
1 INTRODUCTION  

We have investigated the combination of Bayesian 
networks (BN) with structural reliability methods 
(SRM) elsewhere (Straub and Der Kiureghian 
2008b). The resulting concept is termed enhanced 
Bayesian network (eBN). The eBN facilitates the in-
tegration of the detailed modeling of a structure 
through SRM into the wider context of risk and de-
cision analysis in complex civil systems, in particu-
lar for systems with evolving information, where the 
capabilities of the BN for Bayesian updating can be 
exploited. For this reason, the eBN concept is well 
suited for multi-scale probabilistic analysis of large 
infrastructure systems and, ultimately, for decision 
optimization, at the planning stage and in near-real-
time during the operational phase. The purpose of 
this paper is to demonstrate this application of the 
eBN framework and to outline a generic framework 
for infrastructure risk analysis.  

Other authors (Friis-Hansen 2005, Nishijima et 
al. 2009) have pointed out the usefulness of BN for 
modeling complex engineering systems due to its 
graphical and modular nature, which facilitates effi-
cient and concise representation of dependences 
among system components. However, thus far there 
has not been an attempt at formalizing the combina-
tion of SRM and BN for modeling such complex 
systems. The present paper takes a step in this direc-
tion by applying the eBN method from Straub and 
Der Kiureghian (2008b) to infrastructure system risk 
analysis. After a presentation of general modeling 
principles and a generic framework for infrastructure 
risk analysis using BN, the capabilities and limita-
tions of the eBN approach are illustrated by means 

of an example dealing with an idealized infrastruc-
ture system subject to natural hazards and deteriora-
tion.  

 
2  THE ENHANCED BAYESIAN NETWORK 

METHODOLOGY  

This section contains a brief introduction into the 
eBN methodology, following Straub and Der Ki-
ureghian (2008b). This text assumes that the reader 
is familiar with both SRM and BN.  

2.1 The eBN 
We define as enhanced Bayesian networks (eBNs) a 
subclass of BNs that have the following properties: 

a) The BN has nodes that are defined in a finite 
sample space (discrete nodes) and nodes that 
represent vectors of continuous random va-
riables (continuous nodes). 

b) The states of each discrete node that is a 
child of at least one continuous node are de-
fined as domains in the outcome space of its 
parents, in which case the node is determinis-
tic, or are defined by a probability mass func-
tion that is parameterized by the parent 
nodes, in which case the node is random (a 
case not considered in this paper). 

To graphically distinguish the continuous nodes 
from the discrete nodes, we plot all continuous 
nodes with shaded area. On the left-hand side of 
Figure 1, an example of an eBN is given, in which X 
is a continuous node. 

There exists no exact method of inference for a 
general BN with continuous nodes. Approximate in-
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ference methods (such as stochastic simulation or 
MCMC) are available, but are not considered here.  

The philosophy pursued in solving the eBN is 
to reduce it to a BN that contains only discrete 
nodes. This reduced BN, referred to as rBN, can 
then be solved with the available algorithms for ex-
act inference (e.g., Lauritzen and Spiegelhalter 
1988), which are also implemented in a number of 
free and commercial software (Murphy 2001). 

2.2 Obtaining the rBN through variable elimination 
To reduce the eBN to a rBN, it is necessary to elimi-
nate all continuous random variables in the eBN. To 
this end, we make use of an algorithm for variable 
elimination developed by Shachter (1988). We first 
define as barren nodes all random variables in the 
eBN without children that do not receive any evi-
dence. In the context of the eBN, if iX  is a barren 
node, we can simply remove it together with the 
links directing to it, without changing the joint dis-
tribution of the remaining variables.  

Second, we make use of theorem 2 from 
Shachter (1988), which states that a link from node i 
to node j can be reversed by adding directed links 
from all parents of node i to node j and from all par-
ents of node j to node i, provided this action does not 
create a cyclic path in the network. 

The process of eliminating a node X  
representing a set of continuous random variables in 
the eBN proceeds by first reversing all directed links 
from  to the children of , ( )ch X , until ( )ch X  
is the empty set. Then, X , together with all the links 
pointing to it, can simply be removed. Figure 1 
shows an example of the process of obtaining the 
rBN from the eBN. The order of the reversing opera-
tions can be chosen freely as long as it is ensured 
that the resulting network is acyclic at any stage. 
Thus, in Figure 1, the link from  to 6Y  cannot be 
reversed first, since this would lead to the cycle 

5 6 5Y Y X Y→ → → . 
 

 
Figure 1. Illustration of an eBN and a link reversal sequence 
for removal of the continuous node X, to arrive at the rBN. 

 
For each node for which the incoming links are not 
identical in the eBN and the rBN, it is necessary to 
compute a probability mass function (PMF) condi-
tioned on the parents of the variable in the rBN. 
More details of the procedure for computing this 
PMF are given in Straub and Der Kiureghian 

(2008b). Depending on the problem, different SRM 
may be used, e.g., component or system reliability 
methods by FORM, SORM, importance sampling, 
subset simulation, or Monte Carlo simulation. The 
fact that some of the SRM methods have unknown 
rates of convergence is not critical here, since the 
rBN can be established prior to the availability of 
evidence for near real-time updating. 

Briefly stated, let X  and Y  respectively de-
note the set of continuous and discrete random va-
riables in the eBN. Furthermore, let CY  denote the 
set of discrete variables that have at least one conti-
nuous variable as parent, and NY  the set of the re-
maining discrete variables. Let ( )ipa Y′  be the par-
ents of i CY ∈Y  in the eBN, which may include 
variables from both X  and Y , and ( )ipa Y′′  be the 
parents of iY  in the rBN, which can only include va-
riables from Y . By definition of the eBN, any state 

ik  of i CY ∈Y  is described by a domain in the space 
of . In general, this domain may also depend on 
the states of the discrete variables in ( )ipa Y′ . Thus, 
we denote the domain for the state ik  of iY  as 

( ) ( )i

i

kΩK x , wherein iK  denotes the vector of the states 
of the discrete variables in ( )ipa Y′ . The conditional 
PMF of  in the rBN is then given as a function of 
the probability density function (PDF) of X, 
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In the second line of Equation (1) we make use of 
the fact that all variables in NY  will have the same 
parents in the rBN as in the eBN. 

The integration in Equation (1) can be effi-
ciently computed using system SRM. We would 
need to solve such system problems for all combina-
tions of the states of CY  and pa(X). For a large 
number of variables in , the number of these 
computations can become prohibitive. However, this 
number can be reduced when the dependence struc-
ture of the specific case is taken into account. It can 
be shown that the number of SRM calculations re-
quired to obtain the conditional PMF of a single va-
riable iY  corresponds to the total number of states of 

( )ipa Y′′  times 1im − , with im  being the number of 
states of . Therefore, it is crucial that the number 
of parents of any variable i CY ∈Y  in the resulting 
rBN be as small as possible. In Straub and Der Ki-
ureghian (2008b) we introduce the concept of Mar-
kov envelopes to determine the minimum number of 
parents of the variables in the rBN. This concept is 
summarized below. 

X X
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2.3 Markov envelopes 
The Markov blanket of a variable X includes X, the 
parents of X, the children of X and the parents of the 
children of X (e.g., Russell and Norvig 2003):

( )bl X = ( ) ( ) [ ( )]X pa X ch X pa ch X∪ ∪ ∪ . The im-
portance of the Markov blanket stems from the fact 
that for given values of the variables in ( )bl X , the 
variable X is statistically independent of all other va-
riables in the BN. Based on the Markov blanket, we 
identify groups of continuous variables that will be-
come connected during the variable elimination 
process. Such groups, denoted by MX , are identified 
by the following procedure:  

Start with a single continuous node and put it 
into MX ; add all continuous nodes that are part of 
the Markov blanket of the first node; add all conti-
nuous nodes that are part of the Markov blankets of 
the additional nodes; and so on. The Markov 
envelope is then defined as the aggregation of all va-
riables (discrete and continuous) that are part of the 
Markov blankets of all variables in MX : 
{ ( )}

i MX ibl X∈XU . This concept is illustrated in Figure 
2. It follows from the node elimination algorithm 
that one discrete variable in each of the Markov en-
velopes will have all other discrete variables in the 
envelope as parents in the rBN. Therefore, the sizes 
of these envelopes represent a lower bound on the 
number of SRM computations (and on the computa-
tional complexity of the resulting rBN). 

 

 
Figure 2. Illustration of Markov envelopes. X1 and X3 are both 
in bl(X2), thus the envelope contains bl(X1), bl(X2) and bl(X3), 
whereas bl(X4) contains no other continuous variables and 
forms an individual envelope. 

2.4 Including evidence 
We can distinguish two situations with respect to the 
availability of evidence: The situation where the 
evidence is already available when establishing the 
rBN, and the situation where the rBN is established 
only anticipating the evidence. In this paper we fo-
cus on the latter, since this situation occurs in near-
real time decision-making. The same type of prob-
lem must be solved in preposterior decision analysis. 
However, we note that when the evidence is availa-
ble at the time of establishing the eBN, the number 
of SRM calculations is significantly reduced, be-
cause every discrete random variable with known 
outcome is represented by a single state.  

Because inference is ultimately carried out on 
the rBN, we require that all variables for which evi-
dence is available, or for which an updated distribu-

tion is desired, be discrete random variables. Thus, 
any continuous random variable for which evidence 
or updating is anticipated should be replaced by an 
equivalent discrete random variable.  

3 MODELING INFRASTRUCTURE SYSTEMS 
WITH THE EBN APPROACH 

Complex infrastructure systems often have structural 
systems as elements.  Examples are bridges and tun-
nels that are elements of a transportation system, or 
offshore platforms and pipelines that are elements of 
an oil or gas production system. The BN is well 
suited for such multi-scale system modeling, while 
also allowing modeling of non-structural elements, 
such as power supply or pumping units. The ap-
proach enables updating the entire system model 
based on observations at any scale (e.g., the monitor-
ing of a structural component in a bridge is utilized 
to update the probabilistic model of the entire infra-
structure system).  

The eBN concept can be directly applied to the 
modeling of infrastructure systems. For the sake of 
computational feasibility, it is necessary that the size 
of the Markov envelopes remain small. In the fol-
lowing, we make observations on efficient strategies 
for limiting the size of these Markov envelopes in 
typical infrastructure systems that are distributed in 
space. Thereafter, we present the object-oriented BN 
modeling as an efficient representation of large-scale 
infrastructure systems. 

3.1 Markov envelopes in eBN models of 
infrastructure systems 

It is desirable that Markov envelopes in an eBN 
model be confined to the level of  infrastructure sys-
tem elements so that SRM can be used to solve the 
corresponding structural system or component prob-
lems. Because elements of infrastructure systems are 
often exchangeable, this approach facilitates re-
using the same SRM calculations for infrastructure 
elements (structural systems or components) of the 
same type.  

3.2 Modeling common uncertain factors  
In most infrastructure systems, groups of system 
elements are subjected to common uncertain factors. 
Examples are a common hazard determining the 
demands on the system elements, or a common 
manufacturer of structural components, leading to 
correlation among the component capacities. The 
importance of these common factors (or the resulting 
correlation among element characteristics) has been 
recognized and their effect on infrastructure system 
reliability has been studied (e.g., Lee and Kiremid-
jian 2007, Straub and Der Kiureghian 2008a). As 



outlined in Straub et al. (2008), such common fac-
tors are even more important when considering re-
liability updating, since they allow learning about 
the entire system from observations of a single ele-
ment.  

If Markov envelopes are not to extend beyond in-
dividual elements of an infrastructure system, then 
the common uncertain factors influencing multiple 
elements must be modeled by discrete random va-
riables in the eBN. Such an approach ensures that 
the common factors are explicitly included in the re-
sulting rBN, reflecting the causal relations within the 
infrastructure system. This is illustrated in Figure 3, 
which shows the difference between modeling a 
common influencing factor by a continuous or a dis-
crete random variable. 
 

 
Figure 3. Illustration of the modeling of a common influencing 
random variable: (a) with a continuous random variable, (b) 
with a discrete random variable. The eBN is shown on the left 
side, the corresponding rBn on the right side 

3.3 Modeling infrastructure system performance 
If the system performance is defined in terms of 
connectivity between two or more system elements, 
then the eBN can be directly utilized to model sys-
tem performance as a function of the element per-
formances, which are described by binary random 
variables (Bensi et al. 2009). While this approach is 
straightforward for simple system configurations, it 
can become intricate for more complex systems. 
However, for the purpose of this paper it is sufficient 
to note that if the interest is in connectivity, then all 
the variables required to model the system perfor-
mance are discrete (binary) and, therefore, are part 
of the rBN. 

If the system performance is defined in terms of 
system capacity, e.g., the amount of water that can 
be supplied to a location, then the element perfor-
mances are typically expressed on a continuous 
scale, e.g., the amount of water that can be delivered 
through a particular pipe. In the eBN model, these 
quantities should generally be represented by dis-
crete random variables, since otherwise the Markov 
envelope would encompass a large number of sys-

tem elements. For an example of a pipeline, Figure 4 
illustrates how the Markov envelopes can be con-
tained to the individual system elements by discre-
tizing the performance variable (here: discharge). 

 

 
Figure 4. Modeling element and system performances in a 
pipeline by discrete variables. Qi, Qj, Qk are the performance 
variables, representing discharge through the pipeline section. 

3.4 Object-oriented Bayesian networks (OOBN) 
When representing large infrastructure systems, the 
object-oriented Bayesian network (OOBN) metho-
dology (Koller and Pfeffer 1997) facilitates efficient 
representation of the model. In an OOBN, a class is 
a Bayesian network in which some of the variables 
are defined as input and some as output. The instan-
tiations of the classes (the objects) are embedded in 
a higher level BN, with which they communicate 
through the input and output variables (the attributes 
of the class). The OOBN methodology includes the 
general concepts of object-oriented programming, 
such as inheritance from a class to a subclass. How-
ever, for the purpose of the application to infrastruc-
ture analysis, it is sufficient to think of the OOBN as 
a BN in which sets of variables are grouped into ob-
jects, which are either a part of other, higher-level 
objects or directly of the top-level model. To per-
form inference, the OOBN is treated like a large BN. 
This concept, which is quite intuitive, is illustrated 
in Figure 5, in which rounded rectangles represent 
objects. As an example, the typical bridge object is 
connected through its input variable “spectral acce-
leration,” which is an output variable of the earth-
quake characteristics object, and its output variable 
“performance,” which is an input variable to the ob-
ject transportation system.  
 

 
Figure 5. Illustration of the OOBN concept, considering an ex-
ample of a transportation network with three bridges subject to 
earthquakes.  
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3.5 A spatial-temporal model framework for 
infrastructure systems 

Based on the presented modeling principles, in the 
following a general eBN framework for risk analysis 
in infrastructure systems subject to natural hazards 
and deterioration is presented. The framework is 
summarized in Figure 6. The horizontal direction 
corresponds to the temporal dimension and the ver-
tical direction to the spatial dimension of the prob-
lem. All nodes are objects (thus their rounded rec-
tangular shape), i.e., they generally represent  lower-
level BNs. 
 

 
Figure 6. A spatial-temporal eBN model framework for infra-
structure systems. 
 
The framework includes objects that represent rele-
vant natural hazards. These have as children instan-
tiations of the hazard classes, each of which models 
a particular instance of a hazard at time ti (e.g., a 
particular windstorm event). Next, the framework 
includes objects Rj that represent the time-invariant 
characteristics of the infrastructure elements, such as 
bridges and tunnels. If the element capacities are de-
teriorating with time, then there will be a number of 
objects Rj(ti) as a function of time, representing the 
capacities at times ti. Next, the framework includes 
objects of the element performances Ej(ti) at all 
times ti at which a hazard occurred (in the past) or 
for which a future hazard is considered. The element 
performances include the capacity of the elements at 
time ti and the specific characteristics of the hazard 
at the location of the infrastructure element. Finally, 
the framework includes a system object that deter-
mines the infrastructure system performance Esys(ti) 
based on the element performances at times ti. The 
time instances that are included in the modeling are 
all points in time at which observations were made 
(here t1 and t2) and one representative future time T. 

It is, of course, possible to include additional time 
steps, but for most applications it is convenient to 
consider only one future time step and perform re-
peated evaluations of the eBN for different T.   

As a general principle, in modeling an infrastruc-
ture system following the above framework, the 
modeler should aim at confining Markov envelopes 
to the individual objects shown in Figure 6. In spe-
cial cases, with limited number of objects, the prin-
ciple can be violated, but it is believed that most in-
frastructure systems can be represented by adhering 
to this principle. 

The specific modeling within each of the objects 
in the framework is not a trivial matter (see Bensi et 
al. 2009). The final goal should be to derive general 
rules or guidelines on such modeling. However, this 
paper will focus on the illustration of the framework 
by means of an example.  

4 EXAMPLE APPLICATION 

For illustrating the application of the eBN frame-
work for modeling infrastructure systems, we con-
sider a system of five structures that fulfill a crucial 
service, such as hospitals. These structures are sus-
ceptible to failure due to extreme natural hazard 
events. To simplify the presentation, we assume that 
prior to any observation the structures have similar 
characteristics and are represented by identical prob-
abilistic models. We define the infrastructure system 
failure as the event of failure of two or more struc-
tures during a hazard event. 

Each structural system i is a one-bay elasto-
plastic frame under vertical load Vi and horizontal 
load Hi, as shown in Figure 7. This structural system 
has been investigated by many authors and has been 
modeled using the eBN approach in Straub & Der 
Kiureghian (2008b). The performance of each struc-
ture is modeled by the binary variable Ei, with Ei = 0 
being failure and Ei = 1 being survival of the struc-
ture.  

 

 
 
Figure 7. Typical structural system and its failure modes.  
 



The horizontal load Hj(ti) is the maximum environ-
mental load (e.g., earthquake or wind load) acting on 
the structure during a hazard event at time ti. We use 
the variable H(ti) to denote the regional hazard cha-
racteristics, and we model the local force Hj(ti) con-
ditional on H(ti), assuming statistical independence 
among the various Hj(ti) for given H(ti). To illustrate 
the effect of epistemic (model or statistical) uncer-
tainty, we model the standard deviation of the local 
hazard Hj(ti), σHj, as a random variable. The gravity 
load Vj is assumed to be constant with time, and sta-
tistically independent from location to location.  

The initial element capacities (hinge plastic mo-
ment capacities) Rjk,(t0) within a structure are equi-
correlated, but statistically independent among struc-
tures. In the model we include the possibility of per-
forming measurements of the element capacities at 
time t0. A measurement Mjk will result in the true 
element capacity Rjk,(t0) plus an additive measure-
ment error εjk: 

0( )jk jk jkM R t= + ε  (1) 

The resulting probabilistic model is summarized in 
Table 1. 

 
Table 1. Probabilistic model (excluding deterioration).  

 
 
The eBN modeling of an individual structure, in-
cluding measurements of element capacities, is pre-
sented in Straub & Der Kiureghian (2008b). The 
performance of the structure at time t0 is described 
by three limit state functions corresponding to the 
failure mechanisms: 

1 0 1 0 2 0 4 0 5 0 0

2 0 2 0 3 0 4 0

3 0 1 0 3 0 4 0 5 0 0

( ) ( ) ( ) ( ) ( ) 5 ( )

( ) ( ) 2 ( ) ( ) 5

( ) ( ) 2 ( ) 2 ( ) ( ) 5 ( ) 5

j j j j j j

j j j j j

j j j j j j j

g t r t r t r t r t h t

g t r t r t r t v

g t r t r t r t r t h t v

= + + + −

= + + −

= + + + − −

 (3) 

The structure fails if any of the mechanisms occur. 
For a given horizontal loading hj, the probability of 
failure of structure j at time zero (which is computed 
with SRM) is thus 

0 0

1 0 2 0 3 0 0

Pr ( ) | ( )

Pr { ( ) 0} { ( ) 0} { ( ) 0} | ( )

j j j

j j

F t H t h

g t g t g t H t h

⎡ ⎤= =⎣ ⎦
⎡ ⎤≤ ∪ ≤ ∪ ≤ =⎣ ⎦

 (4) 

We introduce the variable Rj(t0) to denote the initial 
capacity of the structure with respect to the horizon-
tal load hj, and note that the conditional cumulative 
distribution function (CDF) of Rj(t0) (the fragility 
function) is  

0( ) 0 0( ) Pr[ ( ) | ( ) ]
jR t j jF r F t H t r= =  (5) 

Next, we consider the deterioration of the structures. 
Deterioration is modeled by factors 1( , )j i iD t t− , such 
that the capacity of the structure at time it  is  

1 1( )  ( ) ( , )j i j i j i iR t R t D t t− −= ⋅  (6) 

Simplifying, 1( , )j i iD t t−  is a Beta distributed random 
variable with mean 11 0.01( )i it t −− −  and standard 
deviation 0.5

10.03( )i it t −− , defined in the range zero 
to one. It is possible to implement a more sophisti-
cated deterioration model, e.g., as in Straub (2009). 
However, as discussed later, there are certain fun-
damental limitations to the deterioration modeling in 
the context of infrastructure system analysis by BN.  

The eBN model of the infrastructure system is 
summarized in Figures 8 and 9. To enhance reada-
bility, the temporal and spatial dimensions of the 
model are shown separately. Note that we have ad-
hered to the principle of containing the Markov en-
velopes within the objects of the eBN. It is assumed 
that measurements will be performed on 4jR . For 
that reason 4jR  is modeled as a discrete random va-
riable. In this example, SRM calculations are per-
formed only to determine the initial capacity of each 
structure.  

 

 
Figure 8. Model of structure j in the infrastructure eBN (tem-
poral dimension). 

 

 
Figure 9. eBN model of the infrastructure at an instance of time 
(spatial dimension).  

Variable Distribution Mean St.Dev. Correlation 
Rjk(t0) i,j=1,...,5 [kNm] Joint lognormal 150 30 

, ,
0.3,

j k j lR R k lρ = ≠
V j [kN] Gamma 60 12 -  
Hj(ti) [kN] Lognormal H(ti)  σHj - 
H(ti)  [kN] Weibull 30 15 - 
σHj [kN] Lognormal 10 6 - 
εk [kNm] Normal 0 10 - 



The infrastructure performance ( )iE t  is represented 
by a single node in the eBN. In the terminology of 
Bensi et al. (2009), this is the “naïve” modeling ap-
proach. Given the small number of structures (infra-
structure elements) in this example, this approach is 
reasonable. In the general case, a different approach 
following Bensi et al. (2009) would be appropriate.  

4.1 Computations 
The SRM computations in the example are per-
formed by FORM analysis. The resulting rBN is 
computed using the free BN software Genie availa-
ble from the Decision Systems Laboratory of the 
University of Pittsburgh. Figure 10 shows the relia-
bility of the infrastructure system as a function of 
time for the case where no evidence is available (the 
design situation). Without evidence, Monte Carlo 
simulation (MCS) can be employed to validate the 
results obtained with the eBN approach, as shown in 
Figure 10. 

 

 
Figure 10. Probability of failure of the infrastructure system as 
a function of time – no evidence case. 
 
The eBN facilitates updating the reliability of the 
system for any evidence. Exemplarily, we consider 
five evidence cases, assuming that the infrastructure 
system has been subjected to two hazard events in 
the past. The evidence cases are summarized in Ta-
ble 2. Note that we include only observations of sur-
vival of structures. If failures were observed, it 
would be necessary to modify the eBN to account 
for the disposition of the failed structure, e.g., rebuilt 
or repaired. Such modifications are straightforward, 
but are not included due to page limitation. 

4.2 Results 
Generally, observing likely events has little influ-
ence on the probabilistic model. In the case of the 
considered example, observing that a structure has 
not failed alters the reliability only marginally. Note 
that this is not necessarily true for systems with little 
uncertainty in the loading because of an implicit 

proof-loading effect (Nishijima and Faber 2008).  
Therefore, we neglect such evidence, even though in 
cases 2-5 it is known that the infrastructure system 
survived in years 1-4 (for t1 = 5 years)  and 6-9 (for 
t2 = 10 years).  

 
Table 2. Evidence cases for the numerical investigation. 

 
 

Figure 11 summarizes the results for the different 
evidence cases. In case 1, which includes the mea-
surement of structural element capacities at time t0, 
the posterior probability of failure is increased due 
to the low measured capacities. The effect is quite 
pronounced, due to the fact that the element capaci-
ties within a structure are positively correlated, so 
that by measuring one element, information is 
gained also on the other elements in the structure. In 
cases 2-4, which include observations of perfor-
mances of the structures and the infrastructure, the 
posterior probability of failure is decreased since no 
failure is observed. The more detailed the available 
information is, the larger the effect on the posterior 
model. Case 3 includes the most information. In 
contrast, case 2 assumes that instead of observing all 
structures individually, only the entire infrastructure 
performance is observed. Case 4 assumes that only 
limited information on the hazard is available: In-
stead of an exact value of the hazard intensity, it is 
only known that the hazard event was a strong one. 
Finally, case 5 demonstrates that it is possible to 
combine information on the capacity, the hazard and 
the system performance in a single analysis.   

5 DISCUSSION 

The presented eBN approach is a powerful tool for 
reliability analysis of individual structures in the 
context of infrastructure system analysis and for fa-
cilitating learning of the models with observations. 
However, it is important to be aware of the limita-
tions of the methodology, which may not be obvious 
to the reader with limited experience with BNs.  
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M14 [kNm] 100 ˗ ˗  ˗ 100 
M24 [kNm] 120 ˗ ˗ ˗ 120 
M34 [kNm] 160 ˗ ˗ ˗ 160 
M44 [kNm] 90 ˗ ˗ ˗ 90 
M54 [kNm] 120 ˗ ˗ ˗ 120 
H(t1)  [kN] ˗ 100 100 >50 100 
H(t2)  [kN] ˗ 80 80 >50 80 
E1(t1)  ˗ ˗ 1 1 1 
E1(t2)  ˗ ˗ 1 1 1 
E2(t1)  ˗ ˗ 1 1 1 
E2(t2)  ˗ ˗ 1 1 1 
E3(t1)  ˗ ˗ 1 1 1 
E3(t2)  ˗ ˗ 1 1 1 
E4(t1)  ˗ ˗ 1 1 1 
E4(t2)  ˗ ˗ 1 1 1 
E5(t1)  ˗ ˗ 1 1 1 
E5(t2)  ˗ ˗ 1 1 1 
E(t1)  ˗ 1 1 1 1 
E(t2)  ˗ 1 1 1 1 
t1 = 5yr; t2 = 10yr 



 
Figure 11. Probability of failure of the infrastructure system as 
a function of time for the different evidence cases. 

 
The two main limitations of the eBN methodology 
are: (a) the need for limiting the number of discrete 
random variables within the Markov envelopes, and 
(b) the requirement of a rBN with a manageable 
computational complexity. These are discussed sep-
arately in the following. 

We have presented strategies to limit the size of 
the Markov envelopes. These strategies, however, 
limit our flexibility in modeling. In particular, in or-
der to contain the Markov envelopes to single time 
steps, we can have only a limited number of va-
riables that are connected from one time step to 
another. For this reason, deterioration must be mod-
eled at the level of the structural system, e.g., 
through a reduction in the overall capacity ( )jR t , as 
in the presented example, rather than at the level of 
structural elements, which is more realistic. With 
this modeling, it is not clear how measurements of 
component characteristics at a time t can be included 
in the infrastructure model. 

An additional limitation is the need to represent 
the capacity of the structural system by a few va-
riables only (by one variable ( )jR t  in the considered 
example). Such a model is straightforward as long as 
there is only one dominant time-varying load, but if 
there are several dominant load cases, then the ca-
pacity of a structure with respect to one load case 
will be dependent of the capacity with respect to 
another load case. It is yet to be studied how this de-
pendence can be included in the eBN model. 

The computational complexity of the resulting 
rBN is dependent on the type and amount of availa-
ble evidence, since, in the general case, solving the 
rBN requires the computation of the joint probability 
of all evidence. This limits the number of observa-
tions of the infrastructure performance with un-
known or uncertain hazard (such as in example case 
4). In this case, the computational complexity in-
creases exponentially with the number of observa-
tions. A second limitation is on the number of infra-
structure elements that can be considered. If 

evidence on past infrastructure system performance 
is available, the algorithm for solving the rBN must 
manipulate the joint distribution of the performance 
of all elements at one time step. This limits the ap-
plicability of the model to around 15-20 infrastruc-
ture elements. For the presented example, these limi-
tations were not observed as only two past events 
and five infrastructure elements were considered. 

 
6 CONCLUSIONS 

A framework for combining structural reliability 
methods with Bayesian network for infrastructure 
risk analysis is presented. Structural reliability me-
thods allow computation of failure probabilities for 
structural components or systems defined by conti-
nuous random variables. The BN methodology faci-
litates updating of the model with evidence, such as 
results of inspections or observations of hazards and 
system performances. The applicability of the 
framework has been demonstrated on an example 
and its limitations have been discussed. 
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