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Abstract

In the first part of this work, we propose two significant improvements of the k · p en-
velope function approach for mesoscopic semiconductor heterostructures. Firstly, we
present the novel symmetry adapted finite element (SAFE) approach for multi-band
k · p envelope function Hamiltonians that is manifestly free from spurious solutions
which plague mesoscopic electronic structure calculations. We show that these spuri-
ous solutions originate in the ill-representation of first-order derivatives in real-space
bases and resolve this issue by a particular choice of real-space basis functions. In
addition, a gauge-invariant extension to this method is developed for problems in-
volving magnetic fields. We predict the electrical exciton g-factor tuning in single
InGaAs/GaAs embedded quantum dots to be significantly larger than previously
found. Secondly, we newly derive an eight- and 14-band envelope function Hamil-
tonian for zincblende-type crystals that, in contrast to previous work, preserves the
correct operator ordering for all relevant remote-band contributions. This leads to
a correct formulation of the envelope function momentum and angular momentum
operator derived from the Hamiltonian via the Hellmann-Feynman theorem. In par-
ticular, the latter gives rise to the perturbative computation of the g-tensor in linear
response theory without including the magnetic vector potential explicitly in the
Hamiltonian. This circumvents the practical issues of gauge-invariant discretization
and is in excellent agreement with the fully detailed non-perturbative calculations for
low magnetic fields.

In the second part, we apply our novel methods to overgrown self-assembled In-
GaAs/GaAs quantum dots, where we first clarify the still controversial origin of
the lifting of C4v symmetry on the basis of the electronic p-level splitting. In con-
trast to previous theoretical work, our calculations reveal that for a realistic graded
In:Ga-profile the linear piezoelectric effect contributes dominantly to this splitting
in excellent agreement with experiment while the quadratic piezoelectric effect and
inversion asymmetry play only a minor role. A previously proposed elongation of the
dots combined with the piezoelectric effect is demonstrated to be incompatible with
experiment. Next, strong electrically tunable exciton g-factors are predicted in indi-
vidual quantum dots and the microscopic origin of the effect is explained. Realistic
eight-band k · p simulations quantitatively account for the observations, simultane-
ously reproducing the exciton transition energy and g-factor tunability for model dots
with the measured size and a comparatively low In-composition of xIn ∼ 35% near
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the dot apex. We show that the observed g-factor tunability is dominated by the
hole, the electron contributing only weakly. The electric field-induced perturbation
of the hole wave function is shown to impact upon the g-factor via orbital angular
momentum quenching, the change of the In:Ga composition inside the envelope func-
tion and the mixing of heavy hole and light hole bands playing no substantial role.
Our results provide the design for a universal single qubit gate via purely electrical
g-tensor modulation. Finally, the microscopic origin of the non-linear Zeeman split-
ting of neutral excitons in large In-dilute quantum dots is explained. Eight-band k ·p
simulations, performed using realistic dot parameters extracted from cross-sectional
scanning tunneling microscopy measurements, reveal that a quadratic contribution to
the Zeeman energy originates from a spin-dependent mixing of heavy and light hole
orbital states in the dot in sharp contrast to the electrical g-tensor tuning. The dilute
In-composition (x < 0.4) and large lateral size (40 − 50 nm) of the quantum dots
investigated is shown to strongly enhance the non-linear contribution to the excitonic
Zeeman gap, providing a method to control such magnetic non-linearities via growth
engineering of the quantum dots.



Zusammenfassung

Im ersten Teil dieser Arbeit schlagen wir zwei bedeutende Weiterentwicklungen des
Ansatzes der einhüllenden Funktion in der k · p Näherung für mesoskopische Halb-
leiterheterostrukturen vor. Zuerst stellen wir die neuentwickelte symmetryangepasste
finite Elementemethode (SAFE) für den Mehrband-k · p-Hamilton Operatoren der
Einhüllenden vor. Diese Methode ist von Natur aus frei von unphysikalischen Lö-
sungen, die mesoskopische elektronischen Strukturrechnungen erschweren oder sogar
unmöglich machen. Wir zeigen, dass diese unphysikalischen Lösungen ihren Ur-
sprung in der fehlerhaften Darstellung erster Ableitungen in Ortsraumbasen haben,
und lösen dieses Problem durch eine spezielle Wahl von Basisfunktionen im Orts-
raum. Darüberhinaus wird eine eichinvariante Erweiterung dieser Methode in der
Anwesenheit von Magnetfeldern entwickelt. Wir sagen voraus, dass die Änderung
des Exzitonen-g-Tensors durch elektrische Steuerung in einzelnen überwachsenen
InGaAs/GaAs-Quantenpunkten deutlich höher ist als zuvor mit herkömmlichen Me-
thoden berechnet. Zweitens leiten wir erstmals einen Acht- und 14-Band-Hamilton
Operator der einhüllenden Funktion für zinkblendeartige Kristalle her, der im Gegen-
satz zu früheren Arbeiten die korrekte Anordnung von Differentialoperatoren für alle
relevanten Beiträge entfernter Bänder berücksichtigt. Dies führt zu einer korrek-
ten Darstellung des Impuls- und Drehimpulsoperators, die sich über das Hellmann-
Feynman Theorem aus dem Hamilton Operator ergeben. Insbesondere ermöglicht
dies die perturbative Berechnung des g-Tensors in linearer Antworttheorie, ohne dass
ein magnetisches Vektorpotential direkt in den Hamilton Operator eingeht. Dies
umgeht die Komplikationen einer eichinvarianten Diskretisierung und liefert Ergeb-
nisse, die für niedrige Magnetfelder hervorragend mit denen einer vollen nichtpertur-
bativen Rechnungen übereinstimmen.

Im zweiten Teil wenden wir diese neuartigen Methoden auf selbstorganisierte
InGaAs/GaAs-Quantenpunkte an. Als erstes klären wir den Ursprung der C4v Sym-
metriebrechung – der in der Literatur noch immer kontroverse diskutiert wird – an
Hand der Aufspaltung der elektronischen p-Niveaus. Im Gegensatz zu früheren the-
oretischen Arbeiten zeigen unsere Rechnungen, dass für ein realistisches abgestuftes
In:Ga-Profil der lineare piezoelektrische Effekt den dominanten Beitrag in hervorra-
gender Übereinstimmung mit Experimenten liefert. Der quadratische piezoelektrische
Effekt und die fehlende Inversionssymmetrie tragen nur geringfügig bei. Eine zuvor
vorgeschlagene Streckung der Quantenpunkte hingegen führt, kombiniert mit dem
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piezoelektrischen Effekt, zu einer Aufspaltung, die mit den Experimenten nicht ver-
einbar ist. Als nächstes sagen wir eine ausgeprägte elektrisch gesteuerte Änderung
des Exzitonen-g-Faktors in einzelnen Quantenpunkten voraus und klären den mikro-
skopischen Ursprung dieses Effekts. Realistische Achtband-k ·p-Rechnungen ergeben
gleichzeitig die im Experiment beobachtete Exzitonenenergie und die Änderung des
g-Faktor für Quantenpunkte mit den experimentell gemessenen Ausmaßen und einer
relativ geringen In-Konzentration von xIn ∼ 35% an der Oberseite. Wir zeigen,
dass die beobachtete Steuerbarkeit des Exzitonen-g-Faktors hauptsächlich durch den
Lochzustand und nur im geringen Maße von dem Elektronenzustand verursacht wird.
Es stellt sich heraus, dass die elektrische Störung der Lochwellenfunktion den g-
Faktor durch die Unterdrückung des Drehimpulses der Wellenfunktion beeinflusst.
Die Änderung des In:Ga-Überlapps der Wellenfunktion und die Mischung der le-
ichten und schweren Lochbänder spielen hingegen keine wesentliche Rolle. Unsere
Ergebnisse führen zu dem Vorschlag für ein universelles einzelnes Qubit-Gatter durch
eine rein elektrisch gesteuerte Änderung des g-Tensors. Zuletzt wird der Ursprung der
nicht-linearen Zeeman Aufspaltung des neutralen Exzitons in ausgedehnten In-armen
Quantenpunkten erklärt. Achtband-k ·p-Rechnungen, die auf realistischen Quanten-
punktparametern aus Tunnel-Mikroskopie-Messungen (X-STM) beruhen, zeigen, dass
der quadratische Beitrag zur Zeeman-Aufspaltung von einer magnetfeldabhängigen
Mischung der leichten und schweren Lochbänder versursacht wird. Dies stellt einen
deutlichen Unterschied zu dem Mechanismus der elektrisch gesteuerten Änderung
des g-Tensors dar. Es wird gezeigt, dass der niedrige In-Gehalt (x < 0.4) und der
große Durchmesser (40 − 50 nm) der untersuchten Quantenpunkte die nicht-lineare
exzitonische Zeeman Aufspaltung erheblich verstärkt. Daraus folgen Vorgaben, diese
magnetischen Nichtlinearitäten durch den Wachstumsprozess zu steuern.



Introduction and Motivation

There are two cardinal intermediate goals on the way to quantum information pro-
cessing: the entanglement of multiple qubit and the realization of universal qubits
gates. On the one hand, non-solid state systems currently provide the highest de-
grees of entanglement. The entanglement of eight qubits has been reported for a
system of trapped ions. [HHR+05] Moreover, universal gate operations for such a
system have been realized. [SKHG+03] Hyper-entangled states of up to ten qubits
have been prepared experimentally in photonic systems. [GLY+10] On the other
hand, solid-state quantum computing has received much attention since it may pro-
vide a scalable implementation of quantum logic. A state of three entangled spin
qubits in a diamond crystal with nitrogen defects has been demonstrated to be stable
at room-temperature. [NMR+08] The entanglement of three qubits, the implemen-
tation of important two-qubit algorithms, and high-fidelity single qubit gates have
been realized in superconducting circuits. [DMG+09, DRS+10, CDG+10] However,
these superconducting qubits currently suffer from short decoherence times. For the
entangled three qubit state in Ref. [DRS+10], a relaxation and dephasing time of the
order of a microsecond was reported. Another promising candidate for solid-state
qubits are the spins of confined electrons and holes in semiconductor quantum dots
(QDs). [HKP+07, GKB10] Extremely long spin life-times of 270 µs and 20 ms have
been reported for holes and electrons, respectively. [HSH+07, KDH+04] This is be-
cause the coupling of carriers to the environment is suppressed due to the atom-like
level structure in the QDs. [KN00] A partially entangled two-qubit state has been
produced in a double QD in an inhomogeneous magnetic field. [BSO+11] While gen-
eral concepts to achieve higher degrees of entanglement still need to be investigated,
universal single qubit gates have already been demonstrated experimentally: firstly,
a specific spin qubit with a unique resonance frequency can be manipulated by a
microwave field. [KBT+06] Secondly, a local time-dependent magnetic field can be
applied to address the spin of charge carriers in QDs. [KWB+08] However, a unique
resonance frequency for each individual QD contradicts scalability and the generation
of nanoscale magnetic fields currently appears unfeasible.

This has recently motivated a different approach. Instead of applying a time-
dependent magnetic field to each QD, the response of the spin states to a static
magnetic field, the g-tensor, is modulated by a time-dependent electric field that can
be realized by a gate contact for each QD. Purely electrical g-tensor tuning has been
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shown to allow arbitrary rotations on the Bloch-sphere by controlling the spin pre-
cession axis in single QDs [PPF08, PPF11] and QD molecules [AV09, REVP10]. To
date, electrical g-factor modulation in semiconductor nanostructures has been demon-
strated using parabolically composition graded AlGaAs quantum wells, [SKE+01]
vertically coupled InGaAs/GaAs QD-molecules [DSP+06] and single InAs/InP QDs.
[KSP+09, vBSK+11] Typically, very weak tuning effects are observed in single In-
GaAs/GaAs dots. [NTA07] Still, the tuning of the electron g-factor in In0.5Ga0.5As
can be exploited to realize universal single qubit operations. [PPF11] Due to the weak
tunability of the electron g-factor, however, very large electric fields are required thus
limiting the spin-lifetime by the tunneling-time of the carriers. Only recently, strongly
electrically tunable exciton g-factors were reported for InGaAs/GaAs self-assembled
QDs grown using the partially covered island (PCI) method but the mechanism re-
sponsible for the tuning could not be identified. [KJK+10] In this work, we aim to
develop a microscopic understanding of how external magnetic and electric fields in-
fluence the spin properties of the electronic states in QDs and predict these properties
quantitatively.

Accurate predictions of the exciton g-tensor require detailed electronic struc-
ture calculations. The leading method for electronic structure calculations of three-
dimensional mesoscopic semiconductor heterostructures, which encompass millions
of atoms, is the envelope function approximation (EFA). While originally developed
in k-space for bulk semiconductors, [LK55, Kan57] its usefulness stems from the
real-space formulation that is highly successful in predicting a wide variety of semi-
conductor properties. [BP74, IP97] The main advantage of the real-space EFA is its
independence of detailed atomic configurations, which are not relevant for mesoscopic
structures of at least nm-scale [BZ05] anyway and its numerical efficiency due to the
sparseness of the Hamiltonian matrices. More recent developments consist in more
rigorous justifications and a deeper understanding of the approximations involved,
[Bur94, For95] as well as a better treatment of interfaces. [For96, For98] Gauge-
invariant formulations of the EFA with magnetic fields allow the reliable prediction
of magnetic properties in mesoscopic heterostructures. [GU98, PF06, AMV08]

A persisting and still unresolved problem of the multi-band EFA method that
we will address in this work is the appearance of spurious, unphysical solutions of
the Schrödinger equation. These solutions may show up as highly oscillatory or
strongly localized wave functions within the fundamental band gap. To make things
worse, even well-behaved physical states can be polluted by a “spurious admixture”.
Three different sources of spurious solutions are known to plague the EFA formalism
and only the first two have been resolved so far. First, material parameter sets
obtained from experimental data can lead to ill-posed Hamiltonian operators with
wing-band solutions within the fundamental band gap that originate from large-k
bulk states that are poorly represented in the EFA approach. [WS81, StH85, For97,
For07, VSW07, KLN03, ESC87] This problem can be resolved by parameter rescaling
procedures. [For97, For07] Second, inconsistent boundary conditions for the multi-
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component envelope function at material interfaces can lead to unphysical states
localized at the interface. [For97, MGO94, GM96, AEF85, AS94] Such solutions can
be eliminated by a proper ordering of differential operators. [Bur92, Bur99, For93,
For97, RAE+02]

However, there is a third source of spurious solutions that is still unresolved. For
realistic three-dimensional multi-material nanostructures, the real-space EFA Hamil-
tonian can only be solved by discretizing position space in some way. The simplest
scheme is to use a finite difference method with symmetric first-order differences, i.e.
∂xF = [F (x + h) − F (x − h)]/(2h) with grid spacing h. While it has been noticed
earlier that this method fails badly for many relevant semiconductors and alloys,
[CTM03] no general cure for this problem has been developed so far.

The discretization induced appearance of spurious solutions has been discussed
for the centered finite differences scheme and it was found to be related to the ill-
representation of first-order derivatives in standard real-space bases. [CTM03] While
this problem is less obvious for eight-band models because second-order terms sta-
bilize the discrete Hamiltonian to some extent, standard discretization schemes fail
completely in 14-band calculations where no or only small second-order terms are
present. All published proposals to overcome this problem have major drawbacks. It
has been shown that the material parameters may be rescaled so that all first-order
derivatives vanish. [For07] However, this effectively decouples the bands which causes
important band structure features such as non-parabolicity and inversion asymmetry
to be lost. A plane-wave basis, which is most appropriate for periodic structures,
[WR93] has the advantage of being free of spurious modes. However, the k-space
multi-band Hamilton matrix is dense leading to unfeasible numerical problems for
three-dimensional realistic nanostructures. Small off-diagonal second-order terms
may be added to the first-order terms in the Hamiltonian, but this so-called up-
winding procedure breaks the symmetry of the Hamiltonian. [KLN03] Finally, a
staggered-grid finite differences method has been shown to successfully remove the
instabilities of the first-order derivatives. [WXW06] This amounts to shifting the
grids of the various components of the eight-band EFA Hamiltonian relative to each
other in a particular way. Unfortunately, such complex grids make it more difficult to
implement boundary conditions in a transparent way. In addition, a gauge-invariant
formulation of finite differences methods relies on unambiguously determined con-
nection paths between grid points and it may be difficult to achieve this goal with
staggered grids. [PF06, AMV08]

It is a central achievement of our work to resolve this issue by employing a basis
for the variational envelope function space that is inherently free from these spurious
solutions and requires no modification of the k · p Hamiltonian itself.

The Zeeman splitting is many orders of magnitude smaller than other energy scales
of the band structure like the spacing of energy levels in typical nanostructures, the
spin-orbit splitting and the fundamental band gap. Consequently, even seemingly
subtle details of the Hamiltonian such as the ordering of operators and material
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parameters can have a profound impact on the calculated g-tensor. [AV09] In the
literature, the remote-band contributions to the eight- and 14-band k · p Hamiltonian
were derived only for bulk semiconductors where operators and material parameter
commute. [TRR79, MR91, Win03] To date, the correct ordering of these terms was
only regarded for the isotropic remote-band contribution κ to the g-factor of the
valence band. [For97, AV09] In this work, we derive an eight- and 14-band k · p
envelope function Hamiltonian that also accounts for the remote-band contributions
g∗ to the conduction band g-factor and the anisotropic remote-band contribution q to
the valence band g-factor in the correct operator ordering. This method leads to an
accurate representation of the EFA Hamilton, momentum and angular momentum
operator. The latter allows the perturbative prediction of the g-tensor in linear
response theory.

Another important effect influences the g-tensor indirectly: the lowering of the
QD symmetry from C4v to C2v. Although the envelope function Hamiltonian is
dominated by terms with C4v symmetry, [Win03] the lifting of this symmetry induces
a substantial anisotropy of the in-plane g-factors in QDs and QD molecules. [AV09]
While it is clear from fundamental symmetry arguments that a [001]-grown self-
assembled QD can at most exhibit C2v symmetry, [BZ05] it is still controversial
which effects account for this symmetry lifting and need to be included in accurate
calculations: the linear piezoelectric effect, [SGB99] the quadratic piezoelectric effect,
[BZWV06, SWB07] atomic asymmetry, [BZ05] a systematic shape anisotropy of the
dots, [JKBJ01, KKO+06] or combinations thereof. The g-factors and many other
QD properties are impacted only indirectly by these a effects. A direct measure
of this symmetry lifting is the splitting of the two first excited electronic p-shaped
levels in InGaAs/GaAs QDs which are degenerate in C4v symmetry. The splitting
of these p-levels has been accurately measured experimentally. [SBL+02, ZWG+04,
CZS+06] The experimental data thus provide a direct test for the various proposed
contributions to the symmetry lifting.

Two comprehensive theoretical studies on the symmetry lifting in InGaAs/GaAs
QDs were performed employing the k · p envelope function approximation [SWB07]
and the empirical pseudo-potential method. [BZWV06] Both works concluded that
the piezoelectric effect cannot be accountable for the observed p-level splitting be-
cause, firstly, the linear piezoelectric effect would lead to an incorrect sign and,
secondly, the quadratic contributions would cancel the linear contributions in the
quadratic piezoelectric effect inside the dot. Both works, however, have two major
shortcomings. On the one hand, the overall sign of the piezoelectric field was reversed
in both works. [Sch, Bes] On the other hand, a homogeneous In:Ga-profile was as-
sumed. This, however, is incompatible with experimental findings that show strong
evidence for a graded In:Ga-profile. [OKW+05, BVK+02, MCFJ02, FIM+00] We thus
examine the various contributions to the symmetry lifting. Our results reveal that
the linear piezoelectric effect is dominant and produces a p-level splitting with the
correct sign and the experimentally observed magnitude for a realistic In:Ga-profile.
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This work is organized in two main parts. The first part, in which we present our
methods, begins with a review of the continuum equations relevant for the electronic
structure calculation in Ch. 1. This encompasses the general k · p theory together with
Loewdin’s perturbation theory, the linear response theory to optical fields, the theory
of linear elastic strain and the piezoelectric effect. In Ch. 2, we apply this general
k · p theory to derive the 14-band envelope function Hamiltonian of zincblende-type
crystals as well in the angular momentum as in the Cartesian representation. Starting
from the symmetry properties of zincblende and the invariants that constitute the
Hamiltonian, we obtain the remote-band contributions with the correct operator
ordering. This finding is then exploited to derive a perturbative formula for the g-
tensor in linear response theory. We also discuss material parameters, rotations of
the crystal and the relation of the 14-band model to models with fewer bands. A
central part of our work is presented in Ch. 3: the symmetry adapted finite element
(SAFE) method. We first discuss and resolve the issue of spurious solutions on the
basis of White’s two-band model of light hole and conduction band. The solution
for this model problem is then generalized to the eight- and 14-band model and an
extension for the gauge-invariant incorporation of magnetic fields is presented. As
an application, the g-factor tuning of excitons in self-assembled QDs is shown to be
substantially larger then previously calculated. We complete the presentation of our
model in Ch. 4 with the numerical methods we employed to discretize and solve the
semiconductor equations. To this end, we give an overview of our implementation
of the finite element method which is specialized for an efficient discretization of
multi-component partial differential equations. Moreover, the direct method for the
solution of linear systems of equations and a variant of the Arnoldi iteration for
generalized interior eigenvalue problems are summarized.

In the second part, we present the results of our calculations on self-assembled In-
GaAs/GaAs QDs. The lifting of C4v symmetry is examined on the basis of the p-level
splitting in Ch. 5. Next, Ch. 6 is devoted to the electrical tuning of the X0 exciton
g-factor. We calculate the tuning in a fully detailed eight-band calculation incorpo-
rating the magnetic field and compare the results to those obtained by linear response
theory. An intuitive picture of the g-factor tuning is developed and a universal single
qubit gate is proposed. Finally, we investigate the non-linear Zeeman splitting in
Ch. 7. The origin of this effect is discussed along with the polarization properties of
the optical excitonic transition in a magnetic field. The main parts are followed by
Appendix A in which we prove the correct continuum limit of the gauge-invariant
symmetry adapted finite element method. In appendix B, the coupling matrices that
constitute the invariants of the Hamiltonian in zincblende symmetry are summarized.
The material parameters used in this work are tabulated in appendix C. Appendix D
finally gives an overview over the formal term rewriting system that we implemented
to perform the setup of matrix operators as well as rotations of the crystal and the
automated validation of the symmetry of the Hamiltonian.
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Chapter 1

Review of the continuum model of
semiconductor heterostructures

1.1 Introduction

In the following chapter, we give an overview of the continuum equations relevant to
the electronic structure calculation of low-dimensional mesoscopic heterostructures.
Atomistic effects, which are relevant on a sub-nanometer scale only, are neglected in
the continuum approach. Only the symmetry properties of the crystal lattice enter
the electronic structure calculations. The atomistic equations are thus replaced by
effective continuum equations with effective empirical material parameters. Calcula-
tions can be performed on a coarser length-scale which makes the numerical solution
highly efficient. A mesoscopic heterostructure that encompasses millions of atoms
can be solved within good approximation on discrete grids or variational spaces with
only a few 1000 variables.

Firstly, we give an overview of the k · p theory and Loewdin’s perturbation the-
ory in Sec. 1.2. Section 1.3 briefly summarizes the linear response to optical fields.
Finally, the linear continuum elasticity model for the calculation of strain and the
linear and the quadratic piezoelectric effect are recapitulated in Sec. 1.4 and Sec. 1.5,
respectively.

1.2 Luttinger-Kohn k · p theory

The following section summarizes the literature on the Hamiltonian and the momen-
tum operator in the Luttinger-Kohn representation. [LK55, For00]

3
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1.2.1 Bloch’s theorem

In the presence of a periodic crystal potential V (r) = V (r + R) with the Bravais
lattice {R}, the time-independent relativistic Pauli-Schrödinger equation reads

Ĥψ(r) =

[
p̂2

2m0

+ V (r) +
1

4m2
0c

2
(σ ×∇V (r)) p̂ + µB

g0

2
σ ·B

]
ψ(r) = Eψ(r). (1.1)

Here, ψ(r) is the single-particle wave function of the two-component electron spinor
and σ is the vector of the Pauli matrices. The last term is the coupling of the free
electron spin to a magnetic field B. The free electron g-factor is denoted by g0 ≈ 2
and µB is the Bohr magneton. This term has no impact on the following derivations
and is dropped throughout this section. It will be discussed in Sec. 2.3.3 explicitly.

The solution to the above equation is given by the Bloch functions

ψn,k(r) = eikrun,k(r), (1.2)

with the cell periodic part
un,k(r + R) = un,k(r). (1.3)

For each value of k, the set of functions {un,k(r)|n} forms an orthonormal basis
of cell periodic functions and therefore fulfills the orthonormality and completeness
relations

1

Ω

∫
Ω

u∗n,k(r)un′,k(r)d3r = δn,n′ , (1.4)

1

Ω

∑
n

un,k(r)u∗n,k(r ′) =
∑
R

δ(r− r ′ −R), (1.5)

where Ω is the volume of a unit cell.
Notably, the set of Bloch functions {ψn,k(r)|n,k} also forms a complete basis for

non-periodic functions.

1.2.2 Luttinger-Kohn representation

It is usually desirable not to calculate the entire band structure within the first
Brillouin zone but only in the vicinity of an extremal k-point k0. The Luttinger-
Kohn representation is therefore introduced as

χn,k(r) = eikrψn,k0(r) = ei(k+k0)run,k0(r), (1.6)

in which k is relative to k0. In the following, we abbreviate Un(r) ≡ un,k0(r) and use
the Dirac notation 〈r|nk〉 ≡ χn,k(r).

Exploiting periodicity, Un(r) can be expanded in a Fourier series

Un(r) =
∑
G

Un,Ge
iGr, (1.7)

Un,G =
1

Ω

∫
Ω

Un(r)e−iGrd3x. (1.8)
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The orthonormality (1.4) and completeness relations (1.5) in direct-space can be
expressed in reciprocal space as well∑

G

U∗n,GUn′,G = δn,n′ , (1.9)∑
n

Un,GU
∗
n,G ′ = δG,G ′ . (1.10)

For k and k ′ lying in the first Brillouin zone the product of two basis functions
becomes

〈nk|n′k ′〉 =
∑
G,G ′

U∗n,GUn′,G ′δ(k− k ′ + G−G ′)

=
∑
G

U∗n,GUn′,Gδ(k− k ′)

= δn,n′δ(k− k ′), (1.11)

because the difference of two k-vectors inside the first Brillouin zone is never equal
to a reciprocal lattice vector other than 0. The set of Luttinger-Kohn functions is
also complete and therefore forms an orthonormal basis even for non cell-periodic
functions.

1.2.3 Luttinger-Kohn Hamiltonian

The transformation of the Pauli-Schrödinger equation (1.1) to the Luttinger-Kohn
representation (1.6) leads to the eigenvalue problem∑

n′

Hn,n′(k)cm,n′(k) = Em(k)cm,n(k), (1.12)

for the expansion coefficients cm,n of the mth state and the nth Luttinger-Kohn basis
function. The Hamilton matrix Hn,n′(k) in the basis {χn,k(r) = eikrψn,k0(r)} is given
by

Hn,n′(k) =

[
En′(k0) +

~2k2

2m0

]
δn,n′ +

~
m0

k · πn,n′ , (1.13)

πn,n′ =

∫
Ω

U∗n(r)

[
p̂ +

1

4m0c2
σ ×∇V (r)

]
Un′(r)d3r. (1.14)

The πn,n′ are the matrix elements of the kinematic momentum between the cell
periodic part of the Bloch functions at k0. The En′(k0) are the eigenvalues of the
Schrödinger equation (1.1) for the Bloch functions ψn′,k0 .
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1.2.4 Envelope function theory

Any wave function φ(r) can be expanded in the basis of Luttinger-Kohn functions as

φ(r) =
∑
i

∫
Ω∗
d3k χn,k(r)φn(k), (1.15)

where Ω∗ is the volume of the reciprocal unit cell and φn(k) is defined as

φn(k) =

∫
Ω

d3r χ∗n,k(r)φ(r)

=
∑
G

U∗n,Gφ(k + k0 + G). (1.16)

Using the definition of the Luttinger-Kohn representation (1.6) in the above ex-
pansion of φ(r) yields

φ(r) =
∑
n

∫
Ω∗
d3k χn,k(r)φn(k)

=
∑
n

∫
Ω∗
d3k ei(k+k0)rUn(r)φn(k) (1.17)

=
∑
n

eik0rUn(r)

∫
Ω∗
d3k eikrφn(k) (1.18)

= eik0r
∑
n

Un(r)Fn(r), (1.19)

where

Fn(r) ≡
∫

Ω∗
d3k eikrφn(k), (1.20)

is called the nth component of the envelope function F (r).
Note, however, that the above derivation is only exact if the Luttinger-Kohn basis

functions are the same throughout the entire crystal. This is obviously true for bulk
semiconductors, but only an approximation in heterostructures. This problem was
intensely discussed in the literature and it was found that even an abrupt change in
the cell-periodic Bloch functions at material interfaces induces only a minor error.
[Bur94, For96, For98] Equation (1.20) thus justifies replacement k̂ → −i∇ in the
real-space envelope function approximation (EFA).

1.2.5 Luttinger-Kohn momentum operator

Many important observables such as optical matrix elements are related to the mo-
mentum operator. Momentum matrix elements of the Luttinger-Kohn basis functions
are derived by starting with the eigenfunction |p〉 of the momentum operator p̂, i.e.

p̂|p〉 = p|p〉. (1.21)
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The definition of the Luttinger-Kohn functions (1.6) and the Fourier series expansion
for Un(r) (1.7) then results in

〈p|nk〉 =

∫
(2π)−3e

i
~prei(k+k0)rUn(r)d3r

=
∑
G

δ(k + k0 −
1

~
p + G)Un,G. (1.22)

Using this relation and the completeness of the basis {|p〉}, the momentum matrix
elements between Luttinger-Kohn basis functions become

〈nk|p̂|n′k ′〉 =

∫
Ω∗
〈nk|p〉〈p|p̂|n′k ′〉d3p

=

∫
Ω∗

∑
G

pU∗n,G δ(k + k0 + G− 1

~
p)〈p|n′k ′〉d3p

=
∑
G

~(k + k0 + G)U∗n,G〈k + k0 + G|n′k ′〉

=
∑
G,G ′

~(k + k0 + G)U∗n,GUn′,G ′ δ(k
′ + G ′ − k−G). (1.23)

For k-vectors inside the same Brillouin, the difference k ′−k is never equal to a non-
zero reciprocal lattice vector. Therefore, δ(k ′+ G ′−k−G) becomes δ(k ′−k)δG ′,G
and

〈nk|p̂|n′k ′〉 =
∑
G

[~(k0 + G) + ~k]U∗n,GUn′,G δ(k
′ − k)

= [pn,n′(k0) + ~k δn,n′ ]δ(k
′ − k), (1.24)

in which relation (1.10) has been used and the momentum matrix element at k0 is
defined as

pn,n′(k0) =
∑
G

~(k0 + G)U∗n,GUn′,G. (1.25)

The momentum operator does not couple different k-vectors and its matrix ele-
ments can thus be written as a function of k

pn,n′(k) = pn,n′(k0) + ~k δn,n′ . (1.26)

1.2.6 Loewdin’s perturbation theory

The Hamiltonian (1.13) couples an infinite number bands and contains an infinite
number of coupling parameters πn,n′ . For practical purposes, only a small number
of coupling parameters can be fitted to experimental data and thus only a small
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number of bands can be taken into account. One can reduce the number of bands
by employing Loewdin’s perturbation theory which allows to decouple a finite set
of class A bands from the remaining remote bands in class B. [L5̈1] The bands in
class A are considered to be nearly degenerate, i.e. the energy separation among
class A bands is much smaller than the energy separation between any class A and
class B band. In order to decouple these classes of bands in a controlled manner, a
unitary transformation is applied to the Hamiltonian which eliminates all coupling
terms between class A and class B bands up to the first order in k. In the following,
we use the Einstein sum convention for the coordinate indexes i and j.

At first, the Hamiltonian (1.13) is split into coupling and non-coupling terms
between class A and class B bands,

H = Ĥ0 + Ĥ1 + Ĥ2, (1.27)

H0 =

[
En(k0) +

~2k2

2m0

]
δn,n′ , (1.28)

H1 =
~
m0

kiπ
i
n,n′Θn,n′ , (1.29)

H2 =
~
m0

kiπ
i
n,n′(1−Θn,n′), (1.30)

where

Θn,n′ ≡
{

0 n, n′ ∈ A or n, n′ ∈ B
1 otherwise

, (1.31)

is zero for bands in the same class and one for bands in different classes.
In order eliminate H1, a unitary transformation of the form

|nk〉 = e−S|nk〉, (1.32)

H̄ = e−SHeS, (1.33)

is applied, in which S = −SH is anti-Hermitian. The transformed Hamiltonian H̄
couples class A bands among each other with renormalized coupling constants that
account for the class B bands perturbatively. It can be expanded to

H̄ = e−SHeS (1.34)

= H + [H,S] +
1

2!
[[H,S], S] +

1

3!
[[[H,S], S], S] + . . .

= H0 +H1 +H2 + [H0, S] + [H1, S] + [H2, S]

+
1

2
[[H0, S], S] +

1

2
[[H1, S], S] +

1

2
[[H2, S], S]

+
1

6
[[[H0, S], S], S] + . . . . (1.35)

In order to remove H1, S is chosen such that H1 + [H0, S] = 0. If both the states
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n and n′ are in the same class of bands, S must be 0. Otherwise, this relation yields

0 = 〈n|H1 +H0S − SH0|n′〉
〈n|H0S − SH0|n′〉 = −〈n|H1|n′〉

S(En − En′) = − ~
m0

kiπ
i
n,n′

S = − ~
m0

kiπ
i
n,n′

En − En′
, (1.36)

and S is thus given by

S = − ~
m0

kiπ
i
n,n′

En − En′
Θn,n′ . (1.37)

With this expression for S, the Hamiltonian (1.35) transforms into

H̄ = e−SHeS

= H0 +H2 + [H1, S] + [H2, S]

+
1

2
[[H0, S], S] +

1

2
[[H1, S], S] +

1

2
[[H2, S], S]

+
1

6
[[[H0, S], S], S] + . . . . (1.38)

The terms 1
6
[[[H0, S], S], S], 1

2
[[H1, S], S], and 1

2
[[H2, S], S] are of O(k3) and are

thus neglected as are all higher terms in k. [H2, S] is of O(k2), but couples bands
from class A and B only. It is neglected since we aim to decouple the classes A and
B up to O(k) only. Using H1 = −[H0, S], the term 1

2
[[H0, S], S] reduces to −1

2
[H1, S].

This finally results in the Hamiltonian H̄ of O(k2)

H̄ ≈ H0 +H2 +
1

2
[H1, S]

=

[
En(k0) +

~2k2

2m0

]
δn,n′ +

~
m0

kiπ
i
n,n′(1−Θn,n′)

+
1

2

∑
m

~2

m2
0

[
kiπ

i
n,mπ

j
m,n′kj

En − Em
+
kjπ

j
n,mπ

i
m,n′ki

E ′n − Em

]
Θn,mΘm,n′ . (1.39)

Note importantly that the components of the k-vector commute only in the bulk crys-
tal. In heterostructures this is no longer the case due to boundary conditions at the
material interfaces. [Bur92, For96] Hence, the ordering of operators and parameters
needs to be preserved carefully throughout the following discussion. In fact, we will
show in section 2.3.4 that the correct ordering becomes crucial in the presence of a
magnetic field.

Since only the class A bands are of interest, the Hamiltonian for class A is written
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as

H̄n,n′ =

[
En(k0) +

~2k2

2m0

]
δn,n′ +

~
m0

kiπ
i
n,n′

+
~2

2m2
0

∑
m∈B

kiπ
i
n,m

[
1

En − Em
+

1

En′ − Em

]
πjm,n′kj. (1.40)

From this general k · p Hamiltonian, all single band and multi-band k · p Hamiltonians
emerge by the corresponding choice of class A bands. The sum over the remote class
B bands reduces to a set of parameters that depend on n, n′, i and j only. Symmetry
properties of the crystal lattice at the k-point k0 can be exploited to reduce the
number of parameters substantially. [DKK55] Equation (1.40) can be used to obtain
k · p parameters directly from atomistic models. [GV95, JSdAeSLR05] Commonly,
however, only the set of symmetry-allowed independent parameters is extracted from
Eq. (1.40). These parameters are then fitted to experimental data. [VMRM01]

1.2.7 Momentum operator in Loewdin’s basis

In order to obtain the correct k · p momentum operator for class A bands, the
Luttinger-Kohn momentum operator (1.26) has to be transformed to the same basis
as the Hamiltonian. This yields

p̄ = e−SpeS = p + [p, S] + . . . , (1.41)

The transformation is only expanded up to O(k) since higher terms in k would require
further coupling parameters in addition to the parameters of the according Hamilto-
nian because higher combinations in the kinematic momentum matrix elements πn,n′

were involved.
Evaluating the terms of (1.41) by inserting the momentum matrix elements be-

tween Luttinger-Kohn basis functions (1.26) and S (1.37) yields

〈n|pi|n′〉 = pin,n′ + ~kiδn,n′ , (1.42)

〈n|[pi, S]|n′〉 =
∑
m∈B

[
pin,m + ~kiδn,m

] [
− ~
m0

kjπ
j
m,n′

(Em − En′)

]

−
∑
m∈B

[
− ~
m0

kjπ
j
n,m

(En − Em)

] [
pim,n′ + ~kiδm,n′

]
= −

∑
m∈B

~
m0

pin,mπ
j
m,n′kj

(Em − En′)

+
∑
m∈B

~
m0

kjπ
j
n,mp

i
m,n′

(En − Em)
, (1.43)
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p̄in,n′ ≈ pin,n′ + ~kiδn,n′

+
~
m0

∑
m∈B

[
pin,mπ

j
m,n′kj

En′,m
+
kjπ

j
n,mp

i
m,n′

En,m

]
. (1.44)

The problem now is to express the k · p momentum operator (1.44) in the same
set of k · p parameters as the k · p Hamiltonian (1.39). A comparison between both
operators shows that two issues arise. Firstly, the k · p momentum operator con-
tains not only kinematic but also canonical momentum matrix elements. However,
the difference between both operators is of relativistic nature and usually a very
small correction which can be neglected. Secondly, the third term that represents
the perturbative remote-band contributions in the k · p momentum operator is not
symmetric in i and j whereas the corresponding term in the k · p Hamiltonian is.

For the eight-band, six-band and single-band k · p model of zincblende at the Γ-
point, it can be proven by symmetry arguments under mild assumptions that indeed
the same set of parameters is sufficient for the k · p momentum operator as for the
k · p Hamiltonian. [Eis08] Interestingly, this is not the case for the 14-band model.
However, the contributions from remote bands are relatively small in this model.
Therefore, neglecting the additional perturbative parameters, which occur in the mo-
mentum operator, is expected to yield a sound approximation. Clearly, this argument
also holds for all models that encompass even more bands.

Under these approximations, Eq. (1.44) and Eq. (1.39) allow to express p̄n,n′ in
terms of Hn,n′ as

p̄n,n′ ≈
m0

~
∂H̄n,n′

∂k
. (1.45)

This is an approximate variant of the Hellmann-Feynman theorem. [Fey39]

1.3 Linear optical response theory

In the presence of a time-dependent electromagnetic field, the principle of minimal
coupling leads to the time-dependent single particle Schrödinger equation [Chu95]

i~∂tφ(r, t) = Ĥφ(r, t) =

[
(p̂ + eA(r, t))2

2m0

+ V (r)

]
φ(r, t), (1.46)

where φ(r, t) is the time-dependent wave function and V (r) the crystal potential.
Relativistic effects are neglected here because they have only minor impact on the
response to optical fields in the linear limit. The vector potential of a electromagnetic
plane wave field with wave vector q and angular frequency ω is [Chu95]

A(r, t) = Re
[
εA0e

i(q·r−ωt)] . (1.47)

Note that in general A(r, t) can be a superposition of various static and dynamic
components. In the linear limit, we neglect any terms of higher order in A(r, t) and
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thus treat all these components independently. Hence, without restriction we discuss
a single plane wave component (1.47) only.

In the optical limit |r| � 1/|q|, we have that

A(r, t) ≈ Re
[
εA0e

−iωt] =
1

2
A0

(
ε∗eiωt + εe−iωt

)
, (1.48)

where we account for general complex polarizations ε. The linear response to this
field is thus

A · δĤ
δA
≈ A · ep̂

m0

=
eA0

2m0

ε∗ · p̂eiωt +
eA0

2m0

ε · p̂e−iωt = Ĥ†inte
iωt + Ĥinte

−iωt, (1.49)

with the time-independent interaction Hamiltonian

Ĥint =
eA0

2m0

ε · p̂. (1.50)

In the limit of large time scales (� 1/ω), time-dependent perturbation theory
yields Fermi’s golden rule for the transition probability [Dav98b]

Wf,i =
2π

~
|〈f |Hint|i〉|2δ(Ef − Ei − ~ω)

+
2π

~
|〈f |H†int|i〉|2δ(Ef − Ei + ~ω), (1.51)

from the initial state |i〉 to the final state |f〉 with the corresponding energies Ei and
Ef . From the transition probability the absorption coefficient is derived as [Chu95]

α(ω) =
πe2

ncε0m2
0ω

1

V

∑
a,b

′
|〈a|ε · p̂|b〉|2(ρa − ρb)δ(Eb − Ea − ~ω), (1.52)

where the sum
∑′ runs over all state |a〉 and |b〉 with Eb > Ea. The normalization

volume is denoted as V , c is the vacuum speed of light and ε0 the vacuum dielectric
constant. The function ρa denotes the occupation of the a-th state. In general, the
refractive index n is a function of ω. However, for a small range of transition energies
it can be considered as constant.

For convenience, we define the oscillator strength

fb,a =
1

2m0(Eb − Ea)
|ε · p̂b,a|2 =

Ib,a
Eb − Ea

, (1.53)

and the transition intensity

Ib,a =
1

2m0

|ε · p̂b,a|2. (1.54)

The oscillator strength fulfills the popular f -sum rule. However, to assess the intensity
of inter-band transitions, the transition intensity serves as a more intuitive scale since,
for optical transitions in the Γ-point of bulk direct semiconductors, it equals the Kane
energy parameter.
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1.4 Continuum strain

A lattice mismatch of the constituents of heterostructures causes strain fields when the
lattices locally adjust to each other. These strain field affects the electronic structure
in mesoscopic systems in two ways. Firstly, the deformation of the crystal changes
the distance of atoms and lowers the symmetry of the crystal. This directly alters the
energy of the electronic bands. Secondly, the shear strain components of the strain
tensor give rise to piezoelectric charges. The according potential can additionally
lower the symmetry and split otherwise degenerate states. The accurate prediction
of electronic states thus requires the accurate calculation of strain fields. To this
end, we employ the linear elastic continuum model. This method has been shown
to be in reasonable agreement with the atomistic valence force field method, but is
numerically less costly. [SGB99] In the following, we summarize the linear elastic
continuum model for zincblende semiconductors given in the literature. [LL91]

In order to describe the deformation of solid continua, a displacement vector u(r)
is associated with each point r. Consequently, the point r in the undeformed solid
is displaced to the position r′(r) = r + u(r) by the deformation. Without external
forces, the free elastic energy in the differential volume d3r is given by [LL91]

1

2

∑
ijkl

∂iuj(r)Cijkl(r)∂kul(r) d3r, (1.55)

where Cijkl is the fourth order elastic tensor. The ∂iuj(r) are called distortion and
can be separated in a symmetric and an anti-symmetric part. It can be shown that,
in absence of external forces, the anti-symmetric part does not contribute to the
elastic energy because it amounts to rotations of the differential volume only. [LL91]
The symmetric part is called strain and is determined by the symmetric second-rank
tensor εi,j ≡ (∂iuj(r) + ∂jui(r))/2.

In equilibrium, the total free elastic energy is minimal. It is convenient to write
the free energy functional in Voigt notation

F [ε] =
1

2

∑
ij

∫
Ω

d3r εi(r)Cij(r)εj(r), (1.56)

where the vector

ε =


εxx
εyy
εzz
2εyz
2εzx
2εxy

 =


∂xux
∂yuy
∂zuz

∂yuz + ∂zuy
∂zux + ∂xuz
∂xuy + ∂yux

 . (1.57)

represents the strain and the second-rank elastic tensor is now denoted as Cij. The
integration domain Ω is the volume of the solid.
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In zincblende-type symmetry, the second-rank elastic tensor reads [Nye85]

C =


C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 , (1.58)

where only three independent parameters C11, C12, and C44 occur.
The free elastic energy is minimal if the functional derivative of the elastic energy

by each displacement component i vanishes, namely

δF [u]

δui
= 0. (1.59)

The displacement in a heterostructure can be split in a part u0 due to the lattice
mismatch and a part u1 due to the relaxation of the crystal. The lattice mismatch
in known and the relaxation has to be calculated. Hence, the functional derivative
Eq. (1.59) results in the system of equations

Ŝ

 u1
x

u1
y

u1
z

 = −Ŝ

 u0
x

u0
y

u0
z

 , (1.60)

where the so-called stiffness operator Ŝ results from the functional derivative (1.59)
in

Ŝ =

 ∂xC11∂x + ∂yC44∂y + ∂zC44∂z ∂xC12∂y + ∂yC44∂x
∂yC12∂x + ∂xC44∂y ∂xC44∂x + ∂yC11∂y + ∂zC44∂z
∂zC12∂x + ∂xC44∂z ∂zC12∂y + ∂yC44∂z

∂xC12∂z + ∂zC44∂x
∂yC12∂z + ∂zC44∂y

∂xC44∂x + ∂yC44∂y + ∂zC11∂z

 . (1.61)

Since the lattice constants are uniform in all Cartesian direction for zincblende-
type crystals, the mismatch strain ε0 for a material with lattice constant a within a
matrix with lattice constant a0 is hydrostatic. It is given by

ε01(r) = ε02(r) = ε03(r) =
a0 − a(r)

a(r)
, (1.62)

ε04(r) = ε05(r) = ε06(r) = 0. (1.63)

Inserting this in the right-hand side of Eq. (1.60), we obtain the stiffness equation

Ŝ u1(r) = −∇(C11 + 2C12)
a0 − a(r)

a(r)
. (1.64)
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By solving this system of partial differential equations for u1(r), we obtain the total
strain as

ε(r) = ε0(r) +


∂xu

1
x(r)

∂yu
1
y(r)

∂zu
1
z(r)

∂yu
1
z(r) + ∂zu

1
y(r)

∂zu
1
x(r) + ∂xu

1
z(r)

∂xu
1
y(r) + ∂yu

1
x(r)

 . (1.65)

1.5 Piezoelectric effect

A displacement of the atoms in a crystal lacking inversion symmetry can induce dipole
and quadrupole moments that lead to a piezoelectric polarization P. [Mar72] The
position dependence of the strain field in heterostructures causes a divergence of this
polarization. This corresponds to an effective polarization charge ρ(r) = −∇ · P(r)
and consequently an electrostatic potential which can have a substantial impact on
the electronic structure.

In the Voigt notation, the linear piezoelectric tensor eij is second-rank where
i = 1, 2, 3 and j = 1, . . . , 6 denote the Cartesian coordinate and the Voigt index,
respectively. It has only a single independent component e14 = e25 = e36 in zincblende
symmetry resulting in the linear piezoelectric polarization [Mar72, Nye85]

P(r) =

 0 0 0 e14(r) 0 0
0 0 0 0 e14(r) 0
0 0 0 0 0 e14(r)

 ε(r) = e14(r)

 ε4(r)
ε5(r)
ε6(r)

 , (1.66)

with the piezoelectric material constant e14. The corresponding electrostatic potential
Φ(r) is the solution of Poisson’s equation

−∇ · ε0εr(r)∇Φ(r) = −∇ ·P(r), (1.67)

with the vacuum dielectric constant ε0 and the material-dependent relative dielectric
constant εr(r).

Recently, the quadratic piezoelectric effect was proposed. [BZWV06] The corre-
sponding polarization Pq(r) is quadratic in the strain and reads [BWPB11]

Pq = eq14

 ε4
ε5
ε6

+Bq
114

 ε1ε4
ε2ε5
ε3ε6

+Bq
124

 (ε2 + ε3)ε4
(ε3 + ε1)ε5
(ε1 + ε2)ε6

+Bq
156

 ε5ε6
ε6ε4
ε4ε5

 , (1.68)

with the piezoelectric constants eq14, Bq
114, Bq

124, and Bq
156. Here, we dropped the

explicit position dependency for the sake of clarity. Again, the solution of Poisson’s
equation yields the corresponding potential.



16 CHAPTER 1. CONTINUUM MODEL OF HETEROSTRUCTURES



Chapter 2

New derivation of the zincblende
multi-band k · p-Hamiltonian

2.1 Introduction

In this chapter, we derive for the first time the k · p envelope function Hamiltonian
preserving the correct ordering of material parameters and differential operators for
all relevant remote-band contributions. Previously in the literature, this derivation
was carried in the bulk case, where material parameters and k̂-operators commute.
[TRR79, MR91, PZ96, Win03] So far, the correct ordering was regarded only for
the Luttinger parameter κL which contributes to the isotropic valence band g-factor.
[For97, AMV08] It was found that the operator ordering is particularly important
for the calculations of effective g-factors. In the presence of spin-orbit coupling, the
k · p interaction induces an orbital motion of the wave function. [KIR98] This orbital
motion strongly modifies the coupling to a magnetic field. Consequently, the remote
bands contribute to the effective g-factors perturbatively. In addition to κL, we find
that in fact all terms that relate to the effective orbital motion depend on the correct
ordering of operators in heterostructures.

We apply the general k · p envelope function theory to zincblende-type crystals
with a direct band gap at the Γ-point. These crystals encompass the most important
materials for opto-electronic devices. At the Γ-point, we have that k0 = (0, 0, 0) and
the k · p Hamiltonian has the full symmetry of the zincblende-type crystal.

Section 2.2 gives an overview of the symmetry properties of the group Td and
their implications for the Luttinger-Kohn Hamiltonian. Section 2.3 summarizes the
first-order 14-band extended Kane Hamiltonian in angular momentum representa-
tion that incorporates all symmetry properties of Td including the lack of inversion
symmetry. We newly derive the perturbative second-order remote-band contribu-
tions preserving the correct operator ordering by employing Loewdin’s perturbation
theory. We exploit these results to derive a perturbative formula for the g-tensor in
linear response theory in Sec. 2.4. In Sec. 2.5, the 14-band model is related to the

17
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Table 2.1: Correspondence of irreducible representations in various notations.
Koster [KDWS63] (this work) Pikus/Bir [BP74] Wigner [BSW36]

Γ1 A1 Γ1

Γ2 A2 Γ2

Γ3 E Γ12

Γ4 F1 Γ25

Γ5 F2 Γ15

Γ6 E ′2 Γ6

Γ7 E ′1 Γ7

Γ8 G′ Γ8

common eight-, six-, and single-band models by rescaling material parameters. Next,
we transform the 14-band Hamiltonian to the Cartesian representation in Sec. 2.6.
This particular representation is required by our spurious-solution-free discretization
method presented in Ch. 3. Finally, the dependence of material parameters on the
temperature and the alloy composition as well as rotations of the crystal axes are
discussed in Sec. 2.7 and Sec. 2.8, respectively.

2.2 Review of symmetry properties of the zinc-

blende Hamiltonian

2.2.1 Irreducible representations of Td

The point group of zincblende-type crystals is the group Td, which consists of the
24 proper and improper rotations that leave a regular tetrahedron invariant. There
are five irreducible representations that we label in the notation of Koster as Γ1, Γ2,
Γ3, Γ4, and Γ5. [KDWS63] Table 2.1 relates various notation commonly found in the
literature.

In the crystal field, the electron wave functions transform according to the direct
product of the single valued representations Γ1 through Γ5 and the double valued
representation D1/2 of 1/2-spin. [BP74] These products are in general reducible and
decompose into the irreducible double group representations Γ6, Γ7, and Γ8 as follows:

Γ1 ×D1/2 = Γ6,

Γ2 ×D1/2 = Γ7,

Γ3 ×D1/2 = Γ8,

Γ4 ×D1/2 = Γ6 + Γ8,

Γ5 ×D1/2 = Γ7 + Γ8. (2.1)

The representation Γ6 and Γ7 are two-dimensional and the representation Γ8 is four-
dimensional.
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2.2.2 Luttinger-Kohn Hamiltonian in Td symmetry

As a central result of representation theory, wave functions that belong to the same ir-
reducible representation are degenerate in energy. Further, since the Luttinger-Kohn
Hamiltonian (1.13) must be invariant under symmetry operations of the group Td, its
matrix elements are subject to strict selection rules. [DKK55] Hence, the block Hiαjβ

of the Luttinger-Kohn Hamiltonian that couples the two irreducible representations
(iα) and (jβ) can be written in terms of a few basis matrices, the so-called invariants.
[Lut56, BP74, TRR79] Here, the indices (iα) and (jβ) denote the α-th occurrence of
the irreducible representation Γi and the β-th occurrence of the irreducible representa-
tion Γj, respectively. In summary, the invariants of the Luttinger-Kohn Hamiltonian
(1.13) are up to first order in k and read [MR91]

HLK
6α6β(k) = δαβ(E6α +

~2k2

2m0

)12,

HLK
7α7β(k) = δαβ(E7α +

~2k2

2m0

)12 + (1− δαβ)∆7α7β12,

HLK
8α8β(k) = δαβ(E8α +

~2k2

2m0

)14

+P̄8α8β({Jy, Jz}kx + {Jz, Jx}ky + {Jx, Jy}kz)
+(1− δαβ)∆8α8β14,

HLK
6α7β(k) = P̄6α7β(kxσx + kyσy + kzσz),

HLK
6α8β(k) = P̄6α8β(kxTx + kyTy + kzTz),

HLK
7α8β(k) = (1− δαβ)P̄7α8β(kxTyz + kyTzx + kzTxy). (2.2)

The Pauli matrices are denoted by σi. The angular momentum matrices Ji, Ti, and
Tij are found in the literature [TRR79] and are summarized in appendix B. The
symmetrized product of two matrices is denoted by {A,B} ≡ 1

2
(AB + BA). The

material parameters P̄iαjβ are momentum matrix element between Bloch functions of
the according representations. In the limit of small spin-orbit coupling, they corre-
spond to the momentum matrix elements of the single group representations up to a
numeric prefactor due to the expansion coefficients of the angular momentum bases.
In general P̄iαjβ and ∆iαjβ are complex.

Note importantly, that, in contrast to Eq. (1.13), each eigenenergy Eiα at k = 0
includes only the intra-band spin-orbit coupling. The inter-band spin-orbit coupling
introduces a small mixing between representations that are otherwise decoupled at
k = 0. It is convenient to formulate the k · p Hamiltonian in these “pure” represen-
tations because, in this case, the momentum matrix elements are those of the single
group representations. Therefore, the inter-band spin-orbit coupling is excluded from
Eiα and thus has to be taken into account explicitly via the term ∆iαjβ.
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2.3 Derivation of the second-order k · p Hamilto-

nian

2.3.1 Review of the first-order extended Kane model

Most of the technically important III-V and II-VI semiconductors have bonding p-
like highest valence bands and anti-bonding s-like lowest conduction bands. [Mad96]
Atomic s-symmetry (orbital angular momentum L = 0~) is compatible to the Γ1

irreducible representation. Atomic p-symmetry (orbital angular momentum L = 1~)
is compatible to the Γ5 irreducible representation. [BP74] Therefore, we denote the
Γ1 and the Γ5 bands as s-like and p-like, respectively.

Since the Γ5 irreducible representation transforms like a vector, the basis functions
are labeled X, Y , and Z according to the unit vector they transform like. The basis
function of Γ1 is labeled S with regard to atomic s-symmetry and transforms like a
scalar. Since these basis functions transform like vectors and scalars in a Cartesian
space, we label theses basis functions Cartesian.

The bonding states are of even and the anti-bonding states of odd parity in Oh.
In most III-V semiconductors with Td symmetry, parity is lifted only weakly. Hence,
parity-forbidden matrix elements in Oh are still weak in Td. [Win03] To describe
effects that are due to inversion asymmetry in Td the anti-bonding p-like conduction
bands has to be included in the Hamiltonian explicitly. [TRR79, PZ96] Since inversion
asymmetry leads to a lifting of parity, the momentum matrix elements between the
anti-bonding p-like conduction and anti-bonding s-like conduction band are allowed
and in general non-zero.

The bonding s-like valence bands are usually not included explicitly in the k · p
Hamiltonian. These bands couple only weakly to the bonding p-like valence bands
due to the weak lifting of parity. Further, they do not couple to the anti-bonding s-
bands due to exact selection rules of the momentum matrix elements in Td. [CCF88]
The momentum matrix element between the anti-bonding s-like bands and anti-
bonding p-like bands is parity-allowed and thus of substantial magnitude. [CCF88]
However, the bands are very remote in energy (commonly & 10 eV) and this coupling
is suppressed. Therefore, their impact on the band structure close to the band gap
is negligible.

Together, the p-like valence bands, the s-like and p-like conduction bands result
in a 14-band k · p Hamiltonian, the so-called extended Kane model. A typical band
structure of the extended Kane model is illustrated for bulk GaAs in Fig. 2.1. Note
that the two Γ8 bands split into two irreducible representations for k 6= 0. Because
of spin-orbit coupling, the Γ5 irreducible representation is split into the Γ7 and Γ8

irreducible representations which are compatible with the full rotational group D1/2

and D3/2 of 1/2 and 3/2 spin, respectively. The direct product of Γ1 and D1/2 simply
results in the irreducible representation Γ6.

The basis functions of Γ7 and Γ8 can be written in terms of the vector-like Γ5
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Figure 2.1: Energy dispersion of the extended Kane model for bulk GaAs in the [100]
direction.

basis functions and the basis of 1/2-spin | ↑〉 and | ↓〉 as follows [Win03]

|Γ8,+
3
2
〉 = |HH ↑〉 = − 1√

2
|X ↑> − i√

2
|Y ↑>,

|Γ8,+
1
2
〉 = |LH ↑〉 =

√
2

3
|Z ↑> − 1√

6
|X ↓> − i√

6
|Y ↓>,

|Γ8,−1
2
〉 = |LH ↓〉 =

1√
6
|X ↑> − i√

6
|Y ↑> +

√
2

3
|Z ↓>,

|Γ8,−3
2
〉 = |HH ↓〉 =

1√
2
|X ↓> − i√

2
|Y ↓>,

|Γ7,+
1
2
〉 = |SO ↑〉 = − 1√

3
|Z ↑> − 1√

3
|X ↓> − i√

3
|Y ↓>,

|Γ7,−1
2
〉 = |SO ↓〉 = − 1√

3
|X ↑> i√

3
|Y ↑> +

1√
3
|Z ↓> . (2.3)

Here, we label the states by their irreducible representations and the projection of the
total angular momentum. The quantization direction for the total angular momentum
is taken to be the same as for the electron spin but is otherwise arbitrary. In addition,
we have included the common termini heavy hole (HH), light hole (LH) and split-off
hole (SO). This basis of Bloch functions is denoted as angular momentum basis.

Note that in general the Cartesian basis that constitutes the Γ8 basis needs not
be the same as the Cartesian basis that constitutes the Γ7 basis. However, for most
relevant semiconductors, the spin-orbit coupling is much smaller than the coupling of
atomic orbitals. [JSBB98] We make the common assumption that the Γ7 + Γ8 basis
functions emerge from the same Γ5 basis. [DKK55]
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The above expansion can be cast into a transformation matrix from the Cartesian
to the angular representation

S78,5D = SH5D,78 =



− 1√
2

i√
2

0 0 0 0

0 0
√

2
3
− 1√

6
i√
6

0

1√
6

i√
6

0 0 0
√

2
3

0 0 0 1√
2

i√
2

0

0 0 − 1√
3
− 1√

3
i√
3

0

− 1√
3
− i√

3
0 0 0 1√

3


. (2.4)

The index “5D” refers to the reducible representation Γ5D ≡ Γ5×D1/2. By convention,
the first four rows of S78,5D correspond to the Γ8 representation and the last two rows
to the Γ7 representation in the same order as in Eqs. (2.3). The columns correspond
to the |X ↑〉, |Y ↑〉, |Z ↑〉, |X ↓〉, |Y ↓〉, and |Z ↓〉 basis functions in this order.

The basis of Γ6 is simply the product of the basis function S with the spinor basis,
namely {|S ↑〉, |S ↓〉}. Hence, the transformation matrix is the identity

S6,1D = SH1D,6 =

(
1 0
0 1

)
, (2.5)

where again Γ1D ≡ Γ1 ×D1/2.

We label the representations of the conduction band by c and the representations
of the valence band by v. Thus, the 14-band model encompasses the irreducible
representations Γ7c, Γ8c, Γ6c, Γ7v, and Γ8v.

The 14-band k · p Hamiltonian without perturbative coupling to remote bands
is constructed from the block Luttinger-Kohn Hamiltonians given in Eq. (2.2) and
reads [MR91]

HLK
14 (k) =


HLK

8c8c HLK
8c7c HLK

8c6c HLK
8c8v HLK

8c7v

HLK
7c7c HLK

7c6c HLK
7c8v HLK

7c7v

HLK
6c6c HLK

6c8v HLK
6c7v

h.c. HLK
8v8v HLK

8v7v

HLK
7v7v

 , (2.6)

where the lower left triangular part is the Hermite conjugate of the upper right
triangular part.
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The parameters in the block Hamiltonians in Eq. (2.2) are given by [MR91]

P̄8c6c = −i
√

3P ′, P̄7c6c = i
1√
3
P ′,

P̄8c8v = −2

3
Q, P̄8c7v = −2Q, P̄7c8v = −2Q,

P̄6c8v =
√

3P, P̄6c7v = − 1√
3
P,

P̄8v8v =
2√
3
Ck, P̄8c8c =

2√
3
C ′k,

∆8c8v = +
1

3
∆−, ∆7c7v = −2

3
∆−. (2.7)

The k-linear spin splitting parameter C ′k of the Γ8c band has no discernible impact on
the band structure close to the band gap and is neglected in the following. As noted
before, the band-offsets E8c through E7v at k = 0 contain the intra-band spin-orbit
coupling only. Clearly, experimentally measured values for the band gaps contain
all spin-orbit splitting implicitly. However, the impact of the intra-band spin-orbit
coupling on the band gaps is very small. It is thus not necessary to correct the band
gaps although we formally excluded the intra-band spin-orbit coupling from these
values.

The momentum matrix elements P , P ′, Q, and Ck and the spin-orbit coupling
∆− are defined with respect to the basis of the according Γ5 representations. In
terms of the matrix elements of the Cartesian basis functions the parameters read
[Kan57, Win03]

P =
~
m0

〈Sc|πx|Xv〉, (2.8)

P ′ =
1

i

~
m0

〈Sc|πx|Xc〉, (2.9)

Q =
~
m0

〈Xv|πy|Zc〉, (2.10)

Ck =
~
m0

〈Xv|πy|Zv〉, (2.11)

∆0 = − 3i~
4m2

0c
2
〈Xv|[(∇V )× π]y|Zv〉, (2.12)

∆′0 = − 3i~
4m2

0c
2
〈Xc|[(∇V )× π]y|Zc〉, (2.13)

∆− = − 3~
4m2

0c
2
〈Xv|[(∇V )× π]y|Zc〉, (2.14)

where V is the crystal potential from Eq. (1.1). Again, v and c label the valence
bands and conduction bands, respectively. The inter-band spin-orbit matrix element
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between the p-like conduction and valence bands is denoted by ∆−. The intra-band
spin-orbit matrix elements ∆0 and ∆′0 relate to the p-like valence and conduction
bands, respectively.

The k-linear spin splitting parameter Ck is only due to the small relativistic spin-
orbit part of the kinematic momentum π̂ in Eq. (1.14) because the matrix element of
the canonical momentum p̂ vanishes identically irrespectively of the lack of inversion
asymmetry.

Together with the fundamental band gap E0, band offsets read [MR91]

E7v = EV BO − 2∆0/3, (2.15)

E8v = EV BO + ∆0/3, (2.16)

E6c = EV BO + ∆0/3 + E0, (2.17)

E7c = EV BO + ∆0/3 + E ′0, (2.18)

E8v = EV BO + ∆0/3 + E ′0 + ∆′0, (2.19)

where EV BO denotes the material-dependent relative valence band offset. [VdW89]
Note that we use the standard phase convention: The Cartesian basis of bonding

bands is purely real and the Cartesian basis of anti-bonding bands purely imaginary.
[MR91, Win03] In contrast to Ref. [MR91], however, we define P ′ and ∆− as the
imaginary part of the according matrix elements such that all material constants
are real following Ref. [JSdAeSLR05]. Consequently, the imaginary unit appears
explicitly as a prefactor before these parameters in P̄8c6c, P̄8c6c, ∆8c8v, and ∆7c7v

instead.

2.3.2 Operator ordering in the envelope function approxima-
tion

The real space Hamiltonian is obtained from the k-space Hamiltonian Eq. (2.6) by
the substitution k → k̂ = −i∇ and by introducing position-dependent material
parameters. [Bur94, For96, For98] This results in the real-space envelope function
approximation (EFA) Hamiltonian H(k) → Ĥ(r, k̂) that depends on the position
vector r and the differential operator k̂.

In the presence of a magnetic field B, the k-operator becomes k̂ → K̂ = −i∇ +
(e/~)A(r) with the corresponding vector potential A(r). The components of K̂ do
not commute and fulfill the commutation relation[

K̂i, K̂j

]
= −iεijk e

~
Bk. (2.20)

Even without a magnetic field, the differential operator k̂ does not commute with the
material parameters in heterostructures. Clearly, the ordering of material parameters
and operators is no longer arbitrary as in the case of a bulk semiconductor without
a magnetic field.



2.3. DERIVATION OF THE SECOND-ORDER K · P HAMILTONIAN 25

It has been shown that there are two valid orderings in which material parameters
and first-order operators may appear. [For97] First-order operators appear either left
or right of the parameters. In contrast, a symmetrized ordering has been shown to
produce unphysical interface states.

Here, we choose a particular operator ordering that enables us to construct the
spurious solution free variational envelope function space in Ch. 3. Explicitly, the
first-order 14-band EFA Hamiltonian in the Luttinger-Kohn representations, i.e.
without remote-band contributions, reads [MR91, Win03]

ĤLK
8c8c(r, k̂) =

(
E8c(r) +

~2

2m0

k̂†k̂

)
14,

ĤLK
7c7c(r, k̂) =

(
E7c(r) +

~2

2m0

k̂†k̂

)
12,

ĤLK
6c6c(r, k̂) =

(
E6c(r) +

~2

2m0

k̂†k̂

)
12,

ĤLK
8v8v(r, k̂) =

(
E8v(r) +

~2

2m0

k̂†k̂

)
14

+
2√
3
Ck ({Jy, Jz}kx + {Jz, Jx}ky + {Jx, Jy}kz) ,

ĤLK
7v7v(r, k̂) =

(
E7v(r) +

~2

2m0

k̂†k̂

)
12,

ĤLK
8c6c(r, k̂) = −i

√
3P ′(r)(k̂xUx + k̂yUy + k̂zUz),

ĤLK
7c6c(r, k̂) = i

1√
3
P ′(r)(k̂xσx + k̂yσy + k̂zσz),

ĤLK
8c8v(r, k̂) = −2

3
Q(r)({Jy, Jz}k̂x + {Jz, Jx}k̂y + {Jx, Jy}k̂z)

+
1

3
∆−(r)14,

ĤLK
8c7v(r, k̂) = −2Q(r)(k̂xUyz + k̂yUzx + k̂zUxy),

ĤLK
7c8v(r, k̂) = −2Q(r)(k̂xTyz + k̂yTzx + k̂zTxy),

ĤLK
7c7v(r, k̂) = −2

3
∆−(r)12,

ĤLK
6c8v(r, k̂) =

√
3(k̂†xTx + k̂†yTy + k̂†zTz)P (r),

ĤLK
6c7v(r, k̂) = − 1√

3
(k̂†xσx + k̂†yσy + k̂†zσz)P (r), (2.21)

where Uij is the conjugate transpose of Tij.

To make the operator ordering unambiguous, we distinguish between operators
that act on the right and on the left in the variational formulation of the Hamiltonian
eigenvalue problem: The daggered operator k̂† acts on the left and the operator k̂ on
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the right, irrespectively of where the operators appear in a term. Thus,

〈F c
i |k̂†a(r)k̂|F c′

j 〉 ≡ 〈F c
i |a(r)k̂†k̂|F c′

j 〉 ≡ 〈k̂F c
i |a(r)|k̂F c′

j 〉, (2.22)

for the c and c′ components of two envelope functions Fi and Fj respectively and a
position-dependent parameter function a(r). The action of individual components of
k̂† and k̂ is defined analogous. This slight abuse of notation will substantially simplify
the expressions for the perturbative remote-band contributions in the following sec-
tions. Moreover, we will always consider the EFA Hamiltonian and skip the explicit
dependencies on r and k̂ in the following.

2.3.3 Coupling of the free electron spin to a magnetic field

It is apparent from Pauli-Schrödinger equation (1.1) that the free electron spin couples
directly to a magnetic field. 1 This coupling is trivial in the Cartesian basis since
the basis functions are products of the single group basis functions and the basis
of spin. From this, we obtain the coupling in the angular momentum basis by the
transformations Eq. (2.4) and Eq. (2.5).

Hence, the magnetic interaction Hamiltonian of Γc6 reads

ĤB
6c6c = µB

g0

2
σ ·B, (2.23)

where σ = (σx, σy, σz)
T is the vector of Pauli matrices.

The magnetic interaction Hamiltonian of the Γ7 and Γ8 in obtained from the
magnetic Hamiltonian of the reducible Γ5×D1/2 representation. As before, we require
that the Γ7 and Γ8 basis can be constructed from the same Γ5 basis. The magnetic
Hamiltonian of Γ5Dc thus reads

ĤB
5Dc5Dc = µB

g0

2
(σ ·B)× 13. (2.24)

Here, “×” denotes the Kronecker product. Applying Eq. (2.4), we obtain the mag-
netic interaction Hamiltonian of Γ7c + Γ8c as

ĤB
8c8c =

2

3
µB

g0

2
(JxBx + JyBy + JzBz) , (2.25)

ĤB
7c8c = −2µB

g0

2
(TxBx + TyBy + TzBz) , (2.26)

ĤB
8c7c = Ĥ†7c8c, (2.27)

ĤB
7c7c = −1

3
µB

g0

2
(σxBx + σyBy + σzBz) . (2.28)

The analogous Hamiltonian is obtained for Γ7v + Γ8v. The angular momentum ma-
trices σi, Ti, and Ji are given in the appendix B.

1Here, the coupling of the free electron spin is to be understood as opposed to the effective
coupling within the crystal potential.
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2.3.4 Perturbative coupling to remote bands

In order to represent the band structure close to the band gap accurately, the remote
bands not included in the 14-band model need to be taken into account perturbatively.
To this end, we employ Loewdin’s perturbation theory (1.40) to derive perturbative
terms up to second-order in k̂.

Here, we consider second-order intra-band terms within the Γ6c and the Γ7v + Γ8v

representations only. Second-order intra-band terms within the Γ7c + Γ8c representa-
tions are neglected because they have no substantial influence on the bands close to
the band gap. Further, all second-order inter-band terms are neglected for the same
reason.

We discuss the perturbative contributions to the Γ6c intra-band Hamiltonian ex-
plicitly. The contributions from remote Γ6, Γ7, and Γ8 are directly derived from the
complete Luttinger-Kohn Hamiltonian (2.2) by Loewdin’s perturbation theory and
read

Ĥ6
6c6c =

∑
α 6=c

ĤLK†
6α6cĤ

LK
6α6c

E6c − E6α

= 0, (2.29)

Ĥ7
6c6c =

∑
α 6=c,v

ĤLK†
7α6cĤ

LK
7α6c

E6c − E7α

=
∑
α 6=c,v

|P̄6c7α|2

E6c − E7α

(kxσx + kyσy + kzσz)
†(kxσx + kyσy + kzσz)

=
∑
α 6=c,v

|P̄6c7α|2

E6c − E7α

(k̂†k̂12 + i[(k̂†xk̂y − k̂†yk̂x)σz + c.p.]), (2.30)

Ĥ8
6c6c =

∑
α 6=c,v

ĤLK†
8α6cĤ

LK
8α6c

E6c − E8α

=
∑
α 6=c,v

|P̄6c8α|2

E6c − E8α

(
2

9
k̂†k̂12 −

i

9
[(k̂†xk̂y − k̂†yk̂x)σz + c.p.]). (2.31)

Note again that the daggered operators always act on the left irrespective of their
appearance in the terms. The abbreviation “c.p.” denotes the cyclic permutations of
the indices x, y, and z of the previous terms.

For the bulk semiconductor in the presence of a mangetic field, we have that
(k̂†xk̂y − k̂†yk̂x) → [Kx, Ky] = −i e~Bz. Terms of this type thus contribute to the
effective coupling to a magnetic field. This coupling is mediated by the orbital motion
of remote band basis states and is thus conceptually different from the coupling of
the free electron g-factor to the magnetic field.

We can gather the perturbative terms in two material parameters. The first
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parameter

Ā′ =
∑
α 6=c,v

|P̄6c7α|2

E6c − E7α

+
2

9

∑
α 6=c,v

|P̄6c8α|2

E6c − E8α

, (2.32)

and the second parameter

~2

2m0

ḡ′∗ = 2
∑
α 6=c,v

|P̄6c7α|2

E6c − E7α

− 2

9

∑
α6=c,v

|P̄6c8α|2

E6c − E8α

, (2.33)

contribute to the effective mass and the effective g-factor of the Γ6c, respectively.
They are related to the common derived Luttinger-like parameters A′ and g′∗ of the
Γ6c band by [For97, TRR79]

Ā′ = A′ − ~2

2m0

=
~2

2m0

(
m0

m′∗
− 1

)
, (2.34)

ḡ′∗ = g′∗ − g0, (2.35)

where m′∗ is the derived effective mass of the Γ6c band.
The Luttinger-Kohn Hamiltonian (2.6) together with these perturbative contri-

butions results in the second-order k · p intra-band Hamiltonian of the Γ6c band

Ĥk·p
6c6c =

(
E6c(r) +

~2

2m0

k̂†k̂

)
+ Ĥ6

6c6c + Ĥ7
6c6c + Ĥ8

6c6c (2.36)

=
~2

2m0

A′k̂†k̂12 + i
~2

2m0

g′∗ − g0

2

[
(k̂†xk̂y − k̂†yk̂x)σz + c.p.

]
+µB

g0

2
σ ·B. (2.37)

In the bulk limit, we have that k̂→ K = k+(e/~)A and the Γ6c Hamiltonian reduces
to

Hk·p
6c6c(k)→ E6c12 +

~2

2m′∗
K212 + µB

g′∗
2
σ ·B, (2.38)

in agreement with the literature. [TRR79]
The contribution of remote bands to the perturbative Γ8v + Γ7v Hamiltonian

is derived analogously. However, the explicit expressions are cumbersome and we
present our results only. The Γ8v intra-band k · p Hamiltonian results in

Ĥk·p
8v8v = E8v14 −

~2

2m0

(
(γ̄′1 + 1)k̂†k̂14

−2γ′2[(J2
x −

1

3
J2)k̂†xk̂x + . . .]− 2γ′3[{Jx, Jy}(k̂†xk̂y + k̂†yk̂x) + c.p.]

+2iκ̄′[Jz(k̂
†
xk̂y − k̂†yk̂x) + c.p.] + 2iq′[J3

z (k̂†xk̂y − k̂†yk̂x) + c.p.]
)

+
2

3
µB

g0

2
(JxBx + JyBy + JzBz)

+
2√
3
Ck ({Jy, Jz}kx + {Jz, Jx}ky + {Jx, Jy}kz) , (2.39)
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where the remote-band contributions γ̄′1 and κ̄′ are related to the derived Luttinger
γ′1 and κ′ parameters by

γ̄′1 = γ′1 − 1, κ̄′ = κ′ +
g0

6
. (2.40)

We chose the numerical prefactors of the above terms such that γ′1, γ′2, γ′3, κ′, and q′

are identical to the derived Luttinger parameters. [Lut56, MR91] Analogously, the
second-order Γ7v and Γ8v − Γ7v k · p Hamiltonians read

Hk·p
7v7v(k) = E7v12 −

~2

2m0

(
(γ̄′1 + 1)k̂†k̂12 − 2iκ̄′[σz(k̂

†
xk̂y − k̂†yk̂x) + c.p.]

)
−1

3
µB

g0

2
(σxBx + σyBy + σzBz) , (2.41)

Hk·p
8v7v(k) = − ~2

2m0

(
−6γ′2[Uxxk̂

†
xk̂x + . . .]− 6γ′3[Uxy(k̂

†
xk̂y + k̂†yk̂x) + c.p.]

−3iκ̄′[Uz(k̂
†
xk̂y − k̂†yk̂x) + c.p.]

)
−2µB

g0

2
(UxBx + UyBy + UzBz) . (2.42)

In the bulk limit, these Hamiltonians reduce to the expressions found in the literature.
[TRR79, MR91]

The perturbative material parameters that occur in Ĥk·p
7v7v, Ĥ

k·p
8v7v, and Ĥk·p

8v8v are
in general not the same. This is because the energy denominators in the Loewdin’s
perturbation theory (1.40) differs by the spin-orbit splitting for the Γ7v and Γ8v bands.
In this work, however, we are not interested in the details of the Γ7v split-off bands.
Like Ref. [MR91], we thus use the parameters of the Γ8v intra-band Hamiltonian
Ĥk·p

8v8v for Ĥk·p
7v7v and Ĥk·p

8v7v as well. This guarantees that the Γ8v bands are represented
accurately.

Note that, in contrast to Luttinger’s work and this work, Dresselhaus obtained
the remote-band contributions for the single group representations only. [Lut56,
DKK55] Hence, the center of the Γ5v band E5v = (2E8v + E7v)/3 entered Loewdin’s
perturbation theory (1.40) instead of the energy offsets of the Γ8v and Γ7v bands. This
is a valid approximation for semiconductors with small spin-orbit coupling ∆0 � E0

only. Otherwise, neither the dispersion of the Γ8v nor of the Γ7v is well-represented
by the k · p Hamiltonian. Note that consequently no simple relation exists between
the Dresselhaus parameters F , G, H1 and H2 and the derived Luttinger parameters
used in this work.

2.4 Linear response theory of the g-tensor

In the following, we discuss the linear response of a spin-degenerate state to a mag-
netic field. For the sake of clarity, we discuss a magnetic field in the z-direction only
and the basis of spin is quantized in the same direction. The following derivation
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applies to other directions of the magnetic field and quantization axes of the spin
analogously leading to perturbative formulas for all components of the g-tensor.

The g-factor of the electronic state of orbital index n with spin orientation ↑ or ↓
( |n, ↑〉 and |n, ↓〉) can be written as [KIR98]

gn = g0 + gLn , (2.43)

where g0 ≈ 2 is the free electron Landé g-factor and gLn is the contribution to the
g-factor due to the angular motion of the electron.

The interaction of a magnetic field δĤ with the orbital motion can be accounted
for in first-order perturbation theory by [KIR98]

δĤ ≈ δA · ∂Ĥ
∂A

∣∣∣∣∣
A=0

= eδA · V̂, (2.44)

where δA is the vector potential corresponding to a differential magnetic field δB.
The k · p velocity operator is given by V̂ = P̂/m0 where P̂ = m0

~ ∇kĤ(k) is the
k · p momentum operator obtained by the approximate Hellmann-Feynman theorem
(1.45).

Importantly, the Hamiltonian derived in Sec. 2.6 contains all perturbative remote-
band contributions in terms of K̂ = k̂ + e

~A. Thus, all far-band contributions enter
the momentum operator via the Hellmann-Feynman theorem. We want to emphasize
that it is crucial to preserve the operator ordering inherited from the Hamiltonian.

From relation (2.44), we now derive the linear response of the energy levels to a
magnetic field δĤ/δB. In the symmetric Coulomb gauge, δA = (δB× r)/2, we may
write

δĤ =
e

2m0

(δB× r) · P̂ =
e

2m0

δB · (r× P̂) =
e

2m0

δB · L, (2.45)

with the k · p orbital angular momentum operator L̂ = r × P̂. Hence, the response
to a magnetic field is

δĤ

δB

∣∣∣∣∣
B=0

=
e

2m0

L̂ = µB
1

~
L̂. (2.46)

For the magnetic field B = Bez and the spin quantized in the same direction, the
perturbative contribution of the orbital angular motion to the g-factor thus results
in

gLn =
1

~

(
〈n ↑ |L̂z|n ↑〉 − 〈n ↓ |L̂z|n ↓〉

)
. (2.47)

Consequently, the effective g-factor in linear response theory becomes

gn = g0 +
1

~

(
〈n ↑ |L̂z|n ↑〉 − 〈n ↓ |L̂z|n ↓〉

)
. (2.48)

Equation (2.48) is readily evaluated to compute the g-factor perturbatively with-
out including the magnetic field in the Hamiltonian. To this end, |n ↑〉 and |n ↓〉
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are selected from the n-th twofold spin-degenerate eigenstate of Ĥ(B = 0) by di-
agonalizing the spin projection operator of the free electron Ŝz in z-direction. The
eigenvectors corresponding to the positive and negative eigenvalues of Ŝz yield the
states |n ↑〉 and |n ↓〉, respectively. Note that Ŝz commutes with Ĥ(B = 0), thus
both operators can be diagonalized at the same time.

Note importantly that the expectation value of the angular momentum operator
is a well-defined observable for bound states. The expectation value does not depend
on the origin of the coordinate system, although it depends on the position operator.
This is due to the fact that the expectation value of momentum vanishes for bound
states. Consequently, 〈n|(r − r0) × P̂|n〉 = 〈n|r × P̂|n〉, since 〈n|r0 × P̂|n〉 = r0 ×
〈n|P̂|n〉 = 0 for any translation of the coordinate system by the vector r0.

The complete g-tensor
←→
G n of the n-th orbital state is obtained analogously as

(Gn)ij = δijg0 +
1

~

(
〈n ↑j |L̂i|n ↑j〉 − 〈n ↓j |L̂i|n ↓j〉

)
, (2.49)

where i, j = x, y, z and |n ↑j〉 and |n ↓j〉 denote the eigenvectors of the spin projection

operator Ŝj in the twofold spin-degenerate sub-space of the n-th orbital state.
The spin projection operator in the angular momentum basis is directly read from

the magnetic interaction Hamiltonian of the free electron g-factor in Eqs. (2.23) and
(2.28). This results in

(Ŝi)6c6c = σi, (2.50)

(Ŝi)8c8c =
2

3
Ji, (2.51)

(Ŝi)7c8c = −2Ti, (2.52)

(Ŝi)8c7c = (Ŝi)
†
7c8c, (2.53)

(Ŝi)7c7c = −1

3
σi, (2.54)

for the Γ6c and Γ7c + Γ8c conduction bands and analogously for the Γ7v + Γ8v valence
bands.

As noted before, it is crucial to preserve the operator ordering inherited from
the Hamiltonian. The momentum operator contains first-order differential operators
acting on the left (P̂←) and acting on the right (P̂→). Zero-th order terms in P̂
commute with r and can be included on either side. The definition of the angular
momentum operator is thus to be understood in the sense of

L̂i = εijkrjP̂k ≡ εijk(rjP̂
→
k + P̂←k rj). (2.55)

We illustrate this on hands of the perturbative contribution to the g-factor of
the Γ6c bands. For the sake of clarity, we assume the parameter ḡ∗ to be position-
independent. The far-band contribution to the magnetic interaction of the Γ6c Hamil-
tonian (2.37) reads

Ĥ = i
~2

2m0

ḡ∗
2

[
(K̂†xK̂y − K̂†yK̂x)σz + c.p.

]
. (2.56)
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The matrix element between two envelope functions Fns(r) and Fn′s′(r), where n and
n′ indicate the orbital quantum numbers and s and s′ the spin state, is

Hns,n′s′ = i
~2

2m0

ḡ∗
2

∫
Ω

dr3
([
K̂xF

∗
ns(r)

] [
K̂yFn′s′(r)

]
−
[
K̂yF

∗
ns(r)

] [
K̂xFn′s′(r)

])
σz + c.p. . (2.57)

In the symmetric Coulomb gauge for B = Bzez, we have that

K̂x = k̂x −
e

2~
Bzry, (2.58)

K̂y = k̂y +
e

2~
Bzrx, (2.59)

K̂z = k̂z. (2.60)

Note that the terms in Hns,n′s′ involving σx and σy (implicitly denoted by “c.p.”)

vanish because K̂z commutes with K̂x and K̂y.

Hence, the linear response to the B-field results in

δHns,n′s′

δBz

∣∣∣∣
B=0

=
iµB ḡ∗

4
σz

∫
Ω

dr3

×
(
−ryF ∗ns(r)

[
k̂yFn′s′(r)

]
+ rx

[
k̂xF

∗
ns(r)

]
Fn′s′(r)

+ry

[
k̂yF

∗
ns(r)

]
Fn′s′(r)− rxF ∗ns(r)

[
k̂xFn′s′(r)

])
. (2.61)

On the other hand, the momentum operator corresponding to Ĥ at B = 0 is

P̂ =
m0

~
∇kĤ =

i~ḡ∗
4

[
σz(k̂

†
xey + k̂yex − k̂†yex − k̂xey) + c.p.

]
= P̂→ + P̂←, (2.62)

with

P̂→ =
i~ḡ∗

4

[
σz(k̂yex − k̂xey) + c.p.

]
,

P̂← =
i~ḡ∗

4

[
σz(k̂

†
xey − k̂†yex) + c.p.

]
. (2.63)

Therefore, the z-component of the angular momentum operator is

L̂z = rxP̂y − ryP̂x ≡ rxP̂
→
y + P̂←y rx − ryP̂→x − P̂←x ry, (2.64)
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and the according matrix element between Fns(r) and Fn′s′(r) yields

(Lz)ns,n′s′ =
i~ḡ∗

4
σz

∫
Ω

dr3

×
(
−rxF ∗ns(r)

[
k̂xFn′s′(r)

]
+ rx

[
k̂xF

∗
ns(r)

]
Fn′s′(r)

+ry

[
k̂yF

∗
ns(r)

]
Fn′s′(r)− ryF ∗ns(r)

[
k̂yFn′s′(r)

])
=

~
µB

δHns,n′s′

δBz

∣∣∣∣
B=0

. (2.65)

This verifies Eq. (2.46). It shows that the k · p angular momentum operator is indeed
proportional to the linear response to a magnetic field in the z-direction. The response
to a magnetic field in another direction and for all other terms in the k · p Hamiltonian
follows analogously. Consequently, the linear response Ĥ ′ to a magnetic field B is

Ĥ ′ ≈ B · δĤ
δB

∣∣∣∣∣
B=0

= µBB · 1

~
L̂. (2.66)

Note that this relation can also be used to compute the diamagnetic shift ∆Edia
n

perturbatively by

∆Edia
n =

µB
~

1

2

(
〈n ↑ |B · L̂|n ↑〉+ 〈n ↓ |B · L̂|n ↓〉

)
, (2.67)

where the spin quantization axis is arbitrary in this context.

2.5 Relation to k · p models with fewer bands

2.5.1 The eight-band model

If the lack of inversion symmetry is not relevant, the Γ7c and Γ8c conduction bands
need to be taken into account only perturbatively. The subsequent application of
Loewdin’s perturbation theory yields an eight-band model of the Γ6c conduction and
the Γ7v and Γ8v valence bands.

Compared to the 14-band k · p Hamiltonian, no new material parameters are
necessary since all relevant symmetry allowed remote-band contributions are already
included. However, the derived Luttinger parameters for the eight-band model need
to be corrected by the perturbative contribution from the Γ7c and Γ8c conduction
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bands. Loewdin’s perturbation theory (1.40) yields the so-called rescaling relations

γ1 = γ′1 +
1

3

2m0

~2

(
Q2

E ′0 + ∆′0
+
Q2

E ′0

)
,

γ2 = γ′2 −
1

6

2m0

~2

Q2

E ′0
,

γ3 = γ′3 +
1

6

2m0

~2

Q2

E ′0
,

κ = κ′ +
1

18

2m0

~2

(
7

Q2

E ′0 + ∆′0
− 10

Q2

E ′0

)
,

q = q′ +
2

9

2m0

~2

(
− Q2

E ′0 + ∆′0
+
Q2

E ′0

)
, (2.68)

for the derived eight-band Luttinger parameters γ1, γ2, γ3, κ, and q. Further the
rescaling relations for the dispersion parameter A and the perturbative contribution
to the g-factor g∗ of the Γ6c conduction band read

A = A′ +
1

3

(
2

P ′2

E0 − E ′0 −∆′0
+

P ′2

E0 − E ′0

)
,

g∗ = g′∗ +
2

3

2m0

~2

(
− P ′2

E0 − E ′0 −∆′0
+

P ′2

E0 − E ′0

)
. (2.69)

We find that these relations are identical to those previously obtained in the bulk
case. [Win03] This is because the operator ordering has no impact on the value of
the parameters.

2.5.2 The single-band model of the conduction band

Considering the Γ7v and Γ8v as remote, Loewdin’s perturbation theory results in an
effective two-band model for the Γ6c conduction bands. If no magnetic field is present,
the Γ6c bands are spin-degenerate. Thus, the k · p Schrödinger equation can be solved
for one spin-orientation only. This leaves an effective single band model of the Γc1
conduction band. Note that the Rashba and Dresselhaus effect are not present in the
single band and two-band model of second order in k. [Win03]

The effective conduction band mass and g-factor which we label as mc and gc,
respectively, are related to A and g∗ by

~2

2m0

1

mc

= A+
1

3

(
2
P 2

E0

+
P 2

E0 + ∆0

)
,

gc = g∗ +
1

3

~2

2m0

(
−P

2

E0

+
P 2

E0 + ∆0

)
, (2.70)

again in agreement with the literature. [Win03] Commonly, mc and gc are tabulated
and the rescaling relations are applied to yield the according eight- and 14-band
parameters.
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2.5.3 The six-band model of the valence band

In order to compute the valence band dispersion only, the Γ6c bands are considered
as remote. Loewdin’s perturbation theory yields the rescaling relations

γL1 = γ1 +
1

3

2m0

~2

P 2

E0

,

γL2 = γ2 +
1

6

2m0

~2

P 2

E0

,

γL3 = γ3 +
1

6

2m0

~2

P 2

E0

,

κL = κ+
1

6

2m0

~2

P 2

E0

,

qL = q, (2.71)

for the Luttinger parameters γL1 , γL2 , γL3 , κL, and qL in agreement with the litera-
ture. [Win03] Again, the eight- and 14-band parameters can be computed from the
commonly tabulated values of the six-band Luttinger parameters.

2.6 Cartesian representation of the k · p Hamilto-

nian

The perturbative contributions to the k · p-Hamiltonian are most conveniently de-
rived in the angular momentum basis. However, the symmetry adapted finite ele-
ment method, which we present in Ch. 3, requires the Hamiltonian in the Cartesian
representation. We use the transformation matrices S78,5D (2.4) and S6,1D (2.5) to
obtain this Cartesian Hamiltonian from the Hamiltonian in the angular momentum
basis. This yields the block Hamiltonians

H5Dα5Dβ = SH78,5D

(
H8α8β H8α7β

H7α8β H7α7β

)
S78,5D,

H5Dα1Dβ = SH78,5D

(
H8α6β

H7α6β

)
S6,1D,

H1Dα1Dβ = SH6,1DH6α6βS6,1D. (2.72)

By this transformations, we obtain the 14-band k · p Hamiltonian

Ĥ14 =

 12 × Ĥk
5c5c 12 × Ĥk

5c1c 12 × Ĥk
5c5v

12 × Ĥk†
5c1c 12 × Ĥk

1c1c 12 × Ĥk
1c5v

12 × Ĥk†
5c5v 12 × Ĥk†

1c5v 12 × Ĥk
5v5v


+ ĤSO

14 + Ĥε
14 + ĤB

14 − eΦ. (2.73)
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Here, we used the fact that the matrices of the double group Hamiltonians can be split
into a spin-degenerate part and the explicit spin-orbit coupling. The first term on the
right hand side resembles this spin-degenerate part and 12 denotes the 2× 2 identity
matrix. The operator ĤSO

14 denotes the spin-orbit coupling and ĤB
14 the coupling

of the free electron spin to a magnetic field. In addition to the k · p interactions,
we introduced the strain deformation potentials Ĥε

14 and the external electrostatic
potential Φ.

The spin-degenerate inter-band terms are first-order in k̂ and read

Ĥk
1c5v =

(
k̂†xP k̂†yP k̂†zP

)
, (2.74)

Ĥk
5c5v =

 0 Qk̂z Qk̂y
Qk̂z 0 Qk̂x
Qk̂y Qk̂x 0

 , (2.75)

Ĥk
1c5c =

(
iP ′k̂x iP ′k̂y iP ′k̂z

)
, (2.76)

with the momentum matrix elements P , P ′, and Q given by Eqs. (2.8) to (2.10).
The intra-band terms up to second order in k̂ are given by

(Ĥk
5c5c)µ,ν = δµ,νE5c (2.77)

Ĥk
1c1c = E1c + k̂†A′k̂

+
~2

2m0

(
iσx

[
k̂†y
g′∗ − g0

2
k̂z − k̂†z

g′∗ − g0

2
k̂y

]
+ c.p.

)
, (2.78)

(Ĥk
5v5v)µ,ν = δµ,νE5v

+

{
k̂†M ′k̂ + k̂†µ(L′ −M ′)k̂µ if µ = ν

k̂†µN
′
+k̂ν + k̂†νN

′
−k̂µ if µ 6= ν

+(ĤCk
5Dv,5Dv)µ,ν + (Ĥq

5Dv,5Dv)µ,ν , (2.79)

where E5c, E1c, and E5v are band offset parameters without spin-orbit interaction,
and µ and ν denote the Cartesian directions x, y, z. These band offsets are obtained
from tabulated values of the band gaps E0, E ′0, the spin-orbit splittings ∆0, ∆′0 and
the relative valence band offset EV BO. [WZ98] Here, E0 denotes the band gap between
the Γ1c and Γ5v bands and E ′0 denotes the band gap between the Γ5c and Γ5v bands.
The band offsets E5c, E1c, and E5v are related to these parameters by

E5v = EV BO, (2.80)

E1c = EV BO + E0 + 1
3
∆0, (2.81)

E5c = EV BO + E ′0 + 1
3
∆0 + 2

3
∆′0. (2.82)

The parameters L′, M ′, N ′+, N ′−, A′, and g′∗ take into account remote bands pertur-
batively. [DKK55, For97] They are related to the derived Luttinger parameters γ′1,
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γ′2, γ′3, and κ′ by [BP74, For97, AMV08]

L′ =
~2

2m0

(−γ′1 − 4γ′2),

M ′ =
~2

2m0

(−γ′1 + 2γ′2),

N ′+ =
~2

2m0

(−3γ′3 − 3κ′ − 1),

N ′− =
~2

2m0

(−3γ′3 + 3κ′ + 1). (2.83)

The parameters A′ and (g′∗ − g0) are remote-band contributions to the effective Γ1c

dispersion and g-factor, respectively.

The k̂-linear spin-splitting Hamiltonian of the valence band is caused by the lack
of inversion symmetry [CCF88] and reads

ĤCk
5Dv,5Dv =

√
3

4
Ck ×

0 0 k̂x 0 ik̂x + k̂y −k̂z
0 0 −k̂y ik̂x + k̂y 0 −ik̂z
k̂x −k̂y 0 −k̂z −ik̂z 0

0 −ik̂x + k̂y −k̂z 0 0 −k̂x
−ik̂x + k̂y 0 ik̂z 0 0 k̂y
−k̂z ik̂z 0 −k̂x k̂y 0


. (2.84)

with the parameter Ck defined by Eq. (2.11). The g-factor anisotropy of the Γ8v

bands assumes a very cumbersome form in the Cartesian basis and is best expressed
implicitly as

Ĥq
5Dv,5Dv = SH78,5D

(
− ~2

2m0

2i[J3
z (k̂†xq

′k̂y − k̂†yq′k̂x) + c.p.]

)
S78,5D, (2.85)

with the g-factor anisotropy parameter q′.

As before, perturbative second-order contributions to the Γc5 bands are neglected
because they have no substantial impact on the band structure close to the band gap.

The spin-orbit Hamiltonian reads

ĤSO
14 =


∆′0
3
ĤSO 0 i∆−

3
ĤSO

0 0 0(
i∆−

3
ĤSO

)†
0 ∆0

3
ĤSO

 , (2.86)
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with

ĤSO =


0 −i 0 0 0 1
i 0 0 0 0 −i
0 0 0 −1 i 0
0 0 −1 0 i 0
0 0 −i −i 0 0
1 i 0 0 0 0

 , (2.87)

and ∆0, ∆′0, and ∆− given by Eqs. (2.12-2.14). The bold 0 denote blocks of zeros
with appropriate dimension.

The deformation potential does not depend on spin and reads [BP74]

Ĥε
14 =

 0 0 0

0 12 × Ĥε
ss 0

0 0 12 × Ĥε
vv

 , (2.88)

where the deformation potentials of the Γ5c bands and between different bands are
neglected. The intra-band terms read

Ĥε
ss = aε, (2.89)

(Ĥvv)µ,ν =

{
mε+ (l −m)εµµ if µ = ν
n(εµν + ενµ)/2 if µ 6= ν

, (2.90)

ε = εxx + εyy + εzz, (2.91)

with the strain tensor ←→ε and the deformation potentials a, l, m, and n. These
parameters are linked to other common parameter sets by the relations [TRR79,
BP74]

a′ = a = C1, (2.92)

a′′ =
l + 2m

3
= Dd, (2.93)

b =
l −m

3
= −2

3
Du, (2.94)

d =
n√
3

= − 2√
3
D′u. (2.95)

The coupling of the free electron spin to a magnetic field is

ĤB
14 =

 ĤB
cc 0 0

0 ĤB
ss 0

0 0 ĤB
vv

 , (2.96)

ĤB
ss = µB

g0

2
σ ·B, (2.97)

ĤB
cc = ĤB

vv = µB
g0

2
σ ·B× 13, (2.98)
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with the magnetic field B, the 3-vector of Pauli matrices σ, the Bohr magneton µB,
and the g-factor of the free electron g0 ≈ 2.

The contributions of the remote bands to the effective g-factors are included in
the parameters (g′∗−g0), N ′+, N ′−, and q′ implicitly. For the Γ5Dc bands, the according
remote band contributions are neglected.

2.7 Material parameters of the k · p Hamiltonian

2.7.1 Elliptic parameter sets

The eight-band and 14-band models are susceptible to so-called wing-band solutions.
[WS81, SM86, Szm96, Bur98] Depending on the material parameters, unphysical
large-k-vector solutions to the k · p Hamiltonian can appear close to the band-edges
or even within the fundamental band gap. They occur if the intra-band part of the
Hamiltonian is not elliptic for both the valence and the conduction band. [CTM03,
VSW07] In k-space, one can simply redeem this issue by restricting the k-vectors
used in the calculation to a valid range. [WR93] This is not possible for a real space
basis since its basis functions are not compactly supported in k-space. This problem
can be resolved by modifying the Kane parameter P in such a way that Eqs. (2.68),
(2.69), (2.71) and (2.70) yield rescaled parameters that fulfill the ellipticity conditions
[For97, VSW07]

A ≥ 0, M −N− < 0, M +N− < 0, L−N+ < 0, L+ 2N+ < 0. (2.99)

This approach is justified by the fact that the k · p band structure is not sensitive to
small changes of the Kane parameters as long as the rescaling relations are observed.
[For97, For07] In general, we adjust P such that A = 1. We find that this choice also
fulfills the remaining conditions in Eqs. (2.99) for semiconductors and semiconductor
alloys studied in this work.

2.7.2 Temperature dependency

Semiconductor heterostructures operate at various temperatures ranging from a al-
most zero up to several hundred Kelvin. However, only very little is known about
the temperature dependence of the k · p parameters. We thus observe the two most
important temperature effects on the band structure only. Firstly, the fundamental
band gap depends on the temperature. The empirical Varshni form of this depen-
dency reads [Var67]

E0(T ) = E0 −
αT 2

T + β
, (2.100)

where α and β are tabulated material parameters. [VMRM01] Secondly, the tem-
perature dependency of the lattice constant is well known and indirectly affects the
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electronic structure via strain and deformation potentials. The linear temperature
dependency of the lattice constant reads [VMRM01]

a(T ) = a+ aTT, (2.101)

where a is the lattice constant at 0 K and aT is the linear expansion coefficient of the
crystal lattice.

2.7.3 Interpolation of ternary alloys

Heterostructure commonly consist of semiconductor alloys. Only for a few particular
alloys, parameter sets can be measured directly or computed theoretically. Thus, the
elastic, the electrostatic and the k · p material parameters have to be interpolated.
Commonly, quadratic interpolation formulas are employed. [VMRM01]

Here, we consider only ternary alloys of pure binary (group III-V and II-VI)
constituents. For a ternary alloy AxB1−xC consisting of AC and BC, the quadratic
interpolation formula for a generic material parameter τ reads

τAxB1−xC = xτAC + (1− x)τBC − x(1− x)τABC . (2.102)

Here, τAB and τAC are the parameters of AC and BC, respectively, and τABC is the
so-called bowing of parameter τ of ABC alloys. This applies analogously to alloys of
the type ABxC1−x consisting of AB and AC.

We employ bowing to material parameters if available in the literature. An ex-
ception are the k · p parameters that represent remote-band contributions. Since it is
not clear how these bowing parameters have to be rescaled to the eight- and 14-band
models, we first compute the according 14-band parameters for the pure semicon-
ductors by employing the rescaling relations Eqs. (2.68), (2.69), (2.70), and (2.71).
The remote-band contributions in the 14-band model are small and thus no substan-
tial bowing is expected. These parameters are then interpolated linearly and finally
rescaled to the model used in the calculations.

This has to be contrasted with the common procedure where remote-band con-
tribution are interpolated quadratically first and then rescaled. [VMRM01] We note
that for semiconductor alloys with small are even vanishing band gap this method
fails. For example, the band gap E0 vanishes for a certain HgxCd1−xTe alloy. [CC73]
In this case, the rescaling relations Eqs. (2.70) and (2.71) diverge. In contrast, our
procedure still yield reasonable eight- and 14-band parameters because the band gap
is non-zero for HgTe and CdTe resulting in well-defined rescaling relations.

2.8 Rotations of the k · p Hamiltonian

For heterostructures grown along a direction different from the [001] direction, the
Hamiltonian has to be rotated. By convention, we rotate the crystal while the coor-
dinate system of the heterostructure is left unchanged.
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The rotation matrix [BS98]

R(θ,w) =

 w2
x (1− cos θ) + cos θ wxwy (1− cos θ)− wz sin θ

wywx (1− cos θ) + wz sin θ w2
y (1− cos θ) + cos θ

wzwx (1− cos θ)− wy sin θ wzwy (1− cos θ) + wx sin θ

wxwz (1− cos θ) + wy sin θ
wywz (1− cos θ)− wx sin θ
w2
z (1− cos θ) + cos θ

 , (2.103)

which represents a proper rotation about the normalized axis w by the angle θ,
transforms the single group quantities as [Nye85]

r = R(θ,w)r′, (2.104)

k̂ = R(θ,w)k̂′, (2.105)

B = R(θ,w)B′, (2.106)
←→ε = R(θ,w)←→ε ′RT (θ,w). (2.107)

Here, the primed quantities correspond to the new coordinate system. These relations
are also valid for improper rotations, except for the transformation of the pseudo-
vector B which transforms as B = −RiB

′ under an improper rotation Ri.
The 1/2-spinor is transformed by the corresponding SU(2) matrix [BP74]

D1/2(θ,w) = 12 cos

(
θ

2

)
− iσ · w

|w|
sin

(
θ

2

)
. (2.108)

The transformation matrix U5D of the Γ5D representation is thus the Kronecker
product

U5D(θ,w) = D1/2(θ,w)×R(θ,w). (2.109)

For Γ7 + Γ8 this yields

U78(θ,w) = S78,5DU5D(θ,w)S5D,78. (2.110)

Note that U78(θ,w) is block diagonal for all rotations, since Γ8 and Γ7 are compatible
with the full rotational groups of 3/2 and 1/2 angular momentum, respectively. We
may thus split U78(θ,w) into the blocks U8(θ,w) and U7(θ,w) for the rotations of Γ8

and Γ7, respectively. For Γ6 we simply have

U1D(θ,w) = U6(θ,w) = D1/2(θ,w). (2.111)

Each block Hamiltonian transforms into

Ĥiα,jβ(r, k̂,B,←→ε ) → H ′iα,jβ(r′, k̂′,B′,←→ε ′)
= UH

i Ĥiα,jβ(Rr, Rk̂, RB, R←→ε RT )Uj, (2.112)
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where the indices (iα) and (jβ) correspond to the representations Γiα and Γjβ, re-
spectively. We employ the simple term rewriting system described in appendix D to
perform these transformations symbolically prior to discretization.

Note that the definition of the spin basis is arbitrary. It is thus not necessary to
transform the spin at all since we may just choose another arbitrary definition after
the rotation is performed. In the presence of an external magnetic field, however,
it is convenient to transform the spin space along with the real space. Otherwise,
the Pauli matrices which couple the magnetic field vector to the spin need to be
transformed and assume a non-standard form. This, however, is counter-intuitive
and error prone.

Moreover, the explicit rotation of spin space has the advantage that we may check
the symmetry as well as the correctness of rotations of the Hamiltonian automati-
cally. This automatic check exploits the fact that the Hamiltonian is invariant under
symmetry operation in Td such that Ĥ − Ĥ ′ = 0 for these operations. This is tested
straightforwardly by the term rewriting system. If the spin space is not rotated ex-
plicitly, H and H ′ are identical up to a unitary transformation only which is much
more difficult to verify.



Chapter 3

Novel Symmetry Adapted Finite
Element method (SAFE)

3.1 Introduction

In this chapter, we make use of the symmetry of the Hamiltonian to construct a
real-space EFA method that is manifestly free of spurious solutions. This robust
and numerically efficient scheme is based on a variational representation of the EFA
problem in terms of symmetry adapted finite elements. Therefore, we name this
method the symmetry adapted finite element method (SAFE). Importantly, it per-
mits the gauge-invariant incorporation of magnetic fields naturally, which is a costly
procedure in standard EFA implementations. [GU98, PF06, AMV08]

In Sec. 3.2.1, we illustrate and explain the origin of the problem of spurious solu-
tions due to the ill-representation of the first-order derivative in real-spaces bases. In
Sec. 3.2.2, we develop the method of symmetry adapted finite elements that inherently
solves this issue and illustrate it for White’s two-band Hamiltonian. Section 3.2.3 is
devoted to the generalization to eight- and 14-band envelope function Hamiltoni-
ans. A gauge-invariant formulation of the symmetry adapted finite element method
is developed in Sec. 3.2.4. In Sec. 3.3, we present results for the exciton g-factor
in self-assembled quantum dots and compare the results obtained with the present
SAFE method to those previously obtained by standard techniques. The proof of
the correct continuum limit for the gauge-invariant symmetry adapted finite element
method is deferred to Appendix A.

43
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3.2 Method

3.2.1 The problem: spurious solutions in discrete effective
mass theory

The problem we address in the following is the appearance of spurious solutions
related to the ill-representation of first-order derivatives in envelope function approach
(EFA) Hamiltonians in standard real-space bases. For sake of clarity, we start the
discussion of spurious solutions with the help of White’s two-band k ·p-Hamiltonian
describing the coupling of a single electron band with a single light hole band in one
dimension. [WS81] In k-space, the Hamiltonian reads

H2(kx) =

(
E0 + ~2

2m0
Ak2

x Pkx
Pkx − ~2

2m0
Ak2

x

)
, (3.1)

with the band gap E0, the Luttinger parameter A and the Kane parameter P . The
substitution kx → −i∂x leads to first- and second-order derivatives in the real-space
EFA Hamiltonian

Ĥ2 =

(
E0 − ~2

2m0
∂†xA∂x i∂†xP

−iP∂x ~2
2m0

∂†xA∂x

)
, (3.2)

which must both be well approximated in order to preserve the k-space spectrum. The
spatial derivative operators are already ordered appropriately with the daggered oper-
ators acting to the left hand side. [For97] Nevertheless, this mapping is known to lead
to spurious solutions because standard parameters for many relevant semiconductors
(InAs, GaAs, GaSb, etc.) lead to negative values for the parameter A. This induces
unphysical solutions within the band gap for large k vectors. [WS81, For97, VSW07]
Fortunately, this problem can be redeemed in various ways, e.g. by rescaling the
effective mass parameters such that A = 0. [For97]

There is another cause for spurious solutions, however, that is not easy to re-
solve. For realistic three-dimensional multi-material nanostructures, the real-space
Hamiltonian (3.2) can only be solved by discretizing position space in some way
or, equivalently, by choosing a small variational real-space basis. The simplest
scheme is to use a finite difference method with symmetric first-order differences,
i.e. ∂xF = [F (x + h) − F (x − h)]/(2h) with grid spacing h. This scheme has been
identified earlier to be the cause of unphysical solutions for many semiconductor
nanostructures, [CTM03] but no easy remedy is known.

The problem comes from the dominance of the first-order term in the off-diagonal
element of Eq. (3.2) for most semiconductors. Assume for the moment that A = 0
altogether. Then, a symmetric first-order discretization decomposes the Hamiltonian
into its portions from the even (0,2,4,. . .) and odd (1,3,5,. . .) nodes with no coupling
between them so that any combination of the even and odd solutions becomes a
solution as well. This problem persists for small second-order terms A as long as
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A . EP/E0 and disappears only in the limit of decoupled bands making the multi-
band formulation pointless. Neither can it be healed by choosing an asymmetric first-
order differencing scheme (e.g. a combination of forward and backward differencing)
since this breaks the symmetry of the Hamiltonian. The failure of the finite difference
method is illustrated explicitly in Fig. 3.1 for the case of Eq. (3.2). Here, typical
parameters for III-V semiconductors, similar to GaSb in this case, have been used,
[VMRM01] namely an energy gap E0 of 1 eV and Kane’s energy 2m0P

2/~2 of 26 eV
(P = 1 eVnm). We have set the constant A equal to 0 in order to make sure that
spurious modes are not just caused by ill-suited parameters.
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Figure 3.1: Electronic band structure of the White Hamiltonian with the parameters
E0 = 1 eV, P = 1 eVnm, and A = 0. The black line is the calculated continuum
dispersion in k-space. The squares (blue) and circles (red) are real-space solutions on
a periodic 6 nm grid of 0.25 nm spacing. The squares result from the finite difference
method, whereas the circles represent the presently proposed symmetry adapted finite
element method (SAFE).

3.2.2 The solution: the SAFE method

The problem illustrated vividly in Fig. 3.1 can be solved in a robust, reliable and
numerically efficient manner. The method we have developed is based on the concept
of finite elements [BS08] and guarantees a minimal real-space basis that manifestly
represents the solution space. We illustrate this method for the simple 2× 2 example
first. We denote the finite variational space of the two-component envelope function
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as

Ψ = {
(

F S

FLH

)
|F S ∈ V S, FLH ∈ V LH}, (3.3)

with the finite variational spaces V S and V LH for the electron (S for s-like) and
the light hole (LH) component, respectively. In contrast to first-order derivatives,
the second-order derivatives are always well-behaved for elliptic problems and do not
need special consideration. [BS08] By contrast, the first-order terms in the EFA
Hamiltonian Eq. (3.2) are of the type

〈
∂xF

S
∣∣P ∣∣FLH

〉
. These matrix elements are

represented exactly by the variational basis functions only if the derivatives of the
functions F S can be expressed in terms of the functions FLH , i.e. if the function
spaces obey the relation

V LH = ∂xV
S = {∂xF S|F S ∈ V S}. (3.4)

This can be guaranteed by requiring that V LH be continuous yet V S to be contin-
uously differentiable. One may easily verify that this is not the case for standard
discretization schemes such as the centered finite differences method or the stan-
dard finite element method where the same basis is chosen for each wave function
component.

We now define a piecewise polynomial basis with small support on a regular grid
that guarantees the crucial requirement of Eq. (3.4), as well as scalability and a
sparse discrete Hamilton matrix. To this end, we define a uniform grid with grid cells
{RI |I = 1 . . . N} and grid-spacing RI+1−RI = h, and expand the envelope functions
of the components F S ∈ V S and FLH ∈ V LH on this grid in terms of basis functions,

F S(x) =
∑
RI

∑
k=0...pS

aSk,RIu
S
k,RI

(x), (3.5)

FLH(x) =
∑
RI

∑
k=0...pLH

aLHk,RIu
LH
k,RI

(x), (3.6)

where the functions {uSk,RI (x)|k = 1, . . . , pS} and {uLHk,RI (x)|k = 1, . . . , pLH} form a
polynomial basis of degree pS and pLH , respectively, that are localized within grid
cell RI and zero outside. We note that these basis functions are the same in each
cell, i.e. for all cells RI , RJ we have uk,RI (x) = uk,RJ (x + RJ − RI). The expansion
coefficients are denoted by ak,RI . Because the function space V LH consists of the
derivatives of the functions in V S, the polynomial degree pLH of V LH is one less than
the polynomial degree pS of V S. In addition, the local basis functions {uk,RI} should
be chosen in such a way that simple boundary conditions for the coefficients ak,RI at
the cell boundaries suffice to yield globally continuously differentiable and continuous
functions F S and FLH , respectively. It turns out that an ideal choice for the S-band
basis functions {uSk,RI} are the so-called Hermite interpolating polynomials of first
and second kind with the two boundary points in each grid cell as nodal points.
[BSV68, CR72] This choice yields four linearly independent polynomials of degree
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pS = 3 and the following simple constraints on the left and right boundary of each
cell,

aS0,RI = aS1,RI−1
,

aS2,RI = aS3,RI−1
, (3.7)

guaranteeing the C1 continuity of F S in Eq. (3.5). Accordingly, a suitable local
basis {uLHk,RI} for V LH are the so-called Lagrange interpolating polynomials of degree
pLH = 2. One obtains three linearly independent polynomials by using the cell
boundary and mid points as nodal points and obtains the constraint

aLH0,RI
= aLH2,RI−1

, (3.8)

for continuous FLH in Eq. (3.6). Explicitly, the local basis functions for {uSk,0|k =
0 . . . 3} for the cell at the coordinate origin RI = 0 read

uS0,0(x) = 1− 3(x/h)2 + 2(x/h)3,

uS1,0(x) = 3(x/h)2 − 2(x/h)3,

uS2,0(x) = (x/h)− 2(x/h)2 + (x/h)3,

uS3,0(x) = −(x/h)2 + (x/h)3, (3.9)

and for {uLHk,0 |k = 0 . . . 2}

uLH0,0 (x) = 1− 3(x/h) + 2(x/h)2,

uLH1,0 (x) = 4(x/h)− 4(x/h)2,

uLH2,0 (x) = −(x/h) + 2(x/h)2. (3.10)

With this local basis for V S and V LH , the real-space EFA Hamiltonian Eq. (3.2)
gets converted into a discrete, generalized constrained eigenvalue problem of the
dimension (4 + 3)N . A generalized constraint eigenvalue problem is difficult to solve
in practice since the corresponding overlap matrix is highly singular. Fortunately, it
can easily be converted into an unconstrained eigenvalue problem: The actual degrees
of freedom are the number of variables minus the number of constraints. We may
therefore define (2 + 2)N new basis functions for Ψ by incorporating the (2 + 1)N
continuity constraints Eqs. (3.7) and (3.8) into new basis functions. These basis
functions are then continuous (continuously differentiable) across cell boundaries and
require no additional constraints on the expansion coefficients. A suitable basis with
small support (two neighboring cells) contains only two basis functions per grid cell
and is given explicitly by

vS0,RI (x) = uS0,RI (x) + uS1,RI−1
(x),

vS1,RI (x) = uS2,RI (x) + uS3,RI−1
(x), (3.11)

vLH0,RI
(x) = uLH0,RI

(x) + uLH2,RI−1
(x),

vLH1,RI
(x) = uLH1,RI

(x), (3.12)
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for V S and V LH , respectively. The condition V LH = ∂xV
S holds since

∂xv
S
0,RI

(x) = − 3

2h
[vLH1,RI

(x)− vLH1,RI−1
(x)], (3.13)

∂xv
S
1,RI

(x) =
1

h
vLH0,RI

(x)

− 1

4h
[vLH1,RI

(x) + vLH1,RI−1
(x)]. (3.14)

Figure 3.2 illustrates these basis functions at RI = 0 for h = 1.
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Figure 3.2: Finite element basis functions of the S-like and LH-like band for RI = 0
and h = 1. The bold vertical line indicates the element boundary between the (I−1)-
th and the I-th element.

We can now calculate the spectrum of the EFA Hamiltonian Eq. (3.2) for the
bulk semiconductor on a discrete periodic grid in terms of our symmetry adapted
finite element basis and compare it to the continuum spectrum of the Hamiltonian
Eq. (3.1). The results are shown in Fig. 3.1. For larger k-values, the finite difference
results deviate strongly from the continuum spectrum that is indicated by the full
lines. In contrast, the present finite element method approximates the continuum
spectrum up to the maximum k-values possible on the discrete grid. No spurious
solutions appear in the spectrum.

3.2.3 SAFE method for eight- and 14-band Hamiltonians

The generalization of this method to the realistic eight- and 14-band zincblende k ·p
Hamiltonians turns out to be rather straightforward. It suffices to discuss the latter
case since the eight-band components are a subset of the 14-band terms.

The complete real-space zincblende k ·p Hamiltonian operator is given in Sec. 2.6.
The intra-band terms Ĥk

5Dc,5Dc, Ĥ
k
1Dc,1Dc, and Ĥk

5Dv,5Dv are dominated by second-

order terms in k̂. Hence, only the inter-band couplings contain first-order terms and
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need to be considered in the following. The inter-band term Ĥk
5Dc,1Dc is only due to

inversion asymmetry and therefore small for most III-V and II-VI semiconductors.
[JSdAeSLR05]

Hence, only the following terms from Sec. 2.6 are relevant for the well-posedness
of the Hamiltonian eigenvalue problem,

Ĥk
1Dc5Dv =

(
k̂†xP k̂†yP k̂†zP

)
, (3.15)

Ĥk
5Dc5Dv =

 0 Qk̂z Qk̂y
Qk̂z 0 Qk̂x
Qk̂y Qk̂x 0

 . (3.16)

Analogously to White’s Hamiltonian Eq. (3.2), Ĥ1Dc5Dv and Ĥ5Dc5Dv represent their
momentum space counterpart exactly only if the envelope function spaces for the
different components VS for the Γ1c bands, VX , VY , and VZ for the Γ5v bands and
VX′ , VY ′ , and VZ′ for the Γ5c bands obey the following set of conditions,

VX = ∂xVS, VY = ∂yVS, VZ = ∂zVS,

VX′ = ∂yVZ = ∂zVY ,

VY ′ = ∂zVX = ∂xVZ ,

VZ′ = ∂xVY = ∂yVX . (3.17)

They are derived from the particular matrix elements occurring in Eqs. (3.15) and
(3.16). Consider now a uniform tensor grid {Rj} with grid-spacing h in each direc-
tion. Three-dimensional bases that obey the conditions of Eqs. (3.17) can easily be
constructed from tensor product functions of the one-dimensional basis functions in
Eqs. (3.9) and (3.10) that we defined earlier. Let us relabel the set of polynomial
functions {uS} in Eq. (3.9) as {uV } and the set {uLH} in Eq. (3.10) as {uW}, respec-
tively. Likewise, the one-dimensional variational spaces V S and V LH are relabeled
as V and W , respectively. Then, the component spaces for the S-like conduction
band and the X-like valence band, for example, are given by VS = V × V × V and
VX = W × V × V , respectively, and obey the condition VX = ∂xVS as one can easily
verify. Correspondingly, the local polynomial basis functions in cell RI = (xI , yI , zI)

T

read

uSK,RI
(r) = uVK1,xI

(x)uVK2,yI
(y)uVK3,zI

(z), (3.18)

uXK,RI
(r) = uWK1,xI

(x)uVK2,yI
(y)uVK3,zI

(z), (3.19)

with r = (x, y, z)T . Here, we have lumped the three polynomial function indices
into a single index K = (K1, K2, K3). These functions constitute a basis for V S

and V X , respectively. Analogously to the one-dimensional case, constraints for the
three-dimensional expansion coefficients can be derived that guarantee the required
continuity in each direction. Again, numerically efficient basis functions may be
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Table 3.1: Tensor product spaces for envelope function components.
Component Tensor product space

Γ1c conduction band S V × V × V
Γ5v-like valence band X W × V × V
Γ5v-like valence band Y V ×W × V
Γ5v-like valence band Z V × V ×W
Γ5c-like conduction band X ′ V ×W ×W
Γ5c-like conduction band Y ′ W × V ×W
Γ5c-like conduction band Z ′ W ×W × V

constructed that intrinsically obey these constraints. This basis can be written in
terms of the one-dimensional basis functions Eq. (3.11) and (3.12) as

vSK,RI
(r) = vVK1,xI

(x)vVK2,yI
(y)vVK3,zI

(z),

vXK,Rj
(r) = vWK1,xI

(x)vVK2,yI
(y)vVK3,zI

(z), (3.20)

where RI = (xI , yI , zI)
T is a grid point and the index K labels the function in-

dices. The complete set of product spaces that obeys the conditions in Eq. (3.17) is
summarized in Table 3.1.

Thus, the present symmetry adapted finite element method guarantees the faith-
ful representation of k-space and manifestly avoids spurious solutions caused by dis-
cretization. There is another major advantage in using continuous basis functions.
In contrast to the finite difference or finite volume methods, any material parameters
and the electrostatic potential in the Hamiltonian Eq. (2.73) are not tacitly assumed
to be cell-wise constant but can be arbitrary functions of position themselves. This
allows a significantly more precise modeling of heterostructure shapes and alloy pro-
files, while admitting fewer grid lines and much smaller matrix dimensions than cor-
responding finite difference methods. Finally, we note that the basis functions in the
SAFE method are not orthogonal, which leads to a generalized eigenvalue problem.
Fortunately, highly efficient schemes for the solution of the generalized eigenvalue
problem are available, e.g. the shift-invert Arnoldi iteration summarized in Sec. 4.4.

3.2.4 Gauge-invariant SAFE method for magnetic fields

Magnetic fields are commonly incorporated into the envelope function approach by
invoking the substitution k̂→ −i∇+ (e/~)A. This poses no problem for the present
finite element method since matrix elements with the vector potential A(r) can be
calculated straightforwardly. However, the resulting Hamilton matrix depends on
the chosen gauge and this can lead to substantial errors if the gauge is unfit for the
problem. [GU98] Therefore, it is desirable to formulate the discrete envelope function
Hamiltonian eigenvalue problem in a gauge-invariant manner.
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A gauge-invariant formulation of the general multi-band envelope function theory,
based on lattice gauge theory, has been developed recently. [AMV08] This method,
however, relies strongly on the finite difference scheme. In addition, the commutation
relations of the covariant derivatives

D = ∇+ (ie/~)A, (3.21)

[Dµ, Dν ] = εµνλi
e

~
Bλ. (3.22)

converge slowly to the continuum limit. This is illustrated in Fig. 3.3 that compares
the exact expectation value of the commutator 1/i [Dx, Dy] for the lowest Landau
level of a free electron system at Bz = 25 T with the one predicted by the method of
Ref. [AMV08].
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Figure 3.3: Calculated ground state expectation value of the momentum commutator
for a free two-dimensional electron gas in a vertical magnetic field of 25 T. The full line
indicates the exact continuum result. The circles (red) are results obtained in terms
of the present SAFE method, whereas the squares (blue) have) have been obtained
by a previous gauge-invariant finite difference method (Ref. [AMV08]).

Within the framework of finite elements, we have developed a robust, numerically
more efficient, as well as gauge-invariant formulation of envelope function theory by
generalizing an old method of Luttinger for Wannier functions. [Lut51] In contrast
to the original theory, we can evaluate all matrix elements involving the position
operator exactly and do not need any of the approximations required in Luttinger’s
method. The basic idea of our adaptation is to multiply the local basis functions
{vCK,RI

(r)|C = S,X, Y, Z,X ′, Y ′, Z ′} with a position-dependent phase function URI

that already accounts for most of the action of the magnetic field. The magnetic field
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adapted basis functions are defined as

ṽCK,RI
(r) = URI

(r)vCK,RI
(r), (3.23)

URI
(r) = exp

[
−i e

~

∫
σ(RI ,r)

dl ·A(l)

]
. (3.24)

Here, the path integration is performed along the straight line segment σ(RI , r) from
RI to r. We point out that any integration path is admissible that vanishes in the
limit of vanishing grid spacing. This would lead to a slightly different but equivalent
formulation of the problem with the same correct continuum limit. The straight line
path has the advantage of leading to a particular simple result. The action of the
covariant derivative on the basis functions is given by[

∇+ i
e

~
A(r)

]
ṽCK,RI

(r) = URI
(r)
[
∇+ i

e

~
Aloc

RI
(r)
]
vCK,RI

(r), (3.25)

where the gauge-invariant local residual potential is given by

Aloc
RI

(r) =

∫ 1

0

λdλB(r, λ)× (r−RI), (3.26)

B(r, λ) = ∇×A[RI + λ(r−RI)]. (3.27)

For constant magnetic fields B, this expression simplifies to

Aloc
RI

(r) =
1

2
B× (r−RI), (3.28)

We note that Aloc
RI

depends only on the integration path but not on the gauge of A.
Also note that matrix elements of this residual potential with the local basis functions
are of the order of |B|h and thus tend to zero in the continuum limit. Using Eq. (3.25),
the matrix elements in the envelope function Hamiltonian Eq. (2.73) can be evaluated
that are zero-th, first, and second order in k̂, respectively. The zero-th order matrix
elements between the components C and C ′ become〈

ṽCK,RI

∣∣ γ(r)
∣∣∣ṽC′K′,RJ

〉
=
〈
vCK,RI

∣∣U∗RI
(r)URJ

(r)γ(r)
∣∣∣vC′K′,RJ

〉
, (3.29)

where γ(x) is the position-dependent term in the Hamiltonian. The first-order matrix
elements are 〈

ṽCK,RI

∣∣ γ(r)Dx

∣∣∣ṽC′K′,RJ

〉
=
〈
vCK,RI

∣∣U∗RI
(r)URJ

(r)γ(r)
[
∇+ i

e

~
Aloc

RJ
(r)
]
x

∣∣∣vC′K′,RJ

〉
, (3.30)

and the second-order matrix elements are given by〈
ṽCRI

∣∣D†γ(r)D
∣∣∣ṽC′RJ

〉
=
〈
vCK,RI

∣∣ [∇+ i
e

~
Aloc

RI
(r)
]†
U∗RI

(r)URJ
(r)γ(r)

·
[
∇+ i

e

~
Aloc

RJ
(r)
] ∣∣∣vC′K′,RJ

〉
. (3.31)
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One may easily verify that these matrix elements are invariant under the gauge trans-
formation

A(r) → A(r) +∇Λ(r), (3.32)

vCRI
(r) → Exp

[
−i e

~
Λ(RI)

]
vCRI

(r), (3.33)

ṽCRI
(r) → Exp

[
−i e

~
Λ(r)

]
ṽCRI

(r). (3.34)

Importantly, the momentum commutation relation is fulfilled independently of the
grid spacing h since〈

ṽCK,RI

∣∣ [Dµ, Dν ]
∣∣∣ṽC′K′,RJ

〉
=
〈
vCK,RI

∣∣U∗RI
URJ

[
∂µ + i

e

~
(
Aloc

RJ

)
µ
, ∂ν + i

( e
~

Aloc
RJ

)
ν

] ∣∣∣vC′K′,RJ

〉
, (3.35)

and

[∂µ + i
e

~
(
Aloc

RJ

)
µ
, ∂ν + i

e

~
(
Aloc

RJ

)
ν
]

= i
e

~
∂µ
(
Aloc

RJ

)
ν
− i e

~
∂ν
(
Aloc

RJ

)
µ

=
ie

2~
∂µ [B× (r−RJ)]ν −

ie

2~
∂ν [B× (r−RJ)]µ

= i
e

~
εµνλBλ. (3.36)

It can be shown that this gauge-invariant finite element method converges to the
continuum limit with O(h|B|) in the presence of magnetic fields. This is the best
order of convergence one may expect since the residual potential Eq. (3.27) vanishes
in the continuum limit ∝ h|B| on the support of the basis function. The proof of this
continuum limit is outlined in Appendix A.

3.3 Results

We have applied the present method to the exciton g-factor and its electric field de-
pendence in dilute self-assembled InAs-GaAs quantum dots embedded in GaAs. This
structure has been investigated theoretically before, [JEK+11] employing a finite dif-
ference scheme. [AMV08] While these results are in good agreement with experiment,
we will show here that they are actually plagued by an admixture of spurious modes
to the real wave functions which masks important findings.

In experiment, the quantum dots (QDs) were grown as a single layer with a
nominal In-composition of 50% at a high growth temperature leading to lower than
nominal In-concentrations. [JEK+11] The QDs were modeled as having a trun-
cated lens shape with a diameter of D = 24 nm, a height of 6 nm above the wet-
ting layer of 0.18 nm thickness and an inverse trumpet-like In-compositional profile.
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[OKW+05, MCFJ02, KCB+10] The In-concentration of the InGaAs alloy was set to
0.2 at the base and side of the dot, and values of 0.2−0.9 at the dot apex. [MCFJ02]
The electronic structure calculations in Ref. [JEK+11] invoked the eight-band en-
velope function method. The magnetic field was incorporated in terms of lattice
gauge theory in a gauge invariant manner and spatial finite volume discretization,
[AMV08] combined with the correct operator ordering. [For97, Bur99] Strain fields
were included using continuum elasticity theory and their electronic effect was taken
into account via deformation potentials and the linear piezoelectric effect. [SGB99]
The direct Coulomb interaction was included by employing lowest order perturbation
theory.

The electrical tunability ∆g of the g-factor was defined as the difference of g-
factors for a vertical electric field of 60 kV/cm and zero electric field, both at a
magnetic field of 10 T. [JEK+11] An important prediction in this paper was that
pronounced hole g-factor tuning can only be expected for In-dilute quantum dots,
while the electron g-factor responds weaker to the electric field.
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Figure 3.4: Calculated dependence of the electric tuning of the electron and exciton
Landé factors ge and gex, respectively, of an InAs/GaAs embedded quantum dot as a
function of the In-concentration at the dot apex. The dotted lines indicate numerical
results from a gauge-invariant finite differences method (Ref. [JEK+11]). The full
lines indicate the present (SAFE) results.

We have repeated this calculation, using exactly the same geometry and material
parameters, yet invoking the present symmetry adapted finite element method and
the gauge-invariant incorporation of magnetic fields outlined above. Figure 3.4 com-
pares the calculated value of ∆g obtained by the present method (solid lines) and the
previous calculations (dashed lines) for different In-concentrations at the QD apex.
Our calculations indicate that there is almost no tuning of the electron g-factor and
consequently a significantly larger tuning of the exciton g-factor gex = ge − gh than
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Figure 3.5: Contour graph of the electron density in the (010) plane in an InAs/GaAs
embedded quantum dot through the dot center. There is an applied vertical elec-
tric field of 60 kV/cm. The left panel shows the finite difference calculations of
Ref. [JEK+11]. The right panel shows the calculated density obtained by the present
(SAFE) method.

predicted previously. We can trace the result of the previous calculations to an admix-
ture of spurious modes in the electron wave function. This is illustrated in Fig. 3.5,
which depicts a cross section of the density of the bound electron ground state in the
(010) plane at the center of the QD for a vertical electric field of 60 kV/cm. The
dotted lines indicate the shape of the QD and the wetting layer. Figure 3.5(a) shows
results from Ref. [JEK+11]. The oscillatory behavior of the bound state density be-
neath the QD is unphysical. This alters the g-factor and artificially increases the
electron tuning. The present results (Fig. 3.5(b)) show no such oscillations and the
bound state is confined to the QD.

Note that in addition, the SAFE method requires only about 1/16 of the degrees
of freedom (dimension of the discrete Hamiltonian) required by the finite difference
method in order to obtain results of comparable accuracy. First, this is due to the
fact that no degrees of freedom are wasted on spurious modes. Second, stronger
continuity conditions and higher order polynomials lead to a basis that is well suited
to accurately representing smooth envelope functions.

3.4 Summary

In summary, we have presented the symmetry adapted finite elements method for the
discrete real-space k · p envelope function Hamiltonian. The method is suitable for
large mesoscopic heterostructure and is inherently free form spurious solutions caused
by the ill-representation of first-order derivatives that plagues previous real-space
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discretization schemes. The method exploits the symmetry of the EFA Hamiltonian
and yields a real-space basis that represents the relevant first-order terms in the
Hamiltonian exactly. In addition, we have presented a gauge-invariant extension
of this method that shows very fast convergence to the correct continuum limit.
As an application of the method, we predict the exciton g-factor tuning in single
InAs/GaAs to be significantly larger than previously expected. In conclusion, we
believe the present method to be an effective systematic improvement of electronic
structure calculations of mesoscopic semiconductor heterostructures.



Chapter 4

Concrete numerical
implementation

4.1 Introduction

In the previous chapter, we have introduced the symmetry adapted finite element
(SAFE) method for the numerical discretization of the k · p Hamiltonian. We used a
few specific basis functions on a uniform tensor-product grid to clarify the concept of
the SAFE method. Further, we used a notation similar to that of the tight-binding
method since we believe this notation to be more intuitive than the abstract finite
element framework. In Sec. 4.2, we generalize this simplified scheme and provide our
concrete implementation of the abstract finite element method. This implementation
is optimized for the efficient discretization of the multi-band Hamiltonian, material
parameters of arbitrary position dependence and the so-called isoparametric elements
that allow to adjust the tensor-product mesh to the shape of the nanostructure. In
Sec. 4.3, we briefly summarize the so-called direct approach to solve linear systems
of equations that we applied to the stiffness equation and to Poisson’s equation.
Section 4.4 finally deals with the solution of the generalized inner eigenvalue problem
obtained from the operator eigenvalue problem of the k · p-Hamiltonian discretized
by the SAFE method.

4.2 Implementation of the finite element method

In the following, we summarize our implementation of the finite element method.
Section 4.2.1 outlines the construction of the non-uniform tensor-product finite ele-
ment space and its basis in which we compute the discrete operator bilinear forms
of the k · p Hamiltonian, the stiffness equation and Poisson’s equation. In Sec. 4.2.2,
we introduce the so-called isoparametric finite elements which generalize the tensor-
product finite elements to more flexible, non-rectangular domain shapes. Next, we
address the efficient computation of operator bilinear forms in the finite element space

57



58 CHAPTER 4. NUMERICAL IMPLEMENTATION

in Sec. 4.2.3. To this end, we perform the integration of differential operators effi-
ciently using basic linear algebra operations for which optimized program libraries
(BLAS libraries) exists. In Sec. 4.2.4, the general Hermite elements are discussed,
which constitute the C1 conforming space of continuously differential functions. As
indicated in Ch. 3, we employed these elements in the SAFE method for some or all
Cartesian directions depending on the component of the envelope function. Finally,
the numerical realization of Dirichlet and Neumann boundary conditions is treated
in Sec. 4.2.5.

4.2.1 Finite element space

In the following, we apply the abstract finite element framework, which is comprehen-
sively discussed in the literature, [BS08] to obtain a concrete discretization scheme
which is suitable for the semiconductor equations relevant to this work. We begin
with the one-dimensional element which we extend to more dimension via tensor
products. This yields a simple rectangular tensor-product grid and thus circumvents
the problem of mesh generation that is encountered for triangular or tetrahedral
elements.

Here, we will not present any proofs of uniqueness and existence of solutions, of
approximability or of conformity, all of which can be found in the standard finite
element literature. [BS08]

In one-dimensional space, the so-called Lagrange element is defined by an interval
K =]a, b[, the polynomial space Pn = {p(x)|degree p(x) ≤ n} of degree n, and the set
of n + 1 nodal variables Σ = {Li|i = 1 . . . (n + 1)}. The nodal variable are pairwise
disjoint linear forms on Pn that constitute the local basis {ui(x)} of the Lagrange
element by

Li[uj] = δij. (4.1)

Since the polynomial space Pn(K) has dimension n + 1, the n + 1 linear forms de-
termine the n + 1 local basis functions ui(x) that span Pn uniquely. For Lagrange
interpolation, each nodal variable is simply an evaluation of a function f at that
node, namely

Li[f ] = f(xi). (4.2)

The pairwise disjoint nodes are labeled xi ∈ K̄, where K̄ = [a, b] denotes the closure
of K. Hence, the basis functions have the property

uj(xi) = δij. (4.3)

The local basis of the Lagrange element can be obtained explicitly from the canon-
ical basis {1, x, x2, . . . , xn} of Pn by

ui(x) = (V −T )i,j x
j, (4.4)
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where V is the Vandermonde matrix

V =


1 x1 . . . xn1
1 x2 . . . xn2
...

...
. . .

...
1 xn+1 . . . xnn+1

 , (4.5)

and V −T its transpose inverse. For polynomial spaces of higher degree, the Vander-
monde matrix becomes ill-conditioned thus increasing arithmetic error. This can be
redeemed by using an orthonormal basis like the Legendre polynomials instead of the
canonical basis. [HW10] Hence, we use the Legendre polynomials l0, l1, . . . on [a, b]
to define the basis functions as

ui(x) = (N−T )i,j lj(x), (4.6)

with the nodal matrix

N = eie
T
j Li[lj] =


l0(x1) l1(x1) . . . ln(x1)
l0(x2) l1(x2) . . . ln(x2)
...

...
. . .

...
l0(xn+1) l1(xn+1) . . . ln(xn+1)

 . (4.7)

The evaluation and differentiation of Legendre polynomials can be performed recur-
sively and the polynomial coefficients need not be known explicitly. [HW10]

Next, the construction of the global finite element space from these local elements
is discussed. The global finite element space consists of a set of finite elements
{(Km, Pm,Σm)}. The set of disjoint local finite element domains Km =]am, bm[ is a
complete partition of the global domain Ω, on which the partial differential equations
are to be solved, namely

Ω =
⋃
m

K̄m, (4.8)

where the intervals are not required to be uniform.
In order to construct a global conforming basis, the first (i = 1) and last (i = n+1)

nodes of the m-th element are chosen on the element boundaries such that

Lm,1[f ] = f(am) and Lm,n+1[f ] = f(bm). (4.9)

This guarantees that
um,1(am) = 1, um,n+1(bm) = 1, (4.10)

and

um,2(am) = . . . = um,n+1(am) = um,1(bm) = . . . = um,n(bm) = 0. (4.11)

Consequently, the nodal variables at the element boundaries of neighboring elements
can be identified. Suppose, for example that the (m − 1)-th element is directly left
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of the m-th element. Then, Lm−1,n+1 = Lm,1 constitutes the global nodal variable
L̃l2g(m,1), where the function l2g(m, i) is the so-called local-to-global mapping and
maps the element index and the local index of a nodal variable to a global index of
the global finite element space. Clearly, we have that l2g(m − 1, n + 1) = l2g(m, 1)
and thus a global basis function across element boundaries is defined by

vl2g(m,1)(x) =


um−1,n+1(x) if am−1 < x ≤ am
um,1(x) if am < x < bm
0 otherwise

. (4.12)

This clearly implies, that n ≥ 1 in order to construct a non-trivial global finite
element space.

For n > 1, there are n − 1 interior basis functions that correspond to global
function by

vl2g(m,i)(x) =

{
um,i(x) if am < x < bm
0 otherwise

, (4.13)

for i = 2, . . . , n. The nodes corresponding to these interior nodal variables can be
chosen arbitrarily in the interval ]a, b[. For convenience, we place them uniformly
over the interval

xm,i =
i− 1

n− 1
(bm − am) + am, (4.14)

for and 1 < i < n+ 1.
The resulting global basis {vj} is piecewise polynomial and is continuous across

element boundaries. It is thus said to be C0(Ω)-conforming, where, in this context,
C0(Ω) denotes the set of Lipschitz continuous functions on Ω. It can be shown within
the theory of Sobolev spaces that elliptic differential operators of second order can
be represented on complete Lipschitz continuous spaces exactly. [BS08] Moreover,
elliptical operators are well-approximated on finite Lipschitz continuous spaces.

We construct an n-dimensional basis simply by tensor products of one-dimensional
bases. In three dimensions, the local domains, variables and basis functions become

Km = ]axm, b
x
m[×]aym, b

y
m[×]azm, b

z
m[, (4.15)

Lm,(ijk)[f ] = f(xi, yj, zk), (4.16)

um,(ijk)(x, y, z) = uxm,i(x)uym,j(y)uzm,k(z), (4.17)

where the nodes are given by r(ijk) = (xi, yj, zk)
T . Here, we use the same polynomial

degree n in all directions and thus 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n + 1, and 1 ≤ k ≤ n + 1
in the above relations. The construction of the global finite element space proceeds
completely analogously to the one-dimensional case. The local-to-global mapping is
thus

l2g : m, (ijk) 7→ (i′j′k′), (4.18)

and the global C0(Ω)-conforming basis is {v(i′j′k′)} with

v(i′j′k′)(x, y, z) = vxi′(x)vyj′(y)vzk′(z). (4.19)
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For convenience, we denote the triple index vectors as i, j, k and so on. The
converse mapping of l2g is not uniquely defined. Still it is useful to define the global-
to-local mapping

g2l : i 7→ {(m,k) | l2g(m,k) = i}, (4.20)

which maps a global index to a set of element and local indices. With this notation,
the matrix A corresponding to the operator bilinear form of the operator L̂ can simply
be written as the sum over purely local integrals

Ai,j =
∑

(m,k)∈g2l(i)

∑
(m,l)∈g2l(j)

∫
Km

d3r u∗m,k(r)L̂um,l(r). (4.21)

Although, here, all basis functions are real, we still preserve the general form valid
for complex basis functions in view of the Luttinger phase functions in Sec. 3.2.4.

Note that differential operators are to be understood in the sense of variational
calculus. A differential operator L̂ = ∂ia(r)∂j with a generic parameter function a(r)
is integrated as [BS08]∫

Km

d3r u∗m,k(r)L̂um,l(r) = −
∫
Km

d3r a(r)
[
∂iu
∗
m,k(r)

]
[∂jum,l(r)] . (4.22)

We illustrate this method on the concrete example of Poisson’s equation

−∇ε0εr(r)∇Φ(r) = ρ(r). (4.23)

In the variational formulation on the finite element space, this partial differential
equation becomes a system of linear equations

Ax = b. (4.24)

The matrix A is given by

Ai,j = −
∑

(m,k)∈g2l(i)

∑
(m,l)∈g2l(j)

∫
Km

d3r ε0εr(r) [∇um,k(r)] · [∇um,l(r)] , (4.25)

where the basis functions um,k(r) are purely real. The Hilbert-space product of the
finite element basis functions with the charge density ρ(r) results in the right-hand-
side

bi =
∑

(m,k)∈g2l(i)

∫
Km

d3r um,k(r)ρ(r). (4.26)

The solution vector x provides the expansion coefficient of the approximated electro-
static potential

Φh(r) =
∑
m

∑
k

xl2g(m,k)um,k(r). (4.27)

A polynomial basis of degree n yields an error order of hn for first and second-
order differential operators. [BS08] The approximation of zero-th order operators has
an error order of hn+1. [BS08] In this context, h is the maximal diameter of all local
element domains Km.
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4.2.2 Isoparametric finite elements

In order to accurately compute strain fields and electrostatic potentials, the tensor
grid can be adjusted to match the shape of the nanostructure. Especially, in the case
of the quadratic piezoelectric effect in truncated pyramidal quantum dots, we find
that a rectangular tensor product grid does not lead to sufficiently accurate results
with reasonable computational effort.

The so-called isoparametric finite elements present a simple extension to the
tensor-product finite elements. [BS08] Given a non-rectangular domain K and an
invertible polynomial map φ : K̃ → K from the cubic reference domain K̃ = [−1, 1]3

to the domain K, the finite element basis {ui} on K is defined by

ui(r) = [ũ ◦ φ−1](r) = ũi(φ
−1(r)), (4.28)

in terms of the standard tensor-product basis {ũi} on K̃. Likewise, a set of nodal
variables {Li} on K is defined by

Li[f ] = L̃i[f ◦ φ] = f [φ(r̃i)], (4.29)

in terms of the nodal variables Σ̃ = {L̃i} with the nodes r̃i on the reference domain
K̃.

The mapping φ is required to be regular, i.e. the Jacobian J = ∂φ/∂r̃ must be
invertible on K̃. Moreover, the set of finite element domains {K} must be a complete
partition of the domain Ω.

On the element (K,P,Σ), the operator bilinear form of the differential operator
∂ia(r)∂j can then be evaluated in terms of basis functions on the reference domain
by variable substitution as∫

K

d3r u∗k(r)∂ia(r)∂jul(r)

= −
∫
K

d3r a(r) [∂iu
∗
k] (r) [∂jul] (r)

= −
∫
K̃

d3r̃ |J(r̃)| a(φ(r̃))
[
(J−T (r̃))i,i′∂i′ũ

∗
k(r̃)

] [
(J−T (r̃))j,j′∂j′ũl(r̃)

]
≈ −

∑
h

wh|Jh| ah (J−Th )i,i′ [∂i′ũ
∗
k(qh)] (J−Th )j,j′ [∂j′ũl(qh)] (qh), (4.30)

where |J(r̃)| denotes the Jacobi determinant at position r̃. In the last line, the integral
is approximated by a sum. The numerical quadrature points in the reference domain
are qh and the quadrature weights are wh and, correspondingly, ah = a(φ(qh)) and
Jh = J(qh).

In our calculation we employ tensor-product Gauss-Legendre quadrature where

q(i,i,k) = (q1
i , q

1
j , q

1
k)
T , (4.31)
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and
w(i,i,k) = w1

iw
1
jw

1
k, (4.32)

with 1 ≤ i, j, k ≤ M . The one-dimensional M -th order Gauss-Legendre quadrature
points q1

1, . . . , q
1
M and weights w1

1, . . . , w
1
M are tabulated for the interval ] − 1, 1[ in

the literature. [PTVF07] Differential operators of order ∂ia(r), a(r)∂j, and a(r) are
integrated analogously.

The error order of isoparametric finite element is the same as for the tensor-grid
finite elements. [BS08] However, the error is also proportional to the norm of the
inverse Jacobi matrix of the mapping φ within in the finite element domain. Clearly,
the Jacobi matrix must not be singular or near singular in this domain.

4.2.3 Efficient implementation

It is common for finite element methods that the discretization may take a similar
amount of time as the numerical solution of the resulting matrix equation. [HW10]
Especially, the discretization of the multi-band k · p Hamiltonian requires the eval-
uation of a large number of integrals. A naive implementation may easily take by
a factor ten to a hundred more time than an optimized implementation. It is, how-
ever, not desirable to optimize the scientific source code itself since optimization is
always error-prone, reduces the readability of the code and can in extreme cases lead
to poorly structures incomprehensible code. Instead of optimizing our own code, we
reformulate the numerical integration (4.30) in matrix form. In this form, highly
optimized linear algebra (or BLAS) packages like Intel’s Math Kernel Library can be
employed while the scientific program code is kept clean and readable.

First, we bring the integral for the rectangular tensor-product elements (4.25) in
an analogous form to Eq. (4.30). To this end, note that the non-uniform tensor grid
is a special case of isoparametric finite elements with the mapping

φ(r̃) =

 ax

ay

az

+
1

2

 (bx − ax)(r̃x + 1)
(by − ay)(r̃y + 1)
(bz − az)(r̃z + 1)

 , (4.33)

for a domain K =]ax, bx[×]ay, by[×]az, bz[. In this case, the Jacobi matrix is diagonal
and constant within the element. It reads

J =
1

2

 bx − ax 0 0
0 by − ay 0
0 0 bz − az

 . (4.34)

Hence, the operator bilinear form is simply∫
K

d3r u∗k(r)∂ia(r)∂jul(r)

≈ −4
∑
h

|J |wh ah
∂i′ũ

∗
k(qh)

bi − ai
∂j′ũl(qh)

bj − aj
, (4.35)
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with the constant Jacobi determinant |J | = (bx − ax)(by − ay)(bz − az)/8. Bilinear
forms of other differential operators follow analogously. The numerical bilinear forms
of the rectangular and isoparametric elements are now expressed in the same way.

Next, we define the matrices

(F̃0)k,h = ũk(qh), (4.36)

(F̃x)k,h = [∂x̃ũk](qh), (4.37)

(F̃y)k,h = [∂ỹũk](qh), (4.38)

(F̃z)k,h = [∂z̃ũk](qh), (4.39)

where k and h are linearized vector indices for the sake of clarity. The linear indices
are obtained by some bijective map {k} → {1, 2, . . . , Nk} with Nk = card{k}. Fur-
ther, the first-order derivatives for each Cartesian direction i = x, y, z of the global
coordinate system results by variable substitution and the chain rule in the matrices

(Fi)k,h = (J−Th )i,x(F̃x)k,h + (J−Th )i,y(F̃y)k,h + (J−Th )i,z(F̃z)k,h, (4.40)

and for the “zero-th order derivative” i = 0 in

(F0)k,h = (F̃0)k,h. (4.41)

Hence, each local integral in Eq. (4.21) becomes a common matrix-matrix-product∫
K

d3r u∗k(r)∂ia(r)∂jul(r) ≈ −(Fi)
∗
k,h|Jh|ahwh(Fj)l,h

= −F ∗i ·GT
j , (4.42)

with the matrix
(Gj)l,h = |Jh|ahwh(Fj)l,h, (4.43)

incorporating the parameter function ah, the Jacobi-determinants |Jh| and the inte-
gration weights wh. Likewise, we have that∫

K

d3r u∗k(r)a(r)∂jul(r) = F ∗0 ·GT
j , (4.44)∫

K

d3r u∗k(r)∂ia(r)ul(r) = −F ∗i ·GT
0 , (4.45)∫

K

d3r u∗k(r)a(r)ul(r) = F ∗0 ·GT
0 . (4.46)

Note that Eqs. (4.36) to (4.39) need only to be evaluated once since the reference
basis is the same for all elements. Further, the evaluation of Eqs. (4.40, 4.43) requires
only O(NkNh) floating point operations (FLOPS), where Nk and Nh are the number
of local basis functions and integration points, respectively. Commonly more than
one integral has to be computed for the same element and the result of Eq. (4.40)
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can be reused. In contrast, the matrix products Eq. (4.42), (4.44), (4.45), and (4.46),
which can be evaluated using optimized BLAS packages, take the most computational
time, namely O(N2

kNh) FLOPS. The number of basis functions per element is up to
64 in the SAFE method such that N2

kNh � NkNh.
A substantial amount of computational effort can be saved by performing integrals

that differ by a numerical prefactor only once. Note that there are many such integrals
in the k · p-Hamiltonian for example all terms involving ∆0. To sort terms accordingly,
we use a simple term rewriting system (TRS) outlined in appendix D. The TRS also
allows us to set up the operators in a concise way and to automatically test for
invariance under crystal symmetry operations.

4.2.4 Hermite finite elements

We have noted that the Lagrange finite element space is C0(Ω)-conforming. All
function in this space are thus Lipschitz continuous. The SAFE methods, however,
requires global differentiability for some or all Cartesian directions depending on
the particular band, so-called C1(Ω)-conformity. Such a C1(Ω)-conforming space is
spanned by the Hermite elements. For the sake of clarity, we briefly discuss these
elements in one dimension. The extension to more-dimensional tensor-product spaces
is straightforward. The C1 continuity across element boundaries is obtained in a
similar fashion as the C0 continuity for the Lagrange elements. At each boundary
point of the finite element domain K̄ = [a, b] we define two nodal variables [BS08]

L1[f ] = f(a), (4.47)

L2[f ] = f ′(a), (4.48)

Ln[f ] = f(b), (4.49)

Ln+1[f ] = f ′(b), (4.50)

which correspond to the evaluation of a function f(x) and its derivative on the element
boundaries. The polynomial degree for the Hermite element is n ≥ 3, since there are
at least four nodal variables. For n > 3, the remaining interior nodal variables are
again of the form Li[f ] = f(xi) for 2 < i < n with the nodes xi, which are equally
distributed over the interval ]a, b[.

There are two global nodal variables at the boundary between two neighboring
element domains Km−1 and Km where without restriction Km−1 is left of Km. These
global nodal variables read Lm−1,n = Lm,1 and Lm−1,n+1 = Lm,2. The basis functions
are constructed analogously to Eq. (4.7) with the appropriate nodal variables.

Note that, the basis functions corresponding to the derivative nodal variables
u2(x) and un(x) read in terms of the reference basis functions

u2(x) =
2

b− a
ũ2(φ−1(x)),

un(x) =
2

b− a
ũn(φ−1(x)), (4.51)
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with the mapping φ(x̃) = a+ (b− a)(x̃+ 1)/2 from the reference domain ]− 1, 1[ to
the element domain ]a, b[. The factor 2/(b− a) is necessary to guarantee that

L2[u2(x)] = 1,

Ln[un(x)] = 1, (4.52)

for arbitrary domains K =]a, b[ and thus the C1(Ω) conformity of the global basis.
Note that in three dimensions, only rectangular tensor-product finite elements form
a C1 conforming space. [BS08]

4.2.5 Boundary conditions

On a finite computational domain the solution of a partial differential equation is not
determined uniquely by the equation itself. For elliptic partial differential equations,
either the derivative or the function value of the solution on the domain boundary has
to be specified. We employ “force-free” Neumann boundary conditions to the stiffness
equation, i.e. we require that the normal derivative of the displacement vanishes at
the domain boundary. For Poisson’s equation in the presence of gate electrodes, we
use Dirichlet boundary conditions where the electrostatic potential assumes certain
values on the domain boundary predetermined by the gate potential. In this work,
we solve the k · p eigenvalue problem for bound states only and thus require the wave
functions to vanish at the boundary.

Periodic boundary conditions are constructed by identifying the nodal variables
at the opposite boundaries of the computational domain. This approach is straight-
forward and will not be discussed in more detail.

Note that Neumann and Dirichlet boundary conditions in general encompass some
kind of approximation since the partial differential equations are cut-off at the bound-
ary and are not solved consistently beyond the boundary. It is thus appropriate to
choose the computational domain large enough such that the interesting physics oc-
cur far away from these boundaries. To achieve this, we employ an inhomogeneous
grid spacing that becomes increasingly larger away from the region of interest.

The finite element method approximates the partial differential equation

L̂f(r) = g(r), (4.53)

by a discrete linear system of equations

Ax = b. (4.54)

The matrix A assembled using Eq. (4.21) naturally implements Neumann boundary
conditions. [BS08] Neumann boundary condition require that the normal derivative
of the solution vanishing on the domain boundary

n(r) · ∇f(r)|∂Ω = 0, (4.55)
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where ∂Ω is the boundary of the computational domain Ω, n is the normal vector
of the boundary surface and the function f is the solution of the partial differential
equation.

In contrast, Dirichlet boundary conditions require that the solution has a specific
value on the boundary, namely

f(r)|∂Ω = f0(r), (4.56)

where the function f0(r) represents the so-called Dirichlet values. In order to apply
Dirichlet boundary conditions, we introduce a restriction matrix R that restricts the
total set of m variables to the n interior variables and projects the (m−n) boundary
variables to zero. 1 Further, Q is the complement of R and restricts the m variables
to the m − n boundary variables whereas the n interior variables are projected to
zero. The values of the boundary variables x0 are obtained from the Dirichlet values
f0(r) by evaluating the nodal variables at the boundary

(x0)l2g(m,i) = Lm,i[f0]. (4.57)

The restricted system of equations reads

Āx̄ = b̄. (4.58)

with the restricted matrix and right-hand side

Ā = RART , (4.59)

b̄ = Rb−RAQTQx0. (4.60)

The solution is then
x = RT x̄ +QTx0. (4.61)

Consequently, the solution x solves the linear system of equations projected on the
interior nodes and has the values x0 at the boundary nodes.

Dirichlet boundary conditions are applied to the eigenvalue problem analogously.

4.3 Solution of linear systems of equations

To solve a sparse system of linear equations that result from the finite element dis-
cretization

Ax = b, (4.62)

we employ a direct factorization approach. The matrix A is permuted by a permu-
tation matrix P and factorized into

PAP T = LDLH , (4.63)

1A general n × m (n ≤ m) restriction matrix R is given by Rij = Pii′δi′j′P
′
j′j with some

permutation matrices P and P ′ of dimension n× n and m×m, respectively.
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where L is a lower triangular and D a diagonal matrix. Here, we used that all linear
systems that occur in our calculations are real symmetric or complex hermitian. Non-
hermitian matrices can be factored similarly into LU where U is upper triangular.
In contrast to a Cholesky decomposition of the form LLH , the factorization LDLH

is also valid for indefinite matrices A. [PTVF07]

Given the factorization, the linear system is solved by

x = (P TLDLHP )−1b = P TL−HD−1L−1Pb, (4.64)

where the matrices are multiplied consecutively from right to left to the vector b.
The triangular matrices are not inverted directly. Instead, matrix products of the
form y = L−1z and y = L−Hz are solved by forward and backward substitution of
Ly = z and LHy = z, respectively. [PTVF07]

The factor L is obtained by the IKJ-variant of Gauss elimination. [Saa00] We use
the optimized and parallelized linear solver package PARDISO to perform this factor-
ization as well as the forward/backward substitution. [SBR08] The implementation
in this package also employs Bunch-Kaufmann pivoting which guarantees a stable
factorization of indefinite matrices. Even singular matrices can be factorized as long
as the null-space is not too large. This is the case for the Stiffness equation: the elas-
tic energy is independent of global translations and rotations. The three-dimensional
stiffness equation thus has an at least five-dimensional null-space.

Note that the permutation matrix P is of cardinal importance. The number
of non-zeros, the so-called fill-ins, in the factor L and thus time and memory con-
sumption depends critically on the choice of P . [SBR08] In general, it is a hard
combinatory problem to find the optimal fill-in reducing ordering. However, efficient
heuristic algorithms exist that are known to find a “good” fill-in reducing ordering.
We employ the graph-theoretical nodal-bisection algorithm that is implemented in
the open-source METIS package. [KK99]

We prefer the direct method over iterative methods for the following reason.
The convergence of the common iterative methods like the conjugate gradient (CG)
method and flexible general minimal residual (FGMRes) method depend on the con-
dition number of the matrix which is given by the modulus of the quotient of the
eigenvalue that is largest by the eigenvalue that is smallest in magnitude. [Saa00]
The larger the condition number, the worse is the convergence. For singular and
indefinite problems, iterative methods thus often show slow convergence or do not
converge at all. Although convergence can be improved by preconditioning, the most
efficient preconditioning techniques are only well-behaved for positive definite matri-
ces. [Saa00] In contrast, singular and indefinite matrices commonly lead to unstable
preconditioners. As noted before, the stiffness equation is singular and thus especially
troublesome to solve with iterative methods.
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4.4 Solution of eigenvalue problems

There are various methods for solving interior generalized eigenvalue problems

(A− λB)x = 0, (4.65)

for a hermitian matrix A and a positive definite hermitian matrix B corresponding to
a so-called matrix pencil (A,B). In this work, we employ a variant of the shift-invert
Arnoldi iteration. The Arnoldi iteration is known to converge to extremal eigenvalue
linearly, where the speed of convergence depends on the separation between the target
eigenvalue from the remainder of the spectrum. [Saa92] Since only the eigenvalues
closest to the band gap are of interest, an interior eigenvalue problem has to be solved
for multi-band k · p models. This can be stated as the problem of finding the closest
eigenvalue above or below a shift σ that is chosen within the band gap. Fortunately,
it is possible to transform the interior generalized eigenvalue problem to an extremal
standard eigenvalue problem.

To this end, the generalized eigenvalue problem is transform into an equivalent
standard eigenvalue problem by multiplying Eq. (4.65) by B−1 from the left [Saa92]

(B−1A− λ1)x = 0. (4.66)

Note that B is invertible because it is positive definite. Next, the interior eigenvalue
problem is cast to an extremal eigenvalue problem by introducing the shift-invert
operator

M = (B−1A− σ1)−1 = (A− σB)−1B. (4.67)

The eigenvalue problem
(M − τ1)x = 0, (4.68)

is solved by the same eigenvectors as the original problem. The eigenvalue λ of (A,B)
is related to the eigenvalue τ of the shift-invert system (M,1) by λ = σ + 1/τ . The
extremal eigenvalue τ thus correspond to the eigenvalue λ closest to σ. Note that
M is not hermitian within the standard inner product (y, x) = yHx. It is, however,
hermitian within the B-inner product (y, x)B = yHBx because

(y,Mx)B =
(
y, B(A− σB)−1Bx

)
=
(
B(A− σB)−1By,x

)
= (My,x)B . (4.69)

Since B is positive definite, the B-inner product establishes a valid norm |x|B =√
(x, x)B on the vector space. Hence, the standard hermitian variant of the Arnoldi

iteration for extremal eigenvalues can be applied immediately to the matrix pencil
(M,1) where the all standard inner products in the algorithm have to be replaced with
B-inner products. [Saa92] We employ the ARPACK program library to perform this
Arnoldi iteration [LCY98] and the PARDISO direct solver to compute the matrix-
vector products of the shift-invert operator M . [SBR08]

We note that other, potentially more efficient methods for the solution of general-
ized eigenvalue problems exist. Recently, the density projection method was proposed
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that can obtain large numbers of eigenvalues and eigenvectors simultaneously within
very few iterations. [Pol09] This method exploits the fact that a closed complex σ-
contour integral over the Green’s function (A − σB)−1 represents a projection onto
the invariant subspace of A that corresponds to eigenvalues within the contour inte-
gral. This contour integral can be conducted numerically with only a few evaluations
of the Green’s function. For this approach to be efficient, it is critical, however, that
the Green’s function can be quickly applied to vectors. A sparse factorization of
(A−σB) for each integration point appears to be the most promising way to achieve
this. These factorizations, however, are costly. We find the shift-invert Arnoldi iter-
ation to be more efficient if only a few eigenvalues are required since only one such
factorization needs to be computed.

An iterative method that promises fast, up to cubic, convergence for generalized
interior eigenvalue problems is the QZ Jacobi-Davidson method. [SVdV00] This
method, however, depends on the availability of an efficient approximate solution
of the correction equation that resembles a linear system of equations very similar
to the shift-invert operator M . In contrast to the shift-invert Arnoldi iteration and
the density projection method, only a coarse approximate solution with a relative
residuum . 0.1 is required. Although this method has the potential to be highly
efficient, additional research is required to find such an approximation. Possible
candidates are incomplete factorization, approximate inverse, multi-grid, and domain
decomposition methods. [Saa00]
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Chapter 5

New insights to the symmetry
lifting in InGaAs/GaAs quantum
dots

5.1 Introduction

It is known from fundamental symmetry arguments that InGaAs/GaAs quantum
dots grown along the [001] direction exhibit at most C2v symmetry as a consequence
of the inversion asymmetry of the zincblende crystal. [BZ05] However, the inversion
asymmetry effects are rather small for this material system and the Hamiltonian is
clearly dominated by terms of C4v and higher symmetry. [Win03] Still, the lifting
of C4v symmetry by C2v terms influences many physical properties like the optical
polarization anisotropy, [BAK+10] the in-plane g-tensor anisotropy, [AV09] and the
fine structure splitting of the X0 exciton. [BNZ03] The origin of this symmetry lifting,
however, is still unclear and controversial.

Only a few experimental observables can gauge the magnitude of the C2v sym-
metry terms directly. Most prominently, the energy splitting of the first two excited
electronic states in self-assembled InGaAs/GaAs quantum dots (QDs) grown along
[001] is directly related to the lifting of C4v symmetry by these C2v terms and al-
lows to examine its origin. These p-shaped states (further denoted as p-states) are
degenerate in C4v symmetry, 1 where in this context “p-shaped” relates to the shape
of the envelope part of the wave function while the Bloch part still has dominant Γ1

(s-like) character. This degeneracy is lifted in C2v symmetry and the p-states split
in energy. Moreover, this splitting can be measured unambiguously by polarization

1In fact, the p-states are not exactly degenerate: Together with spin, there are four p-states but
the only irreducible double-group representation of C4v is two-dimensional. This results in a splitting
of the p-states already in C4v. However, the impact of the spin-orbit interaction is very small for
the lowest electronic states. [SWB07] Therefore, the p-states belong within good approximation to
the irreducible single-group representation E of dimension two. [BP74] Together with the twofold
spin degeneracy, all four p-states are thus degenerate within this approximation.

73
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resolved PL: [SBL+02, ZWG+04, CZS+06] The optical transition from the s-shaped
electronic ground state (s-state) to the p-state aligned in the [110] direction (p+-state)
is observed at higher energy than the transition to the p-state aligned in the [11̄0]
plane (p−-state).

In experiment, the two transitions can be identified with polarization filters since
the s to p transitions are strongly anisotropic: The s-p+ and s-p− transitions are
predominantly observed for ε+ light with E‖[110] and ε− light with E‖[11̄0], respec-
tively. [ZWG+04] This pronounced anisotropy is caused by the weak influences of
the spin-orbit coupling to the lowest electronic states. [SWB07] The p+ and p−-
states thus represent in good approximation the irreducible spin-degenerate single
group representations B+ and B− of C2v, respectively. [BP74, SWB07] Linearly po-
larized ε+ and ε− light also belongs to the irreducible representations B+ and B−,
respectively. Since the s-state belongs to A+, strict optical selection rules follow from
B+×B+ = A+, B−×B− = A+ and B+×B− = A− 6= A+. The latter relation implies
that a s-p+ transitions by ε−-polarized light and a s-p− transitions by ε+-polarized
light is forbidden. 2 These relations directly follow from the character tables of C2v.
[BP74] Figure 5.1 illustrates the experimentally observed levels and the polarization
resolved transitions from the singly occupied s-like ground state.[CZS+06]
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Figure 5.1: (left) Level scheme and symmetry allowed optical transitions of the low-
est electronic states in InGaAs/GaAs QDs. The relative energy scales resembles
experimental data from Ref. [CZS+06]. (right) Definition of the E-field polarization
direction of ε+ and ε− polarized light as seen from the top of the QD.

Various conflicting theoretical models have been proposed to explain the p-level
splitting including the linear piezoelectric effect (LPE), [SGB99] the more recently
proposed quadratic piezoelectric effect (QPE), [BZWV06, SWB07] atomic asymmetry
(AAS) [BZ05] and a systematic shape anisotropy (SAS) [JKBJ01, KKO+06] and
combinations thereof. Moreover, it has been claimed that the issue of the p-level

2For any operator Â, the matrix element 〈f |Â|i〉 between two states |i〉 and |f〉 can be non-zero
only if Γ1 ∈ Γi × ΓA × Γf where Γi, Γf and ΓA are the irreducible representations of the states

|i〉 and |f〉 and the operator Â, respectively. In this context, Γ1 denotes the unit representation.
The condition Γ1 ∈ Γi × ΓA × Γf is equivalent to Γf ∈ Γi × ΓA since it is always the case that
Γ1 ∈ Γf × Γf .
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splitting even questions the validity of the k · p envelope function approximation.
[WWZ+00, BZ05]

In this chapter, we aim to resolve this issue in the light of recent experimental
insight on the shape and alloy composition of InGaAs/GaAs quantum dots. We
further critically review previous work on this topic.

A comprehensive theoretical study on the impact of the LPE, the QPE, and SAS
was performed in Ref. [SWB07] within the k · p envelope function approximation. In
addition, the AAS together with the LPE and the QPE was examined in empirical
pseudo-potential calculations in Ref. [BZWV06]. It was found in both works that the
linear and quadratic term of the QPE cancel inside QDs with homogeneous In-profile.
Moreover, the AAS appears to be too small (2 to 3 meV) [BZ05] to account for the
experimentally observed splittings (3.7 to 7 meV). [ZWG+04, SBL+02] In addition,
in both works, the LPE was found to produce a p-level splitting with a sign opposite
to experiment. These results led to the conclusion that only the SAS can cause the
experimentally observed energy splitting. [SWB07]

Note importantly that in both Ref. [BZWV06] and Ref. [SWB07] the sign of
the piezoelectric potential was reversed. [Sch, Bes] In contrast to these works, we
show in detail in Sec. 5.3.3 that the LPE produces the correct sign in agreement
with experiment on hands of the simplified analytic model of Ref. [Dav98a]. Yet
independent of the overall sign the linear and quadratic term in the QPE were still
found to cancel inside homogeneous QDs. Recent X-STM measurements and out-
ward relaxation analyses, however, show strong evidence for a graded In:Ga-profile.
[OKW+05, BVK+02, MCFJ02] Moreover, it was shown that a homogeneous In-profile
cannot correctly account for the permanent dipole of the X0 exciton. [FIM+00] An
inverse-trumpet shaped In-profile was found to be in best agreement with X-STM
measurements and X0 dipole moments. [FIM+00, MCFJ02, OKW+05] We find that
such a In-profile substantially reduces strain fields within and around the QD. This
reduction of strain clearly has a stronger impact on the quadratic terms than on the
linear terms. Consequently, these terms do not cancel and the QPE is only a minor
correction compared to the LPE.

Further, we want to note that currently there are several open questions con-
cerning the QPE. The currently available QPE coefficients were fitted to density
functional theory calculations. [BWVZ06, BWPB11] However, neither details on
the model used in the calculation nor original data nor the deviation of the fitted
quadratic relation from the original data were published. Further, the calculations
appear to be performed in the limit of zero electric field. [BWPB11] This, we believe,
requires more profound theoretical justification since the QPE can lead to extremely
large local dipole fields.

The AAS was found to be large only for very small pure InAs QDs. [BZ05] It
encompasses two distinct effects: First, the bulk inversion asymmetry (BIA) of the Td
crystal and second atomic interface effects. The latter is caused by the non-equivalent
atomic configuration at the material interface of the four {101} facets of the pyramidal
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QDs. [BZ05] It was shown only recently that this interface effect can be included in
the k · p envelope function approximation (EFA). [TV11] This, however, requires a
sophisticated treatment of the material interfaces and it is unclear how to adapt this
method to a graded In-profile. Moreover, we do not expect a large contribution of the
atomic interface asymmetry effect for graded In-profiles anyway since there are no
extended InAs-GaAs interfaces in contrast to pure InAs QDs in a pure GaAs matrix.
On the other hand, we examine the impact of the BIA by employing a 14-band model.

Section 5.2 provides details on the calculations, the alloy profile and the quan-
tum dot shape. The results of our calculations are presented in Sec. 5.3. Firstly,
in Sec. 5.3.1 the p-level splittings resulting from the various contributions presented
and compared with experiment. Next, the [11̄0] elongation is discussed separately in
Sec. 5.3.2. In Sec. 5.3.3, the numerical results are validated against the analytical so-
lution of the inclusion problem. Moreover, we provide intuitive qualitative arguments
that support the correctness of the sign of the piezoelectric effect in our calculations.
Finally, Sec. 5.4 summarizes our results.

5.2 Method

We employed the eight-band k · p envelope function approximation together with the
SAFE method to compute the electronic structure. To examine the effect of BIA we
also utilized the 14-band model which includes inversion asymmetry terms. Strain
effects are accounted for via the deformation potentials. Further, the LPE (1.66) and
the QPE (1.68) were used as indicated in the results.

Isoparametric Lagrange finite elements were employed to compute strain fields to
a high accuracy. This was found to be necessary since the QPE turned out to vary
strongly even for small deviations in the strain. Forth order polynomial tensor prod-
uct finite elements were transformed by trilinear maps to conform with the truncated
pyramidal shape exactly. A cross section of the resulting finite element mesh is shown
in Fig. 5.2 for the (010) plane through the QD center.

Note that we followed the standard convention for the orientation of crystal axes,
i.e. the vector a(1

4
, 1

4
, 1

4
) points from an cation to the nearest anion where a is the side

length of a conventional crystal cell in the zincblende structure. In this convention,
the linear piezoelectric constant e14 of every InxGa1−xAs alloy is negative. [Mar72]

Further, note that all states are spin-degenerate. This has no influence on our
results and argumentation. Consequently, we refer to a single s-state and two distinct
p-states in the following although all of theses states are two-times spin-degenerate.
We do so also for the calculation carried out at a magnetic field up to 12 T since the
Zeeman splitting is much smaller that the p-level splitting. We averaged over the two
spin states in this case.

In agreement with X-STM measurements, we modeled our QD as truncated pyra-
mids of 18 nm base length and 6 nm height above the wetting layer with an inverse-
trumpet In:Ga-profile. [OKW+05, MCFJ02] Consistently with Ref. [MCFJ02], we
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Figure 5.2: Cross section of the isoparametric finite element mesh (bold lines) and
the inverse trumpet alloy profile in the {010} plane through the center of the QD.
In the alloy profile, dark blue indicates areas with high In-concentration, lighter blue
areas with lower In-concentration and white areas with no In.

used the In-profile

xIn(x, y, z) = xmin + (xmax − xmin) exp

{
−
√
x2 + y2 exp(−|z|/z0)

ρ0

}
, (5.1)

with xmin = 0.3, xmax = 0.8, z0 = 1.0 nm, and ρ0 = 0.75 nm. The coordinates
r = (x, y, z)T are relative to the center of the QD base and x, y, and z correspond
to the [100], [010], and [001] direction, respectively. The In-concentration at the
base xmin and at the apex xmax were taken from Ref. [MCFJ02]. The parameters
z0 and ρ0, however, were not published and we chose these values such that they
result in a rather “soft” In gradient. We believe, this to be more consistent with
the X-STM measurements in Ref. [BVK+02], which show an almost linear In-profile
in the z-direction. The wetting layer was modeled with a thickness of 1 nm and an
In-concentration of 0.5. [MCFJ02] The resulting In-profile is illustrated in Fig. 5.2.
In the calculation a temperature of 4.2 K was used.

For the elongated QDs, an affine transformation was applied to the shape as well
as the In-profile while the overall volume and the overall In-content was kept constant.
The elongation is denoted as the aspect ratio between the diagonal of the QD base
in [11̄0] and the [110] direction. A 2 : 1 elongated QD is thus stretched by a factor of√

2 in the [11̄0] and compressed by a factor of 1/
√

2 in the [110] direction.
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5.3 Results and discussion

5.3.1 p-Level splitting
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Figure 5.3: (left) Calculated piezoelectric charge in the (11̄0) plane through the center
of the QD, where the blue and the red shade indicates negative and positive charge,
respectively. (right) Calculated piezoelectric potential in the (11̄0) plane through
the center of the QD. The blue and the red shade indicates negative and positive
potential, respectively. The scale of the potential is indicated in the right.

Figure 5.3 shows the piezoelectric charge and the resulting electrostatic potential
in the (11̄0) plane through the center of the QD for the LPE. Inside the QD, the
piezoelectric charge and potential are negative in this plane. Likewise, the piezoelec-
tric charge and potential are positive in the (110) plane through the center of the
QD. Consistently with experiment, the p+-state aligned in the (11̄0) plane is higher
in energy than the p−-state aligned in the (110) plane. Note that the (11̄0) plane is
spanned by the [110] and [001] direction vectors.

Figure 5.4 compares the LPE with the QPE: the according piezoelectric potentials
are shown in the (001) plane 2 nm above the QD base. Both the LPE and the QPE
produce the same sign for the p-level splitting that is consistent with experiment.
Inside the QD, which is indicated by the solid line, the QPE results in almost the
same potential as the LPE. Only in the very center of the QD the quadratic and linear
terms of the QPE actually cancel. The p-state wave functions, however, extend to
the corners of the QD where they have substantial overlap with the electrostatic
potentials for both the LPE and the QPE. This is illustrated by Fig. 5.5 which
shows the density of the p-state wave functions in the same plane as the piezoelectric
potential in Fig. 5.4. Not surprisingly, we find that the p-level splitting of 5.2 meV
for the QPE is only reduced only by 1.8 meV compared to 7.0 meV for the LPE.

Table 5.1 summarizes the p−- and p+-state energy levels and the p-level splitting
for various models and compares our calculated results with experiment. Firstly,
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Figure 5.4: (left) Calculated piezoelectric potential for the LPE in the (001) plane
2 nm above the QD base. (right) Calculated piezoelectric potential for the QPE in
the same plane. Both figures use the same scale indicated on the right. The blue
and the red shade indicates negative and positive potential, respectively. The outline
of the QD 2 nm above its base and at its base are indicates by the bold solid and
dashed lines, respectively.
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Figure 5.5: (left) Calculated density of the p−-state in the (001) plane 2 nm above the
QD base. (right) Calculated density of the p+-state in the same plane. The outline
of the QD 2 nm above its base and at its base are indicates by the bold solid and
dashed lines, respectively.
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Model p−-Level (meV) p+-Level (meV) p-Level
splitting (meV)

8-band k · p with LPE 58.1 65.0 7.0
8-band k · p with QPE 58.6 63.7 5.2
14-band k · p w/o PE 62.3 61.9 −0.4
14-band k · p with LPE 58.0 64.5 6.6
14-band k · p with QPE 58.5 63.2 4.7
Experiment Ref. [ZWG+04] 50 to 55 54 to 61 3.7 to 5.5
Experiment Ref. [CZS+06] 54.5 60.0 5.5
Experiment Ref. [SBL+02] 56 63 7

Table 5.1: Calculated p-levels relative to the s-level and p-level splitting for various
models compared to experimentally observed values.

the p-states are about 60 meV above the s-state for all models. This is in good
agreement with experiment and points at the validity of our QD model. Secondly,
the LPE is the dominant contribution to the p-level splitting. Both, the bulk in-
version asymmetry, which is account for in the 14-band k · p model, and the QPE
present minor corrections. In fact, the latter finding is consistent with calculations
for graded In-profile in Ref. [SWB07]. Unfortunately, the incorrect sign of piezo-
electric potential in this reference obfuscated this important result. Remarkably, the
bulk inversion asymmetry reduces the p-level splitting. This is in sharp contrast to
the AAS effect that increases the p-level splitting in pseudopotential calculations on
QDs with homogeneous In-content. [BZ05] To our best knowledge, however, pseu-
dopotential calculations have not yet been performed for QDs with a realistic graded
In:Ga-profile. Such calculations could be highly illuminating since it appears to us
that the discrepancies between k · p and pseudopotential calculations could stem from
the abrupt material interfaces of the homogeneous alloy profile. Finally, we find that
the p-level splittings from all models that encompass the LPE or the QPE are in the
range of experimentally observed values.

Figure 5.6 shows the decrease of the degree of polarization (DoP) of the s − p−
transition with an increasing vertical B-field calculated in the eight-band k · p model
with the LPE. The relative decrease of the DoP in our calculations is in excellent
agreement with experiment. The DoP of the optical s− p− transition is defined by

DoP =
Iε− − Iε+
Iε− + Iε+

, (5.2)

where Iε− and Iε+ are the optical transition intensities (1.54) proportional to |〈s|P̂x+
P̂y|p−〉|2 and |〈s|P̂x − P̂y|p−〉|2, respectively. Here, P̂ = m0

~ ∇kĤ is the k · p momen-
tum operator obtained by the approximate Hellmann–Feynman theorem in the k · p
basis (1.45). The magnetic field lowers the symmetry from C2v to C2 where there are
only two one-dimensional irreducible representations of the single group. [BP74] In
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Figure 5.6: Calculated degree of polarization DoP of the optical s − p− transition
as a function of the applied vertical B-field (solid line) in the eight-band k · p model
with the LPE. Experimental data from Ref. [CZS+06] is indicated by squares.

particular, both p− and p+ belong to the same irreducible representation in C2. Con-
sequently, the optical selection rules of C2v symmetry become weaker with increasing
magnetic field.

Experimentally, a maximum DoP of only 0.8 was observed. [CZS+06] This can,
for example, be caused by an asymmetric QD shape [CZS+06] or near field effect in
optical measurements caused by the small shadow mask used to select single QDs.
[GBM+04] In contrast, neither the QPE nor the AAS nor a [11̄0] elongation of the QD
can account for the low maximum DoP since these effects do not break C2v symmetry.

As already mentioned, the QPE has conceptional issues that require further in-
vestigation. In addition, there are also practical issues. We find that the magnitude
of QPE depends critically on the numerical accuracy and the exact shape of the alloy
profile. In contrast, we find the LPE to be almost unaffected by details of the alloy
profile and much more resilient to numerical error.

In conclusion, our results indicate that the LPE is sufficient to account for the
lifting of C2v symmetry within reasonable accuracy. More sophisticated effects lead
only to small corrections or even artifacts and can be safely neglected.

5.3.2 Shape anisotropy

The incorrect sign of the piezoelectric potential and the homogeneous In-profile in
previous work [BZWV06, SWB07] led to the conclusion that the piezoelectric effect
in symmetric pyramidal and lense shapes QDs does not lead to the experimentally
observed p-level splitting. In order to obtain the observed p-level splitting a sys-
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Figure 5.7: p-Level splitting calculated using eight-band k · p wit the LPE as a func-
tion of the elongation of the QD. The elongation is defined as the ratio of the [11̄0] to
the [110] diagonal. The hatched area represents the range of experimentally observed
values. [SBL+02, ZWG+04, CZS+06]

tematic shape anisotropy of the QDs, namely an elongation in the [11̄0] direction,
was proposed. [SWB07, JKBJ01] This elongation lowers the kinetic energy of the
p−-energy-level aligned in the elongated direction compared to the p+-energy-level
aligned in the perpendicular direction. [SWB07] In fact, such an elongation was ob-
served experimentally on InAs/GaAs QDs that were overgrown stepwise. [JKBJ01]
After the deposition of each capping layer, the shape of the QD was examined with
scanning tunneling microscopy. A large diagonal ration of [11̄0] : [110] = 18 : 10
was observed. Note, however, that the p-level splitting was not measured and it was
shown that the growth condition including the growth rate have a profound impact
on the optical spectra of QDs. [PLF+07] In addition, the outward relaxation found
in X-STM measurements on usually grown QDs was successfully modeled without an
elongation of the QD. [MCFJ02, OKW+05]

Our calculations shown in Fig. 5.7 clearly indicate that a substantial elongation
of the QD is not compatible with experimentally observed p-level splittings. Even
for a small elongation of 11 : 10, the p-level splitting increases to 8.6 meV which is
already beyond the experimentally observed range. At an elongation of 15 : 10 we
find a p-level splitting of 15.5 meV although a much larger elongation of 18 : 10 has
been proposed. [JKBJ01] These results indicate that conventionally grown QDs have
no or only a negligible systematic shape anisotropy.
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5.3.3 Sign of the piezoelectric potential

Unfortunately, the sign of the piezoelectric potential was reversed in two recent com-
prehensive studies of the electronic structure of InGaAs/GaAs QDs: In the k · p
calculations in Ref. [SWB07], the crystal axes were defined converse to the common
convention. [Sch] Thus the [110] and [11̄0] directions and consequently the p+ and
p−-states were exchanged. In the pseudopotential calculations in Ref. [BZWV06], the
electrostatic potential was computed correctly and the crystal axes were also aligned
conventionally. However, the electrostatic potential was added to the Hamiltonian
with a positive charge thus effectively reversing the piezoelectric potential. [Bes] The
coinciding results from both works led to substantial confusion about the impact of
the piezoelectric effect on the electronic structure.

As shown above, our numerical results indicate that the LPE produces a p-level
splitting with the correct sign. Because of the importance of this finding and the
contrasting results in the above-mentioned works, we give additional evidence in
this section. We compare our numerical results with the results from the analytic
formula in Ref. [Dav98a] and, in addition, give qualitative arguments that support
our findings.

The analytic solution employs the following central approximations: [Dav98a]
Firstly, the medium is assumed to be isotropic. Secondly, the elastic, piezoelectric
and electrostatic constants are the same everywhere. Thirdly, the strain is measured
with respect to the same lattice constant, namely the lattice constant of the matrix
material. Finally, the QD composition is homogeneous.

Under these approximations the solution to the inclusion problem is given by
[DFO97, Dav98a]

u(r) =
ε0

4π

1 + ν

1− ν

∮
dS(r′)

|r− r′|
, (5.3)

εrelij (r) = − ε
0

4π

1 + ν

1− ν

∮
(ri − r′i)dSj(r′)
|r− r′|3

, (5.4)

where ε0 is the mismatch strain of the homogeneous QD material with respect to the
matrix material and ν the isotropic Poisson ratio. The surface integral is conducted
over the surface of the QD. As expected, Eq. (5.3) shows that the displacement u
points away from the QD surface and vanishes asymptotically away from the QD.
The strain given by εrelij is relative to the mismatch strain. Since the mismatch strain
has no shear components, Eq. (5.4) immediately yields the shear strain.

Moreover, the piezoelectric potential was also given analytically by [Dav98a]

Φ(r) =
9e14ε

0

4πε0εr

1 + ν

1− ν

∮
(x− x′)(y − y′)(z − z′)(r− r′)dS(r′)

|r− r′|5
, (5.5)

where e14 is the piezoelectric constant and εr the relative dielectric constant.
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The analytic Eqs. (5.3), (5.4) and (5.5) can be readily evaluated. To this end,
however, we employ numerical Gauss-Legendre quadrature of order 30 for the eval-
uation of the surface integrals. Still, we call the results “analytical” to distinguish
them from the numerical solution of the stiffness Eq. (1.64).

There are various steps in the calculation of the piezoelectric potential and the
electronic states where the sign of the piezoelectric effect can be wrongly reversed in
a fully numerical calculation. Further, it is difficult to validate the fully numerical
solution directly. We thus proceed in three steps. Firstly, we verify the sign of the
shear strain obtained from the analytic solution Eq. (5.4) by qualitative arguments.
Secondly, we show the consistency between the analytical and numerical results and
further show that the sign of the piezoelectric charge is consistent with qualitative
arguments. Finally, we present the resulting electrostatic potential both from the
fully numerical and the analytical calculation. We show that this potential is con-
sistent with the piezoelectric charge and leads to the experimentally observed p-level
splitting.

Here, we considered the LPE only and compared the numerical and analytical
results for a homogeneous In0.5Ga0.5As/GaAs QD. We used the same truncated-
pyramidal shape as before, namely as base length of 18 nm and a height of 6 nm.
However, we neglected the wetting layer because this simplifies the evaluation of ana-
lytical equations substantially. For the uniform material constants we used the values
of GaAs, namely, e14 = −0.16C/m2, [dGBR89] ν = 0.31, [Dav98a] and εr = 12.9.
[MSH82] The mismatch strain in this context is defined as ε0 = aIn0.5Ga0.5As/aGaAs−1.
With the lattice constants aIn0.5Ga0.5As = (6.06Å + 5.65Å)/2 = 5.86Å and aGaAs =
5.65Å this yields ε0 = 3.6%. [VMRM01]
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Figure 5.8: (left) Analytically computed shear strain component εan.5 in the (001)
plane 3 nm above the QD base. The outline of the QD in this plane is indicated
by the solid line. (right) Sketch of the displacement at a point R on the (1̄01) facet
and at differentially shifted points R′ = R + dzez and R′′ = R− dx ex shown in the
(010) plane. The x- and z-direction correspond to the [100] and [001] crystallographic
directions, respectively.
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First, we give qualitative evidence for the correctness of the sign of the shear
strain components obtained from Eq. (5.4). Figure 5.8(left) shows the analytically
obtained shear strain component εan.5 in the (001) plane 3 nm above the QD base.
The sign of the shear strain can be verified by a simple qualitative argument where
we use the fact that the displacement decreases away from the QD. This is illustrated
in Fig. 5.8(right): For the sake of argument, consider the region above the center
R of the (1̄01) facet. This region corresponds to the region left of the QD outline
in Fig. 5.8(left). Close to the QD interface we may approximate the displacement
by the contribution from the (1̄01) facet only. At the point R directly on the facet,
the displacement u point away from the QD and is approximately perpendicular to
the facet. With increasing distance to the facet, the magnitude of the displacement
decreases due to the finite size of the facet. In particular, we have that |u′x| < |ux|
and |u′′z | < |uz| at the points R′ and R′′, respectively. Considering the sign of the
components this yields u′x > ux and u′′z < uz. Here, the points R′ = R + ezdz and
R′′ = R−exdx are differentially shifted relative to R by +dz and −dx along the unit
vectors ez and ex, respectively. The shear strain component ε5 is ε5 = ∂zux + ∂xuz.
Since u′x > ux and R′ lies relative to R in the positive z-direction, we have that
∂zux > 0. Because u′′z < uz and R′′ lies relative to R in the negative x-direction,
we also have that ∂xuz > 0. The shear strain component ε5 is thus positive directly
above the (1̄01) QD facet. This is consistent with the results from Eq. (5.4). The
sign of the shear strain components at the various {1̄01} facets inside and outside
the QD can be verified analogously.
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Figure 5.9: (left) Numerically calculated shear strain component εnum.5 in the (001)
plane 3 nm above the QD base. (right) The numerically calculated piezoelectric
charge distribution ρnum. in the same plane where blue and red indicate negative and
positive charge, respectively. The bold line indicates the outline of the QD in this
plane.

Secondly, we show that (a) the shear strain components obtained numerically and
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analytically are consistent and (b) that this shear strain results in the correct sign
of the piezoelectric charge. The first point is illustrated by Fig. 5.9(left): The shear
strain component εnum.5 obtained by a fully numerical solution of the stiffness equation
is apparently consistent with the analytical result in Fig. 5.8(left). Now we consider
the sign of the piezoelectric charge. The piezoelectric charge is

ρ = −∂xe14ε4 − ∂ye14ε5 − ∂ze14ε6, (5.6)

where the piezoelectric material constant e14 is negative for InGaAs alloys in the
standard convention. [Mar72] For the sake of argument, we assume e14 to be con-
stant everywhere. To validate the sign of the calculated piezoelectric charge shown
in Fig. 5.9(right), we consider the contribution form ε5 along the dashed line in
Fig. 5.9(left) in positive y-direction along [010]. Starting from point A, ε5 increases
towards point B and thus ∂yε5|BA > 0. Between the points B and C ε5 is almost
constant (∂yε5|CB ≈ 0) and then decreases towards point D (∂yε5|DC < 0). Since the
minus in Eq. (5.6) cancels with the negative sign of e14, the piezoelectric charge has
the same sign as ∂yε5. Consequently, the charge is positive along the line from A to
B, zero between B and C and negative between C and D. This is consistent with
the fully numerically calculated piezoelectric charge shown in Fig. 5.9(right).

Analogous arguments apply as well to the ε4 shear strain component as to the
regions above and below the various {101} facets. Our numerical calculations indicate
that the shear strain components ε4 and ε5 together contribute dominantly to the
piezoelectric charge. In a similar way, it can be argued that our numerical results are
also consistent with the qualitative contribution of the ε6 shear strain component.

-10 0 10

-10

0

10 .num

Po
si

tio
n 

in
 [0

10
] (

nm
)

Position in [100] (nm)
-10 0 10

El
. P

ot
en

tia
l (

m
V)

-32.0

0.0

32.0.an

Figure 5.10: (left) Numerically and (right) analytically calculated piezoelectric po-
tential Φnum. and Φan., respectively, in the (001) plane 3 nm above the QD base. The
bold line indicates the outline of the QD in this plane.

Finally, Fig. 5.10 shows that the analytically (right) and fully numerically (left)
calculated piezoelectric potential are consistent and the piezoelectric potential clearly
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corresponds to the piezoelectric charge distribution shown in Fig. 5.9(right). Note
that we used the piezoelectric constant of GaAs for the analytical calculations. Hence,
the analytically computed piezoelectric potential is larger in magnitude than the nu-
merically obtained potential since the piezoelectric constant of In0.5Ga0.5As is con-
siderably smaller in magnitude that the piezoelectric constant of GaAs which was
used in the analytical calculation for the entire structure. The sign of the potential,
however, is consistent inside and outside the QD.

The p+-state aligned along the [110] diagonal and the p−-state aligned along
the [11̄0] diagonal thus overlap with a negative and a positive electrostatic poten-
tial, respectively. Consequently, the p+-state is higher in energy than the p−-state.
Therefore, the LPE leads to a sign of the p-level splitting that agrees with experiment.

5.4 Summary

For a realistic QD model with graded In:Ga-profile, we have shown that the LPE
causes the experimentally observed p-level splitting of 5 to 7 meV. The QPE, on
the other hand, only leads to a minor correction compared to the LPE because of
the reduced strain due to the graded alloy profile. Further, the impact of the bulk
inversion asymmetry contributes only −0.6 meV to the p-level splitting. Finally, we
have shown that a systematic elongation of the QD in [11̄0] dramatically increases the
p-level splitting. Combined with the LPE, this results in a splitting too large to be
compatible with current experimental data. Our results thus indicate that the LPE
is the dominant contribution to the lifting of C4v symmetry. All other contributions
are either negligible or incompatible with experiment.
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Chapter 6

Prediction of strong electrical
g-Factor tuning in In-dilute
quantum dots

6.1 Introduction

In this chapter, we examine the very strong electrical tunability of the X0 exci-
ton g-factor that was observed experimentally in InGaAs/GaAs self-assembled QDs.
[JEK+11] By performing realistic eight-band k ·p simulations using a QD size, shape
and In-composition determined by scanning tunneling microscopy, we quantitatively
account for experimental results and obtain new insight into the origin of the ef-
fect. Our theoretical findings are in excellent agreement with experiment; exciton
transition energy, the g-factor at zero E-field and g-factor tunability all being simul-
taneously reproduced our calculations using dots with a diameter D = 25 nm, height
d = 6 nm and a maximum In-composition of xIn ∼ 35% near the dot apex. We show
that the gex tunability is dominated by the hole (gh), the electron (ge) contributing
only weakly. Most interestingly, the electric field-induced perturbation of the hole
wave function is shown to impact upon gh principally via orbital angular momentum
quenching. [PF06] In contrast, the valence band mixing and the change of the In:Ga
composition inside the envelope function plays only a minor role. The results show
that the strength of the electrical tunability increases as the In-alloy content at the
dot apex (xapexIn ) reduces, explaining why strong electrical gex tunability is observed
for the particular sample in Ref. [JEK+11].

Surprisingly, we find that the g-factor calculated in linear response theory form
wave functions at zero B-field is in excellent agreement with the g-factor obtained from
the full non-perturbative calculation including the B-field in the Hamiltonian. This
finding implies a simple method for approximation of g-factors that circumvents the
practical issues presented by the gauge-invariant discretization of the vector potential.

Moreover, we validate the single particle approximation to the exciton g-factor

89
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that has been used in previous work. [AV09] In this approximation, the impact of
the electron-hole Coulomb interaction on the exciton g-factor is neglected.

The experimental results shown in this chapter were obtained for QDs that were
grown with a nominal In-content of xIn = 50% under the unusually high growth
temperature of 595◦C. Due to the combined effects of In-desorption [HH03b] and
inter-diffusion with the GaAs matrix material during capping, [HH03a] this is ex-
pected to lead to a lower than nominal average In-content in the dots. Cross sec-
tional STM measurements [KCB+10] indicate that the resulting dots have a lateral
size of D = 26 ± 8 nm and height of h = 6 ± 2 nm. The experimental data was
recorded using photoluminescence measurements at low electric field (< 25 kV/cm)
and photo current at high electric field (> 27 kV/cm). Both measurements were
conducted with σ+ and σ− circularly polarized laser light to unambiguously identify
the two Zeeman branches and thus the sign of the exciton g-factor. More details on
the growth conditions and the experimental setup are published in Ref. [JEK+11].

Note that theoretical results, which we published in Ref. [JEK+11], were calcu-
lated using the state-of-the-art k · p method for incorporating magnetic fields at that
time. In contrast, the results presented in this chapter have been calculated with our
novel SAFE method, which we expect to yield more accurate results. Hence, there
are a few quantitative discrepancies between results in this work and Ref. [JEK+11].
The arguments and the central propositions, however, are consistent and stay intact.

Section 6.2 gives details on the quantum dot model and the theoretical methods
employed in this chapter. In Sec. 6.2.1, the electron-hole Coulomb interaction is
discussed. Next, the sign convention of the exciton g-factor is treated in Sec. 6.2.2.
The impact of the g-factor anisotropy is briefly discussed in Sec. 6.2.3. In Sec. 6.3, the
results of our numerical calculations are presented. We first compare the calculated
electrical g-factor tuning to experimental data in Sec. 6.3.1 and provide an intuitive
explanation of the observed tuning in Sec. 6.3.2. In Sec. 6.3.3 we propose the design
of an universal all electrical single qubit gate. The results are summarized in Sec. 6.4.

6.2 Method

We performed electronic structure calculations using the eight-band k · p envelope
function approximation (EFA) Hamiltonian. The discretization of the Hamiltonian
was performed using the SAFE method presented in Ch. 3. Strain fields were com-
puted in continuum elasticity theory and their impact on the electronic structure was
taken into account via deformation potentials and the linear piezoelectric effect.

We modeled our QDs as having a truncated lens shape with a diameter varying
from D = 16 − 48 nm, a height of 6 nm above the wetting layer and a realistic
inverse trumpet-like In-compositional profile (5.1). [OKW+05, MCFJ02] The In-
concentration of the InGaAs alloy was taken to be xIn = 0.2 at the base and side of the
dot increasing to xapexIn = 0.2−0.8 at the dot apex. [MCFJ02] This range of parameters
are fully consistent with the results of cross sectional STM measurements performed
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on samples grown under the same conditions, from which we also determined the
wetting layer thickness (2 nm) and xWL

In = 0.18 . [KCB+10]

6.2.1 Electron-hole Coulomb interaction

In the literature, the impact of the Coulomb interaction on the exciton g-factors was
previously neglected and the exciton g-factor was computed from the single particle
electron and hole energies. [AV09] A vertical electric field, however, separates holes
and electrons spatially [SHB+03] and the attractive direct Coulomb interaction thus
counteracts the external electric field. Hence, we performed self-consistent calculation
to examine the validity of the single particle approximation in the presence of an
external electric field. We only consider the direct Coulomb interaction, because the
electron-hole exchange interaction active for the bright X0 exciton states is expected
to be small for large QDs. [BOS+02]

We computed the electronic state self-consistently in the electric potential pro-
duced by the hole state and vice versa. To this end, we solved the coupled system of
equations

(Ĥ − eΦe(r)− ESC
h 1)F SC

h (r) = 0, (6.1)

−∇(ε0εr(r))∇Φh(r) = +e
∑
i

|F SC
h,i (r)|2, (6.2)

(Ĥ − eΦh(r)− ESC
e 1)F SC

e (r) = 0, (6.3)

−∇(ε0εr(r))∇Φe(r) = −e
∑
i

|F SC
e,i (r)|2, (6.4)

where Ĥ is the single particle Hamilton operator and ε0 and εr(r) are the vacuum
and relative dielectric constants, respectively. The self-consistent pairs of energy
and envelope function of the hole and of the electron Hamiltonian are denoted as
(ESC

h , F SC
h ) and (ESC

e , F SC
e ), respectively. The sums run over all components i of

the envelope function.
The electrostatic potentials Φh and Φe were calculated by solving Poisson’s equa-

tion with asymptotic boundary conditions. These were represented by Dirichlet
boundary conditions on the boundary of the computational domain Ω with the Dirich-
let values

ΦDir
i (r) =

∫
Ω

dr′
3 1

4πε0εGaAsr

qi|Fi(r′)|2

|r− r′|
, (6.5)

with i = e, h and the charges qe = −e and qh = +e. For computing the Dirichlet value,
the constant relative dielectric constant εGaAs

r of GaAs is used. This approximation
is expected to yield reasonable results, first, because the InAs-content in the dot is
low and, second, because we chose the domain Ω large enough such that the values
on the boundary are small. Consequently, the error of approximating the relative
dielectric constant is also small.
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Table 6.1: Exciton g-factor calculated in various approximations.
Exciton g-factor gex at 0 kV/cm and 10 T at 60 kV/cm and 10 T

Self-Consistent 0.625 1.112
Single Particle 0.635 1.199

The system of equations was solved by iteratively inserting the result of one
equation into the next until convergence. The iteration was started with Φe = 0 and
was terminated when the difference between the current and the previous exciton
energy was less than 10−8 eV. Only a small number of iterations (three to four) was
required because the potential produced by the carriers is one order of magnitude
smaller than the confining potential. More efficient and sophisticated methods to
improve convergence were thus not required.

The self-consistent exciton energy was then calculated by

ESC
ex = ESC

e − ESC
h −

1

2
(〈F SC

e | − eΦh|F SC
e 〉 − 〈F SC

h | − eΦe|F SC
h 〉), (6.6)

where the interaction potential must be subtracted once since it is contained in both
Ee and Eh.

Note that in this approach, the electron and the hole Hamiltonian are not the same
and the eigenfunction are thus not exactly orthogonal. We find, however, that the
loss of orthogonality is very small due to the large effective band gap (≈ 1300 meV).

Table 6.1 shows that the difference between exciton g-factors of the single particle
and of the self-consistent calculation is negligible at zero external electric field, namely
gSPx (0 kV/cm)−gSCx (0 kV/cm) ≈ 0.01. As expected, the effect of the external electric
field of 60 kV/cm is counteracted by the Coulomb interaction. Consequently, the
discrepancy, gSPx (60 kV/cm)− gSCx (60 kV/cm) ≈ 0.09, is larger in the presence of an
electric field. This is, however, still comparable to deviations from other sources, e.g.
different sets of material parameters. We thus conclude that the additional effort of a
self-consistent calculation is not justified and we will only consider the single particle
approximation throughout this work. To this end, we calculate exciton transition
energies in first-order perturbation theory by

Eex = Ee − Eh +
1

2
(〈Fe| − eΦh|Fe〉 − 〈Fh| − eΦe|Fh〉), (6.7)

where all terms are obtained from the solution of the single particle Hamiltonian.

6.2.2 Sign convention of the g-factor

There has been much confusion concerning the sign of the bright X0 exciton g-
factor and various seemingly contradicting relations can be found in the literature:

gex
?
= ge + gh, [BKF+99, AV09] gex

?
= ge − gh, and gex

?
= −ge + gh. [NSTA04] To
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make our results unambiguous, we clarify the convention used in this work. In the
following, we will only discuss a magnetic field in the growth direction [001], denoted
as z-direction. This is also the quantization direction of the spin. The basis functions
of spin | ↑〉 and | ↓〉 are thus defined with respect to the positive [001] direction. The
definitions apply to other directions of the magnetic field analogously.

In the electron-hole picture it is natural to define the electron g-factor as

gnate =
E(e ↑)− E(e ↓)

µBB
= gc, (6.8)

and the hole g-factor as

gnath =
E(h ↑)− E(h ↓)

µBB
=
−E(v ↓) + E(v ↑)

µBB
= gv, (6.9)

respectively, in terms of the g-factors of the conduction band state gc and the valence
band state gv in the purely electronic picture. The terms E(e ↑ / ↓), E(h ↑ / ↓),and
E(v ↑ / ↓) denote the spin ↑/↓ energy levels of electron, valence band, and hole state,
respectively. Note that E(h ↑ / ↓) = −E(v ↓ / ↑) when changing form the purely
electronic to the electron-hole picture.

The g-factor of an excitation is most naturally defined as the g-factor of the
excited minus the g-factor of the ground state. The natural definition of the bright
X0 exciton g-factor is thus

gnatex = gnate − gnath = gc − gv. (6.10)

In the QD literature, however, the exciton g-factor is conventionally defined as
[NSTA04]

gconvex =
E(σ+)− E(σ−)

µBB

=
E(c ↓)− E(v ↓)− (E(c ↑)− E(v ↑))

µBB
= −gc + gv, (6.11)

where E(σ+) and E(σ−) denote the transition energies for the absorption of σ+

and σ− circularly polarized light with angular momentum projection l = +1 and
l = −1, respectively. The absorption processes relate to the two optical transitions
that preserve angular momentum: Firstly, a j = +3/2 heavy hole-like valence band
electron is excited by absorbing a σ− photon with l = −1 to a j = +1/2 s-like
conduction band electron. Secondly, a j = −3/2 heavy hole-like valence band electron
is excited by absorbing a σ+ photon with l = +1 to a j = −1/2 s-like conduction
band electron.

Moreover, the relation gconvex = gconve +gconvh is commonly used in the QD literature.
[SBM+92, BKF+99, AV09] This requires that

gconve = −gc and gconvh = +gv. (6.12)

Consistently, with the QD literature, we will use this conventional definition of the
electron, hole, and exciton g-factors throughout this work.
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6.2.3 Valence band g-factor anisotropy

There are two Luttinger parameters that directly contribute to the Zeeman splitting
of the Γ8v valence bands. [Lut56] These parameters κL and qL correspond to the two
independent invariants of the Γ8v Hamiltonian that are first order in B. [TRR79]
Previous work has only focused on the role of κL in the magnetic response. [AV09]
Although values for qL are small, it contributes to the heavy hole g-factor with a large
prefactor of 13.5. This immediately results from the Γ8v Hamiltonian. [Lut56, Win03]
For B‖[001] and equivalent directions, the inspection of this Hamiltonian yields

gHH = −6κL − 27

2
qL. (6.13)

In the literature, values of qL range from 0.04 [Law71] to 0.39 [Win03] for InAs. The
contribution to the heavy hole g-factor is thus −0.54 to −5.3.

Note that a high value for qL of 0.39 in InAs appears implausible, since the major
perturbative contribution to qL comes from the Γ8c and Γ7c valence bands. [Win03]
For InAs and GaAs this amounts to 0.048 and 0.032 by Eq. (2.68), respectively. We
use exactly these values in our calculation. They are consistent with Ref. [Law71],
where qL(GaAs) = qL(InAs) = 0.04. It appears that more accurate values for qL are
currently not available.

6.3 Results and discussion

6.3.1 E-Field dependence of the exciton g-factor

The dependence of gex on the electric field is summarized in Fig. 6.1. The calculated
exciton g-factor is strongly E-field-dependent and increases from 0.01 to 1.20 for the
field ranging from −60 kV/cm to 60 kV/cm. The calculated values are in excellent
agreement with the experimental data for two representative QDs labeled QDA and
QDB. Moreover, the perturbative result of the exciton g-factor is in remarkably good
agreement with the exact calculation over the whole range of the E-field.

Figures 6.2(left) and 6.2(right) show contour plots of the exciton transition en-
ergy Eex and the exciton g-factor gex, respectively. The exciton transition energy was
obtained at 7 kV/cm and 10 T and the Coulomb interaction was included perturba-
tively via Eq. (6.7). The exciton g-factor was calculated at 0 kV/cm and B = 10 T.
The measured values of these quantities for QDA are represented by the bold con-
tours on the figure, showing that they are reproduced in the D and xapexIn parameter
space probed. More importantly, both contours intersect at D = 24 ± 2 nm and
xapexIn = 0.35 ± 0.02, as indicated by the open circles on the panels of Fig. 6.2. We
note that we also calculated very different X0 g-factors for small (D ≤ 16 nm), InAs
rich (xapexIn ) dots, in very good agreement with previous experiments and calculations.
[NSTA04]
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Figure 6.1: Experimentally obtained excitonic g-factor as a function of the applied
electric field for two representative QDs, QDA and QDB, at 10 T (black and red
circles, respectively). The open and closed circles indicate photoluminescence and
photo current measurement, respectively. The solid line shows the result of the full
8-band k · p calculation at 10 T using the dot size and composition parameters
described in the manuscript. The dashed line shows the g-factor that was calculated
perturbatively from wave functions at 0 T using Eq. (2.48).
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Figure 6.2: The following properties were obtained by varying QD diameter and InAs
content in our calculations: (left) The X0 exciton energy (eV) at 7 kV/cm and 10 T,
and (right) the exciton g-factor at zero electric field and 10 T. The circles indicate
the QD parameters used in g-factor calculations (Fig. 6.1 and Fig. 6.3) and the bold
lines indicate experimentally measured values. The experimental values have been
slightly rounded for the sake of clarity.
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The electron and hole g-factors in self-assembled dots have been investigated
in previous theoretical works; primary contributions arising from (i) strain-induced
band mixing, [NST+05] (ii) modification of Roth’s formula by the effective band
gap [RLZ59, PF06] and (iii) orbital angular momentum quenching. [KIR98, LMR85,
PF06] Electric field-induced changes in the alloy overlap, i.e. the In-Ga content within
the envelope function, have been shown to be important mostly for very extended
electronic states in weakly confined dots. [PF06, NSTA04] However, while each of
the effects (i)-(iii) have been reported to contribute to gex, the microscopic origin
of the strong electrical gex tunability in our samples is not at all obvious. We now
demonstrate that the observed effects can be directly traced to strong electric field
induced changes of the hole g-factor (gh), the electron g-factor (ge) being much more
weakly influenced by the electric field.

The left panel of Fig. 6.3 shows representative calculations of gh, and ge for B =
10 T using the model dot parameters deduced from Fig. 6.2 (D = 24 nm and xapexIn =
0.35). Clearly, ge varies only weakly over the range of electric fields investigated
(ge = 0.56 to 0.63), while gh is much more strongly affected (gh = −0.55 to 0.63).
Further, gh crosses 0 at almost zero electric field.

6.3.2 Orbital angular momentum quenching

We now show that quenching of the orbital angular momentum in zero dimensional
structures (mechanism - (iii)) is primarily responsible for the observed electrical tun-
ability.
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Figure 6.3: (left) Calculated electron and hole g-factor as a function of the electric
field (solid line) at 10 T. The dashed line show results that were calculated per-
turbatively from wave functions at 0 T from Eq. (2.48). (right) HH ↑ component
of the predominantly HH ↑-like ground state (black) and HH ↓ component of the
predominantly HH ↓-like ground state (red) as a function of the electric field.
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Firstly, the left panel of Fig. 6.3 compares the calculated value of ge/h (solid lines)
and the contributions of the orbital angular momentum obtained from Eq. (2.48)
(dashed lines). The electric field tuning of gh is almost entirely due to the angular
momentum contribution. In comparison, gL plays a much less important role for the
electrical modification of ge.

It has been speculated that the change in alloy overlap may induce HH-LH mixing
that could be responsible for the observed strong electrical tunability, [KJK+10] since
the HH and LH g-factors differ strongly. However, we find that the electrically induced
mixing of the valence bands is weak.This is illustrated in the right panel of Fig. 6.3:
the change of the HH ↓-component of the predominantly HH ↓-like hole state and
HH ↑-component of the predominantly HH ↑-like hole state is almost unaffected
by the electric field. Unlike the hole g-factor, the magnitude of the dominant HH-
component does not vary monotonously over the range of the electric field. This
clearly indicates that HH-LH mixing cannot account for the g-factor tuning.
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Figure 6.4: (left) Calculated dependency of the electric tuning of ge, gh and gex as a
function of In-concentration at the dot apex. The electric tuning is defined as g-factor
at 60 kV/cm minus g-factor at 0 kV/cm. (right) The electric g-factor tuning of gex as
defined above obtained by varying QD diameter and InAs content in our calculations.
The circle indicates the QD parameters used in g-factor calculations (Fig. 6.1 and
Fig. 6.3) and the bold lines indicate experimentally measured value.

Secondly, the left panel of Fig. 6.4 shows the g-factor tuning

∆ge/h = ge/h(60kV/cm)− ge/h(0kV/cm), (6.14)

obtained from our full calculation for 0.2 ≤ xapexIn ≤ 1.0. There is a clear maximum in
the tunability of gh for low In-concentrations at the dot apex (0.25 ≤ xapexIn ≤ 0.35).
In addition, the right panel of Fig. 6.4 shows the exciton g-factor tuning over a wide
range of dot diameter and In-content. This indicates that the tunability of the hole
g-factor also reduces with increasing diameter of the QDs.
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Figure 6.5: Sheet density of the hole wave function at zero electric field (left) and at
60 kV/cm (right) in the (010) plane. The bold line indicates the outline of the QD
through its center. The mean diameter of the wave function is given explicitly and
indicated by the horizontal line which is positioned vertically at the center of gravity
of the wave function.

There are two interfering contributions to the total angular momentum of the
electron and hole states: the angular momentum of the Bloch function and the angular
momentum of the envelope function. Since no field-dependent valence band mixing
is observed in our calculations, only the latter contributes to the field-dependent
angular momentum quenching of the hole ground state. In a qualitative picture, the
hole ground state is pushed to the apex of the dot for positive fields. This effectively
compresses the wave function laterally since the dot is narrowing towards its apex.
Because the dot diameter is comparable to the magnetic length, the cyclotron motion
of the hole and thus its angular motion is suppressed. Figure 6.5 shows the sheet
density of the hole wave function at zero electric field (left) and at 60 kV/cm (right)
in the (010) plane. The electric field clearly pushes the wave function to the apex of
the QD. This can be seen on hand of the horizontal line which indicates the mean
diameter of the wave function and is positions vertically at its center of gravity. The
lateral compression due to the electric field is also evident. Note that the angular
momentum contribution gL to the g-factor is negative for materials with positive
spin-orbit splitting. [Win03] Consequently, the suppression of the angular motion is
equivalent to the increase of the hole g-factor. The converse effect is observed for
negative fields. In this case, the hole wave function is pushed to the base of dot and
into the wetting layer, where it can extend laterally. On the other hand, the electric
field impacts the electron states only weakly due to their large kinetic energy. Hence,
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the suppression of angular momentum is much less effective.
Similarly, the electric field leads to no substantial change of the In:Ga alloy content

within the hole envelope function. We calculated that for xapexIn = 0.35 and D = 24
nm, the In-alloy overlap changes by ≈ 0.14% or ≈ −2.2% for the hole and electron,
respectively. This small change cannot significantly contribute to the observed electric
field tunability. In addition, note that the change in the alloy overlap impacts the
effective g-factor dominantly by inducing valence band mixing due to the position
dependence of the spin-orbit splitting. As shown before, there is no substantial
change in the valence band mixing.

Our calculations show weak electric tunability for conventional In-rich QDs: the
confining potential in such dots is much stronger for both electrons and holes com-
pared to the external electrostatic potential. The strongly bound ground states are
therefore nearly unaffected by the field.

The tunability also reduces for a very low In-concentration (≤ 0.25). In this case,
both the electron and the hole are weakly bound in the dot and leak into the wetting
layer. Even with the electric field increasing the hole state becomes only weakly
confined in the top of the dot. Therefore, the angular momentum does not reduce as
strongly as for slightly higher In-concentrations.

6.3.3 Universal single-qubit gate

It has been shown that the E-field dependence of the g-tensor of the hole ground state
can be exploited to realize single qubit gate operations in quantum dot molecules.
[AV09, REVP10] To manipulate the qubit represented by the spin of a hole in the
ground state, a constant magnetic field and a time-dependent microwave field are ap-
plied. The microwave field modulates the g-tensor and in turn controls its precession
in the static magnetic field. It has been shown that reliable universal single-qubit
operations based on this principle are technically feasible. [REVP10] Here, we show
that single QDs can provide a system with comparable potential.

To this end, we need to examine the complete g-tensor and its electric field depen-
dence. In C2v symmetry the g-tensor of the hole ground state has three independent

components, namely g
[001]
h , g

[110]
h , and g

[11̄0]
h where the superscript denotes the prin-

cipal axis to which the g-factor corresponds. We derived the principal axes and the
number of independent components from symmetry properties of symmetric rank-2-
tensors of the group C2v. [Nye85, BP74] This finding agrees with previous results for
quantum dot molecules with the same symmetry class. [AV09] The g-tensor reads

←→
G =


(
g

[110]
h + g

[11̄0]
h

)
/2

(
g

[110]
h − g[11̄0]

h

)
/2 0(

g
[110]
h − g[11̄0]

h

)
/2

(
g

[110]
h + g

[11̄0]
h

)
/2 0

0 0 g
[001]
h

 , (6.15)

in the Cartesian coordinate system spanned by the [100], [010], and [001] unit vectors.
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The spin precession vector is [PPF11]

Ω =
µB
~
←→
GB, (6.16)

where |Ω| is the angular precession frequency and Ω0 ≡ Ω/|Ω| is the precession axis.
Note that a magnetic field breaks the C2v symmetry of the system. This, in

general, leads to a magnetic field-dependent non-linear g-tensor. In the low field
limit, however, the C2v symmetry is lifted only weakly. The good agreement of the
g-factors obtained by the linear response theory (2.48) with the g-factors calculated
including the magnetic field up to 10 T indicates that the non-linear contributions
are small. It is shown in Ch. 7 that this is no longer the case for dots with a diameter
substantially larger than the magnetic length.

Figure 6.6: Calculated g-factor g
[110]
h (solid line) and g

[11̄0]
h (dashed line) of the hole

ground state as a function of the electric field for a magnetic field of 10 T along the
[110] and [11̄0] direction, respectively.

Figure 6.6 depicts the electric field dependence of the g-tensor components g
[110]
h

and g
[11̄0]
h of the hole ground state. The pronounced anisotropy between the two com-

ponents is due to the piezoelectric potential, which induces an additional quenching
of the g-factor in [11̄0] direction. The vertical electric field controls the overlap of
the hole ground state with the piezoelectric potential and in turn tunes the [11̄0]
g-factor. The piezoelectric potential is analogous to that of the truncated pyramidal
QDs discussed in Ch. 5. It is largest at the base of the QD and smallest at the apex.
The vertical electric field shifts the vertical position of the hole ground state and
thus controls the overlap with the piezoelectric potential. The [110] g-factor is tuned
by the vertical electric field analogously. However, our calculations indicate that the
ratio between tuning and the magnitude at zero electric field is much smaller for the
[110] g-factor than for the [11̄0] g-factor.
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It is convenient to use a polynomial fit of the g-factors for the further analysis. We
find that a quadratic fit accurately resembles the g-factors with a maximal absolute
error of about 10−4 in the electric field range of interest. The polynomial fits are

g̃
[110]
h (Fz) = 0.17951− 0.00115 F̃z + 7.12425× 10−6 F̃ 2

z , (6.17)

g̃
[11̄0]
h (Fz) = 0.02203− 0.00163 F̃z − 1.51404× 10−5 F̃ 2

z , (6.18)

g̃
[001]
h (Fz) = 0.00756 + 0.01075 F̃z − 1.43386× 10−6 F̃ 2

z , (6.19)

where F̃z is the magnitude of the vertical electric field Fz divided by the unit kV/cm.
We find in analogy to Ref. [REVP10] that the most promising setup for single

spin-qubit gate operations would be a low static magnetic field of about 10 mT in
the [111] direction and a vertically polarized microwave field ranging from −24 to
24 kV/cm. For this direction of the magnetic field, only the [001] and the [110]
g-factor contribute to the precession vector. In the electric field range of −24 to
24 kV/cm, the [001] g-factor ranges from −0.25 to 0.26 while the [110] g-factor is
almost constant and ranges from 0.21 to 0.16. At the extremal fields, the precession
axes are orthogonal and read

Ω0(Fz = −24 kV/cm) = (0.541, 0.541,−0.644)T , (6.20)

Ω0(Fz = +24 kV/cm) = (0.453, 0.453, 0.768)T . (6.21)

Two orthogonal precession axes offer the freedom required for universal single qubit
gate operations. [REVP10] The precession frequency ν = |Ω|/(2π) is linear in the
magnetic field and is of the order of 40 MHz for a field of 10 mT. Consequently, a
pulse shaping with a precision below 1/ν ≈ 25 ns is required. Note, however, that
a detailed study of an optimal control pulse sequence including spin lifetime and
spin decoherence in analogy to Ref. [REVP10] will be necessary to fully assess the
capability of this system to function as an universal single qubit gate.

6.4 Summary

In summary, we identified the microscopic origin of pronounced electrical tunability of
the exciton g-factor in composition engineered InGaAs/GaAs self-assembled QDs. We
demonstrated that the gex tunability is dominated by gh, ge contributing only weakly.
The electric field-induced perturbation of the hole wave function was shown to impact
upon gh principally via orbital angular momentum quenching, the HH-LH mixing and
the change of the In:Ga composition inside the wave function playing only a minor
role. The strength of the electrical tunability was shown to be strong only for dots
with a low In-alloy content. Our results provide significant scope for morphological
and structural tailoring self-assembled QDs to allow all electrical universal spin qubit
gates via the g-tensor modulation. [PPF08, REVP10] Moreover, we showed that
the simple perturbative method to compute g-factors without including the magnetic
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field in the Hamiltonian in Sec. 2.4 is in remarkable agreement with the fully detailed
non-perturbative method in the low field limit.



Chapter 7

Explanation of the non-linear
Zeeman splitting in large quantum
dots

7.1 Introduction

In this chapter, we predict and explain strong magnetic field-induced tuning of the
bright X0 exciton g-factor in large In-dilute InGaAs/GaAs self-assembled quantum
dots (QDs). By comparing experimental results with realistic eight-band k · p sim-
ulations performed using quantum dot size, shape and compositional information
obtained from cross-sectional scanning tunneling microscopy (X-STM), we identify
the origins of the magnetic field-dependence of the g-factor. Our results show that
magnetic fields influence the excitonic g-factor via a mechanism that differs funda-
mentally from the case of static electric fields that was examined in the previous
chapter. In particular, the combination of the rather dilute In-composition (x < 0.4)
and comparatively large lateral size of the dots (40 − 50 nm) is found to lead to
spin selective mixing of the heavy hole (HH) and light hole (LH) orbital states, the
strength of which varies with magnetic field. This gives rise to a quadratic ∝ B2

contribution to the Zeeman energy gap - a phenomenon previously observed only in
semiconductor quantum wells and super lattices. [SBM+92, WNS+93]

In the following, we give a brief summary of the sample growth and experimental
results from Ref. [JEK+12]. The non-linear Zeeman splitting was observed experi-
mentally for two different types of QDs. Both samples were produced using molec-
ular beam epitaxy under nominally identical growth conditions. The first sample
was grown utilizing the conventional Stranski-Krastanov growth, while in the sec-
ond was utilized the partially covered island (PCI) ”In-flushing” method. [FWA+99]
The QD layer nominally consisted of 8 ML of InxGa1−xAs with an In-content of
x = 0.50. The comparatively high growth temperature of 590 ◦C is expected to lead
to an average In-content lower than the nominal x = 0.50, due to the combined

103
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effects of In-desorption, [HH03b] interdiffusion with the GaAs matrix material and
In-segregation. [HH03a]

X-STM measurements of representative dots revealed that the QDs exhibit graded
In:Ga-profiles with a large diameter of 40 − 50 nm and a height of 4 − 8 nm and a
In-concentration in the apex of xapex = 0.3− 0.35, reducing to xmin = 0.22 near the
base of the dot. [JEK+12] These data provide the basis for the dot size, shape and
composition used in our calculations.

Experimental photoluminescence (PL) spectra are presented in Fig. 7.1 from
the neutral exciton X0 of four representative QDs from the non-flushed, as well
as from the flushed sample. The polarization-resolved PL spectra reveal a sub-
stantially different behavior of the Zeeman splitting with increasing magnetic field.
This can be clearly seen in Fig. 7.2 where the Zeeman energy, defined as ∆EZ =
E(σ+

det)−E(σ−det) = gexµBB, is plotted for the four dots presented in Fig. 7.1, as well
as for many other dots examined in Ref. [JEK+12]. Positive, negative as well as zero
excitonic Zeeman splittings were observed for different dots from the same samples.
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Figure 7.1: Experimentally measured polarization resolved photoluminescence of four
representative quantum dots from Ref. [JEK+12].

A striking feature of the Zeeman splittings presented in Fig. 7.2 is the non-linear
dependence of ∆EZ on the magnetic field – a magnetic field-dependent exciton g-
factor; gex = ge + gh = g0

ex + g1
exB. The best fit to the Zeeman splittings of QDA,

QDB, QDC and QDD was obtained using quadratic functions, as depicted by the
solid lines presented in Fig. 7.2. The solid lines for the other QDs interpolate the
experimental data. For all of the QDs investigated, the observed Zeeman splittings
for the negatively charged trion X−1 were identical to those of the corresponding
neutral excitons X0. Hence, the pronounced non-linear dependence of ∆EZ on B
can be attributed to a strongly magnetic field-dependent hole g-factor gh for QDs
with particular lateral size and In-composition profiles, as will be explained in detail
below.
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At this point, note that the observation of a non-linear Zeeman splitting is not di-
rectly correlated with the degrees of circular polarization DoP = (Iσ+−Iσ−)/(Iσ++Iσ−)
of the emission. This can be clearly seen by comparing the data recorded from QDC

and QDD presented in Fig. 7.1. Both of these dots exhibit similar behavior; a negative
Zeeman splitting that saturates at higher magnetic fields > 10 T. However, despite
the similarity in the observed behavior the two dots exhibit degrees of circular polar-
ization that are both very different from each other and magnetic field independent.
The dot QDC exhibits a rather low degree of circular polarization of 37± 1 % while
QDD has DoP of 87 ± 2 %, respectively. A large fraction of the dots investigated
(≥ 60 %) showed the expected circularly polarized transitions at elevated magnetic
field, regardless of the type of Zeeman splitting they exhibited. However, the low
degree of circular polarization for QDB and QDC is not in accord with theoretical
expectations and we believe that it arises from the experimental geometry used. For
example, Au-dielectric shadow mask apertures with a size close to the optical wave-
length in free space (≈ 1 µm) were used, the position of the dot under the aperture
is highly likely to influence the polarization of the emitted light into the far field.
[GBM+04] For any situation other than a dot located in the center of the aperture,
the reduction of the symmetry of the local dielectric environment may perturb the
polarization of the emitted light, leading to the observed complex behavior. Simi-
lar effects are well known for the emission of quantum dots in elliptical micropillars
[GGL+98] or, in an extreme case, the emission from semiconductor nanowires with
sub-wavelength lateral dimensions. [vWAK+09] Thus, it is difficult to draw quanti-
tative conclusions from the measured degree of circular polarization. In contrast, the
Zeeman splitting is a robust experimental quantity and we continue by exploring the
microscopic origins of the rich behavior exhibited in Figs 7.1 and 7.2.

More details on the growth process and on the measurements are published in
Ref. [JEK+12].

7.2 Model

To understand the microscopic origin of the observed non-linear Zeeman splitting we
performed three-dimensional electronic structure calculations using the eight-band
k · p envelope function approximation. In order to include the B-field we used the
gauge-invariant SAFE method that accurately accounts for valence band couplings.
Strain fields were included using continuum elasticity theory and their impact on the
electronic structure was fully taken into account via deformation potentials and the
linear piezoelectric effect. [SGB99] As mentioned before, the exchange interaction is
expected to be of minor importance for the neutral exciton for large QDs. [BOS+02]
The direct Coulomb interaction was found to have a negligible influence on the exciton
g-factor and is therefore also neglected in our simulations.

To obtain quantitative results for the X0 g-factor, the eight-band k ·p-model was
employed. We modeled our QDs as having a truncated lens shape with a diameter
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Figure 7.2: Experimentally measured Zeeman splitting of the neutral exciton in sev-
eral QDs grown without (left) and with the partially covered island flushing technique
(right) from Ref. [JEK+12].

varying from D = 25−50 nm, a height of 4 nm above the wetting layer (WL) and an
inverse trumpet-like In-compositional profile (5.1) with ρ0 = 0.3 nm and z0 = 1.5 nm.
The In-concentration of the InxGa1−xAs alloy was taken to be xmin = 0.2 at the
base and side of the dot increasing to xapex = 0.4 − 0.5 at the dot apex. These
parameters are consistent with the results of X-STM measurements, from which we
also determined the thickness and In-content of the wetting layer to be 2 nm and
xWL = 0.18, respectively. [KCB+10]

7.3 Results and discussion

7.3.1 Non-linear Zeeman splitting

A weak non-linear dependence of the electron Zeeman splitting on the magnetic field
was first reported for GaAs-AlGaAs quantum wells and super lattices subject to
very high magnetic fields. [DKW88] Similar quadratic magnetic field dependencies
of the hole Zeeman splitting have been reported for GaAs-InGaAs superlattices and
quantum wells and attributed to a magnetic field-induced mixing of HH and LH
states. [WNS+93, THW95, KRBF01]

For bulk semiconductors in a magnetic field, the analytic solution of the eight-
band k · p Hamiltonian in the axial approximation reveals that the components of
the envelope function resemble Landau Levels. [PB66] Further, a B-field-dependent
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mixing of the valence bands is observed which accounts for the non-linear Zeeman
splitting. In quantum wells, an analytic solution is not possible. However, a pertur-
bative approach also indicates a non-linear Zeeman splitting that is caused by valence
band mixing. [KRBF01] This approach is based on a factorization of the envelope
functions into quantum well envelope functions in the vertical and Landau Levels in
the lateral direction. [KRBF01] The HH and LH components of the envelope func-
tion predominantly correspond to a specific Landau Level and the coupling between
the the HH and LH bands is found to be proportional to the raising and lowering
operator of the Landau Levels.

To illustrate the essential effects, we consider the action of the magnetic field on
the four band Γ8v Hamiltonian only. This Hamiltonian represents the interaction of
HH and LH bands, whereas all other bands enter only via the Luttinger parameters
γL1 , γL2 , γL3 , κL, and qL. In the following, we drop the superscript L. The Γ8v

Hamiltonian in the presence of a magnetic field B along the [001] direction has been
given in Ref. [TRR79]. We split this Hamiltonian in into the magnetically induced
inter-band Hamiltonian

Ĥinterband = µBB
[
4γ3({J3J+}â+ {J3J−}a†)λk̂z + (γ2 + γ3)(J2

+â
2 + J2

−â
† 2)

+(γ2 − γ3)(J2
+â
† 2 + J2

−a
2)
]
, (7.1)

and the diagonal intra-band Hamiltonian

Ĥintraband = µBB
[
−2γ114

(
â†â+ 1

2
+ 1

2
(λk̂z)

2
)

−2γ2

(
J2
z − 5

4
14

) (
â†â+ 1

2
− (λk̂z)

2
)
−κJz − qJ3

z

]
. (7.2)

Here, J+ = Jx + iJy and J− = Jx − iJy are the raising and lowering operators of
3/2-spin of the Γ8 representation, respectively. The k-operator along [001] is labeled
k̂z. Consistently with Ref. [SH74], the raising and lowering operators of the in-plane
Landau Levels are defined as

â† =
λ√
2

(K̂x + iK̂y) and â =
λ√
2

(K̂x − iK̂y), (7.3)

respectively, with the gauge covariant in-plane k-operators K̂x = k̂x + (e/~)Ax and
K̂y = k̂y+(e/~)Ay for the vector potential A and the magnetic length λ =

√
~/(eB).

With this definition, the Landau quantum number N (= 0, 1, 2, . . .) corresponding to
the eigenvalues of â†â coincides with the angular momentum projection of the Landau
oscillator state. [SH74] Note that in contrast to bulk and quantum wells, there is
no second “good” Landau quantum number due to the lack of lateral translation
symmetry in the dots.

We continue with the discussion of the qualitative implications of the magnetically
induced band mixing resulting from Eq. (7.1) for the predominantly HH-like ground
states in quantum wells. To this end we use the factorization approach of the envelope
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functions into vertical quantum well states and lateral Landau Levels. [KRBF01] We
denote the basis states as |N, nz,mj〉, where N is the Landau quantum number, nz
the index on the quantum well state and mj the angular momentum project of the
Bloch function.

The HH ↑- and HH ↓-like ground state are predominantly composed of the func-
tions |0, 0, 3

2
〉 and |0, 0,−3

2
〉, respectively. The magnetic field induces a coupling of

the HH ↑ state |0, 0, 3
2
〉 to the LH ↑ state |1, 1, 1

2
〉 and to the LH ↓ state |2, 0,−1

2
〉.

The strength of this coupling is proportional to γ3k̂z
√
B and (γ2 + γ3)B for the LH ↑

and LH ↓ sub-bands, respectively. This B-field-dependent mixing causes the non-
linear Zeeman splitting because the response of the various heavy hole and light hole
components to the magnetic field given by Eq. (7.2) is vastly different.

On the other hand, since â|0, 0,−3
2
〉 = 0, the HH ↓ state |0, 0,−3

2
〉 couples only to

the LH ↑ state |2, 0,+1
2
〉 via an interaction with a strength proportional to (γ2−γ3)B.

Since γ2 ≈ γ3 for InxGa1−xAs alloys, [VMRM01] the latter coupling is normally neg-
ligible and, consequently, the HH ↓ ground state has an almost pure HH ↓ character,
independent of the magnetic field.

Next, we discuss how these results from quantum wells relate to the quantum dots
examined in this work. It was found that the coupling of the HH ↑ ground state to the
light hole bands leads to a HH g-factor that varies linearly with the square of the in-
plane wave vector, i.e. gh ∝ k2

‖. [KRBF01] For quantum well Landau levels, k2
‖ itself

varies linearly with magnetic field leading to the experimentally observed quadratic
Zeeman splitting. On the other hand, in small, strongly confined quantum dots k2

‖
varies with ∝ 1/D2 where D is the dot diameter. As a result, one would expect
that the hole g-factor in strongly confined dots (i.e. small D) should be unaffected
by the magnetic field. These qualitative considerations indicate that the presently
studied, large QDs with dilute In-composition produce effects that fall in a regime
between the expectations for quantum wells (gh = g0

h + g1
hB) and quantum dots (gh

independent of B). We continue by developing these ideas quantitatively to explain
the experimental observations.

The leftmost panel of Fig. 7.3 shows the calculated exciton Zeeman spin splitting
as a function of the magnetic field for three model dots having different size and
In-composition consistent with the range obtained from our X-STM measurements.
These representative QDs have been chosen in order to reproduce the generic be-
havior of QDA, QDB, and QDC, representing the full range of behaviors observed in
experiment. The In-concentration decreases from xapex = 0.50 to xapex = 0.40, the
data labeled (i) to (iii) in Fig. 7.3, while the lateral size is increased from 25 nm (i)
to 50 nm (iii) in order to reproduce the experimentally observed range of exciton
transition energies (1310− 1365 meV). The curve labeled (i) in the leftmost panel of
Fig. 7.3 shows an almost purely linear Zeeman splitting (B-field independent g-factor)
while (iii) exhibits a clear quadratic dependence. In comparison, the model QD (ii)
exhibits a behavior that is intermediate between the linear and quadratic regimes.
The quadratic dependence of the exciton Zeeman splitting stems entirely from the
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Figure 7.3: (left) Calculated Zeeman spin splitting of the neutral exciton in three
QDs with the same height of 6 nm but different diameter and In-concentration at the
apex xapex as a function of the magnetic field: (i) 25 nm diameter and xapex = 0.50,
(ii) 45 nm diameter and xapex = 0.45, (iii) 50 nm diameter and xapex = 0.40. (right)
Calculated heavy hole character of the lowest hole orbital levels having spin-up HH ↑
and spin-down HH ↓ character, respectively.
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HH-like groundstate of the valence band. For all QDs presented in Fig. 7.3 (i) to (iii),
the valence band Zeeman splitting varies quadratically with magnetic field, namely,

∆Eh
Z = µBg

0
hB + µBg

1
hB

2, (7.4)

where the B-field is applied along the growth direction, µB is the Bohr magneton and,
g0
h and g1

h are the linear and quadratic components of the hole g-factor, respectively.

g0
e + g0

h g1
h (T−1)

QDA 0.58± 0.02 0.016± 0.002
QDB −0.19± 0.03 0.028± 0.002
QDC −0.59± 0.01 0.026± 0.001
QDD −0.89± 0.03 0.032± 0.002

Table 7.1: Linear (g0
e + g0

h) and quadratic (g1
h) components of the experimentally

observed exciton g-factor for QDA, QDB, QDC and QDD presented in Figs. 7.1 and
7.2.

g0
e + g0

h g1
h (T−1)

(a) 0.91 0.004
(b) −0.13 0.017
(c) −0.50 0.026

Table 7.2: Linear (g0
e + g0

h) and quadratic (g1
h) components of the calculated exciton

g-factors (a)-(c) in Fig. 7.2.

By fitting quadratic function to the experimentally observed Zeeman splittings in
Fig. 7.2 for QDA to QDD, we extracted both the linear (g0

e + g0
h) and quadratic (g1

h)
components of the exciton g-factor. The results of this analysis are presented in Ta-
ble 7.1. Our calculation yield perfectly quadratic behavior summarized in Table 7.2.
In our calculation, we find the full range of almost linear to dominantly quadratic
behavior that was also observed in experiment.

The strong quadratic character of the hole Zeeman splitting arises from the com-
bination of the comparatively large diameter, small height and dilute In-content in
the dots investigated. Firstly, the dot diameter (D = 40− 50 nm) is larger than the
magnetic length over the entire range of magnetic fields of interest. Secondly, the low,
almost homogeneous In-concentration induces only a weak confinement potential in
the core of the QDs. As a result, the quantum states that are formed in the magnetic
field resemble somewhat 2D Landau levels and, consequently, the HH ground states
behave in a manner similar to what is known for quantum wells. Moreover, the small
dot height of 6 nm (including the wetting layer) introduces a strong field-induced
coupling of HH ↑ and LH ↑ states, as in narrow quantum wells. [THW95] The quan-
tum well-like dependence of the Zeeman spin splitting on magnetic field is especially
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pronounced for the large, In-dilute QD (iii) as illustrated in Fig. 7.3. The HH-like
ground state has only a weak LH admixture (< 6 %) at zero magnetic field that is
caused by the QD shape, In-Ga alloy profile and inhomogeneous strain fields. This
is illustrated quantitatively in the rightmost panel of Fig. 7.3 that shows the mag-
netic field dependence of the HH-like ground states. Unlike the HH ↑, the HH ↓-like
ground state effectively decouples from the LH bands as the magnetic field increases
and, thus, its LH character weakens at higher fields.

7.3.2 Degree of polarization

The observed B-field-induced HH-LH mixing discussed in the previous section has no
effect on the degree of circular polarization since a magnetic field applied along the
growth direction of the QDs does not lower the rotational symmetry of the Hamil-
tonian. This expectation was confirmed by the results of our calculations which
revealed negligible and magnetic field independent reduction of the degree of polar-
ization (≈ 10−7) for magnetic fields up to B = 15 T. This can be clearly seen from the
calculated absorption spectra for σ± polarized light that are presented in Fig. 7.4a
for a lens-shaped model dot with diameter of 50 nm and inverse trumpet-like In-
composition with xapex = 0.40 and xmin = 0.20, chosen to represent a dot similar to
QDC or QDD in Figs 7.1 and 7.2. For clarity, the spectra are centered around the
mean energy of the two bright exciton ground states. The spectra clearly show that
the polarization of the QD levels is unaffected by the elevated external magnetic field,
in accord with our expectations.

The negligible loss of degree of polarization originates from terms in the Hamilto-
nian that lower the symmetry from C4 to C2 and from C4v to C2v with and without
external magnetic fields, respectively. A strong breaking of C4 symmetry has been ob-
served for elongated GaAs/AlGaAs [BAK+10] and CdTe-ZnTe [LBMM07] quantum
dots, as well as for GaAs/AlGaAs QDs which were grown along the reduced sym-
metry [111] direction. [SUG+11] In contrast, in symmetrically shaped InGaAs/GaAs
QDs grown on a [001] surface the primary symmetry breaking term stems from the
piezoelectric field as shown in Ch. 5. In the large, In-dilute QDs studied here, the
strain field is weak with almost axial symmetry and the piezoelectric field is negligi-
ble, especially in the center of the QD where the HH-like ground state is localized. In
C4 symmetry, the optical selection rules for circularly polarized light are strict. This
has been shown in detail for hole bands of bulk Ge in the presence of uniaxial strain
and magnetic fields. [SH74] The results are based on symmetry arguments alone and
can readily be applied to QDs with the same symmetry class. Our calculations show
that, even a 2 : 1 elongation of the QDs in the plane leads only to an extremely
small reduction of the degree of polarization of the order of ∼ 10−3. This reduction
is so tiny due to the large size of our QDs: The ground state wave functions are
localized in the center of the QDs and shape anisotropy in the dot periphery has only
a very weak influence on the orbital states. A more intuitive picture is obtained for
full axial symmetry which is almost realized in near perfect lens-shaped QDs since
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Figure 7.4: (a) Polarization resolved ground state absorption spectra for a QD of
the type QDC/D as the magnetic field increases from 0− 15 T. (b) In-plane envelope
function probability density looking along the QD growth direction of the (i) HH ↑,
(ii) LH ↑, and (iii) LH ↓ component of the predominantly HH ↑ ground state for the
full Hamiltonian. The numbers in the lower right corner of each panel indicate the
total contribution to the wave function. (c) Probability density along the confinement
direction for quantum well Landau Levels corresponding in the axial approximation
to the components (b (i)-(iii)) of the full Hamiltonian.
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γ2 ≈ γ3. [LB70] In this case, the projection of total angular momentum mJ is a good
quantum number. Moreover, selection rules for σ± transitions are strict and become
∆mJ = ±1. If in addition the magnetic length is smaller than the QD radius, the
components of the QD ground states increasingly resemble combinations of Landau-
Levels with HH/LH-Bloch functions in the lateral directions. [Lut56, SH74] This
is realized for our QDs for magnetic fields above 5 T where the magnetic length is
λ =

√
~/(eB) . 11 nm. In the presence of a magnetic field the rotational symmetry

is preserved and only states having the same total angular momentum projection are
mixed.

The total angular momentum projection of the states mJ = mj + N is a com-
bination of the Landau oscillator state (N) and the angular momentum projection
mj of the Bloch function, namely ±3/2 and ±1/2 for heavy holes and light holes,
respectively.

Figure 7.4b (i)-(iii) and Fig. 7.4c (i)-(iii) compare the admixture of different band
spin states, namely HH ↑, LH ↑ and LH ↓, in the predominantly HH ↑-like ground
state wave function. In this comparison, we consider only the lateral wave function for
the sake of clarity. To a very good approximation, it is composed of |N,mj〉 = |0, 3

2
〉,

|1, 1
2
〉, and |2,−1

2
〉 states, each of which combine to produce mJ = 3/2. The HH ↑

component |0, 3
2
〉 and the LH ↑ component |1, 1

2
〉, shown in Figs 7.4b (i) and 7.4b (ii),

respectively, were obtained by detailed calculations and show good agreement with
the corresponding Landau Levels (Figs 7.4c (i) and 7.4c (ii)) in the axial approxima-
tion. The small LH ↓ component |2,−1

2
〉 (Fig. 7.4b (iii)) is affected substantially by

C4 symmetry terms in the Hamiltonian. However, it contributes only 1.9 % to the
total wave function and, as noted before, C4 symmetry is enough to guarantee full
polarization.

7.4 Summary

In summary, strongly magnetic field-dependent exciton g-factors were explained in
InGaAs/GaAs self-assembled QDs. The microscopic origin of non-linear Zeeman
splitting was accounted for by eight-band k ·p simulations using realistic parameters
(size and In-composition) that were directly extracted from X-STM measurements.
The combined effect of dilute In-composition and relatively large lateral size was
shown to result in strong field-induced mixing of the HH-LH orbital states in high
magnetic fields. This mixing manifests itself as a quadratic variation of the hole
Zeeman splitting on the external magnetic field. Similar effects are negligible for the
electron and have previously been observed only in thin two dimensional systems.
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Appendix A

Continuum limit of the
gauge-invariant SAFE method

Let Ω be the subspace of R3 that contains the grid. In the following, we derive
a global error bound ‖Dµ(FC − F̃C h)‖max for the gauge covariant derivative Dµ =
∂µ + i(e/~)Aµ in the direction µ in a constant magnetic field with |B| = B. Here,
FC ≡ f is the component of the normalized envelope function. In addition,

F̃C h ≡ f̃h =
∑
RI ,K

aCK,RJ
URJ

vCK,RI
, (A.1)

is its approximation in the basis {ṽCK,RI
} of gauge-invariant symmetry adapted finite

elements given in Eq. (3.23). The aCK,RJ
are the expansion coefficients of the envelope

function. For simplicity, we derive the result for the maximum norm since convergence
with this norm implies convergence in L2(Ω). In the following, we set e/~ = 1 and
denote the component functions FC as f for the sake of simplicity.

First, the global error clearly equals the maximum error within the individual grid
cells,

‖Dµ(f − f̃h)‖max = max
RI

‖Dµ(f − f̃h)‖max,ΩI , (A.2)

where ΩI denotes the cell of grid point RI . In the following, the norm ‖ · ‖ always
indicates the maximum norm on ΩI . Assume the error to be maximal within grid
cell ΩI for some index I. Since the error is independent of the particular gauge, we
choose a symmetric Coulomb gauge centered at RI ,

A(r) =
1

2
B× (r−RI). (A.3)

This choice guarantees that the vector potential A is bound by ‖A‖ < B h within the
cell ΩI . Next, the error on the grid cell ΩI can be split into the common interpolation
error of finite elements δI and the error δB because the phase function URI

deviates
from unity on the finite grid. This gives

‖Dµ(f − f̃h)‖ ≤ δI + δB. (A.4)
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The finite element interpolation error is given by [BS08]

δI = ‖Dµ(f − fh)‖ ∝ hm‖∂m+1
µ f‖. (A.5)

Here, fh is the approximate envelope function for the gauge in Eq. (A.3) without a
phase function and we have used the boundedness of A. The polynomial order m
of the basis functions is 2 or 3 depending on the direction µ and the component C
leading to an error order of O(h2) and O(h3), respectively. The error δB due to the
phase function is given by

δB = ‖Dµ(fh − f̃h)‖
= ‖(∂µ + iAµ)

∑
RJ ,K

aCK,RJ
(1− URJ

)vCK,RJ
‖

≤
∑
RJ ,K

|aCK,RJ
|‖(∂µ + iAµ)(1− URJ

)vCK,RJ
‖

≤ Namax max
K,RJ

‖(∂µ + iAµ)(1− URJ
)vCK,RJ

‖, (A.6)

where we used the fact that only a small number N of basis functions {vCK,RJ
} is non-

zero within the grid cell ΩI . The constant amax is the maximum of the moduli of the
expansion coefficients which are bounded due to the normalization of the envelope
function. The maximum on the right hand side of Eq. (A.6) can be further estimated
as

‖(∂µ + iAµ)(1− URJ
)vCK,RJ

‖
= ‖(∂µ − URJ

∂µ + iAµ − iURJ
AlocJ,µ)vCK,RJ

‖
≤ ‖1− URJ

‖‖∂µvCK,RJ
‖

+‖Aµ − URJ
AlocJ,µ‖‖vCK,RJ

‖, (A.7)

where we have used Eq. (3.25). Since the distance of the grid point RJ to the center
of the gauge RI is |RJ −RI | ≤

√
3h in the phase function URJ

, the bounds of the
individual terms in the gauge Eq. (A.3) are obtained by means of Taylor expansions
of URJ

and AlocJ,µ around RI as

‖1− URJ
‖ ∝ B h2, (A.8)

‖∂µvCK,RJ
‖ ∝ 1

h
, (A.9)

‖Aµ − URJ
AlocJ,µ‖ ∝ B h, (A.10)

‖vCK,RJ
‖ ∝ 1. (A.11)

Consequently, the error δB and hence the overall error is of order O(B h).



Appendix B

Angular momentum matrices of Td

Here, we summarize the matrices used to construct the Hamiltonian in the angular
momentum basis. [BP74, Win03] The common Pauli matrices are denoted as σx,
σy, and σz. They present the angular momentum matrices of the Γ6c, Γ7c and Γ7v

representations. The matrices Jx, Jy, and Jz are the angular momentum matrices of
the Γ8c and Γ8v representations. The Ui and Ti are coupling matrices of the Γ8c and
Γ8v representations with the Γ6c, Γ7c and Γ7v representations.

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, 12 =

(
1 0
0 1

)
,

Jx = 1
2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

 , Jy = i
2


0 −

√
3 0 0√

3 0 −2 0

0 2 0 −
√

3

0 0
√

3 0

 ,

Jz = 1
2


3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

 , 14 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

Tx = 1
3
√

2

(
−
√

3 0 1 0

0 −1 0
√

3

)
, Ty = −i

3
√

2

( √
3 0 1 0

0 1 0
√

3

)
,

Tz =
√

2
3

(
0 1 0 0
0 0 1 0

)
,

Txx = 1
3
√

2

(
0 −1 0

√
3

−
√

3 0 1 0

)
, Tyy = 1

3
√

2

(
0 −1 0 −

√
3√

3 0 1 0

)
,

Tzz =
√

2
3

(
0 1 0 0
0 0 −1 0

)
,
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Tyz = i
2
√

6

(
−1 0 −

√
3 0

0
√

3 0 1

)
, Tzx = 1

2
√

6

(
−1 0

√
3 0

0
√

3 0 −1

)
,

Txy = i√
6

(
0 0 0 −1
−1 0 0 0

)
,

(Ui) = (Ti)
H , (Uij) = (Tij)

H .



Appendix C

Material parameters of InGaAs

In this appendix we give the material parameters we used in our calculations. Note
that all bowing parameters are from Ref. [VMRM01]. The volume deformation po-
tentials ac for the Γ6c conduction band are calculated by ac = av + a0 where av is
the Γ8v valence band deformation potential and a0 is the value of the deformation
potential of the Γ8v−−Γ6c band gap both tabulated in Ref. [WZ99]. The Γv5D valence
band offsets EV BO are calculated from the Γv8 valence band offsets ∆Ev in [WZ98] by
EV BO = ∆Ev −∆0/3 with the spin-orbit splitting ∆0 from Ref. [Win03].

The valence band g-factor anisotropy qL is calculated from the contribution of the
Γ7c and Γ8c by Eq. (2.68) with q′ = 0 since values in the literature are inconsistent.
[Win03, Law71] Material parameters from Ref. [Win03] were used in this calculation.

Parameter InAs GaAs InGaAs bowing [VMRM01]

a (A) [VMRM01] 6.0583 5.65325 –
aT (A/K) [VMRM01] 2.74e− 5 3.88e− 5 –
C11 (GPa) [VMRM01] 83.29 122.1 –
C12 (GPa) [VMRM01] 45.26 56.6 –
C44 (GPa) [VMRM01] 39.59 60.0 –
e14 (C/m2) [dGBR89] −0.044 −0.160 –
eq14 (C/m2) [BWPB11] −0.115 −0.238 –
Bq

114 (C/m2) [BWPB11] −0.6 −0.4 –
Bq

124 (C/m2) [BWPB11] −4.1 −3.8 –
Bq

156 (C/m2) [BWPB11] 0.2 −0.7 –
εr [MSH82] 15.15 12.91 –
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Parameter InAs GaAs InGaAs bowing [VMRM01]

E0 (eV) [VMRM01] 0.417 1.519 0.477
α (meV/K) [VMRM01] 0.276 0.5405 –
β (K) [VMRM01] 93 204 –
EV BO (eV) [WZ98] 1.390 1.346 −0.38
E ′0 (eV) [Win03] 4.390 4.488 –
∆0 (eV) [Win03] 0.38 0.341 0.15
∆′0 (eV) [Win03] 0.240 0.171 –
∆− (eV) [Win03] 0 −0.05 –
P (eVnm) [Win03] 0.9197 1.0493 1

P ′ (eVnm) [Win03] 0.0873 0.4780 –
Q (eVnm) [Win03] 0.8331 0.8165 –
mc [Win03] 0.0229 0.0665 –
gc [Win03] −14.9 −0.44 –
γL1 [Win03] 20.40 6.85 –
γL2 [Win03] 8.30 2.10 –
γL3 [Win03] 9.10 2.90 –
κL [KKY01] 7.68 1.2 –
qL 0.048 0.032 –
Ck (eVnm) [Win03] −0.00112 −0.00034 –
a1 (eV) [WZ99] −6.66 −9.36 2.61
a2 (eV) [WZ99] −1.00 −1.21 –
b (eV) [VMRM01] −1.8 −2.0 –
d (eV) [VMRM01] −3.6 −4.8 –

Table C.1: Material parameters of InAs and GaAs and bowing parameters of InGaAs
alloys.



Appendix D

Term rewriting system

The 14-band Hamiltonian has 14 ∗ 14 = 196 matrix entries, of which about 100 are
not empty. Each entry may contain up to 16 different combinations of differential op-
erators 1, a∂z, . . . , a∂z, ∂xa, . . . , ∂za, ∂xa∂x, ∂xa∂y, . . . , ∂za∂z with parameter functions
a. The 14-band Hamiltonian thus has in about 500 terms at the various entries of
various differential order for the coordinate axes along directions of high symmetry.
The number increases above 2000 for arbitrary coordinate axes.

Hence, a term-by-term setup of the Hamiltonian would be highly error prone.
Moreover, most standard references contain mistypings, e.g. Tyz in Ref. [Win03].

We implement a simple automated term rewriting system (TRS) to

• construct the Hamiltonian from concise matrix expressions,

• perform rotations of the coordinate system,

• test the Hamiltonian for invariance under symmetry operations,

• optimize the discretization process by computing equivalent matrix elements
only once.

D.1 Definition of the TRS

We assume that all variables commute. We keep track of operator order by using k̂†

and ∇† for differential operators left of the parameter function

A(r)k̂†i k̂j = k̂jA(r)k̂†i = all perm. ≡ k̂i

(
A(r)k̂j

)
. (D.1)

The TRS is based on the following constructs. The atomic terms are real numbers,
(complex) scalar variables, and functions. All other terms are compositions of these
atomic terms. A special case of functions are constants which are represented by
functions without arguments. Table D.1 summarizes all further functions used in the
TRS. Products of scalars or of a matrix and a scalar are interpreted as commuting
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products, whereas products of matrices are interpreted as non-commuting matrix
products.

Function Symbol Description

I() the imaginary unit
Sum(a, b, c, . . .) the sum a+ b+ c+ . . .
Product(a, b, c, . . .) the product a · b · c · . . .

Matrix(n,m, a1,1, a1,2, . . . , an,m) the (n,m)-matrix

 a1,1 a1,2 . . .
...

. . . . . .

. . . . . . an,m


KroneckerProduct(A,B) the Kronecker product A×B
Conjugate(a) the conjugate a∗

Transpose(a) the transpose aT

Table D.1: Functions used in the TRS. The function arguments are indicated in
brackets after the function symbols. a, b, c, ai,j are arbitrary terms, n and m are
numbers and A and B are matrices.

Terms are simplified with the following reduction rules. These rules are applied re-
cursively and repeatedly to a term until no more rules apply. After the simplification,
a term is in the form of a scalar or a matrix of fully expanded sums of products.

In the following, we summarized the simplification rules. Here, li denotes a list
of terms, and the binary operation “,” concatenates two lists. A list can also be
empty. For the sake of conciseness, . . . indicate that a pattern applies analogously to
subsequent terms of a list of arguments. Further, a, b, and c are arbitrary terms, A,
and B are matrices and p, q, and r are real numbers. An n-fold product of a term a
is denoted by an. The special function Num indicates that the operation enclosed in
its argument is evaluated explicitly by the term rewriting system (Num(Sum(2, 3)) =
Num(2 + 3) = 5). Variables are denotes by Var(name, conj) with their name “name”
and a boolean “conj” that indicates whether they are conjugate.

Unify Sum: Sum(l1, Sum(l2), l3)→ Sum(l1, l2, l3).

Unify Product: Product(l1,Product(l2), l3)→ Product(l1, l2, l3).

Expand: Apply the distributive law to fully expand products of sums.
Product(l1, Sum(a, b, . . .), l2) → Sum(Product(l1, a, l2),Product(l1, b, l2), . . .).

Normalize Product: Simplify products and sort factors.

1. Contract n-fold product of imaginary unit I().

I()n → I()nmod 2

{
−1 ifnmod 4 ≥ 2
1 otherwise



D.1. DEFINITION OF THE TRS 125

2. Contract all numbers.

Product(l1, p, l2, q, l3)→ Product(Num(pq . . .), l1, l2, l3).

If the resulting number is 1 and is not the only factor in product, remove
the number from the argument list.

3. If a product has a single argument, replace the product by its argument.

Product(a)→ a

4. If a product contains the number p = 0 and all factors are scalar, replace
the product by 0.

Product(l1, p, l2)→ 0

5. Multiply matrices and draw all scalar factors into the resulting matrix.
Here, without restriction, l1 and l2 are lists of scalar expressions and nA
and mA denote the number of rows and columns of A, respectively.

Product(l1, A, l2, B, . . .) = Matrix(nA,mB,Product(l1, l2, Sum(

Product(A1,1, B1,1), . . . ,

Product(A1,mA , BmA,1), . . .)))

6. Sort all factors in the following order: Number, I, Constants (sorted by
Name), conjugate Variables (sorted by name), non-conjugate Variables
(sorted by name), Functions (sorted by name then recursively by argument
from back to front)

Normalize Sum: Simplify sums and contract summands that only differ by a num-
ber prefactor.

1. Remove summands p = 0.

Sum(l1, p, l2, . . .)→ Sum(l1, l2, . . .)

2. If only one summand remains, replace the sum by that summand.

Sum(a)→ a

3. If no summands remain, replace the sum by zero.

Sum()→ 0

4. Contract all scalar summands that differ by a number prefactor only.

Sum(Product(p, l1),Product(q, l1), . . .) = Sum(Product(Num(p, q), l1), . . .)
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Sum Matrices: Sum matrices in an element-wise sum. The formal description is
not shown here because it is straightforward but result in a cumbersome formal
expression.

Flatten Matrices: Flatten a matrix of matrices in a matrix of scalars. Again, the
formal notation is straightforward but cumbersome. Hence, we give the rule in
matrix notation only.

 A B . . .
C D . . .
...

...
. . .

→


A1,1 A1,2 . . . B1,1 B1,2 . . .
A2,1 A2,2 . . . B2,1 B2,2 . . .

...
...

...
...

...
...

C1,1 C1,2 . . . D1,1 D1,2 . . .
C2,1 C2,2 . . . D2,1 D2,2 . . .

...
...

...
...

...
. . .


Apply Conjugate: Apply the conjugate function recursively.

1. Conjugate(Var(name, conj))→ Var(name, not conj).

2. Conjugate(Conjugate(a))→ a.

3. Conjugate(p)→ p.

4. Conjugate(I())→ Product(−1, I()).

5. For other functions Func do
Conjugate(Func(a, b, . . .))→ Func(Conjugate(a),Conjugate(b), . . . ).
Note that this is valid form all functions we consider here.

Apply Transpose: Apply the transpose function.

1. Transpose(Var(v, conj))→ Var(v, conj)

2. Transpose(Transpose(t))→ t

3. Transpose(p)→ p

4. Transpose(I())→ I()

5. Transpose(Matrix(n,m, l1))→ Matrix(m,n, l2), where l2 is the transposed
of l1. To this end all entries are transposed recursively.

6. Transpose(Sum(a, . . .))→ Sum(Transpose(a), . . .),
and
Transpose(Product(a, . . .))→ Product(. . . ,Transpose(a)).

Apply Kronecker Product: Apply the Kronecker product.

1. KroneckerProduct(A, b) = Product(A, b),
and KroneckerProduct(a,B) = Product(a,B), if a and b are scalars, re-
spectively.
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2. KroneckerProduct(A,B) = C where C is Kronecker Product of A and B.

Apply Conjugate Variable: If a variable is on the list of real variables,
Var(name, true) = Var(name, false).

The result of this simplification process is fully expanded and readily serves as
an input to the discretization methods. Applied to a scalar valued term, these rules
yield a scalar that consists of a sum of products of atomic terms only. Applied to a
matrix valued term, a matrix of scalar with the above property results.

D.2 Application of the TRS

We want to briefly illustrate an application of the TRS to point out its usefulness.
As an example we show the original source code used to setup the Γ6c-Γ6c Hamil-

tonian that already contains 17 entries of different differential operator combinations.

// sx, sy, sz: Pauli Matrices

// s0: 2*2 Identity

// I: imaginary unit

// Bx, By, Bz: B-Field

// g0: free-electron g-factor

// uS = hbar*hbar / (2 m0)

// muB = e*hbar / (2 m0)

// k2 = kxdag kx + kydag ky + kzdag kz

// kyz_com = kydag kz - kzdag ky; kzx_com = kzdag kx - kxdag kz;

// kxy_com = kxdag ky - kydag kx

// E6c: conduction band offset

// gstar: effective conduction band g-factor

// A: effective conduction band dispersion parameter

// G6c = G1Dc

H6c6c = E6c * s0

+ uS * A * k2 * s0

+ muB * (g0 / 2) * (sx * Bx + sy * By + sz * Bz)

+ uS * ((gstar - g0) / 2) * I

* (sx * kyz_com + sy * kzx_com + sz * kxy_com);

Especially the last term of the Hamiltonian is cumbersome to setup entry by entry.
The combinations of various signs and potencies of the imaginary unit is error prone.
With the help of the TRS it can be clearly arranged and expressed in a concise way.

The intra-band Hamiltonian of the Γv5D and the Γ7v + Γ8v representation contains
even more terms and a concise way to setup this Hamiltonian is highly important to
avoid mistyping errors.
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D.3 Optimization of the discretization

In higher order finite elements methods (polynomial degree> 1), the discretization
often takes comparable time to the numerical solutions of the resulting matrix prob-
lem. We can thus save computational time substantially by integrating each distinct
term in the Hamiltonian only once. If constant prefactors are extracted from each
term, even more terms coincide. The total number of terms that is distinct up to a
prefactor may be only a fifth of the total number of terms in the Hamiltonian.

First, for all terms in all entries Hij of the Hamiltonian matrix extract numerical
prefactors and imaginary units. For each distinct remaining term t′, safe all extracted
prefactor z and position (i, j) of the according term in a set {(z, i, j)}. Second, dis-
cretize each t′ and write the result times z in the block (i, j) of the discrete Hamilton
matrix for each element in the according set {(z, i, j)}. This is illustrated in the
following algorithm:

1. do for each term t in all entries (i,j) of H

1.1 extract prefactor z, denote remaining term as t’

1.2 try to find t’ in T

1.3 if found, update entry: T(t’) -> T(t’) & (z,i,j)

1.4 else add new entry: T -> T & (t’, (z,i,j))

2. do for each t’ in T

2.1 discretize t’

2.2 for all (z,i,j) in T(t’)

2.2.1 add result times z to final matrix at block (i,j)

Here, H denotes the (matrix) operator to discretize, T is a list of a terms. A set of
prefactors and indices T(t) = {(z, i, j)} is associated to each term t in T.
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