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Abstract

One  of  the  most  important  computational  challenges  in  the  context  of  the 
numerical  treatment  of  Partial  Differential  Equations  is  the  generation, 
management,  and dynamic adaptivity  of  grids.  Dynamic adaptivity  is  extremely 
important in applications that  require frequent changes of the grid pattern during a 
simulation run. One such application example is Tsunami simulation, where waves 
must be tracked with highly resolved local grids. Arbitrary unstructured grids that 
can handle dynamic adaptivity have a considerable memory and computing time 
overhead. Therefore, the focus of this work is on the Sierpinski space-filling curve-
based,  recursively  structured  and  dynamically  adaptive  triangular  grid 
management system. 

Space  trees recursively  split  the  geometrical  domain  into  smaller  sub-domains 
according to certain predefined sub-division rules. In this thesis we concentrate on 
the recursive splitting of triangles. The depth-first traversal of the binary refinement 
tree inherently  orders the leaf  triangles according to the  Sierpinski  space-filling 
curve. We address the challenges of traversal and management of the dynamically 
adaptive triangular grid, in serial and parallel computing environment.  The target 
application is the parallel simulation of a simplified version of the shallow water 
equations.

While unstructured grids can require more than 1000 bytes per triangle cell for grid 
maintenance purposes, our approach uses less than 50 bytes. Due to linearization 
of the refinement tree, and to the sophisticated data storage and access scheme, 
the grid traversals exhibit excellent cache hit-rate, and the numerical computation 
achieves very good MFLOP/sec rates.  The re-meshing is about 3.5 times more 
expensive  than  one  Euler  time step  in  terms of  execution  time.  This  ratio  will 
decrease significantly when higher-order discretization schemes will  be applied. 
The full SWE simulation with dynamic adaptivity in each time step  reaches up to 
90% strong speed-up efficiency. Fast re-meshing and sustainable parallel scaling 
capabilities  will  make  it  possible  to  run  sub-realtime Tsunami  simulations  with 
increased number of unknowns, resulting in much higher accuracy than possible 
before.
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1. Motivation for Fast Parallel Simulation of the 
Shallow Water Equations

On  December  26,  2004,  00:58  UTC,  a  magnitude  9.1  megathrust  earthquake 
occurred approximately 250 km off the west coast of northern Sumatra, Indonesia. 
It was the third largest earthquake in the world since the year 1900. (Source: USGS 
– “Largest Earthquakes in the World Since 1900”). It generated the  2004 Indian 
Ocean Tsunami that was one of the deadliest disasters in modern history. 

The  2004 Indian Ocean tsunami devastated the shores of Indonesia, Sri  Lanka, 
India, Thailand, and other countries with waves up to 30 meters high and run-up 
distances as far as 4 km inland. Because of the distances involved on the Indian 
Ocean,  the arrival  times range anywhere from 15 minutes to 7 hours to reach 
several  coastlines. It  caused serious damage and casualties as far as the east 
coast of Africa. The death toll from the earthquake, tsunami, and flooding totals 
over 200,000 casualties, and millions of people lost their homes. The factors partly 
responsible for the great loss of life mentioned in Kawata et al. (2005) are: many 
people  lived  on  low-lying  coastal  areas  without  refuge  buildings,  they  lacked 
tsunami knowledge, and there was no early tsunami warning system. 

Since  2004,  Tsunami  forecasting  has  considerably  improved.  For  example,  an 
observational network of DART buoys (Deep-ocean Assessment and Reporting of 
Tsunamis) are deployed at strategic locations in the ocean. DART buoy systems 
use a  Bottom Pressure Recorder on the ocean floor to send information to the 
surface buoy that in turn transmits data to ground systems via Iridium satellites. 
(For details on locations and data of DART systems see NOAA website). According 
to NOAA “Tsunami Forecasting” as well  as Titov (2011),  seismic measurements 
and DART data are used for inversion in order to find the tsunami source. This, in 
turn,  is  used  to  sort  through  a  precomputed  generation/propagation  forecast 
database  to  select  an  appropriate  linear combination  of  scenarios  that  most 
closely  match  the  observations.  These  estimates  of  tsunami  characteristics  in 
deep-ocean are then used as initial conditions for non-linear inundation algorithms 
of specific coastal regions. 

Analyzing the effects of the March 11, 2011 Japan Tsunami – which caused a 
nuclear catastrophe, an estimated 20,000 casualties including some in the US, and 
flooding damage even in Chile 22 hours after the earthquake – Titov (2011) points 
out  that  “accurate  tide  predictions  are  necessary  for  accurate  inundation  
predictions”. This is where my thesis work is laying down its contribution.

The expressed goal of this work is to show the feasibility of our grid management 
methods for a future sub-realtime simulation of oceanic wave propagation. Our 
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grid management implementation, based on the Sierpinski space-filling curve, is 
simple enough to achieve high serial floating-point performance, is flexible enough 
to  enable  full  dynamic  adaptivity,  and  is  suitable  for  higher-order  spatial  and 
temporal discretization schemes. Parallelization is based on the Sierpinski curve, 
too,  and  both  the  numerical  computation  and  the  dynamic  adaptivity  work  in 
parallel with excellent strong speed-up efficiency well above 80% (chapter 5).

We use a simplified version of the shallow water equations with a finite volume 
type spatial discretization method and an explicit Euler time-stepping on the two-
dimensional,  recursively  structured,  and  dynamically  adaptive  triangular  grid. 
Dynamic adaptivity is essential in order to capture moving features interacting on a 
variety of scales of different magnitudes, such as the wavefront. The 2D Sierpinski 
space-filling  curve  and  its  special  properties  are  used  for  grid  traversal  and 
adaptive  refinement.  Access  to  numerical-  or  grid-management  information  is 
based  on  stacks  and  streams  in  order  to  achieve  excellent  cache-efficiency. 
Communication between parallel partitions is performed via message passing. A 
special challenge was to preserve/predict grid cell neighbor relationships during 
adaptive mesh refinement across partition boundaries. Partition-local algorithms 
had  to  be  developed  for  all  mesh  modification  tasks,  with  minimal  global 
communication,  in  order  to  facilitate  parallel  speed-up  results  similar  to  those 
achieved by the numerical computation.

While our discretization method is of low order, the information access pattern on 
our  grid  is  the  same as it  would  be for  a  higher-order  discontinuous  Galerkin 
spatial  discretization  method  combined  with  a  high  order  Runge-Kutta  time-
stepping scheme. A low order simulation with a relatively low amount of floating-
point operations per grid cell is the appropriate way to demonstrate the efficiency 
of  our  grid  management  system  both  in  serial-  and  in  parallel  computing 
environment.  Adding  more  FLOPs  would  only  increase  both  the  floating-point 
performance  of  single  CPU cores  as  well  as  decrease  the  communication-to-
computation ratio which, in turn, would yield even better and more sustainable 
parallel speed-up results. 

In  our  simulation we did  not  include ocean floor topology,  but  instead used a 
simple  “swimming  pool”  setting  in  which  a  column of  water  is  collapsing and 
causes a wave that propagates outwards. Figure 1.1 illustrates eight snapshots of 
such a simulation on 9 processors (represented by different colors) with dynamic 
adaptivity and load-balancing. Currently the simulation does not run sub-realtime; 
mainly because of the low-order discretization schemes, and in part because of 
the relatively low amount of parallel processing units used. It is assumed that a 
higher-order discretization scheme would increase the simulated time-step faster 
than it would increase the real run-time to compute it, making the goal of a sub-
realtime simulation on an appropriate number of parallel processors look ever more 
realistic. 
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Figure 1.1: Parallel SWE simulation with adaptive mesh refinement on 9 CPUs.



1.1. Shallow water equations for tsunami modeling

The shallow water equations (SWE) are a simplified version of the classical fluid 
dynamics equations that can be derived by averaging over the depth dimension. 
They are used in scenarios where a homogeneous solution in the vertical direction 
may be assumed, or where the characteristic wave length of the horizontal wave 
propagation is large in comparison to fluid depth.

The average depth of the Indian- or the Pacific ocean is 4 kilometers,  and the 
width in latitudinal and longitudinal direction has a range of a couple of thousand 
kilometers (LeVeque, 2007). A Tsunami wave propagation has a wave length as 
long  as  200  kilometers  (LeVeque,  2007).  As  a  consequence,  the  2D SWE are 
successfully used to simulate oceanic wave propagation in tsunamis generated by 
earthquakes  or  asteroid  impacts  (Behrens  1998;  George  and  LeVeque  2006; 
Glimsdal  et  al.  2004;  Harig  et  al.  2008;  Imamura  et  al.  2006;  LeVeque  2007; 
LeVeque et al. 2011). 

In this work we use a simplified version of the SWE in which the unknowns are the 

water height ξ and the velocities in X- and Y direction v = (u, v). Formula 1.1 uses 

the formulation from Aizinger and Dawson (2002) and from Remacle et al. (2006), 
but neglects viscosity, friction, and Coriolis forces. 

However, both the simplified version as well as the full SWE can be rewritten in a 
vector form as in Formula 1.2.

The unknown u = (ξ, ξu, ξv) is slightly adjusted to hold the discharge instead of 
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Formula 1.1: Simplified SWE neglecting viscosity, friction and Coriolis forces.



the  velocities,  and  vectors  F(u) and  r are  suitably  chosen.  This  way  our 

computational and numerical approach to solving the system in Formula 1.1 is also 
easily transferable to the full SWE. For more details see chapter 2.3.

1.2. Discontinuous Galerkin and finite volume 
discretization for solving the SWE

The discontinuous Galerkin (DG) method has recently become a popular approach 
to solving the SWE (Behrens, 1998; Dawson et al. 2006; Eskilsson and Sherwin 
2005;  Giraldo,  2006).  It  is  strongly  element  oriented,  and  data  is  exchanged 
between grid cells only via the so-called flux terms. A global system of equations 
needs not be assembled, instead, computation is local on the grid cells. In the 2D 
case  it  means  that  the  unknowns  are  cell-based  and  neighboring  grid  cells 
exchange data – the flux term – through the common edge. There is absolutely no 
need  for  node-based  unknowns,  and,  therefore,  I  eliminated  the  topological 
information regarding the nodes from our Sierpinski-based grid management. This 
simplification contributed a lot  in achieving good floating-point performance by 
reducing  grid  management  overhead.  The  parallel  data  access  pattern  during 
numerical computation is also simple; data is only exchanged through edges that 
lie on the process boundary.

Further advantages of the discontinuous Galerkin method are,  for example, the 
stable description of the convective transport and the fitness for adaptive solution 
techniques (Cockburn et  al.  2000).  The numerical  computation in  any grid  cell  
depends solely on the internal unknowns and the (information-) flow across the 
surrounding edges. The numerical operators are independent of the size or shape 
of the neighboring grid cells, and they operate the same way whether one uses a 
uniform grid or a conforming adaptive grid with no hanging nodes. Our Sierpinski-
based grid is dynamically adaptive and conforming, and adaptation is triggered by 
a cell-local criterion following the dynamical change of the solution.

Another advantage of the DG method is its support of high-order accuracy by 
simply  increasing  the  order  of  the  polynomial  basis  functions  (Cockburn  et  al.  
2000).  Our  core  numerical  routines,  however,  only  use  constant  (0 th order 
polynomial)  basis  functions  in  each  grid  cell.  This  piece-wise  constant 
approximation is  similar  to  a finite  volume type method (Aizinger and Dawson, 
2002; Remacle et al. 2006). For time discretization we use a simple explicit Euler 
time-stepping scheme that is computed in a single grid traversal. Since the goal of 
this work is to provide a memory-, MFLOPS-, and parallel  efficient dynamically 
adaptive grid generator for future tsunami simulations, the numerical accuracy was 
not a main priority. 
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A real-life  tsunami simulation would require the use of  the full  SWE equations, 
higher-order  accuracy  DG discretization,  a  higher-order  Runge-Kutta  type  time 
integration and geometry information (ocean floor depth, islands and coastline).  
The full SWE equations in their vector form are similar to our simplified version, 
and extending the numerical  kernel  should be fairly simple.  A higher order DG 
method  needs  additional  memory  for  the  unknowns  as  it  stores  higher  order 
polynomials in each grid cell, and the flux terms are also somewhat different. It 
requires more floating point computations per grid cell, but the data access pattern 
remains the same as in our simplified case (details in chapter 2.3). Instead of one 
grid  traversal  per  Euler  time  step,  a  Runge-Kutta  time  integration  needs  one 
traversal per slope evaluation. It  is believed that such a simulation with higher-
order overall accuracy would increase the floating point performance as well as the 
parallel speed-up. This is also suggested by some of the performance experiments 
in chapter 5.

1.3. Parallel adaptive mesh refinement and coarsening

The  piece-wise  constant  discontinuous  Galerkin  –  or  finite  volume-type  – 
discretization  of  the  simplified  shallow  water  equations  runs  on  our  Sierpinski 
space-filling  curve-based,  recursively  structured,  triangular,  and  dynamically 
adaptive grid.

Adaptivity is essential when observing/simulating phenomena with interaction on a 
variety of scales. It can help to resolve local small scales that interact with global  
scales in a consistent way (Behrens, 2005a). The coastline may need a fine grid 
resolution of perhaps a few meters, whereas the global dynamics that drives the 
oceanic wave propagation is perhaps four or five orders of magnitude higher. The 
prescribed and fixed refinement regions – islands and coastline – are determined 
by the a-priori knowledge of experts. In contrast, dynamic adaptivity can capture 
moving features like propagating wave fronts. Dynamic adaptivity – especially in 
the  tsunami  wave  front  tracking  –  requires  frequent  re-meshing  according  to 
certain dynamic refinement criterion that is based on the evolution of the solution.

There are several reasons why adaptive grids are used instead of uniform ones. 
Assuming that a vast area like the Indian Ocean is covered with a uniform grid of 
mesh size that is small enough to capture small scale features of a few meters, a 
lot  of  computing  would  be  performed  in  huge  regions  where  the  solution  is 
uniform.  Furthermore,  there  is  a  limit  of  available  memory  in  any computer,  in 
which all unknowns would have to be stored. A fixed but adaptive grid will save 
both memory and computing time. On the other hand, a dynamically adaptive grid 
will inevitably add some re-meshing overhead. Even if the saved computing time is 
mostly spent on the grid modification, because of the limited amount of available 
memory, a dynamically adaptive grid may still be the only option to capture the 
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moving features of a tsunami wave. In our Sierpinski-based grid management a re-
meshing step costs about two to three Euler time-steps in terms of computing time 
(see chapter 5). This ratio would shrink even further in the case of a higher-order 
DG implementation with Runge-Kutta time-stepping.

Adaptive  grids  can  be  structured  or  unstructured.  While  structured  grids  have 
some sort  of  rule  to  access their  elements,  usually  an  iteration  over  an  index 
vector, unstructured grids require large amounts of additional memory to explicitly 
store their  topological  structure.  Refinement and coarsening of an unstructured 
grid offers unlimited flexibility, but it is computationally quite expensive and usually 
can not be afforded in each time-step. Solvers implemented on data structures 
used in unstructured grids  tend to  have inefficient  access patterns to memory 
which leads to poor cache hit rate, poor vectorization properties, and poor overall 
computational performance. Structured grids are more advantageous in terms of 
cache hit  rate, vectorization and computational performance; but often lack the 
ability for adaptive refinement or coarsening. 

Our  Sierpinski  grid  management  system offers  an  excellent  trade-off  between 
overall  computational  performance  and  flexibility  for  dynamically  adaptive 
refinement and coarsening. Initial grid generation is based on recursive subdivision 
of  triangles,  which  was  introduced  as  the  newest  vertex  bisection method  by 
Mitchell  (1991)  and  Bänsch  (1991).  Grid  traversal  is  on  the  predefined  order 
induced by the Sierpinski  curve,  and numerical  computation is  done locally  in 
every  grid  cell  without  the  need  to  assemble  and  solve  a  global  system  of 
equations. Traversal is implemented with linearized binary trees which permit loop-
based  traversals  over  arrays  instead  of  recursive  function  calls  common  for 
traversing a full  binary  tree.  Another advantage is  the easiness of  starting and 
stopping a traversal on a parallel partition without having to consider the binary 
refinement tree. Grid topology, or neighbor information, is implicitly represented by 
a system of stacks and streams, instead of explicitly storing it. Stack- and stream 
based implementation enables the compilers to produce well-optimized code, and 
hardware prefetching is also more successful in fetching the right data from the 
memory to the CPU. As a consequence, the grid traversals exhibit excellent cache 
hit-rates, as we published in Bader et al. (2012). 

Our adaptive mesh refinement produces conforming grids in the same manner as 
amatos from Behrens (2004), which is implemented for oceanic applications, and 
it is a reference for our approach. Refinement cascades may be triggered by a 
single  refinement  of  a  triangle  cell  in  order  to  eliminate  hanging  nodes. 
Parallelization of grid traversals is done using the Sierpinski  space-filling curve. 
Refinement cascades need to propagate across parallel partition boundaries. In 
order to rebuild the stack-and-stream based system that represents the implicit 
topological information, neighbor index prediction is performed for the new grid. 
All grid manipulation tasks are traversal-based and partition-local. The amount of 
global communication, other than load-balancing, is of the order of the number of 
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parallel  partitions,  rather  than  overall  grid  size.  Load-balancing  is  done  in  an 
MPI_All-to-All fashion in which the triangle cells get redistributed equally among 
the parallel processors. 

The efficiency  aspects  of  our  Sierpinski-based grid  management  were  partially 
demonstrated in Bader and Zenger (2006), Bader et al. (2008 and 2012). A more 
recent performance analysis is given in chapter 5.

1.4. Related work

There are several recursively structured grid generators in use, and some of them 
use similar ideas and solutions to the arising problems as we do. The following grid 
generators were sometimes used for checking correctness of our algorithms, and 
were sometimes the inspirational source for innovation.

The triangular grid generator amatos from Behrens (2004) is primarily intended for 
atmospheric and ocean modeling – tsunami simulation included. It uses a set of 
coarse  initial  triangles  that  cover  the  area  of  interest,  and  these  triangles  are 
recursively bisected at a marked edge until the required mesh size is reached. This 
grid generation process, as mentioned before, is also referred to as newest vertex 
bisection. Similar to unstructured grids, amatos stores the grid topology explicitly. 
Numerical computation is done with a so called gather-scatter approach in which a 
global  system  of  equations  is  built  and  solved.  Dynamic  adaptivity  produces 
conforming  grids  with  no  hanging  nodes  allowed.  Additional  refinements  or 
cascades of refinements are triggered to eliminate the hanging nodes. amatos also 
uses the Sierpinski space-filling curve for parallelization and partitioning.

Some initial Sierpinski-based algorithms were running on the amatos grid that was 
also used to check their correctness. In contrast to amatos, our approach stores 
almost no explicit topology information, but replaces it with a system of stacks and 
streams that use a minimal amount of memory. We also avoid building a global 
system of equations, and the computation is performed locally on the grid cells. 

Peano is a grid generator based on recursive trisection of squares, cubes, or any 
higher-dimensional hypercubes recently presented by our research group. It is a 
family of methods that uses the Peano space-filling curve for grid traversal and 
processing with a low memory footprint, and implements parallel iterative multigrid 
solvers with full adaptivity and load-balancing – see Günther et al. (2006), Mehl et 
al. (2006), Weinzierl (2009) and Neckel (2009). The topology is not stored explicitly; 
a  system of  stacks is  used instead,  just  like  in the Sierpinski  case.  Numerical 
computations  are  performed locally  on  the  grid  elements  without  building  any 
global  system of equations.  Adaptive refinement also has restrictions that  may 
trigger  refinement  cascades:  the  refinement  level  of  any  two  geometrically 
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neighboring  grid  cells  may  not  differ  by  more  than  1  in  the  refinement  tree. 
Parallelization is done with the help of the Peano space-filling curve.

Peano  could  be  considered  the  'closest  relative'  of  our  Sierpinski-based  grid 
management because many of the solutions are similar in nature and differ only in 
details of implementation: initial grid generation based on recursive subdivision; 
grid traversal based on space-filling curves; topology information replaced by a 
system of stacks; numerical computation local on the grid without building global 
system  of  equations;  adaptivity  restriction  to  maintain  grid  conformity; 
parallelization with space-filling curves.

Dendro is a rectangular grid generator package based on recursive bisection of 
squares or cubes using quadtrees or octrees. It is open-source software from the 
group of Prof. G. Biros available at “www.cc.gatech.edu/csela/dendro”. The octree 
is linearized in the Morton order in which the leaf nodes are stored in an array 
together  with  their  locational  codes.  Element  connectivity  is  stored  in  a 
compressed  format  with  look-up  tables  that  help  evaluate  a  partial  differential 
operator  in  only  one loop-based traversal  (Sundar  et  al.  2007a  and 2007b).  A 
global  system  of  equations  is  assembled  and  solved.  Adaptive  refinement 
restriction is the same as in the Peano case, and it is called  2:1 balancing; the 
refinement  cascade  is  called  ripple  effect.  All  operations  are  also  efficiently 
parallelized. 

The idea from Dendro that  most  inspired me was the linearized octree.  In our 
simulation we only perform operations on the leaves of the refinement tree, and, by 
storing them in a linear array, we can perform loop-based grid traversals instead of 
recursive ones. Advantages of loop-based traversals are clearly shown in chapter 
5.  Load-balancing  is  also  less  complicated  when  the  data  that  has  to  be 
exchanged between processors is in the form of simple arrays, instead of complex 
data structures such as binary trees.

GeoClaw is a software package used for example by LeVeque (2007) and LeVeque 
et al.  (2011) for Tsunami simulations with finite volume methods on rectangular 
grids. It is used for depth-averaged flows – like the two-dimensional SWE – with 
adaptive mesh refinement. Adaptive mesh refinement is used on specified regions, 
and dynamic adaptivity  automatically  follows the wave.  With  a moving wet/dry 
interface of the grid cells, inundation is simulated as well.

p4est is  a  software  library  with  scalable  algorithms for  parallel  adaptive  mesh 
refinement on forests of octrees in both 2D and 3D (Burstedde et al. 2011). Similar 
to  Dendro,  the  octants  are  stored  in  linear  arrays  following  the  Morton  order. 
Adaptive refinement and coarsening can be performed both in non-recursive and 
in  recursive  ways,  maintaining  the  2:1  balance  constraint.  The  non-recursive 
version  replaces  octants  with  its  children  or  their  common  parent,  and  the 
recursive version can radically change the grid in one call. All routines are shown to 
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scale well on over 200,000 CPU cores with good speed-up efficiencies.

Our  Sierpinski  grid  management system incorporates a variety of  features and 
methods  that  may  be  found  in  some  of  the  mentioned  grid  generators,  and 
combines  them  in  a  way  that  yields  both  very  good  serial  floating-point 
performance and impressive parallel speed-up for the solution of the SWE. amatos 
generates the same grid as the Sierpinski system, but it carries huge overhead by 
storing topology information explicitly. Peano would generate a similar dynamically 
adaptive rectangular grid, but it does not linearize the refinement tree, which in our 
case leads to excellent serial floating-point performance. In the publications about 
Dendro, dynamic adaptivity in-between computation traversals is not mentioned, 
and GeoClaw is not yet mentioned to work in parallel. We believe that the current 
combination  of  functionality  incorporated  in  our  Sierpinski  grid  management 
system,  together  with  future  enhancements  of  the  mathematical  model  and 
discretization schemes, will  enable the sub-realtime simulation of oceanic wave 
propagation. This, in turn, could be used in future tsunami early warning systems, 
and would lead to faster and more precise hazard estimation.

In the next chapters I will describe in detail how the Sierpinski grid management 
works. Chapter  2 describes the initial  grid generation process, the space-filling 
curve driven traversals, and the numerical computations. Dynamic adaptivity is the 
subject of chapter 3. How all the above works in parallel is shown in chapter 4, and 
chapter  5 will  present  the  performance analysis  of  our  code.  Conclusions and 
future work will be discussed in chapter 6.
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2. Sierpinski-based Grid Management

This chapter describes the initial grid generation process: the classification of the 
triangle cells according to properties induced by the Sierpinski space-filling curve, 
the  stack-and-stream based  edge  system that  transports  information  between 
neighboring  triangles  during  a  grid  traversal,  and  how  discontinuous  Galerkin 
computations are performed. These algorithms  we partially published in Bader 
and Zenger (2006), Bader et al. (2008 and 2010). Space-filling curves in general are 
well described in Sagan (1994).

2.1. Triangle system and the Sierpinski curve

The triangular grid is recursively constructed with the method  known as  newest 
vertex bisection which was introduced by Mitchell  (1991) and Bänsch (1991).  A 
depth-first  traversal  of  the  accompanying  binary  refinement  tree  orders  the 
triangles according to the Sierpinski  curve.  Basic properties of  single triangles, 
based  on  their  relationship  to  the  Sierpinski  curve,  are  introduced.  These 
properties are used to define the edge system and to synchronize to it during grid 
traversals.

2.1.1. Recursive construction and traversal

The grid generation starts by covering the area of interest with an initial  set of 
coarse  triangles,  like  in  Figure  2.1.  In  this  work  we  only  use  the  unit  square 
arrangement.

These initial parent triangles are recursively split at so-called  marked edges until 
the desired mesh size is reached (see Figure 2.2). Our implementation works with 
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Figure 2.1: Initial triangulation examples. Unit Square (right) and Re-entrant Corner  
(left). Throughout this work the Unit Square is used.



right isosceles triangles only,  and the hypotenuse takes the role of the marked 
edge. This method is used by amatos, too, and can be extended to arbitrarily 
shaped triangles as long as the topological structure of the recursive bisection is 
preserved, as described in Behrens et al. (2005c).

The recursive bisection can be uniform on the entire grid, or it can be adaptive too, 
as the example in Figure 2.3 illustrates. 

Whether uniform or adaptive,  the refinement process can be represented by a 
corresponding  binary  tree  which  we  call  refinement  tree.  Figure  2.4 below 
illustrates the refinement tree that is used to construct the adaptive grid in Figure
2.3.  The  storage  costs  of  a  binary  tree  are  1  bit  per  tree  node,  which  is  the 
equivalent of 2 bits per leaf triangle because the number of leaves is half of all the 
nodes. 
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Figure 2.3: Recursive bisection of the initial triangle, with adaptivity.

Figure 2.2: Newest vertex bisection: recursive splitting along the marked edge.



A depth-first traversal of the refinement tree orders the leaves, and, consequently, 
the grid cells, according to the Sierpinski space-filling curve (see Mitchell, 2007 
and Sagan, 1994), as shown in Figure 2.5. 

The  first  implementation  of  this  storage  scheme  was  in  Vigh  (2007),  and  it 
substituted  the  triangle  system supplied  until  then  by  amatos  for  the  work  of 
Schraufstetter (2006) in which several Sierpinski-based numerical- and topological 
methods from Bader and Zenger (2006) were implemented and tested. 
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Figure 2.4: Refinement tree used to refine one of the the initial triangles.

Figure 2.5: Depth-first traversal of the refinement tree gives the Sierpinski order of  
the triangles. Here the Sierpinski curve runs along the hypotenuse.



The implementation of numerical algorithms requires knowledge of the neighbor 
relationship  between cells,  faces,  edges,  and nodes  in  order  to  evaluate  local 
discretization stencils. From the refinement tree alone, these relationships are not 
easily  available.  While  a  full  grid  traversal  is  an  O(N) algorithm –  whether  fully 
recursive  or  optimized  loop-based –  instead  of  O(1),  the  random access  to  a 
specific element is of order O(log N), which is the depth of the binary tree. For this 
reason,  most grid generators that work with adaptive grids invest considerable 
amounts  of  memory  to  store  the  neighbor  relations  explicitly.  Our  aim was  to 
replace most  of  the  topological  information with  an efficient  stack-system that 
uses a minimal amount of memory but still facilitates numerical computations. The 
stack-system  is  presented  in  section  2.2,  and  it  is  based  on  properties  and 
classifications of the grid elements that are based on the Sierpinski curve. Sections 
2.1.2 to 2.1.4 define these properties and their recursive nature as seen in Bader 
and Zenger (2006).

2.1.2. Sierpinski color classification

The approximation of the Sierpinski space-filling curve does not fill the space, but 
rather, splits it into two sides. Looking at the picture in Figure 2.6 the nodes on the 
left-hand side of the curve in the traversal direction are colored in green, and the 
others are in red. This is the RED/GREEN color classification of the nodes.

The  RED/GREEN  classification  can  be  extended  to  those  edges  that  connect 
nodes of the same color,  as seen in  Figure 2.7. These red or green edges are 
collectively  called  color-edges.  The  other  edges  that  connect  two  nodes  of 
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Figure 2.6: Red and green nodes (boxes and circles). The Sierpinski curve  
separates the nodes on the left-hand-side from those on the right-hand-side.



different colors are crossed by the Sierpinski curve and are called crossed-edges.

The color of a whole triangle will be by definition the color of its node in the right-
angle corner. An equivalent but more precise definition is the color of the node 
opposite to the  marked edge,  which in our current implementation is the node 
opposite to the hypotenuse – at the right angle. This choice of definition is made in 
order to clearly and uniquely define a triangle's color; a property that can easily be 
computed for the child triangles during recursive bisection.

Figure 2.8 shows the colors of the triangles as well. The color of a triangle does not 
necessarily correspond to the color of its color-edge. If the color-edge is a leg, 
then it has the same color as the triangle. On the contrary, if the hypotenuse is the 
color-edge,  then  it  has  the  opposite  color  than  the  triangle.  This  ambiguity  is 
solved by the entry/exit classification in the next section.
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Figure 2.7: Red-, green- and crossed edges (black). Edges that are entirely on one  
side of the Sierpinski curve have the color of the nodes they connect.



2.1.3. Sierpinski entry/exit and old/new classification

Regarding individual triangles, there are three different ways the Sierpinski curve 
can enter and exit them, as displayed in Figure 2.9. Each triangle has one color-
edge and two crossed-edges. Based on the entry edge, classification is as follows:

– curve enters through the hypotenuse and exits through a leg is called type H 
– curve enters through a leg, has two possibilities to exit: 

– exit through the other leg is called type V (because of the up-side-down 
shape of the entry-exit legs)

– exit through the hypotenuse, and is called type K (from the German word 
“Kathete”, which means the entry leg).

If the RED/GREEN color and the H-V-K type of a triangle is known, then the color 
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Figure 2.8: Red- and green triangles. The reference color of a triangle is always the  
color of the node on the right angle. Note: the color of a triangle does not  

necessarily match the color of its color-edge.

Figure 2.9: Sierpinski entry/exit or H-V-K classification.



of the color-edge can be determined as follows:

– if type is H or K, the color-edge is a leg and has the same color;
– if type is V, the color-edge is the hypotenuse and has the opposite color.

The color of any node on a color-edge takes the same edge color by definition,  
and the node opposite to the color-edge takes the other color.

During a grid traversal along the Sierpinski curve, the triangle cells are accessed in 
a prescribed order exactly once. The edges are accessed exactly twice, unless 
they are on the domain boundary, in which case they are accessed only once per 
traversal. The nodes are accessed several times ranging between 1 and 8. When 
implementing a numerical algorithm it might be useful to know whether we access 
a certain edge or node for the first time, for the last time, or sometime in between. 

Figure 2.10 shows that the entry edge is always old, and the exit edge is always 
new.  The color-edge is  the  only  one that  is  undefined.  Therefore,  this  old/new 
property of the color-edge in a certain triangle is introduced as an attribute of the 
triangle itself, and will be tracked. The triangle names H, V and K will get an “o” or 
an “n” index for old or new.

The old/new property of the edges clarifies the first or last access to them. If an 
edge is new in a certain triangle cell, then it is encountered for the first time. If it is  
old, then it is encountered for the last time in the current traversal.

The  availability  of  the  old/new attributes  for  all  edges  in  a  triangle  yields  the 
following access types to the nodes:

– node is encountered for the first time if both attached edges are new;
– node is touched between first- and last time (neither first, nor last) if one 

attached edge is new and the other is old;
– node is encountered for the last time if both attached edges are old.

Note that in case of a reverse traversal the types H and K switch roles, while type 
V stays the same. If a certain triangle was old in one traversal direction, then it will 
become  new in  the  reverse  direction.  The  color  property  of  any  grid  entity  is 
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Figure 2.10: Sierpinski old/new classification.



traversal-invariant.

2.1.4. Bisection and color-, entry/exit-, old/new properties

The availability of only the color-, entry/exit-, and old/new type of a triangle makes 
it possible to derive the colors and access types (first, last, intermediate) to all of 
its  edges  and  nodes.  The  bisection  rules  illustrated  in  Figure  2.11 show  the 
downward  propagation  of  these  attributes  during  a  bisection.  Knowing  these 
properties for all the initial coarse triangles, and applying these rules recursively,  
makes it possible to compute the respective properties of the leaf triangles. 

The  color  of  the  child  triangles  is  always  the  opposite  of  the  parent  triangle 
because the newly created node and the right angle of the children will lie on the 
hypotenuse of the parent. The hypotenuse of the parent splits and at least one of 
the child edges becomes a color-edge. The bisecting edge is always a crossed-
edge.

The  H-V-K classification  and  the  old/new properties  change  according  to  the 
illustration in Figure 2.11, and are formalized in Formula 2.1 – the bisection rules. 
The numbering of the edges and nodes during a bisection are shown in  Figure
2.12. These rules make it possible to compute all attributes and all coordinates in 
the grid starting from the initial  coarse triangles during a recursive initialization 
traversal. 
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Ho  (Vo, Ko),  Hn  (Vn, Ko),

Vo  (Ho, Ko),  Vn  (Hn, Kn),

Ko  (Hn, Vo),  Kn  (Hn, Vn).

Formula 2.1: Bisection rules.



2.2. Edge-stack system – an alternative to explicit 
neighbor indexing

During traversal and element-wise processing, in each triangle numerical methods 
need access to the neighboring triangles. If the triangles are ordered according to 
the Sierpinski curve, two out of three neighbors are in consecutive memory space: 
the previous and the next triangle. The third neighbor is located somewhere else in 
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Figure 2.12: Numbering of nodes and edges before and after bisection.

Figure 2.11: Bisection rules for color-, entry/exit-, and old/new attributes.



memory,  and  is  called  the  far  neighbor,  as  illustrated  in  Figure  2.13.  The 
information flow to and from the previous- and next triangle can be dealt with on 
the fly, but between the current triangle and its far neighbor a more sophisticated 
solution is needed.

For the discontinuous Galerkin method it would suffice to have the following in 
each triangle: index of the far neighbor, or a pointer to it,  as well  as additional  
storage for an intermediate flux value, that is stored for when the traversal reaches 
the far neighbor. I call this the triangle-only solution. This solution, however, needs 
twice the amount of memory for the information flow through the color-edges – as 
storage is allocated in both triangles and only used in one of them –  than an edge 
system that holds the exact amount of color-edges with the flux values for transfer. 

The introduction of any edge system requires some connectedness to the triangle 
cells. A simple solution is for each triangle to have a pointer or an index to its  
corresponding  color  edge.  A  more  sophisticated  solution  is  to  have  an  edge 
system without explicit storage of the connections between triangles and edges, 
and  also  to  have  some  operations  with  which  the  two  systems  can  be 
synchronized to each other. Such a system exists and is called edge-stack system. 
Its operation is based on the color-, entry/exit-, and old/new properties of the grid 
entities and, hence, it is strongly connected to the Sierpinski space-filling curve. A 
performance comparison between  triangle-only and  edge-stack system solutions 
will be given in chapter 5 section 5.1.3.

Other methods also need access to unknowns placed on nodes. A  node-stack 
system exists as well, and its rules of operation are very similar to the edge-stack 
system because the access rules to the nodes are based on the edges, as seen in 
section 2.1.3. The next section describes the edge-stack system on a macro scale 
as it synchronizes to the triangle traversal. A description of the detailed operations 
upon entering and exiting a triangle or crossing between two triangles is presented 
in section 2.2.2. 
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Figure 2.13: Near and far neighbors in memory.



2.2.1. Edge-stack system during traversal

Figure 2.14 illustrates a triangular grid recursively refined up to depth 6 with the 
Sierpinski curve crossing it. The best spot to observe the stack-like access pattern 
is to look at the inner red edges in the middle; then follow the curve ascending on 
their left-hand side and descending on the right. In between the first- and the last 
access to these red edges they may be pushed on top of a temporary stack, and 
then popped from it. This is also true for the green inner edges.

Assuming the red edges are sorted on an input  stream according to their  first 
encounter, they can be taken from such a stream before first use. After the last 
(second) usage these edges can be written to an output stream. If the first- and 
last access coincides in the case of a domain boundary, the edge will be taken 
from the input stream and written directly to the output stream. On the output 
stream these edges are then sorted according to their last encounter. This way, 
when the traversal  changes direction,  the old output  stream will  be processed 
backwards as the new input stream. Figure 2.15 sketches the concept of the stack 
system with separated red and green input- and output streams and temporary 
stacks. Figures 2.16 and 2.17 animate a portion of the traversal.
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Figure 2.15: Edge-stack system: RED and GREEN streams and stacks.

Figure 2.14: Stack-like access to the inner color-edges along the Sierpinski curve.
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Crossing from 9 to 10. RED edge from 9 to temp. RED edge for 10 from input.

RED edge from 10 to temp. RED edge for 11 from input.

RED from 11 to temp. GREEN for 12 from temp, placed there earlier from 5.

GREEN from 12 to output. GREEN boundary for 13 from input.

Figure 2.16: Crossing through triangles 10 – 13.
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GREEN boundary from 13 directly to output. RED for 14 from temp.

RED from 14 to output. RED for 15 from input.

RED from 15 to temp. GREEN boundary for 16 from input.

GREEN boundary from 16 directly to output. GREEN boundary for 17 from input.

Figure 2.17: Crossing through triangles 14 – 17.



The empirical upper-bound for the size of the temporary stacks needed during a 
traversal of N triangles is of order O( log(N) ).  An analytical proof could be done as 
part of future work.

Access  pattern  to  the  crossed  edges  is  different  and  far  simpler.  They  are 
accessed sequentially one after the other, always two of them at once in each 
triangle.  They  are  stored  in  a  simple  array,  and  storage  is  only  allocated  for 
adaptive refinement and coarsening information (see chapter 3) that has to persist 
between grid management traversals.  Numerical  information exchange between 
subsequent triangles is achieved with a few temporary variables, and the crossed 
edges are not used during numerical traversals.

Access pattern to the nodes is stack-like as well, like in the case of color edges,  
because every  node is  either  red or  green.  The stack operations on individual 
triangles in the next section will show some differences between treating the nodes 
and the color edges. Mainly because a node may need to be accessed anywhere 
between 1 and 8 times, while inner edges are accessed twice and boundary edges 
just once.

The separation of red from green entities in the temporary stacks is necessary, 
otherwise, they would mix up. However, the separation in the input- and output 
streams is  not  necessary.  In  fact,  the node-stack system implemented first  by 
Schraufstetter (2006) does not separate the input and output streams into colors. 
That stack system handled every type of unknown placed logically onto any type 
of  grid  element.  It  had  a  predefined  order  of  access  to  unknowns  within  one 
triangle cell on its corner nodes, its edges, and the cell interior. All unknowns were 
placed in the 'first encounter' access order on the input stream, and after traversal  
they were placed in  the 'last  encounter'  order  on the output  stream. The only 
separation occurred on the temporary stacks according to the colors assigned to 
the grid entities to which a particular unknown was assigned.  For details on that 
system the main reference is Schraufstetter (2006) and partially Bader et al. (2008 
and 2010). 

I chose to break up that mix of unknowns into three different categories based on 
what type of grid entity they lay on. Cell-interior unknowns are stored in an array, 
and access to them during a grid traversal is stream-like – in the same Sierpinski 
order  that  defines  the  access  to  the  triangle  cells.  Edge-based  unknowns are 
managed by the edge-stack system which is synchronized to the grid traversal in 
such a way that each triangle has access to its corresponding edges. Corner node 
unknowns were in yet another node-stack system that works similarly to the edge-
stack system. However, the node-stack system is not used in our SWE simulation 
because the discontinuous Galerkin discretization uses only cell- and edge-based 
unknowns. Although I  describe the detailed synchronization operations for both 
the edge-stack system and the node-stack system in the next section, only the 
former is in use and successfully implemented for parallel execution (section 4.3).
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This new categorization of  unknowns makes possible to treat  them separately, 
and, in our case, to eliminate the corner nodes. This leads to a simpler and more 
efficient  code  by  eliminating  many  branch  instructions,  thus  eliminating  grid 
management overhead.

Related research

The collaborating research group that maintains the Peano grid generator studied 
similar  stack-and-stream based systems for  adaptive  space-filling  curve-based 
rectangular  grids.  They  use  d-dimensional  Peano  space-filling  curve  to  build 
adaptive Cartesian grids; where, in each refinement step, a hypercube is divided in 
3d congruent sub-cubes (see Günther et al. 2006, and Mehl et al. 2006). Illustration 
of the 2D case with the typical stack-like access is shown in Figure 2.18. Together 
with this group we found that, for a stack-and-stream based system to work on an 
adaptive grid, the following requirements are necessary:

– recursive  construction  of  the  grid  has  to  match  the  construction  of  the 
corresponding space-filling curve;

– the space-filling curve needs to be edge-connected in 2D or face-connected 
in 3D to allow information exchange with stacks;

– the “stack-property” needs to hold:

– in  2D  the  unknowns  placed  on  any  coarse-level  edge  have  to  be 
traversed in opposite direction by the curve on opposite sides;

– in 3D the unknowns on any coarse-level face have to be traversed by a 
2D space-filling curve of the same type and in opposite direction.
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Figure 2.18: Data access suitable for stacks and streams with the Peano curve.  
Access to the nodes left and right of the curve is stack-like. Access to rectangular  

cells in the Peano order is stream-like. (Neckel, 2009).



Stack-and-stream based traversals were derived for quadtree-refined grids with 
2D Hilbert curve. However, the Lebesgue curve that uses the Morton ordering is 
not edge-connected, and the stack-property is not satisfied either. In 3D no Hilbert  
curve was found to satisfy the stack-property. The Peano curve, on the other hand, 
was  demonstrated  to  work  with  a  stack-and-stream  approach  for  any  d-
dimensional  case  with  only  2∙d temporary  stacks  (Weinzierl,  2009).  Face-
connected Sierpinski curves can not be generated in general (see Mitchell, 2005). 
For a specific 3D tetrahedral bisection scheme stack-and-stream based approach 
was demonstrated to work in Haug (2006), but that version of the Sierpinski curve 
has  only  weak  locality  properties.  For  2D  triangular  grids  the  curve  is  edge-
connected, and the performance evaluations in chapter 5 show the memory- and 
floating-point efficiency; also in comparison to the triangle-only solution with no 
edge-stack system.

2.2.2. Stack system operations on individual triangles

Cell-based unknowns are stored in an array, and are accessed sequentially as the 
traversal  advances  through the  triangles.  Crossed-edges  are  stored in  another 
array, and the access to them is intertwined to the triangles. They are only used in 
grid  management  traversals  during  adaptive  refinement  because  the  numerical 
computation  manages  the  information  flow  through  them  with  a  couple  of 
temporary variables. The access to color-edges and nodes is described from two 
perspectives: cell-based entry and exit (Figure 2.19), and crossing from one cell to 
the next (Figure 2.20). As stated earlier, nodes are not used in the current work, but 
the access rules are given for completeness.

In Figure 2.19 a green triangle of  type H is encountered by the Sierpinski curve. 
The color-edge is a leg and is green, connecting nodes 1 and 2.

Upon entry:

– the color-edge is read

– from the green temporary stack, if the triangle is old, or

– from the green input stream, if the triangle is new.

– nodes 1 and 3 on the entry-edge are reused from the previous triangle.

– node 2 is read

– from the green temporary node-stack, if the triangle is old (color-edge is 
old, exit-edge is new), or
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– from the  green node-input stream, if  the triangle is  new (color-edge is 
new, exit-edge is new).

Upon exit:

– the color-edge is written

– to the green output stream, if the triangle is old, or

– to the green temporary stack, if the triangle is new.

– nodes 2 and 3 on the exit edge are reused by the next triangle.

– node 1 is written

– to the green node-output stream, if the triangle is old (color-edge is old, 
entry-edge is old), or

– to the  green temporary node-stack, if the triangle is  new (color-edge is 
new, entry-edge is old).

With regard to the colors of the edges and nodes, and the old/new classification of 
the triangles and its color edge, similar rules apply for triangles of type V and K. All 
these properties are well defined, as discussed earlier in section 2.1.4. 

In  the example  in  Figure  2.20 the curve crosses from a  red cell  of  type  V to 
another  red cell  of  type  K  old.  In  the  first  triangle  the  color-edge  is  green 
(hypotenuse), while in the second is red (leg).

In triangle V:

– the color-edge is written

– to the green output stream, if V is old, or
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Figure 2.19: Entry and exit of type H.



– to the green temporary stack, if V is new.

– node 1 is written 

– to the green node-output stream, if V is old (color-edge is old, entry-edge 
is old), or

– to the green temporary node-stack, if V is new (color-edge is new, entry-
edge is old).

– nodes 2  and 3 are  transferred  across  to  triangle  K as  nodes  2  and 1, 
respectively.

In triangle K:

– the color-edge is read from the red temporary stack (K is old).

– nodes 1 and 2 are overtaken from triangle  V, the former nodes 3 and 2, 
respectively.

– node 3 is read from the temporary node-stack (color-edge is old, exit-edge 
is new).

Similar rules apply when crossing between different triangle type. These rules are 
applied  after  taking  into  consideration  the  color-,  entry/exit-,  and  old/new 
attributes of the individual grid entities.

There is an exception to the above access rules for the color-edges that lie on a 
domain boundary or an inter-process boundary in the parallel case. Such a color-
edge is always read from the input stream and written directly to the output stream 
because it  will  never  be  encountered again  during  the  current  traversal.  If  the 
boundary  condition  was  not  considered,  such  an  edge  would  remain  on  a 
temporary stack at the end of the traversal. In fact, in the unified stack-system 
from  Schraufstetter  (2006)  did  not  consider  this  boundary  exception,  and  all 
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Figure 2.20: Crossing from triangle type V to type K.



unknowns on a  domain  boundary  were  left  on temporary  stacks.  This  did  not 
influence the backward traversal because the unknowns on temp-stacks were on 
correct reverse order, and they often had to be post-processed after a traversal. At 
first I changed it because I wanted a traversal-invariant placement of the edges as 
such that all edges are moved from the input stream to the output stream by a full  
traversal. However, in the parallel case (see section 4.3), the color-edges on inter-
process boundaries have to be processed at once. After a traversal it would be 
more difficult to determine the correct neighbor partition for each such loose edge. 
This way, after a traversal,  all  inter-process boundary edges are in place to be 
exchanged between neighboring processes, and all other edges were moved to 
the output stream.

2.2.3. Initial triangulations and the stack-property

The initial triangulation we use for our SWE simulation is shown in Figure 2.21. The 
color-,  entry/exit-,  and  old/new  attributes  are  chosen  such,  that  the  so-called 
stack-property remains valid on the common edges between the initial triangles as 
well. This way the edge-stack system will also stay synchronized when switching 
between initial refined triangle systems throughout the whole traversal. 

If the stack-property can not be maintained for a specific initial triangulation, then 
separate edge-stack systems, which synchronize to their own partitions, could be 
used. The separate partitions would then communicate through a special edge 
boundary system similar to the one used in the parallel  version. In the parallel 
version the “inter-process boundaries” are the means of communication between 
partitions on MPI processes, and they will be described in chapter 4. This special 
boundary system could easily be altered to solve such “no stack boundaries”, but 
in this work we only use the initial triangulation of the unit square presented in 
Figure 2.21.
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Figure 2.21: Initial triangulation with valid stack property.



2.3. Discontinuous Galerkin method on a Sierpinski grid

With the edge-stack system synchronized to the triangle traversal,  it  is  already 
possible to describe our piece-wise constant (0th order polynomial) discontinuous 
Galerkin (DG) method for simulating the shallow water equations. This lowest order 
DG method is similar to a finite volume type method (Aizinger and Dawson, 2002; 
Remacle et al.  2006).  Unknowns are cell-based,  and flux terms are exchanged 
through edges via the edge-stack system. Dynamic adaptivity is the subject of 
chapter 3, but because it produces conforming grids without hanging nodes, it fits 
exactly to the  data access pattern of the DG method. Hence, the computations in 
the  numerical  traversal  are  exactly  the  same for  uniform-  and  for  dynamically 
adaptive conforming grids.

Before the discontinuous Galerkin discretization of the shallow water equations, 
several  other  numerical  examples  were  computed  on  the  Sierpinski-based, 
dynamically adaptive, triangular grid. Using nodal, edge or cell-based unknowns, 
these were used to demonstrate the possibilities and advantages, or pinpoint the 
disadvantages of this traversal-based grid processing. Two examples to mention: 
multigrid  preconditioned  conjugate  gradient  for  the  Poisson  equation  by 
Schraufstetter (2006), which we published in Bader et al. (2008); time-dependent 
heat equation by Radzieowski (2007), in which explicit Euler and Runge-Kutta time 
integration was implemented.  The early  version of  the shallow water  equations 
with  discontinuous  Galerkin  spatial-  and  explicit  Euler  time  discretization  was 
implemented in cooperation with  Böck (2008), Schwaiger (2008), Demirel (2009), 
and Obeidat (2009), and we published it in Bader et al. (2010). Parallel version was 
implemented in cooperation with K. Rahnema. Some of the performance aspects 
of  the Sierpinski  traversals,  including our version of  the discontinuous Galerkin 
kernel we published in Bader et al. (2012). 

2.3.1. Triangle orientation and predefined normal vectors

Most numerical  computations need the geometrical  information of the triangles 
such as the normal vectors to the edges, leg-, and hypotenuse size or triangle 
area. The latter three are computed during recursive bisection, starting from the 
size of the initial triangle, and are stored for all triangle sizes (all refinement depths). 

The normal vectors pointing outwards of each triangle can be categorized as well. 
Figures 2.22 and 2.23 illustrate the eight occurring triangle orientations and gives 
the recursive inheritance rules for each of them. Each orientation type has three 
normal vectors that are precomputed. In addition to the color-,  entry/exit-,  and 
old/new properties, the geometric orientation type and the size of the triangles is 
tracked as well, and is available during grid traversals.
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If we used arbitrary shaped triangles, not just right-angle isosceles ones, then the 
tracking of the geometry information would need a different solution. A solution 
might  be  to  store  such  information  in  the  array  together  with  the  cell-based 
numerical unknowns, but this discussion is out of the scope of this work.

2.3.2. Discontinuous Galerkin discretization of the shallow 
water equations

This section describes the discretization method we already published in Bader et 
al. (2010), and serves the purpose of building a computational data access pattern 
during a grid traversal,  which is presented in the next section. For an in-depth 
reading  about  the  shallow  water  equations  and  discontinuous  Galerkin 
discretizations  see,  for  example,  Aizinger  and  Dawson  (2002),  Behrens  (1998), 
Cockburn  et  al.  (2000),  Crouzeix  and  Raviart  (1973),  Dawson  et  al.  (2006), 
Eskilsson and Sherwin (2005), Giraldo (2006), Imamura et al. (2006), and Remacle 
et al. (2007).

As stated earlier, the version of the shallow water equations that we use neglects 
viscosity, friction, and Coriolis forces, as shown in Formula 2.2. It is the formulation 
from  Aizinger  and  Dawson  (2002)  and  from Remacle  et  al.  (2006),  where  the 
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Figure 2.22: Triangle orientations in the Unit Square before and after bisection.  
Orientation types 1 – 4 will have children of types 5 – 8.

Figure 2.23: Triangle orientation types 5 – 8 have children of orientation type 1 – 4  
after bisection.



unknown v = (u, v) is the velocity and ξ represents the sea surface height. 

Both the full shallow water equations and this simplified version can be rewritten in 
a vector form presented in Formula 2.3, which makes our approach transferable to 

the full shallow water equations. Here u = (ξ, ξu, ξv),  div = (∇⋅, ∇⋅, ∇⋅), while 

vectors F(u) and r are suitably chosen for the simplified- or the full version of the 

equations.

For numerical solution we assume that the computational domain is divided by a 
set of triangular elements that result from our grid generation process described 
earlier.  The  discontinuous  Galerkin  method  uses  a  weak  form  of  the  partial 
differential  equations  –  similar  to  finite  element  methods.  After  applying  the 
divergence theorem to the vector form of the equations, the weak formulation is 

obtained in Formula 2.4 for each triangular element Tk of the computational grid. 

Here w denotes the test functions and n is the normal vector to each of the cell 

boundaries in Tk.

The discontinuous Galerkin method approximates the unknown u locally in each 
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Formula 2.4: Weak form of the shallow water equations.

Formula 2.3: General vector form of the shallow water equations.

Formula 2.2: Simplified shallow water equations. Neglected viscosity, friction and  
Coriolis forces.



element  Tk with a set of polynomial basis functions for each of its components. 
Continuity  of  the  solution is  not  enforced on the element  boundaries,  and the 
boundary integral can not be computed directly. Instead, it is approximated by a 
numerical flux term similar to those in finite element methods. We obtain Formula
2.5 where  is the numerical flux on an edge of a triangle cell.

In our current implementation we use constant 0th order polynomial functions in 
each  cell,  and  this  leads  to  a  method similar  to  a  finite  volume type  method 
(Aizinger  and  Dawson,  2002;  Remacle  et  al.  2006).  In  each  triangle  we  use 
orthogonal  polynomials  (even  if  we  used  linear-  or  higher  order)  like  in  the 
Crouzeix-Raviart element (Crouzeix and Raviart, 1973) in which the unknowns lie 

on the three edge midpoints. For the  ξ component of the vector  u the element-

local  discontinuous Galerkin discretization of  Formula 2.5 can be written in the 

form of Formula 2.6, where the mass matrix M is diagonal. The matrices Cx and Cy 

represent  the  discrete  convective  transport  terms  from  Formula  2.2.  Similar 
formulations can be obtained for the velocity components of Formula 2.2.

The flux terms need to be computed for  all  three edges.  Since the solution is 
discontinuous, the flux computation averages the contribution on both sides of any 
edge. We use the Lax-Friedrichs flux as given in Formula 2.7, where contributions 

result from both interior- and exterior values ξ i –
 and ξ i +

, and α is suitably chosen.
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Formula 2.5: Weak form of the shallow water equations with numerical flux  
approximation.

Formula 2.6: Element-local discretization for the ξ component. Formulation is  
similar for the velocity components.



All terms involving system matrices M, Cx, and Cy from the discrete formulation in 
Formula  2.6 are  element-local  and  can  be  computed from the  unknowns  and 
geometry information in the local  triangle cell  alone.  Only the flux computation 
needs exterior  flux contribution from all  neighboring triangle elements (Formula
2.8).

2.3.3. Data access pattern in the discontinuous Galerkin 
traversal

The discontinuous Galerkin discretization leads to a system of ordinary differential 

equations in Formula 2.9, with  uh as the unknown vector containing all (ξ, ξu, ξv) 

components  in  all  triangles  Tk.  Matrices  M,  Cx,  and  Cy are  the  global,  block-
structured counterparts of the same element matrices from Formula 2.6, and  
and  are the interior- and exterior flux terms in global matrix notation.

An explicit Euler scheme leads to the computation in  Formula 2.10 in each time 
step. 
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Formula 2.7: Lax-Friedrichs flux averages the interior (ξ i –
) and exterior (ξ i +

)  
contributions.

Formula 2.8: Interior- and exterior flux contributions on an edge.

Formula 2.9: Discrete system of ordinary differential equations.



The goal is to update all unknowns in all triangles once in each grid traversal. That 
way one Euler time-step is equivalent to one traversal. In each triangle the flux 
values are needed from the previous-,  next-,  and far  neighbor before the cell-
based unknowns are  updated to  represent  the  next  time-step.  For  the  update 
'n+1', all the flow values use data in each triangle from traversal 'n'. In the example 
in  Figure  2.24 the  yellow  triangle  obtains  the  flow  value  from the  entry-edge 
directly  because that  value was already used in the previous triangle.  The flux 
through the exit-edge can be computed by simply accessing the local unknowns in 
the  yellow-  and  in  the  next  triangle  because  these  are  stored  in  consecutive 
locations in the numerical array. This is possible because both the current- and the 
next triangle still holds values computed in traversal 'n'. 

The flux computation through the color-edge poses the only difficulty. There are 
two possible solutions: the triangle-only traversal, in which there is direct access to 
the color-neighbor via a pointer or an index; and the edge-stack system traversal, 
in  which  we  pass  information  through  the  color-edges.  Both  solutions  are 
implemented, but the triangle-only is less efficient, though easy to implement, and 
serves only for benchmark purposes.

In the  triangle-only solution, when the traversal arrives to the yellow triangle (of 
type new), it accesses both the yellow- and the red triangle and computes the flux 
through the color-edge. This flux is then written to temporary storage in the red 
triangle's numerical data because, by the time the traversal reaches it, the yellow 
triangle's  unknowns are  already updated to  represent  the  state  after  time-step 
'n+1'. Therefore, the flux computation on the color-edge is done in every triangle of 
type new, and the stored value is reused in triangles of type old.
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Formula 2.10: Explicit Euler time-stepping.

Figure 2.24: Information exchange during DG traversal. The yellow triangle is  
encountered first in the traversal, the red triangle is encountered later.



In the edge-stack system solution, when the traversal reaches the yellow triangle of 
type  new,  there is no way of directly accessing anything from the red triangle. 
Information can only be propagated forward in the traversal direction via the edge-
stack system. The partial flow from the yellow triangle could reach the red triangle 
later in the traversal, but the partial flow from the red triangle can definitely not 
reach the yellow triangle. The only way to process the yellow triangle correctly is if  
the corresponding flux value from the red triangle is already available on the color-
edge. 

Placing the correct flux value onto the color-edge is only possible in the previous 
traversal after the cell-based unknowns were updated from time-step 'n-1' to time-
step 'n'. This way, in the current update 'n+1' we take the correct flux value from 
the color-edge, and, together with the fluxes from the entry- and exit-edge, we 
update the cell-based unknowns to represent time-step 'n+1'. After this update we 
need to provide the interior flux contribution on the color-edge for use in the next 
time-step. In a new triangle this partial flux is computed and stored on the color-
edge separately from the flux that is still in use by the current traversal and placed 
on a temporary color-stack.  In an  old triangle the partial  flux is computed and 
summed up with the part from the other side residing on the temporary color-
stack. The total flux value is then stored in the color-edge, replacing the flux for the 
current  update,  and  is  placed  on  the  output  stack  ready  for  use  in  the  next 
traversal 'n+2'.

With this computation pattern we compute one Euler step with a single Sierpinski 
traversal, and information flow is achieved with the edge-stack system. The flux 
exchange via edges is done similarly when the grid is adaptive and conforming. 
Conforming  grids  do  not  have  so-called  hanging  nodes,  and  an  edge  always 
connects at most two triangles, not more (see chapter 3). Furthermore, no global 
discretization matrix is assembled; all computations are strictly element-local. The 
applications using the Peano grid management system work in a similar fashion, 
while, for example, with amatos or dendro a global system of equations has to be 
constructed and solved.

If  the  algorithm were  extended  to  perform Runge-Kutta  time integration,  each 
slope would be computed analogously to the Euler time-step in one grid traversal. 
Additional memory would need to be allocated in the triangle cells for each slope 
and each unknown, to store intermediate slopes, while the memory used for flux 
terms would be allocated once and reused for all slopes.
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3. Sierpinski-based Adaptive Mesh Refinement 
and Coarsening

For  tracking the wave fronts  accurately  in  the  oceanic  wave propagation,  it  is  
desirable to have smaller triangle cells in surroundings where the differences in 
water height are considerably large and to have bigger triangles in regions with 
small- or no difference. Since the wave propagation is time-dependent, there is no 
way  to  predict  its course  in  advance,  and  the  adaptive  mesh  refinement  and 
coarsening has to happen dynamically. Refinement-, coarsening-, or no change 
requests are posted for each triangle during a discontinuous Galerkin traversal, 
based on certain criteria like the local change of the unknowns. Adaptation follows 
in several traversals, which will be described in the course of this chapter.

Our adaptive mesh refinement will always produce so-called conforming triangular  
grids in which no hanging nodes are allowed. In such a grid any edge lies exactly 
in between two adjacent triangles, but not more. Thus, the data access pattern 
during numerical computation described in the previous chapter – data exchange 
between neighbor triangles exclusively through edges – will  be preserved. This 
consistency  check  requires  additional  traversals  after  the  initial  refinement 
requests. 

During the actual dissection and joining of the triangles the numerical data of each 
triangle cell  persists,  and interpolation/restriction is  required for  refinement and 
coarsening operations. If it was used, the node-stack system would be persistent 
too;  nodes  with  interpolated  values  would  be  added  or  removed  from  the 
respective stacks and streams (for details on this see Vigh (2007)).  The edge-stack 
system, on the other hand, is rebuilt from scratch during a re-initialization traversal 
on the new grid. A persistent edge-system is not required for our discontinuous 
Galerkin traversals, and the rebuilding traversal is also used to search for inter-
process boundaries in the parallel implementation (see chapter 4). The initial flow 
values  that  are  needed  on  the  color-edges  before  the  discontinuous  Galerkin 
traversal may start again, and are calculated in this re-initialization traversal too.

Adaptive mesh refinement and coarsening must be performed after each time-step 
for  fully  adaptive  grids.  However,  as  will  be  presented  in  the  performance 
measurements of chapter  5, the cost of an adaptive step in terms of computing 
time is about 3 or 4 Euler time-steps. We believe that in the future, when using 
higher order spatial discretization with perhaps fourth- or higher order Runge-Kutta 
time-stepping, this ratio may drop significantly, perhaps to 1 or even below. This 
assumption  is  based  on  the  fact  that  one  computation  traversal  needs  to  be 
executed for each Runge-Kutta slope. This effectively increases computing time 
for one time-step, while the adaptation workload increases only slightly due to an 
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increase in numerical data volume. 

3.1. Refinement scenarios of a single triangle cell

Various refinement scenarios of a single triangle cell are illustrated in Figures 3.1 
through 3.4. The corresponding partial binary refinement trees are depicted on the 
right-hand-side  of  each  picture.  In  Figure  3.1 the  original  triangle  is  bisected 
through the hypotenuse with the blue segment. In Figures 3.2 and 3.3 in addition 
the left- and the right child, respectively, is (recursively) bisected through its own 
hypotenuse. In Figure 3.4 both children are bisected, delivering a fully refined sub-
grid and sub-tree of depth two.
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Figure 3.1: Single refinement – triangle is bisected through the hypotenuse.

Figure 3.2: Multiple refinement – left child is bisected as well.

Figure 3.3: Multiple refinement – right child is refined as well.



While  in theory  it  is  possible  to introduce further  refinement  on the grandchild 
triangles, we limit the refinement in one adaptive step to 2 depth levels per triangle 
cell. These are required to solve the hanging node problem described next. 

3.2. Hanging node problem and refinement cascade

A hanging node occurs when a triangle on one side of an edge is refined while the 
triangle on the other side is left unchanged. Figure 3.5 illustrates such a scenario, 
in which the common edge is the hypotenuse of both neighbor triangles. If such 
hanging  nodes  were  allowed,  the  original  hypotenuse  would  connect  three 
adjacent triangles. In addition, special numerical treatment would be necessary in 
the discontinuous Galerkin traversal or, in fact, in any kind of numerical traversal. 
The edge-stack system, as described in the previous chapter, would need to be 
modified to work correctly and would become much more complicated.

If the original refinement request from the triangle on the top is transmitted through 
the connecting edge to the lower triangle, then a forced bisection eliminates the 
hanging node, as depicted in  Figure 3.6. Therefore, the refinement requests are 
stored in the edges in form of a please_refine flag.
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Figure 3.5: Hanging node problem – triangle on top was refined while the bottom 
triangle remained unchanged.

Figure 3.4: Maximum refinement – both children are refined, delivering four  
grandchildren.



In Figure 3.7, the smaller triangle on the top-left is bisected by the blue line. The 
common edge connecting the original triangles is a hypotenuse in one, and a leg in 
the other triangle. The refinement, when propagated through to the big triangle, 
has  to  trigger  two  bisections  along  the  blue  dashed  lines.  Therefore,  the 
hypotenuse of the big triangle has to be marked for refinement too.

It may happen that a refinement through a hypotenuse-leg neighbor relationship 
triggers  a  cascade  of  refinements,  like  in  the  example  in  Figure  3.8.  In  this 
example, the cascade involves triangles in both forward- and backward direction 
of the Sierpinski  curve. Because of the bidirectional nature of such a cascade, 
following it directly would be computationally too expensive. Instead, to propagate 
the cascade in both directions, so-called consistency traversals will be executed at 
least  twice  after  the  initial  refinement  requests  were  posted.  However,  forced 
refinements can, in turn, trigger even more refinements. The consistency traversals 
need to be executed until there are no more additional forced refinements at all.  
The operation in each triangle is to mark the hypotenuse for refinement (set the 
please_refine flag) if one of the legs is already marked. Stevenson (2008) showed 
that  all  additional  bisections  to  retain  conformity  inflate  the  final  number  of 
triangles by at most a constant factor. This means that the consistency traversals 
will eventually terminate, and in my experience they do generally stop after 2 to 4 
traversals. After adaptation, the new grid corresponds to the grid that would be 

40

Figure 3.6: Edge-based refinement propagation. Hypotenuse-hypotenuse neighbor  
relationship.

Figure 3.7: Edge-based refinement propagation. Hypotenuse-leg neighbor  
relationship. Refinement is enforced on the hypotenuse of the big triangle before  

the hanging node is eliminated on the common edge.



generated by amatos, with the same initial grid and same refinement requests. 

For adaptive Cartesian grids constructed with quadtrees or octrees (e.g.  Dendro 
by Sundar et al, (2007a and 2007b) or  p4est by Burstedde et al, (2011)) or with 
space-trees  based on recursive  trisection  (e.g.  Peano by  Weinzierl  (2009)  and 
Neckel  (2009)),  there  are  always some form of  hanging nodes.  The conformity 
condition holds if the difference in depth level in the refinement tree of any two 
geometrically  neighboring  grid  cells  is  not  more  than 1.  That  way,  all  hanging 
nodes are so-called level-1 hanging nodes. 

Figure 3.9 shows an adaptive grid refined with the Peano concept, in which the 
level-1 hanging nodes are marked with circles. The level-2 hanging nodes marked 
with  dark  squares  trigger  additional  refinements.  The  refinement  information  is 
propagated with the help of a node-stack system (see Weinzierl, 2009).
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Figure 3.8: Refinement cascade – refinement requested in the orange triangle  
triggers a cascade of refinements in other triangles (blue dashed lines).

Figure 3.9: Peano level-1 (circles) and level-2 (dark squares) hanging nodes in 2D.  
(Neckel, 2009).



In  Figure 3.10 the ripple-effect is shown in the adaptive grid refined with quad-
trees, as a result of the so-called 2:1 balancing when using Dendro. In Dendro 
locational  codes  of  the  octants  are  used,  the  ripple-effect  is  tracked  and 
conformity is enforced within a single grid traversal. 

3.3. Coarsening

Compared  to  refinements  or  no-change  requests,  coarsening,  or  merging  two 
sibling triangle cells has low priority. Coarsening does not cause any cascades, 
however, care must be taken to avoid hanging nodes. In  Figure 3.11, when the 
upper two triangles (1 and 2) are merged, it is necessary to merge the lower two as 
well (3 and 4). All four triangles have to agree on the coarsening action, in which 
case in the new grid the inner edges II and IV disappear and edges I and III unite 

to form the hypotenuse of the merged triangles.

Coarsening has to be aborted if any of the outer edges V to VIII are marked for 

refinement.  Considering  a  case  when,  for  example,  edge  VII is  marked  for 

refinement,  in  order  to  cancel  the  coarsening  operation  and  keep  the  grid 
conforming, it has to be known in both the upper- and in the lower triangle couple. 
During the adaptation traversal in which the actual coarsening happens (along with 
all  the  refinements  as  well),  in  order  to  be  merged  triangles  1  and  2  will  be 
accessed simultaneously. The restriction from edge VII in triangle 3 has to arrive 

to at least one of them, and this can happen through edge III. For this purpose, 

during  the  consistency  traversals,  leg  edges  are  marked  as  no_coarsening in 
triangles  in which the hypotenuse is marked for refinement or in triangles in which 
no-change request  was  posted.  This  way,  if  a  restriction  is  in  effect,  that 
information  is  communicated  to  at  least  one  edge  that  would  form  the  new 
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Figure 3.10: 2:1 balancing for a quadtree grid in 2D. Ripple effect: refinement on  
the left (blue lines) triggers additional refinements (blue dotted lines).



hypotenuse (edge I or III), and the coarsening operation will not be performed.

Another correctness check during coarsening is that the two subsequent triangle 
cells  to  be  merged  have  to  be  siblings  in  their  refinement  tree.  Figure  3.12 
illustrates a correct coarsening scenario, in which the sibling triangles are correctly 
merged  into  their  respective  parents.  The  grid  is  correctly  represented  by  its 
adjusted refinement tree and the linear ordering of the leaf triangles is still the one 
imposed by the Sierpinski curve.

Example of what can happen, if non-siblings are merged, is in Figure 3.13. In the 
left picture, the merged triangles do not align into the Sierpinski order. On the right 
picture, the merged triangles form a square.
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Figure 3.11: Coarsening agreement – all internal edges (I to IV) must agree on 

coarsening. Any restriction needs to be propagated to at least one of the edges  
that would form the new hypotenuse (I or III).

Figure 3.12: Correct coarsening – merging siblings is the correct inverse operation  
of a bisection. The merged triangles keep the linear Sierpinski order.



In  a  recursive  traversal  it  is  trivial  to  check  the  sibling  relationship  of  two 
subsequent leaf triangle cells. The implementation of every type of traversal was 
recursive at first, and the refinement tree(s) had to be updated as well, in addition 
to  the  leaf  triangle  arrays containing  numerical  unknowns.  The  first  adaptation 
traversal  was implemented in Vigh (2007),  and could perform only refinements. 
Coarsening was added by me later, with the implicit sibling-checking offered by 
the nature  of  the  recursive  traversals.  Recently  I  switched completely  to  loop-
based traversals for obvious performance considerations discussed in chapters 4 
and 5. In the loop implementation the refinement tree is not used anymore, and I 
use binary tree locational codes for the leaf triangles to identify siblings. 

3.4. Full step of adaptive refinement and coarsening

The full  adaptive step, after which the discontinuous Galerkin traversals can be 
resumed on the new grid, consists of the several management traversals illustrated 
in  Figure 3.14. It  begins with one that  transfers the triangle-based refinement-, 
coarsening- and no-change requests into the edge-stack system. This step will in 
the future be merged into a discontinuous Galerkin traversal, which would reduce 
the total execution time of a full adaptive step by about 5%.

The consistency traversals are executed multiple times, and spread the refinement 
and coarsening information around the grid. The cycle is stopped when the last 
consistency traversal did not change anything anymore. At this point all refinement 
cascades and coarsening scenarios were resolved, and actual adaptation can start 
without additional consistency checks (except sibling checking for coarsening). 

The recursive adaptation traversal bisects or merges the triangles by updating the 
refinement tree and builds the new leaf triangle array with the numerical unknowns. 
Interpolation  and  restriction  is  performed  where  necessary.  At  the  end  of  the 
traversal the edge-stack system becomes obsolete and is discarded.
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Figure 3.13: Incorrect coarsening – merging non-siblings leads to erroneous  
triangle position (left) or to a square (right).



The re-initialization traversal  builds  a  new edge-stack system on the  new and 
conforming grid, and simultaneously computes and stores initial flow values on the 
color-edges.  These  flow  values  on  color-edges  are  needed  by  the  first 
discontinuous Galerkin traversal, as already shown in the previous chapter, section 
2.3.3, “Data access pattern in the discontinuous Galerkin traversal”.

The computation time of a recursive full adaptive step is equivalent of about five or 
six  discontinuous  Galerkin  traversals  performing  the  Euler  time-stepping. 
Switching to loop-based traversals reduces this ratio to three or four. The parallel 
full  adaptive step with exclusively  loop-based traversals  looks slightly  different, 
and  will  be  presented  in  the  next  chapter,  “Parallelization  and  Performance
Optimization”. Details of the performance gain induced by loop-based traversals 
will be shown in chapter 5, “Performance Analysis”.
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Figure 3.14: Full adaptive step consists of several management traversals.  
Consistency traversals ensure that the new triangle system will be conforming, with  

no hanging nodes. Numerical unknowns will be adjusted to the new grid by  
interpolation and/or restriction. Edge-stack system is recreated to match the new  
grid. Initial flow values are computed and stored in the color-edges, ready for use  

in the next discontinuous Galerkin traversal.
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4. Parallelization and Performance Optimization

Parallelization of the traversals is done using Message Passing Interface (MPI), 
which  is  optimized  for  distributed  memory  systems.  Partitioning  is  based  on 
space-filling  curve  methods,  given  the  built-in  Sierpinski  curve.  Loop-based 
traversals are introduced not only to optimize execution times for single traversals, 
but also to facilitate easy traversal-cutting – starting and stopping a traversal at 
any point in the grid – when processing single parallel partitions. The explicit binary 
tree is not updated, and locational codes of the triangle cells are used instead, 
when needed, during coarsening consistency checks. The information exchange 
between neighboring partitions is exclusively edge-based, as it is required by our 
discontinuous Galerkin traversal, and is embedded into the existing edge-system. 
Global  reduction  operations  are  performed  in  between  consistency  traversals 
during adaptive mesh refinement, to check the global stopping condition. Load-
balancing  redistributes  the  new  grid  equally  among  the  processors  in  an 
“MPI_AllToAllV” fashion, and the parallel edge-system is reinitialized. 

4.1. Domain decomposition with the Sierpinski curve

The Sierpinski space-filling curve offers a straightforward approach to partitioning. 
Triangles are sequentially ordered by the curve and, by cutting the curve into equal 
parts, each partition gets the same amount of triangles. This method is applied 
both for the initial  grid creation and for load-balancing after the adaptive mesh 
refinement. For example, in Figure 4.1 a uniform grid of 32 triangles is divided into 
three  equal  parts  along  the  Sierpinski  curve,  marked  with  different  colors. 
Furthermore, Figure 4.2 shows two snapshots of an expanding semi-circle, along 
which  the  grid  was  refined.  Repartitioning  with  load-balancing  shows  that  the 
partitions  can  radically  change  their  geometric  positions.  This  domain 
decomposition method is  also used by the parallel  version of  amatos –  called 
pamatos (Behrens and Zimmermann, 2000).

Quality of the partitions is relevant in two aspects: equal amount of computational  
load,  and  low surface-to-volume ratio.  Partitions obtained by space-filling curve 
approaches are by construction optimal in the first aspect. Due to the good locality 
properties of the Sierpinski curve, our partitions are also well-behaved regarding 
the second aspect. Griebel and Zumbusch (1998) showed that partitions created 
with  space-filling  curves  in  general  have  low surface-to-volume ratio,  which  is 
desirable for reducing the amount of inter-process communication. 
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For a parallel discontinuous Galerkin traversal we need to traverse single partitions 
efficiently (in section 4.2), and need to extend the edge-stack system to deal with 
inter-process boundaries (in section 4.3). Adaptive mesh refinement in parallel will 
be discussed subsequently in section 4.4.
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Figure 4.1: Uniform domain of 32 triangles decomposed into 3 sub-domains along  
the Sierpinski curve. Red and blue domains have 10 triangles each, and the green  

domain gets the remaining 12.

                                               

Figure 4.2: Expanding semi-circle. Grid adaptively refined along the semi-circle,  
divided into 3 sub-domains. Sierpinski curve is omitted for clarity. Load-balancing  

causes the partitions to radically change their geometric position.



4.2. Loop-based vs. recursive traversals

As we have seen so far,  the Sierpinski-based grid management algorithms are 
inherently recursive. The Sierpinski-specific triangle attributes from chapter  2 are 
recursively  computed according to  the  given rules  and formulas.  However,  the 
effective work performed on the numerical unknowns is done only on the leaves of 
the supporting binary tree. In fact, the numerical unknowns of the leaf triangles are 
stored in a simple linear array. The idea is to have the triangle attributes of the 
leaves saved in an array too, of the same length as the numerical array, and then a 
simultaneous loop over these two arrays replaces the recursive traversal routine.

The inspiration  of  loop-based traversals  came from  Dendro,  when I  was  on a 
research stay at Georgia Tech.  Dendro uses tree structures only to generate the 
leaf cells in the desired order and then it discards the tree structure completely 
(Sundar et al. 2007a). Another grid generator called  p4est from Burstedde et al. 
(2011), which generates rectangular grids using forests of octrees and the space-
filling Morton curve (like  Dendro), also adopted the storage of leaf octants in an 
array. This linearization of the leaf elements is – according to my knowledge – not 
present in amatos or Peano. 

The first attempts to linearize the leaf triangles rendered the loop-based Sierpinski 
traversal  three  times  faster  than  its  recursive  counterpart.  This  impressive 
improvement faded somewhat in the course of the code evolution, but it is still  
present with 25% to 50% computational speed gain, depending on the traversal 
type. This gain comes with a cost of around 16 bytes per triangle, in which the 
triangle attributes are stored. However, this is only 30% of the total memory usage 
per leaf triangle, and is a fixed cost. Should the numerical scheme change, only 
the amount of memory allocated for numerical unknowns will have to be adjusted. 
The first performance measurements comparing the loop-based vs. the recursive 
traversal we published in Bader et al. (2012), and will be presented in chapter  5, 
“Performance Analysis”.

Dropping the binary tree and using loop-based traversals has advantages in the 
parallel implementation, too. Traversal cutting is simplified, the linear arrays contain 
only the partition-local triangle information. In a recursive traversal a whole binary 
tree would be traversed, including parts that contain foreign elements. In contrast 
to our linearized solution, Peano adjusts the space-trees in each parallel partition 
in such way, that parts which do not contain local elements are coarsened to the 
maximum extent possible.

Also  load-balancing  becomes  simpler  with  the  loop-based  traversals,  since  it 
involves relocation of array structures only, in an MPI_All-to-All fashion (details in 
section 4.4).
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4.3. Parallel edge system and parallel traversals

Figure  4.3 shows  an  example  of  inter-process  boundary  edges  (thick  lines) 
between two partitions. By construction of the partitions the crossed-edges are 
always inner edges, except for the first- and the last crossed-edge. The first- and 
last  crossed-edge  can  be  either  inter-process  boundary  or  geometric  domain 
boundary. All the other inter-process boundaries are color-edges.

Before  starting  a  discontinuous  Galerkin  traversal,  the  inter-process  boundary 
edges have to contain the flux values in advance, similarly to the regular color-
edges. Computing the correct flux value happens in two stages. First, during a 
traversal the process-interior contribution is calculated and stored. Secondly, at 
the end of the traversal, the stored values are exchanged between partitions and 
summed up to form the full flux value. 

During the discontinuous Galerkin traversal, the inter-process boundary edges are 
accessed once. Their stored flux is used to update the cell-based unknowns, and 
the new partial  flux value is  computed and written to them. At  the end of  the 
traversal,  the inter-process edges are exchanged with  their  respective partition 
neighbors and flux values are summed up in preparation for the next traversal. 

The access pattern to the inter-process boundaries of the same color during a 
traversal is stream-like. Two separate arrays will be allocated for red- and green 
colors for each neighbor of the partition in a process, as shown in Figure 4.4. Two 
arrays  per  neighbor  are  necessary  because  the  access  orders  in  the  two 
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Figure 4.3: Inter-process boundaries (thick lines): red-, green- and crossed-edge  
boundaries between blue and yellow partitions.



communicating neighbors differ.  The size of these arrays is of the order of the 
temp-stacks for  the  standard  color-edges. The  first  and  last  crossed-edge  is 
treated at the beginning of the traversal, and stored on one of the color process 
boundary arrays. 

During a traversal, the stack-system operations – described in chapter 2, section 
2.2.2 – are slightly modified. If  the color-edge of a triangle cell  is inter-process 
boundary, then it is read from its dedicated array, and, after usage, it is written 
back to it. The fact that whether the color-edge of a triangle is partition-local or a 
process  boundary,  is  stored  in  the  triangle  array  introduced  for  loop-based 
traversals, together with the rest of the Sierpinski attributes. It simply contains the 
rank of the neighbor on the other side of the color-edge.

In  the  initial  construction  of  the  parallel  edge-stack  system,  in  addition  to 
constructing the standard color-edges, a search for the inter-process boundaries is 
performed. Since there is absolutely no topological information available at first, a 
global traversal is executed on the whole domain. Because of the global nature, 
this algorithm does not scale in parallel, and will not be reused at the end of an 
adaptive step or after load-balancing. 

During this initial construction traversal, when a color-edge is created in a triangle 
of type  new, the global index of the triangle is written to it and pushed onto the 
temporary color-stack. When the color-edge is encountered for the second time in 
the  other  triangle  of  type  old,  the  two  triangle  indexes  are  compared.  If  both 
triangles belong to the partition owned by the process, the edge is an internal 
color-edge and is stored accordingly. If both triangles belong to foreign partitions, 
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Figure 4.4: Parallel edge-stack system. Inter-process boundary arrays used with  
simple blocking MPI communication.



the edge is discarded. If one of the triangles belongs to the own process while the 
other is foreign, an inter-process boundary edge was found. The edge is written to 
the respective process boundary array and in the own triangle – for which also the 
Sierpinski attributes are saved – the rank of the foreign neighbor is stored. At the 
end of the global search, the parallel edge-system is ready for use in parallel loop-
based traversals on its own partition.

The  current  implementation  of  the  parallel  edge-system supports  non-blocking 
MPI communication as illustrated in Figure 4.5. It uses a receive- and a send buffer 
in addition to a working copy of the inter-process boundary arrays.
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Figure 4.5: Parallel edge-stack system. Inter-process boundaries with non-blocking  
MPI communication. Additional send- and receive buffers needed in addition to  

the working copy.



4.4. Adaptive refinement and coarsening in parallel

Parallelization of the traversals in the adaptive mesh refinement step presented in 
chapter  3 includes a few challenges. The flow-chart in  Figure 4.6 reiterates the 
sequential adaptive step and highlights the problems for the parallel case. 

The first issue is the stopping condition in the consistency check loop, which has 
to be global. Otherwise it may happen that one partition stops the loop early, while 
another performs some additional traversals.  Traversal directions could become 
opposite in different partitions, which would cause a mix-up in the inter-process 
boundary orders. Furthermore, a refinement request might be propagated onto an 
inter-process  boundary  that  would  not  be  picked up by  the  neighbor  partition 
which  has  stopped the  loop  early.  This  would  lead to  hanging  nodes  and  an 
inconsistent grid. Therefore, the solution is to perform a global “MPI_AllReduce” 
operation  on  the  stopping  condition  at  the  end  of  the  loop,  to  avoid  all  the 
inconsistencies mentioned above.
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Figure 4.6: Parallelization issues during an adaptive step. Stopping condition for  
consistency loop is local and needs to become global. Coarsening correctness  

check (only siblings allowed to merge) is inherently recursive and based on binary  
tree traversal, which should not be used. Re-initialization of the inter-process  

boundaries is a global search on the entire grid, which hinders parallel speed-up.



The other two issues are more complex, and will therefore be discussed more in 
depth in the following subsections. Recursive coarsening check for siblings has to 
be  replaced  by  a  loop-based  algorithm,  presented  in  the  next  section.  Re-
initialization of the parallel  edge-stack system, as presented before, is a global 
search on the entire grid. Not only that the entire grid is not available in every 
processor,  but  also  parallel  speed-up  is  out  of  the  question.  A  partition-local 
solution  will  be  presented  in  section  4.4.2 involving  neighbor  index  prediction 
before the actual refinement and coarsening happens. Finally the full adaptive step 
in parallel with load-balancing is the subject of section 4.4.3.

4.4.1. Loop-based coarsening check

Merging two triangles is only allowed if they are siblings in the binary tree. Merging 
incorrect triangles leads to an inconsistent  grid,  as shown earlier  in  chapter  3, 
Figure 3.13. In order to check the relationship between two subsequent triangles, 
we need their binary tree location codes. Storage requirement is one additional 
integer per triangle cell. In  Figure 4.7 an example of a binary tree is given with 
location codes and the sibling detection rules. 

As  a  result,  an  additional  traversal  is  introduced  to  delete  those  coarsening 
requests  that  would  cause  inconsistencies.  In  addition,  this  coarsening_check 
traversal computes the new size of the local partition in the new grid, by summing 
up the amount of triangles based on all refinement- and coarsening requests. This 
new size will be valid after the mesh refinement and before load-balancing. At the 
end of the traversal all processes communicate the new size to all other processes 
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Figure 4.7: Binary tree location codes. Sibling detection based on location codes.



and each process can adjust its new start- and end indexes to the global values. 
These  values  will  be  used  later  during  the  actual  refinement  and  coarsening 
traversal.

Another issue is the coarsening of two siblings that lie on two different partitions. 
This  inter-process  coarsening  would  cause  additional  communication  between 
subsequent  processes during adaptive refinement and I  chose to avoid it.  The 
initial partitioning of the grid must ensure that every pair of siblings belongs to the 
same process. Siblings produced by refinement are on the same process before 
any load-balancing. Siblings may become separated only as a result of coarsening. 
Therefore, after the adaptive mesh refinement and the optional load-balancing, all  
separated siblings will be moved to only one of the two processes that hold them. 
This sibling exchange happens just before the re-initialization of the parallel edge-
stack system.

4.4.2. Neighbor index prediction

Re-initialization of the parallel edge-system without any topological information is 
basically  a  global  search for  color-edges that  are inter-process boundaries.  As 
described  in  section  4.3,  those  color-edges  are  searched  for,  which  connect 
triangles of  two different  partitions.  Furthermore, only  those edges are relevant 
which connect the partition-local triangles to foreign partitions. 

The idea is to generate the global index of the new color-edge neighbor for each 
triangle in the new grid. If every triangle knows the index of its color-neighbor, then 
it also knows whether that neighbor lies in the same partition or in a foreign one. 
This  way  the  re-initialization  traversal  can  be  performed on the  local  partition, 
generating the local color-edges and also all the inter-process boundary edges. As 
a consequence, a global search is avoided and parallel speed-up can be achieved.

Generating  the  color-edge  neighbor  index  for  all  the  new  triangles  requires  a 
simulation of the adaptive mesh refinement. During this simulation traversal a local 
counter is incremented and stored in the edges of the existing edge-system. When 
an edge is encountered for the first time, it will store the current counter value for  
transfer to its other side. If the edge is refined, it will transfer two index values.  
When the edge is encountered the second time, it contains the index value(s) of 
the triangle(s) from its other side, and can match them to the current value of the  
counter. Thus, the future color-neighbor relationship is determined and adjusted to 
the global  indexes obtained from the previous  coarsening_check traversal,  and 
saved into a dedicated array.

At the end of the simulation traversal, the existing inter-process boundary edges 
are exchanged and the color-neighbor relationships are resolved for those triangles 
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that are/will be on process boundaries too.

After this neighbor index prediction the actual adaptive mesh refinement may start. 
The precomputed neighbor indexes are written to the new triangles, in the location 
where, during regular traversals, the color-edge type or the inter-process neighbor 
rank is stored. This way, with or without load-balancing, the parallel edge-system 
can be re-initialized with a simple partition-local traversal.

4.4.3. Full adaptive step with load-balancing

Figure  4.8 shows  the  updated  flow-chart  of  the  parallel  adaptive  step.  In  the 
consistency loop an  MPI_AllReduce operation is inserted for the global stopping 
condition. The  coarsening check is loop-based, uses binary tree location codes 
and  computes  new  partition  lengths.  New  neighbor  prediction simulates  the 
adaptive mesh refinement to compute color-edge neighbors in the new grid. The 
actual  adaptive  mesh  refinement creates  the  new  triangles.  The  numerical 
unknowns are interpolated. The Sierpinski attributes are computed according to 
the rules presented in chapter 2, and the color neighbor indexes are placed where 
the type of the color-edge (internal or process boundary rank) will be stored later.  
The binary tree location codes are also recomputed accordingly.

At  the  end  of  the  adaptive  mesh  refinement traversal  the  old  edge-system is 
discarded, and optionally load-balancing may be executed. Load-balancing has to 
balance three arrays in calls to  MPI_AllToAllV,  in which a process specifies the 
indexes and the amount of elements to send and to receive to- and from all other 
processes. It may happen that a process exchanges elements not only with the 
previous- or the next partition in the Sierpinski curve direction, but with partitions 
that  are further  away.  This  is  the case when a massive amount of refinements 
happen in one partition, but few or none in the next, and the geometric position of  
the partitions changes extremely. An example of extreme changes in partitions is 
illustrated in Figure 4.9, in which snapshots of an oceanic wave propagation on 7 
partitions are shown.

The three arrays that  have to  be exchanged are  the  numerical  unknowns,  the 
Sierpinski attributes and the binary tree location codes. Since these arrays are all  
linked to the leaf triangle cells, some or all of them could be merged together, and 
there  would  be  less  MPI_AllToAllV calls.  These  performance  aspects  were  not 
checked,  since  the  parallel  adaptive  mesh  refinement is  development  of  last 
minute.

After the optional load-balancing each process checks its first- and last triangle's 
binary tree location code, and exchanges it with the previous- and next partition. If 
siblings are separated by a crossed-edge process boundary, then one of those 
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process pairs gets both triangles, in order to avoid inter-process coarsening in the 
next adaptive step.

Finally the parallel edge-system is rebuilt in a single partition-local traversal. Inter-
process  boundaries  are  found  based  on  the  neighbor  indexes  stored  in  the 
adaptive refinement traversal. Initial flux values are computed and stored on color-
edges and on inter-process boundaries and numerical traversals may be resumed 
on the new grid.

 

Our  adaptive  mesh  refinement  resembles  those  of  Behrens  and  Zimmermann 
(2000) and Mitchell (2007), but in our case the only persistent data is assigned to 
leaf triangles. We do not update, merge or exchange explicit binary tree data and 
no nodal data. The edge-based data is not persistent either, but is recomputed. 
Performance aspects of our parallel adaptive step will be given in the next chapter, 
“Performance Analysis”.
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Figure 4.8: Parallel loop-based full adaptive step. Arrays assigned to leaf triangles  
are persistent. Edge-system with inter-process boundaries is rebuilt after adaptive  

mesh refinement and load-balancing. No binary tree used or updated. No node  
information is considered.
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Figure 4.9: Wave-propagation with load-balancing on 7 partitions, top view.  
Partitions change geometric positions. (Joint work with K. Rahnema, 2011).



5. Performance Analysis

The first part of this chapter presents serial performance aspects of the Sierpinski-
based  traversals.  In  anticipation  of  higher-order  discontinuous  Galerkin 
discretization and of  Runge-Kutta  type time integration,  traversals  with  varying 
amount of artificial floating-point operations and with varying amount of numerical 
unknowns per triangle cell were executed. The performance is compared to the 
current discontinuous Galerkin traversal that solves the shallow water equations. 
Furthermore,  the  performance  difference  between  loop-based  and  recursive 
traversals is also given. A comparison between edge-stack system- and triangle-
only implementation of the numerical traversals shows why the former is preferable 
to the latter. Last but not least, the execution time of the full adaptive step – with  
the  distinct  traversal  types  it  contains  –  is  compared  to  the  benchmark 
discontinuous Galerkin traversal.

The second part analyses the parallel performance in terms of parallel speed-up. 
The  discontinuous  Galerkin  traversal  results  are  presented  at  first  without  any 
adaptive  mesh  refinement.  Consistency  traversals  are  tested  as  well,  because 
these contain no floating-point operations. The full adaptive mesh refinement step 
– which performs grid manipulations but no FLOPs – is measured separately. The 
complete solution of the shallow water equations with adaptive mesh refinement 
after every time step is presented at the end (joint work with K. Rahnema).

5.1. Serial performance analysis

When executing traversals using a single processor, we are interested in floating-
point  performance,  memory  throughput  speed and  memory usage per triangle. 
Depending on the traversal type and the amount of memory needed per triangle, a 
traversal  may  tend  to  be  computation-bound  or  memory-bound.  Triangle 
processing speed is a more common measure and is sometimes used to compare 
different traversal types. For  memory usage per triangle, only the bytes actually 
touched (read or  written)  by a traversal  are considered,  but  the full  amount of 
memory needed per triangle for the program to run may differ significantly. This is 
the case when, for example, adaptive mesh refinement needs to duplicate certain 
arrays, but a standard traversal uses only a single instance of them.

The serial performance measurements were performed on two platforms, with the 
characteristics summarized in  Table 5.1. The information is an excerpt from the 
official Intel product description website. The platform called  E7400 is a desktop 
system, and while T7700 is a laptop system.
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Platform name E7400 T7700

Full product name 
of CPU

Intel Core 2 Duo Processor 
E7400 (3M Cache, 2.80 GHz, 

1066 MHz FSB)

Intel Core 2 Duo Processor 
T7700 (4M Cache, 2.40 GHz, 

800 MHz FSB)

Code name Wolfdale Merom

Launch date Q1'08 Q2'07

# of Cores 2 2

Clock speed 2.8 GHz 2.4 GHz

Cache 3 MB L2 cache 4 MB L2 cache

System bus 1066 MHz 800 MHz

Lithography 45 nm 65 nm

Main memory (RAM) ~3GB ~4GB

Operating system Linux Windows XP

Compiler Intel Fortran Compiler 11.0 Intel Fortran Compiler 10.0.025

Table 5.1: Platforms used for performance testing. E7400 is a desktop system and  
T7700 is a laptop.

In  order  to  get  a  general  overview about  the  capabilities  of  the  hardware,  we 
introduce a reference benchmark that is relevant for the class of problem we are 
solving. A simple LINPACK benchmark for measuring the MFLOPS rate in our case 
makes  little  sense,  since  it  computes  a  dense  LU  decomposition,  which  is  a 
different  class  of  problem.  Our  discontinuous  Galerkin  traversal  resembles  a 
matrix-vector  multiplication  with  a  sparse  band  matrix.  For  this  purpose  we 
implemented a simple block-diagonal matrix-vector multiplication with a very large 
matrix, and the performance of it we consider as the best that can be expected 
from this class of problem. 

Measuring the memory bandwidth of a platform can be done by looping over huge 
vectors  and  performing  simple  operations  on  their  elements.  For  example,  a 
DAXPY operation updates each element of one vector  using two floating point 
operations  as  follows: A(i) = A(i) + q*B(i).  In  Bader  et  al.  (2012)  we 
showed with a cache analysis that such a vector update has the same order of 
compulsory  cache  misses  as  our  traversals.  McCalpin  (1995  and  1991-2007) 
measures  memory  bandwidth  in  a  similar  fashion,  but  uses  more  types  of 
operations during vector updates. However, since the block-diagonal matrix-vector 
multiplication is  also a long vector  update, with 7 floating-point  operations per 
element, I chose to use it as reference also for memory throughput speed.

Table  5.2 lists  the  reference  performance  of  the  block-diagonal  matrix-vector 
product and also for DAXPY vector update. LINPACK values were measured with 
“Intel Math Kernel Library 10.3.2.005” and the theoretical peak value is computed 
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by multiplying the clock frequency with the number of pipelines. One can observe 
that  the  highlighted  block-diagonal  matrix-vector  product  achieves  roughly  a 
quarter MFLOPS of the LINPACK, and about 65-70% MB/sec of the DAXPY vector 
update. 

E7400 T7700

MFLOPS MB/sec MFLOPS MB/sec

Block-diagonal
matrix-vector 

product
2,476 2,361 1,970 1,878

DAXPY 447 3,413 373 2,847

LINPACK 9,840 7,880

Theoretical peak

2.8 GHz x 4
=

11,200
MFLOPS

2.4 GHz x 4
=

9,600
MFLOPS

Table 5.2: Reference performance of the two platforms. Block-diagonal matrix-
vector product (gray) will be of relevance in our further discussion.

5.1.1. Artificially varying FLOP performance

Before implementing the discontinuous Galerkin traversal for solving the shallow 
water equations (DG-SWE), we wanted to see what the Sierpinski traversal with 
the edge-stack system can achieve in terms of MFLOPS and MB/sec. Eventually, 
our DG-SWE traversal uses three double-precision unknowns per triangle cell, and 
the flux terms transported on color-edges also use three doubles. It is obvious, 
that a higher-order discontinuous Galerkin discretization combined with a higher-
order time integration scheme will use more than three double-precision variables 
per triangle. Therefore, I  prepared a version of the traversal with 3 doubles per 
triangle, and one with 9. It is possible that 9 doubles are not even sufficient for a 
higher-order  discretization  scheme,  but  it  shows  the  behavioral  trend  of  the 
traversals.

The current DG-SWE traversal performs on average 90 floating-point operations 
per triangle, while, for example, the consistency traversal during adaptive mesh 
refinement performs none. Since the higher-order DG-SWE traversal is still work in 
progress  at  the  time  of  this  writing,  it  is  not  clear  how  many  floating-point 
operations  it  will  use  exactly.  Hence,  I  introduced  177  artificial  floating-point 
operations at first, and then I prepared further traversals by reducing this amount 
gradually to 0.

Increasing the amount of  FLOPs per  cell  should get  us closer to  the situation 
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where the performance is computation-bound. Increasing the amount of memory 
and  lowering  the  FLOPs  per  cell  should  lead  to  a  situation  in  which  the 
performance is more memory throughput bound. 

Execution  time  was  measured  for  100  traversals,  for  both  loop-based  and 
recursive versions, on a static but a-priori adapted non-uniform grid of 2 million 
triangles.  Similar  experiments  we already published in  Bader  et  al.  (2012)  with 
similar  outcome.  The  current  results  are  slightly  better,  since  the  edge-stack 
system was optimized by storing flux values on the color-edges only,  while  in 
Bader et al. (2012) the crossed-edges stored flux terms as well. 

Loop-based and recursive traversals using 3 (left) and 9 (right) doubles per triangle 
are shown in  Figure 5.1 for the E7400 desktop system. The MFLOP/sec rate is 
plotted against increasing amount of floating-point operations per triangle.  One 
can  observe,  that  the  MFLOP/sec  rate  increases  automatically  for  increasing 
computational load per triangle. The loop-based traversal always performs better 
than the recursive version. The limit performance of the loop-based traversal is 
slightly  above  1  GFLOP/sec  for  both  “thin”  and “fat”  traversal  variants,  which 
amounts to 40-50% of the reference performance achieved by the matrix-vector 
product.  This   limit  performance  seems  to  be  independent  of  the  amount  of 
memory used per triangle.

The current DG-SWE traversal uses 3 doubles per triangle with 90 FLOPs, and its 
performance is  directly  comparable to the  artificial  FLOP traversals.  The green 
markings in the left side of Figure 5.1 align well with the artificial FLOP traversals. 
The blue markings indicate the performance of a transport equation traversal with 
25 FLOPs per triangle. 
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Figure 5.1: Simulated MFLOPS rate for varying FLOP per triangle on E7400 desktop 
system. 3 doubles per cell (left) and 9 doubles per cell (right).



The memory throughput rate of the same traversals is plotted in Figure 5.2. For low 
amount  of  FLOPs  per  triangle  the  traversals  behave  as  if  they  were  memory-
bound, and up to 30-40 FLOPs per triangle are executed “for free”, in the same 
amount of execution time (here equivalent to the inverse MB/sec rate).  With no 
floating-point  operations,  the  loop-based  traversal  with  9  unknowns  gets  very 
close  to  the  maximum throughput  achieved by  the matrix-vector  product.  The 
rates for the 3 unknowns are lower than the ones with 9, and the Zero-FLOP loop-
based  traversal  achieves  only  half  of  the  matrix-vector  product.  Zero-FLOP 
traversals  are  used intensively  during  adaptive  mesh refinement,  and the 50% 
lower execution time of the loop-based over the recursive traversals is of utmost 
importance. 

The blue markings representing the performance of  the  DG transport  equation 
traversal  on the left  side  of  Figure  5.2 are  not  aligned with  the  artificial  FLOP 
traversals,  and  the  MB/sec  rates  are  even  lower.  This  drop  in  performance 
demonstrates  that  it  is  harder  to  achieve  a  good  performance  with  both  low 
memory footprint and low computational load per triangle cell. However, we also 
see that improved results can be expected for higher-order discretization with large 
amount of data volume and considerably higher computational load per triangle 
element. The expected 1 GFLOP/sec would be an exceptional performance for a 
matrix-free PDE solver on a fully adaptive grid.

The same experiments were carried out on the T7700 desktop system, and the 
results confirm the conclusions drawn above. The MFLOP/sec rates are in Figure
5.3 and the MB/sec rates in Figure 5.4.
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Figure 5.2: Simulated memory throughput rate for varying FLOP per triangle on E7400 
desktop system. 3 doubles per cell (left) and 9 doubles per cell (right).



5.1.2. Discontinuous Galerkin loop vs. recursive traversal

The loop-based traversals always perform better than their recursive counterparts. 
The performance difference is  higher  for  Zero-FLOP traversals,  while  the high-
FLOP traversals tend to be computation-bound, where the difference is lower, but 
still significant. As presented in the previous chapter, the loop-based traversals are 
also beneficial to the parallel implementation, removing the complexity associated 
with  the  (unnecessary)  traversal  and/or  adaptive  refinement  of  a  binary  tree 
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Figure 5.3: Simulated MFLOPS rate for varying FLOP per triangle on T7700 laptop 
system. 3 doubles per cell (left) and 9 doubles per cell (right).

Figure 5.4: Simulated memory throughput rate for varying FLOP per triangle on T7700 
laptop system. 3 doubles per cell (left) and 9 doubles per cell (right).



structure.  All  these advantages have a cost in terms of  additional  memory per 
triangle cell. Since the Sierpinski-based color-, entry/exit- and old/new properties 
can not be computed on the fly, in contrast to a recursive traversal, they have to be 
stored for the leaf triangles. 

Table 5.3 lists the memory usage of the grid components that are used during a 
discontinuous  Galerkin  traversal.  The  binary  tree  uses  1  byte  per  node  and  it 
contains twice as many nodes as leaf triangles. A bit-wise implementation would 
use  only  2  bits  per  triangle.  A  leaf  triangle  array  will  contain  the  numerical 
unknowns,  which  –  in  the  current  implementation  –  are  3  double-precision 
numbers, and, for the loop-based traversal, the Sierpinski attributes in 12 bytes. A 
color-edge  contains  3  doubles for  flux  transport  and 3  bytes  for  management 
purposes. The optimizing compiler translates the raw 27 bytes into chunks of 32. 
Since  most  of  the  time  a  color-edge  is  “shared”  between  two  neighboring 
triangles, its memory usage is also “shared” for simplicity, and counted as 16 bytes 
per triangle. 

Summing up the components used by the recursive-  and loop-based traversal 
gives per triangle 42 bytes for the former and 52 bytes for the latter. The additional  
10 bytes per triangle is only 25% of the otherwise 42 bytes, and is a constant 
factor. If we consider a future higher-order discontinuous Galerkin discretization, 
then the amount of memory for the numerical unknowns has to be increased, but 
not the 12 bytes for the Sierpinski attributes. 
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Grid entity
Entity 

components
bytes

per cell usage 
multiplier

bytes per cell

binary tree binary tree nodes 1 2x 2

Leaf 
triangle cell

(array)

leaf triangle
Sierpinski
attributes

12

1x

12

leaf triangle 
numeric data
(water height)

3x double = 24 24

Color edge
(stack 

system)

edge 
management 

data
3

~ 0.5x
- shared by two 

triangle cells
- border edges 
are not shared

0.5x 32 = 16
(treated as a single 

entity, the total of 27 
bytes are rounded up 

to 32 by the optimizing 
compiler)

edge numeric 
data (flux)

3x double = 24

Total used by LOOP DG-SWE traversal (no binary tree) 52

Total used by RECURSIVE DG-SWE traversal (no SFC data) 42

Table 5.3: Memory usage in DG-SWE traversal – bytes per triangle.

Tables  5.4 and  5.5 list  the  results  of  experiments  on  the  E7400  and  T7700 
platforms, respectively. Loop-based and recursive traversals were performed on 
different grids (uniform and a-priori adaptive) and execution time of 100 traversals 
was measured. The amount of triangles processed per second is given in the first 
of  the  last  three  columns  as  a  universal  comparison  between  any  kind  of 
traversals. The other measures are the memory throughput rate in MB/sec and the 
floating-point performance in MFLOP/sec. Loop-based results are highlighted in 
gray color. In the last three rows the average performance of the loop-based- and 
the recursive traversals is given, followed by the benchmark block-diagonal matrix-
vector product.

On both platforms the loop-based DG-SWE traversal exceeds the recursive with 
about 35% advantage. By processing 10 million triangles per second on E7400, it 
achieves  25% of  the  memory  throughput  speed of  the  block-diagonal  matrix-
vector product and roughly 40% of its floating-point performance.
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DG-SWE
on

E7400

ref.
depth

# triangles

total 
memory 

used
(MB)

exec.
time of 100 
traversals

(sec)

Million 
triangles 

per
second

memory 
throughput 
(MB/sec)

Floating 
point
perf. 

(MFlops)

loop 
traversal

20 2,097,152 109.12 21.27 9.86 513.02 887.37

recursive 
traversal

20 2,097,152 113.31 28.74 7.3 394.26 656.73

loop 
traversal

21 4,194,304 218.17 40.72 10.3 535.78 927.03

recursive 
traversal

21 4,194,304 226.56 55.56 7.55 407.78 679.42

loop 
traversal

22 8,388,608 436.34 81.77 10.26 533.62 923.29

loop 
traversal

23 16,777,216 872.55 162.99 10.29 535.34 926.41

loop, a-
priori 
adaptive

20-24 2,121,520 110.38 22.52 9.42 490.14 847.85

recursive, 
a-priori 
adaptive

20-24 2,121,520 114.63 29.01 7.31 395.14 658.18

loop, a-
priori 
adaptive

21-25 4,228,784 219.96 41.73 10.13 527.1 912.03

recursive, 
a-priori 
adaptive

21-25 4,228,784 228.42 55.84 7.57 409.06 681.57

Average LOOP DG-SWE trav. perf. (E7400) 10.04 522.5 904

Average RECURSIVE DG-SWE trav. perf. (E7400) 7.43 401.56 668.98

Block-diagonal matrix-vector product (E7400)
2,361

MB/sec
2,476

MFLOPS

Table 5.4: DG-SWE performance on E7400 platform. Loop version is 35% faster  
than the recursive one, achieves 22% of the memory throughput speed and 36% 

of the reference MFLOPS rate.
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DG-SWE
on

T7700

ref.
depth

# triangles

total 
memory 

used
(MB)

exec.
time of 100 
traversals

(sec)

Million 
triangles 

per
second

memory 
throughput 
(MB/sec)

Floating 
point perf. 
(MFlops)

loop 
traversal

20 2,097,152 109.12 23.59 8.89 462.57 800.1

recursive 
traversal

20 2,097,152 113.312 31.72 6.61 357.23 595.03

loop 
traversal

21 4,194,304 218.17 48.09 8.72 453.63 784.96

loop 
traversal

22 8,388,608 436.34 95.69 8.77 455.99 788.98

loop 
traversal

23 16,777,216 872.55 191.08 8.78 456.64 790.22

loop, a-
priori 
adaptive

20-24 2,121,520 110.38 24.25 8.75 455.18 787.37

recursive, 
a-priori 
adaptive

20-24 2,121,520 114.63 32.42 6.54 353.58 588.95

Average LOOP DG-SWE trav. perf. (T7700) 8.78 456.8 790.33

Average RECURSIVE DG-SWE trav. perf. (T7700) 6.58 355.4 591.99

Block-diagonal matrix-vector product (T7700)
1,878

MB/sec
1,970

MFLOPS

Table 5.5: DG-SWE performance on T7700 platform. Loop version is 33% faster  
than the recursive one, achieves 24% of the memory throughput speed and 40% 

of the reference MFLOPS rate.

The same experiments were performed also with the transport equation kernel, 
which – as stated before – has 25 FLOPs per triangle. The exact measurement 
data is omitted for brevity, instead a summary of the results is given in Table 5.6. 
The loop traversal with the transport equation kernel beats the recursive version by 
53% and 45% on E7400 and T7700 platforms,  respectively.  By processing 15 
million triangles per second on E7400, it achieves 33% of the reference memory 
throughput speed of the block-diagonal matrix-vector product, while MFLOP/sec 
is at 15%. Similar percentage rates were achieved on T7700.
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Loop-based
traversals

vs.
reference

performance

FLOP per 
triangle

Beats 
recursive 
version by 

(%)

Million
triangles

per
second

memory 
throughput (% 
of reference)

Floating point
perf. (% of 
reference)

E7400

DG-SWE 90 35% 10.04 22% 36%

TRANSPORT 25 53% 15.08 33% 15%

E7400 reference block-diagonal matrix-vector product
100%

2,361 MB/sec
100%

2,476 MFLOPS

T7700

DG-SWE 90 33% 8.78 24% 40%

TRANSPORT 25 45% 12.46 34% 16%

T7700 reference block-diagonal matrix-vector product
100%

1,878 MB/sec
100%

1,970 MFLOPS

Table 5.6: Discontinuous Galerkin traversals with SWE and TRANSPORT kernels  
vs. reference performance of the block-diagonal matrix-vector product in  

percentage points.

5.1.3. Edge-stack system vs. explicit neighbor indexing

Another set of experiments is meant to show the advantages of using an edge-
stack  system  for  (flux-)  information  transport  between  far  neighbor triangles, 
instead of a simple explicit neighbor indexing solution. The theoretical description 
of  both information transport  solutions and their  differences were  presented in 
chapter 2, section 2.2. The explicit neighbor indexing solution of the shallow-water 
equations was also referred to as  triangle-only solution, because it involves data 
structures associated to  the  triangle cells  alone.  In this  section I  refer  to  it  as 
Neighbor index traversal, since it highlights the implementation details better.

Only the loop-based version of the Neighbor index traversal was implemented and 
Table 5.7 lists its memory footprint. The actual index of the far neighbor across the 
missing color-edge was included in the 12 bytes of Sierpinski attributes, so for that 
purpose no additional memory was used. However, additional memory is allocated 
in each triangle cell  for  the flux term that needs to be exchanged with the far 
neighbor.  This  amounts  to  3  doubles  per  triangle  cell.  This  storage  scheme 
supplementing the color-edges uses roughly twice the amount of memory for flux 
transfer  during  a  traversal,  than  the  color-edge  system.  The  partial  flux  is 
computed and stored in the first triangle encountered during a traversal, and later 
the far neighbor reaches back to it for usage. The storage allocated in the second 
triangle is not used in the current traversal, but only in the next one. Hence the 
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23% more memory needed by the Neighbor index traversal relative to the edge-
stack system solution of the DG-SWE.

Grid entity
Entity 

components
bytes

per cell usage 
multiplier

bytes per cell

Leaf triangle 
cell

(array)

leaf triangle 
Sierpinski 
attributes

12
(incl. index 

pointing to far 
neighbor)

1x

64

12 + 24 + 24 = 60,
but treated as a single 
entity, the total of 60 
bytes are rounded up 

to 64 by the optimizing 
compiler

leaf triangle 
numeric data
(water height)

3x double = 24

temporary flux 
storage for 

reuse in the far 
neighbor

(replaces the 
edge-stack 

system)

3x double = 24

Total used by “Neighbor index” traversal 64

Total used by “DG-SWE” traversal 52

Table 5.7: Memory usage in “Neighbor index” traversal – bytes per triangle. With 64  
bytes per triangle it uses 23% more memory than the reference “DG-SWE”.

Tables  5.8 and  5.9 list  the performance of the  Neighbor Index traversal on the 
E7400 and T7700 platforms, respectively. The DG-SWE traversal is slightly faster, 
but not by much. Similar results were obtained with the transport equation kernel, 
where the edge-stack system solution was 10% faster than the neighbor index 
traversal. The fact, that the triangles are ordered according to the Sierpinski space-
filling curve, already carries the huge advantage of excellent cache behavior. Level-
1  cache  hit-rates  are  above  99%  and  are  attributed  primarily  to  the  locality 
properties of the Sierpinski curve. Cache-efficiency is addressed in more detail in 
Bader et al. (2012). If the neighbor index solution would traverse the triangles in the 
Cartesian  order,  then  the  performance  would  probably  decrease  due  to  the 
increased  amount  of  cache-misses.  Unfortunately,  such  a  traversal  was  not 
implemented due to time constraints. However, the advantage of using an edge-
stack system is not only the lower – perhaps optimal – memory footprint, but it  
also  serves  as  basis  for  inter-process  communication  in  the  parallel  case,  as 
described in chapter 4. 
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Neighbor 
index

on
E7400

ref.
depth

# triangles

total 
memory 

used
(MB)

exec.
time of 100 
traversals

(sec)

Million 
triangles 

per
second

memory 
throughput 
(MB/sec)

Floating 
point
perf. 

(MFlops)

loop 
traversal

20 2,097,152 134.35 21.71 9.66 618.84 869.39

loop 
traversal

21 4,194,304 268.57 41.39 10.13 648.88 912.03

loop 
traversal

22 8,388,608 537.13 84.42 9.94 636.26 894.31

loop 
traversal

23 16,777,216 1074.00 164.61 10.19 652.45 917.29

Average “Neighbor index” traversal perf. (E7400) 9.98 639.11 898.25

Average “DG-SWE” traversal perf. (E7400) 10.04 522.5 904

Table 5.8: “Neighbor index” implementation performance on E7400 platform.  
Edge-stack system solution is only slightly faster.

Neighbor 
index

on
T7700

ref.
depth

# triangles

total 
memory 

used
(MB)

exec.
time of 100 
traversals

(sec)

Million 
triangles 

per
second

memory 
throughput 
(MB/sec)

Floating 
point perf. 
(MFlops)

loop 
traversal

20 2,097,152 134.35 25.34 8.28 530.19 744.84

loop 
traversal

21 4,194,304 268.57 48.03 8.73 559.17 785.94

loop 
traversal

22 8,388,608 537.13 101.53 8.26 529.04 743.6

Average “Neighbor index” traversal perf. (T7700) 8.42 539.47 758.13

Average “DG-SWE” traversal perf. (T7700) 8.78 456.8 790.33

Table 5.9: “Neighbor index” implementation performance on T7700 platform.  
Edge-stack system solution is only slightly faster.
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5.1.4. Adaptive mesh refinement step vs. DG-SWE

Dynamically adaptive refinement and coarsening of the grid is the result of several 
management  traversals,  as  described in  chapter  3,  and the  parallel  version  in 
chapter  4.  We want  to  know how much computing time it  costs  relative  to  a 
numerical DG-SWE traversal. In the experiments presented in this sub-section we 
measured the  parallel  implementation  with  loop-based  traversals  running  on  a 
single processor.

The execution time of a full adaptive step depends not only on the size of the initial 
grid, but also on that of the final grid. Traversals exclusively on the initial grid are 
“marking  initial  refinement  and  coarsening  requests”,  “consistency”  and 
“coarsening correctness check”. “New neighbor prediction” is also running on the 
initial grid, but managerial work depends on the size of the final grid. “Adaptation” 
traversal with interpolation takes the initial grid as input and constructs the triangle 
system of the final grid. The “re-initialization” traversal runs on the final triangle 
system and rebuilds the edge-stack system, ending the full adaptive step. 

For  performance  measurements,  I  prepared  five  scenarios  of  adaptive  mesh 
refinement, whose results are listed in Table 5.10 and continued in Table 5.11. All 
scenarios start on an initial grid of 2 million triangles, and they differ in the size of 
the final grid:

– “full  double  refinement”  refines  every  triangle  twice,  the  final  grid  has  8 
million cells; this is the maximum refinement rate (4x size of initial grid);

– “full single refinement” bisects every triangle, the final grid has 4 million cells;

– “partial  refinement” refines about 25% of the initial  grid (triangles of type 
k1n),  and  subsequent  consistency  traversals  refine  an  additional  25%, 
yielding a final grid of 3 million cells;

– “no refinement” leaves the grid as it is;

– “full coarsening” merges every pair of siblings, final grid has 1 million cells.

This way one can clearly identify traversals dependent on the initial grid from those 
that depend on the final- or on both grids.

The first- and last row of each scenario lists the two reference execution times of 
the DG-SWE traversal on the initial- and on the final grid, respectively. The rows in 
between list the execution times of the other traversals and of the total adaptive 
step (as a sum of all the traversals). The execution time relative to the DG-SWE 
traversals is given in the last two columns of the table. 
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Performance of specific traversals in detail:

– “Marking  initial  refinement  and  coarsening  requests”  is  a  Zero-FLOP 
traversal  on the initial  grid.  Execution time is constant  throughout all  five 
scenarios with about 35% of the “DG-SWE on initial grid”. 

– “Consistency” is also a Zero-FLOP traversal on the initial grid and is usually 
performed  multiple  times  in  an  adaptive  step.  In  these  scenarios  it  is 
performed exactly  twice and its  execution time of  35% of “DG-SWE on 
initial grid” is counted twice in the sum of the “Total adaptive step”.

– “Coarsening correctness check” is a very fast traversal on the initial triangle 
array alone, checking for siblings in coarsening requests. It is not using the 
edge-stack system and, therefore, its execution time is 10 times faster than 
a standard Zero-FLOP traversal. Hence the execution time was added to the 
time of the “Consistency” traversals in the tables below.

– “New neighbor prediction” is traversing the initial grid, and it computes the 
neighbor indexes of  the future  grid that  does not  exist  yet.  Because the 
computational work is dependent on the final grid, one can observe that its 
execution time is influenced by it. In the “Full double refinement” scenario it 
amounts to 45% of “DG-SWE on initial grid” and it gradually decreases to 
28% in the scenario with the smallest final grid.

– “Adaptation with interpolation” is the process of taking the initial triangles 
with the initial numerical unknowns and produce the new triangles together 
with the new unknowns. This traversal is dependent on both the initial- and 
the final grid. A pattern can be observed in scenarios with growing final grid, 
where the execution time is around 30% of the “DG-SWE on final grid”. For 
scenarios  where  the  final  grid  is  smaller  or  equal  to  the  initial  grid,  the 
execution time tends to be 25-28% of the “DG-SWE on initial grid”.

– “Re-initialization” is a traversal on the final triangle array, and the new edge-
system is rebuilt. Its execution time is 70% of the “DG-SWE on final grid”.

– “Total adaptive step” is the sum of the execution time of these traversals, 
with the “Consistency” counted twice. Execution time relative to the “DG-
SWE on initial grid” is highest when the final grid is 4 times as big as the 
initial one, in which case it is 5.48 times more expensive. This ratio sinks 
gradually in the other scenarios with decreasing size of the final grid, with 
the extreme of 1.93 for the full coarsening scenario in which the initial grid 
shrinks to half its size. The trend is in reversed when compared to execution 
time of the “DG-SWE on final grid”, with 1.33 times more expensive on the 
full double refinement scenario and gradually increasing up to 3.5 on the full  
coarsening. 
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Dynamic AMR vs. 
DG-SWE

E7400

initial grid
# triangles

final grid
# triangles

traversal 
exec. time

% of
DG-SWE 
initial grid

% of
DG-SWE 
final grid

Full DOUBLE REFINEMENT of the initial grid, each triangle bisected twice:

DG-SWE – initial grid

2,097,152 8,388,608

0.29
24.17

Marking 0.10 34.48 8.33

Consistency avg. (2x)
+ coarsening check

0.10 34.48 8.33

New neighbors 0.13 44.83 10.83

Adapt (+ interpolate) 0.38 131.03 31.67

Re-initialization 0.78 268.97 65

Total adaptive step 1.59 548.28 132.5

DG-SWE – final grid
1.20

413.79

Full SINGLE REFINEMENT of the initial grid, each triangle bisected once:

DG-SWE – initial grid

2,097,152 4,194,304

0.29
48.33

Marking 0.10 34.48 16.67

Consistency avg. (2x)
+ coarsening check

0.10 34.48 16.67

New neighbors 0.11 37.93 18.33

Adapt (+ interpolate) 0.18 62.07 30

Re-initialization 0.40 137.93 66.67

Total adaptive step 0.99 341.38 165

DG-SWE – final grid 0.60 206.9

Partial refinement of the initial grid, about 25% of the triangles originally bisected. 
Consistency refines more as needed.

DG-SWE – initial grid

2,097,152 3,144,704

0.29
64.44

Marking 0.10 34.48 22.22

Consistency avg. (2x)
+ coarsening check

0.10 34.48 22.22

New neighbors 0.09 31.03 20

Adapt (+ interpolate) 0.14 48.28 31.11

Re-initialization 0.30 103.45 66.67

Total adaptive step 0.83 286.21 184.44

DG-SWE – final grid 0.45 155.17

Table 5.10 Adaptive mesh refinement traversals vs. DG-SWE times.



Dynamic AMR vs. 
DG-SWE

E7400

initial grid
# triangles

final grid
# triangles

traversal 
exec. time

% of
DG-SWE 
initial grid

% of
DG-SWE 
final grid

NO REFINEMENT of the initial grid:

DG-SWE – initial grid

2,097,152 2,097,152

0.29

Marking 0.10 34.48

Consistency avg. (2x)
+ coarsening check

0.10 34.48

New neighbors 0.09 31.03

Adapt (+ interpolate) 0.08 27.59

Re-initialization 0.20 68.97

Total adaptive step 0.67 231.03

DG-SWE – final grid 0.27

Full COARSENING of the initial grid:

DG-SWE – initial grid

2,097,152 1,048,576

0.29
181.25

Marking 0.10 34.48 62.5

Consistency avg. (2x)
+ coarsening check

0.10 34.48 62.5

New neighbors 0.08 27.59 50

Adapt (+ interpolate) 0.07 24.14 43.75

Re-initialization 0.11 37.93 68.75

Total adaptive step 0.56 193.1 350

DG-SWE – final grid 0.16 55.17

Table 5.11: Adaptive mesh refinement traversals vs. DG-SWE times (continued).

A graphical representation of the values in Tables 5.10 and 5.11 is in Figure 5.5, in 
which the execution time is plotted against the amount of triangles added by the 
adaptive step to the initial grid of 2 million cells. 
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Although it is not impossible, it is unlikely for the initial grid to grow with maximum 
rate, or to shrink to half its size at once in our SWE simulation. Therefore, when 
trying to answer the question “How many DG-SWE traversals could be performed  
in the time used for a full adaptive step ?”, we can exclude the extreme scenarios 
of “full double refinement” and “full coarsening”. It is also probably safe to say that 
usually the grid will not double its size, but even if it does, the time taken for that 
particular adaptive mesh refinement is equivalent to 3.41 DG-SWE traversals on 
the initial grid. The full adaptive step in the “partial refinement” scenario, where the 
grid grows by 50%, is equivalent to 2.86 DG-SWE traversals on the initial grid, and 
the cost tends to decrease for less changes in the grid. 

When  a  future  high-order  implementation  will  be  available,  with  4  or  more 
discontinuous Galerkin type traversals per time step, and with more floating-point 
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Figure 5.5: Adaptive mesh refinement traversal execution times and DG-SWE on  
initial- and final grid.



operations per triangle, the cost of adaptive mesh refinement will become more 
and more affordable. The execution time of the adaptive step would increase with 
a considerably slower pace than that of a high-order Runge-Kutta time step, since 
only the time to interpolate and to re-initialize the color-edge flux values would be 
an increasing factor. Furthermore, the Zero-FLOP traversals that run exclusively on 
the initial grid could be merged with the numerical computation, reducing some or 
all of the cost currently incurred by “marking” and “consistency”.

Finally,  in  the  serial  performance experiments,  the  loop-based adaptive  step is 
faster than the older recursive implementation with at least 30%, as illustrated in 
Figure  5.6.  Similar  results  on  the  T7700  platform also  confirm  the  statements 
presented in this section. 
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Figure 5.6: Serial loop-based (blue) vs. recursive (red) adaptation performance.  
Loop-based traversals pay off in adaptive mesh refinement too.



5.1.5. Evaluation of the serial performance results

In the series of experiments presented above, I tried to show certain qualitative 
and quantitative aspects of the Sierpinski traversals for numerical computation and 
for grid management purposes. Different traversal types use different amounts of 
floating-point operations, and, therefore, I created traversals with artificial FLOPs, 
varying their amounts from 0 to 177 per triangle. The traversals were executed with 
a “thin” and a “fat” memory footprint of 3 and 9 doubles per triangle, respectively.  
As a reference performance of the hardware I used a block-diagonal matrix-vector 
multiplication with 7 floating-point operations per element. The MFLOP/sec rate 
achieved by the Sierpinski traversals increased automatically with the increasing 
computational  load  per  triangle.  The  highest  MFLOP/sec  rate  of  about  1 
GFLOP/sec  for  both  thin  and  fat  variants,  which  amounts  to  40-50%  of  the 
reference performance of the matrix-vector product. The memory throughput rate 
of the traversals decreases with increasing computational load per triangle. The 
highest  rate  is  achieved  by  the  fat  Zero-FLOP  traversal  using  9  doubles  per 
triangle, which is 90% of the reference throughput of the matrix-vector product.

The superior performance of the loop-based vs. the recursive traversal was also 
demonstrated for both artificial FLOP and for the DG-SWE traversals. The loop-
based  Zero-FLOP  traversals  are  almost  twice  as  fast  as  the  recursive 
implementation,  which  are  used  in  consistency  checks  during  adaptive  mesh 
refinement.  The  difference  in  execution  time  diminishes  with  increasing 
computational load. The DG-SWE traversal is about 35% faster in the loop than in 
the recursive version. 

The  performance  of  the  edge-stack  system  in  the  DG-SWE  traversal  was 
compared to an explicit neighbor indexing implementation. In this implementation, 
the flux information transport across far neighbor triangles was done by directly 
accessing the corresponding triangle element in the linear array. The edge-stack 
system  implementation  is  better  in  terms  of  memory  usage,  since  the  index 
implementation uses 23% more memory per triangle. In terms of computing time, 
the edge-stack system version of the DG-SWE traversal is slightly faster, about 2-
5%. The excellent cache efficiency of the Sierpinski traversal is already given by 
the space-filling curve ordering of the triangles.

Last  but  not  least,  the  performance  of  the  adaptive  mesh  refinement  and 
coarsening with several artificial scenarios was compared to DG-SWE traversals 
on the input- and on the final grid. We concluded that the average cost of dynamic 
adaptivity is that of about 2.8 – 3.4 DG-SWE traversals. The loop implementation 
of all the traversals required to perform the adaptive step is at least 30% faster 
than the recursive implementation.  Furthermore, the cost  of dynamic adaptivity 
relative to the cost of computing a time-step in a higher spatial- and temporal  
discretization  scheme  will  sink  considerably.  The  complexity  of  the  numerical 

78



computation  will  increase  due  to  the  amount  of  floating-point  operations  per 
triangle and more traversals per time-step, while the adaptive mesh refinement and 
coarsening  algorithm remains  basically  the  same,  except  for  interpolation  and 
restriction.  Therefore,  the  cost  of  dynamic  adaptivity  will  become  even  more 
attractive, affordable and acceptable than it is in the current implementation.

5.2. Parallel performance analysis

When executing programs on multiple processors, we are mainly interested in how 
well they scale in the parallel environment. The long-term goal of this work is to 
achieve sub-real-time simulation of the oceanic wave propagation, and, thus, the 
main interest is the strong speed-up efficiency. In the following sub-sections I am 
presenting strong speed-up results for numerical- and consistency traversals on a 
static  grid,  for  the full  adaptive step scenario  called “partial  refinement” in  the 
previous  section,  and,  finally,  the  Tsunami  simulation  with  adaptive  mesh 
refinement after each time step. The Tsunami simulation scenario is joint work with 
K. Rahnema.

5.2.1. Parallel traversals on static grids

Better parallel speed-up is expected for the discontinuous Galerkin traversals than 
for  a  Zero-FLOP traversal  used in  adaptive  mesh refinement.  In  the  numerical 
traversal the amount of computational work is considerably higher per triangle than 
in a  Consistency traversal, while the MPI communication overhead is the same. 
However, good parallel speed-up can be achieved as long as the communication-
to-computation ratio is low enough, which is the case for large grids. 

In figures 5.7 and 5.8 the grid contained a total of 67 million triangle cells equally 
distributed among the processors. Non-blocking MPI communication was used for 
inter-process  communication  through  the  process-boundary  edges  on  the 
Infiniband  Cluster  of  the  Technische  Universität  München.  This  system has  32 
“AMD Opteron 850” nodes with 4 cores each running on 2.4 GHz clock frequency. 
Each node has 8 GB main memory and are interconnected with an InfiniBand 
Switch (MTEK43132) from Mellanox Technologies.

Strong speed-up is shown for up to 128 cores for the DG-SWE traversal in Figure
5.7. The speed-up efficiency is worst at about 80% with 96 processors, but it gets 
well above 90% on 112 and 128 processors. The sudden performance drop  on 96 
processors  might  be  caused  by  either  a  bug  in  the  implementation  or  by  a 
disadvantageous arrangement of the parallel domains for the MPI communication. 
Due to time constraints, this matter has not been investigated yet. However, in my 
opinion, the efficiencies obtained are a very good first result.
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For the Consistency traversal the speed-up for up to 112 processors is shown in 
Figure 5.8, with overall efficiencies between 85% and 90%. 
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Figure 5.7: DG-SWE traversal on a grid of 67 million cells. Strong speed-up of up  
to 128 processors on the Infinicluster.

Figure 5.8: Zero-FLOP consistency traversal on a grid of 67 million cells. Strong  
speed-up of up to 112 processors on the Infinicluster.



5.2.2. Parallel adaptive mesh refinement

The “partial refinement” scenario introduced previously in section 5.1.4 was tested 
on the Infiniband Cluster using up to 128 processors. The full adaptive step in this 
experiment starts on an initial grid of 33 million triangles distributed equally among 
the processors,  and creates a final  grid of 50 million cells,  with load-balancing 
switched off. 

Strong  speed-up  efficiencies  for  the  full  adaptive  step,  involving  several 
management  traversals,  are  illustrated  in  Figure  5.9.  The  catastrophic  drop  in 
efficiency  for  64  and  80  processors  is  either  a  bug  or  a  disadvantageous 
arrangement of the parallel  domains regarding MPI communication. With about 
65% for  64  processes  and  30% for  80  it  is  far  worse  than for  the  numerical 
traversal on the static grid from the previous section. However, the performance 
recovers  for  96,  112 and 128 processors with excellent  speed-up efficiency of 
around 85%, which, in my opinion, is a very impressive first result. 

If load-balancing is switched on, then the full adaptive step contains an additional 
“MPI_All-To-All-V” type of extra communication. This involves redistribution of the 
three arrays that represent the numerical unknowns, the Sierpinski attributes and 
the  binary  tree  location  codes.  The  performance  penalty  incurred  by  this 
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Figure 5.9: Full adaptive step without load-balancing, starting on an initial grid of  
33 million cells and producing a grid of 50 million cells. Strong speed-up of up to  

128 processors on the Infinicluster.



redistribution is highly dependent on the type and nature of the load imbalance, on 
the communication hardware and on the MPI implementation as well. Because of 
the rich variety of the possible types of load imbalance that can occur, and the 
shortage of time, no extensive studies were performed by myself in this regard. All 
I  can say is that  in the very few test  scenarios that I  tested on the Infiniband 
Cluster,  the  load-balancing  incurred  a  performance  penalty  of  roughly  17%. 
However,  this  estimate  is  neither  a  lower-,  nor  an  upper  limit,  and  additional 
performance studies are necessary for a better estimation.

5.2.3. Parallel SWE simulation with full re-meshing

Finally, the solution of the shallow water equations with full re-meshing after each 
time step is shown in Figure 5.10, which is joint work with K. Rahnema. This test 
was executed on the SGI-ICE cluster at the Leibnitz Supercomputing Center in 
Garching, Germany. It has 32 dual-socket quad-core Nehalem nodes with 24 GB 
main memory in each node. 

After each DG-SWE traversal a full adaptive step is executed. Refinements in each 
triangle are based on the change of water level in comparison to the previous time 
step.  Here  we  see  again  a  performance  drop  for  the  ill-fated  case  of  80 
processors. This observation on two different machines suggests that the problem 
is not caused by the hardware, but – as stated earlier – is most likely a bug that 
appears in this special case. However, bugs get fixed over time, and the good 
news  is  that  the  strong  speed-up  efficiency  recovers  for  96,  112  and  128 
processors. For the latter case the efficiency of the strong speed-up compared to 
the performance on 8 cores is slightly above 90%. 
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5.2.4. Evaluation of the parallel performance results

In the parallel performance experiments I tested the strong scaling of the different 
Sierpinski traversals. The first set of experiments measured the strong speed-up of 
the DG-SWE and the zero-FLOP consistency traversal on a static grid for up to 
128 cores. The strong speed-up efficiency of well  above 80% for both type of 
traversals is a very good first result, considering that no special optimization effort  
was spent on the parallel messaging overhead. The worst speed-up of the DG-
SWE traversal  on  96  processors  is  at  80%  efficiency,  while  for  112  and  128 
processors is well above 90%. The ill-behaved case on 96 processors is either a 
bug in the implementation, or is a disadvantageous arrangement of the parallel 
domains for the MPI communication. Since the zero-FLOP consistency traversal 
does not exhibit similar drop in efficiency, it is fairly possible that there are some 
“features” in the code that need to be addressed.

The speed-up efficiency of  the  adaptive  mesh refinement  and coarsening  was 
measured for the  partial  refinement scenario without load-balancing, where the 
initial grid of 33 million elements grows to 50 million. Here, too, we see a large 
performance drop when using 64 or 80 processors. However, the strong speed-up 
performance recovers when using 96, 112 or 128 processors and achieves 85% 
efficiency, which is an excellent result.  Load-balancing, if  switched on, incurs a 
performance penalty of roughly 17% on the Infiniband Cluster for this scenario. 
Load-balancing depends not only on the specific scenario and the amount of load 
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Figure 5.10: Solution of the shallow water equations with full re-meshing at every  
time step. The grid contains on average 33 million triangle cells. Strong speed-up  
of up to 128 processors on the SGI-ICE cluster. Joint work with Kaveh Rahnema.



imbalance, but also depends strongly on the hardware, since it has to exchange 
data on the network that connects the processors. Unfortunately extensive load-
balancing studies were not performed due to lack of time. 

The solution of the shallow water equations with full dynamic adaptivity after each 
time-step  was  tested  on  the  SGI_ICE cluster  (joint  work  with  K.  Rahnema).  It 
performs a DG-SWE traversal and adaptive mesh refinement and coarsening in 
each time-step, without load-balancing. Performance drop was again observable 
on  80  processors,  which,  too,  suggests  a  bug.  However,  strong  speed-up 
efficiency  is  above  90%  on  96,  112  and  128  processors  relative  to  the 
performance on 8 cores.

Currently 90 floating-point operations are performed per triangle per time step. The 
adaptive mesh refinement dominates the execution time, since an adaptive step 
costs approximately 3.5 numerical traversals (or Euler time steps in this case). This 
ratio will change in favor of the computation, when a higher order discontinuous 
Galerkin  spatial  discretization  with  Runge-Kutta  type  time  stepping  will  be 
implemented. But, the fact, that this excellent speed-up efficiency was reached 
with  the  current  setting,  demonstrates  the  feasibility  of  our  Sierpinski-based 
solution  method.  With  more  floating  point  operations  per  triangle,  and  more 
numerical  traversals  in-between  adaptive  mesh  refinement  steps,  the  strong 
speed-up efficiency will most likely be sustainable for even more processors. With 
sustainable  strong  speed-up  efficiency  on  a  –  perhaps  one-  or  two  orders  of 
magnitude –  higher  amount  of  processors,  the  ultimate  goal  of  a  sub-realtime 
Tsunami simulation starts to look more and more realistic.
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6. Conclusion

This work presented our approach for  the fast  simulation of  the oceanic wave 
propagation, based on algorithms using the Sierpinski space-filling curve. In the 
event of a tsunami, a sub-realtime simulation of the wave propagation on the open 
ocean would enable much more precise inundation predictions on coastal regions. 
In the current tsunami forecasting systems the wave propagation is not simulated 
for the real scenario, but, rather, a linear combination of precomputed scenarios is 
selected as initial  condition for the inundation algorithms. An accurate and fast 
simulation of the wave propagation, and, thus, of the whole tsunami event itself, 
before it  unfolds, would lead to far  better hazard estimation for  the authorities 
responsible for tsunami warnings. 

We used a simplified version of the two-dimensional shallow water equations as 
the mathematical model for the oceanic wave propagation, where viscosity, friction 
and Coriolis forces were neglected. The geometry was a simple swimming-pool 
setting, with an elevated column of water in the middle as initial condition, which 
generates outward propagating waves. We used simplified mathematical  model 
and geometry because our focus was on the quality of our algorithms. It is more 
difficult  to achieve good performance with low amount of computation per grid 
cell,  than  with  a  higher  amount.  We  chose  a  discontinuous  Galerkin  spatial 
discretization scheme with constant (0th order polynomial) basis functions, which is 
similar to a finite  volume type method.  For the time discretization we used an 
explicit  Euler scheme. Our Sierpinski-based grid system provided a conforming 
triangular grid with dynamically adaptive mesh refinement and coarsening in each 
time step. Numerical unknowns are strictly cell-based, and information exchange 
between neighboring cells is strictly edge-based. Nodes are completely eliminated 
from the grid, effectively simplifying not only the computation traversal, but also 
the management of the dynamically adaptive grid. All grid traversals – whether for 
computation or for  grid management – work in parallel  computing environment 
using MPI, with optional load-balancing after dynamic adaptivity.

Besides the actual simulation of the shallow water equations, several benchmark 
tests  were  performed  in  order  to  test  the  capabilities  of  the  Sierpinski  grid 
management system both in serial and in parallel. The purpose of the tests was to 
show  the  feasibility  of  the  grid  system  for  future  use,  when  an  improved 
mathematical  model and a higher-order discretization scheme will  automatically 
lead to an even better computational performance, and, perhaps, to sub-realtime 
simulation.

In the serial tests, for example, it was shown that best floating-point performance 
can be achieved with high amount of numerical operations per triangle, rather than 
low amount or no operations. The highest rate of 1 GFLOP/sec achieved by the 
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traversal  with  177 artificial  FLOPs per  triangle  is  a  very  good result,  while  the 
current DG-SWE traversal with 90 FLOPs per triangle runs with 900 MFLOP/sec. 
This  amounts  to  40% floating-point  performance of  the  block-diagonal  matrix-
vector  product.  The linearization of  the  refinement  tree  is  a  great  performance 
boost, since the loop-based traversal performs 35% faster than a full recursive tree 
traversal in our discontinuous Galerkin implementation. The additional memory per 
triangle needed by the linearization is a fix cost of 16 bytes, which will not change 
for  future implementations with  higher-order  discretization schemes.  The edge-
stack system uses optimal amount of memory to facilitate the information flow 
between  neighboring  triangle  cells.  The  low  amount  of  memory  used  for  grid 
management purposes made it possible to perform fully adaptive simulations with 
as much as 10 million triangles on a laptop computer. The time to perform the 
adaptive mesh refinement and coarsening – consisting of several traversals – is 
equivalent of roughly 3.5 DG-SWE traversals in the current implementation.

The parallel performance experiments were meant to show the strong speed-up 
efficiency of computational- and management traversals, of the full adaptive mesh 
refinement and coarsening step, and that of the complete simulation of the wave 
propagation with adaptation in each time step. Except for some unfortunate cases 
with 64 and 80 processors, where a bug is suspected, the strong speed-up results 
are quite promising, given that no special effort was spent on parallel performance 
optimization. The DG-SWE traversal gets an impressive 90% speed-up efficiency 
on 128 processors, and the consistency traversal is at 85%. In the full adaptive 
step, where the grid grows by 50% in size, the speed-up efficiency is at 85% on 
128 processors.  The  full  simulation  with  dynamic  adaptivity  in  each time step 
achieves also an impressive 90% efficiency. Load-balancing incurs a performance 
drop  of  about  17%  on  the  Infinicluster,  but  it  is  highly  dependent  on  the 
communication hardware. The effect of load-balancing in special scenarios and on 
several hardware configurations was not examined thoroughly. The effects of using 
dynamically changing number of worker threads or GPU threads to be used when 
the grid grows as a result of adaptive refinement is out of scope of this work. 

Additional  work  needs to  be completed in  the  future  in  order  to  achieve sub-
realtime  simulation  performance.  First,  the  mathematical  model  should  be 
extended to the full shallow water equations, or at least to a more complex version 
that is adequate for tsunami simulations. Since the equations can be written in 
vector  form,  like  in  Formula  1.2,  the  solution  process  would  not  change 
significantly. Second, a higher order spatial and temporal discretization is needed, 
in order to increase the accuracy of the simulation. In a high-order discontinuous 
Galerkin method the degree of the polynomial basis functions in each triangle cell  
would need to be increased, but the data access pattern would remain as it is 
during a computation traversal. A high-order Runge-Kutta method would need one 
traversal per slope computation, and additional memory per triangle to store the 
result of the intermediate slopes, in order to complete a full time step. Third, the 
ocean floor topology with the islands and the coastline geometry needs to replace 
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the simplistic unit-square setting. 

Some advantages would be “for free” when the above tasks will be implemented in 
our  Sierpinski  grid  management  system.  A  more  precise  mathematical  model 
together  with  a  higher-order  spatial-  and  temporal  discretization  will  need 
considerably  more  than  90  floating-point  operations  per  triangle  cell  during  a 
traversal. By using better algorithms for the simulation, one tries to increase the 
length of the simulated time step relative to the real computation time needed to 
calculate it. As we have seen in the artificial FLOP experiments, more FLOP per 
triangle leads automatically to better MFLOP/sec rates, and, consequently, to a 
more  efficient  use  of  the  hardware.  Since  the  high-order  Runge-Kutta  method 
needs one traversal  per slope, some or all  of the consistency traversals of the 
subsequent  adaptive  mesh  refinement  step  could  be  merged  into  the  slope 
computation traversals. That way, about 30% of the full adaptive step would be 
intertwined with computation. This means, that the real time for adaptive mesh 
refinement would decrease by this amount. Currently, an adaptive step costs ~3.5 
DG-SWE traversals  –  or  time steps –  in execution time.  This  ratio  of  dynamic 
adaptivity  relative  to  a  time  step  will  sink  considerably,  not  just  because  of 
traversal merging, but also because more execution time will be spent on a time 
step when computing the intermediate Runge-Kutta slopes. Last, but not least, 
with more floating-point operations per triangle cell, and per traversal, the already 
impressive  80-90%  parallel  speed-up  efficiency  achieved  currently  on  128 
processors, will likely be sustainable on a growing number of computing units. A 
sustainable parallel speed-up on one- or two orders of magnitude higher amount 
of processors is the key to a future sub-realtime tsunami simulation, which, with 
the current achievements and the aforementioned implicit advantages, looks ever 
more realistic.
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