weaker norm for the trust region in this example. Using Hölder’s inequality
it follows from (5.7):∣∣∣(J ′′1 (xi + vi,k)−J ′′1 (xi + vi,k + tsi,k)

)
[si,k, si,k]

∣∣∣
≤
∫

Ω

∣∣∣(ϕuu(x, xi + vi,k)− ϕuu(x, xi + vi,k + tsi,k)
)
s2
i,k

∣∣∣ dx
≤ ‖Φuu(xi + vi,k)− Φuu(xi + vi,k + tsi,k)‖Lq/(q−2)(Ω)‖si,k‖

2
Lq(Ω).

Hence, if (5.8) holds, then also (H2') and (H3') for ‖·‖i = ‖·‖Lq(Ω), i = 1, . . . , r.
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The requirement that Φuu is bounded on C, which implies (5.8), is strong, in particular in the
unconstrained case. We will now show that (5.8) is satisfied in our setting for a slightly changed
algorithm if the restriction operators are stable with respect to the trust-region norm. To this
end, we use the following lemma:

Lemma 5.4 Let Assumption 5.1 be satisfied. Suppose that x̂r ∈ Cr is a point such that its
sublevel set,

L−x̂r(f) := {xr ∈ Vr ∩ Cr | fr(xr) ≤ fr(x̂r)},
is bounded with respect to a norm ‖·‖#, which satisfies ‖vi‖# ≤ ‖vi‖i for all vi ∈ Vi and
i = 1, . . . , r. Assume that there are linear restriction operators Ri : Vr → Vi for i = 1, . . . , r − 1
such that

Rii+1(xi+1, vi+1) = Ri(xi+1 + vi+1)
and the estimate

‖Ri
(
Ri+1(· · · (Rj(vj+1)))

)
‖# ≤ CR‖vj+1‖# for all i ≤ j < r (5.10)

holds with a level-independent constant CR. Then all points xi + vi,k + tsi,k, t ∈ [0, 1], that are
generated by Algorithm 2.1, applied to fr with start point x̂r, are bounded indepedently of the
level with respect to ‖·‖# if there exists a maximum trust-region radius ∆r,max > 0 such that
∆r,k ≤ ∆r,max for all k holds.

Proof Since ‖si,k‖# ≤ ‖si,k‖i ≤ ∆i,k ≤ ∆r,max holds, it is enough to show that the iterates
xi + vi,k are bounded.

Algorithm 2.1 is a descent method and thus all iterates xr + vr,k = vr,k on level r stay inside the
sublevel set. Since the sublevel set is bounded, there is a constant B such that ‖vr,k‖# ≤ B holds.

In contrast to hr = fr, the lower-level models hi on levels i < r can be unbounded from below.
However, due to the trust-region management, the iterates on the lower levels also stay bounded:
Let iteration (i, ki) be generated by iteration (i+ 1, ki+1) which itself was generated by iteration
(i+ 2, ki+2) and so on till an iteration (r, kr). From Corollary 2.1, we infer

‖xi + vi,ki‖# ≤ ‖xi‖# + ‖vi,ki‖i ≤ ‖xi‖# + CP∆i,0.

Without loss of generality, we require CP ≥ CR ≥ 1. We recall that by construction xj =
Rj(xj+1 + vj+1,kj+1) for all j = 1, . . . , r − 1 is satisfied. Hence, using (5.10) we can estimate

‖xi‖# = ‖Ri(xi+1 + vi+1,ki+1)‖# ≤ ‖RiRi+1(xi+2 + vi+2,ki+2)‖# + ‖Rivi+1,ki+1‖#

≤ . . . ≤
r−1∑
j=i
‖Ri · · ·Rjvj+1,kj+1‖# ≤ CR

r∑
j=i+1

‖vj,kj‖#

This yields

‖xi + vi,ki‖# ≤ CR
r∑

j=i+1
‖vj,kj‖# + CP∆i,0 ≤ CP

r∑
j=i+1

‖vj,kj‖# + CP∆i+1,ki+1 .

From the second part of the trust-region update rule (2.34), it follows

CP∆j,kj ≤ CP∆j,0 − CP‖vj,kj‖j ≤ CP∆j,0 − CP‖vj,kj‖# for all i+ 1 ≤ j < r
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and hence

‖xi+vi,ki‖# ≤ CP
r∑

j=i+2
‖vj,kj‖# +CP∆i+2,ki+2 ≤ . . . ≤ CP‖vr,kr‖# +CP∆r,kr ≤ CP(B+∆r,max).

This completes the proof. �

Remark 5.2 The additional assumption, ∆r,k ≤ ∆r,max, can be guaranteed by changing the
update rule (2.34) in Algorithm 2.1 to

∆i,k+1 =
{

min{∆+
i,k,∆i,0 − ‖vi,k+1‖i} if i < r,

min{∆+
i,k,∆r,max} if i = r.

The global convergence properties of the algorithm are not affected by this change.

Now let ‖·‖i = ‖·‖Lq(Ω) for i = 1, . . . , r. From the coercivity of J1 and (5.5) follows the boundedness
of all sublevel sets of J1 with respect to the Lq(Ω)-norm. Set ‖·‖# = ‖·‖Lq(Ω) and let the
assumptions of the preceding lemma on the restrictions hold.1 Let q 6= 2 and let xi + vi,k +
tsi,k, t ∈ [0, 1], be an arbitrary iterate. Then from the growth condition (5.6) on ϕuu, it
follows

‖Φuu(xi + vi,k + tsi,k)‖Lq/(q−2) ≤
( ∫

Ω
|ϕuu(x, xi + vi,k + tsi,k)|q/(q−2) dx

)(q−2)/q

≤ C
[
‖g3‖Lq/(q−2) +

( ∫
Ω
|xi + vi,k + tsi,k|q dx

)(q−2)/q
]

≤ C
[
‖g3‖Lq/(q−2) + ‖xi + vi,k + tsi,k‖q−2

Lq
]
.

Lemma 5.4 shows that the last expression is bounded independently of i and k and hence there exists
a constant CΦ such that (5.8) is satisfied. In the case q = 2, (5.8) becomes

‖Φuu(xi + vi,k + tsi,k)‖L∞(Ω) ≤ CΦ

and follows directly from the growth condition on ϕuu.

By a similar argumentation using (5.5), it can be easily seen that we obtain the same result for
‖·‖# = ‖·‖i = ‖·‖H1(Ω).

5.2. A quasi-interpolation restriction operator

Before we consider other application classes, we present in this section two different restriction
operators that satisfy the assumptions of Lemma 5.4.

It is easy to see that the simple nodal interpolation operator (injection) generally do not satisfy
condition (5.10) if ‖·‖Lq(Ω) or ‖·‖H1(Ω) is chosen as trust-region norm. One possible choice for
a restriction operator that satisfies (5.10) both for ‖·‖# = ‖·‖H1(Ω) and ‖·‖# = ‖·‖Lq(Ω) is the

1For a restriction operator that satisfies (5.10) see Section 5.2.
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L2(Ω)-projection Qi. To see this, we first note that Qi(Qj)v = Qiv for all v ∈ L2(Ω) and i ≤ j,
which follows directly from the orthogonality (cf. (3.2)):

‖Qi(Qjv)−Qiv‖2L2(Ω) = (Qi(Qjv − v), Qi(Qjv − v))L2(Ω) = (Qi(Qjv − v), Qjv − v)L2(Ω)

= (Qi(Qjv − v), Qjv)L2(Ω) − (Qi(Qjv − v), v)L2(Ω) = 0.

Therefore, it is enough to show the stability, i.e., that ‖Qiv‖# ≤ CR‖v‖# holds. For the H1-norm
this is a well-known result (cf. for instance [BX91, Thm. 3.4]). In [DDW75] a stability result for
the Lp-norms was proven, more precisely, it was shown that

‖Qiv‖Lp(Ω) ≤ C |1−2/p|‖v‖Lp(Ω) for all v ∈ Lp(Ω) and 1 ≤ p ≤ ∞

holds for a large number of finite element spaces over quasi-uniform grids, for instance in
the setting of Example 3.1. The constant C is level-independent and does not depend on
p.

We now present another restriction operator, which can be numerically evaluated cheaper
than the L2-projection. For this, we require that each space Vi is equipped with a basis
{φji}j=1,...,ni ⊂W 1,∞(Ω) that satisfies the following assumptions:

1. φji ≥ 0 for all j = 1, . . . , ni,

2. ‖φji‖L∞(Ω) = 1,

3. 0 < θi ≤ 1 almost everywhere in Ω where θi := ∑ni
j=1 φ

j
i .

A typical example of a basis that satisfies these conditions is the nodal basis presented in
Example 3.1.

We define quasi-interpolation operators Ii by

Ii : L1(Ω)→ Vi, Ii(u) :=
ni∑
j=1

πji (u)φji (5.11)

where

πji (u) := (u, φji )
(φji , 1)

=
∫

Ω
uφji dx

( ∫
Ω
φji dx

)−1
.

These types of quasi-interpolation operators were also be considered in [BPV00] and [Car99]. In
the latter they analysed a slightly different interpolation where the coefficients are defined by
π̂ji (u) :=

∫
Ω uφ

j
i/θi dx

( ∫
Ω φ

j
i dx

)−1
. In the setting of Example 3.1 the operators differ only at

nodes near the Dirichlet boundary.

Remark 5.3 We emphasize that in comparison to the L2-projector the evaluation of the quasi-
interpolant is inexpensive since no linear system involving the mass-matrix has to be solved.

We first show the stability with respect to the Lp(Ω)-norms.
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Lemma 5.5 The interpolations defined by (5.11) are continuous and linear operators from Lp(Ω)
to Lp(Ω) for 1 ≤ p ≤ ∞. In particular, for u ∈ Lp(Ω) it holds:

‖Iiu‖Lp(Ω) ≤ ‖u‖Lp(Ω). (5.12)

Proof Obviously, the interpolation is a linear operator and well-defined since the basis functions
satisfy φi ∈ L∞(Ω) for i = 1, . . . , ni. We show (5.12) for p = 1 and p =∞. From this, the assertion
then follows by the Riesz-Thorin interpolation theorem (cf. for instance [Wer07, Thm. II.4.2]).

p = 1: Using φji ≥ 0 and ∑ni
j=1 φ

j
i ≡ 1 a.e. on Ω, we obtain

‖Iiu‖L1(Ω) ≤
ni∑
j=1

∣∣∣πji (u)
∣∣∣ ∫

Ω
|φji |dx ≤

ni∑
j=1

∫
Ω
|u|φji dx ≤

∫
Ω
|u|dx = ‖u‖L1(Ω). (5.13)

p =∞: Let u ∈ L∞(Ω). Clearly, |πji (u)| ≤ ‖u‖L∞(Ω) and hence

‖Iiu‖L∞(Ω) ≤ ‖
ni∑
j=1

πji (u)φji‖L∞(Ω) ≤ ‖u‖L∞(Ω)‖
ni∑
j=1

φji‖L∞(Ω) ≤ ‖u‖L∞(Ω).
�

We will now show that this interpolation operator also satisfies (5.10) for the H1-norm in the
setting of Example 3.1. To show this, we use the following result from [BPV00, Lemma 3.2]:

Lemma 5.6 There exists a constant C not depending on hi, such that

‖u− Iiu‖L2(Ω) ≤ Chi‖u‖H1(Ω) for all u ∈ H1
0 (Ω).

Using similar techniques as in the proof of [Car99, Thm. 3.1], one can also show that

‖Iiu‖H1(Ω) ≤ C‖u‖H1(Ω) for all u ∈ H1
0 (Ω).

These result are also valid for spaces where we have homogeneous Dirichlet conditions just on a
part ΓD of the complete boundary ∂Ω, as long as it aligns with the meshes. That means that
each edge of the triangulation is either contained in ΓD or intersects ΓD at most at the endpoint
of the edge.

For the next lemma, we need the inverse estimate

‖vi‖H1(Ω) ≤ h−1
i ‖vi‖L2(Ω) for all vi ∈ Vi, (5.14)

which is satisfied if the triangulation of Ω is quasi-uniform.

Lemma 5.7 In the setting of Example 3.1, the quasi-interpolants Ii, i = 1, . . . , r satisfy (5.10)
for ‖·‖# = ‖·‖H1(Ω).
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Proof Let i ≤ j < r and vj+1 ∈ Vj+1. We set Iij = IiIi+1 · · · Ij . Using (5.14), (5.12), and the
estimates above, we obtain

‖Iijvj+1‖H1(Ω) ≤ ‖Ii
(
Ii+1(· · · (Ijvj+1 − vj+1))

)
‖H1(Ω) + ‖

(
Ii(· · · (Ij−1vj+1))

)
‖H1(Ω)

≤ h−1
i ‖Ii

(
Ii+1(· · · (Ijvj+1 − vj+1))

)
‖L2(Ω) + ‖Iij−1vj+1‖H1(Ω)

≤ h−1
i ‖Ijvj+1 − vj+1‖L2(Ω) + +‖Iij−1vj+1‖H1(Ω)

≤ Ch−1
i hj‖vj+1‖H1(Ω) + ‖Iij−1vj+1‖H1(Ω)

≤ C
j∑
k=i

h−1
i hk‖vj+1‖H1(Ω) = C‖vj+1‖H1(Ω)

j∑
k=i

h−1
i hk.

The sum in the last expression is bounded by means of the geometric series since h1 = 2j−1hj
holds. This shows the assertion. �

5.3. Example 2

Let Ω ⊂ R2 be a bounded domain with Lipschitz-boundary. We consider the problem

min
u∈C

J2(u), J2 : H1(Ω) ∩ L∞(Ω)→ R, u 7→
∫

Ω
j2(x, u(x),∇u(x)) dx,

j2 : Ω× R× Rd → R, j2(x, u, z) := 1
2(ψ(u)zT z + b(x)u2)

(5.15)

with ψ : R → R+ twice continuously differentiable and b ∈ L∞(Ω) non-negative. We further
demand that a lower bound cψ > 0 exists such that

ψ(u) ≥ cψ for all u ∈ R.

As in the previous example we assume C to be a nonempty, closed and convex set that satisfies
(5.3).

Remark 5.4 The problem is well-defined and possesses a solution if we use H1(Ω) as domain of
definition of J2. This follows from Theorem A.7 and the coercivity of J2, which can be shown
by a straightforward calculation. However, in this setting we cannot show that J2 satisfies the
necessary differentiability assumptions. Hence, we consider instead H1(Ω) ∩ L∞(Ω) as preimage
space. This is justified by the fact that in typical cases, which depend on the feasible set C, the
solution has higher regularity and thus is an element of L∞(Ω). See for instance Theorem A.8 for
the case with Dirichlet boundary conditions or pointwise bounds.

We first show that J2 satisfies the differentiability assumptions (H1').

Lemma 5.8 The functional J2 is twice Gâteaux differentiable on H1(Ω) ∩ L∞(Ω). Furthermore,
the first derivative is continuous and the operator u 7→ J ′′2 (u)[d, d] is continuous for every fixed
direction d ∈ H1(Ω) ∩ L∞(Ω).
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Proof Since ψ is twice continuously differentiable, there exists a constant C(R) ≥ 1 for each
R ≥ 0 such that there hold

|ψ(u)| ≤ C(R), |ψ′(u)| ≤ C(R) and |ψ′′(u)| ≤ C(R) for all u ∈ R with |u| ≤ R.

Without loss of generality we assume C(R) ≥ ‖b‖L∞ max{R,R2}. From the definition of j2 we
obtain the following estimates for |u| ≤ R:

|j2(x, u, z)| ≤ C(R)‖z‖2 + ‖b‖L∞(Ω)R
2 ≤ C(R)Ṽ 2,∣∣∣ ∂

∂u
j2(x, u, z)

∣∣∣ = 1
2 |ψ

′(u)zT z|+ b(x)u ≤ C(R)‖z‖2 + ‖b‖L∞(Ω)R ≤ C(R)Ṽ 2,∥∥∥ ∂
∂z
j2(x, u, z)

∥∥∥ = ‖ψ(u)z‖ + 1
2a(x)u2 ≤ C(R)‖z‖ + ‖b‖L∞(Ω)R

2 ≤ C(R)Ṽ,

where Ṽ := (1 + ‖z‖2)1/2. Thus, the functional J2 satisfies assumptions (A.3) of Theorem A.4 and
it follows that J2 is continuously differentiable. In the same way, one shows that the second-order
partial derivatives of j2 satisfy (A.6). Then the second-order differentiability of J2 follows directly
from Theorem A.5. �

In the previous chapters we have often considered the case V = H1(Ω). One important example
is the equivalence of the multilevel stationarity measure and the dual-norm of the gradient,
which greatly reduces the computational complexity. It is not evident that we obtain the same
results for the space V = H1(Ω) ∩ L∞(Ω) or, more precisely, for the discrete finite element spaces
(Vi, ‖·‖H1∩L∞). However, in the discrete setting we can still work in (Vi, ‖·‖H1) because the spaces
are finite dimensional and the norms therefore equivalent. We would expect though that J ′2 and
hence the stationarity measure is not level-independently continuous anymore. The next lemma
shows that this is indeed true, but the level-dependence is rather weak and of the same order as the
one we have observed in the constrained case (cf. Section 4.3.1).

Lemma 5.9 Let (Vh, ‖·‖L∞∩H1) be the space of continuous, piecewise linear functions defined
on a quasi-uniform triangulation of Ω ⊂ R2 with maximum diameter h. Then for every g ∈ X∗,
X := L∞(Ω) ∩H1(Ω), there exists an element gh ∈ Vh such that (gh, vh) = 〈g, vh〉 for all vh ∈ Vh
and

1
C
‖ιL2(gh)‖X∗ ≤ ‖ιL2(gh)‖V∗

h
:= sup

vh∈Vh

(gh, vh)
‖vh‖X

≤ ‖ιL2(gh)‖X∗

holds with a constant C that is independent of h and g. Furthermore, we have

‖gh‖V∗
h
≤ ‖gh‖(Vh,‖·‖H1(Ω))∗ := sup

vh∈Vh

(gh, vh)
‖vh‖H1(Ω)

≤ (1 + C| log(h)|1/2)‖gh‖V∗
h

for all gh ∈ Vh.

Proof The existence of gh with the asserted properties follows from the Riesz representation
theorem. Using the stability of the L2-projection with respect to ‖·‖H1(Ω) and ‖·‖L∞ , the
equivalence of the norms on Vh follows as in Lemma 3.2.
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The left-hand side of the second assertion follows directly from ‖vh‖H1(Ω) ≤ ‖vh‖H1(Ω)∩L∞(Ω). In or-
der to verify the right-hand side, we use the well-known inequality ‖vh‖L∞(Ω) ≤ C| log h|1/2‖vh‖H1(Ω)
(cf. [BS08, Lemma 4.9.2]) and obtain

sup
vh∈Vh

(gh, vh)
‖vh‖X

≥ sup
vh∈Vh

(gh, vh)
(1 + C| log h|1/2)‖vh‖H1(Ω)

= (1 + C| log h|1/2)−1‖gh‖(Vh,‖·‖H1(Ω))∗ ,

which shows the assertion. �

The following corollary follows directly from the previous lemma:

Corollary 5.1 Let F : X → X∗, X := H1(Ω)∩L∞(Ω), be uniformly continuous on a set S ⊂ Vh,
i.e., for all ε > 0 there exists δ(ε) > 0 such that

‖F (vh)− F (uh)‖X∗ ≤ ε for all uh, vh ∈ S with ‖uh − vh‖X ≤ δ(ε),

with the space Vh as in the previous lemma. Then Fh : (Vh, H1(Ω))→ (Vh, H1(Ω))∗ with Fh(uh) =
F (uh) for all uh ∈ Vh is uniformly continuous on S, more precisely for all ε > 0 it holds

‖Fh(vh)− Fh(uh)‖(Vh,H1(Ω))∗ ≤ ε for all uh, vh ∈ S with ‖uh − vh‖H1(Ω) ≤ δh(ε)

where δh(ε) ≤ δ((1 + C| log(h)|1/2)ε).

In what follows, we assume that the function ψ and its derivatives are bounded on the feasible
set, i.e., there exists a constant Cψ such that

‖ψ(k)(u)‖L∞(Ω) ≤ Cψ for all u ∈ C and k = 0, 1, 2.

A simple calculation shows that the Gâteaux derivative of J2 in direction d ∈ X := H1(Ω)∩L∞(Ω)
is given by

J ′2(u)[d] = 1
2

∫
Ω

(
ψ′(u)∇uT∇u · d+ 2ψ(u)∇uT∇d+ b(x)ud

)
dx,

and its second derivative in directions d1, d2 ∈ X by

J ′′2 (u)[d1, d2] = 1
2

∫
Ω

(
ψ′′(u)d1d2∇uT∇u+2

(
ψ′(u)(d1∇uT∇d2+d2∇uT∇d1)+ψ(u)∇d2

T∇d1
))

dx.

Using Hölder’s inequality, we get the estimate

J ′′2 (u)[d1, d2] ≤ 1
2‖ψ

′′(u)‖L∞‖d1‖L∞‖d2‖L∞‖∇u‖2L2

+ ‖ψ′(u)‖L∞‖∇u‖L2(‖d1‖L∞‖∇d2‖L2 + ‖d2‖L∞‖∇d1‖L2)
+ ‖ψ(u)‖L∞‖∇d1‖L2‖∇d2‖L2

≤ 1
2
(
‖ψ′′(u)‖L∞‖∇u‖2L2 + 2‖ψ′(u)‖L∞‖∇u‖L2 + 2‖ψ(u)‖L∞

)
‖d1‖X‖d2‖X

≤ 2Cψ(‖∇u‖2L2 + 1)‖d1‖X‖d2‖X .

(5.16)
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On the sublevel sets

L−û (J2) := {u ∈ H1(Ω) ∩ L∞(Ω) | J2(u) ≤ J2(û)},

we have
1
2cψ‖∇u‖

2
L2(Ω) ≤ J2(u) ≤ J2(û) (5.17)

and hence the boundedness of the elements in L−û (J2) with respect to the H1(Ω)-seminorm. By
(5.4) it follows that also their H1(Ω)-norm is bounded. Thus, if we use a trust-region norm which
satisfies ‖·‖i ≥ ‖·‖H1(Ω), i = 1, . . . , r, and suitable restriction operators, we can apply Lemma 5.4
with ‖·‖# = ‖·‖H1(Ω). This yields the boundedness of all iterates xi + vi,k + tsi,k, t ∈ [0, 1],
i = 1, . . . , r, k = 1, 2, . . ., in terms of ‖·‖H1(Ω). Together with (5.16) we finally conclude that there
exists a level-independent constant CH such that

J ′′2 (xi + vi,k)[d1, d2] ≤ CH‖d1‖X‖d2‖X . (5.18)

Since d = 2 and the triangulation is quasi-uniform, there exists a level-independent constant C
such that the inverse inequality

‖vi‖L∞(Ω) ≤ Ch−1
i ‖vi‖L2(Ω) for all vi ∈ Vi, i = 1, . . . , r

holds (cf. for instance [Cia78, Thm. 3.2.6]). Hence, the following estimate is true:

‖vi‖X = ‖∇vi‖L2(Ω) + ‖vi‖L∞(Ω) ≤ Ch−1
i ‖vi‖L2(Ω).

Estimating the norm in (5.18) by the last inequality yields

J ′′2 (xi + vi,k)[d1, d2] ≤ CHh−2
i ‖d1‖L2(Ω)‖d2‖L2(Ω) = CHλ

max
i ‖d1‖L2(Ω)‖d2‖L2(Ω)

for all directions d1, d2 ∈ Vi. Thus, (H4') is satisfied.

From (5.18) it also follows that (H2') and (H3') is satisfied if we choose ‖·‖X as trust-region norm
on every level.

Finally, we verify that J ′2 is uniformly continuous on L−v̂ (J2) by showing that it is Lipschitz
continuous. By definition of the dual norm we have

‖J ′2(u)− J ′2(v)‖X∗ = 1
2 sup
‖d‖X=1

[ ∫
Ω

(
ψ′(u)‖∇u‖2 − ψ′(v)‖∇v‖2

)
ddx

+
∫

Ω

(
2(ψ(u)∇u− ψ(v)∇v)T∇d+ b(x)(u− v)d

)
dx
]

≤ 1
2

∫
Ω

∣∣ψ′(u)‖∇u‖2 − ψ′(v)‖∇v‖2
∣∣ dx

+ ‖ψ(u)∇u− ψ(v)∇v‖L2 + 1
2‖b‖L2‖u− v‖L2 .

(5.19)

In order to make further estimates, we first reformulate the integral term∫
Ω

∣∣ψ′(u)‖∇u‖2 − ψ′(v)‖∇v‖2
∣∣ dx ≤ 1

2
[ ∫

Ω

∣∣(ψ′(u)− ψ′(v))(‖∇u‖2 + ‖∇v‖2)
∣∣ dx

+
∫

Ω

∣∣(ψ′(u) + ψ′(v))(‖∇u‖2 − ‖∇v‖2)
∣∣ dx].
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Using the fundamental theorem of calculus for almost each x ∈ Ω then yields∫
Ω
|ψ′(u)− ψ′(v)|(‖∇u‖2 + ‖∇v‖2) dx =

∫
Ω

∣∣∣ ∫ 1

0
ψ′′(u+ t(v − u))(v − u)(‖∇u‖2 + ‖∇v‖2) dt

∣∣∣ dx
≤ Cψ

∫
Ω
|v − u|(‖∇u‖2 + ‖∇v‖2) dx

≤ Cψ‖v − u‖L∞
(
‖∇u‖2L2 + ‖∇v‖2L2

)
≤ 4Cψ

cψ
J2(û)‖v − u‖X .

We have used that C is a convex set and that (5.17) holds for all u, v ∈ L−û (J2). Further, we
have ∫

Ω
(ψ′(u) + ψ′(v))

∣∣‖∇u‖2 − ‖∇v‖2∣∣ dx ≤ 2Cψ
∫

Ω
|(∇u−∇v)T (∇u+∇v)| dx

≤ 2Cψ‖∇u+∇v‖L2‖∇u−∇v‖L2

≤ 4Cψ
( 2
cψ
J2(û)

)1/2
‖u− v‖X .

Similarly, we estimate the second term in (5.19):

‖ψ(u)∇u− ψ(v)∇v‖L2 ≤
1
2
[
‖
(
ψ(u)− ψ(v)

)
(∇u+∇v)‖L2 + ‖

(
ψ(u) + ψ(v)

)
(∇u−∇v))‖L2

]
≤ 1

2
( 2
cψ
J2(v̂)

)1/2
‖ψ(u)− ψ(v)‖L∞ + Cψ‖∇u−∇v‖L2

≤ 1
2Cψ

( 2
cψ
J2(v̂)

)1/2
‖u− v‖X + Cψ‖u− v‖X .

Inserting all estimates in (5.19) shows the Lipschitz continuity of J ′2 on L−û (J2) and thus
(H5).

5.4. Minimum surface problems

Let Ω ⊂ R2 be a Lipschitz-continuous domain with boundary Γ. Furthermore let u0 be a continuous
function on Γ that describes the values of a surface on the boundary. The solution of the problem
minu∈C J3(u) with C :=

{
u ∈ H1(Ω)| (u− u0) ∈ H1

0 (Ω)
}
and

J3(u) :=
∫

Ω

√
1 +∇uT∇udx

describes the minimum surface. Whether a solution of this problem exists depends on the domain
Ω and the set C. It is well known that the problem has a solution if Ω is convex and u0 is a
C2(Ω)-function (cf., e.g., [Giu03, Theorem 1.6]). As a variant, we also consider different feasible
sets C where besides the Dirichlet boundary conditions additional constraints on the surface are
demanded, as for example that it has to lie above an obstacle. In this case, however, the solvability
of the problem is not so easy to analyse. If we replace H1(Ω) by a suitable finite element space
Vh with mesh size h, it is easy to see that the problem is always solvable. However, the solutions
will in general not converge for h→ 0.
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To show that J3 satisfies (H1'), we define the C2-function j3(x, u, z) :=
√

1 + zT z and estimate
the partial derivatives of j3:

|j3(x, u, z)| ≤ 1 + ‖z‖,∥∥∥ ∂
∂z
j3(x, u, z)

∥∥∥ = ‖z‖√
1 + zT z

≤ 1,
∥∥∥ ∂2

∂z∂z
j3(x, u, z)

∥∥∥ = 1√
1 + zT z

− ‖zzT ‖
(1 + zT z)3/2 ≤ 2.

Hence, assumption (A.2) of Theorem A.4 and assumption (A.5) of Theorem A.5 are satisfied,
which shows (H1') with V = H1(Ω).

The second-order directional derivative is given by

J ′′3 (u)[d, d] =
∫

Ω

∇dT∇d(1 +∇uT∇u)− (∇uT∇d)2

(1 +∇uT∇u)3/2 dx.

We can easily derive an upper bound for J ′′3 (u)[d, d] in terms of ‖d‖H1 :

|J ′′3 (u)[d, d]| ≤
∫

Ω

(
‖∇d‖2 + (∇uT∇d)2

(1 +∇uT∇u)3/2

)
dx ≤

∫
Ω

(
‖∇d‖2 + ‖∇u‖

2‖∇d‖2

1 +∇uT∇u
)

dx

≤ 2‖∇d‖2L2(Ω) ≤ 2‖d‖2H1(Ω)

This verifies assumptions (H2'), (H3') and (H4') if ‖·‖H1(Ω) or the H1-semi-norm is chosen as
trust-region norm. Moreover, since the operator J ′′3 (u) is bounded by L = 2 in L(H1(Ω), (H1(Ω))∗)
for all u ∈ H1(Ω), it follows from Lemma A.4 that J ′3 is Lipschitz continuous on H1(Ω) and hence
satisfies (H5).

5.5. Signorini Problem

The Signorini problem is a simple contact problem from the theory of linear elasticity. A
deformation of an elastic body is searched that is subjected to body forces and surface tractions
and which has frictionless contact to a rigid obstacle on some part of his surface. The contact area
is not known in advance but is part of the solution. Instead of the whole nonlinear elasticity model,
a linearization is used and hence the results are only valid for small deformations of the body. We
shall give just a very short description of the problem, a more comprehensive introduction can be
found for instance in [KO88, Ch. 2 & 6].

Assume Ω ⊂ Rd, d = 2, 3, is a domain with Lipschitz-boundary. We will think of Ω as the
part of space occupied by a body in a natural state, i.e., unstressed state, before it is deformed.
We assume that the boundary ∂Ω consists of three parts ΓD,ΓN ,ΓC with ΓD ∩ ΓC = ∅. We
have Dirichlet conditions on ΓD and traction forces t ∈

(
L∞(ΓN )

)d act on ΓN . The area of the
boundary where contact to the obstacle is possible is denoted by ΓC . For simplicity, we demand
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5.5. Signorini Problem

ΓD 6= ∅2. We are looking for a displacement v∗ ∈ V := {v ∈ H1(Ω)d | v = 0 on ΓD} that solves
the problem

min
v∈V

∫
Ω

[
µε(v) : ε(v) + λ

2 (div v)2 − f · v
]

dx−
∫

ΓN
t · v dS(x)

s.t. vTn ≤ g on ΓC .
(5.20)

Here, f ∈ (L∞(Ω))d denotes the body forces, ε(v) := 1
2(∇v +∇vT ) the linearized strain tensor

and λ and µ are material parameters (Lamé’s parameters). n(x) ∈ Rd denotes the normal vector
at x ∈ ΓC and g(x) ≥ 0 the Euclidean distance (gap) from x to the rigid obstacle in direction
n(x).

The set C := {v ∈ V | vTn ≤ g a.e. on ΓC} of feasible displacements is closed and convex.

As it is shown for instance in [KO88, Theorem 6.1], the problem admits a unique solution if
C 6= ∅.

The objective function of the Signorini problem (5.20) is quadratic and hence it is easily seen that it
satisfies all assumptions (H1')–(H4') and (H5) for the trust-region norms ‖·‖i = ‖·‖

H1(Ω)d .

5.5.1. Discretization

We will now shortly introduce a finite element discretization of Signorini’s problem based on
[KK01] that leads to a box constrained minimization problem.

We assume that Ω is polygonal. Let T1 be a quasi-uniform triangulation (tetrahedra in R3) of
Ω with minimum diameter h1 and let N1 be the corresponding set of free nodes x1

1, . . . , x
n1
1 ,

i.e., all the nodes that are not contained in ΓD. We assume that ΓD aligns with the triangu-
lations, i.e., an edge is either contained in ΓD or intersects it at most at the endpoint of the
edge.

Let φi1 : Ω→ R, i = 1, . . . , n1, be the piecewise linear nodal basis functions that satisfy φi1(xk1) = δik
for all nodes xk1 ∈ N1. The finite element space is now defined by

V1 :=
{
v1 =

n1∑
i=1

ṽc1,iφ
i
1 | ṽc1,i ∈ Rd, i = 1, . . . , n1

}
⊂ V,

where ṽc1 ∈ Rn1·d is the corresponding coefficient vector of v1. A standard approximation of the con-
tact condition is to demand it only for nodes on the contact boundary, i.e.,

v1(xk1)Tn(xk1) ≤ g(xk1)⇔ (ṽc1,k)Tn(xk1) ≤ g(xk1) for all xk1 ∈ N1 ∩ ΓC . (5.21)

In [HL77] it was shown that the solution of this finite element approximation converges to the
solution of (5.20) for mesh sizes h→ 0.

In general, (5.21) does not lead to standard box conditions on the coefficient vectors. In order
to formulate it as a simple bound constraint, we use a special local orthogonal basis of Rd for

2If no Dirichlet boundary is given, additional conditions are needed to assure unique solvability of the problem,
cf. [KO88].
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every grid point in xk1 ∈ N1. This basis is represented by a matrix Q(xk1) ∈ Rd×d whose first
column is equal to n(xk1) for xk1 ∈ ΓC ∩ N1. One possibility to construct Q(xk1) is by rotating
the Cartesian basis such that the first unit vector ended up on n(xk1) (Givens rotation). On grid
points that are not contained in ΓC , an arbitrary orthogonal basis, e.g., the standard Cartesian
basis, Q(xk1) = I, can be chosen. With this, we obtain a different representation of the functions
in V1:

v1 =
n1∑
i=1

Q(xi1)ṽ1,iφ
i
1, ṽ1,i ∈ Rd.

The contact condition then becomes

(Q(xk)ṽ1,k)Tn(xk) = (ṽ1,k)1 ≤ g(xk) for xk ∈ N1 ∩ ΓC ,

which is a simple upper bound on the first entry of each part of the coefficient vector. We
define

Q1 :=


Q(x1

1)
Q(x2

1)
. . .

Q(xn1
1 )


and Φ1 := (φ1

1e
1, φ1

1e
2, . . . , φ1

1e
d, . . . , φn1

1 e1, . . . φn1
1 ed), where ej ∈ Rd, j = 1, . . . , d, denotes the

j-th unit vector. Then each element of V1 can be written as v1 = Φ1Q1ṽ1. The finite dimensional
problem in terms of the new coefficient vector is

min
ṽ1∈Rd·n1

1
2 ṽ

T
1 Q

T
1 C1Q1ṽ1 − fT1 Q1ṽ1 − gT1 Q1ṽ1

s.t. ṽ1
1,k ≤ g(xk1) for xk1 ∈ N1 ∩ ΓC

where
(C1)ij =

∫
Ω

(
2µε(Φi

1) : ε(Φj
1) + λdiv(Φi

1)div(Φj
1)
)

dx,

f i1 = (f,Φi
1)L2(Ω) and gi1 =

∫
ΓN gΦi

1 dS(x). Since Q1 is an orthogonal matrix, the condition of the
problem is not influenced by the transformation.

For the multilevel algorithm, we construct the spaces V2 ⊂ V3 ⊂ · · · ⊂ Vr in the same way where the
underlying triangulations of Ω are obtained by uniform refinement.

5.6. Nonlinear elasticity

Often the linearized elasticity model used in the previous section are not accurate enough, e.g., for
large displacements of the body. In this case, one has to work with nonlinear models. A special
class of nonlinear materials are hyperelastic materials, for which a stored energy density function
Ŵ : Ω× Rd×d → R exists. Roughly speaking, Ŵ assigns each point of the reference configuration
and each deformation gradient the strain energy in this point. A typical example of a hyperelastic
material is rubber.
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5.6. Nonlinear elasticity

Given body forces f and forces g that act on the Neumann parts of the boundary, the total
potential energy of the body is given by

J5(v) :=
∫

Ω

(
Ŵ (x, F )− f · v

)
dx−

∫
ΓN

g · v dS(x),

where F (x) := I + ∇v(x) denotes the deformation gradient. Typically, one postulates that a
rotation of the whole system does not change its outcome. This axiom is called frame-indifference.
We further assume that the material is homogeneous, i.e., Ŵ depends only on the deformation
gradient and not on x. In this case there exists a function W : Md

+ → R, Md
+ being the set of

symmetric and positive definite d × d matrices, such that W (C) = Ŵ (x, F ) where C = F TF
denotes the right Cauchy-Green strain tensor [Cia88, Thm. 4.2-1].

Furthermore, it is necessary to constrain the space of possible displacements such that physical not
possible deformations like self penetration can not happen. A mathematically suitable constraint
is detF > 0 almost everywhere on Ω.

There are many different models for hyperelastic materials and it would go beyond the scope of
this thesis to discuss them in detail. Hence, we will consider only the special class of Compressible
Mooney-Rivlin materials, which was suggested in [CG82] (c.f. also [Cia88, Chapter 4]). The stored
energy function is given by

Ŵ (F ) = a‖F‖2 + b‖cof F‖2 + γ(detF ) + e

or respectively in terms of the right Cauchy-Green strain tensor by

W (C) = a trC + b tr(cof C) + γ(
√

detC) + e

with parameters a, b > 0, γ(δ) = cδ2 − d log(δ), c, d > 0 and e ∈ R. Here, cof denotes the
cofactor matrix. A common demand is that for small deformations the hyperelastic material
reassembles the properties of the linear model. This restricts the choice of the parameters
to

a = µ

2 + c− λ

4 , b = λ

4 − c, c <
λ

4 , d = λ

2 + µ, e = −(3a+ 3b+ c)

where λ ∈ R and µ > 0 are the Lamé constants.

Although one can show that this stored energy function is not convex (this holds true for any
reasonable non-linear material, cf. [Cia88, Thm. 4.8-1]), this material has the advantage that its
stored energy function is polyconvex and one can show the existence of a solution, i.e., there exists
at least one v∗ ∈ H1(Ω)d such that J5(v∗) = infv∈H1(Ω)d J5(v). A detailed discussion of this theory,
which goes back to John Ball, can be found in [Cia88, Chapter 7]. Furthermore, the log-term
serves also as an implicit barrier for the constraint detF > 0.

It is not possible to show the necessary differentiability properties with the theory that we have
used for the last examples. The problem is that an actual material has the property that an
infinite amount of energy is required in order to annihilate volumes. Mathematically this can be
expressed by the assumption that Ŵ →∞ for detF → 0+. Hence, the growth conditions which
we have used in the previous cases do not hold.

To our knowledge, there is no satisfactory theory about the differentiability of the function
J5. Nonetheless, we can use our method since, in the discrete setting, the differentiability is
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ensured. In the worst case, we will observe level-dependent factors when we increase the mesh
size.
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In this chapter, we apply Algorithm 2.1 to various 2D and 3D test problems which are mostly of
the type discussed in the previous chapter. The algorithm allows a lot of freedom for the concrete
choices of the parameters and the sub-algorithms used. Therefore, we will first introduce two
different concrete implementation variants. Then we will describe the test problems and analyze
the numerical performance of the algorithm. We do not focus here on the absolute runtime of
the algorithm but instead on its behaviour when the number of levels grow. Furthermore, we do
not compare the algorithm with other general purpose optimization methods. This comparison
would not be completely fair since we consider a special class of optimization problems that is
well suited, and we would therefore expect that our algorithm clearly outperforms these codes.
This presumption is confirmed by the results in [GMS+10] where a multilevel optimization code
was tested against a standard Newton trust-region algorithm. However, it would be interesting
to compare the performance against Multigrid-Newton methods for optimization problems. We
assume that this would be a much closer race.

6.1. Two variants of Algorithm 2.1

Standard multigrid algorithms typically use a fixed iteration cycle, i.e., a rule, only depending on
the iteration number, which determines when the algorithm smooths and when it changes the
level. Most commonly used are V- and W-cycles (cf. Figure 6.1).

These fixed cycles are in general not possible in our algorithm since we are only allowed to go on
a coarser grid when the smoothing property

χj(0) ≥ κχχi(vi,k), (6.1)

is satisfied. Furthermore, it follows from the theory in Chapter 3 and 4 that we cannot expect an
adequate descent of a smoothing step if the iterate is already smooth. Nonetheless, a strategy
similar to a V-cycle can be used and works quite well for a large class of examples. The following
algorithm shows the concrete implementation of Step 1 and Step 5 in Algorithm 2.1 for a V-cycle

level 4
level 3
level 2
level 1

Smooth step
Solve step

Figure 6.1.: Two V-cycles (left) and one W-cycle with pre- and postsmoothing
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strategy with presmoothing. As in the proof of Lemma 2.10, we denote by θ(k) the number of
successful iterations until the k-th iteration of the algorithm.

Algorithm 6.1 (TRMLConv(V-cycle))
Step 1: Model choice

If i > 1, θ(k) > 0, (6.1) and
χi−1(0) ≥ εχi−1

are satisfied, go to Step 2 (Multilevel step). Otherwise, go to Step 3.

Step 5: Termination
Return if one of the termination criteria in Step 5 of Alg. 2.1 is satisfied or if i < r and
one successful multilevel step was made. Otherwise, set k ← k + 1 and go to Step 1.

A different strategy that is better suited for our theory is to choose whether to make a smoothing
step or enter a lower level depending on the smoothness of our current iterate. In comparison
to the V-cycle version, we do not terminate automatically after a successful multilevel step on
the lower levels but instead when the residuum is reduced suitably or a maximum number of
successful iterations were made. The following algorithm shows how Step 1 and Step 5 are
implemented.

Algorithm 6.2 (TRMLConv(Free))
Besides the parameters of Algorithm 2.1, this variant introduces two additional constants
0 < κred < 1 and kmax ∈ N.

Step 1: Model choice
If (6.1), i > 1 and

χi−1(0) ≥ εχi−1

are satisfied, go to Step 2 (Multilevel step). Otherwise, go to Step 3.

Step 5: Termination
Return if one of the termination criteria in Step 5 of Alg. 2.1 is satisfied. If i < r and
χi(vi,k+1) ≤ κredχi(vi,0) or the number of successful iterations satisfies θ(k) ≥ kmax,
return with vi,k+1. Otherwise set k ← k + 1 and go to Step 1.

For simple problems, the V-cycle algorithm performs often slightly better than the free form
version. In these cases, the level pattern of the free form algorithm is similar to the V-cycle
algorithm but with postsmoothing instead of presmoothing. One disadvantage of the free form
version is that the smoothing parameter κχ must be chosen more carefully. If it is too low,
convergence can slow down since virtually no smoothing steps are made. It could be interesting
for future research to determine a good smoothing parameter automatically. In our tests, we
use κχ = 0.7 for the V-cycle and κχ = 0.8 for the free form algorithm. The free form variant
often leads to faster convergence for more complex problems, and one problem the V-cycle
algorithm was not capable to solve within a reasonable number of function evaluations. In this
cases, the free form version uses the lower levels more extensive and behaves more like a W-cycle
algorithm.
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6.2. Details of the implementation

We will now discuss some of the parameter and algorithmic selections we made. It would go
beyond the scope of this thesis to numerically justify each choice in great detail. However, we have
tried to identify the important parameters whose choices have major influence on the performance
of the algorithm. This will later be illustrated on selected examples. These are chosen such that
the observed effects are also representative for the majority – but not necessarily for all – of the
other examples too.

6.2.1. Discretization

The feasible sets of the problems in this chapter are subsets of the infinite dimensional space
H1(Ω) where Ω is a polygonal domain. To calculate approximate solutions to this problem,
we triangulate Ω and construct a hierarchy of finite element spaces with piecewise linear and
continuous functions by uniform refinement of the grid as in Example 3.1. All Dirichlet boundary
conditions are implicitly handled and do not occur as constraints in the discrete problems. This
setting satisfies Assumptions 5.1 and the assumptions we made on the spaces in Chapter 3 and
Chapter 4.

More details on the implementation of the prolongation and restriction operators, and the smooth-
ing algorithm for the coefficient vectors can be found in Section 3.4.

As stationarity measure we use the multilevel stationarity measure χML
i defined in (4.5), which is

equivalent to the measure introduced in Theorem 3.4 if the problem is unconstrained.

We only consider constrained problems where we have pointwise bounds on the variables. This leads
to box constraints on the coefficient vectors as described in Example 4.1. We use Algorithm 4.3 to
create the lower-level boxes. We have obtained similar results using the construction of Lemma 4.10,
though. To allow larger steps on the coarser levels we use the active-set strategy introduced in
Section 4.3.2. This leads to a large performance increase in comparison to the standard version,
which we will illustrate on some selected examples.

6.2.2. Hessian approximation

Standard multigrid algorithms for linear elliptic problems are known to converge with a linear rate.
So – at best – we would also expect linear convergence for our nonlinear multigrid algorithm. This
suggests that it is not necessary to always work with the exact Hessian in our quadratic models
qi,k. Instead, we use a heuristic strategy to update the Hessian that is similar to the strategy used
in [GMTWM08]. For a Taylor step, we calculate a new Hessian if one of the following criteria is
met:

1. The current level is the coarsest level, i.e., i = 1.

2. No previous Hessian approximation is available.

3. The previous iteration was a non-successful smoothing iteration.
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4. The current Hessian approximation Hi,k does not suitably describe the curvature in the
direction of the last step. Suitably means here that for given CHA > 0 and α ≥ 1 the
inequality

‖∇hi(vi,k)−∇hi(vi,k−1)−Hi,k(vi,k − vi,k−1)‖ ≤ CHA‖vi,k − vi,k−1‖α

is violated.

Otherwise, we set Hi,k = Hi,k−1 for k > 0 or initialize Hi,0 with the approximation we have used
the last time we visited this level. If we calculate a new Hessian on a level i, we also recalculate all
Hessians on levels j with j ≺ i when they are needed the next time.

Since calculating the Hessian is in many cases by far the most expensive operation in our algorithm,
this massively improves the performance. For our experiments, we have chosen CHA = 0.5 and
α = 3/2.

6.2.3. Full multigrid

In our theory we have used the level hierarchy only to calculate correction steps. However, one
can (and should) also use it to obtain a good initial iterate on the finest level. This strategy is
often called the full multigrid or nested iteration. The idea is to successively solve the lower-level
problems

min
vi∈Ci

fi(vi)

for i = 1, . . . , r − 1 up to a certain precision and use the prolongated solution as initial value
for the next finer level. The coarser problems can be solved cheaply and provide us with a
good initial iterate. The feasible sets Ci are suitable approximations of the feasible set Cr
here.

6.2.4. Trust-region radius update

To update the trust-region radius, we do not use the simple update rule (2.33) of Algorithm 2.1 but
a more practical choice that was proposed in [CGT00, Ch. 17]:

∆+
i,k :=


max{∆i,k, γ1‖si,k‖i} if ρi,k ≥ η2,
∆i,k if η1 ≤ ρi,k < η2,
γ2 min{∆i,k, ‖si,k‖i} if ρi,k < η1,

with γ1 = 2, γ2 = 0.5, η1 = 0.1 and η2 = 0.75. This update rule does not suffer from the
typical problem that the trust-region radius can become very large due to many very successful
small steps and then needs a lot of unsuccessful iterations to be small enough to constrain the
step length. The global convergence results of Chapter 2 remain valid with this trust-region
update.
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6.2. Details of the implementation

6.2.5. Smoother

We use Algorithm 4.2 with m = 6 and θ = 1.48 as smoother to calculate the Taylor steps
if i > 1. This algorithm seems to be most robust for both constrained and unconstrained
problems.

In comparison to classic multigrid methods where the number of smoothing cycles is normally
smaller than 3, the choice m = 6 seems rather large. This is justified by the fact that af-
ter a smoothing step we have to evaluate the objective function and – for the stationarity
measure – its derivative at the new iterate. This is in general more expensive than a couple
of smoothing cycles. Hence, we choose a larger number to minimize the number of function
evaluations.

The choice of the relaxation parameter θ also has a large influence on the performance. In nearly
all examples an overrelaxation increases the convergence speed, which we will illustrate on some
examples.

6.2.6. Coarse grid solver

The degrees of freedom on the coarsest grid is typically very small and therefore we can use a
more sophisticated algorithm to approximately solve the optimization problem, that uses the
second-order information more extensively. We choose an affine scaling trust-region method [CL96]
and use a standard Steihaug-Toint CG method (cf. [CGT00, Alg. 7.5.1]) for the calculation of the
trial steps, which was very fast and reliable in our examples.

6.2.7. Termination criteria

For a typical user the multilevel stationarity measure is difficult to interpret. Hence, we use a
more commonly used measure to decide when we terminate the iteration in Step 5: The projected
gradient of the current step in the supremum norm

χter
r (vr,k) := ‖vr,k − ProjCr(vr,k −∇fr(vr,k))‖∞

where ∇fr(vr,k) denotes the standard euclidean representation of f ′r(vr,k). We terminate the
algorithm if this measure is smaller than εχr = 10−8.

If not said otherwise, we use the same parameter set for all examples. Of course, this is not
in every case the optimal choice, but it shows that the algorithm can be used for this kind of
problems without tweaking the parameters.
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6. Numerical results

6.2.8. Computational framework

To implement the algorithm, we use the platform independent language Python with the linear
algebra libraries NumPy and SciPy [JOP+ ]. This language enjoys high acceptance in the
scientific computing community – even for high performance computing – because it is possible to
quickly implement algorithms in an interpreted language using high level structure like vectors
and matrices with a good performance due to highly optimized libraries. To implement some time
critical parts, like the smoothing algorithms, we use C++.

To calculate function values, gradients and Hessians of the more complex examples, we use the
finite element toolbox FEniCS [LMW+11], which is programmed in C++ and provides an interface
to Python.

All tests were made on an Intel Xeon CPU with 2.93 GHz core speed. The code uses only one
processor core.

6.3. Test problems

We have applied our algorithm to various test problems. We use some classical problems from
the MINPACK-2 test problem collection [ACM91] and COPS1 [DMM04] that are suited for
our algorithm as well as some new examples. Since the total computation time is dominated
by the time used for operations on the finest grid, the numbers in the result tables denote
solely fine grid quantities as for example the number of function evaluations and multilevel
steps.

We measured the time the algorithm needs for the optimization, including the nested itera-
tion to obtain a good initial point, but without the time needed to create the level structure
like the refined meshes and the prolongation operators. Unless otherwise stated, we use the
V -cycle variant of the algorithm with the settings discussed previously and a H1(Ω)-trust-
region.

6.3.1. Bound constrained quadratic problems

The objective functions of the first two problems, taken from [DMM04], are quadratic. In both
cases the feasible set is given by pointwise bound constraints. The third problem is a 3D contact
problem from linear elasticity.

Elasto-Plastic torsion problem

Let Ω ⊂ R2 be a domain with Lipschitz-boundary. We consider an infinitely long cylindrical bar
with cross section Ω that is made up of an isotropic elastic perfectly plastic material. Starting
from a zero-stress initial state, an increasing torsion movement is applied. The constant c > 0

1Constrained Optimization Problem Set
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6.3. Test problems

Levels dof ML Smooth f f ′ time (sec.)
5 632 5 7 13 12 0.1
6 1272 4 6 11 10 0.2
7 2552 4 6 11 10 0.4
8 5112 4 6 11 10 1.5
9 10232 5 6 12 11 6.0
5 632 11 12 24 23 0.3
6 1272 12 13 26 25 0.4
7 2552 12 13 26 25 0.9
8 5112 10 11 22 21 2.5
9 10232 14 15 30 29 13.4

Table 6.1.: Results for Elasto-Plastic Torsion with θ = 1.48 and active-set strategy (top) and with
θ = 1 and no active-set strategy (bottom).

characterises the torsion strength. The resulting stress potential v∗ is the solution of the variational
problem

min
v∈H1

0 (Ω)

1
2

∫
Ω
‖∇v‖2 dx− c

∫
Ω
v dx s.t. |v(x)| ≤ d(x, ∂Ω) a.e. on Ω.

The corresponding stress field is then given by θ = ∇v∗. More details on this problem can be
found for instance in [Glo84, Sec. II.3].

For our tests, we use the same problem parameters Ω = (0, 1)2 and c = 5 as in [DMM04].

The first part of Table 6.1 shows the results of the optimization where the standard parameters
were used. Each row corresponds to a full run with the given number of levels and degrees of
freedom (dof ). The entries in the columns labeled ML and Smooth show the number of multilevel
steps and the number of smoothing iterations that were necessary on the finest grid before the
algorithm terminates. Similar the entries in the columns f , f ′ and f ′′ show the number of function,
gradient and Hessian evaluations on the finest grid. If the function is quadratic, we only need one
Hessian evaluation and omit the entry f ′′ in the result table.

We can see that the algorithm needs roughly the same amount of work independent of the number
of levels and the mesh-size of the discretization. The total computational time grows linearly with
a factor of 4, which corresponds exactly to the increase in the number of unknowns. Hence, we
have optimal complexity in this example.

To show the positive effect of the overrelaxation and the active-set strategy, we calculate the
same example without these choices. The results in the second part of Table 6.1 show that the
algorithm needs twice as much time in this case. Figure 6.2 also shows the positive effect of these
choices.

Remark 6.1 We recall that our active-set method is similar to the truncated basis methods
used in [Kor94] for monotone multigrid methods. There, a similar performance increase was
numerically shown in comparison to the standard method, see also [GK09b].
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Figure 6.2.: Performance of the Elasto-Plastic-Torsion problem for different parameter choices

Journal-Bearing problem

The journal bearing problem simulates the pressure distribution between two circular cylinders of
length L and radii R and R+ c. The separation between the cylinders is εc, where 0 ≤ ε < 1 is
the eccentricity. The pressure is the solution of the problem

min
v∈H1

0 (Ω)

1
2

∫
Ω

(1 + ε cosx1)3‖∇v‖2 dx− εk
∫

Ω
ε sin x1v dx s.t. v ≥ 0 a.e. on Ω

with Ω = (0, 2π)×(0, 2b), b = L/(2R) and a constant k that depends on various physical parameters.
As in [DMM04], we assume this constant to be equal to 1.

The results for the choice ε = 0.1 and b = 5 are given in Table 6.2. We also observe perfect
level-independent convergence and see that the free form algorithm performs slightly worse in this
example.

A Signorini problem

We next consider a problem of the class described in Section 5.5 that is the 3-D version of a test
problem from [HW05]. A cube made from steel is transformed by a rigid displacement and traction
forces act on the four side surfaces (cf. Figure 6.3). The cube has frictionless contact to a rigid
foundation. The transformation is the solution of the problem

min
v∈H1

D(Ω)

∫
Ω

[
µε(v) : ε(v) + λ

2 (div v)2 − f · v
]

dx−
∫

ΓN
t · v dS(x)

s.t. vTn ≤ g on ΓC ,
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6.3. Test problems

Levels dof ML Smooth f f ′ time (sec.)
5 632 3 4 8 7 0.1
6 1272 3 4 8 7 0.2
7 2552 3 4 8 7 0.5
8 5112 3 4 8 7 1.5
9 10232 3 4 8 7 5.6
5 632 3 4 8 7 0.1
6 1272 3 5 9 8 0.2
7 2552 4 5 10 9 0.5
8 5112 3 4 8 7 1.4
9 10232 4 4 9 8 6.3

Table 6.2.: Results for Journal-Bearing problem V-cycle (top) and free form (bottom)

where ε(v) denotes the linearized strain tensor. The following configuration is used:

• Reference domain Ω := (0, 1)3 ⊂ R3 .

• Neumann and Dirichlet boundary conditions

ΓN := {0, 1} × [0, 1]2 ∪ [0, 1]× {0, 1} × [0, 1],
ΓD := [0, 1]2 × {1}, ΓC := [0, 1]2 × {0}.

• Displacements H1
D(Ω) := {u ∈ H1(Ω)3 | u = (0, 0,−0.07)T on ΓD}.

• Material constants (steel): Shear modulus µ = E/(2 + 2ν), Lame’s first parameter λ =
Eν/((1 + ν)(1− 2ν)), Young modulus E = 200 and Poisson’s ratio ν = 0.3.

• Volume forces f ≡ 0 and boundary forces t = (10(1− 2x), 0, 6.5)T on ΓN .

• The gab g between the cube in reference configuration and the obstacle is 0.03.

We discretized the problem using piecewise linear continuous tetrahedron elements, the coarsest
mesh consists of 27 nodes. In each node we have three degrees of freedom. Since the normal
vector n on ΓC is in every point equal to (0, 0,−1)T , we have simple bound constraints on
the z component of the displacement in the discrete case. Hence, we do not need the special
discretization basis of Section 5.5.1.

The results in the first half of Table 6.3 shows that the algorithm performs level-independently
in this example. Even more, the number of iterations decreases, which is based on the fact that
the initial value obtained by the nested iteration scheme becomes better as the number of levels
increase. Without the full multigrid, the iteration number stays nearly constant (cf. bottom part
of Table 6.3).
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6. Numerical results

Obstacle

ΓN

ΓD

ΓN

Ω

Figure 6.3.: Profile view of the cube and the rigid obstacle (left). Solution where the contact area
is colored blue (right)

6.3.2. Minimum surface problems

The minimum surface problem, which we introduced in Section 5.4, has in comparison to the
previous problems a non-quadratic objective function.

Enneper’s Minimal Surface

We first let the algorithm determine Enneper’s Minimal surface, which is a test problem from
[ACM91]. It is the solution of the problem

min
u∈C

∫
Ω

√
1 +∇uT∇u dx (6.2)

where Ω = (−1/2, 1/2)×(−1/2, 1/2) and the convex set C is defined by

C =
{
u ∈ H1(Ω) |u(x) = uD(x) for x ∈ ∂Ω

}
.

The boundary function uD : R2 → R is implicitly given as solution of uD(x) = v2 − w2, where v
and w are the unique solutions of the equations

x1 = v + vw2 − 1
3v

3, x2 = −w − v2w + 1
3w

3.

Because we directly incorporate the boundary condition into the discretization, this problem is
unconstrained.

The results in Table 6.4 show again level-independent convergence behaviour.
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6.3. Test problems

Levels dof ML Smooth f f ′ time (sec.)
3 1, 936 10 11 22 21 1.5
4 15, 488 10 11 22 21 6.9
5 104, 329 9 10 20 19 47.2
6 810, 000 8 9 18 17 351.6
3 1, 936 9 11 21 20 1.2
4 15, 488 10 11 22 21 6.6
5 104, 329 10 11 22 21 48.2
6 810, 000 11 12 24 23 408.6

Table 6.3.: Results for the Signorini problem with (top) and without full multigrid strategy
(bottom)

Levels dof ML Smooth f f ′ f ′′ time (sec.)
5 632 3 4 8 7 2 0.3
6 1272 3 4 8 7 2 0.5
7 2552 3 4 8 7 2 1.0
8 5112 4 5 10 9 2 3.1
9 10232 4 5 10 9 1 10.3

Table 6.4.: Results for Enneper’s Minimal Surface Problem

Minimum Surface with Obstacle

The next example, taken from [DMM04], is also a minimum surface problem but this time the
surface is not determined by the boundary values alone but must also lie above an obstacle.
We seek a solution of the problem (6.2) with Ω = (0, 1)2 and where the feasible set is given
by

C =
{
u ∈ H1(Ω) |u(x) = uD(x) for x ∈ ∂Ω and u(x) ≥ l(x) a.e. on Ω

}
.

The boundary function is defined by

uD(x) :=
{

1− (2x1 − 1)2, x2 ∈ {0, 1},
0, otherwise,

and the obstacle by

l(x) :=
{

1, if |x1 − 1/2| ≤ 1/4, |x2 − 1/2| ≤ 1/4,
0, otherwise.

This problem does not possess a continuous solution which makes it difficult to solve. The slope
of the discrete solutions near the obstacle goes to infinity as the mesh size approaches zero
(cf. Figure 6.4). This difficulty was also observed for minimum surface problems on non-convex
domains (cf., e.g., [Cia78, Ch. 5]).
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6. Numerical results

Figure 6.4.: Plots of the solutions of two minimum surface problems with obstacle (left: Example
from [DMM04], right: Example from [GMS+10])

Remark 6.2 We will give a heuristic motivation why an infinite slope is very likely to result in
numerical problems. Consider the family of 1-D functions fh : [0, 1]→ R defined by

fh(x) :=
{

0, if 0 ≤ x ≤ 1− h,
(x− (1− h))/h, otherwise.

A simple calculation shows that the H1(Ω)-semi-norm of fh goes to infinity as h → 0. Even
more, if we consider the sequence (hi)N with hi = 2−i, the distance between two elements is
|fhi − fhi−1 |H1(Ω) = |fhi−1 |H1(Ω). Hence, the distance goes to infinite as i → ∞. The solutions
to the discrete minimum surface problem with obstacle behave like the functions fhi near the
obstacle when the meshsize of the finite element space is hi. Although the full multigrid calculates
an approximation of the solution on the space with mesh size hi−1, it is hence no good initial
value since its distance to the solution grows (in terms of H1(Ω)) as i goes to infinity. A standard
multigrid method for linear, elliptic problems converges linear in terms of the energy norm, which
is equivalent to the H1-semi-norm. If we make the plausible assumption that our trust-region
algorithm will at best converges like a standard multigrid method in this example, the number of
steps on the fine grid also increases for larger i.

Hence, we would not expect that the algorithm performs level-independently, which is confirmed
by the numerical results in the first part of Table 6.5.

The considerations in the previous remark suggests that the main errors occur near the obstacle.
In order to obtain faster convergence, we made a slight modification to our smoother. For this
we determine all non-active grid nodes which are near the active set. More precisely, given a
fixed integer l > 0, the set Bl contains all non-active nodes which are connected by at most l
edges to an active node. This set is then used to make additional smoothing sweeps using just
the nodal basis functions corresponding to the nodes in Bl. Normally, Bl is only a small subset of
the complete set of nodes and the additional costs for the extra smoothing cycles are low. For
the results in the second half of Table 6.5 we have set l = 5 and made six additional smoothing
sweeps on Bl after every full smoothing cycle. We see a much better performance of this variant
and a weaker dependence on the number of levels used.
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6.3. Test problems

Levels dof ML Smooth f f ′ f ′′ time (sec.)
5 632 8 15 24 23 3 0.6
6 1272 10 21 32 30 3 1.3
7 2552 15 24 40 38 3 3.8
8 5112 19 34 54 51 4 16.5
9 10232 28 44 73 70 3 85.6
5 632 5 10 16 14 3 0.4
6 1272 6 12 19 17 3 0.9
7 2552 9 14 24 20 3 2.7
8 5112 8 17 26 23 3 9.7
9 10232 12 19 32 28 4 47.5

Table 6.5.: Results for Minimum Surface problem with obstacle (top) and with additional smooth-
ing steps near the active set (bottom)

Levels dof ML Smooth f f ′ f ′′ time (sec.)
5 632 5 19 25 19 7 0.6
6 1272 6 20 27 20 7 1.2
7 2552 7 26 34 22 8 3.7
8 5112 22 39 62 48 8 20.5
9 10232 28 64 93 73 11 120.7

Table 6.6.: Results for minimum surface problem from [GMS+10] with additional smoothing steps
near the active set

A similar example was considered in [GMS+10]. Here, the feasible set is given by

C =
{
u ∈ H1(Ω) |u(x) = uD(x) for c ∈ ∂Ω and u(x) ≥ l(x) a.e. on Ω

}
with

uD(x) :=
{
x1(1− x1), x2 ∈ {0, 1},
0, otherwise,

and the obstacle

l(x) :=
{√

2, if |x1 − 1/2| ≤ 1/18, |x2 − 1/2| ≤ 1/18,
0, otherwise.

This one is even more difficult to solve since the obstacle is higher than in the previous example
(cf. Figure 6.4), which is confirmed by the results in Table 6.6.

In a final minimum surface example we now will show the positive effect of the active-set strategy.
To this end, we use the same data as in the last problem except for the lower bound which we set
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6. Numerical results

Levels dof ML Smooth f f ′ f ′′ time (sec.)
5 632 4 6 11 10 2 0.3
6 1272 4 6 11 10 2 0.5
7 2552 4 6 11 10 2 1.1
8 5112 4 6 11 10 2 3.7
9 10232 4 6 11 10 2 14.6
5 632 26 27 54 53 2 1.0
6 1272 33 34 68 67 2 2.4
7 2552 41 42 84 83 2 6.9
8 5112 47 48 96 95 2 25.6
9 10232 53 54 108 107 2 110.9

Table 6.7.: Results for Minimum Surface problem with single point obstacle with (top) and without
the active set strategy (bottom)

to

l(x) :=
{√

2, if x1 = x2 = 1/2− hr,
0, otherwise,

where hr denotes the grid size of the finest mesh. In the solution, the function is active at exactly
one fine grid node. As discussed in Section 4.3.2, in this setting the lower-level steps are zero near
the active point if we do not use the active set strategy.

As we can see in Table 6.7, the differences are huge. With the active set strategy the algorithms
converges in a level independent number of steps, whereas without the active set strategy we
observe a dependence of the size O(log hr).

6.3.3. Example on a non-convex domain

All domains in the previous examples were convex, and in this case we have a strong regularity
result for second-order elliptic PDEs. Thus, we consider in the next example an L-shaped domain
with reentrant corner (Figure 6.5).

On this domain, we solve the following problem whose objective function is non-convex and of the
type discussed in Section 5.3:

min
u∈H1

D(Ω)

1
2

∫
Ω

[(
3x1 sin(4πu)2 + 1

4
)
∇uT∇u+ u2

]
dx

where
H1
D(Ω) :=

{
u ∈ H1(Ω) |u(x) = 0 for x ∈ Γ0, u(x) = 1 for x ∈ Γ1

}
.

The results in Table 6.8 show again nearly perfect level independent convergence for this example.
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6.3. Test problems

Γ0

Γ1

Figure 6.5.: Domain Ω with initial triangulation (left) and plot of the solution (right)

Levels dof ML Smooth f f ′ f ′′ time (sec.)
7 24,447 19 20 40 38 3 5.0
8 98,047 21 23 45 44 2 16.3
9 392,703 20 21 42 41 2 56.6

10 1,571,839 19 20 40 39 1 214.3

Table 6.8.: Results for problem on domain with reentrant corner

6.3.4. Optimal design with composite materials

Another problem from [ACM91] requires determining the placement of two elastic materials in
the cross-section of a rod with maximal torsional rigidity. We will not go further in the details of
the modeling. The problem to solve is given by

min
u∈H1

0 (Ω)

∫
Ω

(ψλ(‖∇u‖) + u) dx

where ψλ : R→ R is a piecewise quadratic function defined by

ψλ(t) :=


1
2µ2t

2, 0 ≤ t ≤ t1,
µ2t1(t− 1

2 t1), t1 < t ≤ t2,
1
2µ1(t2 − t22) + µ2t1(t2 − 1

2 t1), t2 < t,

with the breakpoints
t1 =

√
2λµ1
µ2

and t2 =
√

2λµ2
µ1
.

Here, Ω = (0, 1)2 and the parameters are λ = 0.008, µ1 = 1 and µ2 = 2.

The main difficulty of this problem lies in the fact that the function ψλ is not twice continuously
differentiable and hence the whole functional does not satisfy our differentiability assumptions.
Nonetheless, the standard V-cycle version of our algorithm worked very well but failed to converge
in a reasonable time on the finest level. Hence, we also tried it with the free-form version which
was capable to solve also the fine-level problem (cf. Table 6.9).
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6. Numerical results

Levels dof ML Smooth f f ′ f ′′ time (sec.)
6 16,129 26 26 53 44 10 4.9
7 65,025 37 31 69 54 16 14.8
8 261,121 87 78 166 135 45 122.0
9 1,046,529 – – >1000 – – –
6 16,129 41 28 70 56 8 8.8
7 65,025 21 27 49 40 18 12.9
8 261,121 42 44 87 75 19 87.6
9 1,046,529 24 38 63 55 23 249.9

Table 6.9.: Results for optimal design problem, V-cycle (top), free form (bottom)

6.3.5. Nonlinear elasticity

Our final set of test problems consists of finding deformations of bodies made from hyperelastic
material. The problem class was already presented in Section 5.6. The solution images show the de-
formed bodies, where the displacement vectors are not amplified.

Twisting of a hyperelastic cube

In the first example, we consider a cube whose bottom side is clamped to a fixed foundation. The
top surface is rotated by 60 degrees and no forces operate on the cube, which is assumed to be
made of a compressible Mooney-Rivlin material with Young modulus E = 200 and Poisson’s ration
ν = 0.3. The results in Table 6.10 show again level-independent convergence of the algorithm in
this example.

In comparison to the previous problems, the objective function is much more difficult to evaluate.
As an example, the calculation of the Hessian on the finest level takes roughly 140 seconds. The
proportion between the time we spend on evaluating the function and the time we use for the
smoothing is not balanced very well. Hence, one can hope for faster convergence by making more
smoothing cycles in one smoothing step. This guess is approved by the results in Table 6.10 where
we compare our standard choice m = 6 against m = 60. The difference is even larger in the next
example.

A buckling plate

A typical phenomena which is observed in reality is buckling of an elastic body. Buckling occurs
if compressive stress is so large that the body buckles in one direction to reduce its stress. For
example, consider a piece of paper that is held tight between two hands. If the hands move
together, the paper “buckles” in one direction that is perpendicular to the movement direction
of the hands. In general, the final state is not unique as there are two directions in which the
paper could buckle. With this in mind, it is obvious that this effect cannot be observed in
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6.3. Test problems

Figure 6.6.: Solution of twisted cube example (4 levels)

Levels dof ML Smooth f f ′ f ′′ time (sec.)
3 1,681 7 10 18 17 4 5.9
4 12,996 8 10 19 18 3 19
5 101,124 8 10 19 18 3 112.9
6 797,449 7 8 16 15 2 661.8
3 1,681 1 4 6 5 3 5.1
4 12,996 3 5 9 8 3 16.3
5 101,124 3 5 9 8 2 79.5
6 797,449 3 5 9 8 2 629.0

Table 6.10.: Results of the twisted cube example with m = 6 (top) and m = 60 (bottom) cycles
in the smoothing algorithm

simulations that use a linear elasticity model, since the solution of these are unique (cf. [Cia88,
Theorem 6.3-5]).

The basic configuration of our problem is the following: A plate made of a hyperelastic compressible
Mooney-Rivlin material, which we already introduced in Section 5.6, is clamped to a wall on the
face ΓD (cf. Figure 6.7). The face Γ′D undergoes a rigid translation in direction of the first unit
vector e1. More precisely, we seek a displacement u∗ that solves

min
u∈H1

D(Ω,R3)

∫
Ω

(
a‖F‖2 + b‖cof F‖2 + γ(detF )− (3a+ 3b+ c)

)
dx, F (x) := I +∇u(x),

with
H1
D(Ω,R3) :=

{
u ∈ H1(Ω,R3) |u(x) = 0 on ΓD, u(x) = −x3

2 e1 on Γ′D
}
,

γ(δ) := cδ2 − d log(δ) and the parameters

a = µ

2 + c− λ

4 , b = λ

4 − c, c = λ

5 , d = λ

2 + µ.
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ΓD Γ′D

ΓC

Γ ′C

Figure 6.7.: Reference configuration Ω of the buckling plate example

Figure 6.8.: Solution of the unconstrained buckling plate problem with 3 Levels

The Lamï¿½ parameters λ and µ are given by

λ = Eν

(1− 2ν)(1 + ν) , µ = E

2(1 + ν)

with Young’s modulus E = 200 and Poisson’s parameter ν = 0.3.

As in the last example, we increase the number of cycles in one smoothing iteration to m =
60.

We first solve the problem without any additional constraints (cf. Figure 6.8). The results in
Table 6.11 show that the algorithm is quite fast and the time grows linearly with the degrees of
freedom. The second part of the table shows the result of the free form variant, which clearly
outperforms the V-cycle algorithm. The algorithm uses the lower levels more intensively and the
form is more like a W-cycle.

As a last example, we add additional constraints to the feasible displacement in direction e2 on
the top and bottom surface and assume that the contact between the body and the rigid obstacle
is frictionless. We seek a solution to

min
u∈C

∫
Ω

(
a‖F‖2 + b‖cof F‖2 + γ(detF )− (3a+ 3b+ c)

)
dx, F (x) := I +∇u(x),

with the feasible set

C = {u ∈ H1
D(Ω,R3) |u2(x) ≤ 0.2 on ΓC , u2(x) ≥ −0.2 on Γ′C}.
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Levels dof ML Smooth f f ′ f ′′ time (sec.)
3 11,025 82 84 167 166 5 41.0
4 78,597 68 69 138 137 2 190.9
5 590,733 64 65 130 129 1 1172.66
3 11,025 53 59 113 112 7 40.7
4 78,597 20 24 45 44 3 135.8
5 590,733 11 14 26 25 2 519.3

Table 6.11.: Results of the unconstrained buckling plate problem with V-cycle version (top) and
free form version (bottom)

Figure 6.9.: Solution of the constrained buckling plate problem with 3 Levels

Levels dof ML Smooth f f ′ f ′′ time (sec.)
3 11,025 143 122 266 241 11 64.0
4 78,597 147 149 297 296 4 389.6
5 590,733 128 128 257 255 2 2413.5
3 11,025 146 125 272 245 12 94.7
4 78,597 69 68 138 131 6 326.4
5 590,733 32 36 69 68 3 1199.3

Table 6.12.: Results of the constrained buckling plate problem with V-cycle version (top) and free
form version (bottom)

Figure 6.9 shows the final solution. We see that the constraints at the bottom surface is active in
some points and the solution buckles twice.

Similar to the unconstrained example, the free form algorithm perform much better on five levels
(cf. Table 6.12).
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A. Appendix

In this appendix we summarize some result from functional analysis which we often use in the
preceding chapters. Furthermore, we show a differentiability result for nonlinear variational
problems.

A.1. Sobolev embeddings

Theorem A.1 Let Ω ⊂ Rd, d ∈ N, be a bounded domain with Lipschitz-boundary and furthermore
m1 ≥ m2 ≥ 0. Then the embedding

Wm1,p1(Ω) ↪→Wm2,p2(Ω)

exists and is continuous if m1 − n/p1 ≥ m2 − n/p2. In this cases, the following inequality is
satisfied:

‖u‖Wm2,p1 (Ω) ≤ C‖u‖Wm1,p2 (Ω).

The embedding is compact if m1 − n/p1 > m2 − n/p2.

Proof See for example [Alt06, Thm. 8.9]. �

A.2. Projections in Hilbert spaces

Theorem A.2 (Projection Theorem) Let U be a Hilbert space and ∅ 6= C ⊂ U a closed and
convex set. Then there exists a unique mapping ProjC : U → C that satisfies

‖x− ProjC(x)‖U = inf
y∈C
‖x− y‖U for all x ∈ U.

Furthermore, the projection on the set C can also be defined as the unique operator that fulfills for
every x ∈ U :

(x− ProjC(x),ProjC(x)− y)U ≥ 0 for all y ∈ C.

If C is a subspace, then it holds:

(x, y)U = (ProjC(x), y)U for all y ∈ C.

Proof See, e.g., [HPUU09, Lemma 1.10]. �
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The next lemma shows that the projection operator is Lipschitz continuous with constant L = 1
and monotone.

Lemma A.1 Let U be a Hilbert space and ∅ 6= C ⊂ U a closed and convex set. Then the
projection satisfies

‖ProjC(x)− ProjC(y)‖U ≤ ‖x− y‖U for all x, y ∈ U

and
(x− y,ProjC(x)− ProjC(y))U ≥ 0 for all x, y ∈ U.

Proof See, e.g., [HPUU09, Lemma 1.10].

A.3. Weak convergence

Definition A.1 Let V be a normed space with dual space V ∗. A sequence (vk) ⊂ V is said to
converge weakly to an element v (vk ⇀ v) if

〈f, vk〉 → 〈f, v〉 for all f ∈ V ∗.

Theorem A.3 (Eberlein-Shmulyan) A Banach space V is reflexive iff every strongly bounded
sequence of V contains a subsequence which converges weakly to an element of V .

Proof See, e.g., [Yos80, Section V.4]. �

Lemma A.2 Let V be a normed vector space. If C ⊂ V is closed and convex, then it is weakly
sequentially closed, i.e., for every weakly convergent sequence (vk) ⊂ C with vk ⇀ v also v ∈ C is
satisfied.

Proof See, e.g., [Alt06]. �

A.4. Differentiability in Banach spaces

In this section we summarize some basic results about differentiability in Banach spaces, a more
extensive presentation can be found, e.g., in [IT79].

In the following, let X and Y be Banach spaces and U be an open subset of X. A function
f : U → Y is said to be Gâteaux differentiable at x ∈ U if the limit

lim
t→0

t−1(f(x+ ts)− f(x)
)

=: f ′(x)[s]

exists for all directions s ∈ X and the mapping s 7→ f ′(x)[s] is linear and continuous. If this holds
for all x ∈ U , we call the mapping f Gâteaux differentiable. If Y = R, then f ′(x) ∈ X∗ and we
will also use the dual pair notation 〈f ′(x), s〉 for f ′(x)[s].
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If there exists a bounded linear operator Lx ∈ L(X, Y ) such that

f(x+ s) = f(x) + Lxs+ φ(s), ‖φ(s)‖Y /‖s‖X → 0 as ‖s‖X → 0,

for all s with x + s ∈ U , the function is called Fréchet differentiable at x ∈ U . One can
show that in this case f is continuous and also differentiable in the Gâteaux sense with
f ′(x)[s] = Lxs.

If f is Gâteaux or Fréchet differentiable and the mapping x 7→ f ′(x) is continuous on the Banach
space L(X, Y ), then f is said to be continuously differentiable. One can show that in this setting
a continuously Gâteaux differentiable function is also Fréchet differentiable. Hence, it will cause
no confusion if we do not distinguish between Gâteaux and Fréchet continuously differentiability
in this case.

A function f : U → Y is twice Gâteaux (Fréchet) differentiable if f and its first derivative
f ′ : U → L(X, Y ) are Gâteaux (Fréchet) differentiable. Similar, higher-order differentiability is
defined inductively. One can show (cf. [Zei86, Prop. 4.20]) that f has a n-th Gâteaux derivative
at x ∈ U iff f has a (n− 1)th Gâteaux derivative at x and

f (n)(x)[s1, . . . , sn] := lim
t→0+

f (n−1)(x+ tsn)[s1, . . . , sn−1]− f (n−1)(x)[s1, . . . , sn−1]
t

exists, is n-linear and bounded.

We need the following generalized version of Taylor’s theorem:

Lemma A.3 (Taylor’s Theorem) Let f : U → R be n-times Gâteaux differentiable at every
point of the interval [x, x+ s] ⊂ U and let the mapping x 7→ f (n)(x)[s, . . . , s] be continuous. Then

f(x+ s) = f(x) + f ′(x)[s] + 1
2!f
′′(x)[s, s] + . . .+ 1

(n− 1)!f
(n−1)(x)[s, . . . , s] +Rn(x)

with
Rn(x) := 1

(n− 1)!

∫ 1

0
(1− t)n−1f (n)(x+ ts)[s, s, . . . , s] dt.

Proof [Zei86, Theorem 4.A] �

Lemma A.4 Let f : U ⊂ X → Y be a Gâteaux differentiable function in a neighborhood U(x) of
x, then for all s ∈ X with {x+ ts | t ∈ [0, 1]} ⊂ U(x), the following holds:

‖f(x+ s)− f(x)‖Y ≤ sup
0≤t≤1

‖f ′(x+ ts)[s]‖Y .

If there exists a constant L such that ‖f ′(x̄)‖L(X,Y ) ≤ L for all x̄ ∈ U , then f is Lipschitz
continuous with Lipschitz constant L.

Proof [HPUU09, Section 1.4.1] �
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A.4.1. Differentiability of variational integrals

Let Ω ⊂ Rd be a nonempty, open and bounded measurable set. We are interested in the
differentiability of the functional

J(u) :=
∫

Ω
f(x, u,∇u) dx, (A.1)

where f : Ω×RN ×RdN , (x, u, z) 7→ f(x, u, z), is a Carathéodory function, that means f is measur-
able in x for each (u, z) ∈ RN×RdN and continuous in (u, z) for almost all x ∈ Ω.

Before we start, we shortly introduce vector-valued Lebesgue- and Sobolev-spaces.

Definition A.2 Let Ω ⊂ Rd be a domain, 1 ≤ p ≤ ∞, N ∈ N and m ≥ 0. The space Wm,p(Ω)N
consists of all functions u : Ω→ RN with ui ∈Wm,p(Ω) for all i = 1, . . . , N .

Remark A.1 Normally, if u ∈ Wm,p(Ω)N , m ≥ 1, the weak gradient ∇u(x) is a matrix with
dimensions d×N . In this section, however, we will identify it instead with a vector in RdN .

Lemma A.5 Let ‖·‖ be an arbitrary norm on RN . If u ∈ Lp(Ω)N , then ‖u‖ ∈ Lp(Ω).

Proof We use the fact that all norms on RN are equivalent. Hence, with a constant CN that
does only depend on N we obtain:

∫
Ω
‖u(x)‖p dx ≤ CpN

∫
Ω

( N∑
i=1
|ui(x)|p

)
dx = CpN

N∑
i=1
‖ui‖pLp(Ω).

�

In the following we denote by fu resp. fz the derivative of f with respect to u resp z. It is
well-known that functions of the type (A.1) are continuously differentiable under certain growth
assumptions:

Theorem A.4 Assume that with a constant C > 0 either

|f(x, u, z)| ≤ CV 2,

‖fu(x, u, z)‖ ≤ CV, ‖fz(x, u, z)‖ ≤ CV,
V := (1 + ‖u‖2 + ‖z‖2)1/2.

(A.2)

is satisfied for all (u, z) ∈ RN × RdN and almost all x ∈ Ω, or for all R > 0, ‖u‖ < R, z ∈ RdN
and almost all x ∈ Ω

|f(x, u, z)| ≤ C(R)Ṽ 2,

‖fu(x, u, z)‖ ≤ C(R)Ṽ 2, ‖fz(x, u, z)‖ ≤ C(R)Ṽ,
Ṽ := (1 + ‖z‖2)1/2.

(A.3)

holds with a constant C(R) > 0 that does depend on R. Then:

1. If assumptions (A.2) are satisfied, J is continuously differentiable on H1(Ω)N .
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2. If instead (A.3) hold, J is continuously differentiable on H1(Ω)N ∩ L∞(Ω)N , the norm on
this space being

‖u‖
H1(Ω)N∩L∞(Ω)N := ‖u‖L∞(Ω)N + ‖∇u‖

L2(Ω)dN .

In both cases the derivative in direction d is given by

J ′(u)[d] =
∫

Ω

(
fu(x, u,∇u)d+ fz(x, u,∇u)∇d

)
dx.

Proof [Mor08, Theorem 1.10.3]. �

Remark A.2 Assumptions (A.2) can be weakened by considering the embeddings given by
Theorem A.1. For this we need the additional assumption that Ω has a Lipschitz-continuous
boundary. For example, in the case d = 2, the following conditions, 2 ≤ q <∞ arbitrary, can be
used instead of (A.2):

|f(x, u, z)| ≤ C(g1(x) + ‖u‖q + ‖z‖2), g1 ∈ L1(Ω)
‖fu(x, u, z)‖ ≤ C(g2(x) + ‖u‖q−1 + ‖z‖2−2/q), g2 ∈ Lq/(q−1)(Ω) (A.4)
‖fz(x, u, z)‖ ≤ C(g3(x) + ‖u‖q/2 + ‖z‖), g3 ∈ L2(Ω).

The situation is more complicated for the second derivative of J . Even under restrictive growth
conditions, functions of the type (A.1) are in general neither twice continuously nor Fréchet
differentiable. An example can be found in [Nol93]. Instead, we will show that J is twice Gâteaux
differentiable and that the mapping u 7→ J ′′(u)[d, d] is continuous for each direction d. To this
end, we need the following two preliminary lemmas.

Lemma A.6 Let Ω ⊂ Rd be a nonempty measurable set and φ : Ω× Rk → R be a Carathéodory
function, i.e., φ is measurable for all x ∈ Ω and continuous in v ∈ Rk for almost all x. Suppose
that the following growth condition with g ∈ Lq(Ω), b ≥ 0 and 1 ≤ p, q <∞ is satisfied:

|φ(x, v)| ≤ g(x) + b‖v‖p/q.

Then Φ: Lp(Ω)k → Lq(Ω) with Φ(v)(x) := φ(x, v(x)) is continuous and bounded with

‖Φ(v)‖Lq(Ω) ≤ C(‖g‖Lq(Ω) + ‖v‖p/q
Lp(Ω)k

).

Proof [Zei90, Theorem 26.6] �

Lemma A.7 Let Ω ⊂ Rd be bounded. Furthermore let φ : Ω × RN → Rm1×m2 be a bounded
Carathéodory function, i.e., there exists a constant M such that ‖φ(x, u)‖ ≤ M for all u and
almost all x ∈ Ω. Then

G(u) :=
∫

Ω
d1(x)Tφ(x, u)d2(x) dx

with d1 ∈ L2(Ω)m1 and d2 ∈ L2(Ω)m2 is continuous on L2(Ω)N .
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Proof It is clear that G(u) <∞ because of the boundedness of φ.

Let (uk) ⊂ L2(Ω)k be a sequence that converges to u. We assume that G(uk) 6→ G(u). Then
there exists a subsequence (uk̂) such that |G(uk̂)−G(u)| ≥ δ > 0 for all k̂.

The function φ is bounded and hence satisfies the growth condition of Lemma A.6 for arbitrary
1 ≤ q < ∞ (componentwise). Therefore, the operator Φ: L2(Ω)k → Lq(Ω)m1×m2 , Φ(u)(x) :=
φ(x, u(x)), is continuous. Setting Φk̂ := Φ(uk̂) and Φ∗ := Φ(u) we have Φk̂ → Φ∗ as k̂ → ∞ in
Lq(Ω). As a consequence, there exists a subsequence (Φk′) of (Φk̂) with Φk′(x)→ Φ∗(x) almost
everywhere on Ω. Moreover, by Egorov’s Theorem it follows that for each ε > 0 there exists a
measurable set Eε ⊂ Ω with |Ω \ Eε| ≤ ε and supx∈Eε‖Φk′(x)− Φ∗(x)‖ → 0 as k′ →∞.

Using the boundedness of φ, we obtain for each ε > 0

|G(uk′)−G(u)| ≤
∫

Ω
‖φ(x, uk′(x))− φ(x, u(x))‖‖d1‖‖d2‖ dx

≤ sup
x∈Eε
‖φ(x, uk′(x))− φ(x, u(x))‖

∫
Eε
‖d1‖‖d2‖ dx+ 2M

∫
Ω\Eε
‖d1‖‖d2‖ dx.

Since
∫

Ω\Eε‖d1‖‖d2‖ dx→ 0 as ε→ 0, we find an ε∗ > 0 such that

2M
∫

Ω\Eε∗
‖d1‖‖d2‖ dx < δ

2 .

Because Φk converges uniformly on the set Eε∗ , we find Kε∗ ∈ N such that

sup
x∈Eε∗

‖φ(x, uk′(x))− φ(x, u(x))‖
∫
Eε∗
‖d1‖‖d2‖ dx < δ

2 for k′ ≥ Kε∗ .

This shows |G(uk′)−G(u)| < δ for all k′ ≥ Kε∗ , which contradicts our assumption. Finally, this
shows the continuity of G. �

Theorem A.5 Suppose that the assumptions of Theorem A.4 hold. Moreover, let the function
(u, z) 7→ f(x, u, z) be twice continuously differentiable for almost all x ∈ Ω and let either

‖fuu(x, u, z)‖, ‖fzu(x, u, z)‖, ‖fzz(x, u, z)‖ ≤ C (A.5)

hold, or for all R ≥ 0 and ‖u‖ < R

‖fuu(x, u, z)‖ ≤ C(R)Ṽ 2,

‖fuz(x, u, z)‖ ≤ C(R)Ṽ,
‖fzz(x, u, z)‖ ≤ C(R)

(A.6)

with a constant C(R) > 0 and Ṽ as in Theorem A.4 be satisfied.

1. If (A.2) and (A.5) are satisfied, J is twice Gâteaux differentiable on H1(Ω)N , and the
operator u 7→ J ′′(u)[d, d] is continuous for every fixed direction d ∈ H1(Ω)N .

2. If instead (A.3) and (A.6) hold, J is twice Gâteaux differentiable on H1(Ω)N ∩L∞(Ω)N , and
the operator u 7→ J ′′(u)[d, d] is continuous for every fixed direction d ∈ H1(Ω)N ∩ L∞(Ω)N .
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In both cases, the derivative in direction d1, d2 is given by

J ′′(u)[d1, d2] =
∫

Ω

(
fuu(x, u,∇u)[d1, d2] + fuz(x, u,∇u)[d1,∇d2]

+ fuz(x, u,∇u)[∇d1, d2] + fzz(x, u,∇u)[∇d1,∇d2]
)

dx,

and J ′′(u)[d1, d2] = J ′′(u)[d2, d1] holds.

Proof It follows from Theorem A.4 that the functional J is continuously differentiable. We
define ϕ(t) := J ′(u+ td2)[d1] and formally differentiate ϕ:

ϕ′(t) = d

dt
J ′(u+ td2)[d1]

=
∫

Ω

d

dt

(
fu(x, u+ td2,∇u+ t∇d2)[d1] + fz(x, u+ td2,∇u+ t∇d2)[∇d1]

)
dx

=
∫

Ω

(
fuu(x, u+ td2,∇u+ t∇d2)[d1, d2] + fuz(x, u+ td2,∇u+ t∇d2)[d1,∇d2]

+ fuz(x, u+ td2,∇u+ t∇d2)[∇d1, d2] + fzz(x, u+ td2,∇u+ t∇d2)[∇d1,∇d2]
)

dx

=:
∫

Ω
g(x, u, d1, d2, t) dx.

To justify this formal argument, we have to show that the integrand is uniformly bounded by an
integrable function in a neighborhood of t = 0. Then we are allowed to interchange integration
and differentiation.

We first assume that (A.5) holds. In this case, the integrand can be estimated independently of t
by

|g(x, u, d1, d2, t)| ≤ C
[
‖d1(x)‖

(
‖d2(x)‖ + ‖∇d2(x)‖

)
+ ‖∇d1(x)‖

(
‖d2(x)‖ + ‖∇d2(x)‖

)]
, (A.7)

which is integrable since ‖d1‖, ‖d2‖, ‖∇d1‖, ‖∇d2‖ ∈ L2(Ω). Thus the directional derivative is
given by J ′′(u)[d1, d2] = ϕ′(0). Since f is twice continuously differentiable, J ′′(u)[d1, d2] is linear
in d1 and d2, and J ′′(u)[d1, d2] = J ′′(u)[d2, d1] holds. Even more, from (A.7) follows (with a
different constant C) that

J ′′(u)[d1, d2] ≤ C‖d1‖H1(Ω)N ‖d2‖H1(Ω)N ,

which shows the boundedness of the differential J ′′(u). Together with the linearity this implies the
continuity of J ′′(u) with respect to the directions. Therefore, J is twice Gâteaux differentiable.

Now assume that the weaker conditions (A.6) are satisfied. Since u, d2 ∈ X := H1(Ω)d ∩ L∞(Ω)d
holds, there exists a constant R, which depends on u and d2, such that ‖u+ td2‖L∞(Ω)d ≤ R for
t ∈ [−1, 1] and therefore also ‖u(x) + td2(x)‖ ≤ R for almost all x ∈ Ω and t ∈ [−1, 1]. Hence, by
(A.6) and using ‖∇u + t∇d2‖2 ≤ 2(‖∇u‖2 + ‖∇d2‖2), we obtain the following estimate, which
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holds almost everywhere on Ω:

|g(x, u, d1, d2, t)| ≤ C(R)
[
(1 + 2

(
‖∇u(x)‖2 + ‖∇d2(x)‖2)

)
‖d1‖L∞(Ω)d‖d2‖L∞(Ω)d

+
√

1 + 2‖∇u(x)‖2 + 2‖∇d2(x)‖2
(
‖∇d2(x)‖‖d1‖L∞(Ω)d + ‖∇d1(x)‖‖d2‖L∞(Ω)d

)
+ ‖∇d1(x)‖‖∇d2(x)‖

]
.

The right-hand side is integrable, which follows from ‖∇u‖, ‖∇d2‖, ‖∇d1‖ ∈ L2(Ω). This justifies
our formal argument, and J ′′(u)[d1, d2] = ϕ′(0) holds. Using Hölder’s inequality, the boundedness
of the differential J ′′(u) follows easily (with a different C(R))

sup
‖d1‖X=1,‖d2‖X=1

|J ′′(u)[d1, d2]| ≤ C(R)(µ+ ‖∇u‖
L2(Ω)dN ).

Here, µ > 0 is a constant which does not depend on d1, d2 and u. As in the other case, this shows
that J is twice Gâteaux differentiable.

It is left to show that u 7→ J ′′(u)[d, d] is continuous. Again, we first consider that the assumptions
(A.5) are satisfied. We show exemplary that the function

Gd(u) :=
∫

Ω
fuz(x, u,∇u)[d,∇d] dx =

∫
Ω
dT∇2

uzf(x, u,∇u)∇d dx

is continuous. The continuity of the other parts of J ′′(u)[d, d] can be shown in the same way.
Note that we use the notation ∇2

uzf to refer to the matrix representation of fuz. Obviously, the
function φ(x, (u,∇u)) := ∇2

uzf(x, u,∇u) is a bounded Carathéodory function. Hence, we can
apply Lemma A.7 which yields the continuity of Gd.

Now assume that (A.6) are satisfied instead. As in the other case, one uses Lemma A.7 to prove
the continuity of

u 7→
∫

Ω
fzz(x, u,∇u)[∇d,∇d] dx.

It is left to show the continuity of the function

H(u) :=
∫

Ω

(
fuu(x, u,∇u)[d, d] + 2fuz(x, u,∇u)[d,∇d]

)
dx.

For this, let (uk) be a sequence that converges to u strongly in H1(Ω)N . Using Hölder’s inequality,
we estimate

|H(uk)−H(u)| ≤
∫

Ω

(
‖∇2

uuf(x, u,∇u)−∇2
uuf(x, uk,∇uk)‖‖d(x)‖2

+ 2‖∇2
uzf(x, u,∇u)−∇2

uzf(x, uk,∇uk)‖‖d‖‖∇d‖
)

dx

≤ C
(
‖d‖2L∞(Ω)

∫
Ω
‖∇2

uuf(x, u,∇u)−∇2
uuf(x, uk,∇uk)‖ dx

+ 2‖d‖L∞(Ω)‖∇d‖L2(Ω)
( ∫

Ω
‖∇2

uzf(x, u,∇u)−∇2
uzf(x, uk,∇uk)‖2 dx

)1/2)
.
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From Lemma A.6, we obtain that the operators

Φ1 : L2(Ω)N+dN → L1(Ω)N×N , Φ1((u,∇u))(x) := ∇2
uuf(x, u(x),∇u(x))

and
Φ2 : L2(Ω)N+dN → L2(Ω)N×dN , Φ2((u,∇u))(x) := ∇2

uzf(x, u(x),∇u(x))
are continuous. As a consequence, we have |H(uk) −H(u)| → 0 as uk → u. This finishes the
proof. �

Remark A.3 Similar to Remark A.2, we can use the Sobolev embeddings to weaken the assump-
tions on the second derivatives. In the case d = 2, we can substitute (A.5) by

‖fuu(x, u, z)‖ ≤ C(g1(x) + ‖u‖q−2 + ‖z‖2−4/q), g1 ∈ Lq/(q−2)(Ω)
‖fuz(x, u, z)‖ ≤ C(g2(x) + ‖u‖(q−2)/2 + ‖z‖1−2/q), g2 ∈ L2q/(q−2)(Ω)
‖fzz(x, u, z)‖ ≤ C,

with 2 < q <∞.

A.5. Existence of optimal points

We summarize some results which we use to discuss the existence of solutions of infinite dimensional
optimization problems.
Definition A.3 Let U be a normed vector space. A function f : U → R is called coercive in a
set C ⊂ U iff

lim
‖u‖U→∞
u∈C

f(u) =∞.

Definition A.4 Let U be a normed vector space. A function f : U → R is called weakly lower
semicontinuous iff

uk ⇀ u⇒ f(u) ≤ lim
k→∞

inf f(uk).

Theorem A.6 Let U be a reflexive Banach space and f weakly lower semicontinuous. Further-
more, let C ⊂ U be a nonempty and weakly sequentially closed subset. If C is bounded or f is
coercive in C, then f takes its minimum in C.
Proof Since C is nonempty, the infimum of f in C exists and hence we find a minimizing
sequence (uk) ⊂ C. We have assumed that C is bounded or f is coercive and due to this (uk)
must be bounded. Due to Theorem A.3, every bounded sequence contains a weakly convergent
subsequence. Therefore, there exists (ukj ) with ukj ⇀ u∗ as j → ∞. The feasible set C is
assumed to be weakly closed and therefore u∗ ∈ C. Finally, from the fact that F is weakly lower
semicontinuous follows f(u∗) ≤ limj→∞ inf f(ukj ) and hence f(u∗) ≤ f(uk). Therefore, u∗ ∈ C is
the minimum. �

Corollary A.1 Let U be a reflexive Banach space, C ⊂ U be a closed and convex set and f be
continuous, convex and coercive in C. Then f takes its minimum in C.
Proof By Lemma A.2, it follows that C is weakly sequentially closed. Furthermore, one can
show that under the assumptions f is weakly lower semicontinuous (see for instance [Wer07,
Lemma III.5.9]). Hence, the assertion follows directly from the preceding lemma. �
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A. Appendix

A.5.1. Weakly lower semicontinuity of variational
integrals

Theorem A.7 Let Ω ⊂ Rd be an open and bounded set with Lipschitz-continuous boundary.
Furthermore, let f(x, u, z) : Ω× R× Rd be such that

1. f(x, u, z) is a Carathéodory function, i.e., f is measurable in x for every (u, z) and contin-
uous in (u, z) for almost every x ∈ Ω.

2. z 7→ f(x, u, z) is convex for almost every x ∈ Ω and for every u ∈ R.

3. f is bounded below.

Then the function
J(u) :=

∫
Ω
f(x, u,∇u) dx

is weakly lower semicontinuous in W 1,1(Ω).

Proof See for instance [Giu03, Corollary 4.1]. �

Remark A.4 In the preceding theorem, the condition f is bounded below can be weakened by
demanding that instead

f(x, u, z) ≥ −C
(
|z|m + |u|k + g(x)

)
with C > 0, g ∈ L1(Ω) if u ∈ Lk(Ω), k ≥ 1, and ∇u ∈ Lp(Ω), m < p, holds.

A.5.2. Regularity

Theorem A.8 Let Ω ⊂ Rd be an open and bounded set with Lipschitz-continuous boundary.
Furthermore, let f(x, u, z) : Ω × R × Rd be a Carathéodory function that satisfies the growth
condition

ε|z|p − b(x)|u|k − a(x) ≤ f(x, u, z) ≤ L|z|p + b(x)|u|k + a(x)

where ε, L > 0, 1 < p ≤ k < p∗ := pd
d−p and a, b are non-negative functions belonging to Ls(Ω),

s > n/p, and Lt(Ω), t > p∗

p∗−k . Assume that γ is Hölder continuous on ∂Ω and φ ∈W 1,p(Ω) with
tr(φ) ≤ γ a.e.. Then each solution u∗ of the problem

min
u∈C

∫
Ω
f(x, u,∇u) dx

where C = {u ∈W 1,p(Ω) | tr(u) = γ, u ≥ φ} is Hölder continuous in Ω.

Proof Follows from Example 6.4 and Theorem 7.8 in [Giu03]. �
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