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ABSTRACT

This thesis presents new approaches and results for mgdeiohoptimization for stationary
base engine calibration.

At first, the requirements on the modeling are discussedrdardo determine the most suit-
able modeling technique for this topic in an extensive camspa. The Gaussian process
modeling can be identified as the most promising approacth #e Gaussian process mod-
eling, the highest precision with a low amount of measurdsean be achieved, the modeling
can be fully automated with the maximum marginal likelihaodthod, a dependable perfor-
mance on complex problems can be obtained and an accurdietjme of the uncertainty of
the model can be estimated.

However, recent approaches in engine calibration do natidenoutliers in the measurements
and an automatic adaption to bad distributed data. Therdbased on the results of the model
comparison, the most promising modeling technique is ecdthin order that a new robust
modeling framework for stationary base engine calibratan be obtained. An automatic
transformation of the measurement data ensures that thelimgpdssumptions on the data
distributions are met. Even if outliers are contained indbta set, a robust Gaussian process
formulation guarantees that the modeling is asymptoticalbiased, meaning that the model
is tending to the real engine behavior as the number of meamnts tends towards infinity.

Since state of the art model-based online optimizationefwine calibration do not use a
fully probabilistic approach and can only handle a singlgdiive function, a new, improved
online optimization approach is introduced. As a Gaussraegss modeling is used, addi-
tional information, such as an accurate prediction of threamae and the marginal likelihood
probability density function of the model parameters, carekploited for the online model-
ing, in order to obtain an increased performance at a loweuatrof measurements compared
to other approaches. With the new multi-objective onlingrojzation, more objectives can
be regarded and the Pareto optimal areas can be determined.

All these new contributions enhance the performance foreaiiog and optimization, and
therefore they are able to reduce time and costs on the tashpenprove the reliability
of modeling and optimization results, assist the calibragéngineers and increase the user
acceptance of model-based techniques in engine calibratfarious theoretical examples
and practical applications demonstrate the performanteest new approaches.
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SYMBOLS AND NOTATION

Matrices are capitalized and vectors are in bold type. Aist&st notation is used throughout
the thesis. In the following, the most important symbols abbreviations are given.

Symbols:

|A| determinant ofA. matrix

p(a,b) joint probability (density), probability of a and b

p(alb) conditional probability (density), probability of a givén

set of measurement®, := {(x,,t,)|n € {1..N}}
dimension of input spac&

noise

expectation

kernel functionk(x,x’) := ¢(x)T p(x’)

Gram (covariance) matrid{ := ®&”
regularization parameters

likelihood function

number of model parameters

normal distribution, Gaussian distribution
number of measurements

basis functionR” — R

set of basis functiongp := (¢, ..., ¢ar)"

design matrix, defined by®),, ; = ¢;(x,)
target / measured value of theth measurement
targets / measured values (of the set of measurements)(t,, ..., tx )7
model parameters

variance

input vector (state vectory € X

input vector of the prediction (test inpui, € X
input vector of the:-th measuremenk,, € X
inputs (of the set of measurementX),;= (x;, ..., xy)”
input space’ c RP

model

model prediction
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Abbreviations:

DoE
ECU
GP

HHT
KASIO
LLR
LOLIMOT
MBOO
MCMC
MLP
MOO
NRMSE
NSGA-II
RBF
RMSE
RSSE
RVM

SE

SSE
SVM

design of experiments

electronic control unit

Gaussian process

hinging hyperplane tree

KRATZER system identification and optimization toolbox
linear model with local RBF terms

local linear model tree

model-based online optimization

Markov chain Monte Carlo (methods)

multilayer perceptron (neural network)

multi-objective optimization

normalized root mean square error

non-dominated sorting genetic algorithm-II (MOO algomith
radial basis function (neural network)

root mean square error

regularized sum of squares error function, defined in (2.15)
relevance vector machine

squared exponential (kernel function)

sum of squares error function (least squares), defined@) (2.
support vector machine

viii



Chapter 1
INTRODUCTION

The internal combustion engine is a widely used system fdilm@ropulsion in vehicles. In
recent years the manufacturers of the engines have to mee®ietw demands:

e In order to reduce air pollution, governments around theldvortroduced emission
standards. An example are the European emission standdué) standards), which
were introduced in the EU member states. Two important guesof the EURO stan-
dards, the particulate matter and the sum of HC and NOx epnmissif a diesel engine
for passenger cars, are shown in figure 1.1.

European emission standards

0.18
EURO 1

0.08
EURO 2

PM [g/km]

o
o
a

E’URO 6 EURO 3

0.025
EURO 4

0.005 - EURO 5

0.17 023 0.3 056 0.7 1.13

NOx + HC [g/km]
Figure 1.1: NOx+HC and particulate matter of the EURO stashgla

e Due to increasing oil prices, the demand for low consumpéngines rises. At the
same time, the customer does not accept limitations in digsaamd comfort, which is
putting increasing pressure on the automobile industry.

In order to meet these demands, the manufacturers intrddwese technologies, e.g. variable
valve train or exhaust gas recirculation. With these teltdgies, new degrees of freedom en-
able to control the combustion process more precise. Fiy@rsehows some of them and the

goals which are pursued.
The task of engine calibration deals with the question howalibrate these adjustment pa-

rameters.
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main injection time +25% power/
torque
injection pressure q
quantity of exhaust gas recirculation -30%

e ————— consumption
pre-injection time P
quantity of pre-injection

-90% N
————» emissions

Figure 1.2: The number of parameters increased rapidlyanast years. Power and torque
could be increased, consumption and emissions could sinedusly be reduced, see [53].

1.1 Introduction into Engine Calibration

In order to control the additional parameters of the englme Electronic Control Unit (ECU)
was introduced in the 1970s [12]. In engine calibration, sneaments, e.g. from the test
bench, are taken to parameterize the ECU with optimal settiogthese parameters. In
former days these tasks could be performed manually by eaggrand test bench operators.
Since the number of labels on the ECU and the complexity oftblelem is increasing rapidly
in the last years, new methods have been developed and W&ed [7

Figure 1.3 gives an overview of several calibration taske, [§3]. The vehicle calibration
covers the calibration of different comfort and dynamicduons for the transient states of
the vehicle and the calibration of the transmission. Theastary calibration covers numer-
ous, very different tasks. The torque structure is the eéotordinating function of the ECU,
which uses the required torque as a reference. Other funsgpimvide a safe and clean oper-
ation of the engine. For more information see [12, 53, 76].

comfort and dynamics transmission vghmlg
calibration
exhaust gas load detecti board di .
temperature model oad detection on-board diagnosis

misfire detection torque structure knock control
stationary
calibration

emission control lambda control others

base calibration

Figure 1.3: Examples of different tasks in engine caliloratsee [53].
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The base calibration constitutes the prerequisite forthiiocalibration tasks. In this task the
settings of the basic adjustment parameters, like maictioj@time or injection pressure, are
determined and stored in maps on the ECU. These engine openaéips are functions of a
discretization of the whole operating range », which is spanned by the torque and speed of
the engine. The operating rang® p, its discretization into single operating points, and
thed-dimensional parameter spa&e, which is spanned by théadjustment parameters, are
shown in figure 1.4. As we will see soon, due to physical retsns, e.g. engine limits like
knocking or too high exhaust gas temperature, not evenyt pothe parameter spacép can
be set on the engine. Therefore, on every operating pointhe parameter spacér reduces
to the feasible parameter spakep(zop) := {x € Xp|(zop, z) can be set on the engihe
The aim of base calibration is now, to find the optimal valugsfor the parameters for every
operating pointzop given a certain objective functiob : Xpop x Xp — R, which can be
written as

Topt(Top) = ea):gg nélin )(ID ((xop,x)). (1.2)
reXrp(rop

At the end, the optimal settings.,,:(zop)); for each parametetXp);, i € {1,..,d} are
stored in maps on the ECU, as shown at the bottom right in figdre 1

In most cases many different and conflicting objectives havae considered in engine cal-
ibration. Hence, the objective functioh is a compromise of a multi-objective function
U : Xop X Xpp — R0 which covers thelo,, different objectives. The way how this
compromise is chosen, depends on the distinct areas in #ratopy rangeX,p, see figure
1.4. The part load (pl) area is the biggest area in the operaéingeX,, and occurs most
commonly in the driving cycle, where the EURO standards aeasured. The objectives in
this area are mainly focused on consumption and emissionhgulldoad the maximum of
power and torque should be achieved and in the idle area aggapde smoothness should be
considered, in order to realize a maximum in comfort.

Often, parameters are optimized which have only a low dyoalike the valve which controls
the exhaust gas recirculation. Therefore, the smoothrfébe @ngine maps of these param-
eters influences the dynamic behavior of the vehicle, sirnig ahange in the settings of the
parameters needs a lot of time, see also [35] and [53]. Hexmu#her objective in engine
calibration is to get smooth engine maps for parameterslaitidynamics. This goal is often
achieved by a subsequent smoothing of the maps, see [8688hd [

At the end two different approaches for optimization, whaie quite common in engine
calibration, should be mentioned: local and global optatian. In local optimization only a
single operation pointop at a time is considered for calculation of the optimal parense
zop. If engine load and speed are also taken into account, thdobalgoptimization is
performed. Clearly, it is obvious that e.g. the optimizatidithe smoothness of the maps is a
global problem. Therefore, itis clear that not all problezas be solved by local optimization
and often global optimization has to be performed.
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-~

A full toad (f)

load

______

transition pl-fl
(] (] (]

part load (pl)
o [ o
--../lile . speed
. [y
' zero load :
> ! (Zopt(ToP))i
speed

load Top

Figure 1.4: On the left side the operating rangegr with the distinct areas are shown, see also
[21]. In every area the objectiv@ for calibration is different. On top, the objective functio

® over the parameter spadg- is plotted. The aim of base calibration is, to find the minimum
x4, Of the objective function and to store this minimum in engiperating maps on the ECU.
On the bottom right a map of a single parameter shown. A more detailed explanation is
given in the text.

1.2 State of the Art in Engine Calibration

In this section an overview of state of the art techniqueseiogine calibration is given.
Two main approaches, a measurement-based and a modeldgatsadzation, can be dis-
tinguished.

1.2.1 Measurement-Based Optimization

If only few parameters should be optimized (2-3 parameteé®n the parameter space is
low-dimensional and measurement-based optimization eamsbd [21]. This approach has
many advantages. The techniques are simple to implememrtzmydo understand. Therefore,
the engineer needs no special knowledge and can intergre¢shlts very fast. However, as
we will see soon, due to the curse of dimensionality theseagmhes cannot be used for an
optimization with many parameters. Since the number ofmpatars increased rapidly in the
last years, as said above, nowadays measurement-basedzaptin is only used for spe-
cial problems. Therefore, this thesis focuses rather onetdoaised optimization. However,
for a deeper understanding of the problem and for the sakempleteness, two different
approaches of measurement-based optimization are givée iiollowing. For a further dis-
cussion see [53] and [21].
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1.2.1.1 Full Factorial Optimization

In this approach the parameter space is discretized intosedgid, which is often called a full
factorial design, and measurements are taken at each pargaid above, fod parameters
the parameter spacedsdimensional and the number of measuremeéntscales with

N = ND¢, (1.2)

where N D is the number of measurements in each dimension and theré&ermines the
density of the grid. In figure 1.5 (a) a simple example of afaditorial optimization is given.
In this plot a dense grid over a two-dimensional space is shenvd the optimal point in this
grid is marked. By increasing the density of the grid, it dgg@an be seen that the optimal
parameters can be determined with arbitrary accuracy. Mem&om (1.2) it follows that
the number of measurements increases exponentially wathuimber of parameters. As the
number of measurements is directly linked with time andsostthe test bed, this approach
cannot be used for an optimization with many parameters.

1.2.1.2 One Factor at a Time

Another optimization method which was used for engine catibn is "One Factor ata Time”,
see [53] and [21]. At this approach only one adjustment patarnis manipulated at once,
while all other parameters are fixed at a constant value. r€i@b (b) shows a simple ex-
ample of this method, where two parameters should be oiiniEirst, the parametey, is
manipulated while the parametey is fixed. Therefore, in this step the problem reduces to a
one-dimensional optimization. After finding the optimumtlis step, which is marked by a
rectangle, the parameter is fixed and the parametes is manipulated.

Since this method cannot identify interactions of the défe parameters, it clearly can be

(a) Full Factorial Optimization (b) One Factor at a Time

Figure 1.5: Measurement-Based Optimization, see [21].
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seen that this procedure has to be repeated numerous tiraegeinto find the next local op-
timum. As the number of interactions increases, if the nunalb@arameters increases, this
method cannot be used for more complex optimization problem

1.2.2 Model-Based Optimization

The engine test bench is an expensive system. In additicasunements on the test stand are
often time-intensive. Hence, in recent years a lot of eff@a$ been made in order to reduce
time and costs on the test bench. An important improvememstitates the automation of
the test bench, which allows an automated operation ovetrigd therefore increases the
capacity utilization. Nevertheless, as the complexityngiee calibration is increasing rapidly
in recent years, as said above, new methods have been degelog used.

Another major step in engine calibration was the introductf model-based optimization,
see [33], [76] and [101]. In this approach measurements thantest bench are taken in order
to build black-box or gray-box models. This method has naugadvantages. Some of them
are:

e The optimization of the adjustment parameters can be paddiwith these surrogate
models instead of the real engine. Therefore, by using nmodetimization routines,
a lot of objectives and constraints can be considered. éuyrhthe engine is used in
different vehicle types, then often different objectives/é to be taken into account.
Hence, different optimizations can be performed for eagte tgf vehicle, without a
multiple using of the test bench.

e As we will see soon, numerous different methods have beeelaged, which allow
to reduce the number of measurements, without limitatioreccuracy of the models.
Hence, time and costs on the test bench can be reduced.

e By using computer aided visualization techniques for the elmdngineers can gain a
better understanding of the basic relationships of thelpmbThis allows the engineer
to gain a well-founded knowledge of the engine in a short time

Two different approaches for model-based optimizatiofiingf and online optimization, can
be distinguished.

1.2.2.1 Model-Based Offline Optimization

The model-based offline optimization is characterized bgtsseparation between the mea-
surements on the test bench and the modeling on the PC. Figushdws a schematic dia-
gram of this method. In an initial step, an experimental gless planned. Various different
techniques had been developed and used for this task, likealplesign of experiments or
space filling designs, see [6, 54, 92]. After taking measer@son the test bench, a modeling
of the desired parameters is performed. With these modelsdtimal settings of the parame-
ters can be found by numerical optimization. Afterwardesthoptimal values are verified on
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Design of
Experiments (DoE)

Engine Map
Generation

PC

Modeling > Optimization

A A

A 4 A 4 A 4

Measurement Verification ECU

Test bed

Figure 1.6: Model-Based Offline Optimization

the test bench. If the verification was successful, thenrlgene operation maps are generated
and stored on the ECU.

A serious drawback of this approach is that the quality ohtleelels is not checked during the
measurements on the test bench. If the model quality is baudif é¢oo few measurements are
performed or too many outliers occur in the data, then thdiptien of the optimal values will
be wrong. Thus, the verification will fail and the optimizatihas to be started over again.
This drawback can be overcome with the model-based onlitimzation.

1.2.2.2 Model-Based Online Optimization

In the last years, there is a trend to model-based onlinenggation, where measurement,
modeling and optimization are not strictly separated ($3 &nd the references therein).
Hence, the modeling and optimization algorithms are in aja@ent interaction with the test
bench, which allows the models to give a feedback of theilityua

This has various advantages. First, the modeling can gieea@bfck if already enough mea-
surements are taken and the measurement on the test bed stopped. Hence, the test
bench time can be reduced to an optimal amount. Second, tHelsncan provide informa-
tion in which areas the measurements should be taken in tyderhieve the maximum of
information. Thus, the test bench time can be used moreeitiyi

Hence, time and costs on the test bed can be considerablye@ty the usage of model-based
online optimization [53].

As shown in the schematic diagram in figure 1.7, this apprasclivided into four stages.
In the initial stage, a start design is planned and measuretieotest bench. This stage is
equivalent to the first steps in model-based offline optitmraand therefore often called
offline DoE. With these first measurements, the initial medet calculated. Based on these
models an online modeling is performed in the second stag¢hid process, the goal is to
improve the models, in order to assure that these modeld@darepresent the real engine
behavior. Therefore, measurements are taken on the tesh la¢rareas which reduce the
model error at most, and after every measurement the modelgpaated. If the prediction
of the models is accurate enough, then an optimizationmeusi performed in the third stage.
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Stage 1: Stage 2: Stage 3: Stage 4:
Start Design Online Modeling Optimization Post Processing
(Offline DoE) (Online DoE)
O Design of . S . L Engine Map
a Experiments (DoE) Modeling Optimization Modeling Optimization e
T T
— —
,, { N 7 !
@
o
B Measurement Measurement Measurement ECU
O
|_

Figure 1.7: Model-Based Online Optimization

The aim of this task is to find the optimal settings for the atipent parameters for every
operation point and to take measurements near these oplimshas the advantage that the
models are very precise in the optimal areas since the gesfsiheasurements is higher in
these regions. At the end, the engine operation maps areaged@nd stored on the ECU.

1.2.2.3 Stationary and Dynamic Engine Calibration

For measurement data acquisition and modeling, statioamadydynamic approaches have
been developed and used for offline and online optimizati@nigine calibration.

Stationary and Dynamic Measurement Data Acquisition

As said above, many calibration tasks are performed seatypand therefore also the mea-
surement is often performed stationary. Figure 1.8 ilatsts the characteristics of such a
stationary measurement. At first, the adjustment paraseter set on the desired values
via automatic control in the control time (CT). These adjustis influence the measurement
variables. Since some measurement variables have a lowndyne.g. temperatures of the
engine, a stabilization time (ST) is waited, in order to teacstationary state of the engine.
During the averaging time (AT) the mean values of the measent variables are calculated.
Hence, the whole measurement time results from the sum dftéilization time (ST) and
the averaging time (AT). Depending on the dynamic of the wared measurement variables
and on the noise on the measurements, the time for a singlenstay measurement can add
up to a few minutes. The measurements in this thesis wern takstate of the art test benches
and took between 2 and 5 minutes for a single stationary mesasunt.

In order to avoid this time-intensive procedure, in receyarg several non-stationary measure-
ment techniques have been developed. Some of them areeaatémda stationary modeling,
like Sweeping [108] and Slow Dynamic Slope [52]. In theserapphes, the measurements
are performed in a way such that the dynamic behavior of teeesyis suppressed and the
stationary values can be calculated [21].
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Figure 1.8: Stationary Measurement: Control (CT), Stalilwa(ST) and Averaging Time
(AT), [21].

Other approaches are intended for a dynamic modeling. Tdretethe dynamic behavior
of the engine is measured by using sinus sweeps or APRBS si@majditude modulated

pseudo-random binary signal) as inputs for the adjustmarameters, which should be re-
garded as a dynamic measurement in the following.

Stationary and Dynamic Modeling

As said above, nowadays in base calibration the adjustnaeabyeters are typically optimized
on the stationary state of the engine. In addition, until me&ny other functions on the ECU
are only realized as stationary functions and in many casegtmization of the transient

state is not possible. Therefore, a stationary modelingastraommonly used in engine
calibration.

A dynamic modeling has two advantages. First, a dynamic aneasent can be used, which
allows to save a considerable amount of time compared tdiarsaay measurement. Second,
the dynamic behavior of the engine can be represented. $igcea lot of emissions are

generated in the transient states of the engine, a dynartimieation of these states could be
a great improvement, if the results of this optimizationlddae considered in future versions
of the ECU. Hence, the dynamic modeling gained a lot of intéresecent years and a lot of

research has been made, e.g. see [21, 34, 35, 70].

Discussion

Therefore, a dynamic modeling and optimization shows atgrei@ntial for the future. Nev-
ertheless, this thesis focuses on stationary engine aibbrbecause of two reasons.

First, the aim of this work was the development of a compleaenework, which is able
to cope with real demands resulting from practical applcet. A typical and well known
problem for a dynamical modeling arises, when it comes tag@oximation of quantities,
which are hard to measure. While a good dynamic modeling heady been performed for
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NOx and consumption, a dynamical modeling of soot is stidagh task, e.g. see [102] and
[35]. Nevertheless, the optimization of soot is an impdr&spect in engine calibration and
cannot be neglected in practical applications. Other groklfor a practical realization of
dynamical approaches arise from time delays of emissiorsarements, which are varying
over the operating range, and safety functions of the ECU [Bajther, since a lot of effort

from the user is needed for a dynamical modeling, the aconeptaf these methods is still not
as high as for stationary approaches.

Second, there are still many open questions in the areatafrsday engine calibration, which

are discussed in the following chapters. Further, a lot elilte for stationary calibration

are also applicable to dynamic calibration, like a comarisf different types for modeling.

Therefore, the techniques in this thesis are regarded umdgmeral viewpoint, wherever
possible. Nevertheless, the development and applicafianethods for stationary engine
calibration should be the focus in this thesis.

1.3 Scope of this Thesis

The aim of this thesis is the development of a complete framnlevior modeling and opti-
mization for stationary base engine calibration. As memtabove, there already exist a lot
of approaches and algorithms for this topic. However, inliteeature the different methods
are often examined separately and a comprehensive oveofiell different methods does
not exist until now. Hence, so far it is hard to determine Wwhapproaches are most suitable
for stationary engine calibration. Therefore, one aspécthis work is the evaluation and
comparison of the different methods, the other aspect isntipeovement of these methods,
wherever possible.

The contributions of this thesis can be summarized as fstlow

e Extensive overview and comparison of different types of modmg in theory and
practice (Chapter 3): Various types of modeling have been developed and used for
stationary engine calibration. Nevertheless, there €xistcomparison which consid-
ers a comprehensive number of different techniques anditsin@ously examines the
theory extensively. Often, only a few approaches are censt or just the practical
performance on different data sets are compared. Hencdeteemination which type
of modeling is most suitable for stationary engine calibrats still an important open
question. In this thesis an extensive theoretical modelpasison is given, which can
further be confirmed with practical examples. From this caghpnsive study a recom-
mendation for a most suitable modeling can be given.

e A new outlier-robust modeling (Chapter 4): A problem for state of the art algorithms
for engine calibration arises, if outliers occur in the megament data. It is shown in
the overview of the different types of modeling, that outliare not considered in re-
cent approaches, and that they have to be removed beford maideng, in order to
get a good model quality and an accurate prediction. Thisskasus drawbacks be-
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cause usually a manual interaction is needed to identifpthiéers, since an automatic
detection of the outliers is not very robust or computatilgneery expensive, if there
are many outliers in the data. Based on the results of the noodebarison, the most
suitable type of modeling is extended, in order to achiewsm@tlation, which is robust
to outliers. In addition, a nonlinear transformation of theasurement data is integrated
in the approach, in order to improve the reliability of thessnmodeling framework for
engine calibration.

e A new, improved model-based online optimization (Chapter 8 Compared to model-
based offline optimization, with a model-based online op#ation time and costs on
the test bench can be remarkably reduced. In addition, pipisbach assists the calibra-
tion engineers by providing models, which have a high aayunathe optimal areas.
Therefore, the calibration engineers do not need to vdrdyoptimum and no additional
process loops have to be performed, as this can be the casapifel-based offline op-
timization is used and the verification of the optimum faliawever, only a few online
techniques exist for stationary engine calibration, ahafathem suffer from various
drawbacks. Hence, a new approach is presented, and themanice of this method is
illustrated.

In addition, at every time in this thesis the needs of thebcalion engineers are considered
in the approaches, which is rarely found in the literatureneg, all developed concepts can
be used in an automatic and robust way, in order that the uéd¢hese techniques are not
challenged by complex mathematical issues, if the assomgptf the approaches are not pre-
cisely met. In this way, the calibration engineers are sssity the developed tools, in order
to increase the user acceptance of model-based technigeergine calibration, which is still
an important issue.

Therefore, many approaches in this thesis may include agdamathematical concepts, how-
ever, this is only a challenge for the developers of the caiibn tools and not for the users,
since at any time these complex issues can be used in a robystwwithout any required
manual interaction.

All techniques in this thesis are presented from a genesalpoint, in order to draw additional
conclusions for other fields of research. Nevertheless,assured that we never loose sight
of the aims of stationary base engine calibration.

1.4 Structure of the Thesis

An overview of the basics of modeling for engine calibratismgiven in chapter 2. At first,
some general theoretical preliminaries are discussed;hwdrie used throughout the thesis.
Afterwards, an overview of an extensive number of diffemaoteling approaches is given.

The aim of chapter 3 is to identify the most suitable apprdacistationary base engine cali-
bration out of this overview. For this reason, the requirets®n the modeling are examined,
which result from the application of engine calibration.€$k requirements allow to compare
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the different types of modeling with each other and enablel¢ntify the most promising
technique with theoretical and practical examinations.

However, all state of the art modeling approaches suffenfsome shortcomings, which are
discussed in chapter 4. Hence, based on the results of thel moahparison, in chapter 4

the most suitable approach is further enhanced in orderdocome these drawbacks. An au-
tomatic nonlinear transformation of the measurementsrasshat the modeling assumptions
on the data distributions are met, and a Student’s-t nom@astion provides an outlier-robust
model behavior.

In chapter 5 the state of the art techniques for optimizati@ngine calibration are discussed.
Different algorithms for single- and multi-objective apization are analyzed, and suitable
methods are chosen for each application. In addition, réiffeapproaches for design of ex-
periments for engine calibration and for model-based eriptimization are examined.

However, since the state of the art online optimization pdares suffer from various draw-
backs, which are discussed in chapter 6, a new approachsismiesl. Due to the use of a full
probabilistic modeling and a multi-objective technique jrecreased performance and usabil-
ity of the online optimization can be obtained. This is destaated on various theoretical
examples and practical applications.

In section 7 some short remarks are given on the implementafithe algorithms, the user
interfaces and the connection to the test bench. The tleesmsicluded with a summary of the
results and possible future works.
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Chapter 2

BASICS OF MODELING FOR ENGINE
CALIBRATION

In engine calibration the aim of modeling is to approximateesal different unknown engine
functionsV, : Xop x Xpp — R, i € {1...dow; }, by known functions); : Xop x Xpp — R,
which are referred to as models of the unknown functibns

It generally can be distinguished between a physical moggelvhich is often called a white
box modeling, an empirical modeling out of data, which idezhblack box modeling, and a
mixture of both types, where some prior knowledge can be asddntegrated in the model-
ing and the remaining modeling is performed on measurenaga dhich is called gray box
modeling.

Since the internal combustion is a complex process, whiaiflisenced by thermodynamics,
fluid dynamics and chemistry, a precise modeling and sinauatf this process is not practi-
cable today. Even if the computing power will still increasgonentially in the future, it will
take decades until an accurate combustion simulation isilglesin a reasonable amount of
time [45, 78, 130]. Hence, nowadays only very simplified ptgismodels of the combustion
are used for simulation in engine calibration. Further,ngiee calibration physical models
are used in domains, where the combustion does not need tmbglered.

In base engine calibration many effects of the combustioit ba neglected. A typical exam-
ple is the modeling of different emissions, e.g. soot, watspect to many different adjustment
parameters, e.g. input pressure. Obviously, in this exanmg fluid flow and the chemical re-
actions in the cylinder have a major influence on the fornmadiosoot and can’t be neglected.
However, as said above, a detailed physical modeling ancericah simulation is not practi-
cable today. Therefore, in base engine calibration measants are taken from the test bench
and with this data a black box or a gray box modeling is peréatm

A set of measuremen® := {(x,,t,)|n € {1...N}}, whereN is the number of measure-
ments, contains the values of the adjustment param&ters(x, ..., xy)’, which are called
inputs, and the measured values- (¢, ...,tx)T, which are often called targets. The calcu-
lation of a black box model is called training, whereas thed@ation of the model is referred
to as prediction. Since the goal is to model the behavior afirdenown system from mea-
sured data, the term modeling corresponds to the term sydtmtification and will be used
interchangeably in the following.
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When an empirical black box modeling is used, it can be disisiged between an interpola-
tion model and a regression model.

Since measurements, which are taken from the test benchysleontain a certain amount
of noise, in engine calibration an important goal of the niodeis to suppress the depen-
dency of the noise on the model. Therefore, only regressinatefs are considered for engine
calibration [92].

Further, it can be distinguished between a parametric anshgparametric modeling. For

the parametric models the model structure is specified i@k, and after the training of

the model parameters, the measurement @atan be discarded. This is contrary to non-
parametric types of modeling, where the model structureotsspecified a priori and the

prediction of the models relies on the training d&gor a subset of it.

In this chapter the theoretical preliminaries and an owewof different types for modeling
are given in an abbreviated version. For a more detailed/caxersee [11], [84] or [41].

2.1 Preliminaries

From the discussion above, it follows that our measuremerdase given by

wherey,, = y(x,) is a model of a function of the engine angdis a random noise variable
whose value is chosen independently and identically disted (i.i.d.) for each observation
n.

In this section some techniques and general theoreticakepties for modeling are derived,
which are used in the further thesis.

The first section introduces the common method of maximuseiliikod and shows how a
normal noise assumption leads to the method of least squainessecond section discusses
how accurate a modeling can become in average, with a finibeiahof training data, through
the bias variance dilemma. Further, two important souréesyror are shown: overfitting
and underfitting. In addition, some techniques for choosiggpod compromise for the bias
variance trade-off are discussed.

2.1.1 Maximum Likelihood, Normal Noise and Least Squares

Typically, the modely contains parametef®, which can be tuned on the training data. Two
common approaches exist for the determination of suitadétarpeters: the maximum likeli-
hood method and the maximum a posteriori approach. In tbigosethe maximum likelihood
approach is considered.

If €in (2.1) is an i.i.d. noise, then from (2.1) it follows thaetimeasurements, are given
by a certain probability density function (pdf). The joint probabilityp(t|y, X, ®) of then
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measurements, ..., t,, for a given value fo® is then given by

p(tly, X, 0) = ps(ti|yr, x1,0) - pr(t2|ye, x2,0) - ... - pr(tn|yn, XN, O). (2.2)

In the framework of the maximum likelihood approach the nieasients are considered to
be fixed and the likelihood function

L(O|D) = p(t]y, X, ©) pr (ti|yi, x;, © (2.3)

is then maximized with respect to the model parame&@ysvhereD refers to the set of
measurements (see above).

Example: normally distributed noise

Now an independent zero mean Gaussian distribution wittaveeo? is assumed for the
noise, so that, ~ N(0,0?). Hence, from (2.1) it follows that the probability distrifmn of
a single measuremety is given by the normal distribution

pltalin) = Nltalin, o) = —— exp (—u) , (2.4)

7'(0'2 20'2

wherey,, = y(x,, ®). In the same way as above, we can derive the joint distribudfcour
measurements

(tly, ©) = N (t] am:ﬂ (tnl ):ﬂ Lo (_M)
p(tly, g n:1p nlYn 18 o p 53

N —y(x

which is simply the product of the probability distribut®of the single measurements. For
an easier understanding partially the dependend® andX was neglected.

[\

- (2702

As said above, in the framework of maximum likelihood the elquhrameter® are chosen
in a way which maximizes the joint distribution (2.5). Obwsly, the joint distribution is
maximized as the negative exponent in (2.5) is minimizedndgehe maximum likelihood
solution for an independent Gaussian noise assumptiornes dpy minimizing

N

SSE®) := > (tn — y(xs, ®))’ (2.6)

n=1
which is often called the sum of squares error function (S8E)e method of least squares.

Hence, it can be seen that the minimization of the sum of gueror function is equivalent to
the maximization of the likelihood function under an indegent Gaussian noise distribution.
In other words, the calculation of the model parame&#sa the least squares approach leads
to the same results as via the maximum likelihood approatthasGaussian noise assumption.
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2.1.2 The Bias-Variance Dilemma and Overfitting

In this section some basic problems of modeling are disciisgleich appear when data sets
of limited size are used, which is always the case in practical apgicatClearly, if we had
an unlimited amount of data, then we can approximate an wakrfanction with arbitrary
accuracy. However, in practice we have a dataldeontaining only a finite numbeW of
data points, and therefore there will always be some erfor le

The discussion is started by the examination of the biasaneé dilemma. For this topic we
consider a system behavigg, which we want to approximate with a modgl = v, (x, D).

As said above, we cannot observe the system directly, butameobserve measurements
t,, which are shifted by random noisegiven by (2.1). Now we want to decompose the
expectation of the squared loss function

B[] = ((tn - ya0?] = E [(us + e~ )]
=E [(ys — ya)?] + E [¢*] + 2E [e(ys — yar)]
=E [(ys —ym)’] + E[¢*], 2.7)

sincee is uncorrelated withys andy,,. We can further decompose the model error

EE [(?JS - ?JM)Ql =E [(?JS — Elyn] — (ynr — E[yM]))z}

~
(model erroj?

=E [(ys — Elyn])?] +E [(yar — Elyn))’]
— 2E [(ys — Elynm])(ynmr — Elyn])]

=E [(ys — Elym))*] + E [(yar — Elyu])’]
= (ys — Elym))’ +E [(yar — ~Elyw) . (2.8)
(biag)? variance

We see that the expected squared difference between theystam behavioys and our
modely,,; can be expressed as the sum of two terms.

The first term, which is called the squared bias, describasthe real behavior differs from
the prediction of our model averaged over all data sets. 3ystematic error can be influ-
enced by the flexibility of our model. If the flexibility of ounodel is increased (e.g. by
increasing the degree of our polynomial model, or by inarepthe number of neurons of our
neural network), the bias error will approach to zero, if vgée an universal approximator for
modeling [84]. Therefore, one ambition is that the modelutidnave many parameters in
order to be flexible enough to approximate every nonlinegimenmapping.

The second term, which is called the variance, describesihemodel of the individual data
sets vary around their average, and hence indicates howdtel, is sensitive to the par-
ticular choice of data set. This random error can be influégethe flexibility of our model
as well. If the flexibility of our model is decreased, the miod#l not vary around as much
and therefore the variance error will decrease [64]. Tloeegfanother ambition is that the
model should have few parameters in order to be not too flexibl
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Hence, we can summarize this examination.

A very simple model with few parameters will have a small &age error, but simultaneously
it will not be able to adapt the real behavior very well and-¢fere it will have a large bias,
which is calledunderfitting A very complex model with many parameters will have a small
bias error, but simultaneously the solution will strongtiapt random noise instead of the real
behavior and therefore it will have a large variance errdricvis calledoverfitting

Therefore, a major task in system identification is the deiteation of anoptimalflexibility,
which is a good compromise between the bias and variance erro

Various techniques have been developed for this problertihelmext sections an overview is
given.

2.1.2.1 Maximum A Posteriori and Regularization

A common approach for parametric models is to estimate thenpeters® not only via the
likelihood function, but also to incorporate a penalty temmich reduces the flexibility of
the model. This is called regularization. Typical appraecbhoose the model for which the
guantity

f(L(©[D)) - 9(©,D) (2.9)

is largest. Heref andg are functions which depend on the different approachesCa@iD)

is the likelihood function (2.3). Hence, these approaclesist of two terms. The likelihood
term f(L£(©|D)) typically gets larger if the flexibility of the model is in@sed, whereas
the penalty term-¢(®, D) typically tries to reduce the flexibility. The goal is now todi
suitable functionsf and g, which allow to determine an optimal degree for the flexipibf
the model. Various different approaches have been dewldige the Akaike information
criterion (AIC) [3] or the Bayesian information criterion (BIC)09]. In this thesis, we will
examine a method called ridge regression, which is very comim machine learning. But
instead of fixing the functiong andg in advance, we will see that the complexity penalty
term arises naturally, if we use a full Bayesian approach.

In the Bayesian viewpoint we assume that an a-priori digfiobup(®) for our model pa-
rameterd is given. Then we use the likelihood functiadiiD|®) and the Bayes theorem to
calculate the a posteriori distribution

p(O[D) x p(O)L(D|®). (2.10)

Now we can choose the model parameters at the mode of thisrfmostistribution, which is
called a maximum a posteriori (MAP) approach. Hence, we sboo

©)ap = arg max p(©|D) = arg max p(®)L(D|O). (2.11)
Clearly, if we use a non-informative prior fa(®), like a constant function (we should be

aware that this would be no probability distribution anyejothen the maximum a posteriori
estimation is identically with the maximum likelihood esation.
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Example: normally distributed noise and parameters

As in the example above, an i.i.d. Gaussian distributiorh wariances? is assumed for
the noise. Further, we assume that our model parameterslienagrior distribution. For
simplicity, in this example a Gaussian distribution of tbenf

a\M/2 o

p(©) = <%) exp (—56 @) (2.12)
should be considered, wheteis the precision of the distribution and is the number of
model parameters. With the likelihood function (2.5) foe thormal noise distribution, the

posterior distribution can be calculated from (2.10) as

p(©[D) ox exp (— T (e (%, ©))* %@%) . (2.13)

202

Obviously, seeking the mode of this probability functiorguivalent to the minimization of

|

N
>t —y(x,. ©))* + SO76, (2.14)
n=1

where 3 = 1/02, which is again equivalent to the minimization of the regizied sum of
squares error function (RSSE)

N
RSSE®) := > (t, — y(x,,©))” + A[|O], (2.15)

n=1

where\ = «a/f3. This result should be compared with (2.9). We will see djotihat the
flexibility of the model can be reduced as the paramgtsrincreased and vice versa. Hence,
this parameter controls the effective complexity of the slod

In statistics the approach (2.15) is called ridge regressiothe area of neural networks it is
known as weight decay, and it is very common in machine legras well as in modeling for
engine calibration.

Example: simple polynomial regression
Now the most important key concepts of this section shouldidronstrated by a simple
polynomial regression. Consider a simple 1-D polynomial etod

do
y(z) = Zajxj (2.16)

is trained by some data, as shown in figure 2.1. In this figaiaitrg data (circles) is sampled
from a function and shifted by normal noise. In practice forsction would be an unknown
nonlinear engine mapping. With this data a polynomial regjn is performed.

In the left plot polynomials of lowd, = 1), medium(d, = 3) and high(d, = 10) orders
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Figure 2.1: Example of a simple 1-D polynomial regressiosft.Lthe order of the polynomial
is varied. Right: A polynomial of order 10 is used and a pentaitgn is introduced and varied.

are used, and the training is performed by using the maximketiHood method via the
SSE function (2.6). It clearly can be seen that the low-opt#ynomial is not able to adapt
the nonlinearity of the function which should be approxietat This model has a very low
flexibility, a large bias and is underfitted. In comparisothiat, the higher order polynomial is
highly oscillating around the function which should be apgmated. This model has a very
high flexibility, a large variance error and is overfitted.€eTthird order polynomial is a good
compromise for the bias variance trade-off.

In the right plot a polynomial of order 10 is used and the iragris performed by using the
maximum a posteriori method via the RSSE function (2.15) wlifferent values for\. It
clearly can be seen that an increasing value\foeduces the flexibility of the model, and that
the performance of this approach is similar to the reduatiioihe order of the polynomial in
the left plot.

Further, this example should demonstrate the importanahadsing an optimal flexibility
for the modeling.

2.1.2.2 Stepwise Regression

Another technique for finding the optimal flexibility of theoatel is stepwise regression. Com-
pared to regularization, where the number of model paras@aire fixed in advance, in the

stepwise regression approach the model parameters acteseleom a set of admissible re-
gressors during the training. It can be distinguished betwerward selection, backward

elimination and stepwise selection techniques.

In forward selection approaches, which are often calleadvgrg in the area of neural net-
works, the modeling is typically started with a simple stawme and only a few model pa-
rameters. Then, the performance of the other model parasnieten the admissible set of
regressors is evaluated, e.g. through a statistical tegiraething similar, and the most suit-
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able parameter is added to the model. This is repeated nrdibart criterion determines that
the flexibility of the model is sufficient.

The backward elimination approaches, which are often @¢adlening in the area of neural
networks, pursue the contrary procedure. First, it is ethvtith a very flexible model, and
then the flexibility of the model is reduced, by removing paegers from the model, until an
abort criterion is reached.

The stepwise selection approach is a combination of forsalection and backward elimina-
tion. At each iteration, before forward selection is parfed and a new parameter is added to
the model, all already selected parameters undergo sotististd significance test, and those
regarded as insignificant are removed from the model. Clestdpwise selection is compu-
tationally more expensive, but can also give better reshidts forward selection or backward
elimination alone [84].

2.1.2.3 Cross-Validation and Early Stopping

Another technique for finding the optimal flexibility of theoael is early stopping, which
is uniquely used for neural networks. In order to understimigl approach, at first some
principles, which lead to method of cross-validation, heovbe discussed.

As we have seen above, overfitting can occur if the modeliisdcavia the SSE function (2.6).
Hence, the model performs well on the data on which it is &djrsince the SSE function is
minimized, but it will perform poorly on the other areas i timput space. Hence, a simple
approach to estimate the quality of a model is to train it oraming data set and evaluate
its performance on a different data set. The performancédisrdifferent data set is called
generalization.

For this method the measurement data has to be split up iptoae parts. This can cause
problems if the number of measurements is small, since hateds of the input space will
be covered from all separate data sets. As said above, tlmeetiegt bench is an expensive
system, and therefore as few measurements as possible $feotaken. Hence, in this thesis
a method called cross-validation is considered, whicls tiaeminimize the impact of sparse
data. This approach is illustrated in figure 2.2.

For cross-validation the data is partitioned istalisjunct parts. The® — 1 parts are used to
train the model, and the remaining part is used for valicatithis procedure is then repeated
for all S possible combinations. After that, the validation erromsf all runs are averaged
to obtain a reliable estimate for the model performancehdfdata is very scarce, then often
S = N is chosen, wheré/ is the number of measurements, which is called the leavesahe
technique.

The advantage of cross-validation is the possibility to aisa&rge data set for the training in
each run, while at the same time every data point is used faa®n during all runs. A
major drawback of this technique is that the model traingygdarformedS times, and this can
be problematic for models in which the training is itself qmrtationally expensive.

Now the method of early stopping can be discussed.
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2 run [ Training Data
3.run [ Validation Data
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Figure 2.2:S-fold cross-validation, illustrated fo§ = 4, [11].

The training of a neural network is an iterative optimizatiavhich we will see later, where
typically the SSE function (2.6) of the training data is miged. If the error of a validation
set is measured during the training, then this error oft@wsha decrease at first, followed
by an increase in the later optimization steps. As we sawghibthe model is overfitted,
then the model performs well on the training data, but podhervalidation data. In contrast,
if the model is underfitted, then the model performs poor ot bihe training data and the
validation data. Hence, the method of early stopping enel®giimization routine when the
validation error reaches its minimum.

A major drawback of early stopping is that a validation settoebe used, and therefore not all
data can be used for training, which is problematic sincertbasurement data is scarce. This
drawback can slightly be reduced if the cross-validatigoragch is used. Nevertheless, since
the training for the neural network is computationally axgiee, cross-validation is hardly
applicable. In addition, [92] has shown that the reguldaiaratechnique (2.15) performs
better in the area of engine calibration than early stopmng therefore early stopping won’t
be considered in the further thesis.

2.2 Linear Regression Models

In this chapter we consider models, which are linear contimna of fixed functions
¢; : R — R of the input variablex = (z1, ..., zp), and therefore can be written as

M
y(x,0) =Y 0;0;(x) = O ¢(x) (2.17)
j=1

where® = (0y,...,0x)" ande = (¢4, ..., on)". It should be mentioned that the notation
'linear modeling’ does not mean that this class of modelsisdr in the inputs, but rather
these models are linear in its model paramet@rsTherefore, this class of models shares
simple analytical properties and yet can be nonlinear vaipect to the input variables. The
nonlinear functions;(x) are often called basis functions.

One advantage of linear modeling (2.17) is, that we can tiyrebtain a closed-form solution
for the minimization of the SSE function (2.6) and the RSSEfiom (2.15). For this solution
we first have to introduce the matrik of size N x M, called the design matrix, whose
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elements are given by®),, ; = ¢,(x,), so that

G1(x1)  P2(x1) ... Pm(x1)

¢1(X2) ¢2(X2) ¢M(X2)

P — (2.18)

brx) falxn) ... burloxw)

If the number of measuremend$ is greater than the number of model paramefdrsthen
for linear modeling the model paramet&swhich minimize (2.6) are given by

Ou = (87®) ' &7t = ot (2.19)

where ®' = (<I>T<I>)_1 ® is the Moore-Penrose pseudo-inverse of the mafriand the
subscript ML refers to the maximum likelihood solution. Ttherivation of this solution is
straightforward and can be found in e.g. [11]. It can be ol&diby calculating the gradient
of (2.6) and setting it to zero.

The model paramete® which minimize (2.15) can be derived in an analogous way,thed
result is given by

Ouap = (AL +@7T®) " &7t (2.20)

where the subscript MAP refers to the maximum a posteridut®m. It clearly can be seen
that for the limitA — 0 the ML solution (2.19) can be obtained.

2.2.1 Polynomial Regression
If the basis function®; are chosen to be
$;(x) =x, (2.21)

wherej = (41, ..., jp) is aD-dimensional multi-index ang’ = 7' -...-23?, then a polynomial
regression is performed. With these basis functions amd {&17), the polynomial model is
given by

y(x,0) =) ;% (2.22)

l7]1<y

where|j| = j1 + ...+ jp. Here,yis called the degree or order of the polynomial. If exg= 1
is chosen, then a linear regression is performed.

Due to the simplicity of the polynomial model, it was the firsbdeling technique which
was used in engine calibration [33, 77]. Today, this apgnasstill the most commonly used
type of modeling and offered in every common commercial pobéor stationary base engine
calibration, like in the PAoptimizer [31] from KRATZER AUTORITION AG, in ASCMO
[58, 59, 100] from ETAS, in the AVL CAMEO Tool [33], in the EadyeE Toolsuite [44]
from IAV, in the Model-Based Calibration Toolbox [104, 105,81 from MathWorks and in
the Intelligent Calibration Tool [89] from Kristl, Seibt & Cor@bH and Magna Powertrain.
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2.2.1.1 Polynomial Stepwise Regression

A common method to obtain an optimal flexibility of the polynial model is to perform a
polynomial stepwise regression, which was previously dieed in section 2.1.2.2 under a
general viewpoint. This technique is most commonly usechiires calibration, in order to
obtain a good compromise for the bias variance trade-ofbédynomial models.

In this thesis we will concentrate on the t-test for stepweggression, which can be found in
[92] and [26]. As we will see later, due to the general dravidsaaf polynomial modeling,
other types of modeling will be recommended. Thereforesthexific type of hypothesis test
will not be of great interest in this thesis, and we will onlged it as a comparison to other
types of modeling. Hence, it will only be discussed in a védrgrsform.

For the hypothesis test we assume that the measurementisiaise normally distributed,
more formally:e ~ NV(0,02Ly). If we denote® as the true model parameters afds the
estimated model parameters, then from this assumptionldife that our estimated model
parameters are given by the following normal distributi®@][

O~ N (0,54 (®"®)™"). (2.23)
With this result we can now perform a hypothesis test in witichtested, if a certain model

paramete#); should be removed from the whole set of model paraméerBor this test we
have to evaluate [92]

>

t; = = . (2.24)
Vit —@e|2 [(e7e) 1]

>

The hypothesis, that the coefﬁcie@}t can be removed from the model, can be discarded if
[26]

;] > ti—an—m , (2.25)

wheret;_s v—a iS the(1 — &) quantile of the Student’s t-distribution witliv — A/) degrees
of freedom, which is discussed at length in chapter 4.

With this hypothesis test forward selection can be perfarimetesting the fitness of a single
parameted;, which is not yet integrated in the set of model paramertrough adding this
single parameter temporarily to the model. If the signifaegn;| is greater than a predefined
valuet;_s, n—u, then this parameter can be integrated in the model. Fudlser backward
elimination can be performed by removing the model pararsethich have a lower signifi-
cance than a predefined valye, x_»s in every training step.

As in [92], the stepwise selection algorithm was enhanced R decomposition, in order
to make the algorithm numerically more stable and to redneebdmputational effort.
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2.2.2 RBF Networks

Various different kinds of radial basis function (RBF) netk®exist. A very common choice
for the basis functions is

0,0 = exp (—5llx - 3, (2.26

with

= pallm, = 3/ = )T (x = ) (2.27)

whereX; is a positive definite norm matrix [84]. With this definitiof the RBF network, a
schematic structure of (2.26) and (2.17) can be drawn, wikidlustrated in figure 2.3. This
structure shows the membership of the RBF networks to the ofassficial neural networks
(ANN). The inputs are connected fd radial basis functions (2.26), which are regarded as a
hidden layer of\/ neurons in the nomenclature of neural networks. TypicRBF networks
consider only one output at a time. Therefore, the outpwrl@pnsists only of one linear
summation (2.17), which is regarded as a linear output layer

It can be seen that the model (2.17) is linear in the parasm@eibut nonlinear in the pa-
rametersu; andX;. A generalization of this approach can be derived from thesSian
process viewpoint, which will be discussed extensivelyaat®n 2.4.2, where the training is
performed by simultaneous optimization of all the paramsg®, p;, 3;), j € {1,..., M }.

In engine calibration it is common not to optimize all thegraeterd©, u;, 3;) at the same
time, but rather in an iterative procedure [34, 92, 118]. dsdengine calibration; and:;
are often determined in a first step, and in a second trainemthe parametei® are deter-
mined by the maximum likelihood solution (2.19) [34]. Oftehese two steps are repeated
alternately, in order to achieve a better solution [118].

It should be noted that the classification of the RBF networkthéoclass of linear models
refers to the determination of the parame®®rsvhich is common in engine calibration [92].

Numerous different approaches exist for the determinatfdhe parameterg; andX;. Two
techniques should be considered here, which are convahiroangine calibration [92]. In the
first technique the training data in the input space is ctasgteand a basis function is placed in
the areas where the density of training data is high, whiam®thod of unsupervised learning
[84]. The other technique places the basis function in asghsre a systematic difference of
the data and the model can be detected.

Other types of RBF networks can be developed by choosing nmedddasis functions, which

lead to the general regression neural networks (GRNN) [8d tla@ Nadaraya-Watson model
[11]. At last, it should be mentioned that the RBF network is aiversal approximator on a

compact subset d&”. This means that a RBF network with an increasing number ofenidd
neurons can approximate any continuous function with iatyitprecision.
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Input Layer Hidden Layer Output Layer

Figure 2.3: Schematic structure of the RBF network.

2.2.3 The LLR Model

The LLR model (Linear model with Local RBF terms) was introdiibg [92].

In [92] it is argued that a polynomial model is able to appnaaie the global behavior of
a function, however, difficulties arise when it comes to ad@pn of local behavior. At the
same time it is stated that RBF models are good at approximatimcal properties, but they
cannot adapt the global behavior well.

Hence, [92] introduced the LLR model as a combination of pamial model and a RBF
model.

The training algorithm of the LLR model is given as follows:

At first, the training data in the input space is clusteredl BBF terms are placed in areas,
where the density of training data is high. Then an itergineeedure is performed. Initially,
a polynomial stepwise regression is performed. The RBF tewhih are already included
in the model, are considered and integrated in the regres#iothe stepwise regression has
converged, then RBF terms are placed in areas, where a systeliffatence of the data and
the model can be detected. After the inclusion of the RBF tethespolynomial stepwise
regression is performed again, since the significanceseoptiynomial terms are changed
during the RBF training. Afterwards, more RBF terms can be addatid model. This
iterative procedure is terminated, if the modeling has eagwd, or if a predefined maximum
number of training cycles has been reached.

2.3 Local Linear Models

Polynomial regression suffers from some drawbacks, whiehdéscussed at length in sec-
tion 3.2. However, as these linear models also have manyngatyes, more sophisticated
approaches were developed and used, which try to minimedidadvantages of the polyno-
mials.
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One approach is local linear modeling, which is very commoengine calibration. This

method divides the whole input space in many subspaceshendtlinear modeling is per-
formed in every single subspace. Usually a polynomial modedf low order is chosen for

the linear models in engine calibration, but in principlecabther types of linear models would
be possible.

If the intersections between the local models are fuzzy) the modeling is also denoted as
a neuro fuzzy modeling. The Takagi-Sugeno fuzzy models][&d&’the most common types
of neuro fuzzy models. In these approaches, rules or subldmacdeused for approximation.
The rulesR; of a Takagi-Sugeno model are dependent on the model inpated have the
following form

R; :if (z1is A;1) and ... andzp is A; p)
M;
theny; = > 0, ¢:1;(x) = O] ¢,(x) (2.28)
j=1

whereg; ; refers to thej—th basis function (see section 2.2) of theth rule or submodel, and
A, ; refers to thej—th dimension of the subspacg in which thei—th rule is valid. Every
subspacel; is defined by its center and neighborhood. In engine calimahe influence\;
of a local model is often specified through a Gaussian funactitgh centery; and standard
deviationo;, which can be different in each input dimension, so that

Rux) = exp | (25— i) 2.29
i(x) = exp 22_: 72, : (2.29)

In order that the Gaussian functions sum to 1 for &nit is required to normalize them. The
so-called membership functions are determined by
/NXZ' (X) Mg
AN(xX)= ———7+— Ai(x) =1 (2.30)
>l A(x) ;
where My refers to the number of rules or submodels. In order to etaline model output
y, the outputsy; of all submodels are weighted with the membership functiorgve

Mg

y(x) = 3 Ai)yi(x). (2:31)

Instead of going into more detail about neuro fuzzy modelihgg referred to [84], and the
following subsections describe the approaches which ast coonmonly used in engine cal-
ibration.

2.3.1 LOLIMOT

The abbreviation LOLIMOT stands for LOcal Linear MOdel Tread this modeling tech-
nique was introduced in [83]. In this approach, the inputcspes partitioned by a tree-



2.4. Nonlinear Regression Models 27

construction algorithm and the local models are intergaldty overlapping local basis func-
tions.

The partitioning is based on the well known CART (classifamatnd regression trees) method.
In each partitioning step of the LOLIMOT algorithm, all subdels are divided by axis or-
thogonal cuts in all possible dimensions, and the pariitigin which the best improvement
could be achieved is maintained. At the end of this itergtrneeedure, the whole input space
is divided into hypercuboids and the resulting structuesgsivalent to a Takagi-Sugeno fuzzy
system. In practice often linear polynomials are used ferldical submodels, but sometimes
also polynomials of higher degrees are applied.

LOLIMOT is widely used in engine calibration and can be foumde.g., [36, 91, 107].

2.3.2 HHT

In comparison to LOLIMOT, the HHT (hinging hyperplane tredgorithm allows also inter-
sections, which are not axis orthogonal. This is achieveddiyg a nonlinear optimization,
in order to obtain the optimal directions of the straighemsections. Further, it can be distin-
guished between flat HHT structures [14] and hierarchicallHuctures [25, 121]. For the
local submodels only linear polynomials are used in thigaggh.

2.3.3 Local Neuro Fuzzy Models

In [47] and [46] another local linear modeling is presentekich is used for identification in
engine calibration. Instead of using straight intersexilike in the LOLIMOT or HHT algo-
rithms, the input space is divided into subspaces withssighal contour lines. The positions
of the subspaces are determined with an EM (expectationmizadion) algorithm. In this
approach, a polynomial modeling is applied for the localnsabflels. Compared with the two
other methods, this algorithm has the greatest flexibiiy,it is also the one with the highest
computational costs.

2.4 Nonlinear Regression Models

As linear and local modeling techniques suffer from seviaratations, which is extensively

discussed in chapter 3, other types of modeling have beexiapmd and used in engine cali-
bration. All these approaches have in common that they ankear in their model parame-
ters®, and therefore these techniques are referred to as nonfegr@ssion models.

At first, the multilayer perceptron (MLP) neural network @nsidered, since this is the most
commonly used nonlinear modeling technique in engine &iitn. Then, so-called kernel
techniques, like Gaussian processes (GP) and support veathines (SVM), are examined.
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2.4.1 Multilayer Perceptron Neural Networks

The MLP network is used in various different fields of appiica. It is widely used in ma-
chine learning [11] where it is applied, e.g., to image rettgn, speech recognition or ma-
chine translation. In engine calibration it was introdubgd77], and it has been successfully
integrated into the online optimization concept mbminiengg BMW [116].

A MLP with a single hidden layer is defined by
Y(X) = Goftanh<@hx) (232)

where the vectoly ¢ R contains theN, outputs of the MLP network, the matrices
0" ¢ RM*P and@° ¢ RN-xNutl refer to the weights of the network, and the function
fianh : RMr — RN L x s (tanh(x), ..., tanh(zy, ), 1) contains the activation functions of
the V;, hidden neurons of the MLP. A schematic structure of the MLBvDEK is drawn in
figure 2.4, whereD = 3 inputs, N, = 4 hidden units andV, = 2 outputs are chosen.

It would be possible to choose more hidden layers or othevadicin functions than the
tanh —function. But this architecture is important, because it b@sn shown by [42] that
networks with one hidden layer and thenh activation function are universal approximators
as the number of hidden units tends to infinity. Therefores, skructure is most commonly
used in engine calibration, and it will also be examined is thesis. Further, in engine cal-
ibration it is common to calculate an own MLP network for eacigine value. Hence, only
one output for each MLP will be considered in this thesis.

During the training of the MLP, the parametés= {©", ®°} are adjusted in order to adapt
the nonlinear behavior of a function. In the context of neneworks, these parameters are
often referred to as weights of the network.

Input Layer Hidden Layer Output Layer
Weights Weights

Figure 2.4: Schematic structure of the MLP network. The eations represent the weights
and the nodes represent the outputs of the layers.
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Various training procedures exist for MLP networks, sed fb® an overview. The appro-
priateness of a training algorithm depends on the specifiblem. For the training of a few
hundred weights, the Levenberg-Marquardt algorithm isa@ghoice [38], and therefore this
algorithm is most commonly used in engine calibration [21].

The Levenberg-Marquardt technique is a numerical optitiimamethod for nonlinear least
squares problems. Like most other training approachesatporithm requires the gradient of
an error function, e.g. (2.6) or (2.15), with respect to taegmeter®. This gradient can be
calculated efficiently with the well known error backproptign procedure. With this gradi-
ent information, the Levenberg-Marquardt technique paéates between the Gauss-Newton
algorithm and the steepest descent method. In this way, ¢keriberg-Marquardt approach
is more robust than the Gauss-Newton algorithm alone, aisdhighly probable that this
algorithm is converging, even with a bad initialization [.79

As discussed in the bias-variance section 2.1.2, the flayibf the model has to be adjusted
to an optimal value in order to avoid overfitting and undenigt In this section above, various
different techniques have been examined, which all can pkeabto MLP networks. How-
ever, as said in subsection 2.1.2.3, the regularizatidmiqae (2.15) has been found to work
very well in practice. In order to apply this approach to theRvhetwork, it is convenient to
consider the equation (2.14) for the regularized sum of i=guarror function.

The aim of the regularization is to find optimal values forplagameters. andg in (2.14). For
this task, the Bayesian regularization has been found to leyaeffective approach, which
does not require any further data than the training set, lagm@tore this method is commonly
used in engine calibration [92], [21]. This technique wasaduced in [65] and integrated
in the Levenberg-Marquardt training in [30]. Instead ofregpucing the derivation of the
Bayesian regularization, it should be referred to the liteeagiven above. The regularization
parameters at every Levenberg-Marquardt step can be atdduds follows [92]:

M
a = 5 — (2.33)
20|12 + trace (Hzgsp.o)
N—vy
pg= 5 SSE (2.34)
v = M — atrace (H}géSE@) (2.35)

where SSE is the sum of squares error function (2.6) Hadsr e is the Hessian of the
regularized sum of squares error function (2.15) with resfgethe model paramete€. The
variabley represents the number of parameters which are effectigsg in the model [11].
By comparing this variable to the number of all paramefdrst can be checked if the MLP
network contains enough weights. [92] suggested, thateifthmber of parameters which
is used in the modey is bigger than 80% of all model parametér§ hence ify > 0.8M,
then the MLP should be enlarged by adding additional hiddets o the network. With this
procedure an appropriate size of the network can be detedhaatomatically.
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2.4.2 Gaussian Processes

As it will soon be discussed in chapter 3, the Gaussian psoeEgession has various ad-
vantages compared to other techniques for stationary bageeccalibration. Therefore the
discussion of this modeling will be more thorough than thesonf the other approaches.
However, an even more detailed examination can be foundipn [9

The motivation for the use of Gaussian processes (GP) imemgilibration is straightforward.
As we will see in section 3.2, polynomial regression has seigeificant drawbacks, since
the basis functiong; in (2.17) have to be chosen in advance, before the modeirtgaikiow-
ever, typically we do not know which basis functions areahl# before the training data is
observed. Therefore, [26] suggests to work with an infindynber of basis functions, which
can be achieved with GP regression, which we will see shottlyaddition, [68] remarks
that Gaussian processes are useful tools for automatesl taskher, as said above, RBF and
MLP networks with Bayesian regularization are widely useemngine calibration. As there
is a relation between GP and neural networks, which is deszlis the sections 3.3 and 3.5,
it was assumed that GP also work in practice.

However, the analysis on GP models and their use for regressid prediction is far from
new [68]. Already in 1880, T.N. Thiele was analyzing timeisg using Gaussian processes,
see [63]. Within the geostatistics field, regression usifyi§called kriging, see [17] and
[26]. Moreover, ARMA (autoregressive moving average) medeaid Kalman filters can be
viewed as forms of Gaussian process models [11]. Furthear&Rsed in the task of global
optimization (e.g. see [50]).

2.4.2.1 Dual Representation

The Gaussian process viewpoint is a non-parametric appyaaa this type of modeling is
somewhat different than the other modeling techniques whave been discussed so far.
In order to gain a better understanding of GP regressionddhnization of the formulas is
started with the dual representation, in which initiallg twell known parametric viewpoint is
considered (for more detailed information see [11]).

We start the discussion by replicating equation (2.17),rel@emodel is considered which is
linear in the model paramete®;,

y(x, Oin) = ¢(x)" Oy (2.36)

and wheregp(x) is a vector of nonlinear basis functions xf As said above, typically the
parameter®j, of this model are determined by minimizing the regularizethsf-squares
error function (2.15), in which we can incorporate (2.36yie

RSSEO) = Y (tn — ¢(x4) Oin)* + A O [|*. (2.37)

n=1
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As we have seen, the closed-form solution for this problegivien by (2.20), and with this
result the model can be calculated by

y(x) = p(x)" (M + 7®) " @7t (2.38)

which can be shown through a detailed transformation [1bgtequivalent to

1

y(x) = d(x)"®" Ay + ®2") t. (2.39)
Now we introduce the kernel functict(x, x’) and the Gram matri¥

k(x,X) = ¢(x) p(x) (2.40)
K := &7 (2.41)

which are linked through
k(% %) = k(X0 X0n) = (%) (%) = (K)o (2.42)

If we substitute (2.40) and (2.41) into (2.39), then we abthe following formulation for our
model

y(x) = k(x)T(K + My) 't (2.43)
where we have defined the veclqgix) with elementst,, = k(x, x,,).

From (2.43) we see that the solution of the regularized leqgares problem (2.37) can be
expressed completely by the kernel functigix, x’). Hence, we can now work directly with
the kernel function without explicit calculation of the mfunctions¢(x). This allows us
to choose kernel functions where the vectix) contains implicitly many (even infinite)
basis functions, which we will see shortly. This is regardsdhe kernel trick or the kernel
substitution in the literature, and this technique was fitgilished in [2].

2.4.2.2 The Squared Exponential Kernel

A common choice for the kernel function is the squared expbakkernel (or sometimes
called squared exponential covariance function)

D

2 (xj - x;)Z
kse(x,x") := 0% exp (— Z W (2.44)

j=1

with the signal varianc#? and the length-scale parameters in each input dimengion
Since the Gaussian process regression is a form of non-ptmammodeling, the parame-
ters{62,0,1,...,,0, p} are called hyperparameters in the area of machine learning.

The length-scale hyperparameters have an interestingpyop\s we will see shortly, we can
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estimate the values of all hyperparameters out of the trgidata. In doing so, it is possi-
ble that different inputs obtain different values for thadé-scale parameters. As it can be
seen from (2.44), if a particular paramefey becomes high, the function becomes relatively
insensitive to the corresponding input variable Hence, with the squared exponential ker-
nel it becomes possible to detect input variables that htleedr much effect on the model.
Therefore, we are able to interpret the model also from aipalysiewpoint. Inputs which
have a high or low value fof; ;, have a low or high nonlinear behavior. This determination
of the importance of a certain input is called automaticuahee determination, and it is well
known in machine learning. Instead of going into more detaithis technique, it is referred
to the literature [98] and [11].

Further, the squared exponential kernel has another stbegeproperty. It can be shown, that
the vector of basis functiong(x) that corresponds to this kernel has infinite dimensionality
This can be seen by expanding the kernel through a powersddri¢ Hence, in the GP
viewpoint we are able to perform regression, where impjiain infinite number of basis
functions is used.

Because of these and other advantages which are also dddnsseapter 3, at every GP
regression in this thesis the squared exponential kertel)3s used unless otherwise stated.

2.4.2.3 Training and Prediction

In order to apply Gaussian processes for regression, wetnemghsider the noise, on our
measurements, of the engine, which are given in (2.1). In this section ad..normal noise
is consideret] which is common in engine calibration, so that

p(tly) = N(tly, o’I) (2.45)

wheres? is the variance of the normal distribution. We follow the da&fon of Gaussian
processes from [98]:

Definition 2.1. A Gaussian process a collection of random variables, any finite number of
which have a joint Gaussian distribution.

From this definition it follows that the distributigny|X) at the observed input locatiodé
is a multivariate Gaussian distribution

p(y|X) = N(ylp, K, X) (2.46)

1In engine calibration usually the SSE function (2.6) or tf&SE function (2.15) is used for the training of
the parametric models. As shown in the sections 2.1.1 and.2, his is equivalent of choosing a normally
distributed noise (2.45). It should be noted, however, dueutliers in the measurements, which are quite
common in engine calibration, this assumption is sometino¢s good one. In chapter 4 a possible solution
will be presented.
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with meanu and whose covariance is defined by the Gram matrixFor notational con-
venience, we will suppress the dependenceXom the following, and we will consider a
zero-mean Gaussian Process.

Now we want to perform training. In the Gaussian process p@@t, this means that we want
to infer the hyperparameters out of the training data.

The Gram matrix contains the hyperparameters of the squagednential kernel, so that
K = K(62,0,1,...,,6,p). In addition, we do not know the variane@ of the measurement
noise (2.45). For notational convenience we collect allyygerparameters into a single vec-
tor of hyperparamete® := {62,0,,, ...,0, p, o*}.

There are two common training techniques for Gaussian psese the marginal likelihood
technique and the leave-one-out cross-validation tecienitn this thesis the marginal likeli-
hood technique is preferred, because it performed well agtal problems, see section 3.7,
and we can achieve a robust formulation of GP with this tregmethod, see section 4.

The marginal likelihood is the integral of the likelihoodes the prior

t1©) = [ pltly. ©p(yiO)dy. (2.47)
= N(t|0,K + ¢°1) (2.48)
where we used (2.45), (2.46) and standard formulas give@8h [The term marginal likeli-

hood refers to the marginalization over the function valpeBecause of numerical reasons,
it is convenient to optimize the log likelihood

1 1 - N
Inp(t|®) = —5n K + 01| — §tT (K+02) "t — 5 In(27). (2.49)

As said above, with (2.49) the hyperparametésan be optimized on the training data.
Hence, in practical implementations the derivative&gf(t|®) with respect to the elements
of ® are calculated, and a quasi-Newton method can be used faripation.

After the training, we want to predict the valye of our Gaussian process model at a new
input locationx,.

Since our GP model is a stochastic process, the valwell be distributed. Using the def-
inition, again it follows that the observed measuremengsmd the predictiony, are jointly
Gaussian distributed [98], which can be written as

t K+o02T  k(x,)
[ " } ~N (0, [ k()T E(x., %) : (2.50)
From this joint distribution we can derive the conditionablpability distributionp(y.|t),
which is a Gaussian distribution with mean and variancergbe

Ely.|x., t] = k(x,)" (K +0°T) "'t (2.51)
Vya|xe, t] = k(xi,x.) — k(x)" (K+ 021)71 k(x.). (2.52)
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2.4.2.4 lllustrating some Properties of GP

A simple theoretical example is given in figure 2.5 where staEc properties of Gaussian
process regression are illustrated.

1.5

05

= = = sine = true unknown func.
O measurements

GP - mean p=0.0017562 s

GP - 95% confidence interval ‘o1

----- GP - mean p=4.2199e-005 -¢L

_1.5 L L
0 0.2 0.4 0.6 0.8 1

X

Figure 2.5: lllustration of some properties of GP in a simgtample.

The dashed line represents the unknown function (sine);wihi practice could be any non-
linear engine mapping. One only knows some measured datde®), which is shifted by
random noise.

With this measured data a Gaussian process model can bedrbinoptimizing the log
marginal likelihood (2.49). After the training the predast can be performed. The predicted
mean (solid line - calculated from (2.51)) represents thenased function value and with
the predicted variance (2.52), a 95% confidence intervabeadrawn, which represents the
degree of certainty where the estimated function is expledite the widening confidence
interval on the right edge, which represents an increasimgmainty of the real function be-
havior due to difficult extrapolation and the lack of measugats in this area.

Further, another GP is considered whose hyperparamegemsteoptimized on the log marginal
likelihood (2.49). From this GP, the predicted mean (datheal line) is plotted, and one could
clearly interpret this GP model as overfitted on the trairdatp. It can be seen, that the prob-
ability p(t|®) (calculated from (2.49)) of this overfitted GP is much lesmtthe probability
of the optimized GP. In this way, through optimizing the hgga@ameters, overfitting can be
avoided.
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2.4.25 The Relevance Vector Machine

As we will see in section 3.8, the computational cost of Gamsgrocesses is relatively high,
compared to the other types of modeling which are presemtékis chapter. This can be
critical in some applications. Therefore, other kernehteques have been developed and
used, which try to minimize the computational effort. Th@twost common techniques are
the relevance vector machine (RVM) and the support vectahima, which is discussed in
the next section. These approaches are often called spamsel knachines, since the main
idea of these techniques is to use only a subset of trainitagptants for predictions.

The relevance vector machine (introduced by [119]) is alimeodel (2.17) of the form stud-
ied in section 2.2. In the above section, we chose the prairiblition (2.12) for the linear
model parameter®,;,, which results into the RSSE function (2.15) where we were &bl
calculate the closed-form solution (2.20). In contrashts,tin the RVM framework a separate
hyperparametet; for each linear model paramet#y,, ; is introduced, so that the prior takes
the form

M
P(Opin|ax) = HN (61in.310, aj_l) (2.53)
=1

wherea; represents the precision of the corresponding pararfigter« denotegay, ..., apr)”
and®;,, denoteg6y,, 1, ..., biinar)" . It can be shown by maximizing the marginal likelihood
(2.47) with respect to the new hyperparameterghat a significant proportion ak goes to
infinity. Therefore, the associated basis functignsc) play no role in the predictions made
by the model and so are effectively pruned out, resulting sparse model [11]. The basis
functions that survive are called relevance vectors.

Although usually not presented as such, the relevance vewchine is actually a special
case of a Gaussian process. It is pointed out in [97] and [148] the RVM is equivalent do
a Gaussian process with the kernel function

krvm (X, X) Z ¢] (%) ¢;(x). (2.54)

2.4.3 Support Vector Machines

Since the 1990’s there has been an explosion of interestrimekmachines, and in particular
in the support vector machine (SVM) [98]. Also in the areamgiee calibration the SVM is
becoming more and more popular.

We start the discussion of SVM by considering a model whidimesar in its parameter®,;,,
asin (2.17) in section 2.2. Here, we repeat (2.17) and we golicily an offset parameter
to the model, so that

y(X) = y(X, Glina b) @lznqb( ) + b. (255)
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In section 2.2 we minimized the RSSE function (2.15), and weevable to calculate the
closed-form solution (2.20). In comparison to that, the $8H in (2.15) is replaced by an
é-insensitive error function [127]

07 if |y<xn) - tn| <€

2.56
ly(x,) — t,| — €, otherwise ( )

Ee(y(xn) —tn) = {

in order to obtain a sparse solution of the support vectaressjon, which we will see soon
(An exception are the least squares support vector mac{ii8eSVM). Nevertheless, the LS-
SVM can be directly viewed as a special case of a Gaussiaegsgc With this replacement,
we therefore seek to minimize the regularized error fumcgiven by

N
O3 Felyxa) — 1) + 5100 (257)

n=1

whereC' is (by convention) the (inverse) regularization parametecan be shown by a de-
tailed derivation [114], that the model (2.55) which minees (2.57) can be found by solving
the following dual optimization problem

N N
=5 > 2 (o — o) (o — g, ) k(X X))
maximize notm=l N
—é Zl(ozn + o) + Z:l(ozn —ay)t, (2.58)

N
subjectto Y (o, — a;) =0 and o, o, € [0,C]
n=1

with the model (2.55) to give

N N

y(x) = (an — 03)p(x) d(x) +b =Y (an —af)k(x,x,) +b  (259)

n=1 n=1

where we introduced the kernel functiér(The variablesy,, anda’; result from a dual opti-
mization to (2.58), which is not discussed in more detaibrder to abbreviate this section).

.....

is satisfied, and thelncan be obtained by

N
b=ty —E— > (an — ap)k(x, x,). (2.60)

From (2.59) it can be seen that only the poirfscontribute to the model, where the values
a, and«} are nonzero. These points are called support vectors. Fothedr points the
contribution vanishes, and therefore the SVM results inaasspmodel.
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Chapter 3

MODEL COMPARISON IN THE CONTEXT OF
ENGINE CALIBRATION

In the previous chapter, various different types of modglave been introduced and dis-
cussed. All these types have been or can be used in statibaseyengine calibration. How-

ever, we are typically interested in the most suitable typenodeling, which can also be

used for model-based online optimization. Therefore, ia thapter the different modeling

techniques are compared against each other.

In most previous publications on modeling in engine catibrg only a single or a few differ-
ent types of modeling are considered. Hence, with theseqgatialns it is not possible to give
a reliable recommendation of a most suitable type of modeli@nly a model comparison,
which considers as much different techniques as possiaferasult in a meaningful recom-
mendation.

In fact, there exist a few model comparisons which analyzesatgr number of modeling ap-
proaches, but none of them examines the theory and praappditations as comprehensive
as the following, and none of them can give as clear recomaten as this one.

In [92] a model comparison is given, which considers a nedditi low number of modeling
techniques and which neglects the most promising appreaé&uklitionally, in [92] it is men-
tioned that a further examination of more types of modeliogld help to improve the quality
of regression.

In [34] and [70] model comparisons for dynamic modeling ave, where a comprehensive
number of different approaches is considered. Howevehgsd publications only the model-
ing performance on different practical data sets are coegpand no extensive examination of
theoretical properties is regarded. Hence, no clear recmdation of the most suitable type
of modeling can be given, but rather a tendency which teclasi@re appropriate.

In contrast to the application of engine calibration, thexists a lot of literature in which the
theoretical properties of the modeling techniques anddlaionships between the different
approaches are examined comprehensively under a genevgboint, without considering
a specific application or system. However, each of the teglas has its advantages and
drawbacks, since it is not possible to specify a specificrédlyn which works best omll
possible applications, which directly follows from the med lunch theorems for supervised
learning [132, 133]. These theorems show that all algomsthimave an equivalent average
performance over all possible problems.
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Hence, only by considering a specific problem or applicatmme can give a meaningful
recommendation for a specific algorithm. Therefore, we @igtuss the requirements on the
modeling, which follow from the application of engine caliion, and then we examine the
appropriateness of the different modeling algorithms.

In addition, there exists no publication which highlightauSsian processes for engine cali-
bration, compared to the other techniques. However, as Wsegisoon, the Gaussian process
regression is the most suitable type of modeling for statipivase engine calibration. There-

fore, another motivation for this chapter is to recommendsSan processes and to show the
improvements which can be obtained, compared to the othtr at the art algorithms.

The following sections are partially extensions of the hsspublished in [7] and [9]. First,
the requirements on the modeling are discussed, whichtriesmi the application of engine
calibration. As said above, we will see that the Gaussiange® regression has various ad-
vantages compared to other state of the art algorithms. é¢J@nwill be sufficient to compare
the GP regression with each of the other types of modelingtder to identify this approach
as the most promising one, and this is performed in the latrans. Further, an investigation
on the practical performance of different types of modeigngxamined, where the theoretical
assumptions are verified, and the results of the theoreticaparison are illustrated.

3.1 Requirements on the Modeling in the Context of Engine
Calibration

In this section some important requirements on the modélimgodel-based engine calibra-
tion are examined, which follow from Chapter 1, where the @pgibn of engine calibration

is discussed. These requirements allow to draw conclusmtiee further sections. A focus
is made on the model-based online optimization (see settibf.2), but most of the require-
ments are also important for the model-based offline opttion (see section 1.2.2.1).

(REQ1) The modeling must be suitable fagh-dimensionaproblems (5-10 input dimen-
sions). The term ’high-dimensional’ refers to the applmabf engine calibration.
In the machine learning area, a high-dimensional problemidvwegard a few hun-
dred inputs. A practical example in engine calibration esdptimization of a diesel
engine with the 6 parameters: quantity and time of the peztion, quantity and
time of the post-injection, main injection time and injectipressure. This leads to
a 6 dimensional input space.

(REQ2) As mentioned in section 1.2.2, the engine test beraxhéxpensive system. Hence,
the number of measurements should be minimized, in ordedigce time and costs
of the calibration. Therefore, the modeling should be abladhieve a good per-
formance withas few measurements as possibidat is why every measurement
should contribute a maximum of information to the model.
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(REQ3) Referring to section 2.1.2, the modeling shouldl&eble enough, so that every
nonlinear engine mapping can be approximated. A good atilaptaf the model
to the measurement data should always be possible.

(REQ4) Also referring to section 2.1.2, the algorithm shdoddable to determine the op-
timal flexibility of the model and the problem oflverfitting has to be solved'he
model-flexibility must never be too big, and an overfittingtbea measurement data
has to be avoided. Thus, the modeling has to be robust to poisee measure-
ments.

(REQ5) The requirements (REQ3) and (REQ4) have to be met evag/the modeling
is performed. In addition, these tasks have to be performgdmatically and
dependablyso that an automated online optimization with no manua&rattion
is possible. This requirement is crucial. If, at any times thodeling is not able to
be flexible enough or overfitting occurs, in an automatednentiptimization bad
models will lead to wrong predictions and useless measureswell be taken at
undesired regions. In the worst case, without manual iotera a large part of
measurements would be meaningless and the optimizatioldwause high costs.

(REQ6) As mentioned in section 1.2.2.2, in the model-basé&deaptimization we want to
take measurements in areas where the model quality is badjén to improve the
prediction of the model. Hence, the modeling has not onlyetale to predict an
expectation about the true engine behavior, but also a ifyafout thecertainty
and probabilityof the model is important for an automated online optimaati
Only with this quantity, measurement points cannot only laegd at the assumed
optimum, but also where a big uncertainty about the modpéetation occurs.

Clearly, one can formulate additional requirements for adgnodeling for engine calibration
(e.g. like physical interpretation of the model). Some a@nthare discussed in the further
sections. However, a full list of all possible requiremestiseyond the topic of this thesis, but
we will see that, if we assume that these requirements amatis¢ important ones, it will be
possible to identify the most suitable modeling with thigicke.

3.2 Gaussian Processes compared to Polynomial Regression

Atfirst, it may seem that a comparison between Gaussian gges@nd polynomial regression
will not be very meaningful, since the drawbacks of polynaihnegression are well known,
and therefore the GP regression seems to be a more appeapodeling.

However, as we will see shortly, this comparison will allogita draw conclusions, which, on
the one hand, illustrate the advantages of GP regressiopareahto linear modeling (2.17) in
general, and which, on the other hand, can be adopted totgfies of modeling as well (like
the local linear modeling in section 2.3). Therefore, we ttarcompare the most common
type of modeling for engine calibration, the polynomialnesggion, to the Gaussian processes,
which are rarely used in engine calibration.
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Polynomial regression has several advantages compareauss@n processes. Polynomials
have a simple form, are well known and easy to understandhé&ias polynomial regression
is a special form of linear modeling (2.17), we can obtainasetl-form solution ((2.19) and
(2.20)) for the model parameters, and therefore, this noglés computationally cheap and
easy to implement.

In order to avoid overfitting (requirement (REQ4)), statiglitests can be used, see section
2.2.1.1. These tests remove parameters which are not sartitind therefore not needed in
the model. In this way, a big set of admissible basis funsticem be chosen for regression,
which increases the potential flexibility of the modelingduirement (REQ3)), without the
fear of obtaining overfitting.

However, as already mentioned above, there are some drisvbipolynomial regression in
theory and practice.

One disadvantage of polynomial regression is a bad ex@#ipnolof the data. Polynomials,
which are not constant over the whole input space, tend astytd high (positive or negative)
values outside the region of the measurement data. In casopépo that, using the SE kernel
(2.44), Gaussian processes tend to the mean of the dataerif mweasurement is far away
from the prediction.

Further, Gaussian processes indicate a growing uncertairthe prediction very fast in an
increasing of the variance (2.52) (e.g. see the right edfiguat 2.5). This property makes it
easy for the user to distinguish which predictions one aasttiA confidence interval can also
be calculated for polynomials [26], [57]. But this estimatiof the prediction error relies on
the accuracy of the polynomial model, and as we will see sodnrasection 3.7, sometimes
the performance of the polynomial model will be bad. Hengehese cases one cannot trust
the estimation of the confidence interval, too. This is camytto the good performance of GP
regression in engine calibration, which will be shown intget3.7.

Another drawback is, that polynomials of high order tend &viwess and 'end-effects’. This
can be illustrated by Runge’s phenomenon, which descrileeprtiblem of oscillation at the
edges of an interval. Although this phenomenon is a problemterpolation, these oscilla-
tions also can be observed at regression, if the order ofdh@pmial increases, see figure
3.1

The thick dashed line in the different plots in figure 3.1 gades Runge’s function, which is
given byﬁ. From this function, training data (circles) is sampled rfegression. In the
different plots the number of training data is varied, anddarity, in the last plot only the
half training data is drawn. With this training data, a Gaarsgprocess model is calculated
and a polynomial stepwise regression is performed.

It can clearly be seen that polynomial regression has pmubten approximating this function.
With few measurements, the polynomial stepwise regressitbronly take a polynomial of
lower order as a significant one, which is not flexible enougbgproximate Runge’s func-
tion. By increasing the number of measurements, a polynoafiligher order is chosen,
which is highly oscillating. This performance of the polynial should be compared to the
Gaussian process regression (gray). With the same amotnairdhg data, the GP performs

clearly much better.
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Figure 3.1: lllustration of some drawbacks of polynomigjression.

These oscillation effects are strongly related to the unel@®ffect of nonlocal behavior in
polynomial regression. If polynomials are used for regoeg$69] showed that measurements
can have a large and undesired influence on the predictetidorat a location, which is very
different from the location where the measurements have begle. E.g. one can show that
an increase in the measurements at one location can causesaskein a very other location.

A deeper understanding of this phenomenon and this congpecen be gained through con-
sidering the polynomial regression under a Gaussian psogew/point.

As we saw in the dual representation in section 2.4.2.1, wee@rmulate a linear modeling
into a modeling with a kernel functiok(x, x"). Hence, since the polynomial regression is a
special case of linear modeling, we can calculate the kéunetion % of the polynomial basis
functions¢(x) through (2.40). By doing so, one can discover the nonlocaayieh of the
polynomial kernel function [11], which explains Runge’s pbemenon.
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In addition, this analysis shows that the Gaussian procesgpwint is a generalization of
linear modeling (and especially polynomial regressiorg.sAid in section 2.4.2.1, the advan-
tage of GP regression is that we can use kernel functipmghich can only be expressed by
an infinite dimensional vector of basis functioéx), which would be the case if one uses
the common squared exponential kernel (2.44).

Hence, now we can see another reason why polynomials (ag@arlmodels in general) do
bad at approximating some functions (like in figure 3.1).slthe limited number of basis
functions. If one would add the basis functionz) := ﬁ to the linear modeling in figure
3.1, then a perfect fit would be obtained. But how can one knovehvhasis functions to
use? As a consequence, in many practical applications théewof basis functions needs to
grow rapidly, often exponentially, with the number of inp(i1]. Therefore, [26] suggests to
go another way. The solution is to work with an infinity numbébasis functions, which is

given at the Gaussian process viewpoint, if one choosesBEHefel (2.44).

As a conclusion, polynomial regression should only be peréal for low complex problems,
which can be approximated by polynomial terms of lower arderthe context of engine
calibration, this means that only the behavior of a few adpesit parameters can be modeled
through a polynomial, which clearly contradicts requiretn&EQ1), and only measurement
variables with smooth characteristics should be appratdchhy this simple approach.

3.3 Gaussian Processes compared to RBF Networks and the
LLR Model

As the RBF Networks and the LLR model have much in common, thdélybeicompared
against Gaussian processes in a single section.

RBF Networks

As discussed in section 2.2.2, the RBF Network, given by (2ahd) (2.26), is linear in the
parameter® and nonlinear in the parametdys;, >;), j € {1, ..., M }. The performance of
the RBF regression depends on the training of the parameens;, ;).

If all the parameter$®, u;, 33;) are simultaneously optimized under a probabilistic perspe
tive, then we can determine the RBF performance under a Gayssiaess viewpoint.

As said above, the Gaussian process viewpoint can be seegeseralization of the linear
modeling. Instead of performing the regression with thedinbasis functions (2.26), we can
calculate the kernel function (2.40) of these basis fumstion order to perform the regres-
sion with a Gaussian process with the corresponding keumektion, which will lead to the
same result. Hence, a comparison between RBF modeling andi@apsocess modeling can
be reduced to a comparison of the performance of the diffé&eemel functions in practical
applications. As we will see soon in section 3.7, a suitaklaél function is the squared ex-
ponential covariance function (2.44), which shows a goatbpmance on practical problems
of engine calibration. Further, no improvement could bei@ad by replacing this kernel
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function with others [40].

In addition, [67] showed an interesting relationship betwa dense radial basis function net-
work and the squared exponential kernel (2.44). In this éxafon a RBF modeling with
the basis functions (2.26) is considered, where the malfixonsists only of diagonal ele-
ments whose values are equal for all basis functions, hEnce X. It is shown by [67] and
[98], thatthis RBF modeling tends to a Gaussian process with the sqexigahential kernel,
as the RBF terms get dense in the input space and the numb&Fob&sis functions tends
towards infinity

In the Gaussian process formulation, all the paramé®@rg.;, 3;) of the RBF model would
be optimized simultaneously. In contrast to this technjgquengine calibration normally not
all parameters®, p;, 33;) are optimized at the same time by the maximum likelihood er th
maximum a posteriori principle. Rather, the parametgrs 33;) are often determined in an
other procedure, e.g. by clustering the training data inirthat space or by placing the basis
functions in suitable areas, without considering a prdisia perspective for the parameters
(P" j) 2])

Th]is has many advantages. Often, these procedures havpla sinucture, and typically they
are easy to implement. In addition, the methods can usugblpi numerical advantages, like
the usage of the closed-form maximum likelihood solutiodi9?. Hence, these procedures
are often computationally cheap.

But as it will be discussed at length in chapter 6, this prdisit perspective will be very
useful to evaluate the probability of the parameters anckfbee the model quality. Through
the additional information of the model quality, the onlimgtimization routine can receive a
feedback, if already enough measurements are taken, antetiurement on the test bed can
be stopped. Hence, the test bench time can be reduced toiarabptmount. Without this
probabilistic viewpoint, other methods (e.g. cross vdia® have to be used, which always
need additional measurements for testing the model quahtytherefore these methods need
more measurements for the same performance, which claatites requirement (REQ2).
Further, the RBF networks, which are used in engine calibratio not provide a quantity
about the certainty and probability of the model [34, 92,]MBich is also a direct conse-
guence of the lack of the probabilistic interpretation @& farameters, and this clearly violates
requirement (REQ6).

All these drawbacks of thegearticular typesof RBF networks, which are used in engine
calibration [92], can be overcome by a reformulation of the RB&deling in a Gaussian
process formulation, as said above. With this reformutatadl parameter$®, p;, %;) can
be determined from a probabilistic perspective and alsaortbéeling provides an estimation
of the variance of the prediction. Consequently, this ratisegjuestion why a RBF modeling
should be used at all.

Therefore, in this thesis a modeling with Gaussian prosessig the squared exponential
kernel (2.44) is preferred.
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LLR Model

Since the LLR model is a combination of two linear models, titaning of this model is

usually much faster than the training of a nonlinear modeirttter, if some additional data
is added to the measurement, also the retraining of the nimgety fast, which is useful for
online optimization where the models are updated very often

However, a drawback of the LLR model is that the basis fumstio

45(%) = exp (—M) (3.1)

27’?
are used for the RBF part, whertgis the radius of the RBF terms. As only a single parameter
r; is used for the fitting of the RBF neurons, no optimization capédormed for the length
scaling of the different inputs, compared to the automaiievance determination approach of
Gaussian processes in section 2.4.2. Hence, the globalrperice of the RBF terms will not
be very well and therefore the polynomial regression has b@egrated in the LLR model.
But clearly, this drawback could be overcome if one would bheehtasis functions (2.26) for
the modeling.

Since the LLR model is a combination of a polynomial model anfdBF model, the LLR

model can also be regarded under the Gaussian process uiewfite combination of these
two models can be obtained by a Gaussian process, wherertie kenction is a summation
of two kernel functions

k(x,X") = kpory (X, X') + krpr(x,X) (3.2)

wherek,,, (x, x’) is the kernel function of the polynomial ahg ;- (x, x") is the kernel func-
tion of the RBF model. This representation through a Gaussiaceps has the advantage
that all parameters can be optimized under a probabilistisgective, which already was dis-
cussed extensively.

However, as said above, the squared exponential covariancgon (2.44) has been identi-
fied as a suitable kernel function, which shows a good pedoga on practical data, and no
improvement could be achieved by replacing this kerneltionowith others.

3.4 Gaussian Processes compared to Local Linear Models

As discussed in section 3.2, polynomial regression shoullg lze used for low complex and
low dimensional problems in engine calibration. Howeverfteese linear models also have
many advantages, more sophisticated approaches wer@pesielnd used, which try to min-
imize the disadvantages of the polynomials.

One possible solution can be obtained if the whole inputepadivided into many smaller
subspaces. With this partitioning, the complexity of regren of every single subspace is
smaller than the complexity of the regression of the whopeiirspace. Hence, a polynomial
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(or other linear) modeling can again be used for regressioevery single (local) subspace.
The whole (global) model is then obtained through the comtiposof all local subspaces.
This type of modeling can be regarded as local linear moggetiee section 2.3.

An example of local linear modeling is given in figure 3.2.
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Figure 3.2: lllustration of local linear modeling.

As in figure 3.1, the aim of this example is the approximatibRonge’s functionﬁ, and
as above, training data is sampled (circles) from this fionctin order to perform regression
with the local linear modeling, the whole (one-dimensigmaput space is split up into two
parts, and a polynomial of order 3 is applied in each parthénlower plot the membership
functionsA; andA, are shown, which (for simplicity) are taken to be linear, anthe upper
plot the local linear model (dashed line) is drawn, whichiveg by (2.31). Also the Gaussian
process regression (gray) is plotted. Clearly, this loceddr model gives a better fit than the

highly oscillating polynomial models in figure 3.1.

Local linear modeling has various advantages compared sk processes. A relatively
simple structure leads to a fast training speed of the médether, since all the local models
are typically polynomials, local linear modeling shardsled advantages from the polynomial
modeling, like an easy implementation.

A human interpretability of a local linear model is often s@s another major strength. With
LOLIMOT, HHT and local neuro fuzzy models, which were diseed in the sections 2.3.1,
2.3.2 and 2.3.3, it is stated that a human interpretationbeagiven by the particular (tree)
structure, which is learned from the data. However, in jixadt is found that this structure is
very sensitive to the details of the data, so that small ceatgthe training data can result in
very different sets of splits [11, 41].

As described in section 2.4.2.2, a human interpretation @&assian process model can be
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obtained through an automatic relevance determination (ARBere the degree of nonlinear-
ity of each input can easily be determined, see also [66,180H.also possible to incorporate
prior knowledge with ARD. If one knows the degree of nonlinigairom an input a priori
(e.g. from a similar engine), then this knowledge can eds#lyncorporated into the mea-
surement design. A similar incorporation of prior knowledgalso possible with LOLIMOT,
HHT and local neuro fuzzy models, see e.g. [71].

However, local linear modeling suffers also from some draokis.

In a local linear model, the intersections between the swulaisare critical areas.

Since measurements will only belong to a single submodey,whll only provide information
for this specific submodel, even if these measurements tealesely to another submodel.
This clearly contradicts to requirement (REQZ2), since eveepasurement should contribute a
maximum of information to the model. As a consequence, #ak bf information will result
in a bad prediction at the intersection.

This characteristic can also be observed in figure 3.2. Becaash submodel has no infor-
mation about measurements which lie outside its subsplaeesubmodels do not know that
the function decreases outside their subspace, and therdfie local linear model predicts
a high estimation at the intersection between the submodelsetter approximation of the
intersection can only be given if more training data is sadplit should be noted, that this
problem does not occur if one uses a GP for approximationeghne GP uses all information,
see figure 3.2. Further, it should be mentioned that thislprolgets worse, if the number of
inputs increases [9]. In addition, the interpolation bebt&wof local linear models at V-type
situations, see [84] page 409, can cause strange resutis iatérsections.

Another problem of local linear modeling arises, if the tygentersections does not suit the
nature of the function, which should be approximated.

Based on the example in figure 3.2, this problem is illustréedonsidering a multidimen-
sional Runge function, like

d

e 33)
wherez; are the different inputs. Obviously, like in the one-dimenal case in figure 3.1,
polynomial regression will not provide a good fit on this ftion. Hence, a local linear mod-
eling will divide the whole input space into smaller subggmclf only straight intersections
are possible for modeling (e.g. with LOLIMOT and HHT), theg@od fit can be obtained if
every axis is split up into two parts, like in figure 3.2. But id-dimensional input space, this
will lead to 2¢ independent submodels, and since the number of measuememases with
the number of submodels, also the number of measuremeneages exponentially with the
number of inputs.
In [41] and [11] other examples of simple functions are gjwehere a similar poor perfor-
mance of local linear modeling can be determined.

Generally, if the measurement values cannot be approxthigt@olynomials and if the type
of intersections does not comply with the nature of the gohlthen the number of submod-
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els, and therefore the required number of measurementsgynai rapidly with local linear
modeling in a high dimensional input space, which cleariytadicts to requirement (REQ1)
and (REQ2).

It should be noted, that this is not the case with GP regrassiace only one global model
and no submodels exist. Hence, like the MLP network, Gangsiacesses can get along
better with the curse of dimensionality than local lineardeis, see also [84].

These theoretical considerations will be further illustdawith practical data sets in sections
3.7.3and 3.7.4.

3.5 Gaussian Processes compared to MLP Networks

The MLP network is widely used in the area of machine learming also in engine calibra-
tion, see e.g. the mbminimize concept of BMW [116]. In modasdd offline optimization,
see [76], model-based online optimization, see [53], ame & dynamic model-based online
optimization, see [21], the MLP is used for modeling.

Surprisingly, the MLP modeling motivated the use of GP rsgi@n in this work. It was
shown by [92], that the mbminimize concept, which is an anloptimization concept, par-
tially based on a committee of MLP networks, does not perfasiwell as the EGO algorithm,
which is an online optimization concept, based on the DACEehamh noise free experimen-
tal data. However, because the DACE model cannot cope witeram the measurements,
this approach could not be used for noisy engine calibratsks [92]. Nevertheless, since
the DACE model is only a noise free Gaussian process, whicleasity be extended with a
noise term, see section 2.4.2.3, and because the commiittdeRonetworks works well in
practice, it was assumed that GP regression could perfoem leetter on engine calibration
tasks.

Like Gaussian processes, the MLP networks comply with magyirements which are listed
in section 3.1.

As mentioned above, the MLP can cope better with the cursexaérsionality (REQ1) than
local linear models, see also [84], and therefore it neederfeneasurements for the same
problem (REQZ2). By adding additional hidden units, the flditipof the MLP can be en-
larged (REQ3), and with Bayesian regularization, overfitiag be avoided (REQ4). Further,
it was found that this automatic model training is very dejadie [92] (REQS).

Due to random network initializations and nonlinear opgation of multimodal problems, a
MLP modeling will generate different functions, which isnsetimes seen as a drawback of
a modeling with MLP’s. However, exactly these differentdtions can be used to identify
a quantity about the certainty and probability of the modREQ®6). If different MLP mod-
els predict similar values, then the certainty of the prialicis expected to be high and vice
versa. Hence, a committee of MLP’s can be used for modeledbasine optimization, which
has been implemented in the query-by-committee approa¢d2py

Therefore, in order to evaluate the performance of MLP ngtaszoompared to GP regression,
we have to examine the differences and the relationshipgeeet these types of modeling.
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At first, we will evaluate the computational costs of thesprapches.

The training of a MLP network is performed through a nonlinegtimization of the)M net-
work weights. The computationally most expensive task isf dptimization is the inversion
of the Hessiaf{ rssr e in (2.33) and (2.35). Since this matrix is of six& x M, the compu-
tational complexity of the MLP training scales with( A73). As will be discussed extensively
in section 3.8, the GP training is performed through a nealimoptimization of the hyper-
parameters, and the computational complexity of this imgiscales withO(N?), where N

is the number of training data points. HenceMf> M, which is typically the case in ap-
plications where we want to estimate a simple behavior oatluiige data set, then the MLP
training will be much faster than the GP training. Howevegading to requirement (REQ?2),
in stationary base engine calibration we usually want tiorege the behavior out of a data set,
which is as small as possible. Hence, nearly every measutemileresult in an improvement
of the accuracy of the model, which can only be included inNth& network, if the number
of model parameters/ is increased. Thus, in engine calibration offér~ M, and therefore
the computational complexity of the MLP training will scaemilar to the GP training for
small data sets.

The same analysis can be performed with the prediction ofntbéels. IfN > M, then the
prediction of the MLP network will be much faster, and\f ~ M, then the computational
effort of both approaches will be similar.

There exists a simple relationship between MLP networks@audssian processes. [81] has
shown that, using a Gaussian prior for the parameters wigshlts into the common error
function (2.14)the distribution of functions generated by a MLP network weilid to a Gaus-
sian process in the limit of an infinite number of neurons

Therefore, instead of a MLP modeling, one can perform a GPefiragiwith an equivalent
result, if the neural network kernel functién v (x, x’) is used, which can be found in [98].

The update formulas (2.33)-(2.35) for the Bayesian regzdéion are results of a Gaussian
approximation of the posterior distribution [81]. Hence,the convergence proof of [81],
Markov chain Monte Carlo (MCMC) methods are used in order to th&egull advantage of
the available data.

However, since the MCMC methods are computationally vergagjve, in engine calibration
only the the approximation scheme (2.33)-(2.35) is usederdiore, in engine calibration
the prediction of a MLP modeling will not be as accurate as asSian process with the
neural network kernel function. Especially the error betwéhe MLP model and the real
function behavior, according to the value (2.8), will notheerge to zero, if the number of
measurements tends to infinity, since only a MLP networkmaftéd size can be used with
the approximation scheme [81], and therefore there willglsvbe a bias left in the model,
because the MLP is only a universal approximator, if the nemalb neurons tends to infinity.
These theoretical considerations could be confirmed ontipehalata sets, and also other
works, independent from this one, came to the same conalu&a@. in [58] it is observed,
that the RMSE of the MLP model does not converge to the noisd,l@vthe number of
measurements increases, whereas the RMSE of a GP modelgesnt@this minimum value.
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The fact, that the MLP converges to the GP, raised a broadsigm in the area of machine
learning, if Gaussian processes could possibly replaceaheetworks, see [67]. Further, why
should one use query-by-committee with MLP networks, if ai§dsan process can be used,
which produces the same results as a committee of an infimitdoar of MLP’s, each with an
infinite number of neurons?

However, a modeling with MLP’s may be preferred for appli@as where the number of mea-
surements is large, because a modeling with Gaussian gescsscomputationally expensive,
see section 3.8.

3.6 Gaussian Processes compared to Support and Relevance
Vector Machines

As we will discuss at length in section 3.8, the computati@most of Gaussian processes is
high, since the kernel functioh(x,, x,,) has to be evaluated for all possible paisand
x,, Of training points, which can be seen from (2.42). In someliegiions, this can be
computationally infeasible during the training, and ats® prediction might require excessive
computation times.

Therefore, the support and relevance vector machines resre developed and used. These
types of modeling use only a subset of the training data fediption, and therefore these
techniques are called sparse kernel machines.

Hence, the support and relevance vector machines do natistalirect competition with the
Gaussian process regression. The sparse kernel macheesmputationally cheaper, but
the predictions will not be as accurate as Gaussian praeeskerefore, a modeling with GP
should always be preferred for applications where the caatjpmal effort is acceptable, and
the SVM or RVM have to be used where the computational conitgléxr a GP modeling is
too high.

The support vector machines have the advantage that thaipgtion (2.58) is a quadratic
programming problem, whereas the marginal likelihood mmazation for the relevance vec-
tor machine is non-convex and may be multimodal, which mayg ke several local minima.
But support vector machines also suffer from some drawbacks.

As it can be seen from the equations in section 2.4.3, there psobabilistic viewpoint in this
modeling. Hence, the evaluation of the model quality tylyo@quires cross-validation pro-
cedures, which are computationally expensive. Furtherptiedictions are not probabilistic
either. However, as stated in requirement (REQ6), we needatigy of how much we can
trust the prediction. Since to the unique global minimum2§8), it is not possible either to
build a committee of SVMs, like the MLP committee in the mbmirze concept [92]. Hence,
the support vector regression does not comply with requerérfREQ6).

In addition, at support vector regression it is necessaegtionate the insensitivity parameter
¢ of (2.56) and the regularization parameteof (2.57). This also generally requires a cross
validation procedure, which is wasteful both of data and motation.
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Furthermore, for a wide range of regression tasks the stipector machine does not achieve
as sparse solutions as the relevance vector machine [1hbg & the same time the general-
ization error, and therefore the quality of the predictisrsimilar.

A problem of relevance vector machines arises, when it céoe prediction at areas, which
are far away from training cases. As argued in section Z4tBe use of the kernel function
(2.54) allows to obtain a sparse solution for the RVM. But asshin [97], it has also the un-
desirable effect that the predictive uncertainties getllemgne further one moves away from
the training cases. Although the work [97] tries to fix thislplem, it is shown that the kernel
function (2.54) of the relevance vector machine is good éonputational reasons, but bad for
modeling reasons [98].

3.7 Practical Model Comparison on a Diesel Engine

In the sections above we discussed various theoreticabpiep. We discussed that the RBF
network converges to a GP, that the MLP network converge€i, ahat the RVM is a special
case of a GP and that the SVM has various disadvantages cedmoaGP. The relationships
between these approaches can be well determined from tbeytlaad under consideration
of the requirements of engine calibration, we were able &wvdronclusions, which of these
types of modeling is most suitable for stationary base catiitn.

Further, we examined some drawbacks of polynomial regyessid local linear modeling on
theoretical examples. However, we omigimedthat these drawbacks would also occur in
practice. Hence, in this section these drawbacks arer#ligst at a practical application, and
we will demonstrate that the GP approach has various adyasiteompared to local linear
modeling and polynomials, when it comes to practical data.

In addition, we already mentioned that the squared expaidwirnel is suitable for approxi-
mation with GP, and now we want to review this statement.

Last but not least, a further motivation for this sectionaslemonstrate the performance of
the Gaussian process approach. For every GP model in thisrsegbe hyperparameters had
been determined by a fully automatic nonlinear optimizatiathout any manual interaction.
Hence, a user of this approach does not need to have knowédnge GP regression, but
nevertheless, with this automatic technique he is ableltulzde a meaningful model out of
the data, which performs better than the other state of tregppproaches.

Therefore, in this section Gaussian process regressigopised on NOx, consumption and
soot measurements of a diesel engine and compared to pabinstepwise regression and
local linear modeling.

The measurements result from a cooperation between KRATZHROMATION AG and
MAN Truck & Bus AG Nurnberg.

780 measurements have been taken from 11 operating poimt are shown in figure 3.3.
The adjustment parameters (and therefore the inputs of tuels) are the main injection
time, injection pressure, quantity and time of the postitige and the desired air-fuel mixture
ratio, which is controlled by the quantity of exhaust gasroegation. As a global model is
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Figure 3.3: Operating points of the measured data.

calculated, also the engine speed and engine torque ame ask@puts. This leads to a 7-
dimensional input space. For reasons of confidentialitynalasurements are scaled to an
interval of [0 1].

At first, the modeling of the NOx and consumption measuremmsntonsidered. After that,
the modeling of soot will be regarded.

3.7.1 Global Modeling of Consumption and NOx Emissions

For the NOx emissions and the consumption measurementssfaaiprocesses, which are
described in section 2.4.2, and polynomial stepwise regyeswhich is described in section
2.2.1.1, are applied on the training data and compared stgzaich other.

In order to determine which admissible set of regressoraldhme used for stepwise regres-
sion, full polynomial models with all coefficients up to 4tkder in all of the 7 input dimen-
sions are applied to the whole measurement data, so thatda@opnial coefficients have to
be estimated out of 780 measurements. Figure 3.4 shows theuneel-predicted plots of this
modeling.

It can be seen that in both cases the models can adapt theesnitly of NOx and consump-
tion. Therefore, it is assumed that a polynomial model ool in all input dimensions is
satisfactory for the complexity of the characteristics dNand consumption (in the later
sections it will be shown, that this is not the case for the sagssions). Hence, for the global
polynomial stepwise regression, it will be sufficient to oke the already mentioned 330 co-
efficients for the admissible set of regressors. In orddrttieapolynomial modeling performs
well, the measurements have been taken from a d-optimajrlesi

The figures 3.5 and 3.6 show a comparison of global Gausstmegs models and polynomial
stepwise regression models.

In these figures the training data is varied. From the totab5@80 measurements, a subset
is randomly selected and used for training, and the remgimeasurements are used for
validation. After that, a Gaussian process model and a potyal stepwise regression model
were calculated with the same training data. Table 3.1 sliwswsormalized RMSE (NRMSE)
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Figure 3.4: Measured-predicted plots of global polynommabels for consumption (left) and
NOx emissions (right) of a diesel engine. A polynomial of@rd has (in both cases) been
used for modeling the measured data.

for the training and the validation data of the figures 3.5 2uéd

It is obvious that both types of modeling are able to adapth@aacteristics of the measure-
ments and, like in the simple example in section 3.2 in figute e models improve if the
number of training data is increased.

Further, it can be seen that the Gaussian process modelgsabgeform slightly better than
the polynomial models. Therefore, for this NOx and consuompmeasurements, if one is
using a Gaussian process modeling, either the model wi# bavetter performance than the
polynomial modeling, or one can reduce measurements i todget the same performance
than the polynomial modeling.

However, this positive effect of Gaussian process modeadimgt very big for NOx and con-
sumption. This is due to the low complexity of the charasters of NOx and consumption.
Since the behavior of both quantities is very smooth, theyeasily be approximated by a

Consumption - NRMSE Gaussian processes polynomial stepeigession

training data validation data training data  validationaedat
90% training data 0.006268 0.012265 0.004709 0.019829
70% training data 0.006252 0.012561 0.004220 0.027917
20% training data 0.002445 0.022655 0.009099 0.042445

NOx - NRMSE Gaussian processes polynomial stepwise regress
training data validation data training data  validationedat
90% training data 0.002294 0.019084 0.004995 0.033580
70% training data 0.002599 0.014920 0.003808 0.034643
20% training data 0.001976 0.021771 0.015270 0.039939

Table 3.1: NRMSE of consumption (figure 3.5) and NOx (figurg.3.6
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Figure 3.5: Comparison of modeling consumption. Top: Regvassith 702 measurements
for training (90%) and 78 measurements for validation (1004ldle: Regression with 546
measurements for training (70%) and 234 measurements lidatran (30%); Bottom: Re-

gression with 156 measurements for training (20%) and 62d4sorements for validation
(80%); Left: Gaussian process modeling; Right: Polynontepwise regression.
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Figure 3.6: Comparison of modeling NOx emissions. Top: Rejpaswith 702 measure-
ments for training (90%) and 78 measurements for validgfi0fo); Middle: Regression with
546 measurements for training (70%) and 234 measuremamnalidation (30%); Bottom:

Regression with 273 measurements for training (35%) and 5€&sorements for validation
(65%); Left: Gaussian process modeling; Right: Polynontepwise regression.
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polynomial of a low (4th) order. In the following, the soot issions of a diesel engine are
considered, which are more difficult to model, and the mawvaathges of the Gaussian pro-
cess regression will become obvious.

But it has been shown, that even if the complexity of the fuarctwhich should be approxi-
mated is low and a polynomial modeling can be performed, thes&ian process regression
is useful as well and will also have a good performance.

3.7.2 Global Modeling of Soot Emissions

Now the modeling of the soot emissions is considered. 2%wsthad to be removed, so that
only 755 measurements are available for the modeling (Iméxé section a modeling will be
presented, which is robust to outliers. However, for the mimve want to move on with the
standard approach).

In order to illustrate the increasing complexity when it @to the modeling of soot, com-
pared to NOx and consumption, again a polynomial regressionder 4 in all input dimen-
sions is performed with the measurement data, and the iesllown in figure 3.7.
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Figure 3.7: Measured-predicted plot of a Figure 3.8: Intersection plot of soot
global polynomial model for soot emissions. emissions. From the model and the
As in figure 3.4, a polynomial of order 4 has measurements, the highly nonlinear
been used for modeling the measured data. ~ behavior can be seen.

By comparison of figure 3.4 and figure 3.7, it can clearly be $eaha polynomial of order 4

is not able to adapt the nonlinear behavior of the soot eonssiAlthough all data has been
used for training and none for validation, the polynomiahet able to reproduce the soot
emissions in the middle and top region.

The reason that soot is more complicated to model than NOgrmsumption lies in the com-

plexity of this quantity. There is more noise on the measemsand the behavior of soot is
much more nonlinear than the behavior of NOx or consumpfiofigure 3.8 an intersection

plot of a soot model is given. That one can trust this moddl s@bn be shown. Also mea-
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surement data is plotted in figure 3.8. The fast increasing smissions at a small lambda
value can be seen. It is clear that a polynomial of a low orsl@ot able to cover this highly
nonlinear behavior. Hence, from figure 3.7 and 3.8 it folldkst the admissible set of regres-
sors for the polynomial modeling requires also terms, whiehhigher than the 4th order.

It should be mentioned, that a full polynomial model of oréein all 7 input dimensions
already contains 792 coefficients. If the polynomial degsecreased to 6 or 7, then the
number of coefficients increases to 1716 and 3432 resphctiVaerefore, one cannot cal-
culate a full polynomial of an order of 5 or higher without hgioverfitted, since only 755
measurements are available. But like mentioned above, witmpmial stepwise regression
overfitting can be avoided, since only the significant regpesare chosen for the model.

The figure 3.9 shows a comparison of a global Gaussian praveds| and global polynomial
stepwise regression models.

From the total set of 755 measurements, a subset of 85% ismdnpdelected and used for
training, and the remaining measurements are used forat@id After that, a Gaussian
process model and polynomial models with stepwise regresgere calculated with the same
training data. As it is not clear which polynomial order fbetadmissible set of regressors
should be chosen, this order is varied. Table 3.2 shows the Sl RMr the training and the
validation data of figure 3.9.

Gaussian process  polynomial stepwise regression; aditeisst of regressors has

model order 4 order 5 order 6 order 7
training data 0.006031 0.044208 0.015171 0.015062 0.a1144
validation data 0.023704 0.065992 0.055462 0.076661 648®m3

Table 3.2: NRMSE of soot (figure 3.9).

From the plots in figure 3.9 it can clearly be seen, that a potyal stepwise regression
model, where the admissible set of regressor is of a low (@tthr, is not able to adapt the
nonlinearity of the soot emissions. This was expectedesime already showed this fact for
a full polynomial of order 4 in figure 3.7. Further, it can begdhat polynomials, where
the admissible set of regressors is of a higher order, captdlda nonlinearity better. But
obviously, these polynomial models have some outliersenvedidation data. These outliers
get worse, if the polynomial degree is increasing. Note tiaipolynomial model, where the
admissible set of regressors is of order 5, has an outliehenadp right, whose error is 0.3.
If the order of the admissible set of regressors is increésddor 7, then the error of the
highest outlier increases to a value of 0.5 and 1.6 respggtf). It should be reminded that
all measurements are scaled to an interval of [0 1], and diepof an error of 1.6 means,
that the error of the prediction is 160% of the spread betwbenhighest and the lowest
measurement.

In order to illustrate this effect of the outliers, figure @ dhows two intersection plots of the
models.

These intersection plots had been made by varying only qn iparameter, like the time

(left) or the quantity (right) of the post injection, and ka&®g all other parameters at a con-
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Figure 3.9: Comparison of modeling soot emissions with 642suements for training
(85%) and 113 measurements for validation (15%); Top: Gangzocess modeling; Bot-

tom: Polynomial stepwise regression, where the admissédilef regressors is given by a full
polynomial of order 3, 4, 5 and 6.
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Figure 3.10: Intersection plots of modeled soot emissioitis @aussian processes and poly-
nomial stepwise regression. In this figure the modeling &amir over the time (left) and
quantity (right) of the post injection, while all other ingguare held on constant values. The
increasing values of the polynomial modeling at the edgekevinterval can be seen.

stant value. As it can be seen, the SE kernel function (2.420ytes a smooth behavior of
the GP model, which constitutes our model assumption irosiaty base calibration. Further,
again it should be mentioned that all measured data wasdsttaén interval of [0 1] and the
scaling of the plots should be noted. At some areas, somaqaial models predict a value,
which is over 1000% higher than the highest value in the nreasents. Is is clearly very
unlikely that this prediction is a good one.

With figure 3.10 the appearance of the outliers in figure 3r@ruaw be understood. Poly-
nomial models, which contain coefficients with a high polynal order, tend to oscillate in
regions where measurements are scarce. This effect isadgpiivto the effect in the theo-
retical example in section 3.2 in figure 3.1. As in the thaoattexample, the polynomial
models tend to oscillate where no data is available. But anfikhe theoretical example, the
application on the diesel engine has not only one input patambut the input space is now
7-dimensional. Due to the curse of dimensionality, the raus increasing rapidly when
the input dimensionality is higher, and therefore theremaa@y subspaces in the input space
where measurements are scarce. In these subspaces, pialymadels, which contain co-
efficients of a high order, will tend to predict unlikely higlalues. Hence, the polynomials
cannot be used for a global modeling of the soot emissiorstvis amount of data.

As in the theoretical example in figure 3.1 or in the practe@ample in section 3.7.1, clearly,
the performance of the polynomial models could be improiféde number of measurements
would be increased. However, increasing the number of neamnts is not necessary, if one
is using a Gaussian process model, since from figure 3.9 &thel 382 one can see that this
approach gives a good global approximation of the soot eomss
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3.7.3 Comparison of Local and Global Modeling of Soot Emissions

In this section a comparison of local and global modelinghef¢oot emissions is examined.
As mentioned above, the reason why polynomials cannot gi®d global approximation to
the soot emissions is the highly nonlinear behavior. In oroleeduce the nonlinearity for the
polynomial modeling, a local modeling for the polynomiadsivise regression is considered.
In order to abbreviate this section, not every single tydead! linear modeling (e.g. LOLIMOT,
HHT, ect.) will be discussed here. Therefore, we do not wacbnsider any specific type of
intersection. Thus, we will examine only a single operapogt at a time for the polynomial
model. This local modeling has the advantage that the inpaémkionality decreases by a
factor of 2, since engine speed and engine torque do not ndetlregarded as inputs. There-
fore, due to the curse of dimensionality, the space of regyass decreasing, and compared
to a global model in section 3.7.2, polynomial models agaimfoe used.

This specific type of modeling is also often called a local elod) in the literature, but this
should not be mixed up with a general local linear modelingerg the intersections can
also divide the space of the adjustment parameters. Hoytbeee exist different approaches,
which combine the local linear operating point models toodgl model [113]. In addition, we
will see that we can draw conclusions from this specific typlecal modeling, which verify
our theoretical thoughts in section 3.4, independent fraynspecific partitioning algorithm.

The figures 3.11 and 3.12 show a comparison of global Gaugpstaess models and local
polynomial stepwise regression models.

From the total set of the 755 measurements, two operatingpuiere chosen: one at an
engine speed of 1000 1/min and engine torque at 230 Nm, tlee atlengine speed of 1525
1/min and engine torque at 780 Nm. At these operating poin@g 76, respectively, mea-
surements were performed. These measurements were dimidétland 63, respectively,

measurements for training (85% and 83%) and 10 and 13, reésggcmeasurements for val-

idation (15% and 17%). With this training data, local polymal stepwise regression models
have been calculated. Since it was not clear which polynlooniker should be chosen for the
admissible set of regressors, this order had been varied.

Finally, in the figures 3.11 and 3.12 these polynomial modafsbe compared to the global
Gaussian process model. For this GP model, only the measutatata at the certain oper-
ating point is plotted. It should be noted that, at the cagr®d operating points, the global
GP model has the same training and the same validation d#ta &xcal polynomial models.

Table 3.3 shows the NRMSE for the training and the validatiata af the figures 3.11 and
3.12.

As observed above, polynomials with a high order tend tollasei(this can be seen by the
outliers in the measured-predicted plots) and polynonu&éslow order cannot approximate
the nonlinearity of the soot emissions. But compared to theajlpolynomial modeling in

section 3.7.2, there is always a local model which is notllasicig, which can be seen by the
fact that there are no outliers in the validation data, andrelthe polynomial order is able to
approximate the nonlinearity. Therefore, the local poiyed approach works better than the
global polynomial modeling. Nevertheless, it can be seanttie local data of the global GP
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Figure 3.11: Comparison of global Gaussian process moddl$oaal polynomial stepwise
regression models. From the total set of the 755 measursnmy the operating point at en-
gine speed of 1000 1/min and engine torque of 230 Nm is coresidé\t this operating point
there are 57 measurements for training (85%) and 10 measutsrfor validation (15%).
Top: Measurements of the global Gaussian process modélthgsaperating point; Bottom:
With the local measurements, a local polynomial stepwigeession was performed, where
the admissible set of regressors was given by a full polyabaiiorder 3, 4, 5 and 6.



3.7. Practical Model Comparis

on on a Diesel Engine

Gaussian process model

0.5 + training data P ¥
O validation data B
4
0.4
4HT
ko] +
()
5 03
8 ot
02 4
gJ)-e
0.1 R
0 f L L L L L
0 0.1 0.2 0.3 0.4 0.5
measured
polynomial stepwise regression — order 3 polynomial stepwise regression — order 4
0.5} + training data + 0.5 + training data 1
O validation data # O validation data #TF
H H#
0.4r¢ 0.4 ‘i— +
+, + #£
3 5 ] ¥
o) L £+ Q %
203 + 2 03 :
Q2 Q L 5
3 +3¥ 2 4
5 > 5 o PF
0.2 o + 0.2 t
O ¥, o+ o +
© 20
2Q O
01}  ¥° o1f  ¥O
o0Q# ° P
0 'ffo ‘ ‘ ‘ ‘ ‘ 0 %’8 L, O ‘ ‘ ‘
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
measured measured
polynomial stepwise regression — order 5 polynomial stepwise regression — order 6
051 + training data +++ 1 0.5 + training data L
. . T
o O validation data £ O validation data #
i+ A
0.4r1 . 0.4 )
N th L
+ L%
8 o3} 3+ 203 &
Q o Q )
E o‘!‘ (o] g ‘_p_'_"' o)
o2 © O 202l o o
L0 ,50
9] _*.b
01 L*© 01f o+
q_‘ . s
,%% 0 _5? o ©
o O ‘C s
0

Figure 3.12: Comparison of global Gaussian process modédl$oaal polynomial stepwise
regression models. From the total set of the 755 measursnmmy the operating point at en-
gine speed of 1525 1/min and engine torque of 780 Nm is coresidé\t this operating point
there are 63 measurements for training (83%) and 13 measutsrfor validation (17%).
Top: Measurements of the global Gaussian process modélthgsaperating point; Bottom:
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With the local measurements, a local polynomial stepwigeession was performed, where

the admissible set of regressors was given by a full polyabaiiorder 3, 4, 5 and 6.
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Soot - NRMSE - operating point: engine speed = 1000 1/mininenigprque = 230 Nm
Gaussian process  polynomial stepwise regression; adneisst of regressors has

model order 3 order 4 order 5 order 6
training data 0.004579 0.072715 0.058365 0.039499 0.0D983
validation data 0.014404 0.067889 0.063581 0.041354 0.B58

Soot - NRMSE - operating point: engine speed = 1525 1/mininenigrque = 780 Nm
Gaussian process  polynomial stepwise regression; adieisst of regressors has

model order 3 order 4 order 5 order 6
training data 0.005770 0.017621 0.014039 0.011615 0.843
validation data 0.012361 0.055226 0.062795 0.139190 8:1m9

Table 3.3: NRMSE for figures 3.11 and 3.12.

model has always a better performance than the local poliaionodels at all polynomial
orders.

In order to illustrate the difference of global and local ratbag, with the local measurements
also a local GP model is calculated and the results are shofiguire 3.13. Clearly, the local
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Figure 3.13: Comparison of a global Gaussian process modea daocal Gaussian process
model at the operating point at engine speed of 1525 1/mireagohe torque of 780 Nm.

GP model has a better performance than the local polynonudkis. But it can also be seen
that the global model has a better performance on the vadiddata than the local one.
The reason for this lies in the fact that a global modelingusnall information of all measure-
ments at once. Hence, the information from operating poivitech are near to the considered
operating point, can be incorporated by the global GP modkerefore, all measurements
contribute a maximum of information to the global model (REEQ2e also section 3.4.
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3.7.4 Conclusion of the Practical Model Comparison

In this section, various theoretical thoughts of the s&sti8.2 and 3.4 were illustrated on
practical data sets.

We have seen that, even for low complex problems,GlReapproach performs better than
the polynomial stepwise regressjamd that the advantages of GP modeling become more
significant, if the complexity of the problem increases. tker, in the practical application
above, we saw thatglobal (GP) modeling performs better than a local modelwgich can
also be justified by the theoretical examinations in sec8idn Hencewe conclude that GP
regression is more suitable than a local linear modelingdagine calibration tasks.

Further, it could be seen that the squared exponential o function (2.44) is a suitable
kernel function, which shows a good performance on pragticdlems of engine calibration,
and therefore this kernel function will be used for all otpeactical examples in the further
course of the thesis.

In addition, we demonstrated that the fully automatic Geunsprocess approach has a very
good performance on all data sets, and hence, this type alingds suitable for model-based
online optimization in engine calibration, see section 6.

3.8 Drawbacks of Gaussian Processes

It seems to be a law of nature that the advantage of gettinghtis¢ information out of the
measurement data comes with the drawback of a high commugheffort.

For the training of the Gaussian process, a nonlinear opditioin of the hyperparameters is
performed, where the likelihood function (2.49) is optiedz Hence, in every optimization
step, the matrix inversion in (2.49) has to be performedcé&this matrix is of sizéV x N,
the computational effort of the training scales withiN?). Although this matrix inversion
is not performed explicitly, but rather a Cholesky factotiza is calculated, obviously, this
modeling will be computationally infeasible if the numbémeeasurements is high, which is
a significant limitation of Gaussian processes.

This drawback of a high training time can be slightly mitggtin model-based online opti-
mization, where the hyperparameters do not have to be updatevery single new mea-
surement. However, also the prediction requires a high coatipnal effort. From (2.51) and
(2.52) we see that, for the prediction of a single paintthe kernel functiork(x., x,,) has to
be evaluatedv times (once for every single measuremeptn € {1,..., N}).

Hence, on a standard PC this method could just be tested for10.000. Clearly, Gaussian
processes are not suitable for dynamic engine calibrattbere the number of measurements
is very high. But GP are appropriate for stationary base i&lin, because in this application
the number of measurements is rarely higher tHaf00.

For the application of Gaussian processes to quantitiedadsel engine in section 3.7, 780
measurements were considered, and the required time fioingavas about 20 seconds on a
standard computer.
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3.9 Conclusion and Discussion

In this chapter various different modeling techniques Heeen discussed. By considering the
requirements of stationary base engine calibration, we\able to draw conclusions, which
type of modeling is most suitable for this application.

The Gaussian process approach complies with all requiresnghich are listed in section 3.1,
and therefore we recommend this technique for stationarg bakbration.

Among other advantages of GP regression, this approachedaitiypautomated, and therefore
it does not need any manual interaction from the user. Fyrthie technique shows the best
performance on practical data sets, and even with a low atadutata, it is able to give an
accurate prediction for the mean and variance.

However, there are other applications where it may be usefdiffer from the requirements
given above.

If the number of measurements is too high to calculate a fall€gian process model, then
other methods of nonlinear modeling can be suitable, likePMietworks, the RVM or the
SVM.

If more measurements are available and a strong humandtitaran the process is needed,
then a local linear modeling may be helpful.

A polynomial stepwise regression should only be used fordomplex problems.
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Chapter 4

ROBUST GAUSSIAN PROCESS MODELING
FOR ENGINE CALIBRATION

In the previous two chapters various different types of nliagehave been discussed, and it
was shown that the Gaussian process modeling is the moabkuine for stationary base
engine calibration. Hence, we will concentrate on this epph in the further course of the
thesis. However, there are still two important issues whitén occur in practical applications
and which are not yet considered by the modeling:

(ROB1) In practical data sethe assumptions for the distributions of measurements and
noise are often not meFor our Gaussian process model, as well as for many other
types of modeling, we assumed that the noise on the measoteme.i.d. Gaus-
sian distributed, see (2.45). In addition, from the defomtof Gaussian processes
it follows that the model is Gaussian distributed, see (R.4#®bwever, as we will
see soon, in many practical applications these assumprensot met, especially
when one is trying to model emissions. In order to improveatbiéty of the mod-
eling to express the real behavior of the dat@aasformation of the measurements
will be presented.

(ROB2) In practical data setaitliers often occur in the measuremerspecially in quanti-
ties which are hard to measure, as the soot emissions, whislkameady mentioned
in section 3.7.2. These outliers are not considered by thdetimg, since we as-
sumed an i.i.d. Gaussian noise. Hence, as in section 3h&ge toutliers have
to be removed before model training, in order to get a goodehqdality and a
good prediction. This has serious drawbacks because wsualhnual interaction
is needed to identify the outliers, since an automatic dieteof the outliers is not
very robust or computationally very expensive, if there @au&@ny outliers in the
data, which we will see soon. In contrast to state of the aarghms for engine
calibration, a modeling based on Gaussian processes wildsented, which is
robust to outliers

In order to improve the model quality if these two problenROB1) and (ROB2), occur, in
this chapter the Gaussian process technique will be extereael this type of modeling will
be referred to as robust Gaussian process modeling in tbsssthHence, the term ‘robust
modeling’ refers to a modeling which has a good performaeecen if the measurements and
the noise are not i.i.d. normally distributed and outliezswr in the training data.
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The idea of robust regression is far from new.

There exist several different types of transformation f@n-mormally distributed data, which
have already been developed and used in engine calibrdievertheless, since these trans-
formations suffer from some drawbacks, which will be exiesly discussed in section 4.1, a
new technique will be presented.

In addition, although there exists no modeling approactcivis robust to outliers in engine
calibration, in other fields of research, especially inist&as and machine learning, outlier-
robust techniques have already been developed. Howewee, &gl see soon, some additional
work is required for a meaningful implementation for enguadibration.

The goal of this chapter is the development of a new robusetimgglframework for stationary
base engine calibration, which could be achieved by mauifgtate of the art approaches
from other fields of research and by introducing new techesqu

In the next section a new nonlinear transformation will besented. In the other following
sections the formulas for a Gaussian process modeling,iwhicobust to outliers, will be
derived. The discussion of this modeling is an extensiomefésults published in [8].

4.1 Nonlinear Transformation of the Data

As already discussed above, we assumed that the aomethe observed measuremetits
i.i.d. normally distributed, see (2.45), and that our mgded Gaussian distributed, see (2.46).
However, for some applications in engine calibration tressimptions might be inappropri-
ate.

A common example is the modeling of emissions, e.g. NOx. larégt.1 (a) a typical distri-
bution of NOx measurements is given. Due to reasons of contfality, the labeling of the x-
axis is not shown. Nevertheless, it can be seen that a lotafunements are taken at low NOx
rates (typically near zero) and only a few measurementsasentat high NOx values. Since
a space filling design was used for taking these measuremergshowever, clearly very
unlikely that these observations come from a system whicloimally distributed. Hence, a
Gaussian distributed model will not be appropriate for thpraximation of this quantity.

In addition, the measurement noise often scales with thenrokthe data, which is known as
a special form of heteroscedasticity. Again, this is tyllyctne case when one is measuring
emissions. Usually, the measurement error at low emissatures is much smaller than the
measurement error at high emission values, and theref@eammon to estimate the mea-
surement noise as a percentage of the mean value. Howewee assumed an identically
distributed noise (homoscedasticity), the predictionhef variance will clearly not be a very
good one [26].

If these problems occur, a transformation of the data miglgtable [26]. As the modeling
should be fully automated in order to apply it to model-baseithe optimization, we seek for
a method which automatically determines if it is approgriattransform the data or if not.

In this thesis we suggest the following two-step approactitfe transformation of the data,
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which has been found to work very well in practice:

1. Nonlinear transformation of the data to a normal distrdu(if necessary)

2. Linear (affine) transformation (normalization) of theéai#n zero mean and unit variance
(if, after the first step, the data is normally distributdekr, after this linear transforma-
tion, the data will be standard normally distributed, sd thas A/(0, 1))

The second (linear) transformation is performed due to amsideration of a zero mean,

unit variance Gaussian process. On the one hand this siocapiliin has been made for nota-
tional convenience, but on the other hand this procedursgaul) since we are able to choose
meaningful starting points for the nonlinear optimizatmfrthe hyperparameters, which are
invariant of the scaling of the measurements. As the linearsformation is a very simple

(but very useful) and unproblematic technique, in thisisadhe focus lies on the nonlinear
transformation.

By far, the most commonly used nonlinear transformationesBbx-Cox transformation [13].
This transformation is parameterized through a coeffichesntd is forz > 0 given by

fBoxCox(x) = 5\ ’ A 7& 0 (4.1)

Since we do not only want to model in the transformed spadewblalso want to give pre-
dictions in the origin space, we have to apply the inversdefttansformation to our model
output. The inverse of the Box-Cox transformation is given by

. Oy A N #£0
fBoxCox<y) T {exp(y), 5\ —0. (4-2)

However, in order to calculate the invergehas to be in the image gBoxcox, Which requires
thaty > —1 for A > 0 andy < —1 for A < 0. Exceptions aré = 1 and\ = 0, which can
always be inverted.

In many cases the constraint, thahas to be in the image g&oxcox IS UNnproblematic, since
the model is often only interpolating the measurements antéxtrapolating. However, in
model-based online optimization we are usually seekingafoextremum, whose value is
higher or lower than all other measurements.

Hence, the Box-Cox transformation is inappropriate for theeinsengine calibration. There-
fore, in [92] a different version of the Box-Cox transformatis developed, which can be
inverted for ally values. This transformation requires two additional patarsv,, v, > 0,
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and is given by

((z* — 1)/, A>0,2> 0
vi\_l-(x—vl)+(v15‘—1)/5\, A> 0,2 <

fra(z) == < In(z), A=0 (4.3)
(z* — 1)/, A <0,z <y
(7 (@ =) + (3 = 1)/A, A< 0,2 > vy

The problem of this technique is the determination of sléafalues forv; andwv,. In [92]
the parameters are partially fixed ¢ = 0.1 andv, = 2.5, but this arbitrary choice can
be inappropriate in many applications. In addition, we sieelan approach which is fully
automatic, since we want to use the modeling in model-baskwaecoptimization.

In contrast, it has been found to be very useful to transfdrendata by a simple logarithm.
This is due to the fact that in engine calibration the distiitm of the measurements is either
symmetric, e.g. consumption, temperature, etc., andftrerao transformation is needed, or
the distribution of the measurements is right-tailed, emissions, as the already discussed
NOx measurements in figure 4.1 (a), and therefore a transtavmwith the logarithm can
give good results, see below. However, as we will see soosf-¢ailed distribution cannot
be meaningfully transformed with a logarithm, but this peob never occurred in practical
tasks in engine calibration. Further, as the measuremesg ften scales with the mean of
the data, except for an additive constant, an identicafijriduted noise can be obtained with
a logarithmic transformation [26].

Hence, we suggest the following transformation for engaiécation

fnTrans(l’) = ln($ + 5\) (4.4)

which is also parameterized through a coefficientn order to perform this transformation,
x > —\ has to be satisfied. The inverse is given by

fn_T%ans(y) 1= exp(y) — A (4.5)

which can be calculated for ajl € R, and therefore the problem of the inversion, as in the
Box-Cox transformation (4.1), does not appear in this approgbe parameter is important,
since it controls the degree of nonlinearity of the transiation. It can be determined through
a maximum likelihood consideration, which is similar to #simation of the Box-Cox pa-
rameter of (4.1) published in [13] and [43]. If we want thag transformed measurements are
normally distributed around a constant mean value, themptbieability density function for
the untransformed observations, and hence the likelinoadlation to these original obser-

vations, is given by
) (4.6)

(2wa2)N/2 202 dx,,

L (_ (% — mean(x))” (x — mear(f;))) | (H di,

n=1
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where We have defined the vectowith elementst,, = firandz,,) @and the variable
0 := = (x —mearfx))”(x — mearix)). The last term in (4.6) is the Jacobian of (4.4). Now

we seek for the parametar, which maximizes the likelihood. This value can be found by
maximizing the log likelihood., t;ansOf (4.6), which is given by

Lotrand ) = —— ln Z In(z, + \) (4.7)

with o2 = o%()\) as above, and where we have neglected constant terms artdhiesiacobian
of (4.4).

In addition, we suggest to evaluate the skewness of thaldison of the measured data,
which can be determined by

N N /2, — meanx)\®
<N—1><N—2>Z( o ) | (4.8)

n=1

If the skewness is greater than 1 ané‘—"ﬁlf(T > 20, as suggested in [123], then the nonlinear
transformation is performed.

An example of an application of the nonlinear transfornrateogiven in figure 4.1. In figure
4.1 (a) the distribution of NOx measurements is drawn. Dueasons of confidentiality, the
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Figure 4.1: Example of a nonlinear transformation of NOx sugaments.
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labeling of the x-axis is not shown. It clearly can be seenttadistribution is right-tailed.
Hence, the nonlinear transformation is applied to thesesaoreaents and the results are
drawn in figure 4.1 (b). For this transformation the log likebd (4.7) was maximized, which
is shown in figure 4.1 (c), where the optimavalue, )., is marked.

Clearly, the transformed distribution in figure 4.1 (b) is petfectly Gaussian shaped, but it
is much better than the original distribution. Hence, oudel@assumptions are much more
appropriate in the transformed space than in the origin one.

An interesting property of this approach becomes obvidus,s applied to measurements,
which are already Gaussian distributed. For this datajthelue which maximizes the log
likelihood (4.7) will tend towards very high values (infigjt This will lead the transformation
(4.4) to tend towards a linear (affine) transformation, aedde the shape of the distribution
is not changed. Therefore, we reject the nonlinear tramsdtion, if the parametek tends
towards high values, e.d0 - max(x).

As said above, only distributions which are right-tailed @ meaningfully transformed with
(4.4). If the data would be left-tailed distributed, then aamingful transformation with (4.4)
could be achieved by negating so thatfnTmns(x) = furrans(—x), but this procedure was
not necessary, since only right-tailed data occurred iotpa problems in engine calibration.

Although the transformation (4.4) is very simple, in thisrwat has been found that this
approach achieves very good results for engine calibréigks, as in the example of the NOx
measurements above. Further, due to the maximum likelilestithation of the parametar
this technique can be fully automated, and therefore, ittmnsed for model-based online
optimization.

4.2 A Student’s-t likelihood

As discussed in chapter 2, the training for polynomials, RB&voeks, LLR models, local
linear models and MLP networks is performed by minimizing 8SE function (2.6) or the
RSSE function (2.15). This minimization is equivalent to thaximization of the likelihood
function or the a posteriori distribution under a Gaussiais@assumption, see sections 2.1.1
and 2.1.2.1. In comparison to that, the relevance vectothimas and the (conventional)
Gaussian processes directly use a normal noise assumgtitl) for modeling in engine
calibration. Hence, all these state of the art approactssw@esa normal noise

As we will see shortly, this Gaussian likelihood is not ratiesoutliers. Hence, we have to

1An exception is the support vector machine, which minimiaes-insensitive error function (2.56). The
equivalent likelihood of this error function is given I%ﬂ?) exp(—Fe(yn —tn)), See [114], which converges
to the Laplacian distribution in the limit agf — 0. This distribution is more robust to outliers than a normal
noise assumption [96], but it has no additional parametas the Student’s-t likelihood. Therefore, due to this
lack of degree of freedom, the results of this modeling will be as good as the following robust formulation,
which will be discussed shortly. Hence, in order to abbrtevihis section and due to the general drawbacks
of SVM's, which were discussed extensively in section 3.6 will not go into detail into this examination.
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replace this noise assumption with another distributigmidal likelihoods, which are robust
to outliers, are the Laplacian, the cumulative logistic #mel Student’s-t distributions [96].
During this work all these likelihood functions had beenraxaed and tested.

The Student’s-t likelihood is given by

v+1

Sttn, Yn, 0, V) = : (VTH) ! (1 + M)2 , 4.9

r (%) Izt vo?

wherev is the number of degrees of freedams the scale parameter, influencing the variance
of the distribution, and’ is the gamma function. If the parametetends towards infinity, then
the Student’s-t distribution tends towards the Gaussisinidution. Hence, the Student’s-t dis-
tribution is a generalization of the Gaussian distributiemd this is also a very advantageous
property of this likelihood function. As we will see shottlyy controlling the parameter,

we are able to control the outlier-robustness of our model.

This is in comparison to the Laplacian and the cumulativestoglikelihood, which have only

a single parameter for controlling the variance of the dtistrons, but no additional parameter
which controls the outlier-robustness. This behavior meahat equivalent to a Student’s-t
distribution with a fixed value of. Hence, with the Laplacian and the cumulative logistic
likelihood we restrict the flexibility of our model, and werg@t converge to a solution with
a Gaussian distributed noise, as it is the case for the Staddikelihood.

Therefore, in this thesis, we chose the Student’s-t digtiol for the noise assumption in our
robust modeling.

In figure 4.2 the Student’s-t distribution is compared to @sussian distribution and the ad-
vantages of a Student’s-t likelihood, when it comes to etdliis shown.

[ data [ Jdata

06} s Student-t distribution | s Student-t distribution |4
normal distribution normal distribution

0.5F M

04+

0.3F

0.2F

0.1

(a) (b)
Figure 4.2: Comparison of a normal noise assumption and aeBtge noise assumption,
without outliers (a) and with outliers (b), based on [11].

In the plots of figure 4.2, data is sampled and a normal digioh and a Student’s-t distri-
bution is fitted by the method of maximum likelihood. In thé lglot (a) no outliers occur.
As the Student’s-t distribution converges to a normal ttigtion, as the parameterincreases
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towards infinity, both distributions have the same shapeunximum likelihood, if the data
is normally distributed. Hence, if there are no outliersha tlata, our new modeling will con-
verge to the conventional state of the art Gaussian procedgling as discussed in section
2.4.2. As discussed above, this will be an advantageouggopf our robust modeling, since
in many applications the normal noise assumption will beayate, as for engine quantities
which are relatively easy to measure, see e.g. the NOx ansliogotion measurements in
section 3.7.1.

The drawbacks of a Gaussian distribution regarding osttan be seen in plot 4.2 (b). In this
plot three outliers have been added at the right edge. Itlglean be seen that the outliers
strongly distorted the shape of the Gaussian distributidrile the shape of the Student’s-t
distribution is widely unaffected, since the parametevas adapted through the method of
maximum likelihood.

For a deeper discussion on the robustness of the Studehigsibution regarding outliers see
[11, 90, 126].

Hence, the assumption of a normally distributed noise caa berious drawback of recent
types of modeling in engine calibration. If a Gaussian Ika&bd is used for modeling and
outliers occur in the data, then the prediction of the modé#élhve distorted by the outliers.
Therefore, in order to obtain a good model quality, all @rihave to be removed before
model training in state of the art algorithms.

For these approaches with a normal noise assumption, a corstraiegy to detect and re-
move outliers in an automatic way is to perform the modeliity the whole data set, calculate
the residuals between the model and the targets, removedhsurements with the highest
residuals and then perform the modeling with the remainaig dgain [107, 124]. With this
approach, it is hoped that after some iterations all ogtlieave been removed from the data
set and that the model will finally provide a good predicti@bviously, this method will be
suitable if the data set is small and if only a few outliers@etained in the training set. But
clearly, this approach will be inappropriate for biggeradaéts with more outliers, since the
modeling has then to be performed numerous times, which emommputationally infeasible
for models in which a single training is itself computatibp@&xpensive. We will discuss this
topic again, when applications with practical data setscaresidered, as in the sections 4.5
and 4.6.

Therefore, in state of the art algorithms for model-baséithefoptimization, the outliers are
often removed manually, see [24, 37, 62, 104, 107]. Cleadtljeys in model-based online
optimization would cause a serious problem, because no ahartaraction is possible, and
hence wrong predictions will cause the optimization roaitmperform useless measurements
in undesired regions, see also requirement (REQ5) in se8tiorThus, state of the art online
optimization is only performed for quantities of an enginkieh are relatively easy to mea-
sure, as consumption, see [53], and not for quantities wthergsk of outliers is much higher,
like soot, see section 3.7.2.

A possible solution to these problems will be presentedemiéxt sections, where the normal
noise assumption will be replaced by a Student's-t noisamagson, in order to achieve a
modeling which is robust to outliers.
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More mathematically spoken, for a limited fraction of oeits, we will develop a modeling
which is asymptotically unbiased, meaning that the modensding to the real engine behav-
ior as the number of measurements tends towards infinityhAsitmber of outliers usually
scales with the number of measurements, it should be notgdatmodeling with a normal
noise assumption does not possess this property, since@widier will result in a bias in the
model [126], which we will demonstrate in the later sections

But before that, some remarks on the importance of the cortibmaf the nonlinear trans-

formation (4.4) and outlier-robust modeling are given.

As discussed above, by considering figure 4.1 (a), it can ee #&t most of the data is lo-
cated at low NOx rates and only very few measurements hadrbade at high NOx values.
If we compare this behavior of the untransformed data to thibeo-robust behavior of the

Student’s-t distribution in figure 4.2 (b), it should becouoiear that it is very likely that an

outlier-robust modeling will reject the high NOx values bgtplot 4.1 (a), since the model
assumptions are not appropriate in the untransformed spHoerefore, only through per-
forming the transformation (4.4), an outlier-robust maaggican meaningfully approximate
the high NOx values.

Hence, only through the combination of the nonlinear tramsétion and the outlier-robust
model, which is discussed in the next sections, a new robosiefimg framework for sta-

tionary base engine calibration can be obtained, and oelytiole framework can be used
reliably for an automatic online optimization.

4.3 An Outlier-Robust Gaussian Process Modeling for En-
gine Calibration

As already discussed above, although there exists no mmgdafiproach which is robust to
outliers in engine calibration, in other fields of reseamtpecially in statistics and machine
learning, the idea of robust regression is far from new. i©utejection from a Bayesian per-
spective was already analyzed in 1961 by [18]. A Studentsite assumption for linear re-
gression was already studied by [32, 131], and [82] intredu Student’s-t noise assumption
for Gaussian process regression. Other robust formuktionld be achieved, for example,
with mixtures of Gaussians, the Laplacian or the cumuldtiggstic distribution, e.g. see
[61, 96], which are not considered here, as discussed above.

In this section different approaches of GP regression wkuaent’s-t likelihood will be dis-
cussed, an approach which is suitable for engine calibratidl be chosen, the remaining
problems of this technique will be examined, and a solutitwctvis appropriate for online
optimization will be given.

In order to keep the derivation of the formulas of the robuetieling clearly arranged, we
will have to repeat some equations of chapter 2.

As in section 2.4.2.3, in order to apply Gaussian processeg@ression, we need to consider
the noise:,, on our measurements of the engine, which are given by (2.1). As said above,
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an i.i.d. Student’s-t noise assumption is madexfgiin order to achieve a robust formulation,
so that

N
ptly,0,v) == T Sty 0, 0), (4.10)
n=1

where St is the Student’s-t distribution (4.9). We follove ttiefinition 2.1 of Gaussian pro-
cesses, and as in section 2.4.2.3, we will consider a zeemi@aussian process, so that

p(Y|®K) = N(Y|O> K)’ (4.11)

where we us& = K(Og) the Gram (covariance) matrix (2.41) of the squared expaalent
kernel (2.44) with the hyperparamete®sc := {62,0,4,...,,0,p} for modeling. For nota-
tional simplicity, we collect all the hyperparameters iatsingle vector of hyperparameters
O = {Ok, Og}, Where®g, := {0, v} contains the hyperparameters of the Student’s-t dis-
tribution.

In the next section we will examine a training algorithm feistmodeling. In order to find an
appropriate one, we have to consider some requirementg @fpjplication of engine calibra-
tion. In section 4.3.2, a suitable approximation for thedprgons of the model is given.

4.3.1 Training

As discussed in section 2.4.2.3, in the Gaussian procesgwist, training is performed by
inferring the hyperparamete® out of the training data. As for the conventional GP models,
we can find suitable hyperparameters for our robust modeugir maximizing the marginal
likelihood

p(t]©) = / p(tly, Os)ply|Ox)dy. (4.12)

If we would use a normal noise assumption, then the integaalle calculated by using
standard formulas, see section 2.4.2.3. But since we usedar8ts+t distribution (4.10) for
p(tly, Ost), this integral becomes analytically intractable.

Hence, we need to approximate (4.12). In literature thigisrred to as approximate infer-
ence.

4.3.1.1 Methods for Approximate Inference

State of the art algorithms for approximation of (4.12) arrkbv Chain Monte Carlo (MCMC)
methods (see [80] for a review), the expectation propagdk®) algorithm (see [73]), the fac-
torized variational approximation (VB) (see [61] and [128Rd the Laplace approximation
(see [126] and [68]).

With MCMC methods we are able to approximate (4.12) to anyiteecuracy, and therefore
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these techniques achieve the best results, but they are@isputationally very expensive,
see [85]. As the focus of this work is an algorithm which carubed for model-based on-
line optimization, as said above, the computational coahignportant factor, and since the
MCMC approximation requires about 500 times more computatieffort as e.g. the Laplace
approximation [85], the MCMC methods cannot be used.

The EP algorithm has been proven to be a good method for aippeitexinference in many

applications, but here the use of EP is problematic, sire&thdent’s-t likelihood is not log-

concave and accurate approximate inference with EP is \&d/due to posterior multimodal-

ity, see [112] for details. [126] shows, that the perfornen€the Laplace approximation is
slightly better than the performance of the factorial VB. ¢idiion, the Laplace approxima-
tion is clearly faster than the factorial VB [85, 126].

Hence, in this thesis we concentrate on the Laplace appetxam

4.3.1.2 The Laplace Approximation of the Marginal Likelihood p(t)

The Laplace approximation for Gaussian processes hassaxtnbeen used for classifica-
tion problems [98]. In [126] this approach is applied to GBression with a Student’s-t
likelihood, and during this work it has been found that tleisinique also works well for en-
gine calibration problems.

For more general information on the Laplace approximatem[68].

In the framework of the Laplace approximation, we seek foraau$sian approximation for
p(t|y)p(y) in order to approximate (4.12), where, again for notati@usivenience, we sup-
pressed the dependence®g; and®k. This can be achieved by introducing

U(y) = Inp(tly) + Inp(y), (4.13)
seeking the modg of ¢ (y)
y = argmax ¢(y) (4.14)
y
and the Laplace approximation results in

p(tly)p(y) = N(yly. A™)

1/2 4.15
~ e (50 -9 Ay - 9) 39

whereA is the negative Hessian of(y) at the modey

A= -VV(y) = -VVinptly) + K. (4.16)
Using (4.9) and (4.10) we can calculatd’V In p(t|y) =: W as
T‘?L — vo?

(W) =—(r+1) (4.17)

(r2 +vo?)?’
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wherer,, := (t, — y,) and(W),, ., = 0 if n # m.
With the Laplace approximation (4.15), we can now deterndng2) as

1 1
Inp(t|®) ~ Ing(t|®) = Inp(t]y) — §~TK_137 b In |B| (4.18)
with
B := KA =1+ W!/2KW'/? (4.19)

by using standard formulas given in [98]. Hef&;|©®) stands for an approximation pft|®).

4.3.1.3 Optimization of the Hyperparameters

As said above, with the approximation (4.18) of the margiikalihood (4.12), the hyperpa-
rameters® can be optimized on the training data. For this task a L-BFG&stmization
has been used, which is a limited-memory quasi-Newton cod&dund-constrained opti-
mization, see section 5.1 and [15] and [135]. For this methedderivatives of (4.18) w.r.t.
the hyperparametei® are needed. Since the calculation of these derivativesne\sthat
lengthy, only the results are presented heré; 1§ a single element d®, then the derivatives
are given by

Olng(t}©) Olp(tly) 1 _p0 0K 1 -1 19K
26, o, TV K g KTy - gtrace (WA K)o,
1 ~ L OW
_étrace ((K Lrw)! 8@-) (4.20)
N .
1 _ _ FPlnp(tly) [_, 0K -
OIS ew) ] PV g1 G
L 0w, S [ G k)]

Various aspects of a suitable GP implementation for clasgiéin, which are given in [98], can
also be applied to our problem. Additional numerical aspefttthe Laplace approximation
for GP regression can be found in [126] and [96].

4.3.1.4 Implementation for Engine Calibration

With the optimization of the hyperparameters on the matdikalihood, the GP regression
results in a fully automatic approach. For this robust miodetome implementations, as
[126] and [96], already exist. However, there are still sapen problems which result from
the application in engine calibration.

By applying real data from a combustion engine to the implgatem, often only a very poor
result could be achieved. The reason for this is, that duee@dditional parameter of the
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Student’s-t distribution, the marginal likelihood (4.1&)en has numerous different local op-
tima for real data sets. Hence, in order to get good resuyiepd choice of the initial values
Ot for the hyperparameters is crucial, since otherwise thienageation routine will often get
stuck in a bad local optimum.

Therefore, one possible solution would be a multistartrogtion, where many initial val-
ues are used and the most reasonable model is chosen in thdBahds it is said above,
computational speed is an important factor and therefesgtiocedure cannot be used.

In order to avoid these computationally intensive methedscan use a strategy which has
been found to work very well in practical problems in engiaélration. Let us first consider
an application where only a few outliers are contained ind&&. If we use a normal noise
assumption for modeling, then the outliers will distort grediction of the model, but we will
get a good guess for the paramet@g, since only a few outliers are in the data set. If the
number of outliers is increased, then the estimated paeas®§ might get shifted from the
real values, due to the wrong noise assumption. But cledtligeinumber of outliers is not
too big, then this displacement will be a small one. Hencmay be a good initial guess for
a later optimization with a Student’s-t noise assumption.

Therefore, the following solution was implemented: Fiestraining of a Gaussian process
with a normal noise assumption is performed. This modelrassithat there are no outliers
in the training data. Then the hyperparameters of this mdaggl,, are taken as the initial
values for the hyperparametef®,,;, for the robust Gaussian process optimization and the
initial value forv is chosen to be relatively high.

In practical applications, like in the sections 4.5 and ¥e8y good results have been achieved
with this method at low computational costs. With this ag@tg the training for a robust
Gaussian process model requires approximately twice af mmmputing time as the con-
ventional GP model.

4.3.2 Prediction

In this section we want to predict the valyeof our Gaussian process model at a new input
locationx,.

If we use the Laplace approximation a second time, then theoapnate distribution ofy,

will also be Gaussian, and therefore defined by its mean amahez, which are given by [98]

Eqly.lt, x.] = k(x.)" K™y (4.21)
Volyalt, x.] = k(x., %) — k(x.)T (K + W) k(x,) (4.22)

These results are being achieved by finding an approximatigjt, ®) for p(y|t, ®). For
more details see [98].

Instead of going into more detail in the derivation of thenfiafas, a focus in this thesis lies
on the discussion of the most important properties of this rebust approach and on the
illustration of the advantages for engine calibration. Séhéasks are performed in the next
sections.
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4.4 A Simple Theoretical Example

In this section a simple theoretical example of a Gaussiangss regression is examined,
where a normal noise assumption and a Student’s-t noisengsisun are compared, which is
illustrated in figure 4.3.

GP - normal noise assumption GP - Student-t noise assumption

0 2 4 6 8 10 0 2 4 6 8 10

Figure 4.3: Comparison of Gaussian process regression withal noise assumption (left)
and Student’s-t noise assumption (right), without ousligop) and with outliers (bottom). The
training data (circles), the predicted mean (solid linej #re predicted variance (confidence
interval) are plotted.

From the function
vV + sin(z), (4.23)

which in practice could be any nonlinear engine mappingpittg data (circles) is sampled

and shifted by random noise. With this data Gaussian prauesiels were calculated. The

predicted mean (solid line) represents the estimated imetlue, and with the predicted

variance a 95% confidence interval can be calculated, whijotesents the degree of certainty
where the estimated function is expected.

If the noise on the measurements is normally distributedh #se top row, both models give
the same result, since, during the optimization of the hypemeter®, v increases towards
infinity and the Student’s-t distribution converges to amar distribution. This should be
compared to figure 4.2 (a). If outliers occur in the trainiaged as in the bottom row, then the
prediction of a modeling with a normal noise assumption gt biased in the neighborhood
of the outliers, while a modeling with a Student’s-t noisstamption will be widely unaffected
by the outliers, which should also be compared to figure 4.2 (b
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4.5 A Practical Example on a Diesel Engine

In this section a Gaussian process model with a normal negsenaption is applied on NOXx
and soot measurements of a diesel engine and compared tdengdtt noise assumption.

In this application only a single operation point is consgdeand only local models are
trained. The inputs of the models are the main injection timgction pressure, quantity
and time of the pre-injection and quantity of exhaust gaggelation. This leads to a 5

dimensional input space. For reasons of confidentialityredasurements are scaled to an
interval of [0 1].

From a total set of 279 measurements, 35 measurements a@rgnremoved for model
validation and the remaining 244 are used for training. \iitls data a Gaussian process
model had been trained with a normal noise assumption andde®fs-t noise assumption.
The performance of these models is shown in the measureliciwe plots in figure 4.4 and
the NRMSE of these plots are given in table 4.1.

Since the NOx emissions (top row) can be measured relativelly no outliers occur in the
measurement data and the model with the Student’s-t nosgergion (right) gives pretty
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Figure 4.4: Measured-predicted plots for training anddatlon data of NOx (top) and soot

(bottom) emissions with normal noise assumption (left) &ddent’s-t noise assumption

(right).
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training data  validation data

NOx normal noise 1.330 % 2.865 %
Student’s-t noise 1.471 % 2.854 %
soot normal noise 5.069 % 9.926 %
Student’s-t noise 6.687 % 5.565 %

Table 4.1: NRMSE of NOx and soot for training and validatiotedaf figure 4.4.

much the same result as the model with the normal noise assumgjeft). The performance
of both models for NOx is quite good, but it should be noted th& is not the case for
the soot emissions (bottom row). Since the soot emissiasnach harder to measure, see
section 3.7.2, outliers occur in the measurement data. eTbesiers will distort the model
with the normal noise assumption (left). This is a seriowbfam with state of the art models
for engine calibration. It is very hard to determine whicltledse measurements is an outlier
and which prediction is only biased by outliers. If one woallculate a model with more
inputs, an even higher nonlinearity and more measureméiggroblem would become even
more severe, since the number of outliers usually increagkshe number of measurements.

It should be noted that this is not a problem if one uses a Gaugsocess modeling with a
Student’s-t noise assumption (bottom right). With this loty a better fit on the training
data is achieved and the prediction of the validation datefg accurate. Further, it is easy
to determine the five outliers in the data, which can be measagain if required. It should
be noted that, due to the fact that all the outliers of the saussions are in the training data,
the NRMSE of the training data is higher than the NRMSE of thédagibn data with the
Student’s-t noise assumption in table 4.1.

4.6 Examination of the Potential of Robust GP Regression

After these short theoretical and practical examples,igigbction we want to gain a deeper
insight into the robustness of this new modeling approaald, therefore the limits of this
technique will be examined. Even if there are many outlierthe data, it will be illustrated
that one can be confident in the robust GP regression, frorahwihifollows that this new
technique will provide a substantial advantage for engalb@ation tasks.

First, the theoretical example in figure 4.5 is consideredhis example the function (4.23)
from section 4.4 is regarded. For the training data (cijc@3 data points were sampled from
this function and shifted by random noise. In addition, ieutl have been added to the training
data. As in the theoretical example above, with this datasGan process models with a
normal noise assumption (left) and a Student’s-t noiseragsan (right) were calculated and
the predicted mean (solid line) and the predicted variacoef{dence interval) are plotted.

In the different rows of figure 4.5, the number of outliers é&een varied. In the top row 6
outliers are contained in the training data, the second mmwains 9 outliers, the third row
contains 10 outliers, the fourth row contains 11 outlierd #re last row contains 34 outliers,
which are more than the 30 correct data points.
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Figure 4.5: Comparison of Gaussian process regression withal noise assumption (left)

and Student’s-t noise assumption (right). The number dieatis varied.
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If only 6 outliers (17%) are contained in the training dati as in the first row, then the model
with the Student’s-t noise assumption is able to reject atlliers, and therefore it is able to
predict the function (4.23). If the number of outliers isneased, then the robust GP model
has increasing difficulties in rejecting them. If the numbkoutliers is increased to eleven, as
in the fourth row, the model with the Student’s-t noise agstiom cannot distinguish clearly
between outliers and correct measurements anymore. Irxtree case, if there are more
outliers than correct data points, as in the last row, theehwdl fail on predicting the function
(4.23), since it is obviously not possible to distinguisbarly between outliers and correct
measurements for any type of modeling without addition&rimation. Here, in the case of
many outliers, the Student’s-t distribution converges @eaissian distribution. Further, it can
be seen that the GP model with the normal noise assumptiastesteéd by any outlier in all
plots in figure 4.5.

We can see from the example in figure 4.5, that the new modadingpust to outliers until
a critical maximum quantity is reached. Now we want to exantins maximum quantity of
outliers in a practical data set from engine calibrationisTéxamination will illustrate that
one can trust the robust modeling over a wide range of nunftmirtbers.

In the figures 4.6 and 4.7, the 780 consumption measuremeatdiesel engine from section
3.7.1 are considered, which have been transformed by (4djetailed description of these
measurements was given in section 3.7. From these 780 neeasots, 273 measurements
(35%) have been randomly selected and used for trainingtrendemaining 507 measure-
ments (65%) have been used for model validation. With thaitrg data, Gaussian process
models with normal noise assumptions (left columns of figur& and 4.7) and Student’s-t
noise assumptions (right columns of figures 4.6 and 4.7) baee calculated.

In the top row of figure 4.6, the measured-predicted plot efrtitodeled consumption mea-
surements is shown. As in section 3.7.1, it can be seen thgddatiormance of both types of
modeling is very good on this engine quantity, since congiongan easily be measured, and
hence there is only little noise on the measurements. Téwereéspecially the performance
on the huge validation data set is good.

Now, we want to examine the performance of the new robust fimgdeechnique when it
comes to outliers. Therefore, a subset of the training datatpis randomly selected and
shifted by a big random noise. These points are the outliarthe different rows of the fig-
ures 4.6 and 4.7 the number of outliers is varied. Table 4/@sgan overview of how many
correct data points are used for training and how many ostlee contained in the training
set, in each row.

For clarity, the bottom row of figure 4.6 is considered as aangyle. As in every row, 273
measurements have been used for training and 507 measusdmaga been used for valida-
tion. From the 273 training data points, 78 had been randseicted and distorted by a big
random noise. The other 195 data points in the training sthbabeen changed.

From the measured-predicted plots in the figures 4.6 andt4ah be seen that the GP model
with the normal noise assumption has a bad performance sretperiment. This was ex-
pected, since every outlier will distort a model with a Gaasshoise assumption, as in the
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Figure 4.6: Measured-predicted plots for training anddation data of consumption mea-
surements. The modeling was performed with a normal noisenagtion (left) and a
Student’s-t noise assumption (right). In the different satve number of outliers is varied.
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Figure 4.7: Measured-predicted plots for training anddation data of consumption mea-
surements. The modeling was performed with a normal noisenagtion (left) and a
Student’s-t noise assumption (right). In the different satve number of outliers is varied.
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number of training data points number of validation datanfsoi
correct data outliers (distorted data)
top row figure 4.6 273 (100%) 0 (0%) 507
middle row figure 4.6 234 (86%) 39 (14%) 507
bottom row figure 4.6 195 (71%) 78 (29%) 507
top row figure 4.7 156 (57%) 117 (43%) 507
middle row figure 4.7 117 (43%) 156 (57%) 507
bottom row figure 4.7 78 (29%) 195 (71%) 507

Table 4.2: Number of correct training data points, outlard validation data points of figures
4.6 and 4.7.

theoretical experiments above.

In contrast, it can be seen that the robust GP model has a ved/gerformance, even if the
number of outliers gets large. Even if there are 30% outlietse data, the new robust model
can reject all of them and it is able to perform very well onthidation data set. This should
be sufficient for engine calibration tasks, since the nundbeyutliers will rarely be higher
than 30% of the measurements. Hence, it is illustrated thatcan trust this new technique
over a wide range of number of outliers.

Only when the number of outliers was very high, the perforoeaof the robust modeling got
worse, as in the lower two rows in figure 4.7.

From the theory, the theoretical maximum number of outleas be estimated, for which
our robust modeling will give a good performance. It can bewshthat a modeling with a
Student’s-t noise assumption (4.9) can (theoreticalljgcteup tom outliers, if the data set
contains at leastm measurements [90]. Obviously, the critical maximum nundjexutliers
may vary in practical applications and it may depend on ttadityuof the rest of the measure-
ments.

But clearly, the examinations in this section emphasize tiiemgths of the robust GP regres-
sion, and they demonstrate that this new approach can grasubstantial advantage for
engine calibration tasks.

4.7 Conclusion and Discussion

In this section a new modeling framework for engine calibratvas presented, which could
be developed by modifying state of the art approaches frdrardtelds of research and by
introducing new techniques.

This new framework meets two important requirements frogirea calibration. Due to the
use of a transformation, it is robust to differences betwteerassumed and the real distribu-
tions of the data. Due to the use of a Student’s-t likelihaioid,robust to outliers.

The main drawback of this new approach is an increasing ctatipnal cost. The new mod-
eling framework requires approximately twice as much catimgutime as the conventional
GP regression, which is already in itself a computationa¥yensive method.
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This is a severe limitation of this new approach, which retstithe use to particular applica-
tions, where the number of measurements is not too largecé{@s conventional Gaussian
processes, this new method is not suitable for dynamic erggihibration, but it is appropriate
for stationary base engine calibration.

Therefore, a possible future work would be to integrate #w robust techniques into sparse
kernel machines, in order to reduce the computational tefifordynamic engine calibration
tasks. However, this was not a focus in this work, since thadityuof the prediction of sparse
kernel machines is not as high as with a full GP model, andusscthe computational cost of
the presented approach is acceptable for stationary bhlseatan.

The main properties and advantages of this new modelingefnaork can be summarized as
follows:

e Dependable performanceln many practical applications in engine calibration, out-
liers occur in the data set and the distributions of the nremsents are not Gaussian
shaped. Compared to state of the art algorithms for baseratidib, in this chapter a
new framework was presented, which achieved a dependatftapance under these
complex conditions. Even if there are many outliers in thiadat, the prediction of the
model can be trusted.

e No manual interaction is requiredVith state of the art types of modeling, outliers have
to be removed before the model training is performed, in ot@@chieve an accurate
prediction. Since an automatic detection of outliers isveoy robust or computationally
very expensive with these state of the art techniques, theeuusually have to be
removed manually. In comparison, with this framework théiets do not have to be
removed before the training is performed, and due to the tsawmerical optimization
of the marginal likelihood (4.18), the robust GP results iiuly automatic approach.
Therefore, this new technique enables an increased autonedthe modeling process,
and obviously, this saves time and resources for enginraéibn tasks.

¢ Online optimization for complex quantities is possiltfehe model is distorted by out-
liers, then in an automated online optimization bad modellslead to wrong predic-
tions and useless measurements will be taken at undesgmhse Hence, a large part
of measurements would be meaningless and the optimizatbhdvweause high costs.
Thus, state of the art online optimization is only perforni@dquantities of an engine
which are relatively easy to measure, as consumption, anfbnquantities where the
risk of outliers is much higher, like soot. Compared to theéatef the art techniques,
with this new modeling framework it is possible to performaaniine optimization even
for complex quantities of the engine.

e Increased user acceptande. comparison to state of the art approaches, which require
a manual interaction in order to identify the outliers, wttis new framework the users
of calibration tools can rely on a fully automatic and depdrld modeling. Hence,
this approach assists the calibration engineers. Insteéadasching for outliers and
evaluating the model quality, the users of calibrationg@ain concentrate on their main
tasks with this new robust modeling. This clearly increa$esuser acceptance for
model-based calibration techniques.
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Chapter 5

BASICS OF OPTIMIZATION FOR ENGINE
CALIBRATION

Mathematical optimization algorithms are required forieas different tasks in engine cal-
ibration. E.g., when a GP modeling is performed, the likaith function (4.18) or (2.49),
respectively, is optimized w.r.t. the hyperparametersthien, with these models the calibra-
tion engineer can optimize the consumption and the emissibthe engines. In addition, the
process of performing measurements can be improved throsigly a model-based online
optimization, as we will see soon.

In this chapter the state of the art optimization technicoe€ngine calibration will be dis-
cussed in an abbreviated version.

In this thesis only continuous optimization and no comlonat optimization is considered.
Let X be asetang : X — R be a function. The aim of an optimization algorithm is to find
ax* € &, sothatf(x*) < f(x) Vx € X. Then,x* is called a global minimum{ is called
cost function or objective function and we defiingg f(x) := f(x*). Itis no restriction to

consider only minimization problems, since a maximizatdry can be reached through a
minimization of — f. Often, it is not possible to find the global optimum. Therefanany
algorithms seek for &a* € X, so thatf(x*) < f(x) Vx € U(x*), wherel/(x*) C X is a
neighborhood ok*. Then,x* is called a local minimum. If the objective function has more
than a single local minimum, then the function is called mmlbdal, otherwise unimodal.

In typical optimizations exist several constraints on tbeJs, which can be expressed by
the N, ., equality constraintg(x) = 0 and by theN, ., inequality constrainth(x) < 0,
with the functionsg : X — RMee«« andh : X — RMica, |f these constraints are taken
into account during the optimization, then a constraintrogiation is performed. Further, the
feasible sett is defined as the set of pointse X', which satisfies the constraints, so that
Xp = {x € X|g(x) = 0,h(x) < 0}.

For a more detailed discussion it is referred to [88].

Similar to the 'no free lunch’ theorems for supervised l&agnthere exist the 'no free lunch’
theorems for optimization [134]. These theorems show thafpéimization algorithms have
an equivalent average performance over all possible prableHence, there exists no opti-
mizer which is superior for all possible tasks. Therefonepiider to get a good performance
on a specific application, one has to choose an optimizatgorithm which is appropriate
for the specific problem. This property will be crucial in thether sections, where we will
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choose an optimizer for each task, after considering theifspeequirements of these appli-
cations.

In the next sections the state of the art optimization tespnes, which are used in stationary
base calibration, are discussed. In the sections 5.1 antd/6.Qifferent types of optimization
for a single objective functiorf are examined, and in section 5.3 optimization techniques
for more than one objective function are discussed. Theutatlon of optimal test plans
with design of experiments is discussed in section 5.4, ars#ction 5.5 the state of the art
approaches for online optimization for engine calibragoa examined.

5.1 Classical Nonlinear Optimization

In this thesis, algorithms which use the gradient inforomatior optimization are referred
to as classical nonlinear optimization algorithms. Obsiguthese methods require that the
objective function is continuous differentiable (or atdethat the objective function can be
approximated by a piecewise continuous differentiabletion) and that the gradient can be
calculated (approximated) efficiently.

If these requirements are met, then a method of the broad afasumerical nonlinear opti-
mization algorithms can be used. Since a nonlinear funa@mot be minimized in a single
step, the basic idea of these algorithms is, starting froroiat jx,, to generate a sequence
of pointsxg, x1, Xs, ..., Which converge to a local optimum of the objective functidm this
process, the next point of the iteratigp, ; is determined through the value, the gradient and
the Hessian of the objective function at the poipt

Generally, it can be distinguished between first order agogves and second order methods.
First order methods use only the information of the first ordkrivatives, expressed by the
gradient. The simplest technique is the method of the s&@@scent, in which the iteration
of points is given by

- V()

Xt = X0 = OGN (1)

wherea > 0 is the step size. For a small enougtvalue, the objective function can always
be reduced. However, these first order approaches have doly @onvergence rate, which
means that they need many iterations in order to proceecttogtimum.

Second order approaches make also use of the second ordextides, expressed by the
Hessian of the objective function. These algorithms uguadlve a higher convergence rate,
and therefore the objective function has to be evaluateérféimes, in order to achieve the
same accuracy of the optimum. This is especially importanttfe optimization of problems,
where a single evaluation of the objective function is cotaponally expensive, like the
evaluation of the log likelihood functions (4.18) and (2.49ence, for the optimization of the
hyperparameters of a Gaussian process, a second ordeaeapBsased.

These approaches consider a second order approximatiglor(€&pansion) of the objective
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function around a point,,, which is given by
1
f(x) =~ f(x,) + (x —x,) ' Vf(x,) + §(x —x,)TH(x,) (x — x,,). (5.2)
If this approximation is exact and H(x,,) is positive definite, then by settifg f(z) = 0,

Xn+1 = Xp — H<Xn)71vf<xn) (53)

would be the optimum of the objective function. However, éipproximation (5.2) will often
only be valid in a limited region around, andH(x,,) is often modified, in order to obtain a
positive definite matrix. Hence, often the iteration

X1 =X, — & H 'V f(x,) (5.4)

is performed, wherdl, is the modified Hessian andl is the step size, which is usually
obtained by a line search or a trust region method [88].

However, the exact evaluation of the Hessian of the logilioeld functions (4.18) and (2.49)
is computationally expensive. Hence, a method was chosementhe Hessian is approxi-
mated during the iterations of the optimization, which aafler] quasi Newton methods. A
common update formula, which showed a good performancasratiplication, is the BFGS
procedure, which is given by

& aT & ol
I:I . I:I HnSnSn Hn VoV, 55
n+l1 — n ~TTT & +ATA ()
si'H,,S, V. Sn

wheres,, := x,.1 — x,, andv,, := Vf(x,11) — Vf(x,) [88]. The procedure is initialized
with the identity matrix, which corresponds to the steepgestent method in the first iteration.
Further, this approach assures that the mdfits positive definite, so tha%ﬂ;LlVf(xn) IS
guaranteed to be a descent direction. Constraints on thetwijéunction can be handled
with the BFGS-B optimization, which is a bound-constrainkgbathm.

With these classical methods, the optimal vattief a local optimum can be determined in a
low amount of computing time and precisely, except for ernwhich occur due to the finite
machine accuracy. If the objective function is multi-mqdhen a multistart strategy can be
useful for finding the global optimum. This approach perfsiime optimization several times
from different starting points, and in the end the minimaldboptimum will be chosen. With
this technique the ambition is that at least a single opatron run will converge to the global
optimum, if the optimization is performed many times.

As said above, the BFGS procedure, combined with a multisteattegy, was suitable for
optimizing the likelihood function of the GP model w.r.t. etlhyperparameters, since the
likelihood function usually has only a few local minimumegssection 6.2.

But clearly, these classical methods have serious drawpé#cttee objective function has
numerous different local minimums, since the optimizatias to be started many times.
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5.2 Evolution Strategies

An alternative optimization approach for continuous fumrs is the evolution strategy. Evo-
lution strategies (ES) belong to the class of evolutiondgprithms, which are optimization
routines, which imitate the principles and ideas of evoliry processes of nature. The gen-
eral functionality of most of the evolutionary algorithnssgiven in algorithm 1.

Algorithm 1 Evolutionary Algorithm (general)
input: objective functionf, search spac& and further parameters
output: last population?;,_ , ¢ X and optimumx*

1: initialize the starting populatiof,, seti := 0

2: repeat

3:  generate’; out of P; throughrecombination

4.  generate”” out of P/ throughmutation
5. generateP,,, out of P throughselection
6
7

set; ;=17 +1
until abort criterion = true

At the beginning of the evolutionary algorithm the initisdtsd?;, ¢ X contains the initial
points Py := {X¢1,Xo2,..-}. According to the evolutionary processes in nature, thetpoi
{xi1,X;2,...} are called individuals and the s&f is called thei-th population. During the
optimization process the next populatifn ; is generated out aP; by recombination (some-
times called crossover), mutation and selection.

It should be noted that the notation for evolutionary altijonis is not consistent in the liter-
ature and depends on the specific class of algorithms, sughregic algorithms, evolution
strategies, genetic programming, etc., see [5, 87]. Asaaive, in this thesis we focus on
evolution strategies, which are discussed extensivelg9n110, 111].

Due to the fact that the recombination is of lower importafareES [92, 99], this operation
was neglected in this thesis, and an ES with mutationalesfptation of the step size was
implemented, since this algorithm showed a good performancpractical problems. In this
algorithm the mutation is carried out by adding a normalbtritbuted random variable to the
individuals

X;j =X;;t+z with z ~ N(O, 52-7]»), X5 € H/ and X;j S Pi// (56)

whereg, ; is called step size, which is passed on from population taadien.
The selection of the ES is carried out by evaluating the aibgtunction and by selecting the
best individuals for the next population.

Instead of going deeper into detail of this state of the aptragch for single-objective opti-
mization, it should be referred to the literature given abdRather, the main properties of this
optimization approach should be discussed in comparistiretolassical nonlinear optimiza-
tion methods, which were examined above.

Evolution strategies usually converge much slower to a lmotimum than classical nonlinear
approaches, since they often can only obtain a linear cgenee rate. Hence, as mentioned
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above, the classical approaches are useful for optimizatighere the optimum has to be
determined precisely and where the objective functionaiastonly a few local minimums.
Therefore, the BFGS method is used for optimizing the lodilk®d functions w.r.t. the hy-
perparameters, since a small change in the hyperparancatecsause a very different model
behavior and because the log likelihood usually has onlyvddeal minimums.

However, for various other tasks, e.g. for optimizationt@ thodels and for single-objective
online optimization, the precise values of the optimumsrexeof major interest, but rather
one is interested in the first decimal places of the optimuneesit is usually not possible to
set an adjustment parameter on the engine to an exact valaeldition, in these tasks often
numerous different local optimums occur. E.g. the objectinction of a complex single-
objective online optimization can easily have dozens ondwendreds of local optimums.
Hence, a classical nonlinear optimization with a multisfaocedure has to be performed
numerous times, in order to assure that an appropriate wltige objective function can
be found with an adequate probability. This is computatignafeasible for many practical
problems in engine calibration.

In comparison to that, through working with an evolutioragtgy it was always possible in
practical applications to find an adequate candidate foofgtienum in a reasonable amount
of computing time. Obviously, a convergence to the globainopm of such a highly multi-
modal problem cannot be guaranteed, but one can easily $lawhe probability for finding
a suitable candidate of the objective function increaséiseinumber of individuals increases,
and since the computational efficiency of the ES can be emlbbyg parallelization of the
evaluation of the objective function, an ES with a high numifendividuals (typically a few
thousands) can be used in practical applications.

Therefore, in this thesis an evolutionary strategy withghimumber of individuals was used
for single-objective optimizations, where the value of dmimum does not have to be de-
termined to high accuracy, but rather where a robustnesgtdyhmulti-modal behavior is
important.

5.3 Multi-Objective Optimization

In the last two sections optimization algorithms for a singbjective functionf have been
discussed. In engine calibration tasks, however, oftererddferent objectives have to be
considered, as discussed in chapter 1. Typical examplaham@ptimization of a diesel en-
gine, where mainly consumption, NOx and soot emissions k@' minimized, and the
optimization of a direct injection gasoline engine, wher@my consumption and soot emis-
sions have to be minimized.

In these optimization tasks often a trade-off occurs. A camraxample is the NOx-soot
trade-off. Typically, it is not possible to minimize NOx asdot at the same time, but rather
one has to decide, e.g., if a higher NOx rate has to be totkrat@rder to decrease the soot
emissions.
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Hence, for the multi-objective problem we seek for the sotubf
{(nei}(l [f1(%), f2(%); s faon; (X)] St g(x) =0, h(x) <0 (5.7)

where f; are the different objective functions agdandh are the constraints, which were
defined above. As for the single-objective optimizatiorreheis also sufficient to consider
only minimization problems. Further, the feasible objespace)r is defined as the set of
points which can be reached through the objective functfpasd the feasible séty, so that

Yei= U {(fi(x), f2(x), .., debj (x))}.
xeXp
This multi-objective problem is illustrated in figure 5.7.(& this example two objectivef
and f, are considered, and the feasible objective sp3ces a two dimensional area.
The ambition is to minimize both objectives and f,. However, as one can see from the
plot, there is no unique solution to this problem. In ordeekplain the basic ideas of the
multi-objective problem (5.7), the three poirds B andC' in figure 5.1 (a) are considered.
The pointA is no solution of the multi-objective problem (5.7), sinbeite exist points which
have a lower value of; and at the same time a lower valuefef as the point$3 andC'. Both
points B andC' are solutions of the multi-objective problem (5.7), sinlcere exist no points
in the feasible objective spagg-, which have a lower value itf; at the samef;, value, or
which have a lower value irf; at the same; value. The pointd3 andC' are called Pareto
optimal points (sometimes also named Pareto efficient gpifthe set of all Pareto optimal
points is called Pareto frontier and this set is indicatetheydashed-dotted line in figure 5.1
(a).
The Pareto frontier ofly,; different objectives can consist of several connected sédteh
are in turn submanifolds dR%®i with the maximum dimension atoy; — 1. In this thesis
we constrain the number of objectives to two or three, ancetbee in practical problems the
Pareto frontier consists of connected sets, which areretthe-dimensional curves or two-
dimensional surfaces.
Another important property of multi-objective problemshiah should be mentioned here, is
domination. One poing dominates a poing*, if each parameter gf is not greater than the

fa f>

— - = Pareto frontier T~

(@) (b)

Figure 5.1: Basic principles of multi-objective optimizati
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corresponding parameter of and at least one parameter is strictly less: thag;is; vy for
eachi andy; < y; for somei. This is written agy < y*. Hence, from the example in figure
5.1 it follows thatB < A andC' < A.

As in single-objective optimizations, the multi-objeiyproblem (5.7) can contain several
local minimums.

In addition, since it is only possible to observe the Panaintfer at discrete points, as we will
see soon, the diversity of these points is of interest, astithted in figure 5.1 (b).

In this plot the same Pareto frontier as in figure 5.1 (a) i d by the solid lines. However,
practical implementations for multi-objective optimizat can only provide a limited amount
of points, which indicate an approximation of the Paretanfier, as the points in figure 5.1
(b). By the comparison of both parts of the Pareto frontierait be seen that the points of the
approximation of the upper left part are better distributesh the points of the approximation
of the lower right part of the Pareto frontier. Thereforeg@man estimate the upper left part
of the Pareto frontier better than the lower right part, @ligh the number of Pareto optimal
points is the same in both parts. Hence, in order to obtaietulapproximation of the Pareto
frontier, it is important that the Pareto optimal points agrally distributed in the objective
space, which is called a good diversity.

See also [19] for a good introduction into multi-objectiy@imization.

Several different approaches for multi-objective optiatian (MOO) exist in the literature. As
in single-objective optimizations, it can generally beidguished between classical (gradient
based) nonlinear optimization algorithms and evolutigradgorithms, and the properties of
these approaches for multi-objective optimization ardlamto the properties of the classical
and evolutionary approaches for single-objective optatidm.

In this thesis the evolutionary algorithms are considecedfOO, since the precision of the
values of the points, which indicate the Pareto frontieesdoot need to be very high, but
rather a rough global approximation of the Pareto frontiea ishort amount of computing
time and a robustness to highly multi-modal behavior is irtgord.

During this work several different evolutionary techniguweere examined, as, e.g., the NSGA-
11719, 20] and the SPEA2 [136, 137]. The NSGA-II approachvgéd the best performance on

practical problems in engine calibration, and therefore dlgorithm was used in this thesis.

For a more detailed information on this state of the art tephait should be referred to the

literature given above.

5.4 Design of Experiments for Model-Based Offline Opti-
mization in Engine Calibration

Design of experiments (DoE) is a widely used term in engirieicion. Typically, in engine
calibration the whole process, from planning the experisieover modeling, up to optimiza-
tion, is denoted by DoE. However, in statistics (and alsdia thesis) DoE is only referred
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to the first step of the whole process: the design of the test, fdefore the measurement is
performed on the test bench. This initial task is importamhbdel-based offline optimization,
where the whole design of the measurements is fixed, befgrelzservations are made.

As discussed in section 1.2.2, model-based online optiroiz&as various advantages com-
pared to model-based offline optimization, and therefoi ttresis focuses on online opti-
mization. However, since offline optimization is very commrio engine calibration and on-
line optimizations also need a design of the initial (steytimeasurements, DoE is discussed
in this section in an abbreviated version.

In general, two main types of DoE can be distinguished inrengalibration: optimal design
of experiments for linear models and space filling designs.
First, optimal design of experiments will be discussed.

If a linear modeling (2.17) is used (although this is not thstlzhoice, as discussed in chapter
3), then from (2.23) it can be seen that the covariance ofshmated parameters is given by

o?(®Td) . (5.8)

The parameter® can be determined very precisely, if the covariance is a$l smaossible.
Hence, the precision of the model depends only on the noiieeaheasurements’ and on
the design matrixp. Therefore, if we use a linear model, then we are able to Ekthe
optimal design of the measurements, before any obsergai@made on the test bench. This
means that, for linear models, the information of the meaments cannot improve the design
of the experiments. It should be noted that this is not the dage use a nonlinear modeling.
For a nonlinear modeling, the information of the previousaswements is definitely useful
for planning the next measurements, and therefore onlitim@ations are suitable for non-
linear models, as it will be discussed in the next section.

In order to optimize the precision of the linear model, ween&y minimize the covariance
matrix (5.8). Since the minimum of a matrix is not uniquelyfided, different criteria have
been developed. Without the claim of completeness, sonteeai are [6]:

A-optimal design:  min trace(®’ ®)~*
D-optimal design:  min det(®” ®)*
E-optimal design:  min Ay (@7 @),

where the D-optimal design is most commonly used in engitibragion.

Algorithms, which are able to compute such a design, are, the Fedorov algorithm [27],
the modified Fedorov algorithm [16], the DETMAX algorithmd4[;775] and the k-exchange
algorithm [49]. Since the k-exchange algorithm has a fasvemence for a large number of
experiments [122], in this thesis this approach, combingl & D-optimal design, was im-
plemented. However, this technique was only implementedder to increase the customer
acceptance, since the users of calibration tools are vexy tasthis technique.

Nevertheless, this approach has some serious shortcgnaindsherefore it is not recom-
mended in this thesis.
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The basic problem of this technique is that the design is optymal for the specific linear

model, which has to be defined before observations are madieeotest bench. In some
applications this may not be problematic, since a lot ofpkimowledge may be available in
these tasks. However, in many applications in engine ldor, the behavior of the engine is
not known in such detail that the structure of a linear model loe fixed a priori, before any
measurements are made on the test bench (compare alsodhesihs in section 3.2).

This has severe consequences. Typically, a change of tietse of the linear model, e.g., a
change of the degree of the polynomial model, is criticatl, am the worst case, not possible
with such a design. Hence, if the a priori assumptions difi@m the real engine behavior,
then the areas, in which the measurements are placed, apptiratl, and, in the worst case,
new measurements have to be made, which is clearly time-@stdrdensive.

In addition, as discussed in chapter 3, a nonlinear modédirgg a Gaussian process model)
is more suitable in engine calibration, since it can adagptigree of nonlinearity itself, and
because it does not make as strict assumptions as a lineat wittla fixed structure. Hence,
it is meaningful to use a measurement design which does nket stact assumptions on the
engine behavior, too [51].

Such experimental designs are space filling designs, suchteshypercubes [72].

Further, low-discrepancy sequences [60], such as the vabatput sequence [125], the Hal-
ton sequence [39], and the Sobol sequence [115], guaralstea good distribution of the
measurements in the input space. In addition, these seggi@ssure that a combination of
different designs does not lead to the loss of an evenlyiloligion.

In practical applications in engine calibration these seges showed a very good perfor-
mance, and therefore these approaches are used for thénmetasurements of a model-based
online optimization.

5.5 State of the Art Model-Based Online Optimization in
Engine Calibration

As discussed in the last section, for a nonlinear modeliagrtformation of the previous mea-

surements is helpful to improve the decision where the nedsurement should be placed.
In order to achieve this improvement, the modeling and agttion algorithms are in a per-

manent interaction with the test bench, which allows the e®tb give a feedback of their

quality, and which enables to make optimal decisions baselkeprevious observations. This
has various advantages, as discussed in section 1.2.2.2hemefore time and costs on the
test bed can be considerably reduced by the usage of moskettloaline optimization [53].

However, nearly all commercially available calibratioml®are purely designed for model-
based offline optimization and do not provide online optaian features.

The Model-Based Calibration Toolbox [104, 105, 118] from M&trks is uniquely designed
for office use and does not have a connection to the test bench.
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Also, the Easy-DoE Toolsuite [44] from IAV GmbH is designed 6ffice use. The connection
to the test bench is performed with ORION from A&D Company and BmbH, which is
not able to perform an online optimization [1].

The AVL CAMEO Tool [33] consists of a test bed and an office vemd4]. For the test bed
version, a toolbox named iIPROCEDURE ADAPTIVE DOE exists, whig able to adjust
the initial test plan by automatically adding further psinHowever, the performance of this
approach is limited through the use of very simple regressiodels [53]. In addition, this
approach does not perform an optimization during the measamt, in order to identify the
most suitable places of the next points, and therefore #ubrique is not regarded as an
online optimization in this thesis.

In comparison to these commercial products, BMW developedvan solution called mb-
minimize [55, 93, 116], which is able to perform online opiations.

As already discussed in section 3.5, this approach uses mitm® of MLP networks (see
section 2.4.1) and LLR models (see section 2.2.3). The ¢apec and the variance of this
committee ofNcom models can be calculated by [92]

Ncowm
Ecom(x) = Nc101v| Z yi(x) (5.9)
VCOM(X) = ﬁ Z (yl(X) — ]ECOIVI(X))27 (510)

i=1

wherey;, i € {1, ..., Ncom} are the different model outputs of the committee. With thede
ues, which represent the expectation and the uncertairtheatal engine behavior, an online
optimization is performed. This online optimization is idied into distinct stages (phases).
In the first stage measurements are placed in areas, whevadbeainty of the true engine
behavior is maximal (maximum valdé-ou(x)). These measurements in the first stage im-
prove the global model quality.

In the further stages not only the maximum uncertainty issatered, but also the areas of the
input space where the behavior of the engine is optimal gaigimal consumption). There-
fore, the varianc&/cou(x) and the expectatioRcom(x) of the committee are combined to
a single value, and the importance of the uncertainty andphienality are weighted by an
additional parameter, which is varied in each stage. With phocedure a smooth progress
is achieved, where at the beginning mainly the uncertaiasaaee measured (which is called
exploration), and at the end mostly the optimal areas armimed (which is called exploita-
tion), see [53, 92]. Hence, in the later stages of the onlpterozation the local model quality
around optimal areas is improved.

Therefore, with this approach the quality of the models ddod increased, while at the same
time the required numbers of measurements could be redwbech leads to a more efficient
use of the test bench time. Thus, at BMW time and costs coul@érankably reduced with
online optimization [53, 103].

Nevertheless, the mbminimize approach has severe sharigensince it was designed for an
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online optimization for consumption of a gasoline engihean only handle a single objective
function. However, as discussed in section 5.3, in modegines often several different
objectives have to be considered, and therefore the mbnzi@iooncept cannot be applied
to these challenging problems. In addition, due to the eéhofche modeling, this approach
cannot make use of the potentials of a fully probabilisticdelplike Gaussian processes, as
we will see soon.

In order to overcome these drawbacks, a new and improved|rbaded online optimization
concept will be presented in the next chapter.

5.6 Conclusion and Discussion

In this chapter a summarization of the most important oatidon concepts for engine cali-
bration was given in an abbreviated version.

At the beginning, a selection of state of the art algorithmsdingle- and multi-objective
optimization was presented, the properties of the diffeagproaches were discussed, and a
suitable technique was chosen for each optimization prollethis thesis.

After that, different methods for design of experiments dditine optimization were dis-
cussed, and a recommendation for an appropriate approactivean.

At the end, the state of the art for model-based online ogaftion in engine calibration was
examined, and the advantages of such an online optimizatere discussed. However, as
already mentioned above, these state of the art online apipes suffer from various disad-
vantages. These drawbacks, and how they can be overcontgseussed in the next chapter,
where a new approach for model-based online optimizatipnesented.



98 CHAPTER 6. IMPROVED MODEL-BASED ONLINE OPTIMIZATION

Chapter 6

IMPROVED MODEL-BASED ONLINE
OPTIMIZATION FOR ENGINE CALIBRATION

In the previous chapter the state of the art in model-basédeoaptimization has been dis-
cussed, and it was outlined that time and costs can be rebiamregluced with this approach.
Hence, also in this work these techniques for model-baskaeooptimization (MBOO) were
examined. However, it was found out that the state of thepotaaches have several severe
shortcomings:

(MBOO1) As already mentioned in the last chapter, the statbert online optimizations

were developed for the optimization of consumption of a gascengine, and
hencethey can only handle a single objective functidiowever, as discussed in
section 5.3, due to the increasing complexity in modernrengalibration tasks,
often several different objectives have to be regardeditaréfore also the online
optimization should be able to deal with more objective tiorcs.
Thus, in this work a new multi-objective online optimizatitor engine calibra-
tion was developed. This new approach is able to place measuts in Pareto
optimal areas, in order to improve the quality of differebjextives in the most
important domains.

(MBOO2) State of the art techniques for online optimizattannot use a fully probabilistic
approachfor the modeling part. Thereforéhey are not able to predict the un-
certainty of the model accuratel{However, as we will see soon, this is a crucial
property for online optimization, since we want to place sw@aments in areas
where the estimated model error (and therefore the preticteertainty) is high,
in order to reduce this error. In addition, due to the lackmafyabilistic features,
state of the art techniquese not able to estimate the quality of the moaledl the
reliability of the prediction with a low amount of data. Netreeless, as we will
see soon, this is an important property, since it enablesrthiee optimization to
evaluate if already enough measurements have been takiee st bench and
the optimization can be stopped. Hence, in state of the dineoptimizations
the number of measurements has to be fixed manually, in agvand therefore
it is possible that too few or too many measurements are made.

In contrast, in this thesis the fully probabilistic Gausspocess regression is used
for the model-based online optimization. This approactvalto perform a fully
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automatic optimization with an increased performanceabse of two reasons.
First, the reliability of the prediction can be evaluatedthg marginal likelihood

probability distribution of the model parameters (seeisac6.2.2.1). Second,
the prediction of the uncertainty can be estimated by thewnee of the model,

from which we will make extensive use in the following, whee are, e.g., cal-
culating lower confidence bounds, searching for highesamaes or performing
cross-validation with confidence errors, as it will be exaai below.

While there exists no GP assisted online optimization in magialibration, in other fields

of research (e.g. in the domain of global optimization) ttleai of optimization by using

Gaussian stochastic processes is far from new. HowevereasilWsee soon, these state of
the art approaches from other fields of research can be fuethtganced, in order that the
performance for engine calibration tasks is improved.

The goal of this chapter is the development of a model-basédeooptimization for engine
calibration, which has an increased performance comparéaditional state of the art ap-
proaches for model-based optimization. This is achievethbydesign of new techniques
under consideration of the requirements of the calibragimtess and of the needs of the
calibration engineers.

Although these approaches are developed for an online atiion on the test bench, it
should be noted that these techniques can also be used fated assisted optimization of an
expensive-to-evaluate computer simulation, which is ¢htirrfield of application in engine
calibration [53]. In order to apply these approaches to gudar simulation, the only required
modification is that the measurement naiskas to be set to zero.

In the next section the basic problems and challenges of aucmline optimization are dis-
cussed, and a two-stage approach is presented in order totmese demands. In section
6.2 the first stage, called online modeling, and in secti@rlée second stage, named online
optimization, is presented.

6.1 A Two-Stage Approach

The ambition of an online optimization is to identify the iopal areas of the objective func-
tions with as few measurements as possible. This is achieygdiacing the measurements
in areas, where the estimated gain of information for thénenbptimization is expected to

be high. Since the objective functions in engine calibratoe typically multi-modal, there

exists a trade-off for the online optimization.

First, starting from no information of the calibration pleim, the optimization has to gather
information about the (global) behavior of the engine qiti@st which is called exploration.

After that, when the basic behavior of the system is knowa agptimization can exploit this

information and search for the optimal areas of the objestiwhich is called exploitation.

Since the goal is to perform as few measurements as postiblstage of the exploration
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should be as short as possible. However, if the explorai@borted too early, a wrong es-
timation of the true system behavior can lead the explomastage to ignore areas, which
can contain optimal points. Hence, if the exploitation &srt&d too soon, it is possible that
only local optimums are found and the global optimums areseds This conflict is known as
the trade-off between exploration and exploitation, ansl well known in the field of global
optimization.

In order to deal with this trade-off, in this thesis a twogga@approach was developed.

In the first stage exploration is performed. This task ismrefitto as online modeling in this
thesis, and it is aborted, when the predictions of the mooeliathe global engine behavior
can be trusted. In the next section it will be discussed hasvahort criterion can be deter-
mined.

After that, in the second stage exploitation is performed thins task is referred to as online
optimization in this thesis.

This two-stage approach is different to the mbminimize ephof BMW. At mbminimize the
whole optimization is divided into more than two stages,rohen to achieve a smooth progress
from exploration to exploitation. On the one hand, thesetauithl stages were integrated into
mbminimize due to the special choice of the modeling via arogtee of MLP networks. On
the other hand, this smooth progress can be useful in ordexdiace the total number of
measurements, since also the measurements of the optonigtdge can further improve the
prediction of the global engine behavior.

However, in order to avoid that the optimization is searghoo early for a local minimum and
missing the global one, a lot of a priori knowledge is requiii@ the planning of the different
stages, and therefore in the mbminimize concept the scingdof the stages is performed
manually [53]. In contrast, in this thesis the ambition isd&velop a model-based online
optimization, which can be fully automated.

6.2 Online Modeling

In the first stage, the model is improved stepwise in sevezedtions with update measure-
ments from the test bench, until the quality of the model jgrapriate. Therefore, this stage
is named online modeling. According to figure 1.7, the basncfionality of the online mod-
eling is given in algorithm 2.

At the beginning, the initial measurement, which was disedsn section 5.4, is performed
on the test bench. With these measurements the initial medalculated. After that, further
update points are determined, and if the abort criteriorotSulfilled, then the procedure is
repeated again.

As mentioned above, the ambition of online modeling is tdqren exploration. Hence, the
global engine behavior should be roughly approximated byntbdel at the end of the online
modeling. In order to guarantee that one can trust the madeigiion, it has to be assured
that the model estimates the true system behavior correctly
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Algorithm 2 Online Modeling

input: initial test plan, objective functiosi and abort criterion

output: model
1. set update points = initial test plan
2: repeat

3:  measurement of the update point(s) on the test bench

4:  calculate model out of all measurements

5. determine further update point(s) through optimizationtioé objective function
f(model), which depends on the model

until abort criterion = true

o

In the context of a Gaussian process modeling, this meamnshbadyperparametei® are
estimated correctly. Further, this does not necessariphirthat the model error (difference
between the predicted mean (expected value) (4.21) andubesystem behavior) has to be
small, but rather this implies that the model error coredawith the predicted model uncer-
tainty (variance) (4.22). Hence, at a high predicted vasaih is acceptable that the model
error is quite high, but at a small predicted variance the ehgtiould be close to the true
system behavior.

Two tasks are substantial for the success of the online nmgdeThe choice of the update
points and the selection of the abort criterion. Both taskslé&scussed in the next sections.
Compared to state of the art models for online modeling, thindhe use of GP models new
features are available, which enable a better performamme the traditional approaches.
Hence, in the next sections mainly new techniques are disdjsvhich are suitable for an
online modeling with Gaussian processes.

6.2.1 Choice of Update Points

The ambition is to choose the update points in a way that thrairgng uncertainty of the
model about the true system behavior is decreasing as fpssable.

Hence, a possible approach would be to find the update pdithvminimizes the remaining
uncertainty of the hyperparameté&sat most. Therefore, the conditional entrafy®|Dpeu)

of the hyperparamete® given the estimated new measuremehis, has to be minimized,
which is somewhat similar to the IAGO approach [128, 129]e Pinoblem of this approach
is that the calculation of the conditional entropy is anabjty intractable, and therefore sam-
pling methods, such as MCMC methods, have to be used [128hwdre computationally
too expensive for engine calibration tasks, as alreadydssd in section 4.3.1.1. Hence, this
method was not implemented in this thesis.

In [92] other methods for this problem were examined for tHemimimize approach, and
the most suitable method was the selection of update poihtsenthe variance (5.10) of
the model committee is maximum, as discussed in sectionHebce, also in this work the
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selection of update points, where the predicted varian@2)4s maximum, was examined,
and it was found out that this approach works well for the régd problems. The reason for
this good performance is, that these update points largellyae the uncertainty of the model,
since they provide additional information at an area, wihiatl a high (predicted) uncertainty
before these update measurements were observed.

Sometimes it is useful to calculate more than a single upolaitg at a time, e.g. when the
required computing time of modeling and optimization isgmionately high compared to
the measurement time on the test bench. For these caseseglpm®dias to be developed,
which defines how these multiple update points can be caémifaeaningfully.

At mbminimize the multiple updates are determined by a d#aneasure. After the deter-
mination of the first update point at the maximum variancegmstraint is integrated in the
further optimizations, which assures that the distancevden the different update points is
higher than a minimum distance [92].

However, in this work another procedure has been found to dre miffective. After the de-
termination of the first update point at the maximum variarlis update point is added to
the previous measurement in such a way, that the measurealaatof this update is set to
the expected value of the model. With this procedure theargdebehavior of the system is
integrated into the virtual measurement. Afterwards, Witk virtual measurement the model
is trained again, and the next update point is determinetddoynaximum variance of the new
model. Usually (e.g. for MLP networks) the training of thedaped model would again cause
much computing time, and therefore this procedure woulddmepzitationally too expensive
for engine calibration tasks. But if a GP model is used, computme can be saved by ne-
glecting the optimization of the hyperparamet@s Instead of that, the hyperparamet&s
of the previous model are used, since these parameterstagperted to change very much
by a single update. With this procedure a better performaonogpared to the mbminimize
concept had been obtained at a low computational cost.

6.2.2 Abort Criteria

In the state of the art online optimizations the online modektage is aborted, if a maxi-
mum number of update points is reached, which is defined nign@@ompared to this, in
this thesis abort criteria are presented, which can be lea¢xlin a fully automatic way. In
the following different abort criteria are examined, whiathieved a good performance on
practical problems in engine calibration.

Since these abort criteria evaluate the model quality, theizate how much the model pre-
diction can be trusted. Hence, these criteria are not onpomant for online modeling, but
they can also provide a useful information of the model qu&tir model-based offline opti-
mization.
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6.2.2.1 Marginal Likelihood Probability Density Function

Due to the use of Gaussian processes for online modelingn#nginal likelihood (4.18) or
(2.49), respectively, of the hyperparamet@®f the model can be calculated. Compared to
other state of the art approaches, where such an informaitibie probability density function
of the model parameters is not available, here it can be wsedaluate the reliability of the
model. Since this method has been found to give outstandsgts in practical applications,
it is discussed more deeply in this section.

The basic idea of this new approach is illustrated in a sinipd®retical example in figure
6.1. In this figure the progress of the marginal likelihooding an online optimization is
illustrated.

In this demonstration a one-dimensional example is corsitjevhich is similar to the ex-
ample in figure 4.3. In the left column the function values pl@ted over the input space
and in the right column the marginal likelihood probabilitgnsity function is drawn, which
can be calculated from (2.49). For simplicity, a GP modehwaithormal noise assumption is
considered, since this model has fewer hyperparametersheAsquared exponential kernel
(2.44) is used for modeling, the GP contains the three hyparpeterg?, 6;, o*}. Again for
simplicity, in order to display the marginal likelihood asveo dimensional contour plot, the
hyperparametef? is fixed, and the likelihood is plotted over the charactarigingth-scale),
and the noise standard deviatien

In the left column, the function (4.23) (dashed line) can éens from which training data
(circles) is sampled and shifted by random noise. With tlitadsaussian process models
were calculated. The predicted mean (solid line) repregetestimated function value, and
with the predicted variance a 95% confidence interval is draw

In the three parts (a), (b) and (c) the number of training daitacreased.

In the upper part (a), 7 training points were sampled, and thits data the marginal likeli-
hood (2.49) was calculated and drawn in the right plot of gghid (a). It can be seen that the
likelihood of this data has two local optimums. With the \edwf the hyperparameters of the
two local optimums, two GP models can be calculated. Therficstel has a higher estimated
length-scale and a higher estimated noise, and it is drawimeinipper left part of figure 6.1
(a). The second model has a smaller estimated length-sudke smaller estimated noise, and
it is drawn in the lower left part of figure 6.1 (a). Hence, bothdels interpret the same data
in a different way.

By considering the training data points and the two differaontels in figure 6.1 (a), it be-
comes clear that one cannot identify, which model is ther&uf one. There are simply
too few measurements to decide that, and therefore bothlsadeprobable. The key point
is that this lack of information can be observed in the likebd function. If the likelihood
function is multi-modal, then more different model behes/are possible, and therefore more
data is needed to identify the appropriate one, which cotedavith the true system behavior
at most

In the middle part (b) of figure 6.1, three additional tragaata points have been added to the
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Figure 6.1: Theoretical example: progress of the margikelihood during online modeling.
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previous seven points of part (a). With these ten pointsikiedithood is calculated and drawn
in the right plot of figure 6.1 (b). It can be seen that the lik@bd of this data has now only

one optimum (unimodal). Therefore, now only one optimabédtyperparameters exists, and
with this set the GP model is calculated and drawn in the lefttqdf figure 6.1 (b).

It can clearly be seen, that the reduction of two probableetsad (a) to one suitable model in
(b) seems reasonable, since the additional three measuiep@nted out that the flat model
in (a) seems unlikely. Hence, these three further data ppravided additional information,

and therefore it becomes more obvious how the true system@vlmelhcan be approximated

correctly. However, since the likelihood function is sallbroad distribution, there is still

space for the decision which hyperparameters should benhos

In the lower part (c) of figure 6.1, forty additional trainidgta points have been added to the
previous ten points of part (b). With these fifty points it cd@arly be seen, that the true sys-
tem behavior can be determined very precisely. Theref@adyiperparameters of the model
can be determined very accurately, which can also be oléwe the sharp distribution of
the likelihood function.

The more data points are observed, the more precisely thelrpadameters can be deter-
mined, and therefore the sharper the likelihood distrdouippears.

This information of the likelihood distribution can be usasl an abort criterion for online
modeling. If the likelihood distribution is multi-modahén further update points should be
measured at the test bench. But if the likelihood is unimdtialy the online modeling can be
aborted.

This approach worked well on practical problems, and in 8g6u2 a practical example is
examined.

In figure 6.2 the practical data set of section 3.7 is conedler~rom the total set of 755
measurements (for simplicity, outliers were removed), lasstiwas selected and used for a
multistart optimization of the likelihood of GP models fayrsumption, NOx and soot. With
this multistart optimization the different local optimurakthe likelihood function could be
determined. Then the number of the training data points@ftibset was increased and the
procedure was performed again. The top left plot in figuresh@ws the progress of the
number of local optimums of the likelihood function for cangption, NOx and soot over an
increasing number of measurements. Similar to figure 6dgntbe seen that the likelihood
functions have many local optimums with a few amount of irgjrdata. If the number of
training data is increased, only a single likelihood optimexists.

This should be compared to the progress of the hyperparasngtlich were taken at the
maximum likelihood) in the other plots of figure 6.2. In thdtim phase, when more than a
single likelihood optimum was found, the optimal hyperpaegers were strongly oscillating.
After that, when only a single likelihood optimum existse thptimal hyperparameters are not
changing very much.

Hence, at the point when only a single likelihood optimunstsithe model prediction can
be trusted, since the optimal hyperparameters are (appadely) determined, and the online
modeling can be aborted. It was found out that this approashah outstanding reliability in
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Figure 6.2: Progress of the number of local likelihood opiting and of the hyperparameters
over an increasing number of measurements

practical applications and requires only a very few numib@n@asurements.
Clearly, this technique can additionally be improved, if gtepe of the likelihood function
is further analyzed. As in figure 6.1 the broadness of thdiliked distribution can be eval-

uated in practical applications, in order to estimate the@hquality and the accuracy of the
prediction.

6.2.2.2 Other Methods and Discussion

During this work also various other different abort critehiave been examined. Some abort

criteria, which have been considered suitable for calibnatasks, can be summarized as
follows:
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e examination of the marginal likelihood probability degditinction (subsection 6.2.2.1)

— multistart optimization of the likelihood finds only a siegbptimum

— the likelihood function is strongly peaked around the oplinalue (sharp proba-
bility density function)

e examination of the progress of the cross-validation eraod(in the limit: the leave-
one-out cross-validation error)

e maximum variance (4.22) or (2.52), respectively, of the etasl smaller than a maxi-
mum allowable variance

e maximum number of update points is reached

The choice of an appropriate abort criterion depends ongleifsc application.

If the primary goal is the optimization of different objeats (e.g. consumption, NOx and
soot) and the reduction of the required measurements, theitadole abort criterion of the on-
line modeling is based on the unimodality of the marginalitkood function. This approach
requires only very few measurements and assures that theytstem behavior is correctly in-
terpreted by the model by an accurate determination of tpedparameters, as shown above.
After the online modeling, the online optimization shoulkel frerformed, where the optimal
areas of the objectives are determined.

Nevertheless, sometimes there are calibration tasks wherproblems (and therefore also
the objectives) are not known a priori, before measureneetperformed on the test bench.
Hence, since an online optimization cannot be schedulemt®é#ie objectives are defined, the
ambition of these applications is the identification of thalrsystem behavior with accurate
models, which can be calculated after an online modeling.ifBart abort criterion based on
the unimodality of the likelihood is used, then there maytilklarge areas in the model with
a high predicted variance after the online modeling.

Therefore, in order to obtain more accurate models aftepiifiee modeling, in these applica-
tions an increased time on the test bench is accepted, aedaiibrt criteria may be suitable,
which require more measurements.

A standard procedure to measure the model quality is thelledgicn of the cross-validation

error. This quantity gives a very reliable interpretatidrttee approximation quality of the

model, and it can be further extended, in order to integrisie the predicted variance (4.22)
or (2.52) respectively, see [51]. Further, in practicallegpions during this work good results
had been achieved with this technique. A drawback of thishoteis an increased compu-
tational cost, which can be reduced for GP models, if thenmgdthyperparameters are only
calculated once with the whole data set [51].

Another interesting approach is to abort the online modeiinthe predicted variance (4.22)
or (2.52), respectively, of the model is smaller than a maxiellowable variance. This

method assures that also the maximum model error is bouraeldtherefore it guarantees
that the model expectation is close to the real system behaw addition, this method can
be further enhanced, if the maximum allowed variance is atfan of the expected value of
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the model. With this extension it can be achieved that oMyrfeeasurements are taken at un-
suitable engine states, and more measurements are takgr@paate settings of the engine.
Since this approach is somewhat similar to online optinoratit can only be used if some
desired objectives (e.g. low consumption) are known a prior

Moreover, it is often useful to combine different abort end, in order to meet the require-
ments of the calibration tasks. But regardless of the appiicait should always be assured
that the likelihood distribution is unimodal, since otheithe interpretation of the measured
data is not unique, and therefore the model cannot give a afgaoximation of the engine
behavior.

6.3 Online Optimization

At the end of the first stage, the online modeling stage, tbbailengine behavior is roughly
approximated by the model. After that, the second stagdéect@anline optimization, can
be performed, where the optimal areas of the system arentie&t precisely with as few
measurements as possible.

The combination of both stages to a framework for calibratasks has various advantages
compared to model-based offline optimization.

In model-based offline optimization a test plan is used ferrtteasurement, which has to be
fixed in advance. In contrast, model-based online optinumateratively uses the information
of the previous measurements, which are received by a pemhamteraction with the test
bench, in order to calculate the next optimal measuringtpoirhis strategy increases the
efficiency of the test bench utilization, since only the mas#ful measurements are made and
other measuring points, which are not of great interestpagtected. Further, the number of
measurements (and therefore time and costs on the test)bmnctbe reduced to an optimal
amount with model-based online optimization, since thedlgm is able to determine if
already enough measurements are taken and the measurentleatiest bed can be stopped.

The model, which is obtained at the end of the model-baseadenptimization, is very ac-
curate in the optimal areas, since the density of the meamuns is high in these regions.
Therefore, it is assured that the calibration engineer nast the models and use them for
generating the engine operating maps, and it is avoidedhbatalibration engineer is forced
to perform a further measurement, as this can be the casenwitlel-based offline optimiza-
tion, if the verification of the optimum fails, see sectiod.2.1.

In the next subsections different algorithms for onlineiroptation are discussed, and the
most suitable one is determined. In subsection 6.3.1 sivigjlective online optimization is
examined and the disadvantages of this state of the art agprare illustrated. In order
to overcome these drawbacks, a new model-based multitolgeanline optimization was
developed, which is discussed in subsection 6.3.2. In thtetWa0 subsections a theoretical
example and a practical application are examined.
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6.3.1 Single-Objective Online Optimization

The ambition of a single-objective online optimization barse calibration is to find the global
optimum of a single engine quantity (e.g. consumption) \egHew measurements as possi-
ble. This is achieved by a model-based optimization, wHezeestimated improvement of the
objective, which can be calculated from the model, is highe dther objectives (e.g. emis-
sions and smoothness of the engine maps) are consideredittggration into constraints.

In this way, the optimum value of the main objective is seadcat every operating point under
consideration of the constraints.

A state of the art approach for stationary base engine edidor is mbminimize, which was
discussed in section 5.5.

Also several other single-objective online optimizatiarese examined in this work: the EGO
(efficient global optimization) approach with probabilidy improvement [50], the classical
EGO with expected improvement [51], the EGO with generdliegpected improvement
[106] and the Multiple-EGO with generalized expected inwaeroent [95]. In order to ab-
breviate this section and due to the general drawbacks glesobjective online optimization,
which will be discussed soon, these algorithms are not exaain detail in this thesis.
During this work it was found out that the Multiple-EGO apach provides the best perfor-
mance, and therefore this technique was implemented. iSungly, also the developers of
the mbminimize technique admitted that the EGO approackeaeh a better performance
than mbminimize for problems without noise [92]. But since tlevelopers of mbminimize
were not able to extend the EGO approach in order that it cpa with measurement noise,
they could not use this superior optimization techniqueefogine calibration problems [92].
However, it should be mentioned that the extension of a Gkhterpolation (called kriging)
to a GP for regression is straightforward, see section 2ah@ therefore it is rather simple
to apply EGO to engine calibration tasks. The superior perémce of EGO compared to
mbminimize is not surprising, since mbminimize uses a cotemiof MLP models, which is
converging to a GP in the limit of an infinite number of MLP'sijol with an infinite number
of neurons, see section 3.5.

6.3.1.1 Drawbacks of Single-Objective Online Optimizatia

The basic problem of single-objective online optimizatisthat only one objective is opti-
mized, while all other objectives have to be integrated ouaostraints. This can become a
problem if there is a trade-off between different objectivehere a compromise has to be
chosen carefully.

A typical example of a practical application is the optintiaa of several adjustment pa-
rameters in the part load area of a diesel engine. For thisigmomainly consumption and
emissions (NOXx, soot, HC,...) have to be minimized, whereti'essame time a smooth char-
acteristics of the resulting engine operating maps has &sbared. Hence, at every operating
point a compromise of these different objectives has to bhado Often, also different cali-
bration engineers from different departments are invoivetthis process, and therefore this
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compromise is typically obtained in an iterative way. Thihg calibration engineers require
models of the different objectives, which have a good guatitthe Pareto optimal areas, in
order to choose this compromise.

But these Pareto optimal models cannot be obtained from &esatgective online optimiza-
tion. At a single objective online optimization the compisenof the different objectives has
to be choseimn advance Hence, a lot of priori informationis required to do that.

In the mbminimize concept the constraints of the emissioadiged in advance, before the
online optimization is started. This can be done, sincelgasengines are considered, where
the emissions are not a big problem [53] (these gasolinenesgire without direct injection,
so that the soot emissions are not very high). Further, thieicgon to a single objective is
slightly reduced in mbminimize, as not only the optimal arebthe objective are determined,
but also the regions around a local optimum are intensivedgsured [53]. In addition, the
developers of mbminimize have already admitted that a denaiion of a multi-objective
problem would be more suitable [53, 54, 92], but this has eethtrealized until now.

Another approach is to perform a single-objective optirtiaraof consumption, with the con-
straint that the summarized emissions over a driving cyaleio be lower than a (legislative)
restriction. This single-objective optimization is udefor a subsequent offline optimiza-
tion in the office. However, this approach cannot be perfari@etomatically by an online
optimization, since for a number of reasons nearly alwaysaual interaction from the cali-
bration engineers is required:

First, as discussed in [35], this optimization does not m®@rsa smooth characteristics of the
engine operating maps. Further, the solution of this ogition is only optimal for the spe-
cific driving cycle, and the obtained measurements of thglainbjective online optimization
may not be useful for other applications (other driving egg! In addition, the treatment of the
summarized emissions over a definite number of operatinggdbes not avoid the problem
that a good compromise at every operating point has to bedfoGtearly, by using a single
aggregate objective function (a weighted linear sum of thjeaives), which is constant over
all considered operating points, the solution can becotibigrarily bad, see [19].

For these reasons, nearly always a subsequent manuakttraarom the calibration engi-
neers is required, in order to obtain suitable engine opegyataps.

Hence, in comparison to single-objective online optimaatwhere a lot of constraints have
to be defined a priori, before the measurement is startethjsnmtork another approach has
been developed. This multi-objective online optimizatapproach supports the calibration
engineers by providing models, which have a high precisioihé Pareto optimal areas, and
with these models the engineers can determine suitableroonmges for the different trade-
offs and the final engine operating maps via a subsequemeffptimization in the office.
This approach does only require the definition of the mositatiengine quantities (e.g. con-
sumption, NOx and soot for a diesel engine) and the basi¢ gbath should be achieved (e.g.
minimization of consumption, NOx and soot). With these daéins the multi-objective on-
line optimization determines automatically the Paretaroak areas of the engine. Therefore,
only a few a priori information of the process is required #éimel final decisions of the cali-
bration engineers can be performed offline.
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6.3.2 Multi-Objective Online Optimization

Although there exists no online optimization which can eédesmore than a single objective
in engine calibration, in other fields of research, espldiaglobal optimization and machine
learning, multi-objective online optimizations have alilg been developed. Hence, the ambi-
tion in this thesis was to identify and combine the most psang state of the art techniques
from other fields of research, in order to obtain an approatich is most suitable for engine
calibration tasks.

In the next subsection the hypervolume measure (or oftéaddimetric) is introduced, from
which we will make extensive use in the following. In subsat6.3.2.2 different state of the
art approaches for multi-objective online optimizatioe aompared against each other, and
in section 6.3.2.3 a new approach is presented, which amthigne best performance.

6.3.2.1 The Hypervolume Measure§ metric)

In this subsection the hypervolume measure is discussed. value will be crucial for the
further multi-objective approaches, since it has beendoaut to be a superior indicator to
identify the next update measurement in this thesis andabe literature [22, 94].

The hypervolume measure was introduced by [138], and |a83rdefined it as the Lebesgue
measureA g of the union of hyper-rectangles defined by a set of non-datath solution
vectorsA and a reference solution vectgt** that is dominated by all solution vectorsAa

S(A) = ALe (U ¥y <y =< ymax}) : (6.1)

yeEA

An illustration of the hypervolume measure of a problem witb objectives is given in figure
6.3. In this example the set of non-dominated solution vscdoconsists of the four points
{yM .. . y®} and the gray area indicates the hypervolume meaS(#4e.

f2

max

17 Yy

S

Figure 6.3: lllustration of the hypervolume measusenfetric).

Clearly, the better the set approximates the Pareto frontier, the higher the vau&) will
be. Mathematically this was proven by [28], where it was shdlat the detection of a set
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A that maximizesS(A) is equivalent to the detection of the Pareto optimal set fyrfanite
search space. Therefore, the hypervolume measure candiuse indication how accurate
the Pareto frontier is detected.

A drawback of theS metric is that the evaluation &f( A) is computationally expensive, if the
number of elements i or the number of objectiveg,,; is high. The computational effort
for an evaluation of the hypervolume increases exponéniith the number of objectives
doy; With recent implementations [29]. This should be compagethe computational cost
of the NSGA-II approach, which increases only linear witk titumber of objectivegyy;
[20]. Hence, it will be a crucial point in the further discissto make use of the superior
performance of the hypervolume measure for multi-objectiptimization, but at the same
time to keep the computational effort moderate.

6.3.2.2 Comparison of State of the Art Approaches in the Comixt of Engine Calibra-
tion

During this work numerous different techniques had beemaxad: the Multi-EGO approach
[48], the ParEGO technique [56], the model-based MA-SMScEAVimethod [22, 23], the
SMS-EGO approach [94] and other variations of these teciasiq In order to evaluate the
performance of these methods, various test problems [1863 wnplemented and different
assessment criteria were examined. Instead of going irttol @& this comparison, the fo-
cus in this thesis lies on the presentation of a new approglith is a combination of the
Multi-EGO and MA-SMS-EMOA method, and on the applicatiortiuf technique to engine
calibration problems. Hence, only the main results of tlsparison are summarized in a
very short form.

A general problem of all approaches is that they were deeeldpr an optimization of an
expensive computer simulation and not for problems whergenon the measurement data
occurs, like in engine calibration. Therefore, the objediof this comparison were quite
different to other comparisons which can be found in thediiere. However, some similar
results could be obtained.

A key result of the comparison was that the approaches, wisetthe hypervolume measure
to identify the next update point, had a significantly begterformance than the other tech-
niques. Independent from this work, this fact was alreadseoled by [22, 94]. However, as
discussed above, the computational burden of the evatuatithe hypervolume measure can
become prohibitive, if it is performed too often.

The SMS-EGO approach achieves the best performance inytf@gj; but it is also evalu-
ating theS metric very often. For some applications this may be actdptdut for engine
calibration tasks the computational effort of this apptosctoo high.

The performance of the Multi-EGO and the ParEGO technigoetias good as the MA-SMS-
EMOA approach, since the MA-SMS-EMOA uses the hypervolureasare for optimization,
while the Multi-EGO and the ParEGO technique use the expectprovement criterion [51],
which is not so effective [22]. However, the Multi-EGO hasiateresting property, since it



6.3. Online Optimization 113

uses a NSGA-II optimization, in order to obtain a presetecfor the suitable update points.
This reduces the computational effort of this approach.

Hence, in this work the Multi-EGO and the MA-SMS-EMOA techue were combined to a
new approach, in order to exploit the advantages of bothmigals. In this new approach,
similar to the Multi-EGO method, at first a NSGA-II optimizat is performed, in order to

obtain a preselection of appropriate update points at a [mwputational cost. After that,

similar to the MA-SMS-EMOA approach, the update point iss#@ which maximizes the

hypervolume measure. With this new technique, which isugised in the next section, the
best performance for calibration tasks could be obtained.

6.3.2.3 A New Approach

The basic functionality of the new approach for model-basgthe optimization for engine
calibration is given in algorithm 3.

Algorithm 3 Multi-Objective Online Optimization (for Engine Calibrati)

input: initial measurement (e.g. from online modeling), objeesi (e.g. minimization of
consumption, NOx and soot) and abort criterion

output: models of objectives

1: calculate initial models out of initial measurement
2: repeat
3: determine further update point(s) through the new optitronaapproach in two steps:
e determine a suitable preselection of further update pgitiifough performing a
multi-objective optimization
e determine suitable update point(s) out of the presele¢tiovugh the hypervol-
ume measure
measurement of the update point(s) on the test bench
calculate models out of all measurements
6: until abort criterion = true

AN

As in the online modeling in section 6.2, for the online opzation one or more update points
can be determined in every stage. In the next sections omhgkesipdate point is considered,
but it should be mentioned that the procedure of determiminge than a single update point
is equivalent to the suggested technique in section 6.2.1.

In the following, the two steps of the new approach, the deitetion of the preselection and
the determination of the final update point, are discussér gat, different abort criteria of
the multi-objective online modeling are examined.

Determination of the Preselection

Compared to other state of the art approaches (e.g. MA-SM®#&Mwhere the hypervol-
ume measure is evaluated for every potential update pbistpnew approach is performing a
preselection of suitable update points through a multediye optimization with the NSGA-
Il algorithm. This procedure is computationally cheapemtlan evaluation of the hypervol-
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ume measure for all potential update points.

In this work it has been found that the lower confidence bourigs of the models are appro-
priate objectived; for the multi-objective optimization (5.7). These lowendidence bounds
are given by [50]

leb, i(x) == Ei(x) —w - /V;(x) (6.2)

whereE;(x) andV,(x) are the predicted mean (4.21) and the predicted varian2®)(df the
i-th model. The value defines how many standard deviations of the predicted waingrtof
the model should be subtracted from the predicted mean. djé@nadicates how much the
predicted uncertainty is weighted against the mean valukeomodel [50]. In this thesis in
all applicationsu = 2 is chosen, since good results could be obtained with thimget

Determination of Suitable Update Point(s)

Having found the Pareto frontier with the NSGA-II in the piays stage, now the most suit-
able update point is determined out of this preselectioautin the hypervolume measure.
Since the results of the NSGA-II optimization are alreadyltwer confidence bounds of the
models, the selection of the maximum hypervolume measutieeske points corresponds to
the selection of the maximum potential improvement L.B2], which is given by

LBIw<yp0t) = S (ypot U TopJ) - S (Top’]) (6.3)

wherey, is a solution vector of the NSGA-II optimization aft,, ; are the measurements of
the objectives at the considered operating point ofjttleupdate. Equation (6.3) is evaluated
for every single solution vector of the NSGA-II optimizaticaand the vector which maximizes
LBI,, is chosen for the next update point.

Abort Criteria
Abort criteria which have been found to be useful in this ihase:

e precision of the models in the Pareto optimal areas is sefficithis means that the
maximum variance of the models in the Pareto optimal aresmmadler than a maximal
allowable variance

e potential of increasing the hypervolume is lower than a maliallowable value
e maximal number of update points is reached

As for the online modeling, the choice of an appropriate atxiterion for online optimization
depends on the specific application. In the following sutises we will see that a combina-
tion of the abort criteria is suitable for practical apptioas.
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6.3.2.4 A Theoretical Example

In this section a theoretical example of a multi-objectivéiree optimization is considered.
The advantage of this theoretical example is that the truet®drontier of this problem is
known, and therefore we are able to demonstrate the comegd the optimization to the
Pareto optimal areas.

However, the conditions of this example should be as clogeoasible to practical condi-
tions in engine calibration, in order to draw reasonablectumions for practical applications.
Therefore, the regarded system which should be optimizesists of models of engine quan-
tities. Assuming that these models predict the true engamavwor precisely, with this proce-
dure the performance of the multi-objective online optiatian can be analyzed under prac-
tical conditions.

In this example the consumption and NOx measurements abee®i/.1 are examined. A
detailed description of these measurements was given flose7, where it was also shown
that the models of these quantities approximate the trumerghavior precisely.

Hence, in this theoretical example an online optimizatiothwwo objectives is considered,
and therefore the objective space is two-dimensional. énnxt section, where a practical
application to a diesel engine is examined, a three-dimeasiobjective space is regarded.
Generally, the algorithms in this thesis can cope with aitraty high number of objectives,
but it should be mentioned that the complexity of the optatian problem (and therefore also
the number of required measurements) increases if moretolgie are considered.

In figure 6.4 the theoretical example is illustrated.

With the total set of the 780 consumption and NOx measuresnembddels were calculated,
which represent the true engine behavior, as mentionecealtoom these models the Pareto
frontier was determined by an extensive multi-objectivéirojzation. After that, a sub-
set of 200 measurements was randomly selected and used agi@nmeasurement for
the online optimization. In this online optimization theepating point at engine speed
Nengine = 1525 rpm and engine torqué/.,,,.,. = 780 Nm is considered. The initial mea-
surements at this operating point are marked in the plotsgofdi 6.4 by crosses, and the
Pareto frontier at this operating point consists of two @mted sets, which are indicated by
the two solid lines.

After the initialization, the multi-objective online optization is performed, and in the plots
of figure 6.4 the progress of the update measurements (&altsstrated. In order to simu-
late real conditions for the optimization, a measuremergens added to all update points.
Further, the Pareto optimal measurements in the examplaaned by circles in figure 6.4.

Overall, 100 update points were simulated. It can be seanthleaupdate points are fast
converging towards the true Pareto frontier, and that onfigjwaupdate points are required
in order to identify the Pareto optimal areas. In additidrgan be determined that nearly
no update point is dominated by the initial measurementsalbunitial measurements are
dominated by the update points. Further, it should be meetidchat more measurements
are on the Pareto frontier, if the number of update measursmecreases, which means
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Figure 6.4: Theoretical example of a multi-objective oaloptimization with two objectives.
In the different figures the progress of the online optimaats shown.
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that the density of the Pareto optimal measurements inesedhis is also indicated by the
uniform distribution of the Pareto optimal update pointgnide, dependent on the number of
update measurements the Pareto frontier can be approxinwatebitrary accuracy with the
multi-objective online optimization. Moreover, it can kees that also the edges of the Pareto
frontier were determined precisely.

The fact, that the optimization results are getting betti#éh &n increasing number of mea-
surements, is also indicated in figure 6.5.

Number of Pareto Optimal Points
40 T T
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0.75f b
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Figure 6.5: Number of Pareto optimal update points and tladedchypervolume for the
model-based multi-objective online optimization for thearetical example of figure 6.4.

In figure 6.5 the number of Pareto optimal points and the hygdeme (scaled to an interval of
[0 1]) are plotted over the number of update points. It candem$hat the scaled hypervolume
increases rapidly at the beginning, which indicates thatuidate points are fast converging
towards the true Pareto frontier. After that, the limits lo¢ fPareto frontier are explored and
the number of Pareto optimal points increases, which rhiiss that the density of the Pareto
optimal measurements increases.

Hence, with this theoretical example it could be demonstrdhat the new multi-objective
online optimization is fast converging towards the optiraadas and that the resulting mea-
surements of the optimization are well distributed.
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6.3.2.5 A Practical Application to a Diesel Engine

After this theoretical example, in this section a practaggblication of the multi-objective on-
line optimization is examined. For this task the modeling aptimization algorithms have to
be in a permanent interaction with the test bench. Therefocemmunication software was
implemented, which bidirectionally transfers the dataueetn the automation software of the
test bench and the methods described above. This softwdretlaer aspects of implementa-
tion are discussed in chapter 7. Here, we want to examinecthwacy and the performance
of the model-based multi-objective online optimizatiorpractice.

The goal of this application was the optimization of constiorpof a diesel engine in the part
load area, by simultaneous consideration of the NOx andesadsions, in order to meet the
emission standards. The adjustment parameters, whichdshewptimized, were the main
injection time, injection pressure and quantity and timéhef post injection. Since a global
modeling is performed, also engine speed and torque are gskmodel inputs. This leads to
an 6-dimensional input space.

As the exact values for the constraints for NOx and soot dt eperation point are not known
in advance, a multi-objective online optimization was paried. With this multi-objective
online optimization the engineer can either directly cleoose of the Pareto optimal mea-
surements as a compromise, or these measurements can lire aisk to improve the model
quality in the Pareto optimal areas, which reduces the taiogy of the optimal solution, if
the Pareto frontier is dense enough.

For the initial data 483 measurements were taken at 33 apgaints. With these measure-
ments the initial global models were calculated and thetatsterion of the online modeling

of section 6.2.2.1 had been checked. After this, the mbigctive online optimization was
performed on different operating points. Since the resuitthe different operating points are
very similar, here we consider a single operating point girenspeed:.,, i, = 1300 rpm

and engine torqué/.,,,. = 215 Nm as an example. The results for other operating points
are given in appendix A.

The objectives were the minimization of consumption, NO# aoot. This leads to a three-
dimensional objective space and a two-dimensional Pareti¢ér. The measurements in the
objective space at the discussed operating point are glwttégure 6.6. In the left column a

three-dimensional view of the objective space is showncethe positions of the measure-
ments in this three-dimensional plot are hard to deternafss, two-dimensional projections
of the objective space are plotted in the middle and rightirools. With these projections it

is easier to identify the optimal measurements, which shbel close to the low values of
consumption, NOx and soot. At the top row the initial meameet is plotted. The Pareto

optimal measurements are marked with circles. In the loaesithe progress of the multi-

objective online optimization is shown. The second row kdigp the measurements after 6
update steps of the online optimization. The third and foustv show the development after
12 and 18 update measurements.

It can be seen that during the progress of the optimizatiatine, more and more measure-
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Figure 6.6: Practical model-based multi-objective onbpémization. Here the consumption,
NOx and soot measurements at the operating geintie, Mengine) = (1300 rpm, 215 Nm)

are plotted in the objective space. On the left a three-dano@al view of the objective space is
shown, on the middle and right two-dimensional projectiofthe objective space are shown.



120 CHAPTER 6. IMPROVED MODEL-BASED ONLINE OPTIMIZATION

ments are taken in Pareto optimal areas. Further, the updates are well distributed in the
objective space and try to cover the whole Pareto frontienlgv Hence, with more and more
update points the measurements which indicate the Paw@tter will get more and more
dense. This makes it easy for the engineer to get a good isipresf the optimal areas, and
therefore a good compromise for the trade-off between copson, NOx and soot can easily
be chosen.

The fact, that the Pareto frontier will get more dense withiengodate points, is also indicated
in figure 6.7.

Number of Pareto Optimal Points

0 5 10 15 20 25 30 35 40 45
Number of Update Points

Scaled Hypervolume

0.75F
0.5r

0.25F

0 5 10 15 20 25 30 35 40 45
Number of Update Points

Figure 6.7: Number of Pareto optimal update points and tladedchypervolume for the
model-based multi-objective online optimization at theing point(n.,gine, Mengine) =
(1300 rpm, 215 Nm).

In this figure the number of Pareto optimal points during 48aips of the multi-objective
online optimization is plotted. From this plot it can be selat most of the update mea-
surements are Pareto optimal and therefore the Paretaeircan be approximated more and
more accurately during the optimization.

Further, in figure 6.7 the hypervolume, which is scaled tanierval [0 1], is plotted against
the number of update points. This plot indicates the corarerg of the optimization routine.
It can be seen that most of the optimization of the hypervelwan be achieved in the first
updates. After 6 updates over 50% improvement of the hypaemecan be obtained and after
15 updates over 80% of the hypervolume can be achieved. Henaepractical realization
only a few updates would have been needed to get an impresiiba full potential for the
optimization. The later updates cannot improve the hydame very much, but they allow a
dense representation of the Pareto frontier.
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Clearly, the convergence rate of the optimization may vatlggfcomplexity of the optimiza-
tion problem is changed (e.g. if more adjustment paramsterald be optimized or if there
is more noise on the measurement data).

But obviously, it can be seen that the model-based multietivge online optimization per-
forms well under practical conditions.

Besides the advantages of the multi-objective online ogation, the whole process of mea-
surement, modeling and optimization in a loop demonstridgesobustness and accuracy of
the whole concept. At any time for every update point, the @eliag and optimization is
performed in a fully automatic way without any manual int¢i@n. Since the online opti-
mization achieved accurate results, this means that atssmtdeling, which is recalculated
in every single update step, is very accurate. This is inreshto other state of the art mod-
eling approaches for stationary base engine calibratitrereva manual interaction is often
required, in order to tune the models to get an accurate girexi Hence, these results also
emphasize the use of Gaussian processes for modeling ineccajibration.

6.4 Conclusion and Discussion

In this chapter a model-based online optimization has beesepted. The whole approach
consists of two stages: an online modeling and an onlinemipdition stage. For both stages
new techniques were presented, which have a better penficariar engine calibration tasks
than state of the art approaches from other fields of research

Clearly, the utilization of the presented framework for mieoi@sed online optimization is
most useful, if a complex calibration problem is consideseith e.g. many adjustment pa-
rameters and difficult engine quantities (like soot).

If a simple calibration problem is considered, then a few sneaments from a simple test
plan and a unique model-based offline optimization may bicserit. However, for highly
complex problems either numerous measurements are rddoir@an accurate offline opti-
mization, or many process loops are necessary, where thelaesing, measurement, mod-
eling and optimization are performed iteratively, in orderconverge to the optimal areas.
Nevertheless, these iterative process loops requirenarnmanual interactions from the cal-
ibration engineers, which are time- and cost-intensivecdntrast, the presented framework
for model-based online optimization can be performed inllg futomatic way, with a high
quality of the results at a low amount of measurements.

Hence, this approach assists the calibration engineethowithis framework the calibration
engineers not only have to identify a suitable setting ferghgine adjustment parameters, but
they also have to perform extensive additional work, in otdelesign appropriate test plans
and to verify the models and the optimization results. Thesetechniques take the pressure
off the calibration engineers, so that they can concentratBnding a suitable compromise
out of the Pareto optimal solutions.

The advantages and properties of the new model-based aptimization approach can be
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summarized as follows:

e Optimal utilization of the test bench tim€ompared to model-based offline optimiza-
tion, only the most important measurements are performéutvs approach. There-
fore time and costs on the test bench can be remarkably réduce

e It is avoided that additional measurements are requia¢dhe end of the online opti-
mization. In model-based offline optimization the verifioatof the optimum may fail,
if the quality of the model at the optimal area is not suffitjeand therefore an addi-
tional measurement has to be performed, which increasgsréogsion of the model.
Hence, the calibration engineer is forced to design a netnptas and repeat the mea-
surement, modeling and optimization. Clearly, this is wiatef time and resources
and does not increase the user acceptance of calibratits tdo contrast, with the
presented framework the final model automatically has a aguracy at the optimal
areas, and therefore the risk that an additional measutask@quired is minimized.

e Only few a priori information is requiredThe (unique) state of the art approach for
model-based online optimization in engine calibratiornes single-objective online op-
timization of mbminimize. This approach requires that tampromises of different ob-
jectives have to be chosen in advance, before the onlinenggatiion is performed on the
test bench. Hence, a lot of a priori information is requingtich is often not available.
In comparison, in this thesis a multi-objective online ap#ation is presented. With
this approach the Pareto optimal areas of the calibratioblem are identified, and the
calibration engineer is able to choose a compromise aftelsyay a subsequent offline
optimization in the office. Hence, only the main objectivéshe calibration problem
have to be defined a priori.
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Chapter 7

IMPLEMENTATION

This chapter focuses on the implementation of all approgachbkich were mentioned above,
into a calibration tool for model-based offline and onlindimization. Hence, the follow-
ing sections emphasize that the techniques in this thesis m@ only examined under a
theoretical viewpoint with a practical verification, busalthat these approaches are already
implemented for a further usage.

The main implementation was performed in MATLAB, but some patationally expensive
routines were implemented in C/C++ and Fortran and integiatdte main implementation
over MEX interfaces.

All algorithms which have been examined in this thesis wetegrated into a toolbox named
KASIO, which is discussed in section 7.1. In order that albzation engineer can use these
algorithms, a GUI called PAoptimizer-Matlab-Edition wasalized, which is discussed in
section 7.2. In section 7.3 the connection to the test bendtlze realization of the online
optimization is examined.

7.1 The KASIO Toolbox

During this work nearly all mentioned algorithms in thissiseewere implemented and tested.
The final choice of the most useful algorithms had been iategrin a toolbox named KASIO,
which stands for KRATZER System Identification and Optimi@atoolbox.

The KASIO toolbox consists of two layers: an object-orient@yer and a layer of compu-
tationally expensive implementations. The user of theltowlonly has to interact with the
object-oriented layer, which can be easily operated thi@igple interfaces. After an error
checking of the user inputs, the computationally demandigines in the other layer are
automatically executed. Hence, with these two layers alsiaapd error-free use is possible.

The content of the KASIO toolbox is given in table 7.1.
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Classes in KASIO:

KASIO_VP class: design of experiments

KASIO_MB class: modeling

KASIO_OP class: optimization

KASIO_OBJECTIVE class: definition of objective functions and doaisits
KASIO_MBOO class: model-based online optimization

KASIO _VP - class for design of experiments

FullFak full factorial design

Random random (uniform) design
LatHyp latin hypercube design

Dopt D-optimal design via k-exchange

KASIO _MB - class for modeling

Gaussprocess Gaussian process with normal noise assumption

Gaussprocessob Gaussian process with Student’s-t noise assumption

MLP_BR MLP network with Bayesian regularization

Poly_free Coeff polynomial stepwise regression

Poly polynomial regression with a priori specification oé tonsidered coefficients
(SVM support vector machine - not yet integrated)

KASIO _OP - class for optimization

Single Obj_glob single-objective optimization for the global optimum
Single Obj_Mult single-objective optimization with a multistart ajpach
Multi _Obj multi-objective optimization

KASIO _MBOO - class for model-based online optimization
Single MBOO single-objective online optimization
Multi_MBOO multi-objective online optimization

Table 7.1: Content of the KASIO toolbox - 01.06.2012.

7.2 The PAoptimizer-Matlab-Edition

In order that a calibration engineer can use the algoritHrtieedKASIO toolbox, a GUI named
PAoptimizer-Matlab-Edition was realized.

With this GUI the calibration engineer can manage diffeegylications in the project direc-
tory, store and load numerous settings, import the measnedata out of xIs-files and per-
form a modeling and optimization. Further, various diffeéréisualization techniques were in-
tegrated into the PAoptimizer-Matlab-Edition, such agiiséction plots, measured-predicted
plots, 3-D model plots and measurement analyzing plots.dtfitian, via the PAoptimizer-
Matlab-Edition the user is able to connect to the test bendi@perform an online optimiza-
tion, which is discussed in the next section.

Figure 7.1 shows some screenshots of the PAoptimizer-bi&itition.
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Figure 7.1: Screenshots of the PAoptimizer-Matlab-Editio

7.3 Connection to the Test Bench and Online Optimization

During this work the test benches were automated with thed&atSoftware Suite from
KRATZER AUTOMATION AG. The PAtools Real-Time-System is theerface to the test
stand and performs the execution of the test program.

In order to perform an online optimization, the modeling aptimization algorithms have to
be in a permanent interaction with the test bench. Hencemaumication software was im-
plemented and integrated in the PAoptimizer-Matlab-Bditwhich bidirectionally transfers
the data between the PAtools Real-Time-System and the arpiti@ization procedure.

After the specification, the online optimization passessttéings of the next measuring point
and further parameters to the PAtools Real-Time-System;iwiki performing the measure-
ment. The limit monitoring and other critical tasks are parfed in the real time system.
At the end of the measurement, the measured quantities@®ed by the online optimiza-
tion, which decides if further measurements have to be pedd or if the procedure can be
stopped.
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Chapter 8

CONCLUSION AND FUTURE WORK

This thesis has presented a complete framework for modalnaigoptimization for station-
ary base engine calibration. The results range from cleafetimgg recommendations from
a comprehensive comparison, new robust modeling appreacheew model-based online
optimization concepts. These new contributions enhare@énformance for modeling and
optimization, and therefore they are able to reduce timecasts on the test bench, improve
the reliability of modeling and optimization results, atghe calibration engineers and in-
crease the user acceptance of model-based techniquesmie eatibration.

Based on the presented requirements on the modeling, thenileé¢ion of the most suitable
modeling technique for stationary base calibration wa$opered, which was an important
open question in this field of research. The Gaussian proves®l could be identified as
the most promising type of modeling. With the Gaussian pe@pproach, the highest pre
cision with a low amount of measurements can be achievedndueling can be fully auto-
mated with the maximum marginal likelihood method, a dejpdtelperformance on complex
problems can be obtained and an accurate prediction of tbertamty of the model can be
estimated.

However, recent approaches in engine calibration do natidenoutliers in the measurements
and an automatic adaption to bad distributed data. Thergbiased on the results of the model
comparison, the most promising modeling technique wasrerdthin order that a new robust
modeling framework for stationary base engine calibrationld be obtained. An automatic
transformation of the measurement data ensures that thelimgdssumptions on the data
distributions are met. Even if outliers are contained indbta set, a robust Gaussian process
formulation guarantees that the modeling is asymptoticaibiased, meaning that the model
is tending to the real engine behavior as the number of meamnts tends towards infinity. It
was shown that this new framework has an outstanding pegioceon challenging practical
data sets.

Since state of the art model-based online optimizationefwine calibration do not use a
fully probabilistic approach and can only handle a singlgdiive function, a new, improved
online optimization approach was presented. As a Gaussaregs modeling is used, addi-
tional information, such as an accurate prediction of threamae and the marginal likelihood
probability density function of the model parameters, carekploited for the online model-
ing, in order to obtain an increased performance at a loweuatrof measurements compared
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to other approaches. With the new multi-objective onlingrojzation more objectives can be
regarded and the Pareto optimal areas can be determinedt éofavergence under practical
conditions was demonstrated.

Not only the requirements of the calibration process haealbegarded throughout the thesis,
but also the needs of the calibration engineers have beesdewad during the development
of each new approach. The robust modeling technique canrbemped in a fully automatic
way and the model-based online optimization can be easrgnpeterized. Both techniques
assist the calibration engineers by providing models witinareased accuracy, since, on the
one hand, an improved modeling technique is used and, oritieeltand, additional measure-
ments are placed in the Pareto optimal areas. Hence, ingteathoving outliers manually
from the data set, investigating in complex mathematicales, or performing a verification
of models and optimization results, with these contrilngithe calibration engineers can con-
centrate on their main tasks.

The following areas of further research are proposed théurincrease the performance of
the concepts presented in this thesis:

e MCMC methods: As discussed throughout the thesis, MCMC methods providéerbe
performance than other approximation techniques. Howéweglitional approaches for
MCMC approximation are computationally too expensive fagiea calibration tasks.
Nevertheless, if more computing power will become avadahlthe future and more
sophisticated MCMC algorithms can be developed, then aeased performance for
outlier robust Gaussian process models and for online @g@tions may be achieved.

e Smooth ECU maps:An explicit integration of the smoothness of the ECU maps as an
additional objective could improve the multi-objectivelioe optimization. A possible
approach for the consideration of smooth engine operatiagsnn an optimization is,
for example, given in [54, 92], and this technique could lhegrated in the model-based
online optimization.

e Dynamic engine calibration: Most of the presented approaches in this thesis can also
be applied to dynamic engine calibration problems. By domgtise reduction of the
computational effort of the modeling techniques will be ganahallenge. However,
as already indicated in chapter 3, a lot of modeling appres@xist, such as sparse
kernel machines, which have a lower computational effanta full Gaussian process
modeling, and it is believed that these techniques can béio@a with the presented
online optimization and robust modeling approaches.
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Appendix A

FURTHER EXPERIMENTAL RESULTS OF
SECTION 6.3.2.5

As mentioned in section 6.3.2.5, in this appendix furthgrezimental results of the practical
application of the model-based multi-objective onlineimiation are given.

A detailed description of the optimization procedure wagqgiin section 6.3.2.5. Here, only
the results at other operating points are presented. FAydreonsiders the operating point at
engine speed., . = 900 rpm and engine torqué/., g, = 930 Nm, figure A.2 considers
the operating point at engine speeg,;,. = 900 rpm and engine torqu&/,,,;,. = 1264 Nm
and figure A.5 considers the operating point at engine spegg,. = 1100 rpm and engine
torque M, gine = 1244 Nm. In the figures A.3, A.4 and A.6 the number of Pareto optimal
points and the scaled hypervolume is plotted of the apjpdicatof the figures A.1, A.2 and
A.5.

As in the other operating point in section 6.3.2.5, it can &ensthat the online optimization
is converging fast to the Pareto frontier. Further, the tp@aints are well distributed in the
objective space and try to cover the whole Pareto frontienkyv

The results of these additional experiments re-emphasezadvantages of the multi-objective
online optimization, which were discussed extensivelyhapter 6.
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Figure A.1: Practical model-based multi-objective onliogtimization.
sumption, NOx and soot measurements at the operating Q@i ine, Mengine)

(900 rpm, 930 Nm) are plotted in the objective space. At the left a three-dsiwral view
of the objective space is shown, in the middle and right twoeshsional projections of the
objective space are shown.

Here the con-
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Figure A.2: Practical model-based multi-objective onliogtimization. Here the con-
sumption, NOx and soot measurements at the operating [@iine, Mengine)

(900 rpm, 1264 Nm) are plotted in the objective space. At the left a three-dsiwral view
of the objective space is shown, in the middle and right twoeshsional projections of the
objective space are shown.
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Figure A.3: Number of Pareto optimal update points and tteeschypervolume for the
model-based multi-objective online optimization at theing point(n,gine, Mengine) =
(900 rpm, 930 Nm).
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Figure A.4: Number of Pareto optimal update points and ttedesichypervolume for the
model-based multi-objective online optimization at theting point(n.,gine, Mengine) =
(900 rpm, 1264 Nm).
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Here the con-

sumption, NOx and soot measurements at the operating Q@i ine, Mengine) =
(1100 rpm, 1244 Nm) are plotted in the objective space. At the left a three-dsiaral view
of the objective space is shown, in the middle and right twoeshsional projections of the
objective space are shown.
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Figure A.6: Number of Pareto optimal update points and ttseschypervolume for the
model-based multi-objective online optimization at theating point(n.,gine, Mengine) =
(1100 rpm, 1244 Nm).
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