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ABSTRACT

This thesis presents new approaches and results for modeling and optimization for stationary
base engine calibration.

At first, the requirements on the modeling are discussed, in order to determine the most suit-
able modeling technique for this topic in an extensive comparison. The Gaussian process
modeling can be identified as the most promising approach. With the Gaussian process mod-
eling, the highest precision with a low amount of measurements can be achieved, the modeling
can be fully automated with the maximum marginal likelihoodmethod, a dependable perfor-
mance on complex problems can be obtained and an accurate prediction of the uncertainty of
the model can be estimated.

However, recent approaches in engine calibration do not consider outliers in the measurements
and an automatic adaption to bad distributed data. Therefore, based on the results of the model
comparison, the most promising modeling technique is enhanced in order that a new robust
modeling framework for stationary base engine calibrationcan be obtained. An automatic
transformation of the measurement data ensures that the modeling assumptions on the data
distributions are met. Even if outliers are contained in thedata set, a robust Gaussian process
formulation guarantees that the modeling is asymptotically unbiased, meaning that the model
is tending to the real engine behavior as the number of measurements tends towards infinity.

Since state of the art model-based online optimizations forengine calibration do not use a
fully probabilistic approach and can only handle a single objective function, a new, improved
online optimization approach is introduced. As a Gaussian process modeling is used, addi-
tional information, such as an accurate prediction of the variance and the marginal likelihood
probability density function of the model parameters, can be exploited for the online model-
ing, in order to obtain an increased performance at a lower amount of measurements compared
to other approaches. With the new multi-objective online optimization, more objectives can
be regarded and the Pareto optimal areas can be determined.

All these new contributions enhance the performance for modeling and optimization, and
therefore they are able to reduce time and costs on the test bench, improve the reliability
of modeling and optimization results, assist the calibration engineers and increase the user
acceptance of model-based techniques in engine calibration. Various theoretical examples
and practical applications demonstrate the performance ofthese new approaches.
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SYMBOLS AND NOTATION

Matrices are capitalized and vectors are in bold type. A consistent notation is used throughout
the thesis. In the following, the most important symbols andabbreviations are given.

Symbols:

|A| determinant ofA matrix
p(a, b) joint probability (density), probability of a and b
p(a|b) conditional probability (density), probability of a givenb
D set of measurements,D := {(xn, tn)|n ∈ {1...N}}
D dimension of input spaceX
ǫ noise
E expectation
k kernel function,k(x,x′) := φ(x)Tφ(x′)
K Gram (covariance) matrix,K := ΦΦT

λ, α, β regularization parameters
L likelihood function
M number of model parameters
N normal distribution, Gaussian distribution
N number of measurements
φj basis function,RD → R

φ set of basis functions,φ := (φ1, ..., φM )T

Φ design matrix, defined by(Φ)n,j = φj(xn)
tn target / measured value of then-th measurement
t targets / measured values (of the set of measurements),t := (t1, ..., tN )

T

Θ model parameters
V variance
x input vector (state vector),x ∈ X
x∗ input vector of the prediction (test input),x∗ ∈ X
xn input vector of then-th measurement,xn ∈ X
X inputs (of the set of measurements),X := (x1, ...,xN )

T

X input space,X ⊂ R
D

y model
y∗ model prediction

vii



Abbreviations:

DoE design of experiments
ECU electronic control unit
GP Gaussian process
HHT hinging hyperplane tree
KASIO KRATZER system identification and optimization toolbox
LLR linear model with local RBF terms
LOLIMOT local linear model tree
MBOO model-based online optimization
MCMC Markov chain Monte Carlo (methods)
MLP multilayer perceptron (neural network)
MOO multi-objective optimization
NRMSE normalized root mean square error
NSGA-II non-dominated sorting genetic algorithm-II (MOO algorithm)
RBF radial basis function (neural network)
RMSE root mean square error
RSSE regularized sum of squares error function, defined in (2.15)
RVM relevance vector machine
SE squared exponential (kernel function)
SSE sum of squares error function (least squares), defined in (2.6)
SVM support vector machine

viii
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Chapter 1

INTRODUCTION

The internal combustion engine is a widely used system for mobile propulsion in vehicles. In
recent years the manufacturers of the engines have to meet two new demands:

• In order to reduce air pollution, governments around the world introduced emission
standards. An example are the European emission standards (EURO standards), which
were introduced in the EU member states. Two important quantities of the EURO stan-
dards, the particulate matter and the sum of HC and NOx emissions of a diesel engine
for passenger cars, are shown in figure 1.1.
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Figure 1.1: NOx+HC and particulate matter of the EURO standards

• Due to increasing oil prices, the demand for low consumptionengines rises. At the
same time, the customer does not accept limitations in dynamics and comfort, which is
putting increasing pressure on the automobile industry.

In order to meet these demands, the manufacturers introduced new technologies, e.g. variable
valve train or exhaust gas recirculation. With these technologies, new degrees of freedom en-
able to control the combustion process more precise. Figure1.2 shows some of them and the
goals which are pursued.
The task of engine calibration deals with the question how tocalibrate these adjustment pa-
rameters.
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Figure 1.2: The number of parameters increased rapidly in the last years. Power and torque
could be increased, consumption and emissions could simultaneously be reduced, see [53].

1.1 Introduction into Engine Calibration
In order to control the additional parameters of the engine,the Electronic Control Unit (ECU)
was introduced in the 1970s [12]. In engine calibration, measurements, e.g. from the test
bench, are taken to parameterize the ECU with optimal settings for these parameters. In
former days these tasks could be performed manually by engineers and test bench operators.
Since the number of labels on the ECU and the complexity of the problem is increasing rapidly
in the last years, new methods have been developed and used [76].

Figure 1.3 gives an overview of several calibration tasks, see [53]. The vehicle calibration
covers the calibration of different comfort and dynamic functions for the transient states of
the vehicle and the calibration of the transmission. The stationary calibration covers numer-
ous, very different tasks. The torque structure is the central coordinating function of the ECU,
which uses the required torque as a reference. Other functions provide a safe and clean oper-
ation of the engine. For more information see [12, 53, 76].

comfort and dynamics transmission

exhaust gas
temperature model load detection on-board diagnosis

misfire detection torque structure knock control

emission control lambda control others

base calibration

stationary
calibration

vehicle
calibration

Figure 1.3: Examples of different tasks in engine calibration, see [53].
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The base calibration constitutes the prerequisite for all other calibration tasks. In this task the
settings of the basic adjustment parameters, like main injection time or injection pressure, are
determined and stored in maps on the ECU. These engine operating maps are functions of a
discretization of the whole operating rangeXOP , which is spanned by the torque and speed of
the engine. The operating rangeXOP , its discretization into single operating pointsxOP and
thed-dimensional parameter spaceXP , which is spanned by thed adjustment parameters, are
shown in figure 1.4. As we will see soon, due to physical restrictions, e.g. engine limits like
knocking or too high exhaust gas temperature, not every point in the parameter spaceXP can
be set on the engine. Therefore, on every operating pointxOP the parameter spaceXP reduces
to the feasible parameter spaceXFP (xOP ) := {x ∈ XP |(xOP , x) can be set on the engine}.
The aim of base calibration is now, to find the optimal valuesxopt for the parameters for every
operating pointxOP given a certain objective functionΦ : XOP × XP → R, which can be
written as

xopt(xOP ) = argmin
x∈XFP (xOP )

Φ ((xOP , x)) . (1.1)

At the end, the optimal settings(xopt(xOP ))i for each parameter(XP )i, i ∈ {1, .., d} are
stored in maps on the ECU, as shown at the bottom right in figure 1.4.

In most cases many different and conflicting objectives haveto be considered in engine cal-
ibration. Hence, the objective functionΦ is a compromise of a multi-objective function
Ψ : XOP × XFP → R

dObj , which covers thedObj different objectives. The way how this
compromise is chosen, depends on the distinct areas in the operating rangeXOP , see figure
1.4. The part load (pl) area is the biggest area in the operating rangeXOP and occurs most
commonly in the driving cycle, where the EURO standards are measured. The objectives in
this area are mainly focused on consumption and emissions. At full load the maximum of
power and torque should be achieved and in the idle area a goodengine smoothness should be
considered, in order to realize a maximum in comfort.
Often, parameters are optimized which have only a low dynamic, like the valve which controls
the exhaust gas recirculation. Therefore, the smoothness of the engine maps of these param-
eters influences the dynamic behavior of the vehicle, since abig change in the settings of the
parameters needs a lot of time, see also [35] and [53]. Hence,another objective in engine
calibration is to get smooth engine maps for parameters withlow dynamics. This goal is often
achieved by a subsequent smoothing of the maps, see [86] and [35].

At the end two different approaches for optimization, whichare quite common in engine
calibration, should be mentioned: local and global optimization. In local optimization only a
single operation pointxOP at a time is considered for calculation of the optimal parameters
xopt. If engine load and speed are also taken into account, then a global optimization is
performed. Clearly, it is obvious that e.g. the optimizationof the smoothness of the maps is a
global problem. Therefore, it is clear that not all problemscan be solved by local optimization
and often global optimization has to be performed.
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XOP

xopt(xOP )

(XP )i

(xopt(xOP ))i

Figure 1.4: On the left side the operating rangeXOP with the distinct areas are shown, see also
[21]. In every area the objectiveΦ for calibration is different. On top, the objective function
Φ over the parameter spaceXP is plotted. The aim of base calibration is, to find the minimum
xopt of the objective function and to store this minimum in engineoperating maps on the ECU.
On the bottom right a map of a single parameteri is shown. A more detailed explanation is
given in the text.

1.2 State of the Art in Engine Calibration
In this section an overview of state of the art techniques forengine calibration is given.
Two main approaches, a measurement-based and a model-basedoptimization, can be dis-
tinguished.

1.2.1 Measurement-Based Optimization

If only few parameters should be optimized (2-3 parameters), then the parameter space is
low-dimensional and measurement-based optimization can be used [21]. This approach has
many advantages. The techniques are simple to implement andeasy to understand. Therefore,
the engineer needs no special knowledge and can interpret the results very fast. However, as
we will see soon, due to the curse of dimensionality these approaches cannot be used for an
optimization with many parameters. Since the number of parameters increased rapidly in the
last years, as said above, nowadays measurement-based optimization is only used for spe-
cial problems. Therefore, this thesis focuses rather on model-based optimization. However,
for a deeper understanding of the problem and for the sake of completeness, two different
approaches of measurement-based optimization are given inthe following. For a further dis-
cussion see [53] and [21].
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1.2.1.1 Full Factorial Optimization

In this approach the parameter space is discretized into a dense grid, which is often called a full
factorial design, and measurements are taken at each point.As said above, ford parameters
the parameter space isd-dimensional and the number of measurementsN scales with

N = NDd, (1.2)

whereND is the number of measurements in each dimension and therefore determines the
density of the grid. In figure 1.5 (a) a simple example of a fullfactorial optimization is given.
In this plot a dense grid over a two-dimensional space is shown and the optimal point in this
grid is marked. By increasing the density of the grid, it clearly can be seen that the optimal
parameters can be determined with arbitrary accuracy. However, from (1.2) it follows that
the number of measurements increases exponentially with the number of parameters. As the
number of measurements is directly linked with time and costs on the test bed, this approach
cannot be used for an optimization with many parameters.

1.2.1.2 One Factor at a Time

Another optimization method which was used for engine calibration is ”One Factor at a Time”,
see [53] and [21]. At this approach only one adjustment parameter is manipulated at once,
while all other parameters are fixed at a constant value. Figure 1.5 (b) shows a simple ex-
ample of this method, where two parameters should be optimized. First, the parameterx1 is
manipulated while the parameterx2 is fixed. Therefore, in this step the problem reduces to a
one-dimensional optimization. After finding the optimum ofthis step, which is marked by a
rectangle, the parameterx1 is fixed and the parameterx2 is manipulated.
Since this method cannot identify interactions of the different parameters, it clearly can be

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x2

x
1

(a) Full Factorial Optimization

x
1

x2

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

(b) One Factor at a Time

Figure 1.5: Measurement-Based Optimization, see [21].
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seen that this procedure has to be repeated numerous times inorder to find the next local op-
timum. As the number of interactions increases, if the number of parameters increases, this
method cannot be used for more complex optimization problems.

1.2.2 Model-Based Optimization

The engine test bench is an expensive system. In addition, measurements on the test stand are
often time-intensive. Hence, in recent years a lot of efforthas been made in order to reduce
time and costs on the test bench. An important improvement constitutes the automation of
the test bench, which allows an automated operation overnight and therefore increases the
capacity utilization. Nevertheless, as the complexity in engine calibration is increasing rapidly
in recent years, as said above, new methods have been developed and used.
Another major step in engine calibration was the introduction of model-based optimization,
see [33], [76] and [101]. In this approach measurements fromthe test bench are taken in order
to build black-box or gray-box models. This method has numerous advantages. Some of them
are:

• The optimization of the adjustment parameters can be performed with these surrogate
models instead of the real engine. Therefore, by using modern optimization routines,
a lot of objectives and constraints can be considered. Further, if the engine is used in
different vehicle types, then often different objectives have to be taken into account.
Hence, different optimizations can be performed for each type of vehicle, without a
multiple using of the test bench.

• As we will see soon, numerous different methods have been developed, which allow
to reduce the number of measurements, without limitations in accuracy of the models.
Hence, time and costs on the test bench can be reduced.

• By using computer aided visualization techniques for the models, engineers can gain a
better understanding of the basic relationships of the problem. This allows the engineer
to gain a well-founded knowledge of the engine in a short time.

Two different approaches for model-based optimization, offline and online optimization, can
be distinguished.

1.2.2.1 Model-Based Offline Optimization

The model-based offline optimization is characterized by strict separation between the mea-
surements on the test bench and the modeling on the PC. Figure 1.6 shows a schematic dia-
gram of this method. In an initial step, an experimental design is planned. Various different
techniques had been developed and used for this task, like optimal design of experiments or
space filling designs, see [6, 54, 92]. After taking measurements on the test bench, a modeling
of the desired parameters is performed. With these models, the optimal settings of the parame-
ters can be found by numerical optimization. Afterwards, these optimal values are verified on
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Figure 1.6: Model-Based Offline Optimization

the test bench. If the verification was successful, then the engine operation maps are generated
and stored on the ECU.
A serious drawback of this approach is that the quality of themodels is not checked during the
measurements on the test bench. If the model quality is bad, e.g. if too few measurements are
performed or too many outliers occur in the data, then the prediction of the optimal values will
be wrong. Thus, the verification will fail and the optimization has to be started over again.
This drawback can be overcome with the model-based online optimization.

1.2.2.2 Model-Based Online Optimization

In the last years, there is a trend to model-based online optimization, where measurement,
modeling and optimization are not strictly separated (see [53] and the references therein).
Hence, the modeling and optimization algorithms are in a permanent interaction with the test
bench, which allows the models to give a feedback of their quality.
This has various advantages. First, the modeling can give a feedback if already enough mea-
surements are taken and the measurement on the test bed can bestopped. Hence, the test
bench time can be reduced to an optimal amount. Second, the models can provide informa-
tion in which areas the measurements should be taken in orderto achieve the maximum of
information. Thus, the test bench time can be used more efficiently.
Hence, time and costs on the test bed can be considerably reduced by the usage of model-based
online optimization [53].

As shown in the schematic diagram in figure 1.7, this approachis divided into four stages.
In the initial stage, a start design is planned and measured on the test bench. This stage is
equivalent to the first steps in model-based offline optimization and therefore often called
offline DoE. With these first measurements, the initial models are calculated. Based on these
models an online modeling is performed in the second stage. In this process, the goal is to
improve the models, in order to assure that these models are able to represent the real engine
behavior. Therefore, measurements are taken on the test bench at areas which reduce the
model error at most, and after every measurement the models are updated. If the prediction
of the models is accurate enough, then an optimization routine is performed in the third stage.
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The aim of this task is to find the optimal settings for the adjustment parameters for every
operation point and to take measurements near these optima.This has the advantage that the
models are very precise in the optimal areas since the density of measurements is higher in
these regions. At the end, the engine operation maps are generated and stored on the ECU.

1.2.2.3 Stationary and Dynamic Engine Calibration

For measurement data acquisition and modeling, stationaryand dynamic approaches have
been developed and used for offline and online optimization in engine calibration.

Stationary and Dynamic Measurement Data Acquisition
As said above, many calibration tasks are performed stationary, and therefore also the mea-
surement is often performed stationary. Figure 1.8 illustrates the characteristics of such a
stationary measurement. At first, the adjustment parameters are set on the desired values
via automatic control in the control time (CT). These adjustments influence the measurement
variables. Since some measurement variables have a low dynamic, e.g. temperatures of the
engine, a stabilization time (ST) is waited, in order to reach a stationary state of the engine.
During the averaging time (AT) the mean values of the measurement variables are calculated.
Hence, the whole measurement time results from the sum of thestabilization time (ST) and
the averaging time (AT). Depending on the dynamic of the considered measurement variables
and on the noise on the measurements, the time for a single stationary measurement can add
up to a few minutes. The measurements in this thesis were taken on state of the art test benches
and took between 2 and 5 minutes for a single stationary measurement.

In order to avoid this time-intensive procedure, in recent years several non-stationary measure-
ment techniques have been developed. Some of them are intended for a stationary modeling,
like Sweeping [108] and Slow Dynamic Slope [52]. In these approaches, the measurements
are performed in a way such that the dynamic behavior of the system is suppressed and the
stationary values can be calculated [21].



1.2. State of the Art in Engine Calibration 9

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5
 

CT ST AT

Time

In
pu

ta
nd

M
ea

su
re

m
en

t

Figure 1.8: Stationary Measurement: Control (CT), Stabilization (ST) and Averaging Time
(AT), [21].

Other approaches are intended for a dynamic modeling. Therefore, the dynamic behavior
of the engine is measured by using sinus sweeps or APRBS signals(amplitude modulated
pseudo-random binary signal) as inputs for the adjustment parameters, which should be re-
garded as a dynamic measurement in the following.

Stationary and Dynamic Modeling
As said above, nowadays in base calibration the adjustment parameters are typically optimized
on the stationary state of the engine. In addition, until nowmany other functions on the ECU
are only realized as stationary functions and in many cases an optimization of the transient
state is not possible. Therefore, a stationary modeling is most commonly used in engine
calibration.

A dynamic modeling has two advantages. First, a dynamic measurement can be used, which
allows to save a considerable amount of time compared to a stationary measurement. Second,
the dynamic behavior of the engine can be represented. Sincee.g. a lot of emissions are
generated in the transient states of the engine, a dynamic optimization of these states could be
a great improvement, if the results of this optimization could be considered in future versions
of the ECU. Hence, the dynamic modeling gained a lot of interest in recent years and a lot of
research has been made, e.g. see [21, 34, 35, 70].

Discussion
Therefore, a dynamic modeling and optimization shows a great potential for the future. Nev-
ertheless, this thesis focuses on stationary engine calibration because of two reasons.

First, the aim of this work was the development of a complete framework, which is able
to cope with real demands resulting from practical applications. A typical and well known
problem for a dynamical modeling arises, when it comes to theapproximation of quantities,
which are hard to measure. While a good dynamic modeling has already been performed for
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NOx and consumption, a dynamical modeling of soot is still a tough task, e.g. see [102] and
[35]. Nevertheless, the optimization of soot is an important aspect in engine calibration and
cannot be neglected in practical applications. Other problems for a practical realization of
dynamical approaches arise from time delays of emission measurements, which are varying
over the operating range, and safety functions of the ECU [21]. Further, since a lot of effort
from the user is needed for a dynamical modeling, the acceptance of these methods is still not
as high as for stationary approaches.
Second, there are still many open questions in the area of stationary engine calibration, which
are discussed in the following chapters. Further, a lot of results for stationary calibration
are also applicable to dynamic calibration, like a comparison of different types for modeling.
Therefore, the techniques in this thesis are regarded undera general viewpoint, wherever
possible. Nevertheless, the development and application of methods for stationary engine
calibration should be the focus in this thesis.

1.3 Scope of this Thesis
The aim of this thesis is the development of a complete framework for modeling and opti-
mization for stationary base engine calibration. As mentioned above, there already exist a lot
of approaches and algorithms for this topic. However, in theliterature the different methods
are often examined separately and a comprehensive overviewof all different methods does
not exist until now. Hence, so far it is hard to determine which approaches are most suitable
for stationary engine calibration. Therefore, one aspect of this work is the evaluation and
comparison of the different methods, the other aspect is theimprovement of these methods,
wherever possible.

The contributions of this thesis can be summarized as follows:

• Extensive overview and comparison of different types of modeling in theory and
practice (Chapter 3): Various types of modeling have been developed and used for
stationary engine calibration. Nevertheless, there exists no comparison which consid-
ers a comprehensive number of different techniques and simultaneously examines the
theory extensively. Often, only a few approaches are considered, or just the practical
performance on different data sets are compared. Hence, thedetermination which type
of modeling is most suitable for stationary engine calibration is still an important open
question. In this thesis an extensive theoretical model comparison is given, which can
further be confirmed with practical examples. From this comprehensive study a recom-
mendation for a most suitable modeling can be given.

• A new outlier-robust modeling (Chapter 4): A problem for state of the art algorithms
for engine calibration arises, if outliers occur in the measurement data. It is shown in
the overview of the different types of modeling, that outliers are not considered in re-
cent approaches, and that they have to be removed before model training, in order to
get a good model quality and an accurate prediction. This hasserious drawbacks be-
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cause usually a manual interaction is needed to identify theoutliers, since an automatic
detection of the outliers is not very robust or computationally very expensive, if there
are many outliers in the data. Based on the results of the modelcomparison, the most
suitable type of modeling is extended, in order to achieve a formulation, which is robust
to outliers. In addition, a nonlinear transformation of themeasurement data is integrated
in the approach, in order to improve the reliability of this new modeling framework for
engine calibration.

• A new, improved model-based online optimization (Chapter 6): Compared to model-
based offline optimization, with a model-based online optimization time and costs on
the test bench can be remarkably reduced. In addition, this approach assists the calibra-
tion engineers by providing models, which have a high accuracy in the optimal areas.
Therefore, the calibration engineers do not need to verify the optimum and no additional
process loops have to be performed, as this can be the case, ifa model-based offline op-
timization is used and the verification of the optimum fails.However, only a few online
techniques exist for stationary engine calibration, and all of them suffer from various
drawbacks. Hence, a new approach is presented, and the performance of this method is
illustrated.

In addition, at every time in this thesis the needs of the calibration engineers are considered
in the approaches, which is rarely found in the literature. Hence, all developed concepts can
be used in an automatic and robust way, in order that the usersof these techniques are not
challenged by complex mathematical issues, if the assumptions of the approaches are not pre-
cisely met. In this way, the calibration engineers are assisted by the developed tools, in order
to increase the user acceptance of model-based techniques in engine calibration, which is still
an important issue.
Therefore, many approaches in this thesis may include advanced mathematical concepts, how-
ever, this is only a challenge for the developers of the calibration tools and not for the users,
since at any time these complex issues can be used in a robust way, without any required
manual interaction.

All techniques in this thesis are presented from a general viewpoint, in order to draw additional
conclusions for other fields of research. Nevertheless, it is assured that we never loose sight
of the aims of stationary base engine calibration.

1.4 Structure of the Thesis
An overview of the basics of modeling for engine calibrationis given in chapter 2. At first,
some general theoretical preliminaries are discussed, which are used throughout the thesis.
Afterwards, an overview of an extensive number of differentmodeling approaches is given.

The aim of chapter 3 is to identify the most suitable approachfor stationary base engine cali-
bration out of this overview. For this reason, the requirements on the modeling are examined,
which result from the application of engine calibration. These requirements allow to compare
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the different types of modeling with each other and enable toidentify the most promising
technique with theoretical and practical examinations.

However, all state of the art modeling approaches suffer from some shortcomings, which are
discussed in chapter 4. Hence, based on the results of the model comparison, in chapter 4
the most suitable approach is further enhanced in order to overcome these drawbacks. An au-
tomatic nonlinear transformation of the measurements assures that the modeling assumptions
on the data distributions are met, and a Student’s-t noise assumption provides an outlier-robust
model behavior.

In chapter 5 the state of the art techniques for optimizationin engine calibration are discussed.
Different algorithms for single- and multi-objective optimization are analyzed, and suitable
methods are chosen for each application. In addition, different approaches for design of ex-
periments for engine calibration and for model-based online optimization are examined.

However, since the state of the art online optimization procedures suffer from various draw-
backs, which are discussed in chapter 6, a new approach is presented. Due to the use of a full
probabilistic modeling and a multi-objective technique, an increased performance and usabil-
ity of the online optimization can be obtained. This is demonstrated on various theoretical
examples and practical applications.

In section 7 some short remarks are given on the implementation of the algorithms, the user
interfaces and the connection to the test bench. The thesis is concluded with a summary of the
results and possible future works.



1.4. Structure of the Thesis 13

Chapter 2

BASICS OF MODELING FOR ENGINE
CALIBRATION

In engine calibration the aim of modeling is to approximate several different unknown engine
functionsΨi : XOP ×XFP → R, i ∈ {1...dObj}, by known functionsyi : XOP ×XFP → R,
which are referred to as models of the unknown functionsΨi.

It generally can be distinguished between a physical modeling, which is often called a white
box modeling, an empirical modeling out of data, which is called black box modeling, and a
mixture of both types, where some prior knowledge can be usedand integrated in the model-
ing and the remaining modeling is performed on measurement data, which is called gray box
modeling.
Since the internal combustion is a complex process, which isinfluenced by thermodynamics,
fluid dynamics and chemistry, a precise modeling and simulation of this process is not practi-
cable today. Even if the computing power will still increaseexponentially in the future, it will
take decades until an accurate combustion simulation is possible in a reasonable amount of
time [45, 78, 130]. Hence, nowadays only very simplified physical models of the combustion
are used for simulation in engine calibration. Further, in engine calibration physical models
are used in domains, where the combustion does not need to be considered.
In base engine calibration many effects of the combustion can’t be neglected. A typical exam-
ple is the modeling of different emissions, e.g. soot, with respect to many different adjustment
parameters, e.g. input pressure. Obviously, in this example the fluid flow and the chemical re-
actions in the cylinder have a major influence on the formation of soot and can’t be neglected.
However, as said above, a detailed physical modeling and numerical simulation is not practi-
cable today. Therefore, in base engine calibration measurements are taken from the test bench
and with this data a black box or a gray box modeling is performed.

A set of measurementsD := {(xn, tn)|n ∈ {1...N}}, whereN is the number of measure-
ments, contains the values of the adjustment parametersX = (x1, ...,xN )

T , which are called
inputs, and the measured valuest = (t1, ..., tN )

T , which are often called targets. The calcu-
lation of a black box model is called training, whereas the evaluation of the model is referred
to as prediction. Since the goal is to model the behavior of anunknown system from mea-
sured data, the term modeling corresponds to the term systemidentification and will be used
interchangeably in the following.
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When an empirical black box modeling is used, it can be distinguished between an interpola-
tion model and a regression model.
Since measurements, which are taken from the test bench, always contain a certain amount
of noise, in engine calibration an important goal of the modeling is to suppress the depen-
dency of the noise on the model. Therefore, only regression models are considered for engine
calibration [92].

Further, it can be distinguished between a parametric and a non-parametric modeling. For
the parametric models the model structure is specified in advance, and after the training of
the model parameters, the measurement dataD can be discarded. This is contrary to non-
parametric types of modeling, where the model structure is not specified a priori and the
prediction of the models relies on the training dataD, or a subset of it.

In this chapter the theoretical preliminaries and an overview of different types for modeling
are given in an abbreviated version. For a more detailed overview see [11], [84] or [41].

2.1 Preliminaries
From the discussion above, it follows that our measurementstn are given by

tn = yn + ǫn (2.1)

whereyn = y(xn) is a model of a function of the engine andǫn is a random noise variable
whose value is chosen independently and identically distributed (i.i.d.) for each observation
n.

In this section some techniques and general theoretical properties for modeling are derived,
which are used in the further thesis.
The first section introduces the common method of maximum likelihood and shows how a
normal noise assumption leads to the method of least squares. The second section discusses
how accurate a modeling can become in average, with a finite amount of training data, through
the bias variance dilemma. Further, two important sources of error are shown: overfitting
and underfitting. In addition, some techniques for choosinga good compromise for the bias
variance trade-off are discussed.

2.1.1 Maximum Likelihood, Normal Noise and Least Squares

Typically, the modely contains parametersΘ, which can be tuned on the training data. Two
common approaches exist for the determination of suitable parameters: the maximum likeli-
hood method and the maximum a posteriori approach. In this section the maximum likelihood
approach is considered.

If ǫ in (2.1) is an i.i.d. noise, then from (2.1) it follows that the measurementstn are given
by a certain probability density function (pdf)pf . The joint probabilityp(t|y,X,Θ) of then
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measurementst1, ..., tn for a given value forΘ is then given by

p(t|y,X,Θ) = pf (t1|y1,x1,Θ) · pf (t2|y2,x2,Θ) · ... · pf (tN |yN ,xN ,Θ). (2.2)

In the framework of the maximum likelihood approach the measurementst are considered to
be fixed and the likelihood function

L(Θ|D) := p(t|y,X,Θ) =
N∏

i=1

pf (ti|yi,xi,Θ) (2.3)

is then maximized with respect to the model parametersΘ, whereD refers to the set of
measurements (see above).

Example: normally distributed noise
Now an independent zero mean Gaussian distribution with varianceσ2 is assumed for the
noise, so thatǫn ∼ N (0, σ2). Hence, from (2.1) it follows that the probability distribution of
a single measurementtn is given by the normal distribution

p(tn|yn) = N (tn|yn, σ2) =
1√
2πσ2

exp

(

−(tn − yn)
2

2σ2

)

, (2.4)

whereyn = y(xn,Θ). In the same way as above, we can derive the joint distribution of our
measurements

p(t|y,Θ) = N (t|y, σ2I) =
N∏

n=1

p(tn|yn) =
N∏

n=1

1√
2πσ2

exp

(

−(tn − yn)
2

2σ2

)

=
1

(2πσ2)N/2
exp

(

−
∑N

n=1(tn − y(xn,Θ))2

2σ2

)

, (2.5)

which is simply the product of the probability distributions of the single measurements. For
an easier understanding partially the dependence onΘ andX was neglected.

As said above, in the framework of maximum likelihood the model parametersΘ are chosen
in a way which maximizes the joint distribution (2.5). Obviously, the joint distribution is
maximized as the negative exponent in (2.5) is minimized. Hence the maximum likelihood
solution for an independent Gaussian noise assumption is given by minimizing

SSE(Θ) :=
N∑

n=1

(tn − y(xn,Θ))2 (2.6)

which is often called the sum of squares error function (SSE)or the method of least squares.

Hence, it can be seen that the minimization of the sum of squares error function is equivalent to
the maximization of the likelihood function under an independent Gaussian noise distribution.
In other words, the calculation of the model parametersΘ via the least squares approach leads
to the same results as via the maximum likelihood approach with a Gaussian noise assumption.
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2.1.2 The Bias-Variance Dilemma and Overfitting

In this section some basic problems of modeling are discussed, which appear when data sets
of limited size are used, which is always the case in practical applications. Clearly, if we had
an unlimited amount of data, then we can approximate an unknown function with arbitrary
accuracy. However, in practice we have a data setD containing only a finite numberN of
data points, and therefore there will always be some error left.

The discussion is started by the examination of the bias variance dilemma. For this topic we
consider a system behavioryS, which we want to approximate with a modelyM = yM(x,D).
As said above, we cannot observe the system directly, but we can observe measurements
tn, which are shifted by random noiseǫ given by (2.1). Now we want to decompose the
expectation of the squared loss function

E
[
e2
]
= E

[
(tn − yM)2

]
= E

[
(yS + ǫ− yM)2

]

= E
[
(yS − yM)2

]
+ E

[
ǫ2
]
+ 2E [ǫ(yS − yM)]

= E
[
(yS − yM)2

]
+ E

[
ǫ2
]
, (2.7)

sinceǫ is uncorrelated withyS andyM . We can further decompose the model error

E
[
(yS − yM)2

]

︸ ︷︷ ︸

(model error)2

= E
[
(yS − E[yM ]− (yM − E[yM ]))2

]

= E
[
(yS − E[yM ])2

]
+ E

[
(yM − E[yM ])2

]

− 2E [(yS − E[yM ])(yM − E[yM ])]

= E
[
(yS − E[yM ])2

]
+ E

[
(yM − E[yM ])2

]

= (yS − E[yM ])2
︸ ︷︷ ︸

(bias)2

+E
[
(yM − E[yM ])2

]

︸ ︷︷ ︸

variance

. (2.8)

We see that the expected squared difference between the realsystem behavioryS and our
modelyM can be expressed as the sum of two terms.
The first term, which is called the squared bias, describes how the real behavior differs from
the prediction of our model averaged over all data sets. Thissystematic error can be influ-
enced by the flexibility of our model. If the flexibility of ourmodel is increased (e.g. by
increasing the degree of our polynomial model, or by increasing the number of neurons of our
neural network), the bias error will approach to zero, if we use an universal approximator for
modeling [84]. Therefore, one ambition is that the model should have many parameters in
order to be flexible enough to approximate every nonlinear engine mapping.
The second term, which is called the variance, describes howthe model of the individual data
sets vary around their average, and hence indicates how the modelyM is sensitive to the par-
ticular choice of data set. This random error can be influenced by the flexibility of our model
as well. If the flexibility of our model is decreased, the model will not vary around as much
and therefore the variance error will decrease [64]. Therefore, another ambition is that the
model should have few parameters in order to be not too flexible.
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Hence, we can summarize this examination.
A very simple model with few parameters will have a small variance error, but simultaneously
it will not be able to adapt the real behavior very well and therefore it will have a large bias,
which is calledunderfitting. A very complex model with many parameters will have a small
bias error, but simultaneously the solution will strongly adapt random noise instead of the real
behavior and therefore it will have a large variance error, which is calledoverfitting.

Therefore, a major task in system identification is the determination of anoptimalflexibility,
which is a good compromise between the bias and variance error.
Various techniques have been developed for this problem. Inthe next sections an overview is
given.

2.1.2.1 Maximum A Posteriori and Regularization

A common approach for parametric models is to estimate the parametersΘ not only via the
likelihood function, but also to incorporate a penalty term, which reduces the flexibility of
the model. This is called regularization. Typical approaches choose the model for which the
quantity

f(L(Θ|D))− g(Θ,D) (2.9)

is largest. Heref andg are functions which depend on the different approaches andL(Θ|D)
is the likelihood function (2.3). Hence, these approaches consist of two terms. The likelihood
term f(L(Θ|D)) typically gets larger if the flexibility of the model is increased, whereas
the penalty term−g(Θ,D) typically tries to reduce the flexibility. The goal is now to find
suitable functionsf andg, which allow to determine an optimal degree for the flexibility of
the model. Various different approaches have been developed, like the Akaike information
criterion (AIC) [3] or the Bayesian information criterion (BIC)[109]. In this thesis, we will
examine a method called ridge regression, which is very common in machine learning. But
instead of fixing the functionsf andg in advance, we will see that the complexity penalty
term arises naturally, if we use a full Bayesian approach.

In the Bayesian viewpoint we assume that an a-priori distribution p(Θ) for our model pa-
rametersΘ is given. Then we use the likelihood functionL(D|Θ) and the Bayes theorem to
calculate the a posteriori distribution

p(Θ|D) ∝ p(Θ)L(D|Θ). (2.10)

Now we can choose the model parameters at the mode of this posterior distribution, which is
called a maximum a posteriori (MAP) approach. Hence, we choose

Θ̂MAP = argmax
Θ

p(Θ|D) = argmax
Θ

p(Θ)L(D|Θ). (2.11)

Clearly, if we use a non-informative prior forp(Θ), like a constant function (we should be
aware that this would be no probability distribution anymore), then the maximum a posteriori
estimation is identically with the maximum likelihood estimation.
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Example: normally distributed noise and parameters
As in the example above, an i.i.d. Gaussian distribution with varianceσ2 is assumed for
the noise. Further, we assume that our model parameters underlie a prior distribution. For
simplicity, in this example a Gaussian distribution of the form

p(Θ) =
( α

2π

)M/2

exp
(

−α
2
ΘTΘ

)

(2.12)

should be considered, whereα is the precision of the distribution andM is the number of
model parameters. With the likelihood function (2.5) for the normal noise distribution, the
posterior distribution can be calculated from (2.10) as

p(Θ|D) ∝ exp

(

−
∑N

n=1(tn − y(xn,Θ))2

2σ2
− α

2
ΘTΘ

)

. (2.13)

Obviously, seeking the mode of this probability function isequivalent to the minimization of

β

2

N∑

n=1

(tn − y(xn,Θ))2 +
α

2
ΘTΘ, (2.14)

whereβ = 1/σ2, which is again equivalent to the minimization of the regularized sum of
squares error function (RSSE)

RSSE(Θ) :=
N∑

n=1

(tn − y(xn,Θ))2 + λ‖Θ‖2, (2.15)

whereλ = α/β. This result should be compared with (2.9). We will see shortly, that the
flexibility of the model can be reduced as the parameterλ is increased and vice versa. Hence,
this parameter controls the effective complexity of the model.
In statistics the approach (2.15) is called ridge regression, in the area of neural networks it is
known as weight decay, and it is very common in machine learning as well as in modeling for
engine calibration.

Example: simple polynomial regression
Now the most important key concepts of this section should bedemonstrated by a simple
polynomial regression. Consider a simple 1-D polynomial model

y(x) =
do∑

j=0

ajx
j (2.16)

is trained by some data, as shown in figure 2.1. In this figure training data (circles) is sampled
from a function and shifted by normal noise. In practice thisfunction would be an unknown
nonlinear engine mapping. With this data a polynomial regression is performed.
In the left plot polynomials of low(do = 1), medium(do = 3) and high(do = 10) orders
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Figure 2.1: Example of a simple 1-D polynomial regression. Left: the order of the polynomial
is varied. Right: A polynomial of order 10 is used and a penaltyterm is introduced and varied.

are used, and the training is performed by using the maximum likelihood method via the
SSE function (2.6). It clearly can be seen that the low-orderpolynomial is not able to adapt
the nonlinearity of the function which should be approximated. This model has a very low
flexibility, a large bias and is underfitted. In comparison tothat, the higher order polynomial is
highly oscillating around the function which should be approximated. This model has a very
high flexibility, a large variance error and is overfitted. The third order polynomial is a good
compromise for the bias variance trade-off.
In the right plot a polynomial of order 10 is used and the training is performed by using the
maximum a posteriori method via the RSSE function (2.15) withdifferent values forλ. It
clearly can be seen that an increasing value forλ reduces the flexibility of the model, and that
the performance of this approach is similar to the reductionof the order of the polynomial in
the left plot.
Further, this example should demonstrate the importance ofchoosing an optimal flexibility
for the modeling.

2.1.2.2 Stepwise Regression

Another technique for finding the optimal flexibility of the model is stepwise regression. Com-
pared to regularization, where the number of model parametersΘ are fixed in advance, in the
stepwise regression approach the model parameters are selected from a set of admissible re-
gressors during the training. It can be distinguished between forward selection, backward
elimination and stepwise selection techniques.

In forward selection approaches, which are often called growing in the area of neural net-
works, the modeling is typically started with a simple structure and only a few model pa-
rameters. Then, the performance of the other model parameters from the admissible set of
regressors is evaluated, e.g. through a statistical test orsomething similar, and the most suit-
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able parameter is added to the model. This is repeated until an abort criterion determines that
the flexibility of the model is sufficient.
The backward elimination approaches, which are often called pruning in the area of neural
networks, pursue the contrary procedure. First, it is started with a very flexible model, and
then the flexibility of the model is reduced, by removing parameters from the model, until an
abort criterion is reached.
The stepwise selection approach is a combination of forwardselection and backward elimina-
tion. At each iteration, before forward selection is performed and a new parameter is added to
the model, all already selected parameters undergo some statistical significance test, and those
regarded as insignificant are removed from the model. Clearly, stepwise selection is compu-
tationally more expensive, but can also give better resultsthan forward selection or backward
elimination alone [84].

2.1.2.3 Cross-Validation and Early Stopping

Another technique for finding the optimal flexibility of the model is early stopping, which
is uniquely used for neural networks. In order to understandthis approach, at first some
principles, which lead to method of cross-validation, haveto be discussed.

As we have seen above, overfitting can occur if the model is trained via the SSE function (2.6).
Hence, the model performs well on the data on which it is trained, since the SSE function is
minimized, but it will perform poorly on the other areas in the input space. Hence, a simple
approach to estimate the quality of a model is to train it on a training data set and evaluate
its performance on a different data set. The performance on this different data set is called
generalization.
For this method the measurement data has to be split up into separate parts. This can cause
problems if the number of measurements is small, since not all areas of the input space will
be covered from all separate data sets. As said above, the engine test bench is an expensive
system, and therefore as few measurements as possible should be taken. Hence, in this thesis
a method called cross-validation is considered, which tries to minimize the impact of sparse
data. This approach is illustrated in figure 2.2.
For cross-validation the data is partitioned intoS disjunct parts. ThenS − 1 parts are used to
train the model, and the remaining part is used for validation. This procedure is then repeated
for all S possible combinations. After that, the validation errors from all runs are averaged
to obtain a reliable estimate for the model performance. If the data is very scarce, then often
S = N is chosen, whereN is the number of measurements, which is called the leave-one-out
technique.
The advantage of cross-validation is the possibility to usea large data set for the training in
each run, while at the same time every data point is used for validation during all runs. A
major drawback of this technique is that the model training is performedS times, and this can
be problematic for models in which the training is itself computationally expensive.

Now the method of early stopping can be discussed.



2.2. Linear Regression Models 21

Training Data

Validation Data

1. run

2. run

3. run

4. run

Figure 2.2:S-fold cross-validation, illustrated forS = 4, [11].

The training of a neural network is an iterative optimization, which we will see later, where
typically the SSE function (2.6) of the training data is minimized. If the error of a validation
set is measured during the training, then this error often shows a decrease at first, followed
by an increase in the later optimization steps. As we saw above, if the model is overfitted,
then the model performs well on the training data, but poor onthe validation data. In contrast,
if the model is underfitted, then the model performs poor on both, the training data and the
validation data. Hence, the method of early stopping ends the optimization routine when the
validation error reaches its minimum.
A major drawback of early stopping is that a validation set has to be used, and therefore not all
data can be used for training, which is problematic since themeasurement data is scarce. This
drawback can slightly be reduced if the cross-validation approach is used. Nevertheless, since
the training for the neural network is computationally expensive, cross-validation is hardly
applicable. In addition, [92] has shown that the regularization technique (2.15) performs
better in the area of engine calibration than early stopping, and therefore early stopping won’t
be considered in the further thesis.

2.2 Linear Regression Models
In this chapter we consider models, which are linear combinations of fixed functions
φj : R

D → R of the input variablesx = (x1, ..., xD), and therefore can be written as

y(x,Θ) =
M∑

j=1

θjφj(x) = ΘTφ(x) (2.17)

whereΘ = (θ1, ..., θM )T andφ = (φ1, ..., φM )T . It should be mentioned that the notation
’linear modeling’ does not mean that this class of models is linear in the inputsx, but rather
these models are linear in its model parametersΘ. Therefore, this class of models shares
simple analytical properties and yet can be nonlinear with respect to the input variables. The
nonlinear functionsφj(x) are often called basis functions.

One advantage of linear modeling (2.17) is, that we can directly obtain a closed-form solution
for the minimization of the SSE function (2.6) and the RSSE function (2.15). For this solution
we first have to introduce the matrixΦ of sizeN × M , called the design matrix, whose
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elements are given by(Φ)n,j = φj(xn), so that

Φ =








φ1(x1) φ2(x1) . . . φM(x1)
φ1(x2) φ2(x2) . . . φM(x2)

...
...

. ..
...

φ1(xN) φ2(xN) . . . φM(xN)







. (2.18)

If the number of measurementsN is greater than the number of model parametersM , then
for linear modeling the model parametersΘ which minimize (2.6) are given by

ΘML =
(
ΦTΦ

)−1
ΦT t = Φ†t , (2.19)

whereΦ† :=
(
ΦTΦ

)−1
Φ is the Moore-Penrose pseudo-inverse of the matrixΦ and the

subscript ML refers to the maximum likelihood solution. Thederivation of this solution is
straightforward and can be found in e.g. [11]. It can be obtained by calculating the gradient
of (2.6) and setting it to zero.
The model parametersΘ which minimize (2.15) can be derived in an analogous way, andthe
result is given by

ΘMAP =
(
λI+ΦTΦ

)−1
ΦT t , (2.20)

where the subscript MAP refers to the maximum a posteriori solution. It clearly can be seen
that for the limitλ→ 0 the ML solution (2.19) can be obtained.

2.2.1 Polynomial Regression

If the basis functionsφj are chosen to be

φj(x) = xj, (2.21)

wherej = (j1, ..., jD) is aD-dimensional multi-index andxj = xj11 ·...·xjDD , then a polynomial
regression is performed. With these basis functions and from (2.17), the polynomial model is
given by

y(x,Θ) =
∑

|j|≤γ

θjx
j (2.22)

where|j| = j1+ ...+ jD. Here,γ is called the degree or order of the polynomial. If e.g.γ = 1
is chosen, then a linear regression is performed.

Due to the simplicity of the polynomial model, it was the firstmodeling technique which
was used in engine calibration [33, 77]. Today, this approach is still the most commonly used
type of modeling and offered in every common commercial product for stationary base engine
calibration, like in the PAoptimizer [31] from KRATZER AUTOMATION AG, in ASCMO
[58, 59, 100] from ETAS, in the AVL CAMEO Tool [33], in the Easy-DoE Toolsuite [44]
from IAV, in the Model-Based Calibration Toolbox [104, 105, 118] from MathWorks and in
the Intelligent Calibration Tool [89] from Kristl, Seibt & Co GmbH and Magna Powertrain.
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2.2.1.1 Polynomial Stepwise Regression

A common method to obtain an optimal flexibility of the polynomial model is to perform a
polynomial stepwise regression, which was previously described in section 2.1.2.2 under a
general viewpoint. This technique is most commonly used in engine calibration, in order to
obtain a good compromise for the bias variance trade-off forpolynomial models.
In this thesis we will concentrate on the t-test for stepwiseregression, which can be found in
[92] and [26]. As we will see later, due to the general drawbacks of polynomial modeling,
other types of modeling will be recommended. Therefore, thespecific type of hypothesis test
will not be of great interest in this thesis, and we will only need it as a comparison to other
types of modeling. Hence, it will only be discussed in a very short form.

For the hypothesis test we assume that the measurement noiseis i.i.d. normally distributed,
more formally:ǫ ∼ N (0, σ2IN). If we denoteΘ as the true model parameters andΘ̂ as the
estimated model parameters, then from this assumption it follows that our estimated model
parameters are given by the following normal distribution [26]

Θ̂ ∼ N
(
Θ, σ2(ΦTΦ)−1

)
. (2.23)

With this result we can now perform a hypothesis test in whichit is tested, if a certain model
parameter̂θj should be removed from the whole set of model parametersΘ̂. For this test we
have to evaluate [92]

tj =
θ̂j

√
1

N−M
||t−ΦΘ̂||2

[
(ΦTΦ)−1

]

jj

. (2.24)

The hypothesis, that the coefficientθ̂j can be removed from the model, can be discarded if
[26]

|tj| > t1−α̃,N−M , (2.25)

wheret1−α̃,N−M is the(1− α̃) quantile of the Student’s t-distribution with(N −M) degrees
of freedom, which is discussed at length in chapter 4.

With this hypothesis test forward selection can be performed by testing the fitness of a single
parameterθj, which is not yet integrated in the set of model parametersΘ̂, through adding this
single parameter temporarily to the model. If the significance |tj| is greater than a predefined
valuet1−α̃1,N−M , then this parameter can be integrated in the model. Further, also backward
elimination can be performed by removing the model parameters which have a lower signifi-
cance than a predefined valuet1−α̃2,N−M in every training step.
As in [92], the stepwise selection algorithm was enhanced bya QR decomposition, in order
to make the algorithm numerically more stable and to reduce the computational effort.
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2.2.2 RBF Networks

Various different kinds of radial basis function (RBF) networks exist. A very common choice
for the basis functions is

φj(x) = exp

(

−1

2
||x− µj||2Σj

)

(2.26)

with

||x− µj||Σj
=
√

(x− µj)
TΣj(x− µj) (2.27)

whereΣj is a positive definite norm matrix [84]. With this definition of the RBF network, a
schematic structure of (2.26) and (2.17) can be drawn, whichis illustrated in figure 2.3. This
structure shows the membership of the RBF networks to the classof artificial neural networks
(ANN). The inputs are connected toM radial basis functions (2.26), which are regarded as a
hidden layer ofM neurons in the nomenclature of neural networks. Typically,RBF networks
consider only one output at a time. Therefore, the output layer consists only of one linear
summation (2.17), which is regarded as a linear output layer.
It can be seen that the model (2.17) is linear in the parameters Θ, but nonlinear in the pa-
rametersµj andΣj. A generalization of this approach can be derived from the Gaussian
process viewpoint, which will be discussed extensively in section 2.4.2, where the training is
performed by simultaneous optimization of all the parameters (Θ,µj,Σj), j ∈ {1, ...,M}.

In engine calibration it is common not to optimize all the parameters(Θ,µj,Σj) at the same
time, but rather in an iterative procedure [34, 92, 118]. In base engine calibrationµj andΣj

are often determined in a first step, and in a second training step the parametersΘ are deter-
mined by the maximum likelihood solution (2.19) [34]. Often, these two steps are repeated
alternately, in order to achieve a better solution [118].
It should be noted that the classification of the RBF networks tothe class of linear models
refers to the determination of the parametersΘ, which is common in engine calibration [92].

Numerous different approaches exist for the determinationof the parametersµj andΣj. Two
techniques should be considered here, which are conventional in engine calibration [92]. In the
first technique the training data in the input space is clustered, and a basis function is placed in
the areas where the density of training data is high, which isa method of unsupervised learning
[84]. The other technique places the basis function in areas, where a systematic difference of
the data and the model can be detected.

Other types of RBF networks can be developed by choosing normalized basis functions, which
lead to the general regression neural networks (GRNN) [84] and the Nadaraya-Watson model
[11]. At last, it should be mentioned that the RBF network is an universal approximator on a
compact subset ofRD. This means that a RBF network with an increasing number of hidden
neurons can approximate any continuous function with arbitrary precision.
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Figure 2.3: Schematic structure of the RBF network.

2.2.3 The LLR Model

The LLR model (Linear model with Local RBF terms) was introduced by [92].
In [92] it is argued that a polynomial model is able to approximate the global behavior of
a function, however, difficulties arise when it comes to adaptation of local behavior. At the
same time it is stated that RBF models are good at approximationof local properties, but they
cannot adapt the global behavior well.
Hence, [92] introduced the LLR model as a combination of a polynomial model and a RBF
model.

The training algorithm of the LLR model is given as follows:
At first, the training data in the input space is clustered, and RBF terms are placed in areas,
where the density of training data is high. Then an iterativeprocedure is performed. Initially,
a polynomial stepwise regression is performed. The RBF terms,which are already included
in the model, are considered and integrated in the regression. If the stepwise regression has
converged, then RBF terms are placed in areas, where a systematic difference of the data and
the model can be detected. After the inclusion of the RBF terms,the polynomial stepwise
regression is performed again, since the significances of the polynomial terms are changed
during the RBF training. Afterwards, more RBF terms can be added to the model. This
iterative procedure is terminated, if the modeling has converged, or if a predefined maximum
number of training cycles has been reached.

2.3 Local Linear Models
Polynomial regression suffers from some drawbacks, which are discussed at length in sec-
tion 3.2. However, as these linear models also have many advantages, more sophisticated
approaches were developed and used, which try to minimize the disadvantages of the polyno-
mials.
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One approach is local linear modeling, which is very common in engine calibration. This
method divides the whole input space in many subspaces, and then a linear modeling is per-
formed in every single subspace. Usually a polynomial modeling of low order is chosen for
the linear models in engine calibration, but in principle also other types of linear models would
be possible.

If the intersections between the local models are fuzzy, then the modeling is also denoted as
a neuro fuzzy modeling. The Takagi-Sugeno fuzzy models [117] are the most common types
of neuro fuzzy models. In these approaches, rules or submodels are used for approximation.
The rulesRi of a Takagi-Sugeno model are dependent on the model inputsx and have the
following form

Ri : if (x1 isAi,1) and ... and(xD isAi,D)

thenyi =
Mi∑

j=1

θi,jφi,j(x) = ΘT
i φi(x) (2.28)

whereφi,j refers to thej−th basis function (see section 2.2) of thei−th rule or submodel, and
Ai,j refers to thej−th dimension of the subspaceAi in which thei−th rule is valid. Every
subspaceAi is defined by its center and neighborhood. In engine calibration the influencẽΛi

of a local model is often specified through a Gaussian function with centerµi and standard
deviationσi, which can be different in each input dimension, so that

Λ̃i(x) = exp

(

−1

2

D∑

j=1

(xj − µi,j)

σ2
i,j

)

. (2.29)

In order that the Gaussian functions sum to 1 for anyx, it is required to normalize them. The
so-called membership functionsΛi are determined by

Λi(x) =
Λ̃i(x)

∑MS

i=1 Λ̃i(x)
,

MS∑

i=1

Λi(x) = 1 (2.30)

whereMS refers to the number of rules or submodels. In order to evaluate the model output
y, the outputsyi of all submodels are weighted with the membership functionsto give

y(x) =

MS∑

i=1

Λi(x)yi(x). (2.31)

Instead of going into more detail about neuro fuzzy modeling, it is referred to [84], and the
following subsections describe the approaches which are most commonly used in engine cal-
ibration.

2.3.1 LOLIMOT

The abbreviation LOLIMOT stands for LOcal LInear MOdel Tree, and this modeling tech-
nique was introduced in [83]. In this approach, the input space is partitioned by a tree-
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construction algorithm and the local models are interpolated by overlapping local basis func-
tions.
The partitioning is based on the well known CART (classification and regression trees) method.
In each partitioning step of the LOLIMOT algorithm, all submodels are divided by axis or-
thogonal cuts in all possible dimensions, and the partitioning in which the best improvement
could be achieved is maintained. At the end of this iterativeprocedure, the whole input space
is divided into hypercuboids and the resulting structure isequivalent to a Takagi-Sugeno fuzzy
system. In practice often linear polynomials are used for the local submodels, but sometimes
also polynomials of higher degrees are applied.
LOLIMOT is widely used in engine calibration and can be foundin, e.g., [36, 91, 107].

2.3.2 HHT

In comparison to LOLIMOT, the HHT (hinging hyperplane tree)algorithm allows also inter-
sections, which are not axis orthogonal. This is achieved byusing a nonlinear optimization,
in order to obtain the optimal directions of the straight intersections. Further, it can be distin-
guished between flat HHT structures [14] and hierarchical HHT structures [25, 121]. For the
local submodels only linear polynomials are used in this approach.

2.3.3 Local Neuro Fuzzy Models

In [47] and [46] another local linear modeling is presented,which is used for identification in
engine calibration. Instead of using straight intersections like in the LOLIMOT or HHT algo-
rithms, the input space is divided into subspaces with ellipsoidal contour lines. The positions
of the subspaces are determined with an EM (expectation maximization) algorithm. In this
approach, a polynomial modeling is applied for the local submodels. Compared with the two
other methods, this algorithm has the greatest flexibility,but it is also the one with the highest
computational costs.

2.4 Nonlinear Regression Models
As linear and local modeling techniques suffer from severallimitations, which is extensively
discussed in chapter 3, other types of modeling have been developed and used in engine cali-
bration. All these approaches have in common that they are nonlinear in their model parame-
tersΘ, and therefore these techniques are referred to as nonlinear regression models.

At first, the multilayer perceptron (MLP) neural network is considered, since this is the most
commonly used nonlinear modeling technique in engine calibration. Then, so-called kernel
techniques, like Gaussian processes (GP) and support vector machines (SVM), are examined.
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2.4.1 Multilayer Perceptron Neural Networks

The MLP network is used in various different fields of application. It is widely used in ma-
chine learning [11] where it is applied, e.g., to image recognition, speech recognition or ma-
chine translation. In engine calibration it was introducedby [77], and it has been successfully
integrated into the online optimization concept mbminimize at BMW [116].

A MLP with a single hidden layer is defined by

y(x) = Θoftanh(Θ
hx) (2.32)

where the vectory ∈ R
No contains theNo outputs of the MLP network, the matrices

Θh ∈ R
Nh×D andΘo ∈ R

No×Nh+1 refer to the weights of the network, and the function
ftanh : RNh → R

Nh+1,x 7→ (tanh(x1), ..., tanh(xNh
), 1) contains the activation functions of

theNh hidden neurons of the MLP. A schematic structure of the MLP network is drawn in
figure 2.4, whereD = 3 inputs,Nh = 4 hidden units andNo = 2 outputs are chosen.
It would be possible to choose more hidden layers or other activation functions than the
tanh−function. But this architecture is important, because it hasbeen shown by [42] that
networks with one hidden layer and thetanh activation function are universal approximators
as the number of hidden units tends to infinity. Therefore, this structure is most commonly
used in engine calibration, and it will also be examined in this thesis. Further, in engine cal-
ibration it is common to calculate an own MLP network for eachengine value. Hence, only
one output for each MLP will be considered in this thesis.

During the training of the MLP, the parametersΘ = {Θh,Θo} are adjusted in order to adapt
the nonlinear behavior of a function. In the context of neural networks, these parameters are
often referred to as weights of the network.
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Figure 2.4: Schematic structure of the MLP network. The connections represent the weights
and the nodes represent the outputs of the layers.
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Various training procedures exist for MLP networks, see [10] for an overview. The appro-
priateness of a training algorithm depends on the specific problem. For the training of a few
hundred weights, the Levenberg-Marquardt algorithm is a good choice [38], and therefore this
algorithm is most commonly used in engine calibration [21].
The Levenberg-Marquardt technique is a numerical optimization method for nonlinear least
squares problems. Like most other training approaches, this algorithm requires the gradient of
an error function, e.g. (2.6) or (2.15), with respect to the parametersΘ. This gradient can be
calculated efficiently with the well known error backpropagation procedure. With this gradi-
ent information, the Levenberg-Marquardt technique interpolates between the Gauss-Newton
algorithm and the steepest descent method. In this way, the Levenberg-Marquardt approach
is more robust than the Gauss-Newton algorithm alone, and itis highly probable that this
algorithm is converging, even with a bad initialization [79].

As discussed in the bias-variance section 2.1.2, the flexibility of the model has to be adjusted
to an optimal value in order to avoid overfitting and underfitting. In this section above, various
different techniques have been examined, which all can be applied to MLP networks. How-
ever, as said in subsection 2.1.2.3, the regularization technique (2.15) has been found to work
very well in practice. In order to apply this approach to the MLP network, it is convenient to
consider the equation (2.14) for the regularized sum of squares error function.
The aim of the regularization is to find optimal values for theparametersα andβ in (2.14). For
this task, the Bayesian regularization has been found to be a very effective approach, which
does not require any further data than the training set, and therefore this method is commonly
used in engine calibration [92], [21]. This technique was introduced in [65] and integrated
in the Levenberg-Marquardt training in [30]. Instead of reproducing the derivation of the
Bayesian regularization, it should be referred to the literature given above. The regularization
parameters at every Levenberg-Marquardt step can be calculated as follows [92]:

α =
M

2‖Θ‖2 + trace
(
H−1

RSSE,Θ

) (2.33)

β =
N − γ

2 · SSE
(2.34)

γ =M − α trace
(
H−1

RSSE,Θ

)
(2.35)

where SSE is the sum of squares error function (2.6) andHRSSE,Θ is the Hessian of the
regularized sum of squares error function (2.15) with respect to the model parametersΘ. The
variableγ represents the number of parameters which are effectively used in the model [11].
By comparing this variable to the number of all parametersM , it can be checked if the MLP
network contains enough weights. [92] suggested, that if the number of parameters which
is used in the modelγ is bigger than 80% of all model parametersM , hence ifγ > 0.8M ,
then the MLP should be enlarged by adding additional hidden units to the network. With this
procedure an appropriate size of the network can be determined automatically.
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2.4.2 Gaussian Processes

As it will soon be discussed in chapter 3, the Gaussian process regression has various ad-
vantages compared to other techniques for stationary base engine calibration. Therefore the
discussion of this modeling will be more thorough than the ones of the other approaches.
However, an even more detailed examination can be found in [98].

The motivation for the use of Gaussian processes (GP) in engine calibration is straightforward.
As we will see in section 3.2, polynomial regression has somesignificant drawbacks, since
the basis functionsφj in (2.17) have to be chosen in advance, before the model training. How-
ever, typically we do not know which basis functions are suitable before the training data is
observed. Therefore, [26] suggests to work with an infinity number of basis functions, which
can be achieved with GP regression, which we will see shortly. In addition, [68] remarks
that Gaussian processes are useful tools for automated tasks. Further, as said above, RBF and
MLP networks with Bayesian regularization are widely used inengine calibration. As there
is a relation between GP and neural networks, which is discussed in the sections 3.3 and 3.5,
it was assumed that GP also work in practice.

However, the analysis on GP models and their use for regression and prediction is far from
new [68]. Already in 1880, T.N. Thiele was analyzing time-series using Gaussian processes,
see [63]. Within the geostatistics field, regression using GP is called kriging, see [17] and
[26]. Moreover, ARMA (autoregressive moving average) models and Kalman filters can be
viewed as forms of Gaussian process models [11]. Further, GPare used in the task of global
optimization (e.g. see [50]).

2.4.2.1 Dual Representation

The Gaussian process viewpoint is a non-parametric approach, and this type of modeling is
somewhat different than the other modeling techniques which have been discussed so far.
In order to gain a better understanding of GP regression, thederivation of the formulas is
started with the dual representation, in which initially the well known parametric viewpoint is
considered (for more detailed information see [11]).

We start the discussion by replicating equation (2.17), where a model is considered which is
linear in the model parametersΘlin

y(x,Θlin) = φ(x)TΘlin (2.36)

and whereφ(x) is a vector of nonlinear basis functions ofx. As said above, typically the
parametersΘlin of this model are determined by minimizing the regularized sum-of-squares
error function (2.15), in which we can incorporate (2.36) togive

RSSE(Θlin) =
N∑

n=1

(tn − φ(xn)
TΘlin)

2 + λ‖Θlin‖2. (2.37)
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As we have seen, the closed-form solution for this problem isgiven by (2.20), and with this
result the model can be calculated by

y(x) = φ(x)T
(
λIM +ΦTΦ

)−1
ΦT t (2.38)

which can be shown through a detailed transformation [11] tobe equivalent to

y(x) = φ(x)TΦT
(
λIN +ΦΦT

)−1
t. (2.39)

Now we introduce the kernel functionk(x,x′) and the Gram matrixK

k(x,x′) := φ(x)Tφ(x′) (2.40)

K := ΦΦT (2.41)

which are linked through

k(xm,xn) = k(xn,xm) = φ(xn)
Tφ(xm) = (K)n,m. (2.42)

If we substitute (2.40) and (2.41) into (2.39), then we obtain the following formulation for our
model

y(x) = k(x)T (K+ λIN)
−1t (2.43)

where we have defined the vectork(x) with elementskn = k(x,xn).

From (2.43) we see that the solution of the regularized leastsquares problem (2.37) can be
expressed completely by the kernel functionk(x,x′). Hence, we can now work directly with
the kernel function without explicit calculation of the basis functionsφ(x). This allows us
to choose kernel functions where the vectorφ(x) contains implicitly many (even infinite)
basis functions, which we will see shortly. This is regardedas the kernel trick or the kernel
substitution in the literature, and this technique was firstpublished in [2].

2.4.2.2 The Squared Exponential Kernel

A common choice for the kernel function is the squared exponential kernel (or sometimes
called squared exponential covariance function)

kSE(x,x
′) := θ2σ exp

(

−
D∑

j=1

(xj − x′j)
2

2θ2l,j

)

(2.44)

with the signal varianceθ2σ and the length-scale parameters in each input dimensionθl,j.
Since the Gaussian process regression is a form of non-parametric modeling, the parame-
ters{θ2σ, θl,1, ..., , θl,D} are called hyperparameters in the area of machine learning.
The length-scale hyperparameters have an interesting property. As we will see shortly, we can
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estimate the values of all hyperparameters out of the training data. In doing so, it is possi-
ble that different inputs obtain different values for the length-scale parameters. As it can be
seen from (2.44), if a particular parameterθl,j becomes high, the function becomes relatively
insensitive to the corresponding input variablexj. Hence, with the squared exponential ker-
nel it becomes possible to detect input variables that have little or much effect on the model.
Therefore, we are able to interpret the model also from a physical viewpoint. Inputs which
have a high or low value forθl,j, have a low or high nonlinear behavior. This determination
of the importance of a certain input is called automatic relevance determination, and it is well
known in machine learning. Instead of going into more detailon this technique, it is referred
to the literature [98] and [11].

Further, the squared exponential kernel has another interesting property. It can be shown, that
the vector of basis functionsφ(x) that corresponds to this kernel has infinite dimensionality.
This can be seen by expanding the kernel through a power series [11]. Hence, in the GP
viewpoint we are able to perform regression, where implicitly an infinite number of basis
functions is used.
Because of these and other advantages which are also discussed in chapter 3, at every GP
regression in this thesis the squared exponential kernel (2.44) is used unless otherwise stated.

2.4.2.3 Training and Prediction

In order to apply Gaussian processes for regression, we needto consider the noiseǫn on our
measurementstn of the engine, which are given in (2.1). In this section an i.i.d. normal noise
is considered1, which is common in engine calibration, so that

p(t|y) = N (t|y, σ2I) (2.45)

whereσ2 is the variance of the normal distribution. We follow the definition of Gaussian
processes from [98]:

Definition 2.1. A Gaussian processis a collection of random variables, any finite number of
which have a joint Gaussian distribution.

From this definition it follows that the distributionp(y|X) at the observed input locationsX
is a multivariate Gaussian distribution

p(y|X) = N (y|µ,K,X) (2.46)

1In engine calibration usually the SSE function (2.6) or the RSSE function (2.15) is used for the training of
the parametric models. As shown in the sections 2.1.1 and 2.1.2.1, this is equivalent of choosing a normally
distributed noise (2.45). It should be noted, however, due to outliers in the measurements, which are quite
common in engine calibration, this assumption is sometimesnot a good one. In chapter 4 a possible solution
will be presented.



2.4. Nonlinear Regression Models 33

with meanµ and whose covariance is defined by the Gram matrixK. For notational con-
venience, we will suppress the dependence onX in the following, and we will consider a
zero-mean Gaussian Process.

Now we want to perform training. In the Gaussian process viewpoint, this means that we want
to infer the hyperparameters out of the training data.
The Gram matrix contains the hyperparameters of the squaredexponential kernel, so that
K = K(θ2σ, θl,1, ..., , θl,D). In addition, we do not know the varianceσ2 of the measurement
noise (2.45). For notational convenience we collect all thehyperparameters into a single vec-
tor of hyperparametersΘ := {θ2σ, θl,1, ..., θl,D, σ2}.
There are two common training techniques for Gaussian processes: the marginal likelihood
technique and the leave-one-out cross-validation technique. In this thesis the marginal likeli-
hood technique is preferred, because it performed well on practical problems, see section 3.7,
and we can achieve a robust formulation of GP with this training method, see section 4.
The marginal likelihood is the integral of the likelihood times the prior

p(t|Θ) =

∫

p(t|y,Θ)p(y|Θ)dy. (2.47)

= N (t|0,K+ σ2I) (2.48)

where we used (2.45), (2.46) and standard formulas given in [98]. The term marginal likeli-
hood refers to the marginalization over the function valuesy. Because of numerical reasons,
it is convenient to optimize the log likelihood

ln p(t|Θ) = −1

2
ln |K+ σ2I| − 1

2
tT
(
K+ σ2I

)−1
t− N

2
ln(2π). (2.49)

As said above, with (2.49) the hyperparametersΘ can be optimized on the training data.
Hence, in practical implementations the derivatives ofln p(t|Θ) with respect to the elements
of Θ are calculated, and a quasi-Newton method can be used for optimization.

After the training, we want to predict the valuey∗ of our Gaussian process model at a new
input locationx∗.
Since our GP model is a stochastic process, the valuey∗ will be distributed. Using the def-
inition, again it follows that the observed measurementst and the predictiony∗ are jointly
Gaussian distributed [98], which can be written as

[
t

y∗

]

∼ N
(

0,

[
K+ σ2I k(x∗)
k(x∗)

T k(x∗,x∗)

])

. (2.50)

From this joint distribution we can derive the conditional probability distributionp(y∗|t),
which is a Gaussian distribution with mean and variance given by

E[y∗|x∗, t] = k(x∗)
T
(
K+ σ2I

)−1
t (2.51)

V[y∗|x∗, t] = k(x∗,x∗)− k(x∗)
T
(
K+ σ2I

)−1
k(x∗). (2.52)
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2.4.2.4 Illustrating some Properties of GP

A simple theoretical example is given in figure 2.5 where somebasic properties of Gaussian
process regression are illustrated.
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Figure 2.5: Illustration of some properties of GP in a simpleexample.

The dashed line represents the unknown function (sine), which in practice could be any non-
linear engine mapping. One only knows some measured data (circles), which is shifted by
random noise.
With this measured data a Gaussian process model can be trained by optimizing the log
marginal likelihood (2.49). After the training the prediction can be performed. The predicted
mean (solid line - calculated from (2.51)) represents the estimated function value and with
the predicted variance (2.52), a 95% confidence interval canbe drawn, which represents the
degree of certainty where the estimated function is expected. Note the widening confidence
interval on the right edge, which represents an increasing uncertainty of the real function be-
havior due to difficult extrapolation and the lack of measurements in this area.
Further, another GP is considered whose hyperparameters are not optimized on the log marginal
likelihood (2.49). From this GP, the predicted mean (dot-dashed line) is plotted, and one could
clearly interpret this GP model as overfitted on the trainingdata. It can be seen, that the prob-
ability p(t|Θ) (calculated from (2.49)) of this overfitted GP is much less than the probability
of the optimized GP. In this way, through optimizing the hyperparameters, overfitting can be
avoided.
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2.4.2.5 The Relevance Vector Machine

As we will see in section 3.8, the computational cost of Gaussian processes is relatively high,
compared to the other types of modeling which are presented in this chapter. This can be
critical in some applications. Therefore, other kernel techniques have been developed and
used, which try to minimize the computational effort. The two most common techniques are
the relevance vector machine (RVM) and the support vector machine, which is discussed in
the next section. These approaches are often called sparse kernel machines, since the main
idea of these techniques is to use only a subset of training data points for predictions.

The relevance vector machine (introduced by [119]) is a linear model (2.17) of the form stud-
ied in section 2.2. In the above section, we chose the prior distribution (2.12) for the linear
model parametersΘlin, which results into the RSSE function (2.15) where we were able to
calculate the closed-form solution (2.20). In contrast to this, in the RVM framework a separate
hyperparameterαj for each linear model parameterθlin,j is introduced, so that the prior takes
the form

p(Θlin|α) =
M∏

j=1

N
(
θlin,j|0, α−1

j

)
(2.53)

whereαj represents the precision of the corresponding parameterθlin,j,α denotes(α1, ..., αM )T

andΘlin denotes(θlin,1, ..., θlin,M )T . It can be shown by maximizing the marginal likelihood
(2.47) with respect to the new hyperparametersα, that a significant proportion ofα goes to
infinity. Therefore, the associated basis functionsφi(x) play no role in the predictions made
by the model and so are effectively pruned out, resulting in asparse model [11]. The basis
functions that survive are called relevance vectors.

Although usually not presented as such, the relevance vector machine is actually a special
case of a Gaussian process. It is pointed out in [97] and [119], that the RVM is equivalent do
a Gaussian process with the kernel function

kRVM(x,x
′) =

M∑

j=1

1

αj

φj(x)
Tφj(x

′). (2.54)

2.4.3 Support Vector Machines

Since the 1990’s there has been an explosion of interest in kernel machines, and in particular
in the support vector machine (SVM) [98]. Also in the area of engine calibration the SVM is
becoming more and more popular.
We start the discussion of SVM by considering a model which islinear in its parametersΘlin

as in (2.17) in section 2.2. Here, we repeat (2.17) and we add explicitly an offset parameterb
to the model, so that

y(x) = y(x,Θlin, b) = ΘT
linφ(x) + b. (2.55)
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In section 2.2 we minimized the RSSE function (2.15), and we were able to calculate the
closed-form solution (2.20). In comparison to that, the SSEpart in (2.15) is replaced by an
ǫ̃-insensitive error function [127]

Eǫ̃(y(xn)− tn) :=

{

0, if |y(xn)− tn| < ǫ̃

|y(xn)− tn| − ǫ̃, otherwise
(2.56)

in order to obtain a sparse solution of the support vector regression, which we will see soon
(An exception are the least squares support vector machines(LS-SVM). Nevertheless, the LS-
SVM can be directly viewed as a special case of a Gaussian process.). With this replacement,
we therefore seek to minimize the regularized error function given by

C
N∑

n=1

Eǫ̃(y(xn)− tn) +
1

2
‖Θlin‖2 (2.57)

whereC is (by convention) the (inverse) regularization parameter. It can be shown by a de-
tailed derivation [114], that the model (2.55) which minimizes (2.57) can be found by solving
the following dual optimization problem

maximize







−1
2

N∑

n=1

N∑

m=1

(αn − α∗
n)(αm − α∗

m)k(xn,xm)

−ǫ̃
N∑

n=1

(αn + α∗
n) +

N∑

n=1

(αn − α∗
n)tn

subject to
N∑

n=1

(αn − α∗
n) = 0 and αn, α

∗
n ∈ [0, C]

(2.58)

with the model (2.55) to give

y(x) =
N∑

n=1

(αn − α∗
n)φ(xn)

Tφ(x) + b =
N∑

n=1

(αn − α∗
n)k(x,xn) + b (2.59)

where we introduced the kernel functionk (The variablesαn andα∗
n result from a dual opti-

mization to (2.58), which is not discussed in more detail, inorder to abbreviate this section).
The offsetb can be found by considering a data point(xn, tn)n∈{1,...,N} for which0 < αn < C
is satisfied, and thenb can be obtained by

b = tn − ǫ̃−
N∑

n=1

(αn − α∗
n)k(x,xn). (2.60)

From (2.59) it can be seen that only the pointsxn contribute to the model, where the values
αn andα∗

n are nonzero. These points are called support vectors. For all other points the
contribution vanishes, and therefore the SVM results in a sparse model.
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Chapter 3

MODEL COMPARISON IN THE CONTEXT OF
ENGINE CALIBRATION

In the previous chapter, various different types of modeling have been introduced and dis-
cussed. All these types have been or can be used in stationarybase engine calibration. How-
ever, we are typically interested in the most suitable type of modeling, which can also be
used for model-based online optimization. Therefore, in this chapter the different modeling
techniques are compared against each other.

In most previous publications on modeling in engine calibration, only a single or a few differ-
ent types of modeling are considered. Hence, with these publications it is not possible to give
a reliable recommendation of a most suitable type of modeling. Only a model comparison,
which considers as much different techniques as possible, can result in a meaningful recom-
mendation.
In fact, there exist a few model comparisons which analyze a greater number of modeling ap-
proaches, but none of them examines the theory and practicalapplications as comprehensive
as the following, and none of them can give as clear recommendations as this one.
In [92] a model comparison is given, which considers a relatively low number of modeling
techniques and which neglects the most promising approaches. Additionally, in [92] it is men-
tioned that a further examination of more types of modeling could help to improve the quality
of regression.
In [34] and [70] model comparisons for dynamic modeling are given, where a comprehensive
number of different approaches is considered. However, in these publications only the model-
ing performance on different practical data sets are compared and no extensive examination of
theoretical properties is regarded. Hence, no clear recommendation of the most suitable type
of modeling can be given, but rather a tendency which techniques are appropriate.

In contrast to the application of engine calibration, thereexists a lot of literature in which the
theoretical properties of the modeling techniques and the relationships between the different
approaches are examined comprehensively under a general viewpoint, without considering
a specific application or system. However, each of the techniques has its advantages and
drawbacks, since it is not possible to specify a specific algorithm which works best onall
possible applications, which directly follows from the no free lunch theorems for supervised
learning [132, 133]. These theorems show that all algorithms have an equivalent average
performance over all possible problems.
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Hence, only by considering a specific problem or application, one can give a meaningful
recommendation for a specific algorithm. Therefore, we willdiscuss the requirements on the
modeling, which follow from the application of engine calibration, and then we examine the
appropriateness of the different modeling algorithms.

In addition, there exists no publication which highlights Gaussian processes for engine cali-
bration, compared to the other techniques. However, as we will see soon, the Gaussian process
regression is the most suitable type of modeling for stationary base engine calibration. There-
fore, another motivation for this chapter is to recommend Gaussian processes and to show the
improvements which can be obtained, compared to the other state of the art algorithms.

The following sections are partially extensions of the results published in [7] and [9]. First,
the requirements on the modeling are discussed, which result from the application of engine
calibration. As said above, we will see that the Gaussian process regression has various ad-
vantages compared to other state of the art algorithms. Hence, it will be sufficient to compare
the GP regression with each of the other types of modeling, inorder to identify this approach
as the most promising one, and this is performed in the later sections. Further, an investigation
on the practical performance of different types of modelingis examined, where the theoretical
assumptions are verified, and the results of the theoreticalcomparison are illustrated.

3.1 Requirements on the Modeling in the Context of Engine
Calibration

In this section some important requirements on the modelingin model-based engine calibra-
tion are examined, which follow from Chapter 1, where the application of engine calibration
is discussed. These requirements allow to draw conclusionsin the further sections. A focus
is made on the model-based online optimization (see section1.2.2.2), but most of the require-
ments are also important for the model-based offline optimization (see section 1.2.2.1).

(REQ1) The modeling must be suitable forhigh-dimensionalproblems (5-10 input dimen-
sions). The term ’high-dimensional’ refers to the application of engine calibration.
In the machine learning area, a high-dimensional problem would regard a few hun-
dred inputs. A practical example in engine calibration is the optimization of a diesel
engine with the 6 parameters: quantity and time of the pre-injection, quantity and
time of the post-injection, main injection time and injection pressure. This leads to
a 6 dimensional input space.

(REQ2) As mentioned in section 1.2.2, the engine test bench isan expensive system. Hence,
the number of measurements should be minimized, in order to reduce time and costs
of the calibration. Therefore, the modeling should be able to achieve a good per-
formance withas few measurements as possible. That is why every measurement
should contribute a maximum of information to the model.
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(REQ3) Referring to section 2.1.2, the modeling should beflexibleenough, so that every
nonlinear engine mapping can be approximated. A good adaptation of the model
to the measurement data should always be possible.

(REQ4) Also referring to section 2.1.2, the algorithm shouldbe able to determine the op-
timal flexibility of the model and the problem ofoverfitting has to be solved. The
model-flexibility must never be too big, and an overfitting onthe measurement data
has to be avoided. Thus, the modeling has to be robust to noiseon the measure-
ments.

(REQ5) The requirements (REQ3) and (REQ4) have to be met every time the modeling
is performed. In addition, these tasks have to be performedautomatically and
dependably, so that an automated online optimization with no manual interaction
is possible. This requirement is crucial. If, at any time, the modeling is not able to
be flexible enough or overfitting occurs, in an automated online optimization bad
models will lead to wrong predictions and useless measurements will be taken at
undesired regions. In the worst case, without manual interaction, a large part of
measurements would be meaningless and the optimization would cause high costs.

(REQ6) As mentioned in section 1.2.2.2, in the model-based online optimization we want to
take measurements in areas where the model quality is bad, inorder to improve the
prediction of the model. Hence, the modeling has not only to be able to predict an
expectation about the true engine behavior, but also a quantity about thecertainty
and probabilityof the model is important for an automated online optimization.
Only with this quantity, measurement points cannot only be placed at the assumed
optimum, but also where a big uncertainty about the model-expectation occurs.

Clearly, one can formulate additional requirements for a good modeling for engine calibration
(e.g. like physical interpretation of the model). Some of them are discussed in the further
sections. However, a full list of all possible requirementsis beyond the topic of this thesis, but
we will see that, if we assume that these requirements are themost important ones, it will be
possible to identify the most suitable modeling with this choice.

3.2 Gaussian Processes compared to Polynomial Regression
At first, it may seem that a comparison between Gaussian processes and polynomial regression
will not be very meaningful, since the drawbacks of polynomial regression are well known,
and therefore the GP regression seems to be a more appropriate modeling.
However, as we will see shortly, this comparison will allow us to draw conclusions, which, on
the one hand, illustrate the advantages of GP regression compared to linear modeling (2.17) in
general, and which, on the other hand, can be adopted to othertypes of modeling as well (like
the local linear modeling in section 2.3). Therefore, we want to compare the most common
type of modeling for engine calibration, the polynomial regression, to the Gaussian processes,
which are rarely used in engine calibration.
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Polynomial regression has several advantages compared to Gaussian processes. Polynomials
have a simple form, are well known and easy to understand. Further, as polynomial regression
is a special form of linear modeling (2.17), we can obtain a closed-form solution ((2.19) and
(2.20)) for the model parameters, and therefore, this modeling is computationally cheap and
easy to implement.

In order to avoid overfitting (requirement (REQ4)), statistical tests can be used, see section
2.2.1.1. These tests remove parameters which are not significant and therefore not needed in
the model. In this way, a big set of admissible basis functions can be chosen for regression,
which increases the potential flexibility of the modeling (requirement (REQ3)), without the
fear of obtaining overfitting.

However, as already mentioned above, there are some drawbacks of polynomial regression in
theory and practice.
One disadvantage of polynomial regression is a bad extrapolation of the data. Polynomials,
which are not constant over the whole input space, tend very fast to high (positive or negative)
values outside the region of the measurement data. In comparison to that, using the SE kernel
(2.44), Gaussian processes tend to the mean of the data, if every measurement is far away
from the prediction.
Further, Gaussian processes indicate a growing uncertainty of the prediction very fast in an
increasing of the variance (2.52) (e.g. see the right edge atfigure 2.5). This property makes it
easy for the user to distinguish which predictions one can trust. A confidence interval can also
be calculated for polynomials [26], [57]. But this estimation of the prediction error relies on
the accuracy of the polynomial model, and as we will see soon and in section 3.7, sometimes
the performance of the polynomial model will be bad. Hence, in these cases one cannot trust
the estimation of the confidence interval, too. This is contrary to the good performance of GP
regression in engine calibration, which will be shown in section 3.7.

Another drawback is, that polynomials of high order tend to waviness and ’end-effects’. This
can be illustrated by Runge’s phenomenon, which describes the problem of oscillation at the
edges of an interval. Although this phenomenon is a problem of interpolation, these oscilla-
tions also can be observed at regression, if the order of the polynomial increases, see figure
3.1.
The thick dashed line in the different plots in figure 3.1 indicates Runge’s function, which is
given by 1

1+x2 . From this function, training data (circles) is sampled forregression. In the
different plots the number of training data is varied, and for clarity, in the last plot only the
half training data is drawn. With this training data, a Gaussian process model is calculated
and a polynomial stepwise regression is performed.
It can clearly be seen that polynomial regression has problems on approximating this function.
With few measurements, the polynomial stepwise regressionwill only take a polynomial of
lower order as a significant one, which is not flexible enough to approximate Runge’s func-
tion. By increasing the number of measurements, a polynomialof higher order is chosen,
which is highly oscillating. This performance of the polynomial should be compared to the
Gaussian process regression (gray). With the same amount oftraining data, the GP performs
clearly much better.
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Figure 3.1: Illustration of some drawbacks of polynomial regression.

These oscillation effects are strongly related to the undesired effect of nonlocal behavior in
polynomial regression. If polynomials are used for regression, [69] showed that measurements
can have a large and undesired influence on the predicted function at a location, which is very
different from the location where the measurements have been made. E.g. one can show that
an increase in the measurements at one location can cause a decrease in a very other location.

A deeper understanding of this phenomenon and this comparison can be gained through con-
sidering the polynomial regression under a Gaussian process viewpoint.
As we saw in the dual representation in section 2.4.2.1, we can reformulate a linear modeling
into a modeling with a kernel functionk(x,x′). Hence, since the polynomial regression is a
special case of linear modeling, we can calculate the kernelfunctionk of the polynomial basis
functionsφ(x) through (2.40). By doing so, one can discover the nonlocal behavior of the
polynomial kernel function [11], which explains Runge’s phenomenon.
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In addition, this analysis shows that the Gaussian process viewpoint is a generalization of
linear modeling (and especially polynomial regression). As said in section 2.4.2.1, the advan-
tage of GP regression is that we can use kernel functionsk, which can only be expressed by
an infinite dimensional vector of basis functionsφ(x), which would be the case if one uses
the common squared exponential kernel (2.44).
Hence, now we can see another reason why polynomials (and linear models in general) do
bad at approximating some functions (like in figure 3.1). It is the limited number of basis
functions. If one would add the basis functionφj(x) :=

1
1+x2 to the linear modeling in figure

3.1, then a perfect fit would be obtained. But how can one know which basis functions to
use? As a consequence, in many practical applications the number of basis functions needs to
grow rapidly, often exponentially, with the number of inputs [11]. Therefore, [26] suggests to
go another way. The solution is to work with an infinity numberof basis functions, which is
given at the Gaussian process viewpoint, if one chooses the SE kernel (2.44).

As a conclusion, polynomial regression should only be performed for low complex problems,
which can be approximated by polynomial terms of lower order. In the context of engine
calibration, this means that only the behavior of a few adjustment parameters can be modeled
through a polynomial, which clearly contradicts requirement (REQ1), and only measurement
variables with smooth characteristics should be approximated by this simple approach.

3.3 Gaussian Processes compared to RBF Networks and the
LLR Model

As the RBF Networks and the LLR model have much in common, they will be compared
against Gaussian processes in a single section.

RBF Networks

As discussed in section 2.2.2, the RBF Network, given by (2.17)and (2.26), is linear in the
parametersΘ and nonlinear in the parameters(µj,Σj), j ∈ {1, ...,M}. The performance of
the RBF regression depends on the training of the parameters(Θ,µj,Σj).

If all the parameters(Θ,µj,Σj) are simultaneously optimized under a probabilistic perspec-
tive, then we can determine the RBF performance under a Gaussian process viewpoint.
As said above, the Gaussian process viewpoint can be seen as ageneralization of the linear
modeling. Instead of performing the regression with the linear basis functions (2.26), we can
calculate the kernel function (2.40) of these basis functions, in order to perform the regres-
sion with a Gaussian process with the corresponding kernel function, which will lead to the
same result. Hence, a comparison between RBF modeling and Gaussian process modeling can
be reduced to a comparison of the performance of the different kernel functions in practical
applications. As we will see soon in section 3.7, a suitable kernel function is the squared ex-
ponential covariance function (2.44), which shows a good performance on practical problems
of engine calibration. Further, no improvement could be achieved by replacing this kernel
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function with others [40].
In addition, [67] showed an interesting relationship between a dense radial basis function net-
work and the squared exponential kernel (2.44). In this examination a RBF modeling with
the basis functions (2.26) is considered, where the matrixΣj consists only of diagonal ele-
ments whose values are equal for all basis functions, henceΣj = Σ. It is shown by [67] and
[98], thatthis RBF modeling tends to a Gaussian process with the squaredexponential kernel,
as the RBF terms get dense in the input space and the number of RBF basis functions tends
towards infinity.

In the Gaussian process formulation, all the parameters(Θ,µj,Σj) of the RBF model would
be optimized simultaneously. In contrast to this technique, in engine calibration normally not
all parameters(Θ,µj,Σj) are optimized at the same time by the maximum likelihood or the
maximum a posteriori principle. Rather, the parameters(µj,Σj) are often determined in an
other procedure, e.g. by clustering the training data in theinput space or by placing the basis
functions in suitable areas, without considering a probabilistic perspective for the parameters
(µj,Σj).
This has many advantages. Often, these procedures have a simple structure, and typically they
are easy to implement. In addition, the methods can usually exploit numerical advantages, like
the usage of the closed-form maximum likelihood solution (2.19). Hence, these procedures
are often computationally cheap.
But as it will be discussed at length in chapter 6, this probabilistic perspective will be very
useful to evaluate the probability of the parameters and therefore the model quality. Through
the additional information of the model quality, the onlineoptimization routine can receive a
feedback, if already enough measurements are taken, and themeasurement on the test bed can
be stopped. Hence, the test bench time can be reduced to an optimal amount. Without this
probabilistic viewpoint, other methods (e.g. cross validation) have to be used, which always
need additional measurements for testing the model quality, and therefore these methods need
more measurements for the same performance, which clearly violates requirement (REQ2).
Further, the RBF networks, which are used in engine calibration, do not provide a quantity
about the certainty and probability of the model [34, 92, 118] which is also a direct conse-
quence of the lack of the probabilistic interpretation of the parameters, and this clearly violates
requirement (REQ6).

All these drawbacks of theseparticular typesof RBF networks, which are used in engine
calibration [92], can be overcome by a reformulation of the RBFmodeling in a Gaussian
process formulation, as said above. With this reformulation, all parameters(Θ,µj,Σj) can
be determined from a probabilistic perspective and also themodeling provides an estimation
of the variance of the prediction. Consequently, this raisesthe question why a RBF modeling
should be used at all.
Therefore, in this thesis a modeling with Gaussian processes using the squared exponential
kernel (2.44) is preferred.
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LLR Model

Since the LLR model is a combination of two linear models, thetraining of this model is
usually much faster than the training of a nonlinear model. Further, if some additional data
is added to the measurement, also the retraining of the modelis very fast, which is useful for
online optimization where the models are updated very often.

However, a drawback of the LLR model is that the basis functions

φj(x) = exp

(

−||x− µj||2
2r2j

)

(3.1)

are used for the RBF part, whererj is the radius of the RBF terms. As only a single parameter
rj is used for the fitting of the RBF neurons, no optimization can beperformed for the length
scaling of the different inputs, compared to the automatic relevance determination approach of
Gaussian processes in section 2.4.2. Hence, the global performance of the RBF terms will not
be very well and therefore the polynomial regression has been integrated in the LLR model.
But clearly, this drawback could be overcome if one would use the basis functions (2.26) for
the modeling.

Since the LLR model is a combination of a polynomial model anda RBF model, the LLR
model can also be regarded under the Gaussian process viewpoint. The combination of these
two models can be obtained by a Gaussian process, where the kernel function is a summation
of two kernel functions

k(x,x′) = kpoly(x,x
′) + kRBF (x,x

′) (3.2)

wherekpoly(x,x′) is the kernel function of the polynomial andkRBF (x,x
′) is the kernel func-

tion of the RBF model. This representation through a Gaussian process has the advantage
that all parameters can be optimized under a probabilistic perspective, which already was dis-
cussed extensively.
However, as said above, the squared exponential covariancefunction (2.44) has been identi-
fied as a suitable kernel function, which shows a good performance on practical data, and no
improvement could be achieved by replacing this kernel function with others.

3.4 Gaussian Processes compared to Local Linear Models
As discussed in section 3.2, polynomial regression should only be used for low complex and
low dimensional problems in engine calibration. However, as these linear models also have
many advantages, more sophisticated approaches were developed and used, which try to min-
imize the disadvantages of the polynomials.
One possible solution can be obtained if the whole input space is divided into many smaller
subspaces. With this partitioning, the complexity of regression of every single subspace is
smaller than the complexity of the regression of the whole input space. Hence, a polynomial
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(or other linear) modeling can again be used for regression for every single (local) subspace.
The whole (global) model is then obtained through the composition of all local subspaces.
This type of modeling can be regarded as local linear modeling, see section 2.3.

An example of local linear modeling is given in figure 3.2.
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Figure 3.2: Illustration of local linear modeling.

As in figure 3.1, the aim of this example is the approximation of Runge’s function 1
1+x2 , and

as above, training data is sampled (circles) from this function. In order to perform regression
with the local linear modeling, the whole (one-dimensional) input space is split up into two
parts, and a polynomial of order 3 is applied in each part. In the lower plot the membership
functionsΛ1 andΛ2 are shown, which (for simplicity) are taken to be linear, andin the upper
plot the local linear model (dashed line) is drawn, which is given by (2.31). Also the Gaussian
process regression (gray) is plotted. Clearly, this local linear model gives a better fit than the
highly oscillating polynomial models in figure 3.1.

Local linear modeling has various advantages compared to Gaussian processes. A relatively
simple structure leads to a fast training speed of the model.Further, since all the local models
are typically polynomials, local linear modeling shares all the advantages from the polynomial
modeling, like an easy implementation.

A human interpretability of a local linear model is often seen as another major strength. With
LOLIMOT, HHT and local neuro fuzzy models, which were discussed in the sections 2.3.1,
2.3.2 and 2.3.3, it is stated that a human interpretation canbe given by the particular (tree)
structure, which is learned from the data. However, in practice it is found that this structure is
very sensitive to the details of the data, so that small changes to the training data can result in
very different sets of splits [11, 41].
As described in section 2.4.2.2, a human interpretation of aGaussian process model can be
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obtained through an automatic relevance determination (ARD), where the degree of nonlinear-
ity of each input can easily be determined, see also [66, 81].It is also possible to incorporate
prior knowledge with ARD. If one knows the degree of nonlinearity from an input a priori
(e.g. from a similar engine), then this knowledge can easilybe incorporated into the mea-
surement design. A similar incorporation of prior knowledge is also possible with LOLIMOT,
HHT and local neuro fuzzy models, see e.g. [71].

However, local linear modeling suffers also from some drawbacks.
In a local linear model, the intersections between the submodels are critical areas.
Since measurements will only belong to a single submodel, they will only provide information
for this specific submodel, even if these measurements lie very closely to another submodel.
This clearly contradicts to requirement (REQ2), since everymeasurement should contribute a
maximum of information to the model. As a consequence, this lack of information will result
in a bad prediction at the intersection.
This characteristic can also be observed in figure 3.2. Because each submodel has no infor-
mation about measurements which lie outside its subspace, the submodels do not know that
the function decreases outside their subspace, and therefore, the local linear model predicts
a high estimation at the intersection between the submodels. A better approximation of the
intersection can only be given if more training data is sampled. It should be noted, that this
problem does not occur if one uses a GP for approximation, since the GP uses all information,
see figure 3.2. Further, it should be mentioned that this problem gets worse, if the number of
inputs increases [9]. In addition, the interpolation behavior of local linear models at V-type
situations, see [84] page 409, can cause strange results at the intersections.

Another problem of local linear modeling arises, if the typeof intersections does not suit the
nature of the function, which should be approximated.
Based on the example in figure 3.2, this problem is illustratedby considering a multidimen-
sional Runge function, like

fMR =
d∏

i=1

1

1 + x2i
, (3.3)

wherexi are the different inputs. Obviously, like in the one-dimensional case in figure 3.1,
polynomial regression will not provide a good fit on this function. Hence, a local linear mod-
eling will divide the whole input space into smaller subspaces. If only straight intersections
are possible for modeling (e.g. with LOLIMOT and HHT), then agood fit can be obtained if
every axis is split up into two parts, like in figure 3.2. But in ad-dimensional input space, this
will lead to2d independent submodels, and since the number of measurements increases with
the number of submodels, also the number of measurements increases exponentially with the
number of inputs.
In [41] and [11] other examples of simple functions are given, where a similar poor perfor-
mance of local linear modeling can be determined.

Generally, if the measurement values cannot be approximated by polynomials and if the type
of intersections does not comply with the nature of the problem, then the number of submod-
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els, and therefore the required number of measurements, will grow rapidly with local linear
modeling in a high dimensional input space, which clearly contradicts to requirement (REQ1)
and (REQ2).
It should be noted, that this is not the case with GP regression, since only one global model
and no submodels exist. Hence, like the MLP network, Gaussian processes can get along
better with the curse of dimensionality than local linear models, see also [84].
These theoretical considerations will be further illustrated with practical data sets in sections
3.7.3 and 3.7.4.

3.5 Gaussian Processes compared to MLP Networks
The MLP network is widely used in the area of machine learningand also in engine calibra-
tion, see e.g. the mbminimize concept of BMW [116]. In model-based offline optimization,
see [76], model-based online optimization, see [53], and even in dynamic model-based online
optimization, see [21], the MLP is used for modeling.
Surprisingly, the MLP modeling motivated the use of GP regression in this work. It was
shown by [92], that the mbminimize concept, which is an online optimization concept, par-
tially based on a committee of MLP networks, does not performas well as the EGO algorithm,
which is an online optimization concept, based on the DACE model, on noise free experimen-
tal data. However, because the DACE model cannot cope with noise on the measurements,
this approach could not be used for noisy engine calibrationtasks [92]. Nevertheless, since
the DACE model is only a noise free Gaussian process, which caneasily be extended with a
noise term, see section 2.4.2.3, and because the committee of MLP networks works well in
practice, it was assumed that GP regression could perform even better on engine calibration
tasks.

Like Gaussian processes, the MLP networks comply with many requirements which are listed
in section 3.1.
As mentioned above, the MLP can cope better with the curse of dimensionality (REQ1) than
local linear models, see also [84], and therefore it needs fewer measurements for the same
problem (REQ2). By adding additional hidden units, the flexibility of the MLP can be en-
larged (REQ3), and with Bayesian regularization, overfittingcan be avoided (REQ4). Further,
it was found that this automatic model training is very dependable [92] (REQ5).
Due to random network initializations and nonlinear optimization of multimodal problems, a
MLP modeling will generate different functions, which is sometimes seen as a drawback of
a modeling with MLP’s. However, exactly these different functions can be used to identify
a quantity about the certainty and probability of the model (REQ6). If different MLP mod-
els predict similar values, then the certainty of the prediction is expected to be high and vice
versa. Hence, a committee of MLP’s can be used for model-based online optimization, which
has been implemented in the query-by-committee approach by[92].

Therefore, in order to evaluate the performance of MLP networks compared to GP regression,
we have to examine the differences and the relationships between these types of modeling.
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At first, we will evaluate the computational costs of these approaches.
The training of a MLP network is performed through a nonlinear optimization of theM net-
work weights. The computationally most expensive task of this optimization is the inversion
of the HessianHRSSE,Θ in (2.33) and (2.35). Since this matrix is of sizeM ×M , the compu-
tational complexity of the MLP training scales withO(M3). As will be discussed extensively
in section 3.8, the GP training is performed through a nonlinear optimization of the hyper-
parameters, and the computational complexity of this training scales withO(N3), whereN
is the number of training data points. Hence, ifN ≫ M , which is typically the case in ap-
plications where we want to estimate a simple behavior out ofa huge data set, then the MLP
training will be much faster than the GP training. However, according to requirement (REQ2),
in stationary base engine calibration we usually want to estimate the behavior out of a data set,
which is as small as possible. Hence, nearly every measurement will result in an improvement
of the accuracy of the model, which can only be included in theMLP network, if the number
of model parametersM is increased. Thus, in engine calibration oftenN ≈M , and therefore
the computational complexity of the MLP training will scalesimilar to the GP training for
small data sets.
The same analysis can be performed with the prediction of themodels. IfN ≫ M , then the
prediction of the MLP network will be much faster, and ifN ≈ M , then the computational
effort of both approaches will be similar.

There exists a simple relationship between MLP networks andGaussian processes. [81] has
shown that, using a Gaussian prior for the parameters which results into the common error
function (2.14),the distribution of functions generated by a MLP network will tend to a Gaus-
sian process in the limit of an infinite number of neurons.
Therefore, instead of a MLP modeling, one can perform a GP modeling with an equivalent
result, if the neural network kernel functionkNN(x,x

′) is used, which can be found in [98].

The update formulas (2.33)-(2.35) for the Bayesian regularization are results of a Gaussian
approximation of the posterior distribution [81]. Hence, in the convergence proof of [81],
Markov chain Monte Carlo (MCMC) methods are used in order to takethe full advantage of
the available data.
However, since the MCMC methods are computationally very expensive, in engine calibration
only the the approximation scheme (2.33)-(2.35) is used. Therefore, in engine calibration
the prediction of a MLP modeling will not be as accurate as a Gaussian process with the
neural network kernel function. Especially the error between the MLP model and the real
function behavior, according to the value (2.8), will not converge to zero, if the number of
measurements tends to infinity, since only a MLP network of limited size can be used with
the approximation scheme [81], and therefore there will always be a bias left in the model,
because the MLP is only a universal approximator, if the number of neurons tends to infinity.
These theoretical considerations could be confirmed on practical data sets, and also other
works, independent from this one, came to the same conclusion. E.g. in [58] it is observed,
that the RMSE of the MLP model does not converge to the noise level, if the number of
measurements increases, whereas the RMSE of a GP model converges to this minimum value.
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The fact, that the MLP converges to the GP, raised a broad discussion in the area of machine
learning, if Gaussian processes could possibly replace neural networks, see [67]. Further, why
should one use query-by-committee with MLP networks, if a Gaussian process can be used,
which produces the same results as a committee of an infinite number of MLP’s, each with an
infinite number of neurons?

However, a modeling with MLP’s may be preferred for applications where the number of mea-
surements is large, because a modeling with Gaussian processes is computationally expensive,
see section 3.8.

3.6 Gaussian Processes compared to Support and Relevance
Vector Machines

As we will discuss at length in section 3.8, the computational cost of Gaussian processes is
high, since the kernel functionk(xn,xm) has to be evaluated for all possible pairsxn and
xm of training points, which can be seen from (2.42). In some applications, this can be
computationally infeasible during the training, and also the prediction might require excessive
computation times.
Therefore, the support and relevance vector machines have been developed and used. These
types of modeling use only a subset of the training data for prediction, and therefore these
techniques are called sparse kernel machines.
Hence, the support and relevance vector machines do not stand in direct competition with the
Gaussian process regression. The sparse kernel machines are computationally cheaper, but
the predictions will not be as accurate as Gaussian processes. Therefore, a modeling with GP
should always be preferred for applications where the computational effort is acceptable, and
the SVM or RVM have to be used where the computational complexity for a GP modeling is
too high.

The support vector machines have the advantage that the optimization (2.58) is a quadratic
programming problem, whereas the marginal likelihood maximization for the relevance vec-
tor machine is non-convex and may be multimodal, which may lead to several local minima.
But support vector machines also suffer from some drawbacks.
As it can be seen from the equations in section 2.4.3, there isno probabilistic viewpoint in this
modeling. Hence, the evaluation of the model quality typically requires cross-validation pro-
cedures, which are computationally expensive. Further, the predictions are not probabilistic
either. However, as stated in requirement (REQ6), we need a quantity of how much we can
trust the prediction. Since to the unique global minimum of (2.58), it is not possible either to
build a committee of SVMs, like the MLP committee in the mbminimize concept [92]. Hence,
the support vector regression does not comply with requirement (REQ6).
In addition, at support vector regression it is necessary toestimate the insensitivity parameter
ǫ̃ of (2.56) and the regularization parameterC of (2.57). This also generally requires a cross
validation procedure, which is wasteful both of data and computation.
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Furthermore, for a wide range of regression tasks the support vector machine does not achieve
as sparse solutions as the relevance vector machine [119], while at the same time the general-
ization error, and therefore the quality of the prediction,is similar.
A problem of relevance vector machines arises, when it comesto the prediction at areas, which
are far away from training cases. As argued in section 2.4.2.5, the use of the kernel function
(2.54) allows to obtain a sparse solution for the RVM. But as shown in [97], it has also the un-
desirable effect that the predictive uncertainties get smaller the further one moves away from
the training cases. Although the work [97] tries to fix this problem, it is shown that the kernel
function (2.54) of the relevance vector machine is good for computational reasons, but bad for
modeling reasons [98].

3.7 Practical Model Comparison on a Diesel Engine
In the sections above we discussed various theoretical properties. We discussed that the RBF
network converges to a GP, that the MLP network converges to aGP, that the RVM is a special
case of a GP and that the SVM has various disadvantages compared to GP. The relationships
between these approaches can be well determined from the theory, and under consideration
of the requirements of engine calibration, we were able to draw conclusions, which of these
types of modeling is most suitable for stationary base calibration.
Further, we examined some drawbacks of polynomial regression and local linear modeling on
theoretical examples. However, we onlyclaimedthat these drawbacks would also occur in
practice. Hence, in this section these drawbacks are illustrated at a practical application, and
we will demonstrate that the GP approach has various advantages compared to local linear
modeling and polynomials, when it comes to practical data.
In addition, we already mentioned that the squared exponential kernel is suitable for approxi-
mation with GP, and now we want to review this statement.
Last but not least, a further motivation for this section is to demonstrate the performance of
the Gaussian process approach. For every GP model in this section, the hyperparameters had
been determined by a fully automatic nonlinear optimization without any manual interaction.
Hence, a user of this approach does not need to have knowledgeabout GP regression, but
nevertheless, with this automatic technique he is able to calculate a meaningful model out of
the data, which performs better than the other state of the art approaches.

Therefore, in this section Gaussian process regression is applied on NOx, consumption and
soot measurements of a diesel engine and compared to polynomial stepwise regression and
local linear modeling.
The measurements result from a cooperation between KRATZER AUTOMATION AG and
MAN Truck & Bus AG Nürnberg.

780 measurements have been taken from 11 operating points, which are shown in figure 3.3.
The adjustment parameters (and therefore the inputs of the models) are the main injection
time, injection pressure, quantity and time of the post injection and the desired air-fuel mixture
ratio, which is controlled by the quantity of exhaust gas recirculation. As a global model is
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Figure 3.3: Operating points of the measured data.

calculated, also the engine speed and engine torque are taken as inputs. This leads to a 7-
dimensional input space. For reasons of confidentiality, all measurements are scaled to an
interval of [0 1].
At first, the modeling of the NOx and consumption measurements is considered. After that,
the modeling of soot will be regarded.

3.7.1 Global Modeling of Consumption and NOx Emissions

For the NOx emissions and the consumption measurements, Gaussian processes, which are
described in section 2.4.2, and polynomial stepwise regression, which is described in section
2.2.1.1, are applied on the training data and compared against each other.
In order to determine which admissible set of regressors should be used for stepwise regres-
sion, full polynomial models with all coefficients up to 4th order in all of the 7 input dimen-
sions are applied to the whole measurement data, so that 330 polynomial coefficients have to
be estimated out of 780 measurements. Figure 3.4 shows the measured-predicted plots of this
modeling.
It can be seen that in both cases the models can adapt the nonlinearity of NOx and consump-
tion. Therefore, it is assumed that a polynomial model of order 4 in all input dimensions is
satisfactory for the complexity of the characteristics of NOx and consumption (in the later
sections it will be shown, that this is not the case for the soot emissions). Hence, for the global
polynomial stepwise regression, it will be sufficient to choose the already mentioned 330 co-
efficients for the admissible set of regressors. In order that the polynomial modeling performs
well, the measurements have been taken from a d-optimal design.

The figures 3.5 and 3.6 show a comparison of global Gaussian process models and polynomial
stepwise regression models.
In these figures the training data is varied. From the total set of 780 measurements, a subset
is randomly selected and used for training, and the remaining measurements are used for
validation. After that, a Gaussian process model and a polynomial stepwise regression model
were calculated with the same training data. Table 3.1 showsthe normalized RMSE (NRMSE)
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Figure 3.4: Measured-predicted plots of global polynomialmodels for consumption (left) and
NOx emissions (right) of a diesel engine. A polynomial of order 4 has (in both cases) been
used for modeling the measured data.

for the training and the validation data of the figures 3.5 and3.6.

It is obvious that both types of modeling are able to adapt thecharacteristics of the measure-
ments and, like in the simple example in section 3.2 in figure 3.1, the models improve if the
number of training data is increased.
Further, it can be seen that the Gaussian process models always perform slightly better than
the polynomial models. Therefore, for this NOx and consumption measurements, if one is
using a Gaussian process modeling, either the model will have a better performance than the
polynomial modeling, or one can reduce measurements in order to get the same performance
than the polynomial modeling.
However, this positive effect of Gaussian process modelingis not very big for NOx and con-
sumption. This is due to the low complexity of the characteristics of NOx and consumption.
Since the behavior of both quantities is very smooth, they can easily be approximated by a

Consumption - NRMSE Gaussian processes polynomial stepwise regression
training data validation data training data validation data

90% training data 0.006268 0.012265 0.004709 0.019829
70% training data 0.006252 0.012561 0.004220 0.027917
20% training data 0.002445 0.022655 0.009099 0.042445

NOx - NRMSE Gaussian processes polynomial stepwise regression
training data validation data training data validation data

90% training data 0.002294 0.019084 0.004995 0.033580
70% training data 0.002599 0.014920 0.003808 0.034643
20% training data 0.001976 0.021771 0.015270 0.039939

Table 3.1: NRMSE of consumption (figure 3.5) and NOx (figure 3.6).
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Figure 3.5: Comparison of modeling consumption. Top: Regression with 702 measurements
for training (90%) and 78 measurements for validation (10%); Middle: Regression with 546
measurements for training (70%) and 234 measurements for validation (30%); Bottom: Re-
gression with 156 measurements for training (20%) and 624 measurements for validation
(80%); Left: Gaussian process modeling; Right: Polynomial stepwise regression.
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Figure 3.6: Comparison of modeling NOx emissions. Top: Regression with 702 measure-
ments for training (90%) and 78 measurements for validation(10%); Middle: Regression with
546 measurements for training (70%) and 234 measurements for validation (30%); Bottom:
Regression with 273 measurements for training (35%) and 507 measurements for validation
(65%); Left: Gaussian process modeling; Right: Polynomial stepwise regression.
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polynomial of a low (4th) order. In the following, the soot emissions of a diesel engine are
considered, which are more difficult to model, and the main advantages of the Gaussian pro-
cess regression will become obvious.
But it has been shown, that even if the complexity of the function which should be approxi-
mated is low and a polynomial modeling can be performed, the Gaussian process regression
is useful as well and will also have a good performance.

3.7.2 Global Modeling of Soot Emissions

Now the modeling of the soot emissions is considered. 25 outliers had to be removed, so that
only 755 measurements are available for the modeling (In thenext section a modeling will be
presented, which is robust to outliers. However, for the moment we want to move on with the
standard approach).
In order to illustrate the increasing complexity when it comes to the modeling of soot, com-
pared to NOx and consumption, again a polynomial regressionof order 4 in all input dimen-
sions is performed with the measurement data, and the resultis shown in figure 3.7.
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Figure 3.7: Measured-predicted plot of a
global polynomial model for soot emissions.
As in figure 3.4, a polynomial of order 4 has
been used for modeling the measured data.
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Figure 3.8: Intersection plot of soot
emissions. From the model and the
measurements, the highly nonlinear
behavior can be seen.

By comparison of figure 3.4 and figure 3.7, it can clearly be seenthat a polynomial of order 4
is not able to adapt the nonlinear behavior of the soot emissions. Although all data has been
used for training and none for validation, the polynomial isnot able to reproduce the soot
emissions in the middle and top region.
The reason that soot is more complicated to model than NOx or consumption lies in the com-
plexity of this quantity. There is more noise on the measurements and the behavior of soot is
much more nonlinear than the behavior of NOx or consumption.In figure 3.8 an intersection
plot of a soot model is given. That one can trust this model will soon be shown. Also mea-
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surement data is plotted in figure 3.8. The fast increasing soot emissions at a small lambda
value can be seen. It is clear that a polynomial of a low order is not able to cover this highly
nonlinear behavior. Hence, from figure 3.7 and 3.8 it followsthat the admissible set of regres-
sors for the polynomial modeling requires also terms, whichare higher than the 4th order.
It should be mentioned, that a full polynomial model of order5 in all 7 input dimensions
already contains 792 coefficients. If the polynomial degreeis increased to 6 or 7, then the
number of coefficients increases to 1716 and 3432 respectively. Therefore, one cannot cal-
culate a full polynomial of an order of 5 or higher without being overfitted, since only 755
measurements are available. But like mentioned above, with polynomial stepwise regression
overfitting can be avoided, since only the significant regressors are chosen for the model.

The figure 3.9 shows a comparison of a global Gaussian processmodel and global polynomial
stepwise regression models.
From the total set of 755 measurements, a subset of 85% is randomly selected and used for
training, and the remaining measurements are used for validation. After that, a Gaussian
process model and polynomial models with stepwise regression were calculated with the same
training data. As it is not clear which polynomial order for the admissible set of regressors
should be chosen, this order is varied. Table 3.2 shows the NRMSE for the training and the
validation data of figure 3.9.

Gaussian process polynomial stepwise regression; admissible set of regressors has
model order 4 order 5 order 6 order 7

training data 0.006031 0.044208 0.015171 0.015062 0.011441
validation data 0.023704 0.065992 0.055462 0.076661 0.163660

Table 3.2: NRMSE of soot (figure 3.9).

From the plots in figure 3.9 it can clearly be seen, that a polynomial stepwise regression
model, where the admissible set of regressor is of a low (4th)order, is not able to adapt the
nonlinearity of the soot emissions. This was expected, since we already showed this fact for
a full polynomial of order 4 in figure 3.7. Further, it can be seen that polynomials, where
the admissible set of regressors is of a higher order, can adapt the nonlinearity better. But
obviously, these polynomial models have some outliers in the validation data. These outliers
get worse, if the polynomial degree is increasing. Note thatthe polynomial model, where the
admissible set of regressors is of order 5, has an outlier on the top right, whose error is 0.3.
If the order of the admissible set of regressors is increasedto 6 or 7, then the error of the
highest outlier increases to a value of 0.5 and 1.6 respectively (!). It should be reminded that
all measurements are scaled to an interval of [0 1], and an outlier of an error of 1.6 means,
that the error of the prediction is 160% of the spread betweenthe highest and the lowest
measurement.

In order to illustrate this effect of the outliers, figure 3.10 shows two intersection plots of the
models.
These intersection plots had been made by varying only one input parameter, like the time
(left) or the quantity (right) of the post injection, and keeping all other parameters at a con-
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Figure 3.9: Comparison of modeling soot emissions with 642 measurements for training
(85%) and 113 measurements for validation (15%); Top: Gaussian process modeling; Bot-
tom: Polynomial stepwise regression, where the admissibleset of regressors is given by a full
polynomial of order 3, 4, 5 and 6.
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Figure 3.10: Intersection plots of modeled soot emissions with Gaussian processes and poly-
nomial stepwise regression. In this figure the modeling is drawn over the time (left) and
quantity (right) of the post injection, while all other inputs are held on constant values. The
increasing values of the polynomial modeling at the edges ofthe interval can be seen.

stant value. As it can be seen, the SE kernel function (2.44) produces a smooth behavior of
the GP model, which constitutes our model assumption in stationary base calibration. Further,
again it should be mentioned that all measured data was scaled to an interval of [0 1] and the
scaling of the plots should be noted. At some areas, some polynomial models predict a value,
which is over 1000% higher than the highest value in the measurements. Is is clearly very
unlikely that this prediction is a good one.
With figure 3.10 the appearance of the outliers in figure 3.9 can now be understood. Poly-
nomial models, which contain coefficients with a high polynomial order, tend to oscillate in
regions where measurements are scarce. This effect is equivalent to the effect in the theo-
retical example in section 3.2 in figure 3.1. As in the theoretical example, the polynomial
models tend to oscillate where no data is available. But unlike in the theoretical example, the
application on the diesel engine has not only one input parameter, but the input space is now
7-dimensional. Due to the curse of dimensionality, the volume is increasing rapidly when
the input dimensionality is higher, and therefore there aremany subspaces in the input space
where measurements are scarce. In these subspaces, polynomial models, which contain co-
efficients of a high order, will tend to predict unlikely highvalues. Hence, the polynomials
cannot be used for a global modeling of the soot emissions with this amount of data.
As in the theoretical example in figure 3.1 or in the practicalexample in section 3.7.1, clearly,
the performance of the polynomial models could be improved,if the number of measurements
would be increased. However, increasing the number of measurements is not necessary, if one
is using a Gaussian process model, since from figure 3.9 and table 3.2 one can see that this
approach gives a good global approximation of the soot emissions.
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3.7.3 Comparison of Local and Global Modeling of Soot Emissions

In this section a comparison of local and global modeling of the soot emissions is examined.
As mentioned above, the reason why polynomials cannot give agood global approximation to
the soot emissions is the highly nonlinear behavior. In order to reduce the nonlinearity for the
polynomial modeling, a local modeling for the polynomial stepwise regression is considered.
In order to abbreviate this section, not every single type oflocal linear modeling (e.g. LOLIMOT,
HHT, ect.) will be discussed here. Therefore, we do not want to consider any specific type of
intersection. Thus, we will examine only a single operatingpoint at a time for the polynomial
model. This local modeling has the advantage that the input dimensionality decreases by a
factor of 2, since engine speed and engine torque do not need to be regarded as inputs. There-
fore, due to the curse of dimensionality, the space of regression is decreasing, and compared
to a global model in section 3.7.2, polynomial models again can be used.
This specific type of modeling is also often called a local modeling in the literature, but this
should not be mixed up with a general local linear modeling, where the intersections can
also divide the space of the adjustment parameters. However, there exist different approaches,
which combine the local linear operating point models to a global model [113]. In addition, we
will see that we can draw conclusions from this specific type of local modeling, which verify
our theoretical thoughts in section 3.4, independent from any specific partitioning algorithm.

The figures 3.11 and 3.12 show a comparison of global Gaussianprocess models and local
polynomial stepwise regression models.
From the total set of the 755 measurements, two operating points were chosen: one at an
engine speed of 1000 1/min and engine torque at 230 Nm, the other at engine speed of 1525
1/min and engine torque at 780 Nm. At these operating points 67 and 76, respectively, mea-
surements were performed. These measurements were dividedin 57 and 63, respectively,
measurements for training (85% and 83%) and 10 and 13, respectively, measurements for val-
idation (15% and 17%). With this training data, local polynomial stepwise regression models
have been calculated. Since it was not clear which polynomial order should be chosen for the
admissible set of regressors, this order had been varied.
Finally, in the figures 3.11 and 3.12 these polynomial modelscan be compared to the global
Gaussian process model. For this GP model, only the measurement data at the certain oper-
ating point is plotted. It should be noted that, at the considered operating points, the global
GP model has the same training and the same validation data asthe local polynomial models.
Table 3.3 shows the NRMSE for the training and the validation data of the figures 3.11 and
3.12.

As observed above, polynomials with a high order tend to oscillate (this can be seen by the
outliers in the measured-predicted plots) and polynomialsof a low order cannot approximate
the nonlinearity of the soot emissions. But compared to the global polynomial modeling in
section 3.7.2, there is always a local model which is not oscillating, which can be seen by the
fact that there are no outliers in the validation data, and where the polynomial order is able to
approximate the nonlinearity. Therefore, the local polynomial approach works better than the
global polynomial modeling. Nevertheless, it can be seen that the local data of the global GP
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Figure 3.11: Comparison of global Gaussian process models and local polynomial stepwise
regression models. From the total set of the 755 measurements, only the operating point at en-
gine speed of 1000 1/min and engine torque of 230 Nm is considered. At this operating point
there are 57 measurements for training (85%) and 10 measurements for validation (15%).
Top: Measurements of the global Gaussian process modeling at this operating point; Bottom:
With the local measurements, a local polynomial stepwise regression was performed, where
the admissible set of regressors was given by a full polynomial of order 3, 4, 5 and 6.
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Figure 3.12: Comparison of global Gaussian process models and local polynomial stepwise
regression models. From the total set of the 755 measurements, only the operating point at en-
gine speed of 1525 1/min and engine torque of 780 Nm is considered. At this operating point
there are 63 measurements for training (83%) and 13 measurements for validation (17%).
Top: Measurements of the global Gaussian process modeling at this operating point; Bottom:
With the local measurements, a local polynomial stepwise regression was performed, where
the admissible set of regressors was given by a full polynomial of order 3, 4, 5 and 6.
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Soot - NRMSE - operating point: engine speed = 1000 1/min; engine torque = 230 Nm
Gaussian process polynomial stepwise regression; admissible set of regressors has

model order 3 order 4 order 5 order 6
training data 0.004579 0.072715 0.058365 0.039499 0.009832
validation data 0.014404 0.067889 0.063581 0.041354 0.558070

Soot - NRMSE - operating point: engine speed = 1525 1/min; engine torque = 780 Nm
Gaussian process polynomial stepwise regression; admissible set of regressors has

model order 3 order 4 order 5 order 6
training data 0.005770 0.017621 0.014039 0.011615 0.008433
validation data 0.012361 0.055226 0.062795 0.139190 0.099872

Table 3.3: NRMSE for figures 3.11 and 3.12.

model has always a better performance than the local polynomial models at all polynomial
orders.
In order to illustrate the difference of global and local modeling, with the local measurements
also a local GP model is calculated and the results are shown in figure 3.13. Clearly, the local
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Figure 3.13: Comparison of a global Gaussian process model and a local Gaussian process
model at the operating point at engine speed of 1525 1/min andengine torque of 780 Nm.

GP model has a better performance than the local polynomial models. But it can also be seen
that the global model has a better performance on the validation data than the local one.
The reason for this lies in the fact that a global modeling canuse all information of all measure-
ments at once. Hence, the information from operating points, which are near to the considered
operating point, can be incorporated by the global GP model.Therefore, all measurements
contribute a maximum of information to the global model (REQ2), see also section 3.4.
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3.7.4 Conclusion of the Practical Model Comparison

In this section, various theoretical thoughts of the sections 3.2 and 3.4 were illustrated on
practical data sets.
We have seen that, even for low complex problems, theGP approach performs better than
the polynomial stepwise regression, and that the advantages of GP modeling become more
significant, if the complexity of the problem increases. Further, in the practical application
above, we saw that aglobal (GP) modeling performs better than a local modeling, which can
also be justified by the theoretical examinations in section3.4. Hence,we conclude that GP
regression is more suitable than a local linear modeling forengine calibration tasks.
Further, it could be seen that the squared exponential covariance function (2.44) is a suitable
kernel function, which shows a good performance on practical problems of engine calibration,
and therefore this kernel function will be used for all otherpractical examples in the further
course of the thesis.
In addition, we demonstrated that the fully automatic Gaussian process approach has a very
good performance on all data sets, and hence, this type of modeling is suitable for model-based
online optimization in engine calibration, see section 6.

3.8 Drawbacks of Gaussian Processes
It seems to be a law of nature that the advantage of getting themost information out of the
measurement data comes with the drawback of a high computational effort.

For the training of the Gaussian process, a nonlinear optimization of the hyperparameters is
performed, where the likelihood function (2.49) is optimized. Hence, in every optimization
step, the matrix inversion in (2.49) has to be performed. Since this matrix is of sizeN × N ,
the computational effort of the training scales withO(N3). Although this matrix inversion
is not performed explicitly, but rather a Cholesky factorization is calculated, obviously, this
modeling will be computationally infeasible if the number of measurements is high, which is
a significant limitation of Gaussian processes.
This drawback of a high training time can be slightly mitigated in model-based online opti-
mization, where the hyperparameters do not have to be updated for every single new mea-
surement. However, also the prediction requires a high computational effort. From (2.51) and
(2.52) we see that, for the prediction of a single pointx∗, the kernel functionk(x∗,xn) has to
be evaluatedN times (once for every single measurementxn, n ∈ {1, ..., N}).
Hence, on a standard PC this method could just be tested forN = 10.000. Clearly, Gaussian
processes are not suitable for dynamic engine calibration,where the number of measurements
is very high. But GP are appropriate for stationary base calibration, because in this application
the number of measurements is rarely higher than10.000.
For the application of Gaussian processes to quantities of adiesel engine in section 3.7, 780
measurements were considered, and the required time for training was about 20 seconds on a
standard computer.
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3.9 Conclusion and Discussion
In this chapter various different modeling techniques havebeen discussed. By considering the
requirements of stationary base engine calibration, we were able to draw conclusions, which
type of modeling is most suitable for this application.

The Gaussian process approach complies with all requirements which are listed in section 3.1,
and therefore we recommend this technique for stationary base calibration.
Among other advantages of GP regression, this approach can be fully automated, and therefore
it does not need any manual interaction from the user. Further, this technique shows the best
performance on practical data sets, and even with a low amount of data, it is able to give an
accurate prediction for the mean and variance.

However, there are other applications where it may be usefulto differ from the requirements
given above.
If the number of measurements is too high to calculate a full Gaussian process model, then
other methods of nonlinear modeling can be suitable, like MLP networks, the RVM or the
SVM.
If more measurements are available and a strong human interaction in the process is needed,
then a local linear modeling may be helpful.
A polynomial stepwise regression should only be used for lowcomplex problems.
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Chapter 4

ROBUST GAUSSIAN PROCESS MODELING
FOR ENGINE CALIBRATION

In the previous two chapters various different types of modeling have been discussed, and it
was shown that the Gaussian process modeling is the most suitable one for stationary base
engine calibration. Hence, we will concentrate on this approach in the further course of the
thesis. However, there are still two important issues whichoften occur in practical applications
and which are not yet considered by the modeling:

(ROB1) In practical data setsthe assumptions for the distributions of measurements and
noise are often not met. For our Gaussian process model, as well as for many other
types of modeling, we assumed that the noise on the measurements is i.i.d. Gaus-
sian distributed, see (2.45). In addition, from the definition of Gaussian processes
it follows that the model is Gaussian distributed, see (2.46). However, as we will
see soon, in many practical applications these assumptionsare not met, especially
when one is trying to model emissions. In order to improve theability of the mod-
eling to express the real behavior of the data, atransformation of the measurements
will be presented.

(ROB2) In practical data setsoutliers often occur in the measurements, especially in quanti-
ties which are hard to measure, as the soot emissions, which was already mentioned
in section 3.7.2. These outliers are not considered by the modeling, since we as-
sumed an i.i.d. Gaussian noise. Hence, as in section 3.7.2, these outliers have
to be removed before model training, in order to get a good model quality and a
good prediction. This has serious drawbacks because usually a manual interaction
is needed to identify the outliers, since an automatic detection of the outliers is not
very robust or computationally very expensive, if there aremany outliers in the
data, which we will see soon. In contrast to state of the art algorithms for engine
calibration, a modeling based on Gaussian processes will bepresented, which is
robust to outliers.

In order to improve the model quality if these two problems, (ROB1) and (ROB2), occur, in
this chapter the Gaussian process technique will be extended, and this type of modeling will
be referred to as robust Gaussian process modeling in this thesis. Hence, the term ’robust
modeling’ refers to a modeling which has a good performance,even if the measurements and
the noise are not i.i.d. normally distributed and outliers occur in the training data.
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The idea of robust regression is far from new.
There exist several different types of transformation for non-normally distributed data, which
have already been developed and used in engine calibration.Nevertheless, since these trans-
formations suffer from some drawbacks, which will be extensively discussed in section 4.1, a
new technique will be presented.
In addition, although there exists no modeling approach which is robust to outliers in engine
calibration, in other fields of research, especially in statistics and machine learning, outlier-
robust techniques have already been developed. However, aswe will see soon, some additional
work is required for a meaningful implementation for enginecalibration.

The goal of this chapter is the development of a new robust modeling framework for stationary
base engine calibration, which could be achieved by modifying state of the art approaches
from other fields of research and by introducing new techniques.

In the next section a new nonlinear transformation will be presented. In the other following
sections the formulas for a Gaussian process modeling, which is robust to outliers, will be
derived. The discussion of this modeling is an extension of the results published in [8].

4.1 Nonlinear Transformation of the Data
As already discussed above, we assumed that the noiseǫn on the observed measurementst is
i.i.d. normally distributed, see (2.45), and that our modely is Gaussian distributed, see (2.46).
However, for some applications in engine calibration theseassumptions might be inappropri-
ate.
A common example is the modeling of emissions, e.g. NOx. In figure 4.1 (a) a typical distri-
bution of NOx measurements is given. Due to reasons of confidentiality, the labeling of the x-
axis is not shown. Nevertheless, it can be seen that a lot of measurements are taken at low NOx
rates (typically near zero) and only a few measurements are taken at high NOx values. Since
a space filling design was used for taking these measurements, it is, however, clearly very
unlikely that these observations come from a system which isnormally distributed. Hence, a
Gaussian distributed model will not be appropriate for the approximation of this quantity.
In addition, the measurement noise often scales with the mean of the data, which is known as
a special form of heteroscedasticity. Again, this is typically the case when one is measuring
emissions. Usually, the measurement error at low emission values is much smaller than the
measurement error at high emission values, and therefore itis common to estimate the mea-
surement noise as a percentage of the mean value. However, aswe assumed an identically
distributed noise (homoscedasticity), the prediction of the variance will clearly not be a very
good one [26].

If these problems occur, a transformation of the data might be suitable [26]. As the modeling
should be fully automated in order to apply it to model-basedonline optimization, we seek for
a method which automatically determines if it is appropriate to transform the data or if not.
In this thesis we suggest the following two-step approach for the transformation of the data,
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which has been found to work very well in practice:

1. Nonlinear transformation of the data to a normal distribution (if necessary)

2. Linear (affine) transformation (normalization) of the data to zero mean and unit variance
(if, after the first step, the data is normally distributed, then, after this linear transforma-
tion, the data will be standard normally distributed, so that t ∼ N (0, I))

The second (linear) transformation is performed due to our consideration of a zero mean,
unit variance Gaussian process. On the one hand this simplification has been made for nota-
tional convenience, but on the other hand this procedure is useful, since we are able to choose
meaningful starting points for the nonlinear optimizationof the hyperparameters, which are
invariant of the scaling of the measurements. As the linear transformation is a very simple
(but very useful) and unproblematic technique, in this section the focus lies on the nonlinear
transformation.

By far, the most commonly used nonlinear transformation is the Box-Cox transformation [13].
This transformation is parameterized through a coefficientλ̃ and is forx > 0 given by

fBoxCox(x) :=







xλ̃ − 1

λ̃
, λ̃ 6= 0

ln(x), λ̃ = 0.

(4.1)

Since we do not only want to model in the transformed space, but we also want to give pre-
dictions in the origin space, we have to apply the inverse of the transformation to our model
output. The inverse of the Box-Cox transformation is given by

f−1
BoxCox(y) :=

{

(λ̃ · y + 1)1/λ̃, λ̃ 6= 0

exp(y), λ̃ = 0.
(4.2)

However, in order to calculate the inverse,y has to be in the image offBoxCox, which requires
thaty > − 1

λ̃
for λ̃ > 0 andy < − 1

λ̃
for λ̃ < 0. Exceptions arẽλ = 1 andλ̃ = 0, which can

always be inverted.
In many cases the constraint, thaty has to be in the image offBoxCox, is unproblematic, since
the model is often only interpolating the measurements and not extrapolating. However, in
model-based online optimization we are usually seeking foran extremum, whose value is
higher or lower than all other measurements.
Hence, the Box-Cox transformation is inappropriate for the use in engine calibration. There-
fore, in [92] a different version of the Box-Cox transformation is developed, which can be
inverted for ally values. This transformation requires two additional parametersv1, v2 > 0,
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and is given by

fPol(x) :=







(xλ̃ − 1)/λ̃, λ̃ > 0, x ≥ v1

vλ̃−1
1 · (x− v1) + (vλ̃1 − 1)/λ̃, λ̃ > 0, x < v1

ln(x), λ̃ = 0

(xλ̃ − 1)/λ̃, λ̃ < 0, x ≤ v2

vλ̃−1
2 · (x− v2) + (vλ̃2 − 1)/λ̃, λ̃ < 0, x > v2.

(4.3)

The problem of this technique is the determination of suitable values forv1 andv2. In [92]
the parameters are partially fixed tov1 = 0.1 andv2 = 2.5, but this arbitrary choice can
be inappropriate in many applications. In addition, we seekfor an approach which is fully
automatic, since we want to use the modeling in model-based online optimization.
In contrast, it has been found to be very useful to transform the data by a simple logarithm.
This is due to the fact that in engine calibration the distribution of the measurements is either
symmetric, e.g. consumption, temperature, etc., and therefore no transformation is needed, or
the distribution of the measurements is right-tailed, e.g.emissions, as the already discussed
NOx measurements in figure 4.1 (a), and therefore a transformation with the logarithm can
give good results, see below. However, as we will see soon, a left-tailed distribution cannot
be meaningfully transformed with a logarithm, but this problem never occurred in practical
tasks in engine calibration. Further, as the measurement noise often scales with the mean of
the data, except for an additive constant, an identically distributed noise can be obtained with
a logarithmic transformation [26].
Hence, we suggest the following transformation for engine calibration

fnTrans(x) := ln(x+ λ̃) (4.4)

which is also parameterized through a coefficientλ̃. In order to perform this transformation,
x > −λ̃ has to be satisfied. The inverse is given by

f−1
nTrans(y) := exp(y)− λ̃ (4.5)

which can be calculated for ally ∈ R, and therefore the problem of the inversion, as in the
Box-Cox transformation (4.1), does not appear in this approach. The parameter̃λ is important,
since it controls the degree of nonlinearity of the transformation. It can be determined through
a maximum likelihood consideration, which is similar to theestimation of the Box-Cox pa-
rameter of (4.1) published in [13] and [43]. If we want that the transformed measurements are
normally distributed around a constant mean value, then theprobability density function for
the untransformed observations, and hence the likelihood in relation to these original obser-
vations, is given by

1

(2πσ2)N/2
exp

(

−(x̃− mean(x̃))T (x̃− mean(x̃))
2σ2

)

·
(

N∏

n=1

∣
∣
∣
∣

dx̃n
dxn

∣
∣
∣
∣

)

(4.6)
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where we have defined the vectorx̃ with elements̃xn = fnTrans(xn) and the variable
σ := 1

N−1
(x̃−mean(x̃))T (x̃−mean(x̃)). The last term in (4.6) is the Jacobian of (4.4). Now

we seek for the parameterλ̃∗, which maximizes the likelihood. This value can be found by
maximizing the log likelihoodLnTransof (4.6), which is given by

LnTrans(λ̃) = −N
2
ln(σ2)−

N∑

n=1

ln(xn + λ̃) (4.7)

with σ2 = σ2(λ̃) as above, and where we have neglected constant terms and insert the Jacobian
of (4.4).

In addition, we suggest to evaluate the skewness of the distribution of the measured data,
which can be determined by

N

(N − 1)(N − 2)

N∑

n=1

(
xn − mean(x)

σ

)3

. (4.8)

If the skewness is greater than 1 and ifmax(x)
min(x)

> 20, as suggested in [123], then the nonlinear
transformation is performed.

An example of an application of the nonlinear transformation is given in figure 4.1. In figure
4.1 (a) the distribution of NOx measurements is drawn. Due toreasons of confidentiality, the
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Figure 4.1: Example of a nonlinear transformation of NOx measurements.
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labeling of the x-axis is not shown. It clearly can be seen that the distribution is right-tailed.
Hence, the nonlinear transformation is applied to these measurements and the results are
drawn in figure 4.1 (b). For this transformation the log likelihood (4.7) was maximized, which
is shown in figure 4.1 (c), where the optimalλ̃ value,λ̃∗, is marked.
Clearly, the transformed distribution in figure 4.1 (b) is notperfectly Gaussian shaped, but it
is much better than the original distribution. Hence, our model assumptions are much more
appropriate in the transformed space than in the origin one.
An interesting property of this approach becomes obvious, if it is applied to measurements,
which are already Gaussian distributed. For this data, theλ̃∗ value which maximizes the log
likelihood (4.7) will tend towards very high values (infinity). This will lead the transformation
(4.4) to tend towards a linear (affine) transformation, and hence the shape of the distribution
is not changed. Therefore, we reject the nonlinear transformation, if the parameter̃λ tends
towards high values, e.g.10 ·max(x).

As said above, only distributions which are right-tailed can be meaningfully transformed with
(4.4). If the data would be left-tailed distributed, then a meaningful transformation with (4.4)
could be achieved by negatingx, so thatf̃nTrans(x) := fnTrans(−x), but this procedure was
not necessary, since only right-tailed data occurred in practical problems in engine calibration.

Although the transformation (4.4) is very simple, in this work it has been found that this
approach achieves very good results for engine calibrationtasks, as in the example of the NOx
measurements above. Further, due to the maximum likelihoodestimation of the parameterλ̃,
this technique can be fully automated, and therefore, it canbe used for model-based online
optimization.

4.2 A Student’s-t likelihood
As discussed in chapter 2, the training for polynomials, RBF networks, LLR models, local
linear models and MLP networks is performed by minimizing the SSE function (2.6) or the
RSSE function (2.15). This minimization is equivalent to themaximization of the likelihood
function or the a posteriori distribution under a Gaussian noise assumption, see sections 2.1.1
and 2.1.2.1. In comparison to that, the relevance vector machines and the (conventional)
Gaussian processes directly use a normal noise assumption (2.45) for modeling in engine
calibration. Hence, all these state of the art approaches assume a normal noise1.

As we will see shortly, this Gaussian likelihood is not robust to outliers. Hence, we have to

1An exception is the support vector machine, which minimizesan ǫ̃-insensitive error function (2.56). The
equivalent likelihood of this error function is given by1

2(1+ǫ̃) exp(−Eǫ̃(yn− tn)), see [114], which converges
to the Laplacian distribution in the limit of̃ǫ → 0. This distribution is more robust to outliers than a normal
noise assumption [96], but it has no additional parameterν, as the Student’s-t likelihood. Therefore, due to this
lack of degree of freedom, the results of this modeling will not be as good as the following robust formulation,
which will be discussed shortly. Hence, in order to abbreviate this section and due to the general drawbacks
of SVM’s, which were discussed extensively in section 3.6, we will not go into detail into this examination.
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replace this noise assumption with another distribution. Typical likelihoods, which are robust
to outliers, are the Laplacian, the cumulative logistic andthe Student’s-t distributions [96].
During this work all these likelihood functions had been examined and tested.
The Student’s-t likelihood is given by

St(tn, yn, σ, ν) :=
Γ
(
ν+1
2

)

Γ
(
ν
2

)
1√
νπσ

(

1 +
(tn − yn)

2

νσ2

)− ν+1

2

, (4.9)

whereν is the number of degrees of freedom,σ is the scale parameter, influencing the variance
of the distribution, andΓ is the gamma function. If the parameterν tends towards infinity, then
the Student’s-t distribution tends towards the Gaussian distribution. Hence, the Student’s-t dis-
tribution is a generalization of the Gaussian distribution, and this is also a very advantageous
property of this likelihood function. As we will see shortly, by controlling the parameterν,
we are able to control the outlier-robustness of our model.
This is in comparison to the Laplacian and the cumulative logistic likelihood, which have only
a single parameter for controlling the variance of the distributions, but no additional parameter
which controls the outlier-robustness. This behavior is somewhat equivalent to a Student’s-t
distribution with a fixed value ofν. Hence, with the Laplacian and the cumulative logistic
likelihood we restrict the flexibility of our model, and we cannot converge to a solution with
a Gaussian distributed noise, as it is the case for the Student’s-t likelihood.
Therefore, in this thesis, we chose the Student’s-t distribution for the noise assumption in our
robust modeling.

In figure 4.2 the Student’s-t distribution is compared to theGaussian distribution and the ad-
vantages of a Student’s-t likelihood, when it comes to outliers, is shown.
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Figure 4.2: Comparison of a normal noise assumption and a Student’s-t noise assumption,
without outliers (a) and with outliers (b), based on [11].

In the plots of figure 4.2, data is sampled and a normal distribution and a Student’s-t distri-
bution is fitted by the method of maximum likelihood. In the left plot (a) no outliers occur.
As the Student’s-t distribution converges to a normal distribution, as the parameterν increases
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towards infinity, both distributions have the same shape under maximum likelihood, if the data
is normally distributed. Hence, if there are no outliers in the data, our new modeling will con-
verge to the conventional state of the art Gaussian process modeling as discussed in section
2.4.2. As discussed above, this will be an advantageous property of our robust modeling, since
in many applications the normal noise assumption will be appropriate, as for engine quantities
which are relatively easy to measure, see e.g. the NOx and consumption measurements in
section 3.7.1.
The drawbacks of a Gaussian distribution regarding outliers can be seen in plot 4.2 (b). In this
plot three outliers have been added at the right edge. It clearly can be seen that the outliers
strongly distorted the shape of the Gaussian distribution,while the shape of the Student’s-t
distribution is widely unaffected, since the parameterν was adapted through the method of
maximum likelihood.
For a deeper discussion on the robustness of the Student’s-tdistribution regarding outliers see
[11, 90, 126].

Hence, the assumption of a normally distributed noise can bea serious drawback of recent
types of modeling in engine calibration. If a Gaussian likelihood is used for modeling and
outliers occur in the data, then the prediction of the model will be distorted by the outliers.
Therefore, in order to obtain a good model quality, all outliers have to be removed before
model training in state of the art algorithms.
For these approaches with a normal noise assumption, a common strategy to detect and re-
move outliers in an automatic way is to perform the modeling with the whole data set, calculate
the residuals between the model and the targets, remove the measurements with the highest
residuals and then perform the modeling with the remaining data again [107, 124]. With this
approach, it is hoped that after some iterations all outliers have been removed from the data
set and that the model will finally provide a good prediction.Obviously, this method will be
suitable if the data set is small and if only a few outliers arecontained in the training set. But
clearly, this approach will be inappropriate for bigger data sets with more outliers, since the
modeling has then to be performed numerous times, which can be computationally infeasible
for models in which a single training is itself computationally expensive. We will discuss this
topic again, when applications with practical data sets areconsidered, as in the sections 4.5
and 4.6.
Therefore, in state of the art algorithms for model-based offline optimization, the outliers are
often removed manually, see [24, 37, 62, 104, 107]. Clearly, outliers in model-based online
optimization would cause a serious problem, because no manual interaction is possible, and
hence wrong predictions will cause the optimization routine to perform useless measurements
in undesired regions, see also requirement (REQ5) in section3.1. Thus, state of the art online
optimization is only performed for quantities of an engine which are relatively easy to mea-
sure, as consumption, see [53], and not for quantities wherethe risk of outliers is much higher,
like soot, see section 3.7.2.

A possible solution to these problems will be presented in the next sections, where the normal
noise assumption will be replaced by a Student’s-t noise assumption, in order to achieve a
modeling which is robust to outliers.
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More mathematically spoken, for a limited fraction of outliers, we will develop a modeling
which is asymptotically unbiased, meaning that the model istending to the real engine behav-
ior as the number of measurements tends towards infinity. As the number of outliers usually
scales with the number of measurements, it should be noted that a modeling with a normal
noise assumption does not possess this property, since every outlier will result in a bias in the
model [126], which we will demonstrate in the later sections.

But before that, some remarks on the importance of the combination of the nonlinear trans-
formation (4.4) and outlier-robust modeling are given.
As discussed above, by considering figure 4.1 (a), it can be seen that most of the data is lo-
cated at low NOx rates and only very few measurements had beenmade at high NOx values.
If we compare this behavior of the untransformed data to the outlier-robust behavior of the
Student’s-t distribution in figure 4.2 (b), it should becomeclear that it is very likely that an
outlier-robust modeling will reject the high NOx values of the plot 4.1 (a), since the model
assumptions are not appropriate in the untransformed space. Therefore, only through per-
forming the transformation (4.4), an outlier-robust modeling can meaningfully approximate
the high NOx values.
Hence, only through the combination of the nonlinear transformation and the outlier-robust
model, which is discussed in the next sections, a new robust modeling framework for sta-
tionary base engine calibration can be obtained, and only the whole framework can be used
reliably for an automatic online optimization.

4.3 An Outlier-Robust Gaussian Process Modeling for En-
gine Calibration

As already discussed above, although there exists no modeling approach which is robust to
outliers in engine calibration, in other fields of research,especially in statistics and machine
learning, the idea of robust regression is far from new. Outlier rejection from a Bayesian per-
spective was already analyzed in 1961 by [18]. A Student’s-tnoise assumption for linear re-
gression was already studied by [32, 131], and [82] introduced a Student’s-t noise assumption
for Gaussian process regression. Other robust formulations could be achieved, for example,
with mixtures of Gaussians, the Laplacian or the cumulativelogistic distribution, e.g. see
[61, 96], which are not considered here, as discussed above.
In this section different approaches of GP regression with aStudent’s-t likelihood will be dis-
cussed, an approach which is suitable for engine calibration will be chosen, the remaining
problems of this technique will be examined, and a solution which is appropriate for online
optimization will be given.
In order to keep the derivation of the formulas of the robust modeling clearly arranged, we
will have to repeat some equations of chapter 2.

As in section 2.4.2.3, in order to apply Gaussian processes for regression, we need to consider
the noiseǫn on our measurementstn of the engine, which are given by (2.1). As said above,



74 CHAPTER 4. ROBUST GAUSSIAN PROCESS MODELING

an i.i.d. Student’s-t noise assumption is made forǫn, in order to achieve a robust formulation,
so that

p(t|y, σ, ν) :=
N∏

n=1

St(tn, yn, σ, ν), (4.10)

where St is the Student’s-t distribution (4.9). We follow the definition 2.1 of Gaussian pro-
cesses, and as in section 2.4.2.3, we will consider a zero-mean Gaussian process, so that

p(y|ΘK) = N (y|0,K), (4.11)

where we useK = K(ΘK) the Gram (covariance) matrix (2.41) of the squared exponential
kernel (2.44) with the hyperparametersΘK := {θ2σ, θl,1, ..., , θl,D} for modeling. For nota-
tional simplicity, we collect all the hyperparameters intoa single vector of hyperparameters
Θ := {ΘK,ΘSt}, whereΘSt := {σ, ν} contains the hyperparameters of the Student’s-t dis-
tribution.

In the next section we will examine a training algorithm for this modeling. In order to find an
appropriate one, we have to consider some requirements of the application of engine calibra-
tion. In section 4.3.2, a suitable approximation for the predictions of the model is given.

4.3.1 Training

As discussed in section 2.4.2.3, in the Gaussian process viewpoint, training is performed by
inferring the hyperparametersΘ out of the training data. As for the conventional GP models,
we can find suitable hyperparameters for our robust model through maximizing the marginal
likelihood

p(t|Θ) =

∫

p(t|y,ΘSt)p(y|ΘK)dy. (4.12)

If we would use a normal noise assumption, then the integral can be calculated by using
standard formulas, see section 2.4.2.3. But since we use a Student’s-t distribution (4.10) for
p(t|y,ΘSt), this integral becomes analytically intractable.
Hence, we need to approximate (4.12). In literature this is referred to as approximate infer-
ence.

4.3.1.1 Methods for Approximate Inference

State of the art algorithms for approximation of (4.12) are Markov Chain Monte Carlo (MCMC)
methods (see [80] for a review), the expectation propagation (EP) algorithm (see [73]), the fac-
torized variational approximation (VB) (see [61] and [120])and the Laplace approximation
(see [126] and [68]).
With MCMC methods we are able to approximate (4.12) to arbitrary accuracy, and therefore
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these techniques achieve the best results, but they are alsocomputationally very expensive,
see [85]. As the focus of this work is an algorithm which can beused for model-based on-
line optimization, as said above, the computational cost isan important factor, and since the
MCMC approximation requires about 500 times more computational effort as e.g. the Laplace
approximation [85], the MCMC methods cannot be used.
The EP algorithm has been proven to be a good method for approximate inference in many
applications, but here the use of EP is problematic, since the Student’s-t likelihood is not log-
concave and accurate approximate inference with EP is very hard due to posterior multimodal-
ity, see [112] for details. [126] shows, that the performance of the Laplace approximation is
slightly better than the performance of the factorial VB. In addition, the Laplace approxima-
tion is clearly faster than the factorial VB [85, 126].
Hence, in this thesis we concentrate on the Laplace approximation.

4.3.1.2 The Laplace Approximation of the Marginal Likelihood p(t)

The Laplace approximation for Gaussian processes has extensively been used for classifica-
tion problems [98]. In [126] this approach is applied to GP regression with a Student’s-t
likelihood, and during this work it has been found that this technique also works well for en-
gine calibration problems.
For more general information on the Laplace approximation see [68].

In the framework of the Laplace approximation, we seek for a Gaussian approximation for
p(t|y)p(y) in order to approximate (4.12), where, again for notationalconvenience, we sup-
pressed the dependence onΘSt andΘK. This can be achieved by introducing

ψ(y) := ln p(t|y) + ln p(y), (4.13)

seeking the modẽy of ψ(y)

ỹ := argmax
y

ψ(y) (4.14)

and the Laplace approximation results in

p(t|y)p(y) ≈ N (y|ỹ,A−1)

=
|A|1/2
(2π)D/2

exp

(

−1

2
(y − ỹ)TA(y − ỹ)

)
(4.15)

whereA is the negative Hessian ofψ(y) at the modẽy

A := −∇∇ψ(ỹ) = −∇∇ ln p(t|ỹ) +K−1. (4.16)

Using (4.9) and (4.10) we can calculate−∇∇ ln p(t|y) =: W as

(W)n,n = −(ν + 1)
r2n − νσ2

(r2n + νσ2)2
, (4.17)
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wherern := (tn − yn) and(W)n,m = 0 if n 6= m.
With the Laplace approximation (4.15), we can now determine(4.12) as

ln p(t|Θ) ≈ ln q(t|Θ) = ln p(t|ỹ)− 1

2
ỹTK−1ỹ − 1

2
ln |B| (4.18)

with

B := KA = I+W1/2KW1/2 (4.19)

by using standard formulas given in [98]. Here,q(t|Θ) stands for an approximation ofp(t|Θ).

4.3.1.3 Optimization of the Hyperparameters

As said above, with the approximation (4.18) of the marginallikelihood (4.12), the hyperpa-
rametersΘ can be optimized on the training data. For this task a L-BFGS-Boptimization
has been used, which is a limited-memory quasi-Newton code for bound-constrained opti-
mization, see section 5.1 and [15] and [135]. For this methodthe derivatives of (4.18) w.r.t.
the hyperparametersΘ are needed. Since the calculation of these derivatives is somewhat
lengthy, only the results are presented here. Ifθj is a single element ofΘ, then the derivatives
are given by

∂ ln q(t|Θ)

∂θj
=
∂ ln p(t|ỹ)

∂θj
+

1

2
ỹTK−1∂K

∂θj
K−1ỹ − 1

2
trace

(

(W−1 +K)−1∂K

∂θj

)

− 1

2
trace

(

(K−1 +W)−1∂W

∂θj

)

− 1

2

N∑

n=1

[
(K−1 +W)−1

]

nn

∂3 ln p(t|ỹ)
∂ỹ3n

[

B−1∂K

∂θj
∇ ln p(t|ỹ)

]

n

.

(4.20)

Various aspects of a suitable GP implementation for classification, which are given in [98], can
also be applied to our problem. Additional numerical aspects of the Laplace approximation
for GP regression can be found in [126] and [96].

4.3.1.4 Implementation for Engine Calibration

With the optimization of the hyperparameters on the marginal likelihood, the GP regression
results in a fully automatic approach. For this robust modeling some implementations, as
[126] and [96], already exist. However, there are still someopen problems which result from
the application in engine calibration.

By applying real data from a combustion engine to the implementation, often only a very poor
result could be achieved. The reason for this is, that due to the additional parameterν of the
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Student’s-t distribution, the marginal likelihood (4.18)often has numerous different local op-
tima for real data sets. Hence, in order to get good results, agood choice of the initial values
ΘInit for the hyperparameters is crucial, since otherwise the optimization routine will often get
stuck in a bad local optimum.
Therefore, one possible solution would be a multistart optimization, where many initial val-
ues are used and the most reasonable model is chosen in the end. But as it is said above,
computational speed is an important factor and therefore this procedure cannot be used.

In order to avoid these computationally intensive methods,we can use a strategy which has
been found to work very well in practical problems in engine calibration. Let us first consider
an application where only a few outliers are contained in thedata. If we use a normal noise
assumption for modeling, then the outliers will distort theprediction of the model, but we will
get a good guess for the parametersΘK, since only a few outliers are in the data set. If the
number of outliers is increased, then the estimated parametersΘK might get shifted from the
real values, due to the wrong noise assumption. But clearly, if the number of outliers is not
too big, then this displacement will be a small one. Hence, itmay be a good initial guess for
a later optimization with a Student’s-t noise assumption.
Therefore, the following solution was implemented: First,a training of a Gaussian process
with a normal noise assumption is performed. This model assumes that there are no outliers
in the training data. Then the hyperparameters of this model, ΘNN, are taken as the initial
values for the hyperparameters,ΘInit, for the robust Gaussian process optimization and the
initial value forν is chosen to be relatively high.
In practical applications, like in the sections 4.5 and 4.6,very good results have been achieved
with this method at low computational costs. With this approach, the training for a robust
Gaussian process model requires approximately twice as much computing time as the con-
ventional GP model.

4.3.2 Prediction

In this section we want to predict the valuey∗ of our Gaussian process model at a new input
locationx∗.
If we use the Laplace approximation a second time, then the approximate distribution ofy∗
will also be Gaussian, and therefore defined by its mean and variance, which are given by [98]

Eq[y∗|t,x∗] = k(x∗)
TK−1ỹ (4.21)

Vq[y∗|t,x∗] = k(x∗,x∗)− k(x∗)
T (K+W−1)−1k(x∗) (4.22)

These results are being achieved by finding an approximationq(y|t,Θ) for p(y|t,Θ). For
more details see [98].
Instead of going into more detail in the derivation of the formulas, a focus in this thesis lies
on the discussion of the most important properties of this new robust approach and on the
illustration of the advantages for engine calibration. These tasks are performed in the next
sections.
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4.4 A Simple Theoretical Example
In this section a simple theoretical example of a Gaussian process regression is examined,
where a normal noise assumption and a Student’s-t noise assumption are compared, which is
illustrated in figure 4.3.
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Figure 4.3: Comparison of Gaussian process regression with normal noise assumption (left)
and Student’s-t noise assumption (right), without outliers (top) and with outliers (bottom). The
training data (circles), the predicted mean (solid line) and the predicted variance (confidence
interval) are plotted.

From the function

√
x+ sin(x), (4.23)

which in practice could be any nonlinear engine mapping, training data (circles) is sampled
and shifted by random noise. With this data Gaussian processmodels were calculated. The
predicted mean (solid line) represents the estimated function value, and with the predicted
variance a 95% confidence interval can be calculated, which represents the degree of certainty
where the estimated function is expected.

If the noise on the measurements is normally distributed, asin the top row, both models give
the same result, since, during the optimization of the hyperparametersΘ, ν increases towards
infinity and the Student’s-t distribution converges to a normal distribution. This should be
compared to figure 4.2 (a). If outliers occur in the training data, as in the bottom row, then the
prediction of a modeling with a normal noise assumption willget biased in the neighborhood
of the outliers, while a modeling with a Student’s-t noise assumption will be widely unaffected
by the outliers, which should also be compared to figure 4.2 (b).
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4.5 A Practical Example on a Diesel Engine
In this section a Gaussian process model with a normal noise assumption is applied on NOx
and soot measurements of a diesel engine and compared to a Student’s-t noise assumption.

In this application only a single operation point is considered and only local models are
trained. The inputs of the models are the main injection time, injection pressure, quantity
and time of the pre-injection and quantity of exhaust gas recirculation. This leads to a 5
dimensional input space. For reasons of confidentiality allmeasurements are scaled to an
interval of[0 1].

From a total set of 279 measurements, 35 measurements are randomly removed for model
validation and the remaining 244 are used for training. Withthis data a Gaussian process
model had been trained with a normal noise assumption and a Student’s-t noise assumption.
The performance of these models is shown in the measured-predicted plots in figure 4.4 and
the NRMSE of these plots are given in table 4.1.

Since the NOx emissions (top row) can be measured relativelywell, no outliers occur in the
measurement data and the model with the Student’s-t noise assumption (right) gives pretty
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Figure 4.4: Measured-predicted plots for training and validation data of NOx (top) and soot
(bottom) emissions with normal noise assumption (left) andStudent’s-t noise assumption
(right).
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training data validation data
NOx normal noise 1.330 % 2.865 %

Student’s-t noise 1.471 % 2.854 %
soot normal noise 5.069 % 9.926 %

Student’s-t noise 6.687 % 5.565 %

Table 4.1: NRMSE of NOx and soot for training and validation data of figure 4.4.

much the same result as the model with the normal noise assumption (left). The performance
of both models for NOx is quite good, but it should be noted that this is not the case for
the soot emissions (bottom row). Since the soot emissions are much harder to measure, see
section 3.7.2, outliers occur in the measurement data. These outliers will distort the model
with the normal noise assumption (left). This is a serious problem with state of the art models
for engine calibration. It is very hard to determine which ofthese measurements is an outlier
and which prediction is only biased by outliers. If one wouldcalculate a model with more
inputs, an even higher nonlinearity and more measurements,this problem would become even
more severe, since the number of outliers usually increaseswith the number of measurements.

It should be noted that this is not a problem if one uses a Gaussian process modeling with a
Student’s-t noise assumption (bottom right). With this modeling a better fit on the training
data is achieved and the prediction of the validation data isvery accurate. Further, it is easy
to determine the five outliers in the data, which can be measured again if required. It should
be noted that, due to the fact that all the outliers of the sootemissions are in the training data,
the NRMSE of the training data is higher than the NRMSE of the validation data with the
Student’s-t noise assumption in table 4.1.

4.6 Examination of the Potential of Robust GP Regression
After these short theoretical and practical examples, in this section we want to gain a deeper
insight into the robustness of this new modeling approach, and therefore the limits of this
technique will be examined. Even if there are many outliers in the data, it will be illustrated
that one can be confident in the robust GP regression, from which it follows that this new
technique will provide a substantial advantage for engine calibration tasks.

First, the theoretical example in figure 4.5 is considered. In this example the function (4.23)
from section 4.4 is regarded. For the training data (circles), 30 data points were sampled from
this function and shifted by random noise. In addition, outliers have been added to the training
data. As in the theoretical example above, with this data Gaussian process models with a
normal noise assumption (left) and a Student’s-t noise assumption (right) were calculated and
the predicted mean (solid line) and the predicted variance (confidence interval) are plotted.
In the different rows of figure 4.5, the number of outliers have been varied. In the top row 6
outliers are contained in the training data, the second row contains 9 outliers, the third row
contains 10 outliers, the fourth row contains 11 outliers and the last row contains 34 outliers,
which are more than the 30 correct data points.
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Figure 4.5: Comparison of Gaussian process regression with normal noise assumption (left)
and Student’s-t noise assumption (right). The number of outliers is varied.
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If only 6 outliers (17%) are contained in the training data set, as in the first row, then the model
with the Student’s-t noise assumption is able to reject all outliers, and therefore it is able to
predict the function (4.23). If the number of outliers is increased, then the robust GP model
has increasing difficulties in rejecting them. If the numberof outliers is increased to eleven, as
in the fourth row, the model with the Student’s-t noise assumption cannot distinguish clearly
between outliers and correct measurements anymore. In the extreme case, if there are more
outliers than correct data points, as in the last row, the model will fail on predicting the function
(4.23), since it is obviously not possible to distinguish clearly between outliers and correct
measurements for any type of modeling without additional information. Here, in the case of
many outliers, the Student’s-t distribution converges to aGaussian distribution. Further, it can
be seen that the GP model with the normal noise assumption is distorted by any outlier in all
plots in figure 4.5.

We can see from the example in figure 4.5, that the new modelingis robust to outliers until
a critical maximum quantity is reached. Now we want to examine this maximum quantity of
outliers in a practical data set from engine calibration. This examination will illustrate that
one can trust the robust modeling over a wide range of number of outliers.

In the figures 4.6 and 4.7, the 780 consumption measurements of a diesel engine from section
3.7.1 are considered, which have been transformed by (4.4).A detailed description of these
measurements was given in section 3.7. From these 780 measurements, 273 measurements
(35%) have been randomly selected and used for training, andthe remaining 507 measure-
ments (65%) have been used for model validation. With the training data, Gaussian process
models with normal noise assumptions (left columns of figures 4.6 and 4.7) and Student’s-t
noise assumptions (right columns of figures 4.6 and 4.7) havebeen calculated.
In the top row of figure 4.6, the measured-predicted plot of the modeled consumption mea-
surements is shown. As in section 3.7.1, it can be seen that the performance of both types of
modeling is very good on this engine quantity, since consumption can easily be measured, and
hence there is only little noise on the measurements. Therefore, especially the performance
on the huge validation data set is good.
Now, we want to examine the performance of the new robust modeling technique when it
comes to outliers. Therefore, a subset of the training data points is randomly selected and
shifted by a big random noise. These points are the outliers.In the different rows of the fig-
ures 4.6 and 4.7 the number of outliers is varied. Table 4.2 gives an overview of how many
correct data points are used for training and how many outliers are contained in the training
set, in each row.
For clarity, the bottom row of figure 4.6 is considered as an example. As in every row, 273
measurements have been used for training and 507 measurements have been used for valida-
tion. From the 273 training data points, 78 had been randomlyselected and distorted by a big
random noise. The other 195 data points in the training set had not been changed.

From the measured-predicted plots in the figures 4.6 and 4.7,it can be seen that the GP model
with the normal noise assumption has a bad performance in this experiment. This was ex-
pected, since every outlier will distort a model with a Gaussian noise assumption, as in the
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Figure 4.6: Measured-predicted plots for training and validation data of consumption mea-
surements. The modeling was performed with a normal noise assumption (left) and a
Student’s-t noise assumption (right). In the different rows the number of outliers is varied.
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Figure 4.7: Measured-predicted plots for training and validation data of consumption mea-
surements. The modeling was performed with a normal noise assumption (left) and a
Student’s-t noise assumption (right). In the different rows the number of outliers is varied.
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number of training data points number of validation data points
correct data outliers (distorted data)

top row figure 4.6 273 (100%) 0 (0%) 507
middle row figure 4.6 234 (86%) 39 (14%) 507
bottom row figure 4.6 195 (71%) 78 (29%) 507

top row figure 4.7 156 (57%) 117 (43%) 507
middle row figure 4.7 117 (43%) 156 (57%) 507
bottom row figure 4.7 78 (29%) 195 (71%) 507

Table 4.2: Number of correct training data points, outliersand validation data points of figures
4.6 and 4.7.

theoretical experiments above.
In contrast, it can be seen that the robust GP model has a very good performance, even if the
number of outliers gets large. Even if there are 30% outliersin the data, the new robust model
can reject all of them and it is able to perform very well on thevalidation data set. This should
be sufficient for engine calibration tasks, since the numberof outliers will rarely be higher
than 30% of the measurements. Hence, it is illustrated that one can trust this new technique
over a wide range of number of outliers.
Only when the number of outliers was very high, the performance of the robust modeling got
worse, as in the lower two rows in figure 4.7.

From the theory, the theoretical maximum number of outlierscan be estimated, for which
our robust modeling will give a good performance. It can be shown that a modeling with a
Student’s-t noise assumption (4.9) can (theoretically) reject up tom outliers, if the data set
contains at least2m measurements [90]. Obviously, the critical maximum numberof outliers
may vary in practical applications and it may depend on the quality of the rest of the measure-
ments.
But clearly, the examinations in this section emphasize the strengths of the robust GP regres-
sion, and they demonstrate that this new approach can provide a substantial advantage for
engine calibration tasks.

4.7 Conclusion and Discussion
In this section a new modeling framework for engine calibration was presented, which could
be developed by modifying state of the art approaches from other fields of research and by
introducing new techniques.
This new framework meets two important requirements from engine calibration. Due to the
use of a transformation, it is robust to differences betweenthe assumed and the real distribu-
tions of the data. Due to the use of a Student’s-t likelihood,it is robust to outliers.

The main drawback of this new approach is an increasing computational cost. The new mod-
eling framework requires approximately twice as much computing time as the conventional
GP regression, which is already in itself a computationallyexpensive method.
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This is a severe limitation of this new approach, which restricts the use to particular applica-
tions, where the number of measurements is not too large. Hence, as conventional Gaussian
processes, this new method is not suitable for dynamic engine calibration, but it is appropriate
for stationary base engine calibration.
Therefore, a possible future work would be to integrate the new robust techniques into sparse
kernel machines, in order to reduce the computational effort for dynamic engine calibration
tasks. However, this was not a focus in this work, since the quality of the prediction of sparse
kernel machines is not as high as with a full GP model, and because the computational cost of
the presented approach is acceptable for stationary base calibration.

The main properties and advantages of this new modeling framework can be summarized as
follows:

• Dependable performance.In many practical applications in engine calibration, out-
liers occur in the data set and the distributions of the measurements are not Gaussian
shaped. Compared to state of the art algorithms for base calibration, in this chapter a
new framework was presented, which achieved a dependable performance under these
complex conditions. Even if there are many outliers in the data set, the prediction of the
model can be trusted.

• No manual interaction is required.With state of the art types of modeling, outliers have
to be removed before the model training is performed, in order to achieve an accurate
prediction. Since an automatic detection of outliers is notvery robust or computationally
very expensive with these state of the art techniques, the outliers usually have to be
removed manually. In comparison, with this framework the outliers do not have to be
removed before the training is performed, and due to the use of a numerical optimization
of the marginal likelihood (4.18), the robust GP results in afully automatic approach.
Therefore, this new technique enables an increased automation of the modeling process,
and obviously, this saves time and resources for engine calibration tasks.

• Online optimization for complex quantities is possible.If the model is distorted by out-
liers, then in an automated online optimization bad models will lead to wrong predic-
tions and useless measurements will be taken at undesired regions. Hence, a large part
of measurements would be meaningless and the optimization would cause high costs.
Thus, state of the art online optimization is only performedfor quantities of an engine
which are relatively easy to measure, as consumption, and not for quantities where the
risk of outliers is much higher, like soot. Compared to these state of the art techniques,
with this new modeling framework it is possible to perform anonline optimization even
for complex quantities of the engine.

• Increased user acceptance.In comparison to state of the art approaches, which require
a manual interaction in order to identify the outliers, withthis new framework the users
of calibration tools can rely on a fully automatic and dependable modeling. Hence,
this approach assists the calibration engineers. Instead of searching for outliers and
evaluating the model quality, the users of calibration tools can concentrate on their main
tasks with this new robust modeling. This clearly increasesthe user acceptance for
model-based calibration techniques.



4.7. Conclusion and Discussion 87

Chapter 5

BASICS OF OPTIMIZATION FOR ENGINE
CALIBRATION

Mathematical optimization algorithms are required for various different tasks in engine cal-
ibration. E.g., when a GP modeling is performed, the likelihood function (4.18) or (2.49),
respectively, is optimized w.r.t. the hyperparameters. Further, with these models the calibra-
tion engineer can optimize the consumption and the emissions of the engines. In addition, the
process of performing measurements can be improved throughusing a model-based online
optimization, as we will see soon.
In this chapter the state of the art optimization techniquesfor engine calibration will be dis-
cussed in an abbreviated version.

In this thesis only continuous optimization and no combinatorial optimization is considered.
Let X be a set andf : X → R be a function. The aim of an optimization algorithm is to find
ax∗ ∈ X , so thatf(x∗) ≤ f(x) ∀x ∈ X . Then,x∗ is called a global minimum,f is called
cost function or objective function and we definemin

x∈X
f(x) := f(x∗). It is no restriction to

consider only minimization problems, since a maximizationof f can be reached through a
minimization of−f . Often, it is not possible to find the global optimum. Therefore, many
algorithms seek for ax∗ ∈ X , so thatf(x∗) ≤ f(x) ∀x ∈ U(x∗), whereU(x∗) ⊂ X is a
neighborhood ofx∗. Then,x∗ is called a local minimum. If the objective function has more
than a single local minimum, then the function is called multi-modal, otherwise unimodal.
In typical optimizations exist several constraints on the set X , which can be expressed by
theNc,eq equality constraintsg(x) = 0 and by theNc,ieq inequality constraintsh(x) ≤ 0,
with the functionsg : X → R

Nc,eq andh : X → R
Nc,ieq . If these constraints are taken

into account during the optimization, then a constraint optimization is performed. Further, the
feasible setXF is defined as the set of pointsx ∈ X , which satisfies the constraints, so that
XF := {x ∈ X |g(x) = 0,h(x) ≤ 0}.
For a more detailed discussion it is referred to [88].

Similar to the ’no free lunch’ theorems for supervised learning, there exist the ’no free lunch’
theorems for optimization [134]. These theorems show that all optimization algorithms have
an equivalent average performance over all possible problems. Hence, there exists no opti-
mizer which is superior for all possible tasks. Therefore, in order to get a good performance
on a specific application, one has to choose an optimization algorithm which is appropriate
for the specific problem. This property will be crucial in thefurther sections, where we will
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choose an optimizer for each task, after considering the specific requirements of these appli-
cations.

In the next sections the state of the art optimization techniques, which are used in stationary
base calibration, are discussed. In the sections 5.1 and 5.2two different types of optimization
for a single objective functionf are examined, and in section 5.3 optimization techniques
for more than one objective function are discussed. The calculation of optimal test plans
with design of experiments is discussed in section 5.4, and in section 5.5 the state of the art
approaches for online optimization for engine calibrationare examined.

5.1 Classical Nonlinear Optimization
In this thesis, algorithms which use the gradient information for optimization are referred
to as classical nonlinear optimization algorithms. Obviously, these methods require that the
objective function is continuous differentiable (or at least that the objective function can be
approximated by a piecewise continuous differentiable function) and that the gradient can be
calculated (approximated) efficiently.
If these requirements are met, then a method of the broad class of numerical nonlinear opti-
mization algorithms can be used. Since a nonlinear functioncannot be minimized in a single
step, the basic idea of these algorithms is, starting from a point x0, to generate a sequence
of pointsx0,x1,x2, ..., which converge to a local optimum of the objective function. In this
process, the next point of the iterationxn+1 is determined through the value, the gradient and
the Hessian of the objective function at the pointxn.

Generally, it can be distinguished between first order approaches and second order methods.
First order methods use only the information of the first order derivatives, expressed by the
gradient. The simplest technique is the method of the steepest descent, in which the iteration
of points is given by

xn+1 = xn − α̂
∇f(xn)

‖∇f(xn)‖
, (5.1)

whereα̂ > 0 is the step size. For a small enoughα̂ value, the objective function can always
be reduced. However, these first order approaches have only alow convergence rate, which
means that they need many iterations in order to proceed to the optimum.

Second order approaches make also use of the second order derivatives, expressed by the
Hessian of the objective function. These algorithms usually have a higher convergence rate,
and therefore the objective function has to be evaluated fewer times, in order to achieve the
same accuracy of the optimum. This is especially important for the optimization of problems,
where a single evaluation of the objective function is computationally expensive, like the
evaluation of the log likelihood functions (4.18) and (2.49). Hence, for the optimization of the
hyperparameters of a Gaussian process, a second order approach is used.
These approaches consider a second order approximation (Taylor expansion) of the objective



5.1. Classical Nonlinear Optimization 89

function around a pointxn, which is given by

f(x) ≈ f(xn) + (x− xn)
T∇f(xn) +

1

2
(x− xn)

TH(xn)(x− xn). (5.2)

If this approximation is exact and ifH(xn) is positive definite, then by setting∇f(x) = 0,

xn+1 = xn −H(xn)
−1∇f(xn) (5.3)

would be the optimum of the objective function. However, theapproximation (5.2) will often
only be valid in a limited region aroundxn andH(xn) is often modified, in order to obtain a
positive definite matrix. Hence, often the iteration

xn+1 = xn − α̂ Ĥ−1
n ∇f(xn) (5.4)

is performed, wherêHn is the modified Hessian and̂α is the step size, which is usually
obtained by a line search or a trust region method [88].

However, the exact evaluation of the Hessian of the log likelihood functions (4.18) and (2.49)
is computationally expensive. Hence, a method was chosen where the Hessian is approxi-
mated during the iterations of the optimization, which are called quasi Newton methods. A
common update formula, which showed a good performance in this application, is the BFGS
procedure, which is given by

Ĥn+1 = Ĥn −
Ĥnŝnŝ

T
nĤn

ŝTnĤnŝn
+

v̂nv̂
T
n

v̂T
n ŝn

(5.5)

whereŝn := xn+1 − xn andv̂n := ∇f(xn+1) − ∇f(xn) [88]. The procedure is initialized
with the identity matrix, which corresponds to the steepestdescent method in the first iteration.
Further, this approach assures that the matrixĤ is positive definite, so that−Ĥ−1

n ∇f(xn) is
guaranteed to be a descent direction. Constraints on the objective function can be handled
with the BFGS-B optimization, which is a bound-constrained algorithm.

With these classical methods, the optimal valuex∗ of a local optimum can be determined in a
low amount of computing time and precisely, except for errors which occur due to the finite
machine accuracy. If the objective function is multi-modal, then a multistart strategy can be
useful for finding the global optimum. This approach performs the optimization several times
from different starting points, and in the end the minimal local optimum will be chosen. With
this technique the ambition is that at least a single optimization run will converge to the global
optimum, if the optimization is performed many times.
As said above, the BFGS procedure, combined with a multistartstrategy, was suitable for
optimizing the likelihood function of the GP model w.r.t. the hyperparameters, since the
likelihood function usually has only a few local minimums, see section 6.2.
But clearly, these classical methods have serious drawbacks, if the objective function has
numerous different local minimums, since the optimizationhas to be started many times.
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5.2 Evolution Strategies
An alternative optimization approach for continuous functions is the evolution strategy. Evo-
lution strategies (ES) belong to the class of evolutionary algorithms, which are optimization
routines, which imitate the principles and ideas of evolutionary processes of nature. The gen-
eral functionality of most of the evolutionary algorithms is given in algorithm 1.

Algorithm 1 Evolutionary Algorithm (general)
input: objective functionf , search spaceX and further parameters
output: last populationPiend

⊂ X and optimumx∗

1: initialize the starting populationP0, seti := 0
2: repeat
3: generateP ′

t out ofPi throughrecombination
4: generateP ′′

i out ofP ′
i throughmutation

5: generatePi+1 out ofP ′′
i throughselection

6: seti := i+ 1
7: until abort criterion = true

At the beginning of the evolutionary algorithm the initial set P0 ⊂ X contains the initial
pointsP0 := {x0,1,x0,2, ...}. According to the evolutionary processes in nature, the points
{xi,1,xi,2, ...} are called individuals and the setPi is called thei-th population. During the
optimization process the next populationPi+1 is generated out ofPi by recombination (some-
times called crossover), mutation and selection.
It should be noted that the notation for evolutionary algorithms is not consistent in the liter-
ature and depends on the specific class of algorithms, such asgenetic algorithms, evolution
strategies, genetic programming, etc., see [5, 87]. As saidabove, in this thesis we focus on
evolution strategies, which are discussed extensively in [99, 110, 111].
Due to the fact that the recombination is of lower importancefor ES [92, 99], this operation
was neglected in this thesis, and an ES with mutational self-adaptation of the step size was
implemented, since this algorithm showed a good performance on practical problems. In this
algorithm the mutation is carried out by adding a normally distributed random variable to the
individuals

x′
i,j = xi,j + z with z ∼ N (0, ξi,j), xi,j ∈ P ′

i and x′
i,j ∈ P ′′

i (5.6)

whereξi,j is called step size, which is passed on from population to population.
The selection of the ES is carried out by evaluating the objective function and by selecting the
best individuals for the next population.

Instead of going deeper into detail of this state of the art approach for single-objective opti-
mization, it should be referred to the literature given above. Rather, the main properties of this
optimization approach should be discussed in comparison tothe classical nonlinear optimiza-
tion methods, which were examined above.
Evolution strategies usually converge much slower to a local optimum than classical nonlinear
approaches, since they often can only obtain a linear convergence rate. Hence, as mentioned
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above, the classical approaches are useful for optimizations where the optimum has to be
determined precisely and where the objective function contains only a few local minimums.
Therefore, the BFGS method is used for optimizing the log likelihood functions w.r.t. the hy-
perparameters, since a small change in the hyperparameterscan cause a very different model
behavior and because the log likelihood usually has only a few local minimums.
However, for various other tasks, e.g. for optimization of the models and for single-objective
online optimization, the precise values of the optimums arenot of major interest, but rather
one is interested in the first decimal places of the optimum, since it is usually not possible to
set an adjustment parameter on the engine to an exact value. In addition, in these tasks often
numerous different local optimums occur. E.g. the objective function of a complex single-
objective online optimization can easily have dozens or even hundreds of local optimums.
Hence, a classical nonlinear optimization with a multistart procedure has to be performed
numerous times, in order to assure that an appropriate valueof the objective function can
be found with an adequate probability. This is computationally infeasible for many practical
problems in engine calibration.
In comparison to that, through working with an evolution strategy it was always possible in
practical applications to find an adequate candidate for theoptimum in a reasonable amount
of computing time. Obviously, a convergence to the global optimum of such a highly multi-
modal problem cannot be guaranteed, but one can easily show that the probability for finding
a suitable candidate of the objective function increases, if the number of individuals increases,
and since the computational efficiency of the ES can be enhanced by parallelization of the
evaluation of the objective function, an ES with a high number of individuals (typically a few
thousands) can be used in practical applications.
Therefore, in this thesis an evolutionary strategy with a high number of individuals was used
for single-objective optimizations, where the value of theoptimum does not have to be de-
termined to high accuracy, but rather where a robustness to highly multi-modal behavior is
important.

5.3 Multi-Objective Optimization
In the last two sections optimization algorithms for a single objective functionf have been
discussed. In engine calibration tasks, however, often more different objectives have to be
considered, as discussed in chapter 1. Typical examples arethe optimization of a diesel en-
gine, where mainly consumption, NOx and soot emissions haveto be minimized, and the
optimization of a direct injection gasoline engine, where mainly consumption and soot emis-
sions have to be minimized.
In these optimization tasks often a trade-off occurs. A common example is the NOx-soot
trade-off. Typically, it is not possible to minimize NOx andsoot at the same time, but rather
one has to decide, e.g., if a higher NOx rate has to be tolerated, in order to decrease the soot
emissions.
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Hence, for the multi-objective problem we seek for the solution of

min
x∈X

[f1(x), f2(x), ..., fdObj
(x)] s.t. g(x) = 0, h(x) ≤ 0 (5.7)

wherefi are the different objective functions andg andh are the constraints, which were
defined above. As for the single-objective optimization, here it is also sufficient to consider
only minimization problems. Further, the feasible objective spaceYF is defined as the set of
points which can be reached through the objective functionsfi and the feasible setXF , so that
YF :=

⋃

x∈XF

{(f1(x), f2(x), ..., fdObj
(x))}.

This multi-objective problem is illustrated in figure 5.1 (a). In this example two objectivesf1
andf2 are considered, and the feasible objective spaceYF is a two dimensional area.
The ambition is to minimize both objectivesf1 andf2. However, as one can see from the
plot, there is no unique solution to this problem. In order toexplain the basic ideas of the
multi-objective problem (5.7), the three pointsA, B andC in figure 5.1 (a) are considered.
The pointA is no solution of the multi-objective problem (5.7), since there exist points which
have a lower value off1 and at the same time a lower value off2, as the pointsB andC. Both
pointsB andC are solutions of the multi-objective problem (5.7), since there exist no points
in the feasible objective spaceYF , which have a lower value inf1 at the samef2 value, or
which have a lower value inf2 at the samef1 value. The pointsB andC are called Pareto
optimal points (sometimes also named Pareto efficient points). The set of all Pareto optimal
points is called Pareto frontier and this set is indicated bythe dashed-dotted line in figure 5.1
(a).
The Pareto frontier ofdObj different objectives can consist of several connected sets, which
are in turn submanifolds ofRdObj with the maximum dimension ofdObj − 1. In this thesis
we constrain the number of objectives to two or three, and therefore in practical problems the
Pareto frontier consists of connected sets, which are either one-dimensional curves or two-
dimensional surfaces.
Another important property of multi-objective problems, which should be mentioned here, is
domination. One pointy dominates a pointy∗, if each parameter ofy is not greater than the

f1

2

Pareto frontier

B

C

A

(a) (b)

f 2f

f1

YF

Figure 5.1: Basic principles of multi-objective optimization.
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corresponding parameter ofy∗ and at least one parameter is strictly less: that is,yi ≤ y∗i for
eachi andyi < y∗i for somei. This is written asy ≺ y∗. Hence, from the example in figure
5.1 it follows thatB ≺ A andC ≺ A.

As in single-objective optimizations, the multi-objective problem (5.7) can contain several
local minimums.
In addition, since it is only possible to observe the Pareto frontier at discrete points, as we will
see soon, the diversity of these points is of interest, as illustrated in figure 5.1 (b).
In this plot the same Pareto frontier as in figure 5.1 (a) is indicated by the solid lines. However,
practical implementations for multi-objective optimization can only provide a limited amount
of points, which indicate an approximation of the Pareto frontier, as the points in figure 5.1
(b). By the comparison of both parts of the Pareto frontier, itcan be seen that the points of the
approximation of the upper left part are better distributedthan the points of the approximation
of the lower right part of the Pareto frontier. Therefore, one can estimate the upper left part
of the Pareto frontier better than the lower right part, although the number of Pareto optimal
points is the same in both parts. Hence, in order to obtain a useful approximation of the Pareto
frontier, it is important that the Pareto optimal points areequally distributed in the objective
space, which is called a good diversity.
See also [19] for a good introduction into multi-objective optimization.

Several different approaches for multi-objective optimization (MOO) exist in the literature. As
in single-objective optimizations, it can generally be distinguished between classical (gradient
based) nonlinear optimization algorithms and evolutionary algorithms, and the properties of
these approaches for multi-objective optimization are similar to the properties of the classical
and evolutionary approaches for single-objective optimization.
In this thesis the evolutionary algorithms are considered for MOO, since the precision of the
values of the points, which indicate the Pareto frontier, does not need to be very high, but
rather a rough global approximation of the Pareto frontier in a short amount of computing
time and a robustness to highly multi-modal behavior is important.

During this work several different evolutionary techniques were examined, as, e.g., the NSGA-
II [19, 20] and the SPEA2 [136, 137]. The NSGA-II approach showed the best performance on
practical problems in engine calibration, and therefore this algorithm was used in this thesis.
For a more detailed information on this state of the art technique it should be referred to the
literature given above.

5.4 Design of Experiments for Model-Based Offline Opti-
mization in Engine Calibration

Design of experiments (DoE) is a widely used term in engine calibration. Typically, in engine
calibration the whole process, from planning the experiments, over modeling, up to optimiza-
tion, is denoted by DoE. However, in statistics (and also in this thesis) DoE is only referred
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to the first step of the whole process: the design of the test plan, before the measurement is
performed on the test bench. This initial task is important in model-based offline optimization,
where the whole design of the measurements is fixed, before any observations are made.
As discussed in section 1.2.2, model-based online optimization has various advantages com-
pared to model-based offline optimization, and therefore this thesis focuses on online opti-
mization. However, since offline optimization is very common in engine calibration and on-
line optimizations also need a design of the initial (starting) measurements, DoE is discussed
in this section in an abbreviated version.

In general, two main types of DoE can be distinguished in engine calibration: optimal design
of experiments for linear models and space filling designs.
First, optimal design of experiments will be discussed.

If a linear modeling (2.17) is used (although this is not the best choice, as discussed in chapter
3), then from (2.23) it can be seen that the covariance of the estimated parameters is given by

σ2(ΦTΦ)−1. (5.8)

The parameterŝΘ can be determined very precisely, if the covariance is as small as possible.
Hence, the precision of the model depends only on the noise ofthe measurementsσ2 and on
the design matrixΦ. Therefore, if we use a linear model, then we are able to calculate the
optimal design of the measurements, before any observations are made on the test bench. This
means that, for linear models, the information of the measurements cannot improve the design
of the experiments. It should be noted that this is not the case if we use a nonlinear modeling.
For a nonlinear modeling, the information of the previous measurements is definitely useful
for planning the next measurements, and therefore online optimizations are suitable for non-
linear models, as it will be discussed in the next section.
In order to optimize the precision of the linear model, we have to minimize the covariance
matrix (5.8). Since the minimum of a matrix is not uniquely defined, different criteria have
been developed. Without the claim of completeness, some of them are [6]:

A-optimal design: min trace(ΦTΦ)−1

D-optimal design: min det(ΦTΦ)−1

E-optimal design: minλmax(Φ
TΦ)−1,

where the D-optimal design is most commonly used in engine calibration.
Algorithms, which are able to compute such a design, are, e.g., the Fedorov algorithm [27],
the modified Fedorov algorithm [16], the DETMAX algorithm [74, 75] and the k-exchange
algorithm [49]. Since the k-exchange algorithm has a fast convergence for a large number of
experiments [122], in this thesis this approach, combined with a D-optimal design, was im-
plemented. However, this technique was only implemented inorder to increase the customer
acceptance, since the users of calibration tools are very used to this technique.

Nevertheless, this approach has some serious shortcomings, and therefore it is not recom-
mended in this thesis.
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The basic problem of this technique is that the design is onlyoptimal for the specific linear
model, which has to be defined before observations are made onthe test bench. In some
applications this may not be problematic, since a lot of prior knowledge may be available in
these tasks. However, in many applications in engine calibration, the behavior of the engine is
not known in such detail that the structure of a linear model can be fixed a priori, before any
measurements are made on the test bench (compare also the discussion in section 3.2).
This has severe consequences. Typically, a change of the structure of the linear model, e.g., a
change of the degree of the polynomial model, is critical, and, in the worst case, not possible
with such a design. Hence, if the a priori assumptions differfrom the real engine behavior,
then the areas, in which the measurements are placed, are notoptimal, and, in the worst case,
new measurements have to be made, which is clearly time- and cost-intensive.

In addition, as discussed in chapter 3, a nonlinear modeling(e.g. a Gaussian process model)
is more suitable in engine calibration, since it can adapt the degree of nonlinearity itself, and
because it does not make as strict assumptions as a linear model with a fixed structure. Hence,
it is meaningful to use a measurement design which does not make strict assumptions on the
engine behavior, too [51].
Such experimental designs are space filling designs, such asLatin hypercubes [72].
Further, low-discrepancy sequences [60], such as the van der Corput sequence [125], the Hal-
ton sequence [39], and the Sobol sequence [115], guarantee also a good distribution of the
measurements in the input space. In addition, these sequences assure that a combination of
different designs does not lead to the loss of an evenly distribution.
In practical applications in engine calibration these sequences showed a very good perfor-
mance, and therefore these approaches are used for the initial measurements of a model-based
online optimization.

5.5 State of the Art Model-Based Online Optimization in
Engine Calibration

As discussed in the last section, for a nonlinear modeling the information of the previous mea-
surements is helpful to improve the decision where the next measurement should be placed.
In order to achieve this improvement, the modeling and optimization algorithms are in a per-
manent interaction with the test bench, which allows the models to give a feedback of their
quality, and which enables to make optimal decisions based on the previous observations. This
has various advantages, as discussed in section 1.2.2.2, and therefore time and costs on the
test bed can be considerably reduced by the usage of model-based online optimization [53].

However, nearly all commercially available calibration tools are purely designed for model-
based offline optimization and do not provide online optimization features.

The Model-Based Calibration Toolbox [104, 105, 118] from MathWorks is uniquely designed
for office use and does not have a connection to the test bench.
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Also, the Easy-DoE Toolsuite [44] from IAV GmbH is designed for office use. The connection
to the test bench is performed with ORION from A&D Company and IAV GmbH, which is
not able to perform an online optimization [1].
The AVL CAMEO Tool [33] consists of a test bed and an office version [4]. For the test bed
version, a toolbox named iPROCEDURE ADAPTIVE DOE exists, which is able to adjust
the initial test plan by automatically adding further points. However, the performance of this
approach is limited through the use of very simple regression models [53]. In addition, this
approach does not perform an optimization during the measurement, in order to identify the
most suitable places of the next points, and therefore this technique is not regarded as an
online optimization in this thesis.

In comparison to these commercial products, BMW developed anown solution called mb-
minimize [55, 93, 116], which is able to perform online optimizations.
As already discussed in section 3.5, this approach uses a committee of MLP networks (see
section 2.4.1) and LLR models (see section 2.2.3). The expectation and the variance of this
committee ofNCOM models can be calculated by [92]

ECOM(x) =
1

NCOM

NCOM∑

i=1

yi(x) (5.9)

VCOM(x) =
1

NCOM − 1

NCOM∑

i=1

(yi(x)− ECOM(x))
2 , (5.10)

whereyi, i ∈ {1, ..., NCOM} are the different model outputs of the committee. With theseval-
ues, which represent the expectation and the uncertainty ofthe real engine behavior, an online
optimization is performed. This online optimization is divided into distinct stages (phases).
In the first stage measurements are placed in areas, where theuncertainty of the true engine
behavior is maximal (maximum valueVCOM(x)). These measurements in the first stage im-
prove the global model quality.
In the further stages not only the maximum uncertainty is considered, but also the areas of the
input space where the behavior of the engine is optimal (e.g.minimal consumption). There-
fore, the varianceVCOM(x) and the expectationECOM(x) of the committee are combined to
a single value, and the importance of the uncertainty and theoptimality are weighted by an
additional parameter, which is varied in each stage. With this procedure a smooth progress
is achieved, where at the beginning mainly the uncertain areas are measured (which is called
exploration), and at the end mostly the optimal areas are examined (which is called exploita-
tion), see [53, 92]. Hence, in the later stages of the online optimization the local model quality
around optimal areas is improved.

Therefore, with this approach the quality of the models could be increased, while at the same
time the required numbers of measurements could be reduced,which leads to a more efficient
use of the test bench time. Thus, at BMW time and costs could be remarkably reduced with
online optimization [53, 103].

Nevertheless, the mbminimize approach has severe shortcomings. Since it was designed for an
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online optimization for consumption of a gasoline engine, it can only handle a single objective
function. However, as discussed in section 5.3, in modern engines often several different
objectives have to be considered, and therefore the mbminimize concept cannot be applied
to these challenging problems. In addition, due to the choice of the modeling, this approach
cannot make use of the potentials of a fully probabilistic model, like Gaussian processes, as
we will see soon.
In order to overcome these drawbacks, a new and improved model-based online optimization
concept will be presented in the next chapter.

5.6 Conclusion and Discussion
In this chapter a summarization of the most important optimization concepts for engine cali-
bration was given in an abbreviated version.
At the beginning, a selection of state of the art algorithms for single- and multi-objective
optimization was presented, the properties of the different approaches were discussed, and a
suitable technique was chosen for each optimization problem in this thesis.
After that, different methods for design of experiments foroffline optimization were dis-
cussed, and a recommendation for an appropriate approach was given.
At the end, the state of the art for model-based online optimization in engine calibration was
examined, and the advantages of such an online optimizationwere discussed. However, as
already mentioned above, these state of the art online approaches suffer from various disad-
vantages. These drawbacks, and how they can be overcome, arediscussed in the next chapter,
where a new approach for model-based online optimization ispresented.
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Chapter 6

IMPROVED MODEL-BASED ONLINE
OPTIMIZATION FOR ENGINE CALIBRATION

In the previous chapter the state of the art in model-based online optimization has been dis-
cussed, and it was outlined that time and costs can be remarkably reduced with this approach.
Hence, also in this work these techniques for model-based online optimization (MBOO) were
examined. However, it was found out that the state of the art approaches have several severe
shortcomings:

(MBOO1) As already mentioned in the last chapter, the state ofthe art online optimizations
were developed for the optimization of consumption of a gasoline engine, and
hencethey can only handle a single objective function. However, as discussed in
section 5.3, due to the increasing complexity in modern engine calibration tasks,
often several different objectives have to be regarded, andtherefore also the online
optimization should be able to deal with more objective functions.
Thus, in this work a new multi-objective online optimization for engine calibra-
tion was developed. This new approach is able to place measurements in Pareto
optimal areas, in order to improve the quality of different objectives in the most
important domains.

(MBOO2) State of the art techniques for online optimizationdo not use a fully probabilistic
approachfor the modeling part. Therefore,they are not able to predict the un-
certainty of the model accurately. However, as we will see soon, this is a crucial
property for online optimization, since we want to place measurements in areas
where the estimated model error (and therefore the predicted uncertainty) is high,
in order to reduce this error. In addition, due to the lack of probabilistic features,
state of the art techniquesare not able to estimate the quality of the modeland the
reliability of the prediction with a low amount of data. Nevertheless, as we will
see soon, this is an important property, since it enables theonline optimization to
evaluate if already enough measurements have been taken at the test bench and
the optimization can be stopped. Hence, in state of the art online optimizations
the number of measurements has to be fixed manually, in advance, and therefore
it is possible that too few or too many measurements are made.
In contrast, in this thesis the fully probabilistic Gaussian process regression is used
for the model-based online optimization. This approach allows to perform a fully
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automatic optimization with an increased performance, because of two reasons.
First, the reliability of the prediction can be evaluated bythe marginal likelihood
probability distribution of the model parameters (see section 6.2.2.1). Second,
the prediction of the uncertainty can be estimated by the variance of the model,
from which we will make extensive use in the following, when we are, e.g., cal-
culating lower confidence bounds, searching for highest variances or performing
cross-validation with confidence errors, as it will be examined below.

While there exists no GP assisted online optimization in engine calibration, in other fields
of research (e.g. in the domain of global optimization) the idea of optimization by using
Gaussian stochastic processes is far from new. However, as we will see soon, these state of
the art approaches from other fields of research can be further enhanced, in order that the
performance for engine calibration tasks is improved.

The goal of this chapter is the development of a model-based online optimization for engine
calibration, which has an increased performance compared to traditional state of the art ap-
proaches for model-based optimization. This is achieved bythe design of new techniques
under consideration of the requirements of the calibrationprocess and of the needs of the
calibration engineers.

Although these approaches are developed for an online optimization on the test bench, it
should be noted that these techniques can also be used for a model assisted optimization of an
expensive-to-evaluate computer simulation, which is a further field of application in engine
calibration [53]. In order to apply these approaches to a computer simulation, the only required
modification is that the measurement noiseσ has to be set to zero.

In the next section the basic problems and challenges of suchan online optimization are dis-
cussed, and a two-stage approach is presented in order to meet these demands. In section
6.2 the first stage, called online modeling, and in section 6.3 the second stage, named online
optimization, is presented.

6.1 A Two-Stage Approach
The ambition of an online optimization is to identify the optimal areas of the objective func-
tions with as few measurements as possible. This is achievedby placing the measurements
in areas, where the estimated gain of information for the online optimization is expected to
be high. Since the objective functions in engine calibration are typically multi-modal, there
exists a trade-off for the online optimization.
First, starting from no information of the calibration problem, the optimization has to gather
information about the (global) behavior of the engine quantities, which is called exploration.
After that, when the basic behavior of the system is known, the optimization can exploit this
information and search for the optimal areas of the objectives, which is called exploitation.
Since the goal is to perform as few measurements as possible,the stage of the exploration



100 CHAPTER 6. IMPROVED MODEL-BASED ONLINE OPTIMIZATION

should be as short as possible. However, if the exploration is aborted too early, a wrong es-
timation of the true system behavior can lead the exploitation stage to ignore areas, which
can contain optimal points. Hence, if the exploitation is started too soon, it is possible that
only local optimums are found and the global optimums are missed. This conflict is known as
the trade-off between exploration and exploitation, and itis well known in the field of global
optimization.

In order to deal with this trade-off, in this thesis a two-stage approach was developed.
In the first stage exploration is performed. This task is referred to as online modeling in this
thesis, and it is aborted, when the predictions of the model about the global engine behavior
can be trusted. In the next section it will be discussed how this abort criterion can be deter-
mined.
After that, in the second stage exploitation is performed and this task is referred to as online
optimization in this thesis.

This two-stage approach is different to the mbminimize concept of BMW. At mbminimize the
whole optimization is divided into more than two stages, in order to achieve a smooth progress
from exploration to exploitation. On the one hand, these additional stages were integrated into
mbminimize due to the special choice of the modeling via a committee of MLP networks. On
the other hand, this smooth progress can be useful in order toreduce the total number of
measurements, since also the measurements of the optimization stage can further improve the
prediction of the global engine behavior.
However, in order to avoid that the optimization is searching too early for a local minimum and
missing the global one, a lot of a priori knowledge is required for the planning of the different
stages, and therefore in the mbminimize concept the scheduling of the stages is performed
manually [53]. In contrast, in this thesis the ambition is todevelop a model-based online
optimization, which can be fully automated.

6.2 Online Modeling
In the first stage, the model is improved stepwise in several iterations with update measure-
ments from the test bench, until the quality of the model is appropriate. Therefore, this stage
is named online modeling. According to figure 1.7, the basic functionality of the online mod-
eling is given in algorithm 2.
At the beginning, the initial measurement, which was discussed in section 5.4, is performed
on the test bench. With these measurements the initial modelis calculated. After that, further
update points are determined, and if the abort criterion is not fulfilled, then the procedure is
repeated again.

As mentioned above, the ambition of online modeling is to perform exploration. Hence, the
global engine behavior should be roughly approximated by the model at the end of the online
modeling. In order to guarantee that one can trust the model prediction, it has to be assured
that the model estimates the true system behavior correctly.
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Algorithm 2 Online Modeling
input: initial test plan, objective functionf and abort criterion
output: model

1: set: update points = initial test plan
2: repeat
3: measurement of the update point(s) on the test bench
4: calculate model out of all measurements
5: determine further update point(s) through optimization ofthe objective function

f(model), which depends on the model
6: until abort criterion = true

In the context of a Gaussian process modeling, this means that the hyperparametersΘ are
estimated correctly. Further, this does not necessarily imply that the model error (difference
between the predicted mean (expected value) (4.21) and the true system behavior) has to be
small, but rather this implies that the model error correlates with the predicted model uncer-
tainty (variance) (4.22). Hence, at a high predicted variance it is acceptable that the model
error is quite high, but at a small predicted variance the model should be close to the true
system behavior.

Two tasks are substantial for the success of the online modeling. The choice of the update
points and the selection of the abort criterion. Both tasks are discussed in the next sections.
Compared to state of the art models for online modeling, through the use of GP models new
features are available, which enable a better performance than the traditional approaches.
Hence, in the next sections mainly new techniques are discussed, which are suitable for an
online modeling with Gaussian processes.

6.2.1 Choice of Update Points

The ambition is to choose the update points in a way that the remaining uncertainty of the
model about the true system behavior is decreasing as fast aspossible.

Hence, a possible approach would be to find the update point, which minimizes the remaining
uncertainty of the hyperparametersΘ at most. Therefore, the conditional entropyH(Θ|Dnew)
of the hyperparametersΘ given the estimated new measurementsDnew has to be minimized,
which is somewhat similar to the IAGO approach [128, 129]. The problem of this approach
is that the calculation of the conditional entropy is analytically intractable, and therefore sam-
pling methods, such as MCMC methods, have to be used [128], which are computationally
too expensive for engine calibration tasks, as already discussed in section 4.3.1.1. Hence, this
method was not implemented in this thesis.

In [92] other methods for this problem were examined for the mbminimize approach, and
the most suitable method was the selection of update points where the variance (5.10) of
the model committee is maximum, as discussed in section 5.5.Hence, also in this work the
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selection of update points, where the predicted variance (4.22) is maximum, was examined,
and it was found out that this approach works well for the regarded problems. The reason for
this good performance is, that these update points largely reduce the uncertainty of the model,
since they provide additional information at an area, whichhad a high (predicted) uncertainty
before these update measurements were observed.

Sometimes it is useful to calculate more than a single updatepoint at a time, e.g. when the
required computing time of modeling and optimization is proportionately high compared to
the measurement time on the test bench. For these cases a procedure has to be developed,
which defines how these multiple update points can be calculated meaningfully.
At mbminimize the multiple updates are determined by a distance measure. After the deter-
mination of the first update point at the maximum variance, a constraint is integrated in the
further optimizations, which assures that the distance between the different update points is
higher than a minimum distance [92].
However, in this work another procedure has been found to be more effective. After the de-
termination of the first update point at the maximum variance, this update point is added to
the previous measurement in such a way, that the measurementvalue of this update is set to
the expected value of the model. With this procedure the expected behavior of the system is
integrated into the virtual measurement. Afterwards, withthis virtual measurement the model
is trained again, and the next update point is determined by the maximum variance of the new
model. Usually (e.g. for MLP networks) the training of the updated model would again cause
much computing time, and therefore this procedure would be computationally too expensive
for engine calibration tasks. But if a GP model is used, computing time can be saved by ne-
glecting the optimization of the hyperparametersΘ. Instead of that, the hyperparametersΘ

of the previous model are used, since these parameters are not expected to change very much
by a single update. With this procedure a better performancecompared to the mbminimize
concept had been obtained at a low computational cost.

6.2.2 Abort Criteria

In the state of the art online optimizations the online modeling stage is aborted, if a maxi-
mum number of update points is reached, which is defined manually. Compared to this, in
this thesis abort criteria are presented, which can be calculated in a fully automatic way. In
the following different abort criteria are examined, whichachieved a good performance on
practical problems in engine calibration.

Since these abort criteria evaluate the model quality, theyindicate how much the model pre-
diction can be trusted. Hence, these criteria are not only important for online modeling, but
they can also provide a useful information of the model quality for model-based offline opti-
mization.
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6.2.2.1 Marginal Likelihood Probability Density Function

Due to the use of Gaussian processes for online modeling, themarginal likelihood (4.18) or
(2.49), respectively, of the hyperparametersΘ of the model can be calculated. Compared to
other state of the art approaches, where such an informationof the probability density function
of the model parameters is not available, here it can be used to evaluate the reliability of the
model. Since this method has been found to give outstanding results in practical applications,
it is discussed more deeply in this section.

The basic idea of this new approach is illustrated in a simpletheoretical example in figure
6.1. In this figure the progress of the marginal likelihood during an online optimization is
illustrated.
In this demonstration a one-dimensional example is considered, which is similar to the ex-
ample in figure 4.3. In the left column the function values areplotted over the input space
and in the right column the marginal likelihood probabilitydensity function is drawn, which
can be calculated from (2.49). For simplicity, a GP model with a normal noise assumption is
considered, since this model has fewer hyperparameters. Asthe squared exponential kernel
(2.44) is used for modeling, the GP contains the three hyperparameters{θ2σ, θl, σ2}. Again for
simplicity, in order to display the marginal likelihood as atwo dimensional contour plot, the
hyperparameterθ2σ is fixed, and the likelihood is plotted over the characteristic length-scaleθl
and the noise standard deviationσ.
In the left column, the function (4.23) (dashed line) can be seen, from which training data
(circles) is sampled and shifted by random noise. With this data Gaussian process models
were calculated. The predicted mean (solid line) represents the estimated function value, and
with the predicted variance a 95% confidence interval is drawn.
In the three parts (a), (b) and (c) the number of training datais increased.

In the upper part (a), 7 training points were sampled, and with this data the marginal likeli-
hood (2.49) was calculated and drawn in the right plot of figure 6.1 (a). It can be seen that the
likelihood of this data has two local optimums. With the values of the hyperparameters of the
two local optimums, two GP models can be calculated. The firstmodel has a higher estimated
length-scale and a higher estimated noise, and it is drawn inthe upper left part of figure 6.1
(a). The second model has a smaller estimated length-scale and a smaller estimated noise, and
it is drawn in the lower left part of figure 6.1 (a). Hence, bothmodels interpret the same data
in a different way.
By considering the training data points and the two differentmodels in figure 6.1 (a), it be-
comes clear that one cannot identify, which model is the ”correct” one. There are simply
too few measurements to decide that, and therefore both models are probable. The key point
is that this lack of information can be observed in the likelihood function. If the likelihood
function is multi-modal, then more different model behaviors are possible, and therefore more
data is needed to identify the appropriate one, which correlates with the true system behavior
at most.

In the middle part (b) of figure 6.1, three additional training data points have been added to the
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(a) Multi-modal likelihood optimum due to too few information of system behavior - two probable models

0 2 4 6 8 10
0

1

2

3

4

ou
tp

ut
, y

input, x

likelihood function

no
is

e 
st

an
da

rd
 d

ev
ia

tio
n

characteristic lengthscale
10

0

10
−2

10
−1

10
0

(b) Unimodal likelihood optimum with a broader distribution
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(c) Unimodal likelihood optimum with a sharp distribution

Figure 6.1: Theoretical example: progress of the marginal likelihood during online modeling.
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previous seven points of part (a). With these ten points the likelihood is calculated and drawn
in the right plot of figure 6.1 (b). It can be seen that the likelihood of this data has now only
one optimum (unimodal). Therefore, now only one optimal setof hyperparameters exists, and
with this set the GP model is calculated and drawn in the left plot of figure 6.1 (b).
It can clearly be seen, that the reduction of two probable models in (a) to one suitable model in
(b) seems reasonable, since the additional three measurements pointed out that the flat model
in (a) seems unlikely. Hence, these three further data points provided additional information,
and therefore it becomes more obvious how the true system behavior can be approximated
correctly. However, since the likelihood function is stilla broad distribution, there is still
space for the decision which hyperparameters should be chosen.

In the lower part (c) of figure 6.1, forty additional trainingdata points have been added to the
previous ten points of part (b). With these fifty points it canclearly be seen, that the true sys-
tem behavior can be determined very precisely. Therefore the hyperparameters of the model
can be determined very accurately, which can also be observed from the sharp distribution of
the likelihood function.
The more data points are observed, the more precisely the model parameters can be deter-
mined, and therefore the sharper the likelihood distribution appears.

This information of the likelihood distribution can be usedas an abort criterion for online
modeling. If the likelihood distribution is multi-modal, then further update points should be
measured at the test bench. But if the likelihood is unimodal,then the online modeling can be
aborted.
This approach worked well on practical problems, and in figure 6.2 a practical example is
examined.
In figure 6.2 the practical data set of section 3.7 is considered. From the total set of 755
measurements (for simplicity, outliers were removed), a subset was selected and used for a
multistart optimization of the likelihood of GP models for consumption, NOx and soot. With
this multistart optimization the different local optimumsof the likelihood function could be
determined. Then the number of the training data points of the subset was increased and the
procedure was performed again. The top left plot in figure 6.2shows the progress of the
number of local optimums of the likelihood function for consumption, NOx and soot over an
increasing number of measurements. Similar to figure 6.1, itcan be seen that the likelihood
functions have many local optimums with a few amount of training data. If the number of
training data is increased, only a single likelihood optimum exists.
This should be compared to the progress of the hyperparameters (which were taken at the
maximum likelihood) in the other plots of figure 6.2. In the initial phase, when more than a
single likelihood optimum was found, the optimal hyperparameters were strongly oscillating.
After that, when only a single likelihood optimum exists, the optimal hyperparameters are not
changing very much.

Hence, at the point when only a single likelihood optimum exists, the model prediction can
be trusted, since the optimal hyperparameters are (approximately) determined, and the online
modeling can be aborted. It was found out that this approach has an outstanding reliability in
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Figure 6.2: Progress of the number of local likelihood optimums and of the hyperparameters
over an increasing number of measurements

practical applications and requires only a very few number of measurements.
Clearly, this technique can additionally be improved, if theshape of the likelihood function
is further analyzed. As in figure 6.1 the broadness of the likelihood distribution can be eval-
uated in practical applications, in order to estimate the model quality and the accuracy of the
prediction.

6.2.2.2 Other Methods and Discussion

During this work also various other different abort criteria have been examined. Some abort
criteria, which have been considered suitable for calibration tasks, can be summarized as
follows:
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• examination of the marginal likelihood probability density function (subsection 6.2.2.1)

– multistart optimization of the likelihood finds only a single optimum

– the likelihood function is strongly peaked around the optimal value (sharp proba-
bility density function)

• examination of the progress of the cross-validation error (and in the limit: the leave-
one-out cross-validation error)

• maximum variance (4.22) or (2.52), respectively, of the model is smaller than a maxi-
mum allowable variance

• maximum number of update points is reached

The choice of an appropriate abort criterion depends on the specific application.
If the primary goal is the optimization of different objectives (e.g. consumption, NOx and
soot) and the reduction of the required measurements, then asuitable abort criterion of the on-
line modeling is based on the unimodality of the marginal likelihood function. This approach
requires only very few measurements and assures that the true system behavior is correctly in-
terpreted by the model by an accurate determination of the hyperparameters, as shown above.
After the online modeling, the online optimization should be performed, where the optimal
areas of the objectives are determined.
Nevertheless, sometimes there are calibration tasks wherethe problems (and therefore also
the objectives) are not known a priori, before measurementsare performed on the test bench.
Hence, since an online optimization cannot be scheduled before the objectives are defined, the
ambition of these applications is the identification of the real system behavior with accurate
models, which can be calculated after an online modeling. Butif an abort criterion based on
the unimodality of the likelihood is used, then there may be still large areas in the model with
a high predicted variance after the online modeling.

Therefore, in order to obtain more accurate models after theonline modeling, in these applica-
tions an increased time on the test bench is accepted, and other abort criteria may be suitable,
which require more measurements.
A standard procedure to measure the model quality is the calculation of the cross-validation
error. This quantity gives a very reliable interpretation of the approximation quality of the
model, and it can be further extended, in order to integrate also the predicted variance (4.22)
or (2.52) respectively, see [51]. Further, in practical applications during this work good results
had been achieved with this technique. A drawback of this method is an increased compu-
tational cost, which can be reduced for GP models, if the optimal hyperparameters are only
calculated once with the whole data set [51].
Another interesting approach is to abort the online modeling, if the predicted variance (4.22)
or (2.52), respectively, of the model is smaller than a maximum allowable variance. This
method assures that also the maximum model error is bounded,and therefore it guarantees
that the model expectation is close to the real system behavior. In addition, this method can
be further enhanced, if the maximum allowed variance is a function of the expected value of
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the model. With this extension it can be achieved that only few measurements are taken at un-
suitable engine states, and more measurements are taken at appropriate settings of the engine.
Since this approach is somewhat similar to online optimization, it can only be used if some
desired objectives (e.g. low consumption) are known a priori.

Moreover, it is often useful to combine different abort criteria, in order to meet the require-
ments of the calibration tasks. But regardless of the application, it should always be assured
that the likelihood distribution is unimodal, since otherwise the interpretation of the measured
data is not unique, and therefore the model cannot give a clear approximation of the engine
behavior.

6.3 Online Optimization
At the end of the first stage, the online modeling stage, the global engine behavior is roughly
approximated by the model. After that, the second stage, called online optimization, can
be performed, where the optimal areas of the system are determined precisely with as few
measurements as possible.
The combination of both stages to a framework for calibration tasks has various advantages
compared to model-based offline optimization.
In model-based offline optimization a test plan is used for the measurement, which has to be
fixed in advance. In contrast, model-based online optimization iteratively uses the information
of the previous measurements, which are received by a permanent interaction with the test
bench, in order to calculate the next optimal measuring point. This strategy increases the
efficiency of the test bench utilization, since only the mostuseful measurements are made and
other measuring points, which are not of great interest, areneglected. Further, the number of
measurements (and therefore time and costs on the test bench) can be reduced to an optimal
amount with model-based online optimization, since the algorithm is able to determine if
already enough measurements are taken and the measurement on the test bed can be stopped.

The model, which is obtained at the end of the model-based online optimization, is very ac-
curate in the optimal areas, since the density of the measurements is high in these regions.
Therefore, it is assured that the calibration engineer can trust the models and use them for
generating the engine operating maps, and it is avoided thatthe calibration engineer is forced
to perform a further measurement, as this can be the case withmodel-based offline optimiza-
tion, if the verification of the optimum fails, see section 1.2.2.1.

In the next subsections different algorithms for online optimization are discussed, and the
most suitable one is determined. In subsection 6.3.1 single-objective online optimization is
examined and the disadvantages of this state of the art approach are illustrated. In order
to overcome these drawbacks, a new model-based multi-objective online optimization was
developed, which is discussed in subsection 6.3.2. In the last two subsections a theoretical
example and a practical application are examined.
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6.3.1 Single-Objective Online Optimization

The ambition of a single-objective online optimization forbase calibration is to find the global
optimum of a single engine quantity (e.g. consumption) withas few measurements as possi-
ble. This is achieved by a model-based optimization, where the estimated improvement of the
objective, which can be calculated from the model, is high. The other objectives (e.g. emis-
sions and smoothness of the engine maps) are considered by anintegration into constraints.
In this way, the optimum value of the main objective is searched at every operating point under
consideration of the constraints.

A state of the art approach for stationary base engine calibration is mbminimize, which was
discussed in section 5.5.
Also several other single-objective online optimizationswere examined in this work: the EGO
(efficient global optimization) approach with probabilityof improvement [50], the classical
EGO with expected improvement [51], the EGO with generalized expected improvement
[106] and the Multiple-EGO with generalized expected improvement [95]. In order to ab-
breviate this section and due to the general drawbacks of single-objective online optimization,
which will be discussed soon, these algorithms are not examined in detail in this thesis.
During this work it was found out that the Multiple-EGO approach provides the best perfor-
mance, and therefore this technique was implemented. Surprisingly, also the developers of
the mbminimize technique admitted that the EGO approach achieves a better performance
than mbminimize for problems without noise [92]. But since the developers of mbminimize
were not able to extend the EGO approach in order that it can cope with measurement noise,
they could not use this superior optimization technique forengine calibration problems [92].
However, it should be mentioned that the extension of a GP forinterpolation (called kriging)
to a GP for regression is straightforward, see section 2.4.2, and therefore it is rather simple
to apply EGO to engine calibration tasks. The superior performance of EGO compared to
mbminimize is not surprising, since mbminimize uses a committee of MLP models, which is
converging to a GP in the limit of an infinite number of MLP’s, each with an infinite number
of neurons, see section 3.5.

6.3.1.1 Drawbacks of Single-Objective Online Optimization

The basic problem of single-objective online optimizationis that only one objective is opti-
mized, while all other objectives have to be integrated intoconstraints. This can become a
problem if there is a trade-off between different objectives, where a compromise has to be
chosen carefully.
A typical example of a practical application is the optimization of several adjustment pa-
rameters in the part load area of a diesel engine. For this problem mainly consumption and
emissions (NOx, soot, HC,...) have to be minimized, whereas at the same time a smooth char-
acteristics of the resulting engine operating maps has to beassured. Hence, at every operating
point a compromise of these different objectives has to be found. Often, also different cali-
bration engineers from different departments are involvedin this process, and therefore this
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compromise is typically obtained in an iterative way. Thus,the calibration engineers require
models of the different objectives, which have a good quality in the Pareto optimal areas, in
order to choose this compromise.

But these Pareto optimal models cannot be obtained from a single-objective online optimiza-
tion. At a single objective online optimization the compromise of the different objectives has
to be chosenin advance. Hence, a lot ofa priori information is required to do that.
In the mbminimize concept the constraints of the emissions are fixed in advance, before the
online optimization is started. This can be done, since gasoline engines are considered, where
the emissions are not a big problem [53] (these gasoline engines are without direct injection,
so that the soot emissions are not very high). Further, the restriction to a single objective is
slightly reduced in mbminimize, as not only the optimal areas of the objective are determined,
but also the regions around a local optimum are intensively measured [53]. In addition, the
developers of mbminimize have already admitted that a consideration of a multi-objective
problem would be more suitable [53, 54, 92], but this has not been realized until now.

Another approach is to perform a single-objective optimization of consumption, with the con-
straint that the summarized emissions over a driving cycle have to be lower than a (legislative)
restriction. This single-objective optimization is useful for a subsequent offline optimiza-
tion in the office. However, this approach cannot be performed automatically by an online
optimization, since for a number of reasons nearly always a manual interaction from the cali-
bration engineers is required:
First, as discussed in [35], this optimization does not consider a smooth characteristics of the
engine operating maps. Further, the solution of this optimization is only optimal for the spe-
cific driving cycle, and the obtained measurements of the single-objective online optimization
may not be useful for other applications (other driving cycles). In addition, the treatment of the
summarized emissions over a definite number of operating points does not avoid the problem
that a good compromise at every operating point has to be found. Clearly, by using a single
aggregate objective function (a weighted linear sum of the objectives), which is constant over
all considered operating points, the solution can become arbitrarily bad, see [19].
For these reasons, nearly always a subsequent manual interaction from the calibration engi-
neers is required, in order to obtain suitable engine operating maps.

Hence, in comparison to single-objective online optimization, where a lot of constraints have
to be defined a priori, before the measurement is started, in this work another approach has
been developed. This multi-objective online optimizationapproach supports the calibration
engineers by providing models, which have a high precision in the Pareto optimal areas, and
with these models the engineers can determine suitable compromises for the different trade-
offs and the final engine operating maps via a subsequent offline optimization in the office.
This approach does only require the definition of the most critical engine quantities (e.g. con-
sumption, NOx and soot for a diesel engine) and the basic goal, which should be achieved (e.g.
minimization of consumption, NOx and soot). With these definitions the multi-objective on-
line optimization determines automatically the Pareto optimal areas of the engine. Therefore,
only a few a priori information of the process is required andthe final decisions of the cali-
bration engineers can be performed offline.
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6.3.2 Multi-Objective Online Optimization

Although there exists no online optimization which can consider more than a single objective
in engine calibration, in other fields of research, especially in global optimization and machine
learning, multi-objective online optimizations have already been developed. Hence, the ambi-
tion in this thesis was to identify and combine the most promising state of the art techniques
from other fields of research, in order to obtain an approach,which is most suitable for engine
calibration tasks.

In the next subsection the hypervolume measure (or often calledS metric) is introduced, from
which we will make extensive use in the following. In subsection 6.3.2.2 different state of the
art approaches for multi-objective online optimization are compared against each other, and
in section 6.3.2.3 a new approach is presented, which achieved the best performance.

6.3.2.1 The Hypervolume Measure (S metric)

In this subsection the hypervolume measure is discussed. This value will be crucial for the
further multi-objective approaches, since it has been found out to be a superior indicator to
identify the next update measurement in this thesis and alsoin the literature [22, 94].
The hypervolume measure was introduced by [138], and later [28] defined it as the Lebesgue
measureΛLE of the union of hyper-rectangles defined by a set of non-dominated solution
vectorsA and a reference solution vectorymax that is dominated by all solution vectors inA:

S(A) := ΛLE

(
⋃

y∈A

{y′|y ≺ y′ ≺ ymax}
)

. (6.1)

An illustration of the hypervolume measure of a problem withtwo objectives is given in figure
6.3. In this example the set of non-dominated solution vectorsA consists of the four points
{y(1), . . . ,y(4)} and the gray area indicates the hypervolume measureS(A).

f1

f2
ymax

y(1)

y(2)

y(3)

y(4)

S(A)

Figure 6.3: Illustration of the hypervolume measure (S metric).

Clearly, the better the setA approximates the Pareto frontier, the higher the valueS(A) will
be. Mathematically this was proven by [28], where it was shown that the detection of a set



112 CHAPTER 6. IMPROVED MODEL-BASED ONLINE OPTIMIZATION

A that maximizesS(A) is equivalent to the detection of the Pareto optimal set for any finite
search space. Therefore, the hypervolume measure can be used for an indication how accurate
the Pareto frontier is detected.
A drawback of theS metric is that the evaluation ofS(A) is computationally expensive, if the
number of elements inA or the number of objectivesdObj is high. The computational effort
for an evaluation of the hypervolume increases exponentially with the number of objectives
dObj with recent implementations [29]. This should be compared to the computational cost
of the NSGA-II approach, which increases only linear with the number of objectivesdObj

[20]. Hence, it will be a crucial point in the further discussion to make use of the superior
performance of the hypervolume measure for multi-objective optimization, but at the same
time to keep the computational effort moderate.

6.3.2.2 Comparison of State of the Art Approaches in the Context of Engine Calibra-
tion

During this work numerous different techniques had been examined: the Multi-EGO approach
[48], the ParEGO technique [56], the model-based MA-SMS-EMOA method [22, 23], the
SMS-EGO approach [94] and other variations of these techniques. In order to evaluate the
performance of these methods, various test problems [136] were implemented and different
assessment criteria were examined. Instead of going into detail on this comparison, the fo-
cus in this thesis lies on the presentation of a new approach,which is a combination of the
Multi-EGO and MA-SMS-EMOA method, and on the application ofthis technique to engine
calibration problems. Hence, only the main results of this comparison are summarized in a
very short form.

A general problem of all approaches is that they were developed for an optimization of an
expensive computer simulation and not for problems where noise on the measurement data
occurs, like in engine calibration. Therefore, the objectives of this comparison were quite
different to other comparisons which can be found in the literature. However, some similar
results could be obtained.

A key result of the comparison was that the approaches, whichuse the hypervolume measure
to identify the next update point, had a significantly betterperformance than the other tech-
niques. Independent from this work, this fact was already observed by [22, 94]. However, as
discussed above, the computational burden of the evaluation of the hypervolume measure can
become prohibitive, if it is performed too often.
The SMS-EGO approach achieves the best performance in theory [94], but it is also evalu-
ating theS metric very often. For some applications this may be acceptable, but for engine
calibration tasks the computational effort of this approach is too high.
The performance of the Multi-EGO and the ParEGO technique isnot as good as the MA-SMS-
EMOA approach, since the MA-SMS-EMOA uses the hypervolume measure for optimization,
while the Multi-EGO and the ParEGO technique use the expected improvement criterion [51],
which is not so effective [22]. However, the Multi-EGO has aninteresting property, since it
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uses a NSGA-II optimization, in order to obtain a preselection for the suitable update points.
This reduces the computational effort of this approach.
Hence, in this work the Multi-EGO and the MA-SMS-EMOA technique were combined to a
new approach, in order to exploit the advantages of both techniques. In this new approach,
similar to the Multi-EGO method, at first a NSGA-II optimization is performed, in order to
obtain a preselection of appropriate update points at a low computational cost. After that,
similar to the MA-SMS-EMOA approach, the update point is chosen, which maximizes the
hypervolume measure. With this new technique, which is discussed in the next section, the
best performance for calibration tasks could be obtained.

6.3.2.3 A New Approach

The basic functionality of the new approach for model-basedonline optimization for engine
calibration is given in algorithm 3.

Algorithm 3 Multi-Objective Online Optimization (for Engine Calibration)
input: initial measurement (e.g. from online modeling), objectives (e.g. minimization of
consumption, NOx and soot) and abort criterion
output: models of objectives

1: calculate initial models out of initial measurement
2: repeat
3: determine further update point(s) through the new optimization approach in two steps:

• determine a suitable preselection of further update point(s) through performing a
multi-objective optimization

• determine suitable update point(s) out of the preselectionthrough the hypervol-
ume measure

4: measurement of the update point(s) on the test bench
5: calculate models out of all measurements
6: until abort criterion = true

As in the online modeling in section 6.2, for the online optimization one or more update points
can be determined in every stage. In the next sections only a single update point is considered,
but it should be mentioned that the procedure of determiningmore than a single update point
is equivalent to the suggested technique in section 6.2.1.
In the following, the two steps of the new approach, the determination of the preselection and
the determination of the final update point, are discussed. After that, different abort criteria of
the multi-objective online modeling are examined.

Determination of the Preselection
Compared to other state of the art approaches (e.g. MA-SMS-EMOA), where the hypervol-
ume measure is evaluated for every potential update point, this new approach is performing a
preselection of suitable update points through a multi-objective optimization with the NSGA-
II algorithm. This procedure is computationally cheaper than an evaluation of the hypervol-
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ume measure for all potential update points.
In this work it has been found that the lower confidence boundslcbω,i of the models are appro-
priate objectivesfi for the multi-objective optimization (5.7). These lower confidence bounds
are given by [50]

lcbω,i(x) := Ei(x)− ω ·
√

Vi(x) (6.2)

whereEi(x) andVi(x) are the predicted mean (4.21) and the predicted variance (4.22) of the
i-th model. The valueω defines how many standard deviations of the predicted uncertainty of
the model should be subtracted from the predicted mean. Hence, it indicates how much the
predicted uncertainty is weighted against the mean value ofthe model [50]. In this thesis in
all applicationsω = 2 is chosen, since good results could be obtained with this setting.

Determination of Suitable Update Point(s)
Having found the Pareto frontier with the NSGA-II in the previous stage, now the most suit-
able update point is determined out of this preselection through the hypervolume measure.
Since the results of the NSGA-II optimization are already the lower confidence bounds of the
models, the selection of the maximum hypervolume measure ofthese points corresponds to
the selection of the maximum potential improvement LBIω [22], which is given by

LBIω(ypot) := S (ypot ∪Top,j)− S (Top,j) (6.3)

whereypot is a solution vector of the NSGA-II optimization andTop,j are the measurements of
the objectives at the considered operating point of thej-th update. Equation (6.3) is evaluated
for every single solution vector of the NSGA-II optimization, and the vector which maximizes
LBIω is chosen for the next update point.

Abort Criteria
Abort criteria which have been found to be useful in this thesis are:

• precision of the models in the Pareto optimal areas is sufficient; this means that the
maximum variance of the models in the Pareto optimal areas issmaller than a maximal
allowable variance

• potential of increasing the hypervolume is lower than a minimal allowable value

• maximal number of update points is reached

As for the online modeling, the choice of an appropriate abort criterion for online optimization
depends on the specific application. In the following subsections we will see that a combina-
tion of the abort criteria is suitable for practical applications.
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6.3.2.4 A Theoretical Example

In this section a theoretical example of a multi-objective online optimization is considered.
The advantage of this theoretical example is that the true Pareto frontier of this problem is
known, and therefore we are able to demonstrate the convergence of the optimization to the
Pareto optimal areas.
However, the conditions of this example should be as close aspossible to practical condi-
tions in engine calibration, in order to draw reasonable conclusions for practical applications.
Therefore, the regarded system which should be optimized consists of models of engine quan-
tities. Assuming that these models predict the true engine behavior precisely, with this proce-
dure the performance of the multi-objective online optimization can be analyzed under prac-
tical conditions.

In this example the consumption and NOx measurements of section 3.7.1 are examined. A
detailed description of these measurements was given in section 3.7, where it was also shown
that the models of these quantities approximate the true engine behavior precisely.
Hence, in this theoretical example an online optimization with two objectives is considered,
and therefore the objective space is two-dimensional. In the next section, where a practical
application to a diesel engine is examined, a three-dimensional objective space is regarded.
Generally, the algorithms in this thesis can cope with an arbitrary high number of objectives,
but it should be mentioned that the complexity of the optimization problem (and therefore also
the number of required measurements) increases if more objectives are considered.

In figure 6.4 the theoretical example is illustrated.
With the total set of the 780 consumption and NOx measurements, models were calculated,
which represent the true engine behavior, as mentioned above. From these models the Pareto
frontier was determined by an extensive multi-objective optimization. After that, a sub-
set of 200 measurements was randomly selected and used as an initial measurement for
the online optimization. In this online optimization the operating point at engine speed
nengine = 1525 rpm and engine torqueMengine = 780 Nm is considered. The initial mea-
surements at this operating point are marked in the plots of figure 6.4 by crosses, and the
Pareto frontier at this operating point consists of two connected sets, which are indicated by
the two solid lines.
After the initialization, the multi-objective online optimization is performed, and in the plots
of figure 6.4 the progress of the update measurements (stars)is illustrated. In order to simu-
late real conditions for the optimization, a measurement noise is added to all update points.
Further, the Pareto optimal measurements in the example aremarked by circles in figure 6.4.

Overall, 100 update points were simulated. It can be seen that the update points are fast
converging towards the true Pareto frontier, and that only afew update points are required
in order to identify the Pareto optimal areas. In addition, it can be determined that nearly
no update point is dominated by the initial measurements, but all initial measurements are
dominated by the update points. Further, it should be mentioned that more measurements
are on the Pareto frontier, if the number of update measurements increases, which means
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Figure 6.4: Theoretical example of a multi-objective online optimization with two objectives.
In the different figures the progress of the online optimization is shown.



6.3. Online Optimization 117

that the density of the Pareto optimal measurements increases. This is also indicated by the
uniform distribution of the Pareto optimal update points. Hence, dependent on the number of
update measurements the Pareto frontier can be approximated to arbitrary accuracy with the
multi-objective online optimization. Moreover, it can be seen that also the edges of the Pareto
frontier were determined precisely.

The fact, that the optimization results are getting better with an increasing number of mea-
surements, is also indicated in figure 6.5.
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Figure 6.5: Number of Pareto optimal update points and the scaled hypervolume for the
model-based multi-objective online optimization for the theoretical example of figure 6.4.

In figure 6.5 the number of Pareto optimal points and the hypervolume (scaled to an interval of
[0 1]) are plotted over the number of update points. It can be seen that the scaled hypervolume
increases rapidly at the beginning, which indicates that the update points are fast converging
towards the true Pareto frontier. After that, the limits of the Pareto frontier are explored and
the number of Pareto optimal points increases, which illustrates that the density of the Pareto
optimal measurements increases.

Hence, with this theoretical example it could be demonstrated that the new multi-objective
online optimization is fast converging towards the optimalareas and that the resulting mea-
surements of the optimization are well distributed.
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6.3.2.5 A Practical Application to a Diesel Engine

After this theoretical example, in this section a practicalapplication of the multi-objective on-
line optimization is examined. For this task the modeling and optimization algorithms have to
be in a permanent interaction with the test bench. Therefore, a communication software was
implemented, which bidirectionally transfers the data between the automation software of the
test bench and the methods described above. This software and other aspects of implementa-
tion are discussed in chapter 7. Here, we want to examine the accuracy and the performance
of the model-based multi-objective online optimization inpractice.

The goal of this application was the optimization of consumption of a diesel engine in the part
load area, by simultaneous consideration of the NOx and sootemissions, in order to meet the
emission standards. The adjustment parameters, which should be optimized, were the main
injection time, injection pressure and quantity and time ofthe post injection. Since a global
modeling is performed, also engine speed and torque are taken as model inputs. This leads to
an 6-dimensional input space.
As the exact values for the constraints for NOx and soot at each operation point are not known
in advance, a multi-objective online optimization was performed. With this multi-objective
online optimization the engineer can either directly choose one of the Pareto optimal mea-
surements as a compromise, or these measurements can be usedin order to improve the model
quality in the Pareto optimal areas, which reduces the uncertainty of the optimal solution, if
the Pareto frontier is dense enough.

For the initial data 483 measurements were taken at 33 operating points. With these measure-
ments the initial global models were calculated and the abort criterion of the online modeling
of section 6.2.2.1 had been checked. After this, the multi-objective online optimization was
performed on different operating points. Since the resultson the different operating points are
very similar, here we consider a single operating point at engine speednengine = 1300 rpm
and engine torqueMengine = 215 Nm as an example. The results for other operating points
are given in appendix A.

The objectives were the minimization of consumption, NOx and soot. This leads to a three-
dimensional objective space and a two-dimensional Pareto frontier. The measurements in the
objective space at the discussed operating point are plotted in figure 6.6. In the left column a
three-dimensional view of the objective space is shown. Since the positions of the measure-
ments in this three-dimensional plot are hard to determine,also two-dimensional projections
of the objective space are plotted in the middle and right columns. With these projections it
is easier to identify the optimal measurements, which should be close to the low values of
consumption, NOx and soot. At the top row the initial measurement is plotted. The Pareto
optimal measurements are marked with circles. In the lower rows the progress of the multi-
objective online optimization is shown. The second row displays the measurements after 6
update steps of the online optimization. The third and fourth row show the development after
12 and 18 update measurements.
It can be seen that during the progress of the optimization routine, more and more measure-
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Figure 6.6: Practical model-based multi-objective onlineoptimization. Here the consumption,
NOx and soot measurements at the operating point(nengine,Mengine) = (1300 rpm, 215 Nm)
are plotted in the objective space. On the left a three-dimensional view of the objective space is
shown, on the middle and right two-dimensional projectionsof the objective space are shown.
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ments are taken in Pareto optimal areas. Further, the updatepoints are well distributed in the
objective space and try to cover the whole Pareto frontier evenly. Hence, with more and more
update points the measurements which indicate the Pareto frontier will get more and more
dense. This makes it easy for the engineer to get a good impression of the optimal areas, and
therefore a good compromise for the trade-off between consumption, NOx and soot can easily
be chosen.

The fact, that the Pareto frontier will get more dense with more update points, is also indicated
in figure 6.7.
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Figure 6.7: Number of Pareto optimal update points and the scaled hypervolume for the
model-based multi-objective online optimization at the operating point(nengine,Mengine) =
(1300 rpm, 215 Nm).

In this figure the number of Pareto optimal points during 45 updates of the multi-objective
online optimization is plotted. From this plot it can be seenthat most of the update mea-
surements are Pareto optimal and therefore the Pareto frontier can be approximated more and
more accurately during the optimization.
Further, in figure 6.7 the hypervolume, which is scaled to theinterval [0 1], is plotted against
the number of update points. This plot indicates the convergence of the optimization routine.
It can be seen that most of the optimization of the hypervolume can be achieved in the first
updates. After 6 updates over 50% improvement of the hypervolume can be obtained and after
15 updates over 80% of the hypervolume can be achieved. Hence, in a practical realization
only a few updates would have been needed to get an impressionof the full potential for the
optimization. The later updates cannot improve the hypervolume very much, but they allow a
dense representation of the Pareto frontier.
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Clearly, the convergence rate of the optimization may vary ifthe complexity of the optimiza-
tion problem is changed (e.g. if more adjustment parametersshould be optimized or if there
is more noise on the measurement data).
But obviously, it can be seen that the model-based multi-objective online optimization per-
forms well under practical conditions.

Besides the advantages of the multi-objective online optimization, the whole process of mea-
surement, modeling and optimization in a loop demonstratesthe robustness and accuracy of
the whole concept. At any time for every update point, the modeling and optimization is
performed in a fully automatic way without any manual interaction. Since the online opti-
mization achieved accurate results, this means that also the modeling, which is recalculated
in every single update step, is very accurate. This is in contrast to other state of the art mod-
eling approaches for stationary base engine calibration, where a manual interaction is often
required, in order to tune the models to get an accurate prediction. Hence, these results also
emphasize the use of Gaussian processes for modeling in engine calibration.

6.4 Conclusion and Discussion
In this chapter a model-based online optimization has been presented. The whole approach
consists of two stages: an online modeling and an online optimization stage. For both stages
new techniques were presented, which have a better performance for engine calibration tasks
than state of the art approaches from other fields of research.

Clearly, the utilization of the presented framework for model-based online optimization is
most useful, if a complex calibration problem is considered, with e.g. many adjustment pa-
rameters and difficult engine quantities (like soot).
If a simple calibration problem is considered, then a few measurements from a simple test
plan and a unique model-based offline optimization may be sufficient. However, for highly
complex problems either numerous measurements are required for an accurate offline opti-
mization, or many process loops are necessary, where the test planning, measurement, mod-
eling and optimization are performed iteratively, in orderto converge to the optimal areas.
Nevertheless, these iterative process loops require various manual interactions from the cal-
ibration engineers, which are time- and cost-intensive. Incontrast, the presented framework
for model-based online optimization can be performed in a fully automatic way, with a high
quality of the results at a low amount of measurements.
Hence, this approach assists the calibration engineers. Without this framework the calibration
engineers not only have to identify a suitable setting for the engine adjustment parameters, but
they also have to perform extensive additional work, in order to design appropriate test plans
and to verify the models and the optimization results. Thesenew techniques take the pressure
off the calibration engineers, so that they can concentrateon finding a suitable compromise
out of the Pareto optimal solutions.

The advantages and properties of the new model-based onlineoptimization approach can be
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summarized as follows:

• Optimal utilization of the test bench time.Compared to model-based offline optimiza-
tion, only the most important measurements are performed with this approach. There-
fore time and costs on the test bench can be remarkably reduced.

• It is avoided that additional measurements are requiredat the end of the online opti-
mization. In model-based offline optimization the verification of the optimum may fail,
if the quality of the model at the optimal area is not sufficient, and therefore an addi-
tional measurement has to be performed, which increases theprecision of the model.
Hence, the calibration engineer is forced to design a new test plan and repeat the mea-
surement, modeling and optimization. Clearly, this is wasteful of time and resources
and does not increase the user acceptance of calibration tools. In contrast, with the
presented framework the final model automatically has a highaccuracy at the optimal
areas, and therefore the risk that an additional measurement is required is minimized.

• Only few a priori information is required.The (unique) state of the art approach for
model-based online optimization in engine calibration is the single-objective online op-
timization of mbminimize. This approach requires that the compromises of different ob-
jectives have to be chosen in advance, before the online optimization is performed on the
test bench. Hence, a lot of a priori information is required,which is often not available.
In comparison, in this thesis a multi-objective online optimization is presented. With
this approach the Pareto optimal areas of the calibration problem are identified, and the
calibration engineer is able to choose a compromise afterwards, by a subsequent offline
optimization in the office. Hence, only the main objectives of the calibration problem
have to be defined a priori.
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Chapter 7

IMPLEMENTATION

This chapter focuses on the implementation of all approaches, which were mentioned above,
into a calibration tool for model-based offline and online optimization. Hence, the follow-
ing sections emphasize that the techniques in this thesis were not only examined under a
theoretical viewpoint with a practical verification, but also that these approaches are already
implemented for a further usage.
The main implementation was performed in MATLAB, but some computationally expensive
routines were implemented in C/C++ and Fortran and integratedin the main implementation
over MEX interfaces.

All algorithms which have been examined in this thesis were integrated into a toolbox named
KASIO, which is discussed in section 7.1. In order that a calibration engineer can use these
algorithms, a GUI called PAoptimizer-Matlab-Edition was realized, which is discussed in
section 7.2. In section 7.3 the connection to the test bench and the realization of the online
optimization is examined.

7.1 The KASIO Toolbox

During this work nearly all mentioned algorithms in this thesis were implemented and tested.
The final choice of the most useful algorithms had been integrated in a toolbox named KASIO,
which stands for KRATZER System Identification and Optimization toolbox.

The KASIO toolbox consists of two layers: an object-oriented layer and a layer of compu-
tationally expensive implementations. The user of the toolbox only has to interact with the
object-oriented layer, which can be easily operated through simple interfaces. After an error
checking of the user inputs, the computationally demandingroutines in the other layer are
automatically executed. Hence, with these two layers a simple and error-free use is possible.

The content of the KASIO toolbox is given in table 7.1.
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Classes in KASIO:
KASIO VP class: design of experiments
KASIO MB class: modeling
KASIO OP class: optimization
KASIO OBJECTIVE class: definition of objective functions and constraints
KASIO MBOO class: model-based online optimization

KASIO VP - class for design of experiments
FullFak full factorial design
Random random (uniform) design
LatHyp latin hypercube design
Dopt D-optimal design via k-exchange

KASIO MB - class for modeling
Gaussprocess Gaussian process with normal noise assumption
Gaussprocessrob Gaussian process with Student’s-t noise assumption
MLP BR MLP network with Bayesian regularization
Poly free Coeff polynomial stepwise regression
Poly polynomial regression with a priori specification of the considered coefficients
(SVM support vector machine - not yet integrated)

KASIO OP - class for optimization
SingleObj glob single-objective optimization for the global optimum
SingleObj Mult single-objective optimization with a multistart approach
Multi Obj multi-objective optimization

KASIO MBOO - class for model-based online optimization
SingleMBOO single-objective online optimization
Multi MBOO multi-objective online optimization

Table 7.1: Content of the KASIO toolbox - 01.06.2012.

7.2 The PAoptimizer-Matlab-Edition
In order that a calibration engineer can use the algorithms of the KASIO toolbox, a GUI named
PAoptimizer-Matlab-Edition was realized.

With this GUI the calibration engineer can manage differentapplications in the project direc-
tory, store and load numerous settings, import the measurement data out of xls-files and per-
form a modeling and optimization. Further, various different visualization techniques were in-
tegrated into the PAoptimizer-Matlab-Edition, such as intersection plots, measured-predicted
plots, 3-D model plots and measurement analyzing plots. In addition, via the PAoptimizer-
Matlab-Edition the user is able to connect to the test bench and to perform an online optimiza-
tion, which is discussed in the next section.
Figure 7.1 shows some screenshots of the PAoptimizer-Matlab-Edition.
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Figure 7.1: Screenshots of the PAoptimizer-Matlab-Edition

7.3 Connection to the Test Bench and Online Optimization
During this work the test benches were automated with the PAtools Software Suite from
KRATZER AUTOMATION AG. The PAtools Real-Time-System is the interface to the test
stand and performs the execution of the test program.
In order to perform an online optimization, the modeling andoptimization algorithms have to
be in a permanent interaction with the test bench. Hence, a communication software was im-
plemented and integrated in the PAoptimizer-Matlab-Edition, which bidirectionally transfers
the data between the PAtools Real-Time-System and the onlineoptimization procedure.
After the specification, the online optimization passes thesettings of the next measuring point
and further parameters to the PAtools Real-Time-System, which is performing the measure-
ment. The limit monitoring and other critical tasks are performed in the real time system.
At the end of the measurement, the measured quantities are received by the online optimiza-
tion, which decides if further measurements have to be performed or if the procedure can be
stopped.
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Chapter 8

CONCLUSION AND FUTURE WORK

This thesis has presented a complete framework for modelingand optimization for station-
ary base engine calibration. The results range from clear modeling recommendations from
a comprehensive comparison, new robust modeling approaches to new model-based online
optimization concepts. These new contributions enhance the performance for modeling and
optimization, and therefore they are able to reduce time andcosts on the test bench, improve
the reliability of modeling and optimization results, assist the calibration engineers and in-
crease the user acceptance of model-based techniques in engine calibration.

Based on the presented requirements on the modeling, the determination of the most suitable
modeling technique for stationary base calibration was performed, which was an important
open question in this field of research. The Gaussian processmodel could be identified as
the most promising type of modeling. With the Gaussian process approach, the highest pre-
cision with a low amount of measurements can be achieved, themodeling can be fully auto-
mated with the maximum marginal likelihood method, a dependable performance on complex
problems can be obtained and an accurate prediction of the uncertainty of the model can be
estimated.

However, recent approaches in engine calibration do not consider outliers in the measurements
and an automatic adaption to bad distributed data. Therefore, based on the results of the model
comparison, the most promising modeling technique was enhanced in order that a new robust
modeling framework for stationary base engine calibrationcould be obtained. An automatic
transformation of the measurement data ensures that the modeling assumptions on the data
distributions are met. Even if outliers are contained in thedata set, a robust Gaussian process
formulation guarantees that the modeling is asymptotically unbiased, meaning that the model
is tending to the real engine behavior as the number of measurements tends towards infinity. It
was shown that this new framework has an outstanding performance on challenging practical
data sets.

Since state of the art model-based online optimizations forengine calibration do not use a
fully probabilistic approach and can only handle a single objective function, a new, improved
online optimization approach was presented. As a Gaussian process modeling is used, addi-
tional information, such as an accurate prediction of the variance and the marginal likelihood
probability density function of the model parameters, can be exploited for the online model-
ing, in order to obtain an increased performance at a lower amount of measurements compared



7.3. Connection to the Test Bench and Online Optimization 127

to other approaches. With the new multi-objective online optimization more objectives can be
regarded and the Pareto optimal areas can be determined. A fast convergence under practical
conditions was demonstrated.

Not only the requirements of the calibration process have been regarded throughout the thesis,
but also the needs of the calibration engineers have been considered during the development
of each new approach. The robust modeling technique can be performed in a fully automatic
way and the model-based online optimization can be easily parameterized. Both techniques
assist the calibration engineers by providing models with an increased accuracy, since, on the
one hand, an improved modeling technique is used and, on the other hand, additional measure-
ments are placed in the Pareto optimal areas. Hence, insteadof removing outliers manually
from the data set, investigating in complex mathematical issues, or performing a verification
of models and optimization results, with these contributions the calibration engineers can con-
centrate on their main tasks.

The following areas of further research are proposed to further increase the performance of
the concepts presented in this thesis:

• MCMC methods: As discussed throughout the thesis, MCMC methods provide a better
performance than other approximation techniques. However, traditional approaches for
MCMC approximation are computationally too expensive for engine calibration tasks.
Nevertheless, if more computing power will become available in the future and more
sophisticated MCMC algorithms can be developed, then an increased performance for
outlier robust Gaussian process models and for online optimizations may be achieved.

• Smooth ECU maps:An explicit integration of the smoothness of the ECU maps as an
additional objective could improve the multi-objective online optimization. A possible
approach for the consideration of smooth engine operating maps in an optimization is,
for example, given in [54, 92], and this technique could be integrated in the model-based
online optimization.

• Dynamic engine calibration: Most of the presented approaches in this thesis can also
be applied to dynamic engine calibration problems. By doing so, the reduction of the
computational effort of the modeling techniques will be a major challenge. However,
as already indicated in chapter 3, a lot of modeling approaches exist, such as sparse
kernel machines, which have a lower computational effort than a full Gaussian process
modeling, and it is believed that these techniques can be combined with the presented
online optimization and robust modeling approaches.
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Appendix A

FURTHER EXPERIMENTAL RESULTS OF
SECTION 6.3.2.5

As mentioned in section 6.3.2.5, in this appendix further experimental results of the practical
application of the model-based multi-objective online optimization are given.
A detailed description of the optimization procedure was given in section 6.3.2.5. Here, only
the results at other operating points are presented. FigureA.1 considers the operating point at
engine speednengine = 900 rpm and engine torqueMengine = 930 Nm, figure A.2 considers
the operating point at engine speednengine = 900 rpm and engine torqueMengine = 1264 Nm
and figure A.5 considers the operating point at engine speednengine = 1100 rpm and engine
torqueMengine = 1244 Nm. In the figures A.3, A.4 and A.6 the number of Pareto optimal
points and the scaled hypervolume is plotted of the applications of the figures A.1, A.2 and
A.5.

As in the other operating point in section 6.3.2.5, it can be seen that the online optimization
is converging fast to the Pareto frontier. Further, the update points are well distributed in the
objective space and try to cover the whole Pareto frontier evenly.

The results of these additional experiments re-emphasize the advantages of the multi-objective
online optimization, which were discussed extensively in chapter 6.
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Figure A.1: Practical model-based multi-objective onlineoptimization. Here the con-
sumption, NOx and soot measurements at the operating point(nengine,Mengine) =
(900 rpm, 930 Nm) are plotted in the objective space. At the left a three-dimensional view
of the objective space is shown, in the middle and right two-dimensional projections of the
objective space are shown.
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Figure A.2: Practical model-based multi-objective onlineoptimization. Here the con-
sumption, NOx and soot measurements at the operating point(nengine,Mengine) =
(900 rpm, 1264 Nm) are plotted in the objective space. At the left a three-dimensional view
of the objective space is shown, in the middle and right two-dimensional projections of the
objective space are shown.



APPENDIX 131

0 5 10 15 20 25 30 35 40 45
0

10

20

30
Number of Pareto Optimal Points

Number of Update Points

0 5 10 15 20 25 30 35 40 45
0

0.25

0.5

0.75

1
Scaled Hypervolume

Number of Update Points

Figure A.3: Number of Pareto optimal update points and the scaled hypervolume for the
model-based multi-objective online optimization at the operating point(nengine,Mengine) =
(900 rpm, 930 Nm).
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Figure A.4: Number of Pareto optimal update points and the scaled hypervolume for the
model-based multi-objective online optimization at the operating point(nengine,Mengine) =
(900 rpm, 1264 Nm).



132 APPENDIX

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

NOxconsumption

so
ot

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOx

Initial Measurement

co
ns

um
pt

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

consumption

so
ot

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

NOxconsumption

so
ot

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOx

6 Updates

co
ns

um
pt

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

consumption

so
ot

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

NOxconsumption

so
ot

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOx

12 Updates

co
ns

um
pt

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

consumption

so
ot

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

NOxconsumption

so
ot

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NOx

18 Updates

co
ns

um
pt

io
n

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

consumption

so
ot

Initial Measurements Update Measurements Pareto Optimal Measurements

Figure A.5: Practical model-based multi-objective onlineoptimization. Here the con-
sumption, NOx and soot measurements at the operating point(nengine,Mengine) =
(1100 rpm, 1244 Nm) are plotted in the objective space. At the left a three-dimensional view
of the objective space is shown, in the middle and right two-dimensional projections of the
objective space are shown.
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Figure A.6: Number of Pareto optimal update points and the scaled hypervolume for the
model-based multi-objective online optimization at the operating point(nengine,Mengine) =
(1100 rpm, 1244 Nm).
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[29] C. M. Fonseca, L. Paquete, and M. López-Ib́anez. An Improved Dimension-Sweep
Algorithm for the Hypervolume Indicator. In2006 IEEE Congress on Evolutionary
Computation - CEC, pages 1157–1163, 2006.

[30] F.D. Foresee and M.T. Hagan. Gauss-Newton approximation to Bayesian learning. In
Proceedings of the 1997 International Joint Conference on Neural Networks, volume 3,
pages 1930–1935, 1997.

[31] D. Furch and M. Link. Paoptimizer - ein neues werkzeug zur modellgesẗutzten kenn-
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chen Vermessung und Modellbildung von Verbrennungsmotoren. InProceedings of the
3rd International Symposium on Development Methodology, 2009.

[108] A. Schwarte, L. Hack, R. Isermann, H.-G. Nitzke, J. Jeschke, and J. Piewek. Automa-
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Zeitschrift, 68(1):42–48, 2007.

[117] T. Takagi and M. Sugeno. Fuzzy Identification of Systems and Its Applications to
Modeling and Control.IEEE Transactions on Systems, Man, and Cybernetics, 15:116–
132, 1985.

[118] The MathWorks, Inc.. Model-Based Calibration Toolbox -Calibrate Complex Pow-
ertrain Systems, retrieved from http://www.mathworks.com/products/mbc/, Status:
March 2012.

[119] M. E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine.Journal
of Machine Learning Research, 1:211–244, 2001.

[120] M. E. Tipping and N. D. Lawrence. Variational inference for Student-t models: Robust
bayesian interpolation and generalised component analysis. Neurocomputing, 69:123–
141, 2005.

[121] S. T̈opfer. Approximation nichtlinearer Prozesse mit Hinging Hyperplane Baummod-
ellen (Approximation of Nonlinear Processes with Hinging Hyperplane Trees).at-
Automatisierungstechnik, 50:147–154, 2002.

[122] F. Triefenbach. Design of Experiments: The D-OptimalApproach and Its Implemen-
tation As a Computer Algorithm. Technical report, Department of Computing Science,
Umea University, 2008.



BIBLIOGRAPHY 143

[123] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reding, Massachusetts,
1977.

[124] S. Ullmann. Efficient Test Bed Automation. InProceedings of the 5th Conference
Design of Experiments (DoE) in Engine Development, 2009.

[125] J. G. van der Corput. Verteilungsfunktionen.Proc. Ned. Akad. v. Wet., 38:813–821,
1935.

[126] J. Vanhatalo, P. Jylänki, and A. Vehtari. Gaussian process regression with Student-t
likelihood. InAdvances in Neural Information Processing Systems, volume 23, 2009.

[127] V. N. Vapnik. The nature of statistical learning theory. Springer, 1995.

[128] J. Villemonteix, E. Vazquez, M. Sidorkiewicz, and E. Walter. Global optimization
of expensive-to-evaluate functions: an empirical comparison of two sampling criteria.
Journal of Global Optimization, 43(2):373–389, 2009.

[129] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global
optimization of expensive-to-evaluate functions.Journal of Global Optimization,
44(4):509–534, 2009.

[130] J. Warnatz, U. Maas, and R. W. Dibble.Verbrennung. Springer Verlag, third edition,
2001.

[131] M. West. Outlier Models and Prior Distributions in Bayesian Linear Regression.Jour-
nal of the Royal Statistical Society. Series B., 46(3):431–439, 1984.

[132] D. H. Wolpert. The Lack of A Priori Distinctions BetweenLearning Algorithms.Neu-
ral Computation, 8(7):1341–1390, 1996.

[133] D. H. Wolpert. The supervised learning no-free-lunchtheorems. InProceedings of the
6th Online World Conference on Soft Computing in Industrial Applications, 2001.

[134] D. H. Wolpert and W. G. Macready. No free lunch theoremsfor optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, 1997.

[135] C. Zhu, R. H. Byrd, and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FOR-
TRAN routines for large scale bound constrained optimization. ACM Transactions on
Mathematical Software, 23(4):550–560, 1997.

[136] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algo-
rithms: Empirical results.Evolutionary Computation, 8(2):173–195, 2000.

[137] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm. Technical report, Eidgenössische Technische Hochschule Zürich
(ETH), 2001.



144 BIBLIOGRAPHY

[138] E. Zitzler and L. Thiele. Multiobjective Pptimization Using Evolutionary Algorithms
– A Comparative Study. InParallel Problem Solving from Nature – PPSN V, 1998.


