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Abstract—This paper shows how to reduce the otherwise hard
joint relay positioning and flow optimization problem into a
sequence a two simpler decoupled problems. We consider a
class of wireless multicast hypergraphs mainly characterized by
their hyperarc rate functions, that are increasing and convex in
power, and decreasing in distance between the transmit node
and the farthest end node of the hyperarc. The set-up consists
of a single multicast flow session involving a source, multiple
destinations and a relay that can be positioned freely. The
first problem formulates the relay positioning problem in a
purely geometric sense, and once the optimal relay position is
obtained the second problem addresses the flow optimization.
Furthermore, we present simple and efficient algorithms to solve
these problems.

I. INTRODUCTION

We consider a version of network planning problem under

a relatively simple construct of a single session consisting of

a source s, a destination set T and an arbitrarily positionable

relay r, all on a 2-D Euclidean plane. The problem can then

be stated as: What is optimal relay position that maximizes

the multicast flow from s to T? Similarly, we can also ask:

What is the optimal relay position that minimizes the cost of

establishing the multicast session for a target flow F?

A fairly general class of acyclic hypergraphs are considered.

The hypergraph model is characterized by the following rules

of construction of the hypergraph G(N ,A):

1) G(N ,A) consists of finite set of nodes N positioned on

on a 2-D Euclidean plane and a finite set of hyperarcs A.

2) Each hyperarc in A emanates from a transmit node and

connects a set of receivers (or end nodes) in the system.

Also, each hyperarc is associated with a rate function

that is convex and increasing in transmit node power and

decreasing in distance between the transmit node and the

farthest node spanned by the hyperarc in the system.

3) Each end node spanned by the hyperarc can decode the

information sent over the hyperarc equally reliably, i.e.

all the end nodes of an hyperarc get equal rate.

In relation to the special case of our hypergraph model, the

authors addressed the first question (max-flow) in the context

of Low-SNR Broadcast Relay Channel in [1].

This paper has two major contributions. Firstly, we solve

the general joint relay positioning and max-flow optimization

problem for our hypergraph model. Secondly, we address the

min-cost flow problem and establish a relation of duality

between the max-flow and min-cost problems. An efficient

algorithm that solves the joint relay positioning and max-flow

problem is presented, in addition to an algorithm that solves

an important special case of the min-cost problem.

The relay positioning problem has been studied in various

settings [2]–[4]. In most cases, the problem is either heuris-

tically solved due to inherent complexity or approximately

solved using simpler methods but compromising accuracy.

We reduce the non-convex joint problem into easily solvable

sequence of two decoupled problems. The first problem solves

for optimal relay position in a purely geometric sense with no

flow optimization involved. Upon obtaining the optimal relay

position, the second problem addresses the flow optimization.

The decoupling of the joint problem comes as a consequence

of the convexity (in power) of hyperarc rate functions.

The next section develops the wireless network model. Sec-

tion III presents the key multicast flow concentration ideas for

max-flow and min-cost flow that are central to the reducibility

of the joint problem. In Section IV, we present the algorithms

and Section V contains an example where the results of this

paper are applied. Finally, we conclude in Section VI.

II. PRELIMINARIES AND MODEL

Consider a wireless network hypergraph G(N ,A) consist-

ing of |N | = n+2 nodes placed on a 2-D Euclidean plane with

|A| number of hyperarcs and the only arbitrarily positionable

node as the relay r. The node set N = {s, r, t1, .., tn} consists

of a source node s, a relay r and an ordered destination set

T = {t1, .., tn} (in increasing distance from s). Their positions

on the 2-D Euclidean plane are denoted by the set of two-tuple

vector Z = {zi = (xj , yj)|∀j ∈ N}.

All hyperarcs in A are denoted by (u, Vku
), where u is

the transmit node and Vku
= {v1, .., vku

} is the ordered

set (in increasing distance u) of end nodes of the hyperarc,

and Vku
⊂ N\{u}. The hyperarcs emanating from a trans-

mitter node are constructed in order of increasing distances

of the receivers from the transmitter (refer Figure 1). This

construction rule captures the distance based approach and is

analogous to time sharing for broadcasting. Note that, this is

one technique to construct the hypergraph G(N ,A), our model

allows arbitrary styles of hypergraph construction that follow
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Fig. 1. Hyperarcs are constructed in increasing order of distance from the
transmitter. (a)-(c): 3 node system. (a): Source hyperarc set - {(s, r), (s, rt)}.
(b): Relay hyperarc set - {(r, t)}. (c): Hypergraph G(N ,A). (d)-(f): 4
node system with T = {t1, t2} such that Dsr < Dst1 < Dst2 and
Drt1 < Drt2 . (d) Source hyperarc set - {(s, r), (s, rt1), (s, rt1t2)}. (e)
Relay hyperarc set - {(r, t1), (r, t1t2)}. (f): Hypergraph G(N ,A).

the above three mentioned rules. Although, since time sharing

is optimal for broadcasting we will stick to this technique as

the main example in this paper. All the nodes in the set Vku

receive the information transmitted over the hyperarc (u, Vku
)

equally reliably. Any hyperarc (u, Vku
) ∈ A is associated with

a rate function Ru
vku

= f(Pu
vku

, Duvku
), where Pu

ku
and Duvku

denotes the fraction of the total transmit node power allocated

for the hyperarc and the Euclidean distance between transmit

node u and the farthest end node vku
, respectively.

The hyperarc rate function Ru
vku

is increasing and convex

in power Pu
vku

and decreasing in Duvku
. Furthermore, without

loss of generality, we write the hyperarc rate function into two

separable functions of power and distance

Ru
vku

=
g(Pu

vku
)

h(Duvku
)

or Ru
vku

= g(Pu
vku

)− h(Duvku
), (1)

where g : R
+ −→ R

+ is increasing and convex and h :
R

+ −→ R
+ is increasing. Mainly, we will be concerned with

the first equation in (1). Moreover, to comply with standard

physical wireless channel models we assume that

∂g(Pu
vku

)

∂Pu
vku

≤
∂h(Duvku

)

∂Duvku

, (2)

∀(Pu
vku

= Duvku
) ∈ dom(Pu

vku
, Duvku

). If the functions g

and h are not differentiable entirely in dom(Pu
vku

, Duvku
),

then Inequality 2 can be rewritten with partial sub-derivatives,

implying that differentiability is not imperative.

Denote the convex hull of the nodes in N\{r} by C. For a

given relay position zr ∈ C, let Li = {li1, .., l
i
τi
} be the set of

paths from s to a destination ti ∈ T and let L = {l1, .., lτ}
be the set of paths from s that span all the destination set T ,

therefore L ⊂
⋃

i∈[1,n] Li. Moreover, any path in the system

consists of either a single hyperarc or at most two hyperarcs

as there are only two transmitters in the system. Let µ and ν

denote the total given power of source and relay, respectively,

and γ = ν
µ

denote their ratio, where γ ∈ (0,∞). Denote with

Fli
j

and Fi the flow over the path lij (for j ∈ [1, τi]) and the

total flow to the destination ti ∈ T , respectively, such that

Fi =
∑

j∈[1,τi]
Fli

j
. Define F to be the the multicast flow

from s to the destination set T as the minimum among the

total flows to each destination, then for a given relay position

zr ∈ C the multicast max-flow problem can be written as,

Maximize

(
F = min

i∈[1,n]
Fi

)
(A)

subject to: Fi ≤
τi∑

j=1

Fli
j
, ∀i ∈ [1, n], (3)

0 ≤ Fli
j
∈ C(P,D), ∀j ∈ [1, τi], ∀i ∈ [1, n]. (4)

The hyperarc rate constraints and node sum-power constraints

are denoted by the set C(P,D) in Program (A) for simplicity.

Program (A) in general is non-convex, as the path flow

function Fli
j

can be non-convex, e.g. let the path lij ∈ Li

be lij = {(s, Vks
), (r, Vkr

)}, (lt21 = {(s, rt1), (r, t1t2)} in

Figure 1(f)), then Fli
j
= min(Rs

vks
, Rr

vkr
).

Now we define the notion of cost for a given hyperarc rate

Ru
vku

=
g(Pu

vku
)

h(Duvku
) ≥ 0. The cost of rate Ru

vku
is given by the

total power consumed by the hyperarc to achieve Ru
vku

Pu
vku

= g−1
(
Ru

vku
h(Duvku

)
)
, (5)

where g−1 : R+ −→ R
+ is the inverse function of g that

maps its range to its domain. Therefore, the total cost of

multicast flow F in the system is simply the sum of powers

of all the hypearcs in the system. Note that the function

g−1 is increasing and concave, and if h is convex then from

Inequality (2), g−1 ◦ h increasing and convex. So for a given

relay position zr ∈ C, the min-cost problem minimizing the

total cost for setting up the multicast session (s, T ) with a

target flow F can be written as,

Minimize


P =

∑

(u,Vku )∈A

Pu
vku


 (B)

subject to: F ≤ Fi ≤
τi∑

j=1

Fli
j
, ∀i ∈ [1, n], (6)

C(P,D) ∋ Fli
j
≥ 0, ∀j ∈ [1, τi], ∀i ∈ [1, n]. (7)

Constraint (6) makes sure that any destination ti ∈ T receives

a minimum of flow F . Like in Program (A), we denote with

the set C(P,D) the hyperarc rate and power constraints.

Finally, define the point p∗, that will be crucial in developing

algorithms in later sections, as

zp∗ = argmin
zp

(max(ν∗h(Dzps), µ
∗ max
ti∈T

(h(Dzpti)))), (8)

where, µ∗ = g(µ) and ν∗ = g(ν). An easy way to understand

p∗ is that if µ∗ = ν∗ = 1 then p∗ is the circumcenter of two

or more nodes in the set N\{r}. Note that the program in

Equation (8) is a convex program. Also, denote the optimal

value of the objective function in Equation (8) as Dp∗ .

Hereafter, we represent with (s, T,Z, γ) and (s, T,Z, γ, F )
the joint relay positioning and flow optimization problem

instances that maximizes the multicast flow and minimizes

the total cost for a the target flow F , and with z∗γ↑ and z∗F↓

denote the optimal relay positions, respectively.



III. MULTICAST FLOW PROPERTIES AND REDUCTION

In this section we develop fundamental multicast flow prop-

erties that govern the multicast flow in the wireless network

hypergraphs that we consider in this paper. First, we briefly

note the main hurdles in jointly optimizing the problem. For

a given problem instance different relay positions can result

in different hypergraphs, which makes the use of standard

graph-based flow optimization algorithms difficult. Moreover,

the hyperarc rate function can be non-convex itself.

We will show that the joint problems (s, T,Z, γ) and

(s, T,Z, γ, F ) can be reduced to solving a sequence of two

decoupled problems. The reduced problems are decoupled

in the sense that the first problem is purely a geometric

optimization problem and involves no flow optimization and

vice versa for the second problem. At the same time, they

are not entirely decoupled because the two problems need

to be solved in succession and cannot be solved in parallel.

Now we present a series of results that are fundamental to the

reducibility of the joint problem.

Proposition 1: The optimal relay positions z∗γ↑ and z∗F↓ lie

inside the convex hull C.

Refer Appendix A in [5] for the proof. Proposition 1 tells us

that only the points inside the polygon C need to be considered.

This brings us to the following fundamental theorem.

Theorem 1 (Flow Concentration): Given zr ∈ C:

(i) the maximized multicast flow F ∗ concentrates over at

most two paths from s to the destination set T .

(ii) for any target flow F ∈ [0, F ∗] the min-cost multicast

flow concentrates over at most two paths from s to T .

The proof is detailed in Appendix B of [5]. Theorem 1 is

central to the two questions we aim to answer and reduces

the complexity of joint optimization greatly by considering

only two paths instead of many. Essentially, Theorem 1 tells

that for a given relay position zr ∈ C, the multicast flow F

must go only over the paths that span all the destination set T ,

i.e. set L. Furthermore, among the paths in L, the maximized

multicast flow F ∗ goes over only two paths, namely the path

l̂1 = {(s, T1), (r, T2)} that has the highest min-cut among all

the paths through the relay r, and path l̂2 = {(s, t1, .., tn) =
(s, T )}, which is the biggest hyperarc from s spanning all the

destination set T , where r ∈ T1 and T1 ∪ T2 = T . The same

holds for the min-cost case for a given relay position zr ∈ C.

Consequently, it is also true for the optimal relay positions

z∗γ↑ and z∗F↓. Hereafter, we only need to consider the flow

over paths l̂1 and l̂2 (corresponding to the relay position in

consideration).

A. Max-flow Problem - (s, T,Z, γ)

Assuming that the transmitted signal propagates omnidirec-

tionally, we can geometrically represent the hyperarcs of the

path l̂1 = {(s, T1), (r, T2)} by circles Cs
T1

and Cr
T2

centered at

s and r with radii πs = Dstk and πr = Drtk′ (where Dstk =
maxti∈T1

(Dsti) and Drtk′ = maxtj∈T2
(Drtj )), respectively.

Similarly, the path l̂2 = {(s, T )} can be represented by the

circle Cs
T with radius Dstn . Also, C∪ = Cs

T1
∪ Cr

T2
denotes

s
s

t1

t1 t2

t2 t3

r̄

∞ ∞

z∗1↑
z∗1↑

(a) (b)

0 0
γ γ

Fig. 2. The solid piecewise linear segment in examples (a) and (b) marks
the set of points r̂ for different values of πs ∈ (0, Dst2 ). Each point r̂
corresponds to z∗

γ↑
for some γ ∈ (0,∞). The piecewise linear segment breaks

beyond the dashed circle as z1 ∈ Cs
T1

. (a): E.g. Cs
r with 0 < πs < Dst1 ,

zr̂ = argmin
ẑr∈Cs

r

max(Dẑrt1 , Dẑrt2 ). Same goes for the example in (b).

the union region of the two circles. Then using Theorem 1,

Program (A) can be re-written as,

Maximize
P s

T1
+P r

T2
≤µ,

P s
T≤ν,πs,πr

(
min

(
g(P s

T1
)

h(πs)
,
g(P r

T2
)

h(πr)

)
+

g(P s
T )

h(Dstn)

)
(C)

where, P s
T1
, P r

T2
and P s

T are the powers for hyperarcs of the

paths l̂1 = {Cs
T1
, Cr

T2
} and l̂2 = {Cs

T }, respectively. The radii

variables πs and πr correspond to path l̂1 for the relay position

zr ∈ C such that zr ∈ Cs
T1

and Z ∈ C∪.

Although Program (C) is reduced, it is still a non-convex

optimization problem. The objective function is non-convex

and different positions of the relay zr ∈ C result in different

end node sets T1 and T2 for the hyperarcs of path l̂1.

On the other hand, we know that the relay position is

sensitive only to the flow over path l̂1. In addition, as there

always exist a relay position zr ∈ C such that the min-cut of

path l̂1 is higher than that of path l̂2, then this also holds true

for z∗γ↑. Therefore, optimizing the relay position to maximize

the flow over path l̂1 results in global optimal relay position

solving the original problem (s, T,Z, γ). This motivates the

decoupling of computation of optimal relay position from the

flow maximization over the path l̂1.

Proposition 2: For a given problem instance (s, T,Z, γ), if

g(ν)h(Dsp∗) = Dp∗ , then z∗γ↑ = zp∗ .

Refer Appendix C in [5] for the detailed proof. At point p∗,

the following holds
g(µ)

h(πp∗
s )

≥ g(ν)

h(πp∗
r )

(from Equation (8)), thus

making it naturally a good candidate for z∗γ↑. Proposition 2,

essentially proves that if the relay is positioned at p∗, and if

maximizing the flow over the path l̂1 results in no spare source

power (i.e. g(ν)h(Dsp∗) = Dp∗ ), then z∗γ↑ = zp∗ and F ∗ =
g(µ)

h(πp∗
s )

. Furthermore, the joint problem in Program (C) can be

reduced to solving in sequence the computation of the optimal

relay position p∗ by solving Equation (8) and then calculating

the max-flow F ∗. But this is not true when
g(µ)

h(πp∗
s )

>
g(ν)

h(πp∗
r )

.

We cover this case in the section of algorithms.

Let us now see the problem in a different way. Consider the

radius πs ∈ (0, Dstn) and construct the hyperarc Cs
πs

. Denote

with T ′ = {tj ∈ T |Dstj > πs}, the set of destination nodes



that lie outside the hyperarc circle Cs
πs

. Then compute the

point r̂ such that

zr̂ = argmin
zp∈Cs

πs

(max
tj∈T ′

(Dr′tj )),

and position the relay at r̂ (here r̂ is the point in Cs
πs

that

minimizes the maximum among the distance to the nodes in

the set T ′ from itself). If Dsr̂ < πs, then we contract the

hyperarc Cs
πs

to Cs
r̂ , else we simply re-denote it with Cs

r̂ .

Finally, we can construct the hyperarc C r̂
tn

( note that Z ∈
C ′

∪ = Cs
r̂ ∪ C r̂

tn
). The set R′ of points r̂ computed in this

way for different values of πs ∈ (0, Dstn) are the optimal

relay positions z∗γ↑ solving (s, T,Z, γ) for some γ ∈ (0,∞).
Figure 2(a) captures this interesting insight of the relationship

between the points r̂ and z∗γ↑. Note that the set R̂ of points r̂

is a discontinuous piecewise linear segment.

B. Min-cost Problem (s, T,Z, γ, F ) And Duality

The min-cost problem (s, T,Z, γ, F ) can be written as

Minimize (P s
T1

+ P r
T2

+ P s
T ) (D)

subject to: F ≤ min

(
g(P s

T1
)

h(πs)
,
g(PrT2

)

h(πr)

)
+

g(P s
T )

h(Dstn)
, (9)

P s
T1

+ P r
T2

≤ µ, P s
T ≤ ν. (10)

In the non-convex Program (D), the path l̂1 = {Cs
T1
, Cr

T2
}

correspond to the relay position zr ∈ C which is implicitly

represented in the distance variables πs and πr. From Theo-

rem 1, we know that paths l̂1 and l̂2 carry all the min-cost

target multicast flow F . In this sub-section we refer the path

l̂1 as the cheapest path for a unit flow among all the paths

through r in L for given position of relay.

Now, we claim that z∗F↓ ∈ R̂. This is true because given the

hyperarc Cs
T1

of path l̂1 with optimal radius π∗
s , the second

hyperarc Cr
T2

must be centered at the point that minimizes the

maximum among the distances to all the destination nodes not

spanned by the hyperarc Cs
T1

from itself, as this minimizes

the cost over the hyperarc Cr
T2

. Therefore, z∗F↓ (like z∗γ↑)

always lie on on the curve R̂. This observation motivates an

interesting fundamental relationship between z∗F↓ and z∗γ↑.

Theorem 2 (Max-flow/Min-cost Duality):

z∗F↓ = z∗γ̂↑, (11)

where γ̂ ∈ [min(γ, γ),max(γ, γ)], F ∈ [0, F ∗] and z∗1↓ = z∗γ↑.

Theorem 2 establishes the underlying duality relation be-

tween the max-flow problem (s, T,Z, γ) and the min-cost

problem (s, T,Z, γ, F ) and says that the point z∗F↓ (or z∗γ̂↑)

lies on the segment z∗1↓−z∗F∗↓ (z∗γ↑−z∗γ↑, respectively) of the

curve R̂. Implying that the optimal relay position z∗F↓ solving

the problem (s, T,Z, γ, F ) is also the optimal relay position

z∗γ̂↑ solving the problem (s, T,Z, γ) for some γ̂. The proof of

Theorem 2 is presented in Appendix D of [5].

However, the max-flow is not always reducible to a se-

quence of decoupled problems. This is mainly due to the fact

that the path l̂2 can be cheaper than path l̂1 for a unit flow

corresponding to the optimal position z∗F↓, i.e.

g−1(h(π∗
s )) + g−1(h(π∗

r )) ≥ g−1(h(Dstn)).

This information is not easy to get a priori. In contrast, we

can safely assume that

g−1(h(π∗
s )) + g−1(h(π∗

r )) ≤ g−1(h(Dstn)), (12)

as almost all wireless network models that comply with our

model result in the hyperarc cost function g−1(h(Duvku
))

being the increasing convex function of distance Duvku
that

satisfy Inequality (12). If Inequality (12) holds, then similar to

the Max-flow problem the joint optimal relay positioning and

min-cost flow optimization problem in Program (D) can be

reduced to a sequence of decoupled problems of computing

the optimal relay position and then optimizing the hyperarc

powers to achieve the min-cost flow F in the network using

the similar arguments as in previous subsection. For a spe-

cial of the min-cost problem (s, T,Z, γ, F ), we present the

Min-cost Algorithm that sequentially solves and outputs the

optimal relay position and powers to achieve the target flow

F ∈ [0, F ∗] in Section IV-B.

IV. ALGORITHMS

In this section we present the general max-flow and the

special case min-cost algorithms that solve the sequence of

decoupled problems.

A. Max-flow Algorithm

Input: Problem instance (s, T,Z, γ).

1: Compute p∗, if g(ν)h(Dsp∗) = g(µ)h(Dp∗tn), output

z∗γ↑ = zp∗ , F ∗ = g(ν)h(Dsp∗) and quit, else go to 2.

2: Construct the set T ′ = {t′j ∈ T |Dst′
j

< Dp∗t′
j
} =

{t′1, .., t
′
j′} (ordered in increasing distance from s) and

compute p∗
T\T ′ . If Dst′

j′
≤ Dsp∗

T\T ′
, declare z∗γ↑ = zp∗

T\T ′

and F ∗ = g(ν)h(Dsp∗
T\T ′

) and quit, else go to Step 3.

3: Compute the points z∗1 and z∗2 , and maximized multicast

flow F ∗
1 and F ∗

2 , respectively. Declare before quitting,

z∗γ↑ =

{
z∗1 if F ∗

1 > F ∗
2 ,

z∗2 if F ∗
1 < F ∗

2 .

Output: z∗γ↑ and F ∗.

Fig. 3. Max-flow Algorithm.

The Max-flow Algorithm in Figure 3, is a simple and

non-iterative 3 step algorithm that outputs the optimal relay

position and the maximized multicast flow. The first step is

essentially Proposition 2, in case it is not satisfied the second

step filters the redundant nodes that are too close to the source

and can be ignored. If the conditions of first or second step

are not met, then the third step divides the computation of z∗γ↑
into two regions of C and computes the optimal relay position

z∗1 and z∗2 for these two regions and outputs the better one.

The proof of optimality is provided in Appendix E of [5].



B. Min-cost Algorithm

In this subsection, we assume that the Inequality (12) is

satisfied and the target flow F ∈ [0, F ∗] goes over the path l̂1
(corresponding to the optimal relay position z∗F↓) only. Min-

cost Algorithm in Figure 4, unlike the Max-flow algorithm, is

an iterative algorithm. In the first step the geometric feasibility

region is constructed and in the second step this region is

divided into at most n − 1 sub-regions. The optimal relay

position is computed for all the sub-regions and the one

minimizing the cost among them is declared global optimal.

Computing the optimal relay position for the sub-regions is a

simple geometric convex program that can be solved efficiently

and the number of such iterations are upper bounded by n−1.

The proof of optimality is presented in Appendix F of [5].

Input: Problem instance (s, T,Z, γ, F ) and C ′
∩.

1: Compute p̂ = argmin
p∈C′

∩

(h(Dsp) + max
i∈[1,n]

(h(Dpti))), and

build the set T̂ = {t̂ ∈ T |Dst̂ ≤ Dsp̂}. If T̂ 6= {∅},

then recompute p̂ = argmin
p∈C′

∩

(h(Dsp)+ max
t∈T\{T̂}

(h(Dpt))),

calculate Ψp̂ = h(Dsp̂) +Dp̂tn and to go to Step 2.

2: Build the set T = {t ∈ T\{T̂ , tn}|Dst > πp̂
s , Dst ≤

π′
s} = {t1, .., tl} (ordered in increasing distance from s),

compute the points

p̂j = argmin
p∈C

s

j

(max(h(Dsp), h(Dstj−1
))+max

t∈T j

(h(Dpt))),

and calculate the cost of unit flow Ψj = h(Dsp̂) +

h(max
t∈T j

(Dp̂t)) over the path l̂2 corresponding to the relay

position p̂j , ∀j ∈ [1, l]. Declare

z∗F↓ =

{
zp̂ if Ψp̂ ≤ Ψm,

zpm
if Ψp̂ ≥ Ψm,

where Ψm = min
j∈[1,n]

(Ψj), P s
T1

∗ = g−1(h(π∗
s )F ) and

P r
T2

∗ = g−1(h(π∗
r )F ) and quit.

Output: z∗F↓, P s
T1

∗ and P r
T2

∗.

Fig. 4. Min-Cost Algorithm.

V. EXAMPLE: LOW-SNR ACHIEVABLE NETWORK MODEL

In this section we present an example from the interference

delimited network model that was originally presented in [1].

A. Low-SNR Broadcast and MAC Channel Model

Consider the AWGN Low-SNR (wideband) Broadcast

Channel with a single source s and multiple destinations T =
{t1, .., tn} (arranged in the order of increasing distance from

s). From [6] and [7], we know that the superposition coding

is equivalent to time sharing, which is optimal. Implying that

the broadcast communication from a single source to multiple

receivers can be decomposed into communication over n hy-

perarcs sharing the common source power. Therefore, we get

the set of hyperarcs Abc = {(s, t1), (s, t1t2), .., (s, t1t2..tn)}.

Similarly, in the Low-SNR (wideband) regime, interference

becomes negligible with respect to noise, and all sources can

achieve their point-to-point capacities analogous to Frequency

Division Multiple Access (FDMA). In general, the MAC

Channel consisting from n sources s1, ..., sn transmitting to

a common destination t can be interpreted as n point-to-

point arcs each having point-to-point capacities. Thus, we

get Amac = {(s1, t), .., (sn, t)}. Each hyperarc (s, t1..tj) ∈
Abc ∪ Amac is associated with the rate function

Rs
tj

=
P s
tj

N0D
α
stj

, ∀j ∈ [1, n], (13)

where α ≥ 2 is the path loss exponent.

B. Low-SNR Achievable Hypergraph Model

By concatenating the Low-SNR Broadcast Channel and

MAC Channel models we obtain an Achievable Hypergraph

Broadcast Model. For example the Broadcast Relay Channel

consisting of a single source, n destinations and a relay.

Although, the time sharing and FDMA are capacity achieving

optimal schemes in the respective models, the Achievable

Hypergraph Model is not necessarily capacity achieving. In

contrast and more importantly for practical use, this model is

easy to scale to larger and more complex networks.

The above Low-SNR Achievable Hypergraph Model also

incorporates fading [1]. The rate function in Equation (13) is

linear in transmitter power and convex in hyperarc distance,

hence the results from this paper can be directly applied.

VI. CONCLUSION

We present simple and efficient geometry based algorithms

for solving joint relay positioning and flow (max-flow/min-

cost) optimization problems for a fairly general class of

hypergraphs. Any application that satisfies the hypergraph

construction rules and can be modeled under the classical

multicommodity framework can use the results presented here.

As a part of future work it would be of interest to extend

the work presented here to the general multicommodity setting

where multiple sessions use a common relay.
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