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Abstract

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite mission delivers data of the
Earth’s gravity field with unprecedented precision. With GOCE for the first time in history a gravity gradiometer
is used on board of a satellite for this purpose. Consequently, new processing strategies had to be developed for
the optimal exploitation of the new data type.

In this work the GOCE gradiometer data as well as the related processing strategies are analyzed, and further
developed.

First, the theoretical basis for gravitational gradiometry in space in general and specifically with GOCE is
discussed. The purpose of this part of the work is to introduce the reader to the subject of satellite gradiometry
which goes back for several decades, and to familiarize with the most important characteristics of the GOCE
mission and its sensor system, especially with the gradiometer.

In the second part the original gradiometer Level 1b processing as it has been performed during the nominal
mission phase by ESA’s Payload Data Segment (PDS) is analyzed in detail. A description of all important
processing steps, starting with the de-packeting of the Level 0 gradiometer data up to the Level 1b gravity
gradients is given. Simultaneously, related intermediate data are visualized for an example day, which allows
some first quality assessment of the GOCE data.

The third part is dedicated to the gradiometer calibration. The gradiometer calibration parameters can be
classified into two main types, the so-called quadratic factors and the ICMs (Inverse Calibration Matrices). The
physical origin of the imperfections and the different strategies for their determination and compensation, i.e. for
calibration, are discussed. The emphasis is on the determination of the ICMs. Here two main strategies exist.
The first one is the original method as implemented in ESA’s PDS. This method has also been implemented
at IAPG. The second one was invented by ESA (Daniel Lamarre). Its results are currently used in the official
Level 1b processing for calibrating the measured accelerations.

The fourth part contains data analysis in the time as well as in the frequency domain. Further quality assessment
is made for the gravity gradients and their components (angular rates and differences of accelerations) as well as
for the data from the three star sensors on board of GOCE. The development of the calibration parameters is
investigated, and some discrepancies with respect to pre-launch expectations are identified. Also the role of the
star sensors for the determination of the gradiometer calibration parameters is demonstrated.

In the fifth part alternative gradiometer processing strategies are developed and adapted for the use in PDS’
Level 1b processing. In total, four upgraded methods are introduced. These are the methods for the determination
of the angular rates and the attitude quaternions, the calibration of the accelerations and an additional strategy
for the combination of all available star sensor measurements.

Finally, the benefit of the four upgrades is analyzed at the level of gravity gradients as well as at the level of
gravity field solutions based on satellite gravity gradiometry data. The largest overall improvements are due to
the new method for angular rate reconstruction, mainly at the low to medium frequencies and at the harmonics
of the orbital revolution frequency. In addition, spurious artifacts in the gravity gradient Vyy, which are caused
by non-perfect common mode rejection, can be reduced significantly by the improved calibration approach. The
standard deviation of the gravity gradient tensor trace can be reduced by about 90 % for the frequencies below
the gradiometer measurement band (i.e. below 5 mHz) and by about 4 % within the measurement band (from 5
to 100 mHz). The cumulative geoid error and the cumulative gravity anomaly error, between degrees 20 and 150,
of satellite gravity gradiometry solutions based on 61 days of data are reduced by about 27 %. The gravity
field solutions based on satellite gravity gradiometry data are combined with GOCE GPS data. In this case,
the improvement due to the alternative Level 1b processing becomes much smaller, but is still observable. The
cumulative geoid error and the cumulative gravity anomaly error, between degrees 20 and 150, are reduced by
10 %.

Meanwhile, these upgrades have been implemented in the PDS Level 1b processor, and the data of the whole
GOCE mission are reprocessed.
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Zusammenfassung

Die Satellitenmission GOCE (Gravity field and steady-state Ocean Circulation Explorer) liefert Daten des Erd-
schwerefelds von bisher nicht verfügbarer Qualität. Mit GOCE kommt zum ersten Mal in der Geschichte ein
Schweregradiometer an Bord eines Satelliten zu diesem Zweck zum Einsatz. Folglich mussten neue Prozessierungs-
strategien entwickelt werden, die den neuen Datentyp optimal ausnutzen können.

In dieser Arbeit werden sowohl die GOCE Gradiometerdaten als auch die zugehörigen Prozessierungsstrategien
analysiert und weiterentwickelt.

Zunächst werden die theoretischen Grundlagen der Satellitengradiometrie im Allgemeinen und speziell für GOCE
diskutiert. In diesem Teil der Arbeit soll der Leser in den Fachbereich der Satellitengradiometrie, welcher einige
Dekaden zurückreicht, eingeführt werden und mit den wichtigsten Eigenschaften der GOCE-Mission, sowie dem
zugehörigen Sensorsystem, insbesondere mit dem Gradiometer vertraut gemacht werden.

Im zweiten Teil findet eine detaillierte Analyse der Level 1b Gradiometerprozessierung, wie sie ursprünglich von
ESA’s Payload Data Segment (PDS) durchgeführt wurde, statt. Alle wichtigen Prozessierungsschritte, anfangend
bei den Level 0 Gradiometerdaten bis hin zu den Level 1b Schweregradienten werden beschrieben. Gleichzeitig
werden die zugehörigen Zwischenprodukte jeweils beispielhaft für einen Tag graphisch dargestellt, was erste
Genauigkeitsabschätzungen der GOCE-Daten ermöglicht.

Der dritte Teil ist der Gradiometer-Kalibrierung gewidmet. Die Gradiometer-Kalibrationsparameter lassen sich in
zwei Typen unterteilen, die sogenannten quadratischen Faktoren und die inversen Kalibrationsmatrizen (ICMs).
Es findet eine Diskussion des physikalischen Ursprungs der Gradiometerfehler und der verschiedenen Strate-
gien für ihre Bestimmung und Kompensation, d.h. für die Kalibrierung statt. Das Hauptaugenmerk wird dabei
auf die Bestimmung der ICMs gelegt. Hierfür existierten zwei besonders wichtige Strategien. Die erste ist die
ursprüngliche Methode, welche in ESAs PDS eingebaut wurde. Diese Methode wurde auch am IAPG implemen-
tiert. Die Zweite wurde von ESA (Daniel Lamarre) entwickelt. Die zugehörigen Ergebnisse werden aktuell in der
offiziellen Level 1b-Prozessierung zur Kalibrierung der gemessenen Beschleunigungen verwendet.

Der vierte Teil enthält weiterführende Datenanalysen sowohl im Zeit- als auch im Frequenzbereich. Es werden
weitere Genauigkeitsabschätzungen gemacht, sowohl für die Schweregradienten und ihre Bestandteile (Winkel-
geschwindigkeiten und Beschleunigungsdifferenzen), als auch für die Daten der drei Sternsensoren an Bord von
GOCE. Die zeitliche Entwicklung der Kalibrationsparameter wird untersucht und Abweichungen von den Er-
wartungen, die es vor dem Satellitenstart gab, werden identifiziert. Ebenso wird die Rolle der Sternsensoren für
die Bestimmung der Gradiometer-Kalibrationsparameter aufgezeigt.

Im fünften Teil werden alternative Strategien zur Gradiometerprozessierung entwickelt und für den Gebrauch in
der Level 1b-Prozessierung des PDS angepasst. Insgesamt werden vier verbesserte Methoden vorgestellt. Diese
sind die Methoden zur Bestimmung der Winkelgeschwindigkeiten und der Lage-Quaternionen, die Kalibrierung
der Beschleunigungen und eine zusätzliche Methode für die Kombination aller gleichzeitig verfügbarer Sternsen-
sormessungen.

Schließlich wird der Nutzen der vier Modifikationen sowohl auf Ebene der Schweregradienten, als auch auf Ebene
von Schwerefeldlösungen, basierend auf Gravitationsgradienten, analysiert. Die größte Verbesserung wird durch
die neue Methode zur Bestimmung der Winkelgeschwindigkeiten, hauptsächlich für die niedrigen bis mittleren Fre-
quenzen und für die Harmonischen der Umlauffrequenz, erzielt. Zusätzlich können durch den verbesserten Ansatz
zur Kalibrierung auch Artefakte, die entlang der Bodenspuren im Schweregradient Vyy auftreten und welche ein
restliches common mode Signal in den Messungen darstellen, signifikant reduziert werden. Die Standardab-
weichung der Spur des Schweregradiententensors kann für die Frequenzen unterhalb des Gradiometer-Messbands
(d.h. unterhalb von 5 mHz) um ca. 90 % und innerhalb des Messbands (von 5 bis 100 mHz) um ca. 4 %
reduziert werden. Der kumulative Geoidfehler und der kumulative Fehler in den Schwereanomalien von Schwere-
feldlösungen, die nur auf Gravitationsgradienten von 61 Tagen basieren, werden zwischen den Graden 20 und 150
um ca. 27 % reduziert. Die auf Gravitationsgradienten basierenden Schwerefeldlösungen werden mit GOCE GPS
Daten kombiniert. In diesem Fall wird die Verbesserung aufgrund der alternativen Level 1b Prozessierung deut-
lich kleiner, ist aber immer noch beobachtbar. Der kumulative Geoidfehler und der kumulative Fehler in den
Schwereanomalien werden zwischen den Graden 20 und 150 um 10 % reduziert.

Mittlerweile wurden diese Verbesserungen auch im PDS Level 1b-Prozessor implementiert und die Daten der
gesamten GOCE Mission werden entsprechend re-prozessiert.
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1. Introduction

1.1. Overview of the GOCE mission

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission was launched successfully on
17 March 2009. Since the beginning of the mission operational phase in September 2009, it is gathering data
of the Earth’s gravity field with unprecedented precision. GOCE is the first core explorer mission of the Living
Planet programme of the European Space Agency (ESA). The GOCE mission objective is to model the Earth’s
static gravity field with an accuracy of 2 cm in geoid heights, and 1 mGal in gravity anomalies, at a spatial
resolution of 100 km (Drinkwater et al., 2007), cf. Fig. 1.1.

Figure 1.1.: GOCE satellite. Source: ESA (2008).

The core instrument of GOCE is an electrostatic gravity gradiometer (EGG), which consists of six accelerometers
mounted on three mutually orthogonal axes. It is used for satellite gravity gradiometry (SGG), cf. Fig. 1.2.
Moreover, the satellite is equipped with a GPS instrument for high-low satellite-to-satellite tracking (SST-hl),
and three star sensors (STR) to determine the absolute orientation in space.

The EGG measurements are used to derive common mode (CM) and differential mode (DM) accelerations. CM
accelerations represent the sum of all non-conservative (non-gravitational) forces acting on the satellite, and are
input signal of the drag-free control (DFC) system. It keeps the satellite in free fall at constant altitude by using
ion thrusters as actuators. From the DM accelerations finally the satellite gravity gradients are derived (Cesare
and Catastini, 2008b), which represent the key product to model the Earth’s gravity field. One important aspect
of the high performance of the GOCE mission is the fact that the EGG is not only the key driver to measure CM
and DM linear accelerations, but also rotational accelerations, which are combined with the STR observations.
After this angular rate reconstruction (ARR), gravity gradients at the one hand, and the attitude information of
the satellite at the other hand, are derived.

The GOCE data processing at ground level is performed at several levels (SERCO/DATAMAT Consortium,
2006; Drinkwater et al., 2007). The output of the Level 0 processing are time-ordered raw data, produced by the
instruments and by the platform. These are e.g. star sensor attitude quaternions with a sampling rate of 2 Hz
and the gradiometer measurements with a sampling rate of approximately 1 Hz. The Level 0 to Level 1b (L1b)

7
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Figure 1.2.: Principle of satellite gravity gradiometry (SGG) and high-low satellite-to-satellite tracking (SST-hl).

processing is carried out by ESA’s Payload Data Segment (PDS; Frommknecht et al., 2010). The ordered Level 0
time series are converted into engineering units. Furthermore, calibration, correction and geolocation of the data
along the orbit takes place. The main output of the L1b processing are the gravity gradients (with a sampling
rate of 1 Hz) in their instrument reference frame and the corresponding attitude and orbit data. The scientific
data processing (Level 1b to Level 2), i.e. the processing of precise orbits and GOCE gravity fields, is performed
by the High-level Processing Facility (HPF; Rummel et al., 2004).

1.2. Goals and topic of the work

This work is dedicated to the analysis and processing of the GOCE gradiometer data. With GOCE for the first
time in history a gravity gradiometer is used on board of a satellite in order to measure the Earth’s gravity field.
Hence, a careful analysis of the new data type is of special importance. Some related analyses, performed by
the author of this work, have already been published in Rummel et al. (2011) and Bouman et al. (2010). Also
completely new processing strategies had to be developed. Before the launch of GOCE, they were enforcedly
based on simulated data only (Cesare et al., 2008). Later, after the first gradiometer measurement data sets
had become available, they were rechecked and refined. In this context, the author of this work has produced
important contributions to the operational GOCE processing, as published in Stummer et al. (2011) and Stummer
et al. (2012).

This work starts with a description of the theoretical foundations of satellite gravity gradiometry in general and
specifically with GOCE (Chapter 2). The purpose is to introduce the reader to the subject of satellite gradiometry
which goes back for several decades (Marussi, 1985; Rummel, 1986), and to familiarize with the most important
characteristics of the GOCE mission and its sensor system, especially with the gradiometer. Related analyses
can be found in Rummel et al. (2011) and Stummer (2006).

In Chapter 3 the nominal L1b gradiometer processing, as originally defined by industry (Cesare et al., 2008), is
discussed. The derivation of the gravity gradients is in the focus. All important processing steps are described,
starting with the de-packeting of the Level 0 gradiometer data up to the L1b gravity gradients. Special emphasis
is put on the angular rate reconstruction. It is the determination of the angular rates from a combination of star
sensor and gradiometer data and a key part of the L1b processing. Simultaneously, some first quality assessment
of all related intermediate measurement data sets are made.

Chapter 4 describes the gradiometer calibration. The gradiometer calibration parameters can be classified into
two main types, the so-called quadratic factors and the ICMs (Inverse Calibration Matrices). The physical
origin of the gradiometer imperfections and different strategies for their determination and compensation, i.e. for
calibration, are discussed. In this work, the emphasis is put on the determination of the ICMs. Here two main
strategies exist, the original method as defined by industry (Cesare et al., 2008) and as implemented in the PDS
L1b processor (Frommknecht, 2009), and the current method in use as defined by ESA (Lamarre, 2008). The
two strategies are compared to each other. The original L1b method has also been implemented at IAPG, which
allows some further analyses as presented in Sect. 5.2.3 of this work.
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The purpose of Chapter 5 is to convey some deeper understanding of the GOCE gradiometer data, by presenting
an overview of the various analyses performed by the author. The gravity gradients and their components
(angular rates and differences of accelerations) as well as the data from the three star sensors on board of GOCE
are analyzed in time and frequency domain. Also the temporal variations of the calibration parameters are
investigated, and some discrepancies with respect to pre-launch expectations are identified. The role of the
star sensors for the determination of the gradiometer calibration parameters is demonstrated, using the IAPG
implementation of the nominal L1b ICM calibration method.

In Chapter 6 alternative gradiometer processing strategies are developed and adapted for the use in PDS’ L1b
processing. They are based on the original L1b gradiometer processing (Chapters 3 and 4) and on the findings
of Chapter 5. In total, four upgraded methods are introduced. These are the methods for the determination of
the angular rates and the attitude quaternions, the calibration of the accelerations, and an additional strategy
for the combination of all available star sensor measurements. The development of the new method for angular
rate reconstruction is explained in detail in Stummer et al. (2011). In Stummer et al. (2012) an overview of all
four upgraded methods for the use in PDS’ L1b processing is given.

The benefit of the four upgrades is analyzed at the level of gravity gradients as well as at the level of gravity field
solutions based on satellite gravity gradiometry data (Chapter 7). The largest overall improvements are due to
the new method for angular rate reconstruction, mainly at the low to medium frequencies and at the harmonics
of the orbital revolution frequency. In addition, spurious artifacts in the gravity gradient Vyy, which are caused
by non-perfect common mode rejection, can be reduced significantly by the improved calibration approach. The
standard deviation of the gravity gradient tensor trace can be reduced by about 90 % for the frequencies below
the gradiometer measurement band (i.e. below 5 mHz) and by about 4 % within the measurement band (from 5
to 100 mHz). The geoid error of satellite gravity gradiometry solutions based on 61 days of data is reduced from
3.0 to 2.2 cm between spherical harmonic degree 20 and 150. The corresponding gravity anomaly error is reduced
from 0.7 to 0.5 mGal, which is a reduction of about 27 %. The gravity field solutions based on satellite gravity
gradiometry data are combined with GOCE GPS satellite-to-satellite tracking data. In this case, the improvement
due to the alternative L1b processing becomes much smaller, but is still observable. The cumulative geoid error
and the cumulative gravity anomaly error, between degrees 20 and 150, are reduced by 10 %. Meanwhile, the
four upgrades, discussed in this work, have been implemented in the PDS L1b processor, and the data of the
whole GOCE mission are reprocessed.

Chapter 8 summarizes the most important results, and gives the conclusions of this work as well as an outlook.





2. Theoretical foundations

In this chapter the theoretical foundations of gravitational gradiometry in general and specifically with GOCE
are given. We follow the explanations given in Rummel et al. (2011), Stummer (2006) and Gruber (2004). The
chapter closes with a discussion of the expected gravity gradient and attitude quaternion signal.

2.1. Concepts of satellite gradiometry

We start with the theoretical foundations of gravitational gradiometry (Rummel et al., 2011). Gravitational
gradiometry is the measurement of the second derivatives of the gravitational potential V , being equal to the
measurement of the gradients of the components of the gravitational acceleration vector a. The gravitational
gradients are a second-order tensor field which is referred to as gravitational gradient tensor (GGT).

In geodesy, the GGT is often denoted as M with reference to Antonio Marussi (1908-1984), who published
fundamental work on this subject (Marussi, 1985). Nevertheless, within this work the GGT is denoted as G, in
order to avoid any confusion with the notation in Chapter 4, where the calibration matrix is denoted as M .

The GGT can be written in an arbitrarily chosen local Cartesian coordinate system at location P and in component
form as

G(P ) = ∇P ⊗ aP =

 Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 . (2.1)

Using Newton’s law of gravitation a can be written as

a(P ) = ∇PV = ∇P

G
∫∫∫

Σ

ρ(Q)

|xP − xQ|
dΣQ

 = −G
∫∫∫

Σ

ρ(Q)

|xP − xQ|2


∆x

|xP−xQ|
∆y

|xP−xQ|
∆z

|xP−xQ|

 dΣQ . (2.2)

with G being the gravitational constant, ρ the density, |xP − xQ| the distance between a mass particle ρdΣ at Q
and point P , and ∆x, ∆y, ∆z the coordinate differences between P and Q. The integral is taken over all masses
contained in the volume Σ, in principle of the whole universe.

From Eqs. 2.1 and 2.2 it follows for the gravitational gradients

G(P ) = G

∫∫∫
Σ

ρ(Q)

|xP − xQ|3


3∆x2

|xP−xQ|2 − 1 3∆x∆y
|xP−xQ|2

3∆x∆z
|xP−xQ|2

3∆y∆x
|xP−xQ|2

3∆y2

|xP−xQ|2 − 1 3∆y∆z
|xP−xQ|2

3∆z∆x
|xP−xQ|2

3∆z∆y
|xP−xQ|2

3∆z2

|xP−xQ|2 − 1

 dΣQ , (2.3)

Within the Newton’s integrals for V , a, and G the integral kernels change from inverse distance to inverse-
squared distance to inverse-cubed distance. Hence, gravitational gradients are more sensitive to the close-by
mass distributions than gravitational acceleration or potential.

There are two important basic properties from vector analysis which are related to the vector field a. The first
one is that for any mass distribution, a is curl-free, i.e. it holds everywhere

∇× a = 0 . (2.4)

Therefore a is conservative and can be written as gradient of a potential V :

11
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a = ∇V . (2.5)

From this property (cf. Eqs. 2.4 and 2.5) follows symmetry of G.

It has to be noted that the Earth’s mass distribution is not entirely stationary due to the mass movements
in atmosphere, oceans, ice shields and continental hydrology. Also the relative movement of the Sun, Moon
and planets has to be considered. Since GOCE gravitational gradients have a relatively high noise level at low
frequencies, they are not sensitive to temporal variations. Nevertheless, corrections from models of direct, solid
Earth, ocean tides and atmosphere/ocean are available to the users, cf. Gruber et al. (2010b).

The second basic property is harmonicity. In the space outside the Earth, a is regarded as being source-free, i.e.

∇ · a = 0 . (2.6)

In reality, this is only an approximation. More correctly it is

∇ · a = −4πGρ . (2.7)

However, atmospheric density is small. At GOCE’s altitude it is less than 2.5 · 10−10 kg/m3, see Emiliani (1992),
and for comparison, is about 1.23 kg/m3 at the Earth’s surface.

In geodesy, it is therefore common practise to correct for the contribution of the atmospheric density using a
standard model (Moritz, 1980; Rummel and Rapp, 1976) and to proceed with the approximation given in Eq. 2.6.

From these two above basic properties (Eqs. 2.6 and 2.5) it follows the Laplace equation:

Vxx + Vyy + Vzz = 0 . (2.8)

It is the basis of the representation of the potential V in terms of spherical harmonic series. Equation 2.8 states
that G is trace-free. This property can be used as a very important internal check for the quality of the GOCE
gravity gradients. From the two basic properties (symmetry and harmonicity) it follows that only five of the nine
components of the GGT are independent from each other at any location.

In literature, see e.g. Marussi (1985); Ohanian and Ruffini (1994), there are two additional interpretations of G.
The first one is the interpretation as the tidal field induced by the Earth at the location of the gradiometer. For
satellite gradiometry, as it is the case for GOCE, the gradiometer is located almost perfectly at the satellite’s
center of mass. Here, the tidal field is exactly zero (“zero-g”), because at this location the gravitational attraction
of the Earth on the whole spacecraft is equal to that on a test mass there. With increasing distance from the
satellite’s center of mass, the tidal effect grows. For a distance of about 1 m the effect is roughly one part-per-
million (1 ppm) of g (“micro-g”). For comparison, the distance between GOCE’s center of mass and the test
masses of the gravity gradiometer is about 0.25 m.

The second interpretation of G is geometrical. The elements of the GGT express, at any point, the curvature of
the Earth’s gravitational field, e.g. in a local {North, East, radial up}-triad:

G = −g

 kN t fN
t kE fE
fN fE −H

 . (2.9)

In the above equation g is the gravitational acceleration, kN and kE are the North-South and East-West curvatures
of the level surfaces of V , respectively, t is torsion, fN and fE are the North-South and East-West curvatures of
the plumb line, respectively, and H is the mean curvature.

In the following the invariants of the GGT are discussed. Invariance implies independence from the orientation
of the local triad in which the GGT components are measured. Since the GGT is symmetric and trace-free, it
can be diagonalized with real-valued eigenvalues λ1, λ2, λ3, according to

G =
[
u1 u2 u3

]  λ1 0 0
0 λ2 0
0 0 λ3

 uT1
uT2
uT3

 = U Λ UT , (2.10)



2 Theoretical foundations 13

with u1, u2, u3 being the corresponding eigenvectors and Λ the diagonal form of G.

From this representation the invariants of G can be derived, cf. Baur et al. (2007)

I1 =
3∑

i=1

Vii

= λ1 + λ2 + λ3 (trace of G or Λ) ,

(2.11a)

I2 =
1

2

3∑
i=1

3∑
j=1

(VijVji − ViiVjj)

= −(λ1λ2 + λ2λ3 + λ3λ1) ,

(2.11b)

I3 =
1

6

3∑
i=1

3∑
j=1

3∑
k=1

(2VijVjkVki − 3VijVjiVkk + ViiVjjVkk)

= λ1λ2λ3 (determinant of G or Λ) .

(2.11c)

The first invariant I1 = 0 was already derived in Eq. 2.8. It can be used as an internal quality check of the gravity
gradients. The other two invariants I2 and I3 can be used for global gravity field analysis as demonstrated in
Baur (2007); Baur et al. (2007); Yu and Zhao (2010), see also Rummel (1986); Pedersen and Rasmussen (1990).

Laplace equation 2.8 is a second-order, homogeneous partial differential equation. Its solution in Cartesian
coordinates leads to a series expansion of V and its first and second derivatives in terms of a two-dimensional
Fourier-series, e.g. (Jung, 1961; Tsuboi, 1983). This representation is often applied regionally in geophysics.
In geodesy, the Laplace equation is usually solved in spherical coordinates, which leads to the classical series
expansion of the Earth’s gravitational field in terms of spherical harmonics Ynm.

In a rather compact complex notation, the gravitational potential V is written as

V (P ) = V0

∞∑
n=0

(a
r

)n+1 n∑
m=−n

tnmYnm(θ, λ) . (2.12)

V0 = GM/a denotes a constant with GM gravitational constant times mass of the Earth and a the semi-major
axis of the adopted reference ellipsoid; tnm are the dimensionless coefficients of degree n and order m, and Ynm
the fully normalized surface spherical harmonics; the spherical coordinates of P are θ, λ, r. It is

tnm =

{
1
2

(
Cnm − iSnm

)
(m ≥ 0)

1
2

(
Cn|m| + iSn|m|

)
(m < 0) ,

(2.13)

and

Ynm(θ, λ) = Pn|m| (θ) exp (imλ) , (2.14)

with Cnm and Snm the usual fully-normalized spherical harmonic coefficients and Pnm the fully normalized
associated Legendre functions.

In view of the high precision of the GOCE gravitational gradiometer, representation in ellipsoidal harmonics of
the field may be more appropriate in order to achieve a closer fit of the base functions to the global shape of the
Earth. For the connection of ellipsoidal and spherical harmonics, it is referred to Moritz (1980) and Jekeli (1988).

All nine components of G can be expanded in spherical harmonics, as discussed in Rummel and van Gelderen
(1992). The so-called irreducible form of G leads to isotropic eigenvalues and integral operators, the latter are
derived in Martinec (2003). See also Rummel (1997) and Schreiner (1994). Corresponding isotropic operators
exist for the 2D-Fourier expansion as well. Compare again Rummel and van Gelderen (1992) or While et al.
(2006).
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2.2. Concepts of satellite gradiometry with GOCE

Gravitational gradients are derived from the difference of gravitational acceleration at adjacent points. The classi-
cal gradiometer instrument is the torsion balance (Eötvös, 1906; Jung, 1961). Its principle is the translation of the
acceleration difference between two test masses hanging on a beam into a torsion of the fibre carrying the beam.
The first proposal for a satellite gravitational gradiometer was made by Carroll and Savet (1959). Comprehensive
reviews of gradiometer instrument developments and ideas of spaceborne gradiometry are performed by Forward
(1974) and Wells (1984). One gradiometer system developed by Bell Aerospace, see again Wells (1984), has been
used for submarines in support of inertial navigation. This instrument type was modified to the so-called gravity
gradiometer system for use in gravity and exploration work, see Jekeli (1988). However, only in the eighties
did sensor technology become mature enough to really build such an instrument for satellite applications. In
Europe, following the GRADIO-proposal by Balmino et al. (1981, 1984) a gradiometric satellite mission, denoted
ARISTOTELES, was proposed but not approved. At about the same time, professor Paik from the University of
Maryland worked on the development of a super-conducting gravitational gradiometer, e.g. Chan et al. (1987).
Quantum gravity gradiometry may become the measurement method of the future (McGuirk et al., 2002; Yu
et al., 2006).

In the case of GOCE, the gradiometer is made of three orthogonally arranged one-axis gradiometers (OAG).
They consist of two ultra-sensitive three-dimensional accelerometers mounted at the end points of a half meter
baseline. Each accelerometer contains a test mass of Rhodium-Platinum, weight 320 g and 4 cm× 4 cm× 1 cm in
size. It is kept levitated by an electrostatic feedback system inside a chamber with eight pairs of electrodes. The
center of the three gradiometer axes coincides approximately with the satellite’s center of mass. The gradiometer
is shown in Fig. 2.1.

Figure 2.1.: GOCE gravitational gradiometer consisting of three orthogonal one-axis gradiometers, each 50 cm long and with two
accelerometers; technical drawing (left) and actual instrument (right) (source: ESA).

Thus, the components Vij of G are approximated by the finite acceleration difference over the corresponding base-
line. Let us denote O as the “virtual” center of the gradiometer and A and B the locations of two accelerometers.
A Taylor-series of the acceleration vector taken at point O, close to A, yields:

a(O) = a(A)−G(O)∆xA +
(
o2
)
, (2.15)

with ∆xA = xA − xO . The omitted quadratic and higher order terms contain the third, forth and higher order
derivative tensors of V . We assume the components of a to be measured by an accelerometer at A and a second
device at a point B exactly symmetric to A relative to O. Then the acceleration difference between A and B
gives

a(B)− a(A) = G(O)∆x
AB

+
(
o3
)
. (2.16)

All the even terms of the neglected part drop out because of symmetry. The cubic and all higher degree terms are
negligibly small, at least for gradiometers of laboratory size. Thus, the nine components of G are derived from



2 Theoretical foundations 15

measured acceleration differences over baseline lengths, e.g. the component Vxy is derived from the difference of
the x-components of the two accelerometers of the y-axis, divided by the baseline length ∆y:

G =

 Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz

 =


∆ax

∆x
∆ax

∆y
∆ax

∆z
∆ay

∆x
∆ay

∆y
∆ay

∆z
∆az

∆x
∆az

∆y
∆az

∆z

 +
(
o3
)
. (2.17)

The gradiometer reference frame (GRF, Gruber et al., 2010a) is materialized by the three orthogonal one-axis
gradiometers. Their axes are oriented approximately with the x-axis in flight direction, y-axis orthogonal to the
orbit plane and z-axis almost radially downwards. The actual orientation is measured with arcsecond precision
by a set of three star trackers and provided to the users expressed as orientation quaternions. The gradiometer
rigidly mounted into the spacecraft rotates in space with the main angular velocity about the y-axis. Thus, in
the GRF the accelerometers pick up any rotational motion, in addition to the gravitational signal:

a′(A) = a(A)− Ω Ω∆xA − Ω̇∆xA
, (2.18)

with a′ the accelerations measured in the rotating GRF, and with the well-known expressions for centrifugal and
Euler accelerations, where

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 and (2.19a)

Ω̇ =

 0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0

 . (2.19b)

Thereby it is assumed that the test masses of all six accelerometers are kept “still” and levitated. The differential
accelerations in the rotating frame become

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 =

 Vxx Vxy Vxz
Vyx Vyy Vyz
Vzx Vzy Vzz


+

 −(ω2
y + ω2

z) ωxωy ωxωz

ωyωx −(ω2
z + ω2

x) ωyωz

ωzωx ωzωy −(ω2
x + ω2

y)


+

 0 −ω̇z ω̇y

ω̇z 0 −ω̇x

−ω̇y ω̇x 0


= G+Ω Ω+ Ω̇ .

(2.20)

In Eq. 2.20, the left-hand side contains the measured acceleration differences per baseline length with e.g. Dxy =
∆ax

∆y , compare Eq. 2.17. The right-hand side is the sum of gravitational gradients and centrifugal terms with
angular velocity products as well as a matrix containing angular accelerations. Symmetry of G and Ω Ω versus
skew-symmetry of Ω̇ allows separation and therefore “isolation” of the angular accelerations:

Ω̇ =
1

2

(
D −DT

)
, (2.21a)

G+Ω Ω =
1

2

(
D +DT

)
. (2.21b)

Integration of the angular accelerations Ω̇ gives angular velocities Ω; with the elements of Ω Ω known, the
gravitational gradients in G can be determined. In fact, the angular velocities are derived from an optimized
combination of these angular accelerations and angular rates derived from the star tracking.



16 2 Theoretical foundations

In the case of GOCE, two additional facts need consideration. Each accelerometer is ultra-sensitive (US) along
two orthogonal directions but much less sensitive (LS) along its third axis, see also Floberghagen et al. (2011).
Functional testing of the accelerometers is done in the laboratory on ground. This requires levitation of the test
mass under the influence of gravity. As a consequence ultimate sensitivity can only be attained along two axes,
while the third one is made less sensitive. Thus it needs to be decided which direction of each accelerometer to
choose for the less sensitive axis. The constellation shown in Fig. 2.2, taken from Gruber et al. (2010b), was
suggested by Aguirre-Martinez and Cesare (1999) and is regarded of being advantageous.

Figure 2.2.: Location of the 6 accelerometers, denoted Ai, i = 1, 2, · · · , 6 in the gradiometer reference frame (GRF). The solid arrows
at each of the accelerometer triads show the ultra-sensitive axes, the dashed arrows the less sensitive axes.

From this arrangement, the right hand side of Eq. 2.20 becomes:

 Vxx Ṽxy Vxz
Ṽyx Vyy Ṽyz
Vzx Ṽzy Vzz


+

 −(ω2
y + ω̃2

z) ω̃xωy ω̃xω̃z

ωyω̃x −(ω̃2
z + ω̃2

x) ωyω̃z

ω̃zω̃x ω̃zωy −(ω̃2
x + ω2

y)


+

 0 − ˜̇ωz ω̇y

˜̇ωz 0 − ˜̇ωx

−ω̇y
˜̇ωx 0

 .

(2.22)

The less sensitive elements are indicated with tilde above the variables. This choice makes sure that ω̇y can
be determined with high precision, and after integration ωy as well. This is important when determining the
angular rates, because it holds ωy ≫ ωx or ωz due to the rotation of the satellite about the y-axis once per
orbital revolution. Essentially the four gradiometer components Vxx, Vyy, Vzz, and Vxz are resolvable with high
precision.

A second property is related to the error behavior of the GOCE accelerometers. Their high precision of
10−12 m/s2/

√
Hz is only achieved in the measurement band (MB) between 5 ·10−3 Hz and 0.1 Hz, while the noise

increases with 1/f at lower frequencies. The 1/f -behavior at low frequencies is typical to any accelerometer.
The definition of the MB is part of the accelerometer design. Inside the MB, the accelerometers are expected to
show white noise behavior. The MB represents the spectral window in which the gravity information observed
by GOCE is concentrated. At its lower end and at frequencies below the MB, gravitational gradiometry has to
be complemented by gravity information either from the orbits or from an available gravity field model.

Based on a detailed analysis of the error budget, performance requirements have been derived for the three axes
of the accelerometers, the three one-axis gradiometers and for the sum of the three diagonal gradient components
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(trace or Laplace condition). The trace requirement is included as solid black line in Fig. 5.4. For details, see
Cesare (2008). The four precise gradiometer components should be measurable with a precision of 5 to 8 mE/

√
Hz

(1 Eötvös Unit = 1 E = 10−9 s−2), compare again Cesare (2008).

2.3. From measured accelerations to gravity gradients

In this section the basic equations for the computation of the GOCE gravity gradients are given in detail,
cf. Stummer (2006) and Gruber (2004). Note that these equations only hold if the accelerometers have their
nominal position and no other gradiometric imperfections occur. In reality, there are small imperfections which
are accounted for by calibration, cf. Chapter 4.

As already pointed out the accelerometers of the GOCE gradiometer are arranged in pairs along the three
gradiometer arms. With the baselines Lx, Ly, Lz for the three one-axis gradiometers, the distance vectors r of
the accelerometers A1 to A6 to the satellite’s center of mass can be written as

A1 :

 rx
ry
rz

 =

 Lx

2
0
0

 ; A4 :

 rx
ry
rz

 =

 −Lx

2
0
0


A2 :

 rx
ry
rz

 =

 0
Ly

2
0

 ; A5 :

 rx
ry
rz

 =

 0

−Ly

2
0


A3 :

 rx
ry
rz

 =

 0
0
Lz

2

 ; A6 :

 rx
ry
rz

 =

 0
0

−Lz

2

 (2.23)

By inserting these distances into Eq. 2.16, we obtain the 18 observation equations for the 6 GOCE accelerometers.

a1,x = (−Vxx − ω2
y − ω2

z)
Lx

2
; a4,x = −(−Vxx − ω2

y − ω2
z)
Lx

2

ã1,y = (−Vyx + ω̇z + ωxωy)
Lx

2
; ã4,y = −(−Vyx + ω̇z + ωxωy)

Lx

2

a1,z = (−Vzx − ω̇y + ωxωz)
Lx

2
; a4,z = −(−Vzx − ω̇y + ωxωz)

Lx

2
(2.24)

a2,x = (−Vxy − ω̇z + ωxωy)
Ly

2
; a5,x = −(−Vxy − ω̇z + ωxωy)

Ly

2

a2,y = (−Vyy − ω2
x − ω2

z)
Ly

2
; a5,y = −(−Vyy − ω2

x − ω2
z)
Ly

2

ã2,z = (−Vzy + ω̇x + ωyωz)
Ly

2
; ã5,z = −(−Vzy + ω̇x + ωyωz)

Ly

2
(2.25)

a3,x = (−Vxz + ω̇y + ωxωz)
Lz

2
; a6,x = −(−Vxz + ω̇y + ωxωz)

Lz

2

ã3,y = (−Vyz − ω̇x + ωyωz)
Lz

2
; ã6,y = −(−Vyz − ω̇x + ωyωz)

Lz

2

a3,z = (−Vzz − ω2
x − ω2

y)
Lz

2
; a6,z = −(−Vzz − ω2

x − ω2
y)
Lz

2
(2.26)

Note that again the less sensitive elements are indicated with tilde above the variable. Also in the following we
will keep this notation.

For the determination of a main diagonal GGT element a measurement along the respective gradiometer arm,
i.e. a so-called in-line measurement, is needed. Vxx e.g. appears in Eq. 2.24 in the accelerations a1,x and a4,x along
the x-axis. The off-diagonal GGT elements can be determined with measurements transversal to the respective
gradiometer arm, i.e. with a so-called transversal measurement.



18 2 Theoretical foundations

Vxy occurs along the gradiometer arm 14 (x-axis) in y-direction (a1,y and a4,y in Eqs. 2.24), which is transversal
to the baseline 14. Vxy appears also transversal to the baseline 25 (y-axis) in the accelerations a2,x and a5,x,
cf. Eqs. 2.25.

The so-called common mode accelerations are used for the drag control system of GOCE. They are the mean of
two accelerations measured in the same direction and can be formed using Eqs. 2.24 to 2.26 according to

ac,lk,i =
1

2
(al,i + ak,i) (2.27)

with l and k being the numbers of the two involved accelerometers and i being the direction x, y or z.

In total, 9 common mode accelerations can be built

ac,14,x =
1

2
(a1,x + a4,x) =

=
1

2

(
−Vxx − ω2

y − ω2
z

) Lx

2
+

1

2

(
−Vxx − ω2

y − ω2
z

)(
−Lx

2

)
=

=
Lx

4

(
−Vxx − ω2

y − ω2
z + Vxx + ω2

y + ω2
z

)
= 0 (2.28)

ãc,14,y =
1

2
(ã1,y + ã4,y) =

=
1

2
(−Vyx + ω̇z + ωxωy)

Lx

2
+

1

2
(−Vyx + ω̇z + ωxωy)

(
−Lx

2

)
=

=
Lx

4
(−Vyx + ω̇z + ωxωy + Vyx − ω̇z − ωxωy) = 0 (2.29)

ac,14,z =
1

2
(a1,z + a4,z) =

=
1

2
(−Vzx − ω̇y + ωxωz)

Lx

2
+

1

2
(−Vzx − ω̇y + ωxωz)

(
−Lx

2

)
=

=
Lx

4
(−Vzx + ω̇y + ωxωz + Vzx − ω̇y − ωxωz) = 0 (2.30)

ac,25,x =
1

2
(a2,x + a5,x) = 0 (2.31)

ac,25,y =
1

2
(a2,y + a5,y) = 0 (2.32)

ãc,25,z =
1

2
(ã2,z + ã5,z) = 0 (2.33)

ac,36,x =
1

2
(a3,x + a6,x) = 0 (2.34)

ãc,36,y =
1

2
(ã3,y + ã6,y) = 0 (2.35)

ac,36,z =
1

2
(a3,z + a6,z) = 0 (2.36)

Theoretically, all 9 common mode accelerations should be zero. This also means that they should not affect
the gravity gradient measurement. This is the principle of common mode rejection. In reality, disturbances,
e.g. because of non-compensated air drag and solar radiation pressure acting on the satellite as a whole, are
present and occur thus in the measured common mode accelerations. The principle of the drag-free control
system of GOCE is to compensate for disturbances in flight (i.e. x-) direction, which are measured with the
common mode accelerations in the same direction, and to compensate for these forces by firing a dedicated ion
thruster assembly. This compensation is only performed in flight direction, where the satellite is exposed to the
largest disturbances. All common mode accelerations in this (x-) direction are derived from US measurements
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only. Hence, one can conclude the the arrangement of the accelerometers within the gradiometer is optimal for
the aspect of drag compensation.

The main measurements for the determination of the gravity gradients are differential accelerations. The so-called
differential mode accelerations, as used for the official GOCE processing (cf. Chapter 3) are defined in analogy
to the common mode accelerations as

ad,lk,i =
1

2
(al,i − ak,i) (2.37)

Again, l and k denote the numbers of the two involved accelerometers and i the direction x, y or z.

The 9 equations for the differential mode accelerations read

ad,14,x =
1

2
(a1,x − a4,x) =

=
1

2

(
−Vxx − ω2

y − ω2
z

) Lx

2
− 1

2

(
−Vxx − ω2

y − ω2
z

)(
−Lx

2

)
=

=
Lx

4

(
−2Vxx − 2ω2

y − 2ω2
z

)
=
Lx

2

(
−Vxx − ω2

y − ω2
z

)
(2.38)

ãd,14,y =
1

2
(ã1,y − ã4,y) =

=
1

2
(−Vyx + ω̇z + ωxωy)

Lx

2
− 1

2
(−Vyx + ω̇z + ωxωy)

(
−Lx

2

)
=

=
Lx

4
(−2Vyx + 2ω̇z + 2ωxωy) =

Lx

2
(−Vyx + ω̇z + ωxωy) (2.39)

ad,14,z =
1

2
(a1,z − a4,z) =

=
1

2
(−Vzx − ω̇y + ωxωz)

Lx

2
− 1

2
(−Vzx − ω̇y + ωxωz)

(
−Lx

2

)
=

=
Lx

4
(−2Vzx − 2ω̇y + 2ωxωz) =

Lx

2
(−Vzx − ω̇y + ωxωz) (2.40)

ad,25,x =
1

2
(a2,x − a5,x) =

Ly

2
(−Vxy − ω̇z + ωxωy) (2.41)

ad,25,y =
1

2
(a2,y − a5,y) =

Ly

2

(
−Vyy − ω2

x − ω2
z

)
(2.42)

ãd,25,z =
1

2
(ã2,z − ã5,z) =

Ly

2
(−Vzy + ω̇x + ωyωz) (2.43)

ad,36,x =
1

2
(a3,x − a6,x) =

Lz

2
(−Vxz + ω̇y + ωxωz) (2.44)

ãd,36,y =
1

2
(ã3,y − ã6,y) =

Lz

2
(−Vyz − ω̇x + ωyωz) (2.45)

ad,36,z =
1

2
(a3,z − a6,z) =

Lz

2

(
−Vzz − ω2

x − ω2
y

)
(2.46)

In analogy to the equations for the common mode accelerations, 6 of the 9 equations contain only US measure-
ments, and three of them are built from LS measurements (again indicated with tilde).

The in-line accelerations ad,14,x, ad,25,y and ad,36,z, which contain the main diagonal elements of the GGT and
thus the largest signal contribution, are composed of US measurements only. Also in this respect, the arrangement
of the accelerometers within the gradiometer is optimal.

Since the gradiometer measurements contain besides the gravity gradients also a centrifugal term and a term due
to the angular acceleration of the satellite, the determination of the angular rates and angular accelerations is
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necessary. The angular accelerations can be derived from the gradiometer measurements, according to Eq. 2.21a,
by

˜̇ωx = − ãd,36,y
Lz

+
ãd,25,z
Ly

(2.47)

ω̇y = −ad,14,z
Lx

+
ad,36,x
Lz

(2.48)

˜̇ωz =
ãd,14,y
Lx

− ad,25,x
Ly

(2.49)

The calculation of ω̇x and ω̇z is influenced by at least one LS measurement, whereas ω̇y is determined from US
measurements only. The high accuracy determination of ω̇y is most important, since the satellite rotates once per
revolution about its y-axis and hence, ω̇y is the largest component. For a more detailed analysis of this aspect
it is referred to Sect. 5.1. The possibility to determine ω̇y with the gradiometer (in the MB) as good as possible
was one of the main drivers for the actual arrangement of the accelerometers within the gradiometer.

For the computation of the gravity gradients the angular rates have to be known. Hence, the determination of
the angular rates is a key task of GOCE L1b processing, cf. Sect. 3.4. Within this processing step the attitude
information of the gradiometer, which is very accurate in the gradiometer MB, is combined with star sensor data,
which is most accurate at low frequencies. In Sect. 6.2 an improved method for the determination of the angular
rates is described. Once the angular rates are known, the gravity gradients can be calculated. For the main
diagonal GGT elements the the in-line differential mode accelerations, Eqs. 2.38, 2.42 and 2.46 are needed

Vxx = −2ad,14,x
Lx

− ω2
y − ω̃2

z (2.50)

Vyy = −2ad,25,y
Ly

− ω̃2
x − ω̃2

z (2.51)

Vzz = −2ad,36,z
Lz

− ω̃2
x − ω2

y (2.52)

The off-diagonal elements of the GGT are derived from the transversal differential mode accelerations, using
Eq. 2.21b

Ṽxy = − ãd,14,y
Lx

− ad,25,x
Ly

+ ω̃xωy (2.53)

Vxz = −ad,14,z
Lx

− ad,36,x
Lz

+ ω̃xω̃z (2.54)

Ṽyz = − ãd,25,z
Ly

− ãd,36,y
Lz

+ ωyω̃z (2.55)

The Vxx, Vyy, Vzz and Vxz are determined from US differential mode accelerations only, whereas Vxy and Vyz
are influenced by at least one LS differential mode acceleration and are hence themselves less accurate (again
indicated by tilde). In all six equations at least one less accurate angular rate component occurs. Hence, it is
very important to determine all three angular rate components as good as possible using the additional attitude
information from the star sensors. Further analysis on the influence of the angular rates on the accuracy of the
gravity gradients is made in Sect. 5.1.
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2.4. Expected signal of gravity gradients and attitude quaternions

Before we start the analysis of the data, as measured by GOCE, in the next chapter of this work, we introduce the
requirement for the noise of the gravitational gradient tensor components, as well as their expected signal content.
From the pre-launch analysis of industry, cf. Cesare (2008), the noise contained in the accurate gradiometer
components should be white in the MB between 2 · 10−2 and 0.1 Hz with a level of about 8 mE/

√
Hz and a

1/f increase towards lower frequencies. The corresponding requirement for the noise level of the trace of the
gravitational gradient tensor is 11 mE/

√
Hz between 2 · 10−2 Hz and 0.1 Hz and also with an increase of 1/f

towards lower frequencies, cf. Fig. 2.4(a). At 5·10−3 Hz, the lower end of the MB, its level should be 100 mE/
√
Hz.

The original intention at the time of the pre-phase-A studies was to reach for the accurate gradiometer components
a noise level of only 1 to 2 mE/

√
Hz, cf. Johannessen (1999). Several technological challenges made it impossible

to reach this goal. The noise level of the less sensitive components was expected to be close to 1 E/
√
Hz in the

MB.

In Fig. 2.4 the root power spectral densities (PSDs) are shown for the gravity gradients in GRF, simulated from
EGM2008 (Pavlis et al., 2012) up to degree/order 360, and taken along the orbits of the first measurement cycle
(November and December 2009). Figure 2.4(a) contains the main diagonal elements of the GGT Vxx, Vyy, Vzz
and the requirement for the trace. We see that the gravity signal in the MB starts from about 1 E/

√
Hz at

5 · 10−3 Hz and decreases to a level of 8 mE/
√
Hz (the expected noise level) between 2 · 10−2 and 4 · 10−2 Hz

with a rather steep descent at frequencies above. The signal power is highest for the Vzz component, and lowest
for the Vyy component. Fig. 2.4(b) contains Vxy, Vyz and Vyz. The signal power is clearly lowest for the Vxy
component. The same gravity gradients in GRF, simulated from EGM2008 up to degree/order 360, are given in
Fig. 2.3 in the time domain for one day, 1 November 2009. Vxx and Vyy have a magnitude of about -1360 E, Vzz
of about 2720 E. Vxz and Vyz are about two orders of magnitude smaller, whereas Vxy is about three orders of
magnitude smaller. All six components of the GGT show an oscillation, which is repeating 16 times per day, as
observable in Fig. 2.3 and which is hence recurring once per orbital revolution. These large oscillations are due
to the Earth’s flattening and additionally due to the eccentricity of the orbit.

For gravity field determination, as well as for the direct use of the gravity gradients, it is important to know
their exact orientation. This aspect will be further discussed in Sect. 7.2. Within the GOCE L1b processing,
cf. Sects. 3.4 and 6.3, the orientation of the satellite is generated in terms of (inertial) attitude quaternions from
a combination of star sensor and gradiometer data. For comparison, Fig. 2.5 shows the attitude quaternions
as derived from a pre-launch end-to-end simulation, kindly provided by industry. The individual quaternion
components are oscillating between ±1 once per two orbital revolutions, cf. Fig. 2.5(a). q0 denotes the real part of
the quaternion. The root PSD of the quaternion components, Fig. 2.5(b), has a magnitude of about 10−2 rad/

√
Hz

at 1 mHz and a rather steep decrease towards the higher frequencies, with e.g. about 10−6 rad/
√
Hz at 10 mHz.

Note that all PSD calculations within this work are based on Welch’s method (Welch, 1967). As the data sets
are not strictly periodic, some windowing is applied. We chose a Kaiser window (Oppenheim and Schafer, 1989;
Meyer, 1998) because it has the advantage of rapidly decreasing side maxima in the spectrum, which allows a
good analysis of instrument noise (at high frequencies), cf. Appendix C. In addition, the linear trend is subtracted
from the time series prior to the PSD calculation.
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Figure 2.3.: Main diagonal elements of gravity gradient tensor (left) and off-diagonal elements (right).
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Figure 2.4.: Root PSD of main diagonal elements of gravity gradient tensor (a) and off-diagonal elements (b), based on EGM2008 up
to degree/order 360.
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Figure 2.5.: Inertial attitude quaternions (a) and corresponding root PSD (b), based on data from end-to-end simulation.





3. Nominal gradiometer data processing and
analysis

In this chapter the nominal EGG processing chain is described. We follow in large parts the explanations given
in Frommknecht (2009). First, an overview of the EGG processor is given, followed by a more precise analysis of
the individual processing steps. Also first analysis of all important intermediate data sets for the computation of
the gravity gradients are made.

Originally, the determination of the Inverse Calibration Matrices (ICMs), which are needed for the calibration
of the measured accelerations, was part of the L1b gradiometer processing according to Cesare et al. (2008).
Meanwhile, this important processing step was replaced by a new method (Lamarre, 2008), which is carried out
by ESA. Because of its special role in the processing and its importance with respect to the quality of the gravity
gradients, the determination of the ICMs is treated separately here in Chapter 4.

The EGG nominal processor transforms the EGG Level 0 products (EGG NOM 0) into EGG L1b products (EGG NOM 1b

and EGG MON 1b). For a definition of the reference frames related to the GOCE gradiometer it is referred to Ap-
pendix A. There are seven major steps within the EGG nominal processing. These steps are depicted by the
flowchart in Fig. 3.1.

Figure 3.1.: Flowchart: Overview of the EGG nominal processor.

Accordingly, at the beginning of each section within this chapter the relevant processing steps are illustrated
by a flowchart. These flowcharts indicate the input (left), the output (right), and the relevant processing steps
(middle). The major input and output products are marked with a bold frame. In the following a brief summary
of the seven major processing steps is given.

1. De-packeting and sorting of measurement records.
In this step the Level 0 telemetry packets generated by the gradiometer and by the platform are extracted
with their associated on-board time (OBT) stamping. The EGG control voltages are interpolated to integer

25
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second sampling in alignment with the STR OBT. Moreover, the extracted data is converted into engineering
units and the associated OBT is converted into UTC. Finally, data files containing the sorted time-series of
the extracted quantities are produced.

2. Voltage to acceleration conversion.
The control voltages of the eight electrode pairs surrounding each proof mass of the six accelerometers
are corrected for errors caused by the accelerometer measurement unit (in science read-out branch and in
control loop). The corrected control voltages are transformed in sets of accelerations in the accelerometer
electrode system reference frame (AESRF, Gruber et al., 2010a) and in the accelerometer reference frame
(ARF, Gruber et al., 2010a), e.g. in common- and differential mode accelerations. In addition, the angular
accelerations about the axes of the GRF are computed.

3. Proof mass acceleration retrieval.
The actual common and differential mode accelerations of the three accelerometer pairs along the axes
of the corresponding one axis gradiometer reference frame (OAGRF, Gruber et al., 2010a) are computed
from the measured common and differential mode accelerations by applying the three Inverse Calibration
Matrices. From the recovered differential mode accelerations the (corrected) angular accelerations of the
gradiometer about the axes of the GRF can be obtained.

4. Angular rate reconstruction.
The inertial angular rates of the gradiometer about the axes of the GRF are calculated from the angular
accelerations of the gradiometer about the axes of the GRF and from the quaternions, measured by the star
sensors, which define the attitude of the star sensor reference frame (SSRF, Gruber et al., 2010a) in the
inertial reference frame (IRF). Additionally, the quaternions defining the attitude of the GRF with respect
to the IRF are computed.

5. GGT computation.
In this step the six independent components of the GGT are obtained on the basis of the calibrated
differential mode accelerations and on the basis of the reconstructed inertial angular rates of the gradiometer
about the axes of the GRF.

6. Transformation matrix.
The transformation matrix from GRF to the IRF is calculated. The necessary attitude information is taken
from the output quaternions of the angular rate reconstruction step.

7. Monitoring.
All relevant intermediate results undergo preliminary tests to detect anomalies. Also the trace of the GGT
is computed.

3.1. De-packeting and sorting

Figure 3.2 illustrates how the EGG Level 0 product (EGG NOM 0) is converted to the first intermediate product
(EGG CTR 1i) of the main EGG L1b product (EGG NOM 1b).

After extracting the Level 0 telemetry packets generated by the gradiometer and by the platform with their
associated OBT, the EGG control voltages are interpolated to an integer second sampling. The idea is to
interpolate the control voltages and their associated EGG OBT exactly to the OBT of the star sensors, which
is contained in STR VC2 1b. Note that the STR data is given with a sampling of 2 Hz. Thus theoretically two
different fractions for the 1 Hz sampling of the control voltages are possible. Therefore, the fraction of the first
STR OBT closest in time to the OBT of the first EGG control voltage has to be stored for the processing of
the consecutive orbital revolutions. Note that the interpolation of the control voltages has no significant impact
on the error budget of the gravity gradients, when using an adequate interpolator. According to Frommknecht
(2009), the natural cubic spline interpolator has been approved.

For the conversion of the EGG OBT to GPS system time and UTC, either the difference between EGG OBT
and GPS system time is read out from the SST TCT 1i data set, contained in the satellite-to-satellite L1b file
(SST NOM 1b), or, if this is not available, information from the correlation between OBT and UTC derived during
the downlink process and provided in the auxiliary input file AUX 0UTC is used, (Frommknecht et al., 2011). In
the former case a nanosecond accuracy is reached, in contrast to the latter case where only a millisecond accuracy
is reached. The results of this step are contained in the intermediate product EGG TCT 1i of the file EGG NOM 1b.

Also the data consecutiveness is checked. If there is a gap in the control voltages the corresponding start time,
end time and the number of missing lines is recorded in the file GAPS DATA SET.
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Figure 3.2.: Flowchart: De-packeting and Sorting.

Finally, the conversion to engineering units of the detection voltages, the polarization voltages and the control
voltages is performed. For the control voltages a fourth order polynomial correction is foreseen in the processing,
which has been used for tests with simulated data before the launch of GOCE. In the processing of the real
GOCE data, this step is not necessary, and hence, not applied. The polynomial coefficients (variable PC CTR in
main auxiliary file AUX EGG DB) are therefore set to dummy values (only zeros and ones).

Figure 3.3 illustrates the arrangement of the 8 electrode pairs of a three-axis GOCE accelerometer. There are
four electrode pairs, denoted X1 to X4, along the LS accelerometer axis of the AESRF and two electrode pairs
along the two US axes, denoted Y 1/Y 2 and Z1/Z2, building a right-handed system. In the following the control
voltages of accelerometer i, measured with the x-electrodes are denoted as CVi,X1,...,X4. The control voltages
measured with the y- and z-electrodes are denoted as CVi,Y 1/Y 2 and CVi,Z1/Z2, respectively.

Figure 3.3.: Arrangement of the 8 electrode pairs in the accelerometer electrode system reference frame (AESRF) of a GOCE
accelerometer.

In Fig. 3.4 the control voltages of one day, 11 November 2009, are shown in the time domain (left) and in the
frequency domain in terms of root PSD (right), for the example of accelerometer A1. Apart from an offset, we
observe similar signals for control voltages measured in the same direction. This is true in the time domain,
as well as for the root PSDs, where a potential offset is not visible anyway, because this part of the signal is
reflected in the DC (direct current) at the zero frequency, which is not included in the illustration (right). In
Fig. 3.4(d) the curves of the two control voltages in z-direction of the AESRF (cyan and blue) are below those of
the control voltages in y-direction for frequencies below about 70 mHz. The arrangement of the accelerometers
within the gradiometer is given in Fig. 3.7. For accelerometer A1 the z-electrodes are mounted along an US
axis in (negative) x-direction of its ARF and hence also in x-direction of the GRF, which is the flight direction
of GOCE, cf. Table 3.1. For comparison the y-electrodes of A1 are mounted along an US axis in z-direction of
GRF. When comparing the corresponding curves in Fig. 3.4(d) we can conclude that the lower signal content
of the control voltages in flight direction (Ze) is due to the fact that in this direction the total signal has been
reduced to a large extent by the drag control system. Note that these are only qualitative considerations. An
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exact interpretation of the control voltages’ signal content is not possible because these are (still) uncalibrated
values.
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Figure 3.4.: Control voltages (CV1,X1,...,X4, CV1,Y 1/Y 2 and CV1,Z1/Z2) of accelerometer A1 in the accelerometer electrode system

reference frame (left) and corresponding root PSD (right) of 11 November 2009.

3.2. Voltage to acceleration conversion

The 48 control voltages from the previous step are converted to accelerations, as illustrated in Fig. 3.5.

Therefore, first of all, the control voltages have to be corrected for the phase delay and gain attenuation introduced
by the transfer functions and electronics within the accelerometers. The necessary steps can be illustrated with
the GOCE accelerometer model, see Fig. 3.6. According to Chhun and Gurard (2004) the objective is to trace
the data stream backwards from the output of the accelerometer model (point D) to its input (point A). This
can be divided into three steps:

• From D to C: Inversion of the science filter transfer function (filter parameters FILT SC in file AUX EGG DB).
The main effect is a phase correction.

• From C to B: Correction for the errors introduced by the components Read-Out and ADC2, including a
non-linear correction (parameters PC NL in file AUX EGG DB) and a correction for phase delay (parameters
FILT LO in file AUX EGG DB). With the previous steps (from D to B), corresponding to the first box in
the flowchart of Fig. 3.5, the corrected control voltages (measurement data set (MDS) EGG CCV 1i in files
EGG NOM 1b) are recovered from input control voltages (MDS EGG CTR 1i).
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Figure 3.5.: Flowchart: Voltage to acceleration conversion.

Figure 3.6.: GOCE accelerometer model. Source: Chhun and Gurard (2004).

• From B to A: Inversion of the loop transfer function. From the 48 corrected control voltages the acceler-
ations per degree of freedom (three linear and three angular accelerations) in the AESRF are computed
by recombination of the corrected control voltages and application of the electrostatic gains (parameters
ES GAIN in file AUX EGG DB). This corresponds to the second box in the flowchart of Fig. 3.5.

The conversion of the 8 control voltages (CVi,X1 to CVi,X4, CVi,Y 1, CVi,Y 2, CVi,Z1 and CVi,Z2) per accelerometer
Ai in 6 accelerations can be written as
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 ai,1
ai,5
ai,6

 = Ax


CVi,X1

CVi,X2

CVi,X3

CVi,X4

 (3.1)

 ai,2
ai,3
ai,4

 = Ayz


CVi,Y 1

CVi,Y 2

CVi,Z1

CVi,Z2

 (3.2)

where

Ax =
1

4Gx

 Ges,i,1 Ges,i,2 Ges,i,3 Ges,i,4

Ges,i,13 Ges,i,14 −Ges,i,15 −Ges,i,16

−Ges,i,17 Ges,i,18 Ges,i,19 −Ges,i,20

 (3.3)

and

Ayz =
1

2Gyz

 Ges,i,5 Ges,i,6 0 0
0 0 Ges,i,7 Ges,i,8

−Ges,i,11 Ges,i,12 Ges,i,9 −Ges,i,10

 (3.4)

are the so-called recombination matrices, which include the electrostatic gains Ges,i,k with k = 1, . . . , 20 of
accelerometer Ai. Gx and Gyz (parameters G READ X and G READ YZ in file AUX EGG DB) are the read-out gains
for the x-axis and respectively the y- and z-axes in AESRF.

The three linear accelerations (ai,1, ai,2, ai,3) and three angular accelerations (ai,4, ai,5, ai,6) per accelerometer
(i.e. in total 36 accelerations) in the AESRF are transformed to the ARF, using the correspondence between the
axes of the two reference frames. This correspondence is shown in Fig. 3.7, where the LS accelerometer axes are
indicated by dashed lines (same as shown in Fig. 2.2), and the axes in AESRF are indicated by Xe, Ye and Ze for
each accelerometer. The relationship is also given in Tab. 3.1. It can be seen that the x-axes in AESRF always
correspond to the LS transversal axes, the y-axes in AESRF always to the US transversal axes, and the z-axes in
AESRF always to the important US in-line axes. The corresponding rotation matrices from AESRF to ARF (or
GRF) can be found in the parameters R AESRF GRF in file AUX EGG DB. The intermediate results of this processing
step can be found in MDS EGG NLA 1i of the files EGG NOM 1b.

Table 3.1.: Correspondence between AESRF, ARF and GRF

accelerometer axis of AESRF axis of ARF sensitivity arrangement
Xe +Y1, +Y4 LS transversal

A1, A4 Ye −Z1, −Z4 US transversal
Ze −X1, −X4 US in-line
Xe +Z2, +Z5 LS transversal

A2, A5 Ye −X2, −X5 US transversal
Ze −Y2, −Y5 US in-line
Xe +Y3, +Y6 LS transversal

A3, A6 Ye −X3, −X6 US transversal
Ze +Z3, +Z6 US in-line

From the three linear accelerations per accelerometer in ARF the common and differential mode accelerations
are built with Eqs. 2.27 and 2.37, cf. also (Marque et al., 2010). In the EGG NOM 1b files the corresponding values
are given in the data set EGG NCD 1i. The common and differential mode accelerations are needed for the further
gradiometer processing and are thus the main output of the voltage to acceleration conversion.

With Eqs. 2.47 to 2.49 the angular accelerations in the GRF are computed from the transversal differential mode
accelerations. The related data set in the EGG NOM 1b files is EGG NGA 1i, where the ′N ′ indicates that these are
the nominal and not yet calibrated gradiometer angular accelerations.
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Figure 3.7.: Correspondence between AESRF (indicated by Xe, Ye and Ze-axes), ARF (indicated by Xi, Yi and Zi-axes, i = 1, 2, ..., 6)
and GRF (indicated by XGRF , YGRF and ZGRF -axes). The dashed arrows indicate the less sensitive accelerometer axes.

In the following the linear accelerations in ARF, the uncalibrated common and differential mode accelerations (in
the respective OAGRF) and the nominal gradiometer angular accelerations are analyzed for the day 11 Novem-
ber 2009. This day serves as a representative example for the data collected with GOCE during a nominal
measurement phase. (The measurement phases are interrupted from time to time, e.g. for calibration, cf. Chap-
ter 4.)

Figure 3.8 shows the linear accelerations in ARF (left) and the corresponding root PSD (right). The accelerations
in time domain (left) which are measured with US axes, i.e. all accelerations in x-direction, the ones of A2 and A5

in y-direction, as well as the ones of A1, A3, A4 and A6 in z-direction have a magnitude of 10−6 m/s2 or smaller,
whereas the LS acceleration measurements are about one or two magnitudes larger. The only exception to this
is the LS acceleration of A3 in y-direction, with a magnitude of only 10−6 m/s2. The corresponding root PSD
(Fig. 3.8, right) in x-direction is in the gradiometer MB approximately flat and in the order 10−9 m/s2/

√
Hz.

The root PSDs in y- and z-direction, in contrast, show in the MB an increase towards lower frequencies (up to a
few 10−8 m/s2/

√
Hz). This reflects again drag compensation in x-direction.

An example for the uncalibrated common mode accelerations is given in Fig. 3.9. The CM accelerations reflect the
non-conservative forces acting on the satellites’ center of mass (COM). The magnitude in x-direction, Fig. 3.9(a),
is smaller than in the two other directions, Fig. 3.9(b) and Fig. 3.9(c), reflecting again the drag compensation of
the ion thruster assembly. Moreover, the CM acceleration in x-direction, Fig. 3.9(a), shows a significant pattern
of alternating intervals of higher and smaller signal variation, which is observed once per orbital revolution. This
pattern is caused by the ion thrusters, which are working at certain thrust levels. In the root PSD, Fig. 3.9(d),
the functionality of the drag compensation in x-direction is again clearly visible, despite the fact that these are
still uncalibrated values.

In Fig. 3.10 the uncalibrated differential mode accelerations are shown, which contain the gravity gradient and the
rotational signal. For all in-line measurements (ad,14,x, ad,25,y, ad,36,z) US axes have been used. The corresponding
measurements have a magnitude of about 10−6 m/s2 or smaller. The measurements of the LS axes have a larger
magnitude, of e.g. up to 10−5 m/s2 for ad,36,y. The root PSDs (right) of the in-line measurements have a smaller
magnitude in the gradiometer MB as the other differential mode accelerations. This higher magnitude of the
remaining accelerations can either be rotational signal or noise due to the influence of LS measurements.
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The uncalibrated gradiometer angular accelerations are shown in Fig. 3.11. All angular acceleration components
should theoretically be very small. In Cesare (2008) the requirements for the angular control of the satellite
are given. For the DC part of ω̇x we have 2 · 10−6 rad/s2, and for the DC part of ω̇y and ω̇z 1 · 10−6 rad/s2.
We observe, Fig. 3.11(a), that the requirement for ω̇y holds. For ω̇x and ω̇z we observe a larger bias, due to
the influence of the LS measurements, which does not allow the verification of the respective requirements. In
the root PSD, Fig. 3.11(b), ω̇x has the largest magnitude within the MB. This is due to the geometry of the
spacecraft, which has an elongated body in x-direction, making the satellite sensitive to rotational accelerations
about this axis, cf. Sect. 5.1.
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Figure 3.8.: Linear accelerations of accelerometers A1 to A6 in accelerometer reference frame (ARF, left) and corresponding root PSD
(right) of 11 November 2009.
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Figure 3.9.: Uncalibrated common mode accelerations (left) and corresponding root PSD (right) of 11 November 2009.
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Figure 3.10.: Uncalibrated differential mode accelerations (left) and corresponding root PSD (right) of 11 November 2009.
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Figure 3.11.: Nominal gradiometer angular accelerations (a) and corresponding root PSD (b) of 11 November 2009.
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3.3. Proof mass acceleration retrieval

Fig. 3.12 illustrates the steps to recover calibrated accelerations from the nominal ones.

Figure 3.12.: Flowchart: Acceleration recovery.

In a first step, the nominal common and differential mode accelerations are corrected with the ICMs contained in
file AUX ICM 1b, according to Eq. 4.15. The ICMs contain the corrections for gradiometer imperfections, like
scale factors of the accelerometers and non-orthogonalities of the accelerometer axes, see also Chapter 4. The
calibrated common and differential mode accelerations are given in the EGG NOM 1b files as EGG CCD 1i.

The transversal, calibrated DM accelerations are used further on to calculate calibrated gradiometer angular
accelerations, again according to Eqs. 2.47 to 2.49. In the EGG NOM 1b files they are called EGG CGA 1i, where the
′C ′ indicates that these are calibrated gradiometer angular accelerations.

In the following the calibrated CM, DM and angular accelerations are shown for 11 November 2009. The impact
of the calibration becomes clear, when comparing these calibrated values to the uncalibrated ones, as described
before.

Figure 3.13 shows the calibrated common mode accelerations. In the time domain (left), we observe only small
differences with respect to the uncalibrated values as shown in Fig. 3.9, left. Still, there is a large bias present
for the LS accelerations, since the calibration is not designed in order to eliminate the bias, cf. Chapter 4. Also
in the root PSD of the CM accelerations no significant effect due to the calibration is visible, cf. Fig. 3.13, right
and Fig. 3.9, right. The CM accelerations in one direction can be measured simultaneously with three one-axis
gradiometers. We observe that these three measurements coincide within the gradiometer MB (and below) very
well. Above the MB, i.e. for frequencies higher than 100 mHz, the higher noise level of the LS measurements
becomes visible. This holds in y-direction for ac,14,y and ac,26,y, Fig. 3.13(e), blue and red, and in z-direction for
ac,25,z, Fig. 3.13(f), green.

In Fig. 3.14 the calibrated differential mode accelerations are shown. In the time domain (left) we observe almost
no impact due to calibration, cf. Fig. 3.14, left and Fig. 3.10, left. Again, the bias cannot be eliminated by
calibration. Of upmost importance is the calibration within the MB. The root PSDs of the calibrated in-line DM
accelerations, Fig. 3.14, right, are flat for frequencies between about 40 and 100 mHz, i.e. in the upper part of
the MB. In contrast to that, the root PSDs of the respective uncalibrated differential accelerations, Fig. 3.10,
right are not flat, but increase towards the lower frequencies, e.g. for ad,25,y, Fig. 3.10(e), green. This increase is
already visible for frequencies below about 80 mHz. We conclude that the calibration has successfully reduced
the errors in the MB of the differential in-line measurements, which are needed for the computation of the main
diagonal GGT elements. The impact of the calibration as deduced from different calibration approaches is further
discussed in Sect. 5.1.3.

The calibrated gradiometer angular accelerations in Fig. 3.15 look similar to the respective uncalibrated acceler-
ations in Fig. 3.11. We observe again the smallest bias for ω̇y (in time domain, Fig. 3.15(a)) which is composed
of US measurements only, and the largest component in the MB is again ω̇x (in root PSD, Fig. 3.15(b)) due to
the elongated geometry of the satellite in x-direction.
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Figure 3.13.: Calibrated common mode accelerations (left) and corresponding root PSD (right) of 11 November 2009.
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Figure 3.14.: Calibrated differential mode accelerations (left) and corresponding root PSD (right) of 11 November 2009.
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Figure 3.15.: Calibrated gradiometer angular accelerations (a) and corresponding root PSD (b) of 11 November 2009.
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3.4. Angular rate reconstruction

The so-called angular rate reconstruction (ARR) is the most complex part of the nominal gradiometer processing
besides the determination of the ICMs (cf. Sect. 4.3). The goal is to find the best possible combination of
the available attitude information to reconstruct the inertial angular rates of the gradiometer about the axes
of the GRF (MDS EGG GAR 1i). Attitude information is available from the gradiometer in terms of angular
accelerations about the axes of the GRF (data set EGG CGA 1i) and from a star sensor in terms of quaternions
defining the attitude of the SSRF in the IRF (files STR VC2 1b). Besides, the quaternions defining the attitude
of the GRF in the IRF are determined (MDS EGG IAQ 1i). In this section, the original method for the angular
rate reconstruction as defined by Cesare et al. (2008) is described. In Sect. 6.2 an improved method for ARR
is introduced, which has been developed by the author and which has replaced the original method within the
official L1b processing, cf. Sect. 6.2.2.

Figure 3.16 shows a simplified flowchart of the necessary processing steps for the original ARR method.

Figure 3.16.: Flowchart: Angular rate reconstruction.

To find the best possible combination of the two available sets of attitude information the error spectra of the
corresponding measurement techniques are essential. The measurements of the gradiometer are highly accurate
within its MB which is from 5 to 100 mHz and have increasing noise towards the lower frequencies. The star
sensor measurements, in contrast, provide very accurately the absolute orientation in the respective SSRF. Hence,
the combination of the attitude information is based on the following strategy, according to Cesare et al. (2008):

Inside the MB the best available measurements come from the gradiometer itself. Hence, the angular rates in
the MB are obtained by integration of the gradiometer angular accelerations, Eqs. 2.47 to 2.49. For the very low
frequencies the measurements from the star sensors are most accurate. To obtain angular rates from the STR
quaternions, first a rotation from the SSRF into the GRF has to be carried out. This can be done using the
known rotation matrices from SSRF to GRF, provided in file AUX EGG DB. Originally, the rotation matrices as
determined on-ground have been used. After the first measurements of GOCE had become available, according
to Strandberg (2010), a periodic difference between the differential accelerations modelled from the star sensors
and from gradiometer had been found, which lead to a co-alignment between the three star sensors, using STR 1
as a reference. The results of this co-alignment have been used in the nominal L1b processing until September
2011. Since then, a new EGG processor version is utilized and, simultaneously, all EGG data from the previous
measurement phases are re-processed. The improvements of the new EGG processor are described in Chapter 6
of this work. Also for the rotation matrices from SSRF to GRF new values are used. They are determined with
the calibration method by Siemes et al. (2012), cf. Sect. 4.3.5, for each measurement phase. After the rotation
from the SSRF into the GRF, the STR angular rates are obtained from the rotated quaternions by employing the
Poisson equations (Cesare et al., 2008; Wittenburg, 1977), cf. Appendix B. The corresponding error spectrum is
assumed to have a linear increase with frequency f .

In the original approach the equivalent hybridization frequency (i.e. for lower frequencies mainly STR data are
used and for higher frequencies mainly EGG data) is below the MB and has different values for each axis. It was



42 3 Nominal gradiometer data processing and analysis

found by Cesare et al. (2008) by comparison of the angular acceleration error spectrum, coming either from the
gradiometer or from the star sensor. The error spectrum of the star sensor angular accelerations was obtained
by deriving two times the error spectrum of the star sensor attitude information (cf. Appendix B).
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Figure 3.17.: Concept of hybridization between STR and EGG measurements at the level of angular accelerations.

In Fig. 3.17 the concept of hybridization between STR and EGGmeasurements at the level of angular accelerations
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is shown for all three components. The blue lines indicate the error root PSD of the STR angular accelerations
from numerical simulation, whereas the green lines show the error root PSD of the EGG angular accelerations
from simulation (including EGG noise only). The corresponding hybridization frequencies between the STR and
the EGG error curves are highlighted in red. For the angular acceleration x-component the crossover takes place
at about 1 mHz, for the y- and z-component it takes place at about 0.2 and 0.5 mHz, respectively.

Since the hybridization frequencies are well below the gradiometer MB, the angular rate within the MB can be
reconstructed by numerical integration of the gradiometer angular accelerations. The star sensor measurements
are used below the hybridization frequencies for the determination of the absolute angular rate (and attitude)
values (i.e. for the DC part), to compensate the effects of the accelerometer drift with increasing noise towards the
lower frequencies and to counteract the drift of the numerical integration of the gradiometer angular accelerations.

From a processing point of view, the angular rate reconstruction is performed by Kalman-filtering in the time
domain (Cesare and Catastini, 2008b; Stummer et al., 2011). In principle, the method consists of a prediction
step and a correction step, see Fig. 3.18 and cf. also the processing flowchart in Fig. 3.16.

Figure 3.18.: Principle of Kalman-filtering for angular rate reconstruction.

The prediction starts with the computation of the one-step angular rate variation (between epochs k and k+ 1),
which is obtained by interpolation (i.e. one-step integration) of the gradiometer angular accelerations, cf. Fig. 3.19.
The integration is performed using a Lagrange interpolator with the four coefficients ck=−1 = ck=+2 = −0.0417
and ck=0 = ck=1 = 0.5417, according to Cesare et al. (2008). This means that for the computation of the angular
rate variation between epochs k and k+1, the weighted sum of the gradiometer angular accelerations from epochs
k − 1 to k + 2 is built.

Figure 3.19.: Integration of gradiometer angular accelerations to derive the one-step angular rate variation.

The attitude quaternions of the next epoch (k+1) are predicted by rotation of the attitude quaternions from the
current epoch (k) to the next, using the one-step angular rate variation (between epochs k and k+1), according
to Eq. B.21. Also the angular rates for the next epoch (k + 1) are predicted. Thus, for epoch k + 1, besides
the measured STR quaternion, also a predicted attitude quaternion is available. From the difference between
these two sets of quaternions, the correction for the current attitude quaternion and angular rate is found. The
gains of the estimator are derived from pre-launch measurement performance models of the gradiometer and the
star sensor. Note that the estimator gains are not adapted to the current error behavior of the real GOCE data
during the L1b processing. This is different from a classical Kalman filter approach, where also a correction of
the estimator gains is foreseen. The transient of the Kalman filter is about half a day long. Hence, in the case
that a re-initialization of the filters is necessary, like e.g. after a calibration phase, at least half a day of data is
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lost. The new L1b implementation for the ARR, as derived in Sect. 6.2 is based on FIR (finite impulse response)
filtering, where the used filters have a length of only 8401 seconds. In case of gaps, at least four times less data
is lost with respect to the original implementation.

In the original processing scheme the measurements of only one star sensor, namely the one which is provided in
the STR VC2 1b product, are used within the ARR. In Sect. 6.4 it is shown that a combination of all simultaneously
available star sensor data is possible and helps to improve the quality of several L1b products, like in particular
the gravity gradients, cf. also Sect. 7.

In the following the data associated with the ARR are shown for the example day 11 November 2009. The two
main input data sets are the calibrated gradiometer angular accelerations, as already discussed in the previous
section with Fig. 3.15(a), and the star sensor attitude quaternions, as given in Fig. 3.20. As output the ARR
provides merged inertial attitude quaternions (IAQ), cf. Fig. 3.21 and merged angular rates, cf. Fig. 3.22.

Fig. 3.20 shows the measured quaternions of star sensor 2, which are provided in the STR VC2 1b files of 11 Novem-
ber 2009. q0 denotes the scalar part of the quaternions. The values of the quaternions have to be within ± 1.
In the time domain, Fig. 3.20(a), we observe a change in sign in all quaternion components, once per orbital
revolution. Since quaternions have a sign ambiguity this change in sign has no impact on the contained attitude
information. The reason for the change once per revolution is that the L1b data are provided in orbit-wise
files. Hence, at every beginning of a new file the sign switch can happen. In Fig. 3.20(b) the root PSDs of the
quaternions are given. Note that for the computation of the PSDs a continuous quaternion data set without sign
changes has to be used. We observe an approximately continuous decay in magnitude up to a frequency of about
2 mHz, followed by an increase with its peak at about 4 mHz, and a further decay which is reached at about
50 mHz. For higher frequencies the root PSDs are approximately flat with a level of about 2 · 10−5 rad/

√
Hz

for the components q0 and q2 and of about 3 · 10−5 rad/
√
Hz for q1 and q3. Further analyses of the GOCE star

sensor data are made in Sect. 5.2.

In Fig. 3.21 the IAQs are shown. In the time domain, Fig. 3.21(a), we observe that these quaternions have no
sign changes. They can be avoided within the original ARR implementation, because of a successive processing
strategy. The corresponding root PSDs, Fig. 3.21(b), are at the low frequencies similar to the root PSDs of
the star sensor quaternions in Fig. 3.20(b). For higher frequencies, where the two times integrated gradiometer
angular accelerations are used, we observe a continuous decay in magnitude. The high frequencies of the star
sensor only quaternions are dominated by noise, Fig. 3.20(b), whereas the root PSD of the IAQs follows (also)
for high frequencies the expected behavior, cf. the root PSD of the simulated attitude quaternions in Fig. 2.5(b).
In Sect. 6.3 an improved method for the determination of the IAQs is introduced, and further quality assessment
is made.

The main output of the ARR are the merged angular rates, called gradiometer angular rates (GAR) in the L1b
processing, as illustrated in Fig. 3.22, which should be of good quality for all frequencies. The mean angular
velocity about the y-axis is about 1.2 · 10−3 rad/s, Fig. 3.22(a), due to the rotation of the satellite about this
axis once per revolution. ωx and ωz have a mean value of approximately zero and variations of up to about
1.2 ·10−4 rad/s. In the corresponding root PSDs, Fig. 3.22(b), the x-component (blue) has the largest magnitude
in the MB. The reason is again, as already pointed out for the calibrated gradiometer angular accelerations, which
are the basis for the GAR in the high frequencies, the sensitivity of GOCE for rotations around its slight x-axis.
For further analyses of the GAR see Sect. 5.1.
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Figure 3.20.: Star sensor attitude quaternions (a) and corresponding root PSD (b) of 11 November 2009.
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Figure 3.21.: Merged inertial attitude quaternions (a) and corresponding root PSD (b) of 11 November 2009.
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Figure 3.22.: Merged angular rate (a) and corresponding root PSD (b) of 11 November 2009.
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3.5. GGT computation

For the computation of the gravity gradients one further processing step is needed, cf. Fig. 3.23.

Figure 3.23.: Flowchart: GGT computation.

The gravity gradients (MDS EGG GGT 1i in EGG NOM 1b files) are the main product of the nominal gradiometer
processing. They are obtained according to Eqs. 2.50 to 2.55 from the calibrated CM and DM accelerations
(EGG CCD 1i) by subtraction of the centrifugal part, which is expressed in the angular rate terms (EGG GAR 1i).

For the example day 11 November 2009 the gravity gradients are given in Fig. 3.24 and their respective root PSDs
in Fig. 3.25. The GGT components contain a bias with respect to the theoretical values, as shown in Sect. 2.4,
Fig. 2.3. The bias is largest for the two less accurate elements Vxy and Vyz. The variation of the individual gravity
gradients is about the same as for the reference data. Moreover, we observe a strong trend in Vxy, Fig. 3.24(d).
The root PSDs of the main diagonal GGT components, Fig. 3.25(a), follow for the frequencies below about
30 mHz the expected behavior, cf. the root PSDs of the simulated gravity gradients in Fig. 2.4(a), with Vyy being
the smallest component. For frequencies higher than about 30 mHz and lower than about 0.2 Hz the root PSDs
are approximately flat, with a level of about 10 mE/

√
Hz for Vxx and Vyy and about 20 mE/

√
Hz for Vzz. The

root PSDs of Vxy, Vxz and Vyz are given in Fig. 3.25(b). Vxy is the smallest component at the low frequencies,
which is in accordance with expectations, cf. the simulated gravity gradients in Fig. 2.4(b). The two less sensitive
components, Vxy and Vyz, have a flat noise level of about 0.6 and 0.8 E/

√
Hz. Vxz, which is a very accurate

component, is similar to the (very accurate) main diagonal GGT components also flat for the frequencies higher
than about 30 mHz with a magnitude of about 10 mE/

√
Hz. The quality of the gravity gradients, as measured

with GOCE is further analyzed in Sect. 5.1.
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Figure 3.24.: Main diagonal elements of gravity gradients (left) and off-diagonal elements (right) of 11 November 2009.
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Figure 3.25.: PSD of main diagonal elements of gravity gradients (a) and off-diagonal elements (b) of 11 November 2009.

3.6. Transformation matrix

After the calculation of the gravity gradients, one more data set for the EGG NOM 1b files is computed, the
transformation matrix from GRF to IRF, see Fig. 3.26.

Figure 3.26.: Flowchart: Transformation matrix from GRF to IRF.

The transformation matrix from GRF to IRF (EGG GIM 1i) can be obtained for every epoch from the inertial
attitude quaternions (EGG IAQ 1i), which are computed within the angular rate reconstruction (cf. Sect. 3.4),
according to Eq. B.20, without any further auxiliary input.

3.7. Monitoring

Several tests are performed to assure the data quality, cf. Fig. 3.27.

Already at the level of voltages (control voltages in EGG CTR 1i, polarization and detection voltages in EGG POL 1i)
the values can be compared to a corresponding threshold, which has been determined empirically and which is
contained in the auxiliary data file (AUX EGG DB). Also the accelerations (the nominal linear accelerations in
EGG NLA 1i, the nominal CM and DM accelerations in EGG NCD 1i, and the difference between the nominal and
the calibrated gradiometer angular accelerations in EGG NGA 1i and EGG CGA 1i) can be compared to related
thresholds. Moreover, the trace of the GGT is computed. It is used in a separate processor (not further discussed
here) for the monitoring of the GGT trace on a daily basis by comparing it to a corresponding threshold. If during
one of the described tests a threshold is breached, the corresponding epochs will be reported in the monitoring
file EGG MON 1b.
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Figure 3.27.: Flowchart: Monitoring.

3.8. Level 1b gradiometer and star sensor data product overview

Table 3.2 gives an overview of the measurement data sets contained in the main gradiometer product EGG NOM 1b.
Since star sensor data play an important role in the gradiometer processing, an overview of the main star sensor
products is given in Table 3.3. Note that the entry of a third star sensor (STR2 VC3 1i) in the STR VC3 1b product
is optional, i.e. it is possible that a STR VC3 1b product contains only the data from one star sensor (STR VC3 1i).

Table 3.2.: Content of main Level 1b gradiometer product.

product MDS description

EGG NOM 1b EGG TCT 1i time correlation table
EGG CTR 1i gradiometer control voltages
EGG NLA 1i uncalibrated linear/angular accelerations
EGG NCD 1i uncalibrated common/differential accelerations
EGG NGA 1i uncalibrated gradiometer angular accelerations
EGG CCV 1i corrected control voltages
EGG CCD 1i calibrated common/differential accelerations
EGG CGA 1i calibrated gradiometer angular accelerations
EGG GAR 1i gradiometer angular rates
EGG IAQ 1i inertial attitude quaternions
EGG GGT 1i gravity gradient tensor in GRF
EGG GIM 1i rotation matrix from GRF to IRF

Table 3.3.: Content of main Level 1b star sensor products.

product MDS description

STR VC2 1b STR TCT 1i time correlation table
STR VC2 1i quaternions in SSRF from first star sensor

STR VC3 1b STR TCT 1i time correlation table
STR VC3 1i quaternions in SSRF from second star sensor
STR2 VC3 1i quaternions in SSRF from third star sensor





4. Calibration of the gradiometer

In this chapter the calibration of the gradiometer is described. The accurate calibration of the gradiometer is a
pre-requisite for achieving the mission objectives (Siemes et al., 2012).

Several gradiometer imperfections have to be considered. The two main types of imperfections for the GOCE
gradiometer are the so-called quadratic factors, which represent non-linearities in the accelerometer transfer
functions, and the so-called inverse calibration matrices (ICMs), which account for accelerometer scale factor
errors, misalignments and non-orthogonalities.

The calibration must be performed in-flight, because the gradiometer is designed to operate under micro-g con-
ditions (Siemes et al., 2012). Nevertheless, there are also some calibration activities which already take place
on-ground. They are mainly to verify the feasibility of the calibration methods and to verify that the upper limits
for some of the calibration parameters have not been exceeded (Cesare and Catastini, 2008a). The on-ground
calibration takes place on a special pendulum bench and cannot be performed for all of the calibration parameters
due to the on-ground (1 · g) environment.

The calibration methods can be distinguished between internal (in-flight) and external, cf. Siemes et al. (2012).
The internal methods make only use of data, which are collected by on-board sensors of GOCE. This is mainly
the gradiometer and the star sensors. The external methods make use of additional data. E.g. Rispens and
Bouman (2009) and Visser (2008) make use of global gravity field models to estimate calibration parameters for
the accelerometer data. Bouman et al. (2004) use global gravity field models and terrestrial gravity data for
estimating calibration parameters for the gravity gradients. For an overview of the existing calibration methods
it is referred to Bouman (2008).

This chapter is confined to the internal calibration methods. Two approaches are discussed in detail. The first
one is the original method as defined by industry, which is referred to as TAS (Thales Alenia Space) method
(Cesare et al., 2008). An independent implementation of the TAS method has been developed here. Results are
shown in Sects. 5.1.4 and 5.2.3. The second one is the so-called ESA-L method. The “L” in the name is referring
to its inventor Daniel Lamarre. It is the baseline method for the current gradiometer processing (Lamarre, 2008).
Corresponding calibration results are shown in Sect. 5.1.4. A third method is addressed in Sect. 6.5. It is based on
an independent approach by Michael Kern (Kern et al., 2007) and has been refined by Christian Siemes (Siemes
et al., 2012). Within this work it is referred to as ESA-S method. The method can be used for validation and
correction of other calibration results, see again Sect. 6.5. For a definition of the terms calibration and validation
in this context, it is referred to Drinkwater (2005).

The errors affecting the measurement of the gravity gradients can be grouped into four categories (Cesare, 2008).
1) The instrument errors, which depend only on the gradiometer elements, 2) instrument-satellite coupling errors,
depending on the interaction of the gradiometer and the satellite and mission environment, 3) the satellite errors,
which depend on the satellite performance only (gradiometer excluded) and 4) the processing errors, related to
the transformation of the Level 0 to Level 1b products. An analysis of the main error sources related to the
measurement of the GGT can also be found in Müller (2001).

The dominant part of the instrument errors is the accelerometer noise. In Sect. 5.1 the actual accelerometer
noise is analyzed and compared to the pre-launch expectations. The largest portion of the instrument-satellite
coupling errors is due to the coupling of non-gravitational linear accelerations acting on the satellite’s COM with
the in-line differential mode accelerations, which contain the main diagonal gravity gradient signal. (This refers
to certain elements of the ICMs, as explained below.) In Sect. 5.1.4 performance analyses of the GOCE data are
made which indicate that this coupling exceeds partially the expected limits, which leads to a degraded quality
of the gravity gradients and which is taken into account in the new processing strategies (see Chapter 6). As
main satellite error the satellite self-gravity is considered. It is the acceleration produced by the masses of the
platform (without gradiometer). The main processing errors are due to the recovery of the angular rates (ARR),
which is in the MB mainly based on the gradiometer angular accelerations and for the low frequencies mainly on
the star sensor data (cf. Sect. 3.4), i.e. the accuracy of the reconstructed angular rates is in the MB limited by
the accuracy of the gradiometer angular accelerations. Additionally, errors due to a not optimal combination of
the two available attitude data sets (from gradiometer and star sensor) can occur. In Sect. 6.2 the quality of the
angular rates is analyzed and an alternative ARR method is introduced, which reduces the processing errors.

51
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4.1. Definition of the gradiometer calibration parameters

In this section the gradiometer calibration parameters, as introduced by Cesare (2008) for the original TAS
calibration approach, are defined. The main imperfections of an accelerometer within the GOCE gradiometer,
which have to be taken into account, are:

(a) scale factor error

(b) misalignment

(c) coupling (non-orthogonality)

(d) quadratic factor

(e) bias

(f) noise

In the following the calibration parameters corresponding to the above imperfections are defined.

(a) Scale factors

The scale of an accelerometer Ai in direction k is not perfectly 1, but deviates by a small valueKi,k, cf. Fig. 4.1(a).
A measured acceleration a′i,k can thus be obtained by

a′i,k = (1 +Ki,k) ai,k. (4.1)

The corresponding scale factor matrix is defined as

Ki =

 1 +Ki,x 0 0
0 1 +Ki,y 0
0 0 1 +Ki,z

 = I +

 Ki,X 0 0
0 Ki,Y 0
0 0 Ki,Z

 = I3 + dKi (4.2)

with I3 being the 3× 3 identity matrix.

(b) Misalignment

A rotational deviation of an accelerometer i from its nominal orientation is called misalignment, cf. Fig. 4.1(b).
It can be written, using the small angle approximation, as

Ri =

 1 ψi −θi
−ψi 1 φi

θi −φi 1

 = I3 +

 0 ψi −θi
−ψi 0 φi

θi −φi 0

 = I3 + dRi. (4.3)

(c) Coupling

If the axes of an accelerometer Ai are not perfectly perpendicular to each other, their measurements are coupled,
cf. Fig. 4.1(c). The corresponding coupling matrix, for small deviations from orthogonality, is defined as

Si =

 1 εi ηi
εi 1 ςi
ηi ςi 1

 = I3 +

 0 εi ηi
εi 0 ςi
ηi ςi 0

 = I3 + dSi (4.4)

(d) Quadratic factors

A quadratic factor represents a (second order) non-linear term in the control loop of an accelerometer. It is
the non-linearity in the transfer function G which transforms the measured voltages back into accelerations,
cf. Sect. 4.2. The measured acceleration a′i,k of accelerometer Ai in direction k can be expressed as

a′i,k = K2i,k · a2i,k (4.5)

with

K2i =

 K2i,X 0 0
0 K2i,Y 0
0 0 K2i,Z

 (4.6)
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being the so-called quadratic factor matrix.

(e) Accelerometer bias

Each accelerometer axis measures an unknown bias. The corresponding bias vector for accelerometer Ai is defined
as

bi =

 bi,X
bi,Y
bi,Z

 (4.7)

(f) Accelerometer noise

Along each accelerometer axis colored noise is measured. The noise vector for accelerometer Ai reads

ni =

 ni,X
ni,Y
ni,Z

 (4.8)

Figure 4.1 illustrates the gradiometric imperfections (a) to (c) on the example of gradiometer arm 14. In this
example, accelerometer A1 is assumed to be perfect, whereas A4 either has scale factors deviating from 1 along
the x and y-axes, Fig. 4.1(a), is rotated from its nominal position about the z-axis, Fig. 4.1(b), or its x and y-axes
are not perfectly perpendicular to each other, Fig. 4.1(c).

(a) Scale factor error

(b) Misalignment

(c) Non-orthogonality

Figure 4.1.: Possible gradiometric imperfections shown for the x- and y-axes of accelerometer A4, (a) scale factor error, i.e. deviation
of the scale factor from 1, (b) misalignment, and (c) non-orthogonality.

The basic equation including all the above defined calibration parameters for the gradiometer imperfections can
be written as

a′i =(I3 + dKi) · (I3 + dRi) · (I3 + dSi) · ai +K2i · a2i + bi + ni

≈ (I3 + dKi + dRi + dSi) · ai +K2i · a2i + bi + ni

a′i = (Ki + dRi + dSi) · ai +K2i · a2i + bi + ni

(4.9)

For the nominal TAS calibration method not the absolute gradiometer calibration parameters for the individual
accelerometers are used, but their so-called common and differential values between the two accelerometers on each



54 4 Calibration of the gradiometer

of the three gradiometer arms. They are defined, in analogy to the common and differential mode accelerations,
e.g. for the common misalignment angle of accelerometer pair ij about the x-axis, as

φc,ij =
1
2 (φi + φj), and respectively for the differential part as φd,ij =

1
2 (φi − φj).

For the basic measurement equation containing all above gradiometer imperfections we get
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with

M ij =
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and

K2ij =


K2c,ij,X +K2d,ij,X 0 0
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By inverting the relationship 4.10 and thereby neglecting bias, noise and the quadratic term, which is assumed to
be already taken care of, the true differential mode accelerations, from which the gravity gradients are computed,
can be derived from the measured ones by(

ac,ij
ad,ij

)
=M−1

ij

(
a′c,ij
a′d,ij

)
. (4.15)

This equation is used within the L1b processing, cf. Sect. 3.3 for the correction of the measured common and
differential accelerations with the ICMs being M−1

ij .

The quadratic factors are physically adjusted beforehand, as explained in the next section.
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4.2. Quadratic factor calibration

The physical origin of the quadratic factors is explained in Lamarre (2007). Figure 4.2 is a simplified view of a
control loop of one degree of freedom (along one direction k) of one accelerometer Ai.

Figure 4.2.: Control loop of one accelerometer. Source: Lamarre (2007).

The feedback loop has a forward transfer function H, which converts accelerations acting on the proof mass to
voltages, and it has a backward transfer function G from voltages to accelerations, which is called electrostatic
gain. In a perfect control loop were all elements are linear, an external acceleration acting on the proof mass
would be transformed into voltages (via H) and back into accelerations (via G) without loss of information, and
the proof mass would be put back correctly to its original position. In reality there is significant non-linearity
present in the electrostatic gain G. This non-linearity, or second order term in G, is the sought-after parameter,
the quadratic factor K2i,k or shortly K2.

Figure 4.3.: Control loop of one accelerometer with injection of the calibration signal. Source: Lamarre (2007).

The measurement of the quadratic factors is based on the injection of a high frequency signal into the loop,
compare Fig. 4.3. The bandwidth of the loop only extends up to 10 Hz, whereas the bandwidth of G itself
is much wider and goes up to 1 kHz. In case of a linear transfer function G a high frequency (fe = 100 Hz)
sinusoidal calibration signal is not significantly attenuated by G and the calibration signal should not change the
output. If G has a significant quadratic factor, as in reality, the calibration signal

ue = Aesin(2πfet)

is squared. With the relationship sin(x)2 = 1
2 (1− cos(2x)) the squared signal transmitted via G can be written

as

u2e = K2 ·A2
esin(2πfet)

2 = K2 ·A2
e · 1

2 (1− cos(2 · 2πfet)) = 1
2K2 ·A2

e − 1
2K2 ·A2

e · cos(2 · 2πfet)).

Thus the non-linear transfer function G not only transmits the 100 Hz calibration signal but also generates a
harmonic cosine signal at 2 · fe = 200 Hz and an offset with half of the squared amplitude.

This shall be illustrated in the following with a simple example, cf. Fig. 4.4, where a quadratic factor of 1 is
assumed. The original sine signal has an amplitude of 1 and a wavelength of 3 seconds. The corresponding
squared signal consists of a cosine signal with half of the wavelength (1.5 seconds) and half of the squared
amplitude (0.5), and an additional offset with half of the squared amplitude (0.5).

For the quadratic factor calibration with GOCE, the 100 Hz and the 200 Hz signals are filtered by the transfer
function H of the loop, whereas the offset appears in the output voltages with an amplitude Asw which is
proportional to the quadratic factor

Asw = C
A2

e

2 K2.

With C being a correction factor that depends on the accelerometer output channel from which the measured
acceleration is taken. C can be assumed to be known here.
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Figure 4.4.: Example for sine signal with wavelength of 3 seconds and amplitude of 1 (left) and its square (right). The upper two plots
show the signals in the time domain; the lower two plots illustrate to corresponding coefficients ck, at order k (with ak=1,2,...,N−1 being
the cosine coefficients, bk=1,...,N−1 being the sine coefficients, and ak=0/2 being the DC term) of a Digital Fourier Transformation
(DFT) in the frequency domain. The squared sine signal in time domain (upper right plot) is composed of a harmonic cosine signal
with wavelength of 1.5 seconds (and amplitude of 0.5) and an offset with amplitude of 0.5. In the frequency domain (lower right
plot) the cosine signal with wavelength of 1.5 seconds is represented by the cosine coefficient ak=2 with amplitude of 0.5. The offset
is represented by ak=0/2, being 1/2.

Figure 4.5.: Calibration pulse train and offset in output signal. Source: Lamarre (2007).

For the measurement of the quadratic factor a train of pulses is sent, with a pulse rate Tsw (e.g. 20 seconds) that
lies in the MB, as shown in Fig. 4.5. The modulated offset with amplitude Asw is then synchronously detected
in the output voltages and has a corresponding frequency fsw (e.g. 50 mHz).

The quadratic factor measurement and adjustment has to be done in-flight, i.e. during the mission. Nevertheless,
there is also need for an on-ground calibration of the quadratic factors, to verify in general the feasibility of
the quadratic factor adjustment by proof mass displacement and to measure the “by-construction” values of the
accelerometer quadratic factors along the ultra-sensitive axes.

According to Cesare (2008) the limits under which the quadratic factors have to be reduced during the in-flight
calibration process are:

• for US in-line axes: differential part 3 s2/m; common part 6 s2/m (or 9 s2/m for accelerometer pair 14),
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• for US transversal axes: differential and common part 9 s2/m

• not needed for LS transversal axes: OAG14 y, OAG25 z, OAG36 y

In Frommknecht et al. (2011) it is documented that the quadratic factor calibration has been successfully per-
formed, which means that all quadratic factors are adequately compensated.

4.3. ICM calibration

In this section the ICM calibration is illustrated. First, the calibration procedure which is performed by satellite
shaking is discussed. Since the ICM calibration methods are based on several assumptions about the instrument
errors which are related to the errors of the individual ICM elements, the next topic is the derivation of limit
values for the ICM elements, as deduced from Cesare and Catastini (2008b). Based on these considerations,
the original TAS method, cf. Sect. 4.3.3, and the ESA-L method, cf. Sect. 4.3.4, which is currently in use, are
introduced.

4.3.1. Satellite shaking procedure

For the determination of the ICMs (see Sects. 4.3.3 and 4.3.4) a calibration procedure, which includes shaking of
the satellite, is performed approximately every two months.

The spacecraft shaking shall fulfill the following two aims:

• The generation of a strong linear and angular acceleration signal for frequencies between 50 to 100 mHz,
the so-called upper measurement band (UMB).

• The generation of a strong angular acceleration signal for the frequencies near 1.3 mHz.

The former shall guarantee that in the UMB the linear and angular accelerations induced by the spacecraft
shaking are much more significant than the gravity gradient signal, which is a basic assumption for the retrieval
of the (relative) ICM elements in the TAS, as well as in the ESA-L method.

The latter is conducted in order to determine the absolute accelerometer scale factors, by a comparison of star
sensor and gradiometer angular rate measurements.

According to Frommknecht et al. (2011), shaking of the satellite is performed along the flight direction (x-axis)
with a modulation of the ion thrust, while the 5 other degrees of freedom are excited with the Gradiometer
Calibration Device (GCD). The GCD consists of 2 sets of 4 cold gas thrusters, firing in the yz-plane, the sets
being at both ends of the spacecraft. It is possible to modulate the ion thrust with fine steps and to achieve
a corresponding spectral density well localized between 50 and 100 mHz. The cold gas thrusters are limited
to on-off operation, what makes amplitude modulation impossible. The desired spectral densities can only be
approximated by a combination of frequency and duty cycle modulations.

4.3.2. Derivation of limit values for the ICMs

From Eq. 4.15 it is known that the inverse of the calibration matrices is needed to recover the true common
and differential mode accelerations from the measured ones. Thus the determination of the inverse calibration
matrices is crucial for the success of the GOCE mission. Upper limits for the elements of the inverse calibration
matrices can be derived from known upper limits of the gradiometer imperfections by construction. Within this
section it will be shown how upper limits for the elements of the ICMs can be derived. They are found from
the upper limits for the elements of the calibration matrices plus the error terms of a series expansion for the
inversion of the calibration matrices.

Moreover, two relationships between the elements of the inverse calibration matrices will be introduced. The first
one is between the sub-matrices of the inverse calibration matrices and the second one is between the elements of
the sub-matrices of the inverse calibration matrices. It will be explained how these relationships are used within
the nominal GOCE ICM processing.
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Figure 4.6.: Example for root PSD of (a) linear and (b) angular accelerations during shaking of the spacecraft. The data is taken from
the third ICM calibration phase (8 October 2009). The linear accelerations are exemplarily shown for accelerometer A1 in GRF. The
angular accelerations are derived in GRF from Eqs. 2.47 to 2.49.

Limit values for the elements of the ICMs by construction

The calibration matrix of one accelerometer pair can be subdivided into a 6×6 unit matrix I6 and a 6×6 matrix
dM ij containing the deviations from the unit matrix.

M ij = I6 +


Kc,ij,X ψc,ij + εc,ij −θc,ij + ηc,ij Kd,ij,X ψd,ij + εd,ij −θd,ij + ηd,ij

−ψc,ij + εc,ij Kc,ij,Y φc,ij + ςc,ij −ψd,ij + εd,ij Kd,ij,Y φd,ij + ςd,ij
θc,ij + ηc,ij −φc,ij + ςc,ij Kc,ij,Z θd,ij + ηd,ij −φd,ij + ςd,ij Kd,ij,Z

Kd,ij,X ψd,ij + εd,ij −θd,ij + ηd,ij Kc,ij,X ψc,ij + εc,ij −θc,ij + ηc,ij
−ψd,ij + εd,ij Kd,ij,Y φd,ij + ςd,ij −ψc,ij + εc,ij Kc,ij,Y φc,ij + ςc,ij
θd,ij + ηd,ij −φd,ij + ςd,ij Kd,ij,Z θc,ij + ηc,ij −φc,ij + ςc,ij Kc,ij,Z



≡ I6 +


dMc,ij,11 dMc,ij,12 dMc,ij,13 dMd,ij,11 dMd,ij,12 dMd,ij,13

dMc,ij,21 dMc,ij,22 dMc,ij,23 dMd,ij,21 dMd,ij,22 dMd,ij,23

dMc,ij,31 dMc,ij,32 dMc,ij,33 dMd,ij,31 dMd,ij,32 dMd,ij,33

dMd,ij,11 dMd,ij,12 dMd,ij,13 dMc,ij,11 dMc,ij,12 dMc,ij,13

dMd,ij,21 dMd,ij,22 dMd,ij,23 dMc,ij,21 dMc,ij,22 dMc,ij,23

dMd,ij,31 dMd,ij,32 dMd,ij,33 dMc,ij,31 dMc,ij,32 dMc,ij,33


≡ [1]6 +

(
dM c,ij dMd,ij

dMd,ij dM c,ij

)
≡ I6 + dM ij

(4.16)

The inverse of the calibration matrix can be denoted as

M−1
ij ≡MIij =


MIij,11 MIij,12 MIij,13 MIij,14 MIij,15 MIij,16
MIij,21 MIij,22 MIij,23 MIij,24 MIij,25 MIij,26
MIij,31 MIij,32 MIij,33 MIij,34 MIij,35 MIij,36
MIij,41 MIij,42 MIij,43 MIij,44 MIij,45 MIij,46
MIij,51 MIij,52 MIij,53 MIij,54 MIij,55 MIij,56
MIij,61 MIij,62 MIij,63 MIij,64 MIij,65 MIij,66

 . (4.17)

Or in block form

MIij =

(
MI ′c,ij MI ′d,ij
MId,ij MIc,ij

)
. (4.18)

Thus it is possible to expand Eq. 4.15 as

ac,ij =MI ′c,ija
′
c,ij +MI ′d,ija

′
d,ij ,

ad,ij =MId,ija
′
c,ij +MIc,ija

′
d,ij

(4.19)
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To recover the original differential mode accelerations only the sub-matrices MId,ij and MIc,ij , which include
the elements of the last three rows of the ICM MIij are needed.

The inverse of the calibration matrix can be found by considering matrix inversion by series expansion. Analo-
gously to the expansion of the series 1

1+x = 1 − x + x2 − x3 + ... (with |x| < 1), we have for square matrices of
arbitrary order (Höpcke, 1980, p. 19):

(
I6 + dM ij

)−1
= I6 − dM ij + dM2

ij − dM3
ij + ... (4.20)

Thus, we have as approximation for the inverse of the calibration matrix

MIij ≈ I6 − dM ij +∆MIij , (4.21)

with ∆MIij including all quadratic or higher order terms.

In order to derive upper limits for the elements of the ICMs, one can use for dM ij (in Eqs. 4.21 and 4.11) the
upper limits for the common and differential scale factors, misalignments and coupling among the axes of the
three accelerometer pairs by construction. These upper limits are given in Table D.1, according to Alenia (2002).
Since dM ij is symmetric (cf. Eq. 4.11), the table contains only the values of the first three rows. We have, for

example, as upper limit for the common scale factor of accelerometer pair 14 in x-direction (dMc,14,11) 4.05 ·10−3.

With the given values for dM ij , the upper limits for the values of ∆MIij can be computed (Table D.2). Since
also this matrix is symmetric, the table shows again only the first three rows. For the example of the common
scale factor of accelerometer pair 14 in x-direction we have: ∆MI14,11 < dM2

c,14,11 + dM3
c,14,11 = 3.31 · 10−5.

Finally, one can find from Eq. 4.21 the values of the ICMs (MIij), which are expected not to be exceeded all
along the on-orbit mission lifetime, by construction, Table D.3, see also Fig. 4.7. Again, it is sufficient to show the
first three rows of the symmetric matrix. For example the upper limit of the element dMI14,11 (corresponding to
the common scale factor of accelerometer pair 14 in x-direction) can be found by summation of the upper limits
of dMc,14,11 and ∆MI14,11 and has a value of 4.08 · 10−3.

Figure 4.7.: Derivation of limit values for the ICMs by construction.

The values of dM ij are based on the following numbers

• common and differential scale factors of the ultra-sensitive axes: 4.05 · 10−3

• common and differential scale factors of the less sensitive axes: 5.18 · 10−2

• common and differential misalignment and coupling: 1.30 · 10−4, except for

• common (misalignment and) coupling of the less sensitive axes: 1.00 · 10−5.

The reason for the last exception is that the direction of the less sensitive axis in the OAGRF is per definition in
the middle of the projections of the less sensitive axes of the two corresponding ARFs. Hence the common part
of the misalignments of the less sensitive OAGRF axis becomes zero, and there remains only the contribution
of the (common) coupling. For a definition of the related reference frames it is referred to Appendix A. This
principle is illustrated in Fig. 4.8 for the example of gradiometer arm 14.

The YOAG1 axis is defined in the middle of the two directions Y ′
ARF1 and Y ′

ARF4, which are the projections of
YARF1 and YARF4 on the plane perpendicular to the XOAG1 axis. Hence the common part of the misalignments
of accelerometer pair 25 about the XOAG1 axis becomes zero, and there remains only the contribution of the
(common) coupling about the XOAG1 axis .
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Figure 4.8.: Example for misalignment of the less sensitive axes YARF1 and YARF4 of accelerometers A1 and A4 about the XOAG1

axis. The direction of YOAG1 is per definition in the middle of the two directions Y ′
ARF1 and Y ′

ARF4, which are the projections of
YARF1 and YARF4 on the plane perpendicular to the XOAG1 axis. Hence, the common coupling of the less sensitive YOAG1 axis
becomes zero.

Symmetry relationship between the sub-matrices of the ICMs

Two important relationships between the elements of the Inverse Calibration Matrices will be introduced. The
first relationship can be derived from the symmetry between the sub-matrices of the Inverse Calibration Matrices:

MI ′c,ij =MIc,ij +∆MIc,ij ,

MI ′d,ij =MId,ij +∆MId,ij .
(4.22)

In detail, it reads MIij,11 MIij,12 MIij,13
MIij,21 MIij,22 MIij,23
MIij,31 MIij,32 MIij,33

 =

 MIij,44 MIij,45 MIij,46
MIij,54 MIij,55 MIij,56
MIij,64 MIij,65 MIij,66

+

 ∆MIc,ij,11 ∆MIc,ij,12 ∆MIc,ij,13
∆MIc,ij,21 ∆MIc,ij,22 ∆MIc,ij,23
∆MIc,ij,31 ∆MIc,ij,32 ∆MIc,ij,33

 ,

 MIij,14 MIij,15 MIij,16
MIij,24 MIij,25 MIij,26
MIij,34 MIij,35 MIij,36

 =

 MIij,41 MIij,42 MIij,43
MIij,51 MIij,52 MIij,53
MIij,61 MIij,62 MIij,63

+

 ∆MId,ij,11 ∆MId,ij,12 ∆MId,ij,13
∆MId,ij,21 ∆MId,ij,22 ∆MId,ij,23
∆MId,ij,31 ∆MId,ij,32 ∆MId,ij,33

 .

It says that the upper limits for the elements of the first three rows of the Inverse Calibration Matrices can be
derived from the upper limits of the corresponding elements of the last three rows plus the corresponding error
term in ∆MIc,ij or ∆MId,ij , cf. Fig. 4.9. The upper limits for these error terms can be found by adding up the two
involved errors due to matrix inversion by series expansion, cf. Table D.2. For example, ∆MIc,14,11 = ∆MId,14,11
has a maximum value of ∆MI14,11 +∆MI14,44 = 6.62 · 10−5. All numerical values for the error terms ∆MIc,ij
and ∆MId,ij are given in Table D.4.

The main goal of the GOCE ICM processor is to determine with high accuracy the last three rows of the Inverse
Calibration Matrices. They are needed for the recovery of the true differential mode accelerations and thus also
for the computation of the gravity gradients. The accuracy of the first three rows is less important. Therefore,
the last three rows of the ICMs are determined primarily, in a complex iterative procedure, cf. Sect. 4.3.3. Once
the last three rows are computed with the required accuracy, the first three rows are obtained from the symmetry
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Figure 4.9.: Derivation of the accuracy of the first three rows of the ICMs.

between the sub-matrices, by using Eq. 4.22 without the error terms ∆MIc,ij and ∆MId,ij , (cf. Fig. 4.17, yellow
box). Therefore, the errors in the elements of the first three rows can be larger than the errors of the elements in
last three rows, by exactly the values ∆MIc,ij and ∆MId,ij .

Orthogonality relationship between the elements of the sub-matrices of the ICMs

From the instrument specification (Alenia, 2002), it is known that the coupling among the accelerometer axes
(εc,ij , εd,ij , ηc,ij , ηd,ij , ςc,ij , ςd,ij) is smaller than 10−5. With this additional information one can form relation-
ships between the off-diagonal elements of the sub-matrices of MIij . All these relations, in the following called
orthogonality relationships D.1, and their upper limits are given in detail in Appendix D.5.

The relationships D.1 are obtained by building the sum of two elements (e.g. MI14,12 and MI14,21), which
correspond to the rotation about one axis (e.g. z-axis). With the definition of the calibration matrix (Eq. 4.11)
and the approximation for the inverse calibration matrix (Eq. 4.21), we have for example

MI14,12 =− dM14,12 +∆MI14,12 = −(ψc,14 + εc,14) + ∆MI14,12

MI14,21 =− dM14,21 +∆MI14,21 = −(−ψc,14 + εc,14) + ∆MI14,21

⇒MI14,12 +MI14,21 =− 2 · εc,14 +∆MI14,12 +∆MI14,21 = ∆MI14,12−21

.

Relationships D.1 give the maximum values of the sum of two corresponding elements of MIij , cf. Fig. 4.10.
This can be exploited in the nominal ICM calibration algorithm, compare Cesare et al. (2008) and Fig. 4.13,
yellow box. Since in the iterative process of the ICM calibration algorithm only the last three rows of the inverse
calibration matrices are determined, only the last six lines of relationships D.1 of each accelerometer pair, which
correspond to the last three rows of the ICMs, are used. This gives in total the 18 relationships of Cesare et al.
(2008), p. 58. As an example, the first one of these 18 relationships is given as:

if |MI14,51 +MI14,42| > 5.2 · 10−5 then MI14,51 = −MI14,42 + 5.2 · 10−5 · sign(MI14,51 +MI14,42) (4.23)

In the case that the absolute sum of the two corresponding elements MI14,51 and MI14,42 exceeds its maximum
value defined by the relationships D.1, the element MI14,51 is set/forced to this maximum possible value. The
reason why MI14,51 and not MI14,42 was chosen to be changed is that the various elements of the ICMs have to
be known with different accuracies. Table D.5 gives these accuracies with which the ICM elements have to be
known to guarantee a substantial reduction of the gradiometric errors for the recovery of the original differential
mode accelerations. Based on these numbers, in the nominal calibration algorithm there is always kept the value
of the ICM element which has to be known with higher accuracy (e.g.MI14,42, with required accuracy < 5 ·10−6)
and the respective second ICM element (e.g. MI14,51, with required accuracy < 1.5 · 10−4) is set to its maximum
possible value.

Figure 4.10.: Derivation of maximum values for the sum of two corresponding ICM elements.



62 4 Calibration of the gradiometer

ICM elements which are already accurate enough by construction

By comparing the required knowledge accuracy of the ICM elements (Table D.5) with the expected upper limits
of the ICM elements which should be fulfilled all along the mission lifetime “by construction” (Table D.3), it can
be found that for the following elements the knowledge accuracy requirements are already fulfilled:

• MI14,51, MI14,53, MI14,54, MI14,56, MI14,64, MI14,65

• MI25,42, MI25,43, MI25,45, MI25,46, MI25,61, MI25,62 , MI25,64 , MI25,65

• MI36,45, MI36,46, MI36,51, MI36,53, MI36,54, MI36,56

This means that these 20 elements do not necessarily need to be measured in flight, because their knowledge is
already sufficient “by construction’”. To fulfill the required knowledge accuracy, it would also be sufficient to
assume these values to be zero.

In the TAS method for the determination of the ICM elements this is exploited by applying a limit check for the
ICM elements related to common coupling MI14,56, MI14,65, MI25,46, MI25,64, MI36,45, MI36,54 at the very end
of the determination algorithm. This means, if one of these elements exceeds its threshold by construction, which
is given with 1.9 · 10−5, it is set to zero. E.g.

if |MI14,56| > 1.9 · 10−5 then MI14,56 = 0 (4.24)

In Fig. 4.17 this step is referred to as limit check for absolute coupling (yellow box).

Required measurement accuracy of the ICMs

The required knowledge accuracy of the ICM elements is given in Table D.5.

In the time between two calibration events, the ICM elements can show some variations, e.g. due to ageing or
thermo-elastic deformations. Table D.6 gives the limits for these variations during a measurement cycle of one
month as predicted before launch. The required measurement accuracy of the ICM elements (see Table D.7)
during a measurement phase has been derived by subtraction of the limit values for the ICM element variations
from the required knowledge accuracy, cf. Fig. 4.11.

Figure 4.11.: Derivation of the required measurement accuracy of the ICMs.

4.3.3. Alenia method

In this section the nominal ICM calibration method as developed by TAS is described. Fig. 4.12 gives an overview
of the logic of the calibration algorithm.

The TAS ICM calibration algorithm is composed of three major steps. Step 1 is implemented as an iterative loop
(step1-loop). After the successive finalization of the first loop, it follows a loop over steps 2 and 3 (step2-3-loop).
Within this loop, step 3 is again implemented as a loop (step3-loop), whereas step 2 is conducted only once in
each iteration of the step2-3-loop.

Calibration step 1

Figure 4.13 gives on overview of the logic of calibration step 1. Indicated in yellow is the use of the orthogonality
relationship Eq. 4.23.

Calibration step 1 works within the upper measurement band (UMB), which is from 50-100 mHz, and is based
on the equations for the measured differential mode accelerations, Eqs. 2.38 to 2.46.

For calibration step 1 these 9 equations are used, assuming that the gravity gradient signal is weak in the UMB
and that thus the GGT components can be omitted in the equations:
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Figure 4.12.: Logic of the TAS calibration method.
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Next, the differential accelerations are expressed as a function of the measured common and differential acceler-
ations and the ICM elements, e.g.:

MI14,41a
′
c,14,x +MI14,42a

′
c,14,y +MI14,43a

′
c,14,z +MI14,44a

′
d,14,x + MI14,45a

′
d,14,y +MI14,46a

′
d,14,z

= −Lx

2

(
ω2
y + ω2

z

)
(4.26)

The common and differential mode accelerations and the angular rates are measured for a large number N of
epochs (here N = 86400, calibration event lasts for one day) and 9 sets of linear equations are built, which are
solved in a least squares adjustment with the elements of the last three rows of the ICMs as unknowns. The
result of calibration step 1 are the last three rows of the ICMs, except of the elements related to the common
scale factors (red in Fig. 4.14), which maintain their initial unitary value.

The step1-loop is exited when a certain maximum number of iterations is reached or if all elements (except the
red ones in Fig. 4.14) have fulfilled their convergence criteria. This means, if one ICM element has fulfilled
its convergence criterion at a certain iteration, it is kept constant in all the following iterations (step-by-step
convergence).

Calibration step 2

Calibration step 1 does not provide the ICM elements related to the common scale factors. The elements
related to the transversal common scale factors are determined within calibration step 2 from star sensor derived
angular accelerations only, by exploiting the relationship between the differential mode and the satellite’s angular
accelerations. In Fig. 4.15 the logic of calibration step 2 is illustrated.
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Figure 4.13.: Logic of the TAS calibration method, step 1.

Figure 4.14.: ICM elements (of last three ICM rows) which are already determined (white) or not (red) after calibration step 1.

Calibration step 2 works below the MB of the gradiometer in a frequency band around 1.3 mHz. In this part
of the spectrum the star sensor data has a good quality. Within this step the fact that the satellite angular
accelerations can be determined from the gradiometer as well as from the star sensors is exploited, cf. Eqs. 2.47
to 2.49:

ω̇STR
x = ω̇EGG

x = −ad,3,6,y
Lz

+
ad,2,5,z
Ly

(4.27)

ω̇STR
y = ω̇EGG

y = −ad,1,4,z
Lx

+
ad,3,6,x
Lz

(4.28)

ω̇STR
z = ω̇EGG

z = −ad,2,5,x
Ly

+
ad,1,4,y
Lx

(4.29)

The true differential mode accelerations can be expressed as function of the measured common and differential
mode accelerations and the ICM elements determined at the previous calibration step. E.g., for the differential
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Figure 4.15.: Logic of the TAS calibration method, step 2.

mode accelerations relevant for the angular acceleration about the x-axis we get

ad,36,y =MI36,51a
′
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When inserting the above relationships into Eq. 4.27 and proceeding analogously for Eqs. 4.28 and 4.29 we obtain
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The corresponding three sets of linear equations are built for a large number of epochs, and the 6 unknowns
MI14,55, MI14,66, MI25,44, MI14,66, MI36,44, MI14,55 (the ICM elements related to the transversal common scale
factors) are found by least squares adjustment.

For the first step2-3-loop the output ICMs from calibration step 1 serve as an input for calibration step 2. For
the following iterations of the step2-3-loop the output ICMs from the previous calibration step 3 are used.

The result of calibration step 2 are the last three rows of the ICMs, except of those elements related to the in-line
common scale factors which maintain their initial unitary value (red in Fig. 4.16).
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Figure 4.16.: ICM elements (of last three ICM rows) which are already determined (white) or not (red) after calibration step 2.

Figure 4.17.: Logic of the TAS calibration method, step 3.

Calibration step 3

Calibration step 3 is similar to calibration step 1, thus it uses the same basic equations, works within the UMB
and is implemented as an iterative loop with a step-by-step convergence. The main difference of this step with
respect to calibration step 1 is the application of corrections to the ICM elements which are related to common
scale factors. These corrections have been derived empirically and are thus referred to as empirical corrections,
cf. yellow box in Fig. 4.17.

These corrections are according to Cesare and Catastini (2008b) necessary, because the output ICM elements of
the least squares fit, which are related to the common scale factors, are not exactly identical with the sought-after
ICM elements, but are only an approximation of them.

In the following, the derivation of these empirical corrections is explained. Cesare and Catastini (2008b) have
found with 9 numerical test cases the relationship between the ICM elements of the least squares fit (in the
following denoted with prime), and the exact (sought-after) ICM elements (in the following denoted without
prime)
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(4.35)

Since only 6 of the above 9 equations are independent, 3 additional properties must be known about the diagonal
ICM elements to invert the CI-matrix. This additional information is taken from calibration step 2. More
precisely, in calibration step 3 the corrections/differences δ to the ICM elements

• MI14,66 (related to ω̇y, US differential mode measurement)

• MI25,44 (related to ω̇z, US differential mode measurement)

• MI36,55 (related to ω̇x, LS differential mode measurement)

of calibration step 2 are used to correct the remaining 6 ICM elements, which are related to common scale factors,
i.e. MI ′14,44, MI ′14,55, MI ′25,55, MI ′25,66, MI ′36,44, MI ′36,66. Note that the elements MI14,66, MI25,44 and MI36,55
have been chosen in order to use as often as possible the measurements of US axes.

Hence, the empirical corrections (cf. again Fig. 4.17, yellow box) can be found by solving Eq. 4.35 for δMI ′14,44,
δMI ′14,55, δMI ′25,55, δMI ′25,66, δMI ′36,44 and δMI ′36,66, using the star sensor derived values of calibration step 2
for δMI ′14,44, δMI ′14,55 and δMI ′25,55:
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(4.36)

After the first calibration step 3 for the first time all elements of the (last three rows of the) ICMs are determined,
cf. Fig. 4.18.

Figure 4.18.: After calibration step 3 all ICM elements are determined (white). Only the last three ICM rows are shown.

The iterative step3-loop stops if a certain maximum number of iterations is reached or if all ICM elements have
fulfilled their (step-by-step) convergence criterion. This convergence check is done here between two successive
output ICMs of the step3-loop.
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End of Calibration

The iterative step2-3-loop stops if convergence of the elements of the last three rows of the ICMs is achieved.
Again, an element-wise (step-by-step) convergence check is performed, now comparing the elements of the last
step2-3-loop output with the output of the step1-loop (after the first step2-3-loop) or with the output of the
previous step2-3-loop (for the following step2-3-loops).

Finally, the ICM elements related to common coupling MI14,56, MI14,65, MI25,46, MI25,64, MI36,45, MI36,54
have to undergo the limit check for absolute coupling (Eq. 4.24), and the first three rows of the ICMs are derived
from the last three rows using the symmetry relationship of Eq. 4.22 and neglecting thereby the error terms
∆MIc,ij and ∆MId,ij

MI ′c,ij =MIc,ij

MI ′d,ij =MId,ij
(4.37)

4.3.4. ESA-L method

In this section the ESA-L method according to Lamarre (2008) is described. We follow the explanations given in
Frommknecht et al. (2011).

The ESA-L calibration model takes into account the following deviations of the real accelerometers from the ideal
ones:

• The response of each accelerometer axis: 3 scale factors

• The direction of each accelerometer axis: 3 x 2 angles

• The position of each accelerometer: 3 coordinates

This gives in total 12 parameters describing one accelerometer.

Since the gradiometer consists of 6 accelerometers, it is in total modelled by 6 · 12 = 72 parameters. First, the
parameters between the accelerometers are determined. They are referred to as relative parameters. In a next
step, the absolute scale factor of the gradiometer is determined, using the star sensor measurements as absolute
external information. After the retrieval of the gradiometer parameters, they are transformed into the ICMs
which are used in the L1b processing (Eq. 4.17).

Determination of relative parameters between accelerometers

The calibration is based on shaking of the spacecraft, cf. Sect. 4.3.1, in which strong linear and angular acceler-
ations are induced. These accelerations shall be much stronger than the gravity gradient signal. The principle
for the retrieval of the (relative) calibration parameters is to find those parameters which are able to remove
any trace of the applied accelerations from the gravity gradient measurements. Since the gradiometer alone can
not determine its own scale factor, some external information is necessary. Similarly to the principle of the
TAS-method (calibration step 2) the star sensor measurements are used to deduce the absolute scale factor of
the gradiometer by comparison of star sensor and gradiometer attitude data.

The shaking of the spacecraft, cf. Sect. 4.3.1, is performed in a way that the 3 angular and 3 linear accelerations
are weakly correlated. Hence, each of the 6 induced accelerations has a unique signature which will allow its
identification in the gradiometer measurements.

The retrieval of the relative gradiometer parameters is implemented as an iterative loop, cf. Fig. 4.19.

For the identification of the unique signatures the deviations of the real signal from the theoretical signal of an
ideal gradiometer are used. Moreover, it is assumed that the gradiometer output signal during the spacecraft
shaking is dominated by the induced accelerations, and hence that the centrifugal accelerations and the gravity
gradients can be neglected.

In this case, for an ideal gradiometer, i.e. with all accelerometers having the same scale factors along all axes and
being perfectly aligned, the 6 diagonal and off-diagonal gravity gradients should be zero. Moreover, all common
mode accelerations measured in the same direction should be identical. This can be expressed by the following
equations:
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Figure 4.19.: Logic of the ESA-L calibration method, step 1. Iterative loop for the determination of the relative gradiometer
parameters.

ad,14,x = 0 (related to Vxx),

ad,25,y = 0 (related to Vyy),

ad,36,z = 0 (related to Vzz),

ad,14,y + ad,25,x = 0 (related to Vxy),

ad,14,z + ad,36,x = 0 (related to Vxz),

ad,25,z + ad,36,y = 0 (related to Vyz),

ac,14,x + ac,25,x = 0 (related to common mode in x-direction),

ac,14,x + ac,36,x = 0 (related to common mode in x-direction),

ac,25,y + ac,36,y = 0 (related to common mode in y-direction),

ac,25,y + ac,14,y = 0 (related to common mode in y-direction),

ac,36,z + ac,14,z = 0 (related to common mode in z-direction),

ac,36,z + ac,25,z = 0 (related to common mode in z-direction),

(4.38)

For a real gradiometer one or more of the above 12 quantities would not be zero, but a residual would appear.
These residuals can be modelled as a linear combination of the 6 accelerations, which are induced by shaking of
the spacecraft. The coefficients of these linear combinations can be found by a least squares solution.

This gives in total 72 (= 6 · 12) equations, linking the residuals of the 12 above linear combinations to the 6
accelerations, induced to the spacecraft, as a function of the 72 gradiometer parameters.

According to Lamarre (2008) these equations have first been derived by numerical modelling of the gradiometer
and have now also been derived analytically.

Moreover, Lamarre (2008) states that there are, in linear approximation, only 69 equations (and not 72), since
an angular acceleration about a given axis cannot create a residual on the in-line gravity gradient term along the
same axis.

In addition to these 69 equations further conditions are used within the ESA-L calibration method:

• The average scale factor of the gradiometer is set to 1 (1 equation). The absolute scale factor of the
gradiometer will be retrieved in a second step using star sensor measurements.

• The average position and orientation of the gradiometer is nominal (6 equations). It is assumed anyhow
that the position and orientation is known well enough by construction.
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• The baselines between two accelerometers along a gradiometer arm are set to their nominal values (3
equations). The baselines have been measured on-ground to 100 ppm (50 µm) accuracy, which is assumed
to be sufficient.

• The angles between the sensitive axes of the same accelerometer are perpendicular to within 20 µrad (18
equations). This constraint, given by manufacturing accuracy, is implemented as an orthogonality condition,
with a low weight. Also the TAS calibration method makes use of this condition (cf. Eq. 4.24 limit check
for absolute coupling).

Determination of the absolute scale factor

For the determination of the absolute scale factor external information is needed. Therefore, the star sensor
measurements are used. The principle is, similar to the one of the TAS calibration method (step 2), a comparison
of the gradiometer and star sensor derived attitude information. For the TAS method the comparison takes
place at the level of angular accelerations, cf. Fig. 4.15, whereas for the ESA-L method it takes place at the level
of angular rates, cf. Fig. 4.20. For the comparison, both, the star sensor derived, and the gradiometer derived
angular rates are filtered to a 1 mHz bandwidth around 1.3 mHz. In this part of the spectrum both instrument
types provide accurate measurements.

Figure 4.20.: Logic of the ESA-L calibration method, step 2. Determination of the absolute scale factor.

The least squares solution is based on the following assumptions

• The star sensor reference frames are orthogonal.

• The star sensors have a scale factor equal to 1.

• The gradiometer reference frame is orthogonal.

• The gradiometer has a scale factor different from 1.

• The gradiometer has the same scale factors along its 3 axes.

• The gradiometer reference frame is rotated with respect to the star sensor reference frame.

The corresponding model can be written as

WG = KRWS (4.39)

with WG being the vector of gradiometer estimated angular rates, K being the absolute scale factor of the
gradiometer, R being the rotation matrix between gradiometer and star sensor, and WS being the vector of star
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sensor estimated angular rates. Within the least squares fit not only the absolute scale factor K is determined,
but also the rotation matrix R.

For the determination of the absolute scale factor the combined data from all simultaneously available star sensors
is used as far as possible. In case only one star sensor is available, according to Frommknecht et al. (2011), it
is possible to improve the accuracy of the method by removing the orbital harmonics from the estimated star
sensor (and for sake of consistency also gradiometer) angular rates.

Determination of the ICMs from the gradiometer parameters

The output of the ESA-L calibration method are the 72 gradiometer parameters, as described above. For the
correction of the common and differential mode accelerations within the L1b processing chain (cf. Sect. 3.3), the
ICMs as defined by TAS, Eq. 4.17 are needed. Hence, a transformation of the 72 gradiometer parameters into
the ICMs has to be performed, cf. Fig. 4.21.

Figure 4.21.: Logic of the ESA-L calibration method. Step 3 - Determination of the ICMs from the gradiometer parameters.

Since the first three rows of the ICMs can be derived from their last three rows with Eq. 4.22, neglecting the
error terms ∆MIc,ij and ∆MId,ij the task is to transform the 72 gradiometer parameters to the 54 (= 3 · 3 · 6)
elements of the last three ICM rows.

For this transformation basically the 18 position parameters have to be combined with the 54 remaining param-
eters of the ESA-L method. This is only possible because the average center positions, the orientations of the
accelerometers and the errors of the baselines are small enough to be ignored, cf. Frommknecht et al. (2011). For
the transformation the gradiometer parameters are first written as common (average) and differential (differences
divided by two) values, i.e.

common differential
∆kc,ij,x Θc,ij,xy Θc,ij,xz

Θc,ij,yx ∆kc,ij,y Θc,ij,yz

Θc,ij,zx Θc,ij,zy ∆kc,ij,z
∆pc,ij,x ∆pc,ij,y ∆pc,ij,z




∆kd,ij,x Θd,ij,xy Θd,ij,xz

Θd,ij,yx ∆kd,ij,y Θd,ij,yz

Θd,ij,zx Θd,ij,zy ∆kd,ij,z
∆pd,ij,x ∆pd,ij,y ∆pd,ij,z

 (4.40)

Next, the common positions ∆pc,ij,x, ∆pc,ij,y and ∆pc,ij,z are neglected, and the in-line (i.e. along the respective
gradiometer arm) differential position is taken into account by combining it with the scale factors ∆k. The
transversal (i.e. perpendicular to the respective gradiometer arm) differential positions are combined with the
misalignment angles Θ.

4.3.5. Comparison of methods for ICM calibration

We conclude the chapter on ICM calibration with a comparison between the TAS method by Cesare et al. (2008),
and the ESA-L method by Lamarre (2008). Additionally, the ESA-S method by Siemes et al. (2012), which is
meant as a validation tool (Drinkwater, 2005), is discussed.

Tables 4.1, 4.2 and 4.3 summarize the most important characteristics of the three calibration (or validation)
methods. Bouman (2008) provides a similar overview for the calibration methods (status 2008). All three
methods are based on EGG data, as well as on STR measurements (Table 4.1, second column). The latter are
needed for the determination of the absolute scale factors.

The TAS method is designed in order to retrieve exclusively the three sets of ICMs for the three gradiometer arms
(Table 4.1, third column). Primarily, only the last three rows of the ICMs, i.e. 54 parameters, are determined.
They contain the common and differential parts of the gradiometer imperfections, which are needed for the
retrieval of the corrected CM and DM accelerations. Hence, the TAS method uses directly the CM and DM
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accelerations as input. In contrast to that, the ESA-L and the ESA-S methods start with the EGG linear and
angular accelerations, in order to retrieve primarily the 72 parameters describing all six accelerometers. The 54
elements of the last three rows of the ICMs are derived from the 72 gradiometer parameters in a next step. The
ESA-L and the ESA-S methods further provide corrected values for the rotation matrices from the SSRFs to the
GRF. This information is used in the upgraded version of PDS’ EGG processing, by introducing the new values
in the respective AUX EGG DB files.

The TAS and the ESA-L method are designed for the use of calibration mode data, i.e. for the data from satellite
shaking periods, which last for one day (Table 4.1, fourth column). The ESA-S method has been developed on
the basis of Kern et al. (2007) with focus on estimating calibration parameters from science mode data, i.e. from
the data collected during a measurement phase. For this task the ESA-S method needs a data period of (at least)
two days. Moreover, the ESA-S method can also be applied to the calibration mode data. In this case, the time
period of one day is sufficient, because the data from the satellite shakings has a beneficial signal to noise ratio
(in the UMB).

All three methods work primarily in the UMB, i.e. the condition equations are filtered to the frequency range from
50-100 mHz, where the assumption holds that the gravity gradient signal is negligibly small an thus can be set to
zero (Table 4.2). The TAS and the ESA-L methods have several similarities, e.g. that the determination of the
absolute parameters is performed by comparing the data from gradiometer and from star sensors at a frequency
of 1.3 mHz, and that they both make use of the orthogonality relations. For the ESA-S method we have to
distinguish between science and calibration mode data, for three of the 12 condition equations. These are the
equations related to the diagonal GGT elements (filtered in the UMB). In case of science mode, the centrifugal
terms in these equations are assumed to be zero (in UMB), whereas in case of calibration mode, the centrifugal
terms are taken from the star sensor measurements. This is according to Siemes et al. (2012) possible, because the
angular accelerations generated during the satellite shaking in the UMB result in centrifugal accelerations that
exceed by far the star sensor noise. The relationship between the ICMs from TAS calibration step 1 (or 3) and
the exact ICM elements was found by Cesare and Catastini (2008b) with 9 numerical test cases, which leads to
the application of empirical corrections. Meanwhile, most of the results from the numerical tests can be followed
analytically. Nevertheless, the use of these empirical corrections might be a weakness of the TAS method. The
convergence checks in the TAS iterative procedure are performed step-by-step, i.e. once the convergence of a
certain ICM element is reached, it is kept constant in the following iterations. A simultaneous convergence check
for all ICM elements might be more strict and thus preferable (not proven).

The TAS calibration is the only method of the three, which is fully automated in PDS (Table 4.3). This has the
advantage that less human interaction is needed, as e.g. for the ESA-L method, which is carried out by ESA.
On the other hand, it has the drawback that potential improvements can not be tested as easily. At IAPG, we
have performed a test with our implementation of the TAS method, which indicates that the method seems to
be more sensitive to errors in the STR data than the ESA-L method (cf. Sect. 5.2.3).

From theory, as well as from data analyses, as e.g. performed in Sect. 5.1.3, we conclude that the ESA-L method
might be more advantageous than the TAS method. The ESA-S method delivers results of high quality, following
a straightforward least squares approach, which includes also a corresponding error model. Although primarily
meant for validation purposes, it seems to be competitive to the ESA-L method, when using calibration mode
data. Its results obtained during the measurement phases have triggered several improvements for the calibration
in PDS’ L1b processing. This aspect is further discussed in Sect. 6.5.

Table 4.1.: Characteristics (input, output and calibration window) of ICM calibration methods.

Method Input Output Calibration Window
TAS CM, DM accelerations, ICMs One day (calibration mode)

STR data
ESA-L Linear/angular accelerations, ICMs, One day (calibration mode)

STR data 72 gradiometer parameters,
Rotation matrices from
SSRFs to GRF

ESA-S Linear/angular accelerations, ICMs, Two days (science mode),
STR data 72 gradiometer parameters, One day (calibration mode)

Rotation matrices from
SSRFs to GRF
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Table 4.2.: Characteristics (conditions, constraints and assumptions) of ICM calibration methods.

Method Conditions, Constraints and Assumptions
TAS Gravity gradient signal (in UMB) assumed to be zero,

9 equations (in UMB) based on DM for relative parameters,
3 equations (at 1.3 mHz) based on EGG + STR angular acc. for absolute scale factors,
Upper limits for ICMs by construction,
Relationship between sub-matrices of ICMs,
Orthogonality relations,
Empirical corrections

ESA-L Gravity gradient signal (in UMB) assumed to be zero,
12 conditions (in UMB) based on gravity gradients and CM for relative parameters,
3 equations (at 1.3 mHz) based on EGG + STR angular rates for absolute parameters,
Orthogonality relations

ESA-S Gravity gradient signal (in UMB) assumed to be zero,
12 conditions based on CM, angular accelerations and diagonal elements of GGT,
For science data: centrifugal terms in equations for GGT elements are zero (in UMB),
For calibration data: centrifugal terms from STR used in equations for GGT elements (in UMB)

Table 4.3.: Characteristics (implementation, classification and human interaction) of ICM calibration methods.

Method Implementation Classification Human Interaction
TAS PDS Calibration None (automated)
ESA-L ESA (ESTEC) Calibration High
ESA-S ESA (ESTEC) Validation Medium





5. Analysis of real GOCE data

In this chapter we discuss various aspects of the gradiometer and star sensor measurements of GOCE. After the
description of the nominal EGG processing in Chapters 3 and 4, we focus in this chapter on the real GOCE data.
Further analyses of the gravity gradients can be found in Bouman et al. (2011).

In the first part of this chapter the gravity gradients and their components (angular rates and differences of
accelerations) are analyzed in time and frequency domain. The impact of substituting a partial or complete
accelerometer is investigated. This serves as a quality check for the individual accelerometer measurements.
A spectral analysis of the CM accelerations is performed, which allows an error assessment of the individual
accelerations. These errors are propagated to the level of gradiometer angular accelerations and angular rates.
The temporal variations of the calibration parameters from the first 11 calibrations are discussed. It is, e.g., shown
that the temporal variation of some scale factors in between two calibrations is larger than expected.

In the second part of the chapter we focus on the star sensor measurements. The arrangement of the three
star sensors with respect to the gradiometer is illustrated, and its impact on the quality of the star sensor
measurements in GRF is investigated. Additionally, the role of the star sensors for the determination of the
calibration parameters is analyzed. We show that some scale factors are strongly depending on the star sensor
measurements, especially for the TAS ICM calibration method.

5.1. Gradiometer

5.1.1. Spectral analysis of the gravity gradients

In this section we investigate various aspects of the gravitational gradients as measured by GOCE. We follow the
explanations given in Rummel et al. (2011). The data used are from the first measurement cycle from 31 October
to 30 December 2009. Some of the tests are based on only the day 11 November 2009. From a comparison of the
data sets of the 61 days period, it can be concluded that the chosen daily segment is representative.

Angular velocities

As shown in Sect. 2.2, the components Dij of Eq. 2.21b contain the centrifugal part ΩΩ. It has to be subtracted
in order to arrive at the gravitational gradient tensor components Vij . Thus, it has to be shown that the quality
of the estimation of the angular velocities is adequate. As pointed out in Sect. 3.4, the angular velocities are
derived from a combination of angular accelerations, as measured by the gradiometer, and orientation angles from
star tracking, see also Stummer et al. (2011).

The root PSDs of the angular velocities (sum of signal and noise) are shown in Fig. 5.1. The components are
ωx (rotation about the x-axis or roll), ωy (rotation about the y-axis or pitch), ωz (rotation about the z-axis or
yaw). The signal strength of ωx is higher than that of ωy and ωz. This is due to the higher rotational instability
of the satellite along its main body axis. The absolute value of ωy (not shown in Fig. 5.1) is by far greater than
that of ωx and ωz. It is caused by the high angular rate about the y-axis of one cycle per revolution (cpr) of
the Earth-pointing satellite (ωy ≈ (2 · π)/5400 s ≈ 1.16 · 10−3 rad/s). Figure 5.1 also displays the MB and the
engineering requirements. They are given in terms of an allowed maximum signal slope in the spectral range
from 5 · 10−3 to 2 · 10−2 Hz and a maximum signal level between 2 · 10−2 to 0.1 Hz. It can be seen that the
requirements are met in all three cases.

The root PSDs of the squared angular velocities, again, sum of signal and noise, show a different behavior.
Squaring in the time domain corresponds to convolution of the spectrum of the time series with itself in the
spectral domain. The high average value of ωy results in a power spectral density of ω2

y higher than that of
ω2
x and ω2

z . Figure 5.2 shows the root PSDs of the diagonal terms, Fig. 5.2(a), and of the non-diagonal terms,
Fig. 5.2(b), of ΩΩ. Those of the diagonal terms, containing ω2

y, are higher than the one with (ω2
x + ω2

z), which
belongs to Dyy. Also in the case of the non-diagonal components, the term ωxωz has a lower level than the two

75
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Figure 5.1.: Root PSD of angular velocities of 11 November 2009.
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Figure 5.2.: Root PSD of combinations of angular velocities for GGT components (compare Eq. 2.20) of 11 November 2009.
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others which contain ωy. The level of ωxωy is greater than that of ωyωz, because of the higher level of ωx, as
displayed in Fig. 5.1 and mentioned above.

Figure 5.3 gives the complete picture in terms of root PSDs. It shows a set of them for all six components. Each
set consists of three root PSDs that of Dij , Vij and of the centrifugal part ΩΩ. The gravitational gradients Vij
are obtained by subtracting the angular velocity part from the measured Dij . All quantities are derived from the
actual measurements, therefore they contain signal and noise. Inside the MB, the root PSDs of Dij and of Vij
almost coincide, which highlights the fact that the contribution of the centrifugal part is much smaller. Only for
the {xx}-component the angular part comes rather close in size to the gradiometric signal at the lower end of
the MB and at 3 to 4 · 10−2 Hz. Below the MB, the centrifugal contribution dominates the gradiometric signal.
Only for Vxz the contribution of the angular part is significantly lower than the gravity gradient signal over the
entire range of the spectrum.

Under the assumption that the gradiometer noise is white inside the MB, it can be observed that the noise floor
is reached at about 3 · 10−2 Hz. The noise levels are 10 mE/

√
Hz for Vxx and Vyy, and unfortunately about

20 mE/
√
Hz for Vzz and Vxz. The cause of the higher noise level of Vzz and Vxz is not yet fully understood. In

agreement with our expectations, the gradiometric signal is concentrated between 5 · 10−3 Hz and 3 · 10−2 Hz,
as shown by the red curves. It decreases from about 1 E/

√
Hz to the white noise floor at about 3 · 10−2 Hz. As

expected, the performance of Vxy and Vyz is inferior, with a noise level of between 0.6 to 0.8 E/
√
Hz.

Systematic behavior

In Fig. 5.4 the root PSDs of the three diagonal gravitational gradients are shown together with their trace, derived
from the full two months data cycle. The MB and engineering requirements are included as well.

We will now attempt to explain the systematic behavior below the MB and the noise characteristics in the
MB. The accelerometers are designed so as to have their ultra-high precision in the MB. As is the case for any
accelerometer the noise increases below the MB inversely with frequency, i.e. with 1/f . In the time domain this is
comparable to the typical drift of gravimeters. Superimposed to the drift are cyclic “distortions” at one cpr and
multiples of one cpr. They enter into the measurements via the orbit and attitude motion of the spacecraft. Thus,
even though the gradiometer is an in-situ instrument, the orbit periods are modulated into the accelerometer
measurements via orbit perturbations. In addition, periodic effects enter via the attitude motion, i.e. through
periodic changes in orientation of the gradiometer. Attitude control is done by magnetic torquing. The periodicity
is therefore coupled to attitude motion in the Earth’s magnetic field.

In the areas of the magnetic poles, rather strong cross-winds affect the y-component of the accelerometers, cf. Lühr
et al. (2007). If the gradiometer were perfect, these side winds would be measured as common-mode signal only
in y-direction and would cancel out in the differential mode. For a real gradiometer and non-perfect ICMs a small
effect enters the differential mode as well. It is visible in Vyy in the auroral regions, cf. Bouman et al. (2011).

In Fig. 5.4 as in Fig. 5.3 the white noise level is approximately 10 mE/
√
Hz for Vxx and Vyy and 20 mE/

√
Hz for

Vzz. It is visible for frequencies above 3 · 10−2 Hz. We see the strong gradiometric signal power in the range from
5 ·10−3 Hz to 3 ·10−2 Hz, towards the low frequencies more and more superimposed by the 1/f -instrument noise,
and more significantly, by the orbit and attitude induced periodic effects at one cpr and multiples of one cpr.

A very powerful test of the instrument performance is the Laplace condition, Eq. 2.8. Theoretically it gives zero,
yet in practice it shows the noise level of the sum of the measured diagonal gravitational gradients. The engineering
requirement of the trace, based on a pre-launch analysis of the sensor performance is 11 mE/

√
Hz in the upper part

of the MB. The actual trace is about 20 mE/
√
Hz mainly due to the higher noise level of Vzz, compare Fig. 5.4.

This level of 20 mE/
√
Hz is almost constant between 2 · 10−2 Hz and 0.1 Hz with a gradual increase towards the

lower frequencies. At the lower end of the MB it is between about 40 to 100 mE/
√
Hz, i.e. slightly below the

requirement. We also observe the 1/f increase and periodicities below 5 mHz. Theoretically the periodicities in
the orbit and attitude control should have no effect on the closure of the Laplace condition. Possible candidates
for this behavior could either be the different low frequency systematic error behavior of each of the gradiometer
components or an imperfect removal of the contribution of the angular rates.

As pointed out, noise dominates signal at about 3 · 10−2 Hz. This corresponds to a maximum degree and order
of a spherical harmonic expansion of about n ≈ 205. The collection of more and more gradiometer data will help
us improve spherical harmonic analysis, as discussed in Pail et al. (2011). As a rule of thumb one can expect the
accuracy of spherical harmonic coefficients to improve with the square-root of the number of full mission cycles
(each being 61 days).
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Figure 5.3.: Root PSD of the six measured differential accelerations (blue), the corresponding component in GGT (red) and the
corresponding combination of angular velocities (green) of 11 November 2009, cf. Eq. 2.21b.
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Figure 5.4.: Root PSD from two months of data of Vxx, Vyy , Vzz and trace; also shown is the engineering requirement for the trace
(black), the measurement band (black dashed) and the once-per-revolution (cpr) frequency (cyan dashed).

From the above it can be concluded that careful filtering of the low frequency distortions is essential for an
adequate use of GOCE gravitational gradients. This applies especially to the direct use of measured gradients.
For spherical harmonic analysis, a correct stochastic modelling is necessary. This aspect is discussed in Pail et al.
(2011), in Schuh (2002) and in Brockmann et al. (2010).

5.1.2. Substitution of a partial or complete accelerometer

Each of the six three-axis GOCE accelerometers has two ultra-sensitive and one less sensitive axes. The two
US axes measure the control voltages (which are needed to keep the accelerometers proof mass stable) with
two electrode pairs, whereas the LS axes have four electrode pairs, respectively. Therefore, in total there are
6 · 8 = 48 electrode pairs, cf. Fig. 3.3. To check the performance of each of these electrode pairs the original
GOCE L1b processing as described in Chapter 3 has been rerun, each time replacing the measurements of one
specific electrode pair with the measurements of another one along the same axis, as suggested by Cesare et al.
(2008). In Eqs. 3.1 and 3.2 each time one control voltage CVi of the six accelerometers Ai has been replaced by
the corresponding one, according to Table 5.1.

Table 5.1.: Correspondence between the electrode pairs for the replacement of a control voltage.

Replaced Replacing Axis in
Control Voltage Control Voltage AESRF

CVi,X1 CVi,X2 X
CVi,X2 CVi,X1 X
CVi,X3 CVi,X4 X
CVi,X4 CVi,X3 X
CVi,X5 CVi,X6 Y
CVi,X6 CVi,X5 Y
CVi,X7 CVi,X8 Z
CVi,X8 CVi,X7 Z

In Fig. 5.5 the impact of the replacement on the GGT trace is shown for the example day 29 January 2010. For a
better visualization, always the root PSD of the difference between the specific new GGT trace (with replacement
of the measurements of one electrode pair) and the original one (using all measurements) has been computed.

One can notice two things. First, the replacement of measurements along one specific axis always has a similar
impact on the GGT trace. Therefore, it can be excluded that there is one electrode pair with a particularly bad
performance. Second, the impact on the GGT trace depends on the axis on which the replacement is done. E.g. the
replacement of a z-electrode (in AESRF, red curves) has a significant impact on the GGT trace throughout the
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Figure 5.5.: Impact on GGT trace due to the replacement of individual control voltages of accelerometer 1 (a) and of accelerometer
2 (b). Always the root PSD of the difference between the new GGT trace (with replacement of the measurements of one electrode
pair) and the original one (using the measurements of all electrode pairs) is shown. Data from 29 January 2010.

complete gradiometer MB. Table 5.2 gives a detailed overview of the impact of electrode replacements on the
individual gradients.

Table 5.2.: Overview - Impact on gradients due to replacement of control voltages.

Sensitivity Arrange- Ai Axis in Axis in Impact on Frequency
ment AESRF GRF Range

1/4 Z X Vxx
US In-line 2/5 Z Y Vyy Within MB

3/6 Z Z Vzz
1/4 Y Z ω̇y ⇒ Vxx, Vzz Lower MB

US Transversal 2/5 Y X ω̇z ⇒ Vxx, Vyy Not significant
3/6 Y X ω̇y ⇒ Vxx, Vzz Lower MB
1/4 X Y ω̇z ⇒ Vxx, Vyy

LS Transversal 2/5 X Z ω̇x ⇒ Vyy, Vzz Not significant
3/6 X Y ω̇x ⇒ Vyy, Vzz

In order to check the performance of the six accelerometers as a whole six sets of gravity gradients have been
computed, according to the original GOCE L1b processing (cf. Chapter 3), each time replacing one complete
accelerometer by a so-called virtual accelerometer Avi, with i = 1, ..., 6. The virtually measured accelerations avi
are formed by the CM accelerations, cf. Eq. 2.27, of the corresponding remaining accelerometers, according to
Cesare et al. (2008). Table 5.3 gives an overview of the necessary modifications in the EGG processing for the
replacement of a complete accelerometer.

Table 5.3.: Definition of virtually measured accelerations avi and lengths of virtual baselines Lvx, Lvy , Lvz for the replacement of a
complete accelerometer.

Replaced Virtually Length of
Accelerometer Measured Accelerations Virtual Baseline

A1 av1 = 1
2 (av3 + av6) Lvx = 1

2 · Lx

A2 av2 = 1
4 (av1 + av4 + av3 + av6) Lvy = 1

2 · Ly

A3 av3 = 1
2 (av1 + av4) Lvz = 1

2 · Lz

A4 av4 = 1
2 (av3 + av6) Lvx = 1

2 · Lx

A5 av5 = 1
4 (av1 + av4 + av3 + av6) Lvy = 1

2 · Ly

A6 av6 = 1
2 (av1 + av4) Lvz = 1

2 · Lz
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The virtually measured accelerations are, as far as possible, formed by US measurements. An accelerometer
along the x-axis of GRF (A1 or A4) is replaced by the pair A3 and A6, which have the same alignment of the
US axes, cf. Fig. 2.2. Analogously, an accelerometer along the z-axis of GRF (A3 or A6) is replaced by the
pair A1 and A4. An accelerometer along the y-axis of GRF (A2 or A5) is replaced by all accelerometers along
the other gradiometer arms, in order to average, and thus reduce as much as possible, the measurement error
along the y-direction in GRF. In this case, only LS measurements can be used, because A1, A4, A3 and A6 have
their LS axis in this (y-GRF) direction. Note that also the gradiometer baselines change for the concept of a
virtual accelerometer. The virtual accelerometer can be imagined at the center of the gradiometer, hence, the
baseline to which the replaced accelerometer belongs, has to be divided in halves. In the EGG processing, the
baseline lengths are needed for the computation of the calibrated gradiometer angular accelerations in Sect. 3.3,
cf. Eqs. 2.47 to 2.49.

In Fig. 5.6 the root PSD of the GGT trace for all six cases of accelerometer replacement is shown. Again, one can
notice two things. First, the impact on the GGT trace is similar for the accelerometers on the same gradiometer
arm. Second, the impact is depending on the axis on which the replacement is done. The GGT trace is degraded
the most, if an accelerometer on the y-axis of the GRF, i.e. accelerometer A2 or A5 (green curves), is replaced.
The reason is that accelerometers A2 and A5 are the only ones with US axes in y-GRF direction, which is the
main measurement direction in this case. Therefore, the y-direction of the corresponding virtual accelerometer
can only be built from LS measurements.
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Figure 5.6.: Impact on GGT trace due to replacement of complete accelerometers. Data from 29 January 2010.

5.1.3. Spectral error analysis using common mode accelerations

With the three sets of CM accelerations the (same) linear accelerations acting on the satellite are measured.
The accelerometers are mounted in such a way that the x-direction of GRF is measured by US axes only, the
y-direction is measured two times by LS axes, and the z-direction is measured two times by US axes only
(cf. Fig. 2.2). From simple error propagation one can derive σa comb US/LS =

√
2σa c/d US/LS , with σa comb US/LS

the standard deviation of the US or LS common mode combination, and σa c/d US/LS the standard deviation of the

corresponding US or LS common mode or differential acceleration. Moreover σa c/d US/LS =
(
1/

√
2
)
σa US/LS ,

with σa US/LS the standard deviation of an individual US or LS acceleration measurement. Thus, σa comb US/LS ≈
σa US/LS holds, and the respective common mode combinations can be taken as a good indicator of the real US
or LS acceleration noise.

In Fig. 5.7 the common mode combinations are shown for the day 1 November 2009. In the first row the
uncalibrated values are given. In the second row, the accelerations have been calibrated with the ICMs of
October 2009 as derived with the TAS method (Sect. 4.3.3). In the third row the ICMs of October 2009 as
derived with the ESA-L method (Sect. 4.3.4) have been used.

The combinations of uncalibrated accelerations in x-direction (Fig. 5.7(a)) are rather flat in the MB with a level
of about 10−11 m/s2/

√
Hz and an increase of noise towards the lower frequencies, starting from about 10 mHz.

After calibration of the common mode accelerations with the ICMs (of October 2009) from the TAS method,
the same combinations in x-direction change slightly, cf. Fig. 5.7(b). The noise level of the two combinations
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including ac,25,x (red and blue) becomes slightly higher, whereas the noise level of the combination without ac,25,x
(green) is slightly reduced. For the frequencies below the MB the noise level is significantly reduced for all three
combinations. In this case, it is reduced the most for the combination without the measurement of gradiometer
arm 36 (blue), to e.g. only 5 · 10−11 m/s2/

√
Hz at a frequency of 1 mHz.

When the common mode accelerations are calibrated with the ICMs (of October 2009) from the ESA-L method
instead (Fig. 5.7(c)), the three combinations change slightly again. In this case the combination without the
measurement of gradiometer arm 36 (blue) performs best in the MB as well as for lower frequencies. When
comparing with Fig. 5.7(b), where the TAS calibration has been applied, one observes a similar noise level for
frequencies below the MB and an improved behavior for the frequencies above the MB.

The combinations of the two LS common mode measurements in y-direction, Fig. 5.7(d), 5.7(e), 5.7(f), blue
curves, have a flat noise level of about 4 · 10−10 m/s2/

√
Hz for the complete frequency range. This is true for

the uncalibrated values, as well as for the calibrated values with the ICMs from TAS or ESA-L method.

For the combination of the two US common mode measurements in z-direction (Fig. 5.7, right, green curves), we
observe an increase of the noise towards the lower frequencies for the uncalibrated values (Fig. 5.7(d)), and to a
smaller extent also for the values, which have been calibrated with the ICMs from the TAS method (Fig. 5.7(e)).
For the ESA-L calibration, in contrast, the combination in z-direction is flat in the complete MB (and also
for higher frequencies) with a noise level of about 10−11 m/s2/

√
Hz, comparably to the noise level of the US

combinations in x-direction (Fig. 5.7, left).

The common mode combinations, which are interpreted as errors of the individual US and LS accelerations, can
be used for a rough estimation of the errors of derived quantities in the MB, such as the angular accelerations,
angular rates, main diagonal GGT elements and the GGT trace. The corresponding equations and results of a
simple error propagation are summarized in Table 5.4. Note that for these estimations a value of 0.5 meters has
been used for the length of the baselines (Lx, Ly, Lz) in the equations for the angular accelerations (ω̇x, ω̇y, ω̇z,
Eqs. 2.47 to 2.49) and the diagonal components of the GGT (Vii, Eqs. 2.50 to 2.52).

Table 5.4.: Error propagation within the gradiometer MB based on combinations of common mode accelerations.

Variable Equation Error Propagation

ac/d,US/LS
1
2 (aUS/LS ± aUS/LS) σ2

ac/d,US/LS
= 1

2σ
2
aUS/LS

acomb,US/LS ac,US/LS − ac,US/LS σ2
acomb,US/LS

= 2 · σ2
ac/d,US/LS

ω̇x −2ad,LS + 2ad,LS σ2
ω̇x

= 8σ2
ac/d,LS

ω̇y −2ad,US + 2ad,US σ2
ω̇y

= 8σ2
ac/d,US

ω̇z +2ad,LS − 2ad,US σ2
ω̇y

= 4(σ2
ac/d,LS

+ σ2
ac/d,US

)

Vii ≈ −4ad,US σ2
Vii

= 16σ2
ac/d,US

GGTtrace Vxx + Vyy + Vzz σ2
GGTtrace

= 3σ2
Vii

In the following the errors of these derived quantities are shown with example data. The computations are based
on the error curves of common mode combination ac,25,x − ac,36,x (calibrated with ICMs from ESA-L method,
red in Fig. 5.7(c)) for the error of an US acceleration, which is representing the worst case of US combinations
for this example day and on the error curve of the (only possible) common mode combination in y-direction
ac,14,y − ac,36,y (calibrated with ICMs from ESA-L method, blue in Fig. 5.7(f)) for the error of a LS acceleration.

Figure 5.8(a) shows the corresponding error root PSDs of the angular accelerations. They can be compared to
the root PSDs of the calibrated gradiometer angular accelerations (including errors) of Fig. 3.15(b), which have
a flat spectrum for frequencies higher than about 50 mHz, with a level of about 4 · 10−9 rad/s2/

√
Hz for ω̇x and

about 7 · 10−10 rad/s2/
√
Hz for ω̇y and ω̇z. The comparison shows that for the x- and y-component the error

root PSDs are smaller than the root PSDs of the measurements (including signal and errors), whereas for the
z-component the error root PSD and the root PSD of the measurement have approximately the same magnitude.

In the MB, the angular rates are obtained by integration of the gradiometer angular accelerations. Hence, the
errors of the angular rates (Fig. 5.8(b)) are obtained by σωi = σω̇i/(2 · π · f), with frequency f . In Cesare
(2008) requirements for the angular rate errors in the MB are given. Numerical values are provided only for the
maximum errors in the MB. The development of the requirements throughout the complete MB are illustrated
in a figure. We observe that these requirements are all well met for the derived angular rate errors of Fig. 5.8(b).
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(a) X-direction, uncalibrated

10
−3

10
−2

10
−1

10
0

10
−13

10
−12

10
−11

10
−10

10
−9

Frequency [Hz]

R
oo

t P
S

D
 o

f C
M

 c
om

bi
na

tio
n 

[m
/s

ec
2 /s

qr
t(

H
z)

]

 

 

ac14x − ac25x
ac14x − ac36x
ac25x − ac36x

(b) X-direction, TAS calibration
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(c) X-direction, ESA-L calibration
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(d) Y- and z-direction, uncalibrated
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(e) Y- and z-direction, TAS calibration
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(f) Y- and z-direction, ESA-L calibration

Figure 5.7.: Root PSD of combination of common mode accelerations in x-direction (left) and in y- and z-direction (right) of 1 Novem-
ber 2009. The first row shows the uncalibrated accelerations. The second and third row give the calibrated accelerations, where the
ICMs from TAS method or from ESA-L method, respectively have been applied.
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Figure 5.8.: Error root PSD of angular accelerations (a) and angular rates (b) as derived from common mode combinations.
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5.1.4. Temporal variations of calibration parameters

In this section the temporal variations of the calibration parameters contained in the ICMs are discussed.

Before launch, the temporal stability of the ICMs has been predicted to be sufficient throughout a measurement
cycle. Thus, in the original L1b processing, the calibration of the accelerations is based on the ICMs from the
previous calibration phase.

The analysis of the ICMs from the first six calibrations has shown that the calibration parameters are in general
very stable (Frommknecht et al., 2011). This holds especially for the mechanical stability of the gradiometer,
corresponding to those ICM elements which account for non-orthogonal accelerometer axes and misalignments.
Nevertheless, it was found that the variation of some scale factors in between two calibrations is larger than
expected. This leads to a degradation of the gravity gradient performance, which is increasing with time during a
measurement cycle. This fact can be explained with Eq. 4.15, which describes the calibration of the measured CM
and DM accelerations using the ICMs. The last three rows of Eq. 4.15 describe how the DM accelerations, which
contain the gravity gradient signal, are calibrated. In the case that ICMs are applied, which are not perfectly
correct, but which have a certain error due to their temporal variation, it is possible that parts of the (measured)
CM accelerations are projected onto the (corrected) DM accelerations. In the new L1b gradiometer processing,
cf. Sect. 6.5, the time dependency of the calibration parameters is taken into account by linear interpolation of
the ICMs of subsequent calibrations. This will prevent the quality of the gravity gradients from degradation with
time.

In the following the development of the differential scale factors (dSF) of accelerometer pairs 14, 25 (Fig. 5.9)
and 36 (Fig. 5.10) for the first 11 calibration events is discussed. The first two calibrations have been performed
during the so-called commissioning phase of the GOCE mission (red) under different conditions as for the following
calibrations (blue), which makes the corresponding results not directly comparable to the others. Between the
first and second calibration phase changes in the common and differential scale factors are observed, which are
attributed to the different environment of the spacecraft, i.e. passing through eclipses or not, and applying ion
thruster bias or not. Between the second and third calibration also the misalignments change. This is attributed
to a change in the angular control of the proof masses. The proof mass rotation about the LS axes (cf. Fig. 3.3
rotation angle ϕ) is no longer controlled by both US axes, but by the transverse US axes only, i.e. by the y-
electrodes (AESRF), cf. also Table 3.1. In Figs. 5.9 and 5.10 in addition to the values of the scale factors (red
and blue dots), also their required measurement accuracies as derived in Sect. 4.3.2 are indicated as (red and
blue) vertical lines. Note that these lines are not the error bars of a least squares adjustment. The upper and
lower limits for the bands, where the required measurement accuracies hold, are drawn from each calibration to
the next as (red and blue) horizontal lines. We observe that the variation of most of the differential scale factors
is (by far) smaller than their required measurement accuracy. For two of them (dSF14z, dSF36z) the variation is
just about as large as the respective requirement, and for another two of them (dSF14x, dSF25y) the variation
is much larger than expected. The dSF14x is coupled with the in-line CM acceleration ac,14,x in x-direction.
In this direction the CM acceleration signal is small due to drag compensation with the ion thruster assembly,
cf. Fig. 3.13(a). The dSF25y is coupled with ac,25,y, the in-line CM acceleration in y-direction. In this direction
strong CM signals occur, cf. Fig. 3.13(b). This is also confirmed by the findings of Lühr et al. (2007) for the
accelerometer data of the CHAllenging MiniPayload (CHAMP) mission. In summary, the variation of the in-line
differential scale factor in y-direction is much larger than expected and in addition strong CM signals occur in
the same direction. From this we can presume that the calibration in y-direction might not work perfectly. In
this case, artifacts of the CM signal (in y-direction) would remain in the DM accelerations (in y-direction) and
thus also in the GGT component Vyy, cf. Eq. 2.51. In Sect. 7.1 this aspect is further discussed. The GOCE
gravity gradients are compared to model gravity gradients and the assumption is confirmed that Vyy is affected
by non-perfect common mode rejection in y-direction.

In Table 5.5 the dates of the first 11 calibration events are given.

Table 5.5.: Date of first 11 ICM calibration events.

no. date no. date no. date
4 11 January 2010

1 18 June 2009 5 04 March 2010 9 27 January 2011
2 28 September 2009 6 07 May 2010 10 04 April 2011
3 08 October 2009 7 05 October 2010 11 07 June 2011

8 07 December 2010
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Figure 5.9.: Development of differential scale factors of accelerometer pair 14 (left) and of accelerometer pair 25 (right).
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Figure 5.10.: Development of differential scale factors of accelerometer pair 36.
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5.2. Star sensors

The accuracy of each GOCE STR can be characterized by the pointing accuracy of the coordinate axes of the
respective SSRF, with the z-axis being aligned with the boresight direction, and the x- and y-axes lying in the
CCD plain of the STR (Wertz, 1991; Frommknecht, 2008). Due to the geometry between the direction to the
observed stars and the coordinate axes of the SSRF it is possible to determine the boresight axis of the STR more
accurate than the other two axes. For the GOCE STR the relative accuracy (RA) in-flight is given with 10 µrad
or 2 arcseconds for the ultra sensitive boresight axis, and with 100 µrad or 20 arcseconds for the orientation of
the other two less sensitive axes (Jørgensen, 2003). For the accuracy of a rotation about the SSRF axes this
consequently means that the rotation about the boresight is less well determined than the rotations about the
other two STR axes. The corresponding error spectrum of the orientation measurements is regarded as white
noise.

5.2.1. Star sensor arrangement with respect to gradiometer

Figure 5.11 gives an overview of the arrangement of the three GOCE star sensors with respect to the gradiometer.
In Fig. 5.11(a) the orientation of the boresight axes of the three star sensors within the GRF is given, cf. Gruber
et al. (2010a). In Figs. 5.11(b) to 5.11(f) the orientation of all three star sensor axes within the GRF is shown
in more detail, for star sensor 1 (Fig. 5.11(b)), star sensor 2 (Fig. 5.11(c)) and star sensor 3 (Figs. 5.11(d) to
5.11(f)). For another overview of the arrangement of the star sensors with respect to the gradiometer it is referred
to Siemes (2011).

The SSRF is connected to the GRF by a constant rotation. In Gruber et al. (2010a) the rotation from SSRF to
GRF is described with one rotation matrix plus one rotation angle for each star sensor. In order to make the
connection more illustrative, in this work the rotation from SSRF to GRF is described as a series of elementary
matrix rotations. Please note that both depictions are consistent and provide the same information.

R GRF SSRF1 ≈ R1(−120◦)

R GRF SSRF2 ≈ R1(−160◦)

R GRF SSRF3 ≈ R3(90
◦) ·R2(40

◦) ·R1(−120◦)

(5.1)

These rotation matrices are only an approximation of the exact ones, which are provided in the L1b file containing
the auxiliary data AUX EGG DB. Please note, that for the original EGG processing the rotation matrices as deter-
mined from a co-alignment between the three STRs, using STR 1 as a reference, have been used (Strandberg,
2010). For the new processing, cf. Chapter 6, the rotation matrices have been determined individually for each
measurement phase with the ESA-L calibration method, cf. Chapter 4.
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(a) Z-direction (boresight) of all three star sensors

(b) Star sensor 1

(c) Star sensor 2

(d) Star sensor 3, first rotation

(e) Star sensor 3, second rotation

(f) Star sensor 3, third rotation

Figure 5.11.: Arrangement of the three star sensors with respect to the gradiometer. (a), overview of arrangement of boresight axes
of all three star sensors; (b), arrangement of star sensor 1 (one rotation); (c), arrangement of star sensor 2 (one rotation); (d) to (f)
arrangement of star sensor 3 (three rotations).
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5.2.2. Analysis of the star sensor data

In this section the measurements of the GOCE star sensors are compared and analyzed at the level of angles. The
star sensor data, which are measured in the respective SSRF, are rotated into the GRF with the known rotation
matrices as provided in the file AUX EGG DB from the STR co-alignment (Strandberg, 2010).

As an example, Fig. 5.12(a) shows the difference between the angles roll, pitch and yaw in the GRF from star
sensors 1 and 2 of day 1 November 2009. The differences in roll angle (green) are smallest, with a standard
deviation of 1.7 · 10−5 rad or 3.5 arcseconds. The differences for pitch (red) and roll angle (blue) are markedly
larger, with a standard deviation of 1.6 · 10−4 rad or 32 arcseconds (for pitch) and 1.3 · 10−4 rad or 27 arcseconds
(for yaw). Both star sensors, 1 and 2 have their boresight axis perpendicular to the x-axis of GRF, cf. Fig. 5.11.
Hence the roll angle can be determined very accurately from both of them. The expected accuracy of the
good star sensor measurements is given with 2 arcseconds. A simple error propagation gives for the differences
between two good measurements

√
2 times the accuracy of one good measurement, which is in this case

√
2 ·

2 arcseconds ≈ 3 arcseconds, and which is in very good agreement with the observed standard deviation for
the differences in roll angle. Pitch and yaw are influenced by the less accurate star sensor measurements. The
error of a rotation about a certain axis is increasing with the sine of the angle between the star sensor’ boresight
and the plane perpendicular to the axis under investigation. Hence, one could expect, cf. Fig. 5.11, that pitch
could be slightly better determined than yaw. This is somewhat contradictory to our findings for the data of
1 November 2009. The mean values of the differences between the angles in GRF, as shown in Fig. 5.12(a),
are 7.3 arcseconds for roll, 20 arcseconds for pitch, and −6.1 arcseconds for yaw, respectively. Note that a
potential error of the STR mounting matrices fully propagates to these differences. For our analysis, we have
used the STR mounting matrices from the co-alignment by (Strandberg, 2010). Meanwhile, for the new EGG
L1b processing, the optimal mounting matrices of the star sensors with respect to the gradiometer are estimated
for each measurement phase individually with the ESA-L calibration method. The mean differences in roll, pitch
and yaw angle should become smaller when using these new STR mounting matrices (not shown here).

Figure 5.12(b) shows the root PSD of the differences in the angles of star sensor 1 and 2. It can be noted that
at very high frequencies, beyond 30 mHz, the actual star sensor noise seems to behave as expected. Here, it
is flat and has a magnitude of about 3 arcsec/

√
Hz for roll (green) and is about one order of magnitude larger

for pitch (red) and yaw (blue). For frequencies lower than about 30 mHz the star sensor noise is not flat, but
increases towards the lower frequencies. We observe a significant repeat pattern at the frequency of one cycle per
revolution (1 cpr ≈ 1.85 · 10−4 Hz) and with a 1/f-decreasing magnitude towards higher frequencies also at the
corresponding harmonics k cpr, with integer k. To highlight the repeat pattern of one cycle per revolution the
differences in roll angle of 1 November 2009 (green in Fig. 5.12(a)) have been low pass filtered (with an ideal low
pass filter) with cut-off frequency at 10 mHz and split up orbitwise, see Fig. 5.13. In Fig. 5.13(a) the 16 orbital
revolutions of 1 November 2009 are illustrated orbit-wise. It can be noted that the differences in roll at a certain
epoch are very similar to the ones of exactly one orbital revolution before. This becomes even more clear when
zooming into e.g. the first five minutes of the data, as shown in Fig. 5.13(b).
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Figure 5.12.: Difference between the angles (roll, pitch, yaw) in GRF of star sensors 1 and 2 (a) and corresponding root PSD (b).
Data from 1 November 2009.
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Figure 5.13.: Difference between the roll angle in GRF of star sensors 1 and 2 separated into the 16 orbital revolutions of day
1 November 2009. The data have been filtered with an ideal low pass filter with cut-off frequency at 10 mHz. The right figure (b) is
a zoom in the first 5 minutes of the left figure (a).

Figure 5.14 shows the root PSD of the star sensor angular rates in SSRF (left) and in GRF (right) as derived
with Eqs. B.20 and B.32. For the rotation in the GRF, the star sensor mounting matrices from the co-alignment
of Strandberg (2010), as used within the original L1b processing, have been applied. The first row shows as an
example the root PSD of star sensor 1 for the day 25 November 2009. This is a day where star sensor 1 is in the
STR VC2 L1b file. The second row shows the root PSD for star sensor 2 with the example day 1 November 2009,
where in this case, star sensor 2 is in STR VC2. The third row shows the example for star sensor 3. Here the
data from 29 January 2010 is used, because at this day star sensor 3 is in STR VC2. We observe for all root PSDs
an increase towards higher frequencies for frequencies higher than about 20 mHz, which can be interpreted as
noise. In SSRF, Figs. 5.14(a), 5.14(b) and 5.14(c), the errors for the rotation about the z-axis, i.e. about the
star sensors’ boresight, are as expected about one order of magnitude larger than for the errors about the other
two axes. After rotation to the GRF, Figs. 5.14(d), 5.14(e) and 5.14(f), with the known rotation matrices (as
given in Bigazzi and Frommknecht (2010) and in the L1b file called AUX EGG DB), which provide the mounting
of the gradiometer with respect to the corresponding star sensor (cf. Sect. 5.2.1), the noise levels change. Two
major aspects are noted. First, the rotation about the x-axis in GRF can be determined very accurately with
star sensor 1 (Fig. 5.14(d), blue) and star sensor 2 (Fig. 5.14(e), blue). This is in accordance with expectations,
similar to the result for the difference in the angle about the x-axis between star sensor 1 and star sensor 2
as already discussed with Fig. 5.12(b). Second, the rotation about the y-axis in GRF can be determined most
accurately with star sensor 2, due to an advantageous arrangement with respect to GRF in comparison to the
other two star sensors, cf. again Fig. 5.11.

The star sensor error characteristics play an important role in the GOCE gradiometer processing. On the one
hand they are a limiting factor for the accuracy of the gravity gradients for frequencies below the gradiometer
MB within the original L1b processing. This aspect is further discussed in Sect. 7.1. On the other hand they
can also have a significant impact on the calibration parameters, e.g. as derived at our institute with the TAS
method, see next section.

In Fig. 5.15 additionally the differences between the angular rates from star sensor 1 and star sensor 2 are given.
It is the main basis for the star sensor error models as assumed in Sect. 6.2.1 for the development of an improved
method for angular rate reconstruction.
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(a) Angular rate from star sensor 1 in SSRF, 25/11/2009.
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(b) Angular rate from star sensor 2 in SSRF, 01/11/2009.
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(c) Angular rate from star sensor 3 in SSRF, 29/01/2010.
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(d) Angular rate from star sensor 1 in GRF, 25/11/2009.
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(e) Angular rate from star sensor 2 in GRF, 01/11/2009.
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(f) Angular rate from star sensor 3 in GRF, 29/01/2010.

Figure 5.14.: Root PSD of angular rate as derived from the three star sensors in the respective star sensor reference frame (left) and
in the gradiometer reference frame (right).
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Figure 5.15.: Root PSD of difference in angular rate in GRF of star sensors 1 and 2. Data from 25 November 2009.

5.2.3. Impact of star sensors on ICM calibration

Within the TAS and also the ESA-L ICM determination method the star sensor data are used for the determi-
nation of the absolute scale factors. As pointed out in Sect. 5.2.1, the arrangement of the individual star sensors
with respect to the gradiometer plays an important role for the accuracy of the star sensor data in GRF. Hence,
one could assume that the results of the ICM calibration depend on the used star sensor data. Within this section
the influence of the star sensors on the ICM calibration results as derived by an independent implementation of
the TAS calibration method at IAPG is analyzed.

As an example, the data from the third ICM calibration phase, which took place at 8 October 2009 have been
used to determine the ICMs with the TAS method either using the data of star sensor 1 only, or using the data
of star sensor 2 only. The gradiometer data has been identical for the two cases.

Figure 5.16 shows the corresponding differential scale factors in blue for the use of star sensor 1 and in green
for the use of star sensor 2. For comparison the results of the ESA-L method are shown in red, which makes
use of both star sensors, 1 and 2. The respective required measurement accuracies as derived in Sect. 4.3.2 are
indicated as (red) vertical lines. In general, we observe a strong dependency on the differential scale factors due
to the use of the different star sensors with the TAS method. This is especially true for dSF14x and dSF25y
where both results of the TAS method (blue and green) are farther from the ESA-L value (red) than the required
measurement accuracy. Note that these two ICM elements, dSF14x and dSF25y, are also the ones which show the
largest variation with time (with the ESA-L method), cf. Figs. 5.9(a) and 5.9(e) in Sect. 5.1.4. The scale factors
from star sensor 2 are in general closer to the ones from the ESA-L method. For dSF14z and dSF36x the value
from star sensor 2 (blue) is within the range of the required measurement accuracy from the ESA-L result, but
the value from star sensor 1 (green) is not. An explanation for the better results when using star sensor 2 can be
its arrangement with respect to the gradiometer, cf. Fig. 5.11. The boresight axis of star sensor 2 is closer to the
plane perpendicular to the y-axis of GRF than the one of star sensor 1 (and 3). Hence, the rotation about the
y-axis of GRF can be determined more accurately with star sensor 2. We assume that an accurate determination
of the angular rate about this axis is most important, because GOCE rotates once per revolution about it, and
therefore ωy is the largest angular rate component, cf. also Sect. 5.1.2.

More generally, the analysis of the differential scale factors in Fig. 5.16 shows that the ICMs from the TAS
calibration method are very sensitive to the star sensor measurements. The ESA-L method, which combines the
measurements of all available star sensors, seems to provide more reliable results. In the case that erroneous or
inaccurate differential scale factors are used for the correction of the (measured) DM accelerations (cf. the last
three rows of Eq. 4.15), the common mode rejection does not fully apply and the (measured) CM accelerations
are partly projected onto the (corrected) DM accelerations.
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Figure 5.16.: Impact of star sensor on calibration parameters. Comparison between the results for the differential scale factors as
derived at IAPG with the TAS-method, one time using star sensor 1 only (blue) and one time using star sensor 2 only (green).
In addition the results of the ESA-L method for which a combination of both star sensors has been used (red), and the required
measurement accuracies (red bars) at the locations of the ESA-L results are given.



6. Alternative gradiometer processing

In this chapter methods alternative to the original gradiometer processing as described in Chapter 3 are intro-
duced. The new methods have been adopted as the official gradiometer processing as part of ESA’s PDS. All of
the gradiometer data, so far originally processed, are re-processed, and also all future data will be evaluated with
the new methods.

Four processing steps have been identified which can be improved, cf. Stummer et al. (2012): 1. The optimal
determination of the angular rates of the satellite, based on a combination of star sensor and gradiometer data.
This is the so-called angular rate reconstruction. 2. The optimal determination of the spacecraft’s attitude, again
based on a combination of star sensor and gradiometer data. 3. The combination of data of all simultaneously
available star sensors. And, 4. the calibration of the measured accelerations is improved by taking the time
dependence of selected calibration parameters into account.

6.1. Original versus alternative gradiometer processing scheme

In Chapter 3 the original gradiometer processing scheme has already been discussed in detail. Here, the original
gradiometer processing scheme is compared more generally to the new one. An overview of the original GOCE
L1b gradiometer processing chain is given by Fig. 6.1. The measured gradiometer accelerations are transformed to
(uncalibrated) common and differential mode accelerations, cf. Sect. 3.2. In order to calibrate these accelerations,
i.e. to account for small remaining gradiometer imperfections, the ICMs, which have been determined in the
previous calibration phase (Chapter 4), are used, cf. Sect. 3.3. From the calibrated differential accelerations
the gradiometer angular accelerations can be determined, cf. Eqs. 2.47 to 2.49. In order to be able to subtract
the centrifugal part from the measurements, the angular rates have to be determined very precisely over the
entire frequency range. Thus, the next processing step is the ARR, cf. Sect. 3.4, which combines the angular
accelerations from the gradiometer with the attitude data from the star sensors. In the original processing, the
measurements of only one star sensor, namely the one which is provided in the STR VC2 1b product, are used
within the ARR. Each star sensor measures the attitude of its instrument reference frame, the SSRF, with respect
to the IRF. The provided attitude quaternions of the used star sensor are transformed to the GRF, with the known
rotation matrices, which provide the mounting of the gradiometer with respect to the corresponding star sensor.
The rotated attitude quaternions of the used star sensor serve as input for the ARR. The ARR itself is based on
Kalman filtering in the time domain. The coefficients for the filtering are based on pre-launch stochastic models
of the gradiometer and the star sensors. Besides the determination of combined angular rates, combined inertial
attitude quaternions (IAQ, based on star sensor and gradiometer data) are reconstructed simultaneously (Cesare
et al., 2008). After the ARR, the gravity gradients can be derived by subtraction of the angular rates from the
calibrated differential mode accelerations, using Eqs. 2.50 to 2.55, cf. Sect. 3.5.

Figure 6.2 gives an overview over the new gradiometer processing. The workflow remains in general the same
as for the original processing (cf. Fig. 6.1), except for those steps, where improvements have been identified
(highlighted in light blue in Fig. 6.2). The modified steps are the calibration of the common and differential mode
accelerations, the reconstruction of the angular rates and the attitude quaternions, as well as the treatment of the
star sensor data. In the original processing, the calibration of the accelerations is only based on the ICMs from
the previous calibration, whereas in the new processing the ICMs from the previous and the following calibration
phase are used to compute interpolated and improved calibration parameters. The new ARR method is based on
FIR (finite impulse response) filtering in the time domain and replaces the original Kalman filter implementation.
The reconstruction of the IAQs in the new processing is decoupled from the determination of the angular rates.
It is again performed by FIR filtering in the time domain, using the reconstructed angular rates from the new
ARR method and the star sensor data from a new combination method, to obtain improved IAQs. The new star
sensor processing foresees not only the use of one star sensor, but performs a combination of all simultaneously
available star sensor measurements. Until May 2011 the data of two star sensors are available. Afterwards the
data of all three star sensors are downloaded from the satellite. Due to the star sensor combination, an enhanced
accuracy of the reconstructed angular rates and the reconstructed inertial attitude quaternions can be achieved.
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Figure 6.1.: Overview of original gradiometer processing.

Figure 6.2.: Overview of the new gradiometer processing. The upgraded steps are indicated in light blue.
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6.2. Angular rate reconstruction

First, an improved method for the angular rate reconstruction has been developed in frequency domain as doc-
umented in Stummer et al. (2011). In a next step, this approach has been adapted according to the constraints
within ESA’s PDS. Adequate FIR filters in time domain have been found, which preserve the improved quality
of the angular rates and which are in addition as short as possible in order to reduce the warm-up time and thus
to avoid unnecessary data loss.

6.2.1. Wiener method for angular rate reconstruction in the frequency domain

The newly developed method for angular rate determination performs a spectral combination of the three angular
rate components (of STR and EGG) about the axes of the GRF in the IRF. To obtain angular rates from the
STR quaternions, first a rotation from the SSRF into the GRF has to be carried out. This can be done using
the known rotation matrices from SSRF to GRF (in file AUX EGG DB, cf. Sect. 5.2.1). The STR angular
rates are obtained from the rotated quaternions by applying the Poisson’s equations, see also Appendix B. To
obtain angular rates from the gradiometer, the EGG angular accelerations from Eqs. 2.47 to 2.49 are numerically
integrated in the frequency domain (Best, 1991). The EGG angular rates are already in the desired reference
frame, the GRF. The optimal combination between STR and EGG angular rate is performed by weighting the
angular rate components according to their noise PSD. The weights Hk for the Wiener filter (Papoulis, 1984) are
obtained according to

H (STR)k =
σ2
k (EGG)

σ2
k (EGG) + σ2

k (STR)
(6.1)

H (EGG)k =
σ2
k (STR)

σ2
k (EGG) + σ2

k (STR)
(6.2)

with σ2
k being the variances of the gradiometer (EGG) and star sensor (STR) noise at frequency k, respectively.

Therefore, the sum of the weights for all frequencies equals one:

H (STR)k +H (EGG)k = 1 . (6.3)

The merging of the angular rates is performed componentwise according to

F (merge)k = F (STR)k ·H (STR)k + F (EGG)k ·H (EGG)k (6.4)

with F being the frequency domain representation of the EGG, STR or merged (merge) angular rate components
at frequency k. The merged angular rates in the frequency domain are transformed back into the time domain
to obtain the combined angular rates.

Since the weights of the Wiener filter are based on the noise characteristics of the star sensor and gradiometer
measurements, representative noise power spectral densities, for both, STR and EGG angular rates have to
be derived. Based on the findings of Sect. 5.2, four different sets of STR and EGG noise models have been
empirically designed. The four versions of assumed noise have been used within the Wiener method for angular
rate determination, each time using the combined STR data. (The combination of star sensor data is discussed
in Sect. 6.4.) For version 1 (V1), different noise spectral densities for the three angular rate components from
STR and from EGG are assumed, according to Tab. 6.1 and as illustrated in Fig. 6.3.

Table 6.1.: Version 1 of assumed gradiometer and star sensor angular rate noise

EGG Below Within Above
MBW MBW MBW

x/z 1/f2-behavior 10−8 f2-behavior
y 1/f2-behavior 10−9 f2-behavior

STR Below From 3 Above
3 mHz to 30 mHz 30 mHz

x f -behavior 4 · 10−6 f -behavior
y/z f -behavior 4 · 10−5 f -behavior
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Figure 6.3.: Root PSD of assumed STR and EGG angular rate noise - version 1.

The corresponding cross-over frequencies between STR and EGG are at about 1.2 · 10−4 Hz for the y-component
and at about 2.7 · 10−4 Hz and 5.7 · 10−4 Hz for the z- and x-components, respectively (red lines in Fig. 6.3). For
comparison, the 1 cpr frequency is about 1.85 · 10−4 Hz (black line). For versions 2 to 4 (V2, V3, V4) always the
same noise for all three angular rate components has been assumed (for V2 the noise of V1 in y-direction, for V3
the noise of V1 in z-direction, and for V4 the noise of V1 in x-direction), see Fig. 6.4.

Figure 6.4.: Root PSD of assumed STR and EGG angular rate noise - versions 2 to 4.
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Figure 6.5.: Root PSD of GGT trace - impact of different cross-over frequencies between STR and EGG.

With these four versions of assumed noise the angular rate determination, applying the Wiener method, and
using combined STRs, has been carried out. The new angular rates have been used to compute four sets of
gravity gradients (cf. Eqs. 2.50 to 2.55). The quality of the new gradients can be evaluated by comparing the
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gravity gradient tensor trace. From theory we know that the Laplace condition holds, i.e., the sum of the three
main diagonal GGT components should be zero. In reality the remaining content in the GGT trace reflects
the instrument noise. In our case this is the noise after the spectral combination of STR and EGG. Since in
the spectral combination the STR is mainly used for the low frequencies and the EGG for the medium to high
frequencies, we can conclude that also the noise, reflected in the GGT trace, can either be mainly attributed
to the STR or to the EGG for the respective frequency bands. Figure 6.5 shows the GGT trace for all four
versions of noise assumptions. Additionally, the trace from the original L1b gradients (black curve) is given for
comparison.

It can be noticed:

• The trace from the original gradients (black) has the highest noise content in the frequency range from
about 1 · 10−4 to 7 · 10−4 Hz. So, the Wiener method generally gives improved gradients for all four tested
versions at the lower end of the MB and below.

• For the higher frequencies (from about 7 · 10−3 Hz and higher) no improvement with respect to the original
method can be achieved.

• V3 (cyan curve) performs best. The cross-over frequency is in this case at 2.7 · 10−4 Hz, which corresponds
to the first minimum (in between the 1 cpr peak and its first harmonic of 2 cpr) in the instrument noise
root PSD.

• V1 has three different cross-over frequencies for the three angular rate components, and therefore fits best to
the expected noise from simulations. However, in this case the GGT trace (red curve) increases significantly
at the 1 cpr peak and slightly also at 2 cpr (≈ 3.7 · 10−4 Hz) compared to V3 (cyan).

• In V2 the cross-over frequency for all three components is at 1.2 · 10−4 Hz, i.e. below the 1 cpr frequency.
In this case the GGT trace (blue) is similar to V1 (red). So we see again a degradation with respect to the
best case mainly at the 1 cpr peak.

• It can be concluded that in V1 and V2 the cross-over frequencies (or at least one cross-over frequency for
V1) are assumed too low. This indicates that the noise of the EGG is larger than the noise of the STR at
the 1 cpr peak.

• For V4 the cross-over frequency for all components is at 5.7 · 10−4 Hz, which corresponds approximately
to 3 cpr. In this case the GGT trace (green curve) is clearly larger than the one for the best case (V3,
cyan curve), mainly for frequencies from 3 · 10−4 Hz to about 1.5 · 10−3 Hz. In this frequency range the
GGT trace noise (green) is comparable with the trace from the original gradients (black). To a lesser extent
also the frequencies around the first peak are degraded in this case. Thus one can conclude that in V4 the
cross-over frequencies have been chosen too high.

In summary, the test with different versions of stochastic models has shown that the GGT trace performance is
best, when the cross-over frequency for all angular rate components is in the low between the first and second
peak of the noise root PSD. This corresponds to V3 of the assumed noise and weights for the Wiener filter.
Therefore, the adaption of the Wiener method for the use within the official gradiometer processing of the PDS
is based on V3. More generally, one can conclude from these tests that the EGG noise is smaller than the STR
noise down to very low frequencies. Only for the frequencies corresponding to the 1 cpr peak and below the star
sensors are performing better than the gradiometer, at the level of angular rates.

6.2.2. Wiener method for angular rate reconstruction in the time domain

In order to make the new ARR method appropriate for the use within the PDS, the Wiener filters in frequency
domain have to be realized in time domain. Thereby, the goal is to maintain (at least) the improved performance
(as achieved with V3 of the assumed star sensor and gradiometer noise) of the new method in frequency domain
and to reduce data loss whenever a re-initialization of the filters is necessary (e.g. after an in-flight calibration)
with respect to the original processing as much as possible.

In the original processing the approach for the ARR (Cesare et al., 2008) is based on Kalman filtering in the time
domain. An advantage of Kalman filtering is that it allows theoretically sequential processing. One drawback
of the original implementation is that the Kalman filter transient has a length of about half a day (i.e. about 8
orbital revolutions). This means that whenever a re-initialization of the filters is necessary at least half a day of
data is lost.

The new ARR method is based on FIR filtering of the angular rates in time domain. The FIR filters are symmetric
moving average filters. They are the inverse Fourier transform of the Wiener filters V3 in frequency domain, with
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a length of 8401 seconds, cf. Fig. 6.6. Several tests have been performed to analyze the impact of the filter length.
The optimal filter length has been found empirically, considering the following aspects. On the one side, long FIR
filters are able to map the (long) Wiener filters in frequency domain more precisely in the time domain. On the
other side, long FIR filters have the drawback of a long warm-up time, which results in more data loss, in case of
a filter re-initialization. A tradeoff between these two aspects had to be found. From our tests we have concluded
that the FIR filters with a length of 8401 seconds are the shortest possible realization in time domain of the
Wiener filters V3 in frequency domain without loosing accuracy. The root PSD of these Wiener filters is shown
in Fig. 6.7(b). Figure 6.7(a) shows the root PSD of the underlying assumed STR (blue) and EGG (green) noise.
One advantage of the new ARR implementation in PDS with respect to the original one is, that in case of large
gaps, now at least four times less data is lost. The cross-over frequency, (i.e. for lower frequencies STR data have
a higher weight in the combination and for higher frequencies EGG data) of these filters is at about 0.27 mHz. It
was found that for higher frequencies (i.e. above 0.27 mHz) the gradiometer angular rates are more accurate than
the star sensor ones. This reflects the excellent quality of the gradiometer measurements for frequencies below
the MB.
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Figure 6.6.: Wiener filter for low pass filtering of star sensor angular rates (a) and for high pass filtering the gradiometer angular rates
(b) in time domain.
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Figure 6.7.: Root PSD of assumed STR and EGG angular rate noise (a) and corresponding weights of Wiener filters in frequency
domain (b).

Figure 6.8 illustrates the logic of the new ARR method. The combination of the STR and EGG data is performed
at the level of angular rates. To obtain the STR angular rates, the STR quaternions have to undergo a differ-
entiation process, which makes use of the Poisson’s equations, cf. Appendix B. In the new processing, the STR
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quaternions in GRF from the new STR combination method (cf. Sect. 6.4) are used. To obtain EGG angular
rates, the EGG angular accelerations are numerically integrated in the time domain, using the same (Lagrange)
interpolator as used within the original ARR approach (Cesare et al., 2008), cf. Sect. 3.4. In a next step, the
above described FIR filters are used to extract the low frequency content mainly from the STR angular rates and
the high frequency content mainly from the EGG ones by convolution. The sum of the two filtered time series
gives the optimally combined angular rates (GAR). The combination can be written as

ω (merge)n = ω (STR)n ∗ h (STR)n + ω (EGG)n ∗ h (EGG)n (6.5)

with h (STR) and h (EGG) being the Wiener filter coefficients and ω being the EGG, STR or merged (merge)
angular rate component at epoch n.

Figure 6.8.: New method for the reconstruction of the inertial angular rates.

To highlight this principle with an example, Fig. 6.9 shows for the data from 18 to 20 November 2009 the root
PSDs of the EGG (green), STR (blue) and merged (red) angular rate z-component.
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Figure 6.9.: Example, root PSD of angular rate about z-axis of GRF. Data from 18 to 20 November 2009.

In Fig. 6.10 the logic of the new ARR method is illustrated in more detail for the handling of the gradiometer
data, with emphasis on the time keeping during the sequential L1b processing. In a first step the EGG angular
accelerations are lowpass filtered in order to avoid aliasing in the following processing steps (from blue to green in
Fig. 6.10). A Lanczos filter (Lanczos, 1956; Duchon, 1979) with a length of 1401 seconds and a cut-off frequency
of 200 mHz is used. The filtered angular accelerations are interpolated with a Lagrange interpolator with a
length of 4 seconds, which is the same as used in the original processing, cf. Sect. 3.4. By numerical integration,
i.e. summation over the interpolated EGG angular accelerations, EGG angular rates are obtained. From these
EGG angular rates the very accurate high frequency content is extracted by using the Wiener highpass filter which
has a length of 8401 seconds. These filtered EGG angular rates are combined with the Wiener lowpass filtered
STR angular rates as described above to obtain the merged angular rates (GAR). In total, for the computation
of one epoch of the GAR there are needed Nlp +NLa +NW = 700 + 2 + 4200 = 4902 epochs from the past and
Nlp+NLa−1+NW = 700+1+4200 = 4901 epochs from the future with respect to the current epoch. Note that
for the computation of each epoch of merged angular rates the integration of the gradiometer angular accelerations
has to be re-initialized and performed for the length of the Wiener filters. By doing so, the processing of different
time periods is independent from each other. In principle one could also perform the integration of the angular
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accelerations for longer time periods without new initialization. This would have the advantage of less processing
effort, but the drawback of (very slowly) decreasing accuracy of the results and of inducing a time dependency in
the processing. This means in this case the complete time period under investigation would have to be processed
sequentially as it was the case for the original EGG processing.

Figure 6.10.: New reconstruction of inertial angular rates from a processing point of view.

6.3. Attitude reconstruction

The aim of the attitude reconstruction (ATR) is to find the best possible estimation of the inertial attitude, using
the available star sensor and gradiometer data.

In the original processing, the inertial attitude is determined simultaneously with the angular rates by Kalman
filtering, in the ARR step (cf. Fig. 6.1). In the updated processing, the ATR is decoupled from the angular rate
reconstruction (cf. Fig. 6.2).

The new method for ATR is based on FIR filtering in the time domain, analogously to the new ARR approach.
The combination of STR and EGG data takes place at the level of attitude quaternions, cf. Fig. 6.11. From the
new STR combination method (Sect. 6.4) attitude quaternions are available, which are very accurate at the low
frequencies. For higher frequencies, the STR attitude can be improved by using EGG data. Thus, in the new
ATR approach the optimally estimated angular rates from the new ARR method are integrated to obtain attitude
quaternions, which are very accurate at the high frequencies. The principle of this integration step is rotating
the quaternions from the previous epoch n− 1 to the current epoch n using a mean (interpolated) angular rate,
according to the Poisson’s equations (Eq. B.22). Initial values for the integration are taken from the combined
STR quaternions of Sect. 6.4. The integration has the property of increasing the noise of the low frequencies,
cf. Siemes (2011). For this reason, the integrated quaternions have to be merged with the quaternions from star
sensor combination (Sect. 6.4) in order to obtain very accurate quaternions for all frequencies. The combination
is performed by convolution in the time domain, according to

q (merge)n = q (STR)n ∗ h (STR)n + q (INT )n ∗ h (EGG)n (6.6)

using the same FIR filters with coefficients h (STR) and h (EGG) as for the new ARR method. Note that the
convolution is performed independently for each of the four quaternion components. Hence, a normalization of
the quaternions after filtering is necessary. In order to avoid the accumulation of small errors due to integration
with time, the integration is re-initialized for each step of the convolution.

To highlight this principle with an example, Fig. 6.12 shows the root PSD of the integrated GAR (green), STR
(blue) and merged (red) real quaternion component for the data from 18 to 20 November 2009.

In Fig. 6.13 the logic of the new ARR method is illustrated in more detail for the EGG data, with emphasis on
the time keeping during the sequential processing. The merged angular rates (GAR) are interpolated using a
Lagrange interpolator (same as used before) which has a length of 4 seconds. In an integration step, GAR based
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Figure 6.11.: New method for the reconstruction of the inertial attitude quaternions.
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Figure 6.12.: Merging of real component of the inertial attitude quaternions. Data from 18 to 20 November 2009.

quaternions are derived from the interpolated angular rates. The new quaternions, which are based on EGG
data in the high frequencies, are highpass filtered with the corresponding Wiener filter (same as used before)
which has a length of 8401 seconds. In total, for the computation of one epoch of merged quaternions (IAQ)
NLa − 1 +NW = 1+ 4200 = 4201 epochs of merged angular rates (GAR) before and after the current epoch are
needed.

Figure 6.13.: New reconstruction of inertial attitude quaternions from a processing point of view.

One novelty of the new gradiometer processing with respect to the original one is that the ARR and the ATR
are no longer performed simultaneously in the new approach. Nevertheless the consistency between the corre-
sponding angular rates (GAR) and quaternions (IAQ) has to be maintained. The consistency can be shown with
the following example. Angular rates have been derived from the IAQ to compare them with the GAR. The
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differences between these sets of angular rates serve as a measure for the consistency between the GAR and IAQ.
Figure 6.14(a) shows these differences for the original Kalman filter approach in blue and for the new Wiener
filter approach in red for about two weeks at the beginning of November 2009. Figure 6.14(b) is a zoom in the
red curves (new approach) of Fig. 6.14(a). The differences become smaller by a factor of about 10 to 100 with
the new ARR and ATR. We conclude that the consistency between the GAR and IAQ is improving significantly
due to the new ARR and ATR.
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Figure 6.14.: Difference between angular rates from ARR (=GAR) and angular rates computed from the quaternions of ATR (=IAQ)
(upper: x-GRF, middle: y-GRF, lower: z-GRF). (a), the results of the original ARR and ATR method (blue) as well as the results
of the upgraded ARR and ATR (red) are shown. (b), only the results of the upgraded ARR and ATR (red) are shown.

6.4. Star sensor combination

The star sensor combination is performed in order to have the best possible (star sensor only) inertial attitude
quaternions as input for the ARR and the ATR.

In the original processing, the data of only one star sensor is used, i.e. no combination of star sensor data is
implemented. In the new processing the data of all available star sensors is optimally combined in a least squares
sense, cf. Fig. 6.15.

Each GOCE star sensor measures the angular velocity about its boresight less accurately than the angular
velocities about the two axes which are perpendicular to the boresight, by a factor of about 10. This is in
accordance with pre-launch expectations. The angle with which the star sensors are mounted on board GOCE
is at minimum 40◦ (Bigazzi and Frommknecht, 2010), cf. also Sect. 5.2.1. Thus, the less accurate measurements
of an individual star sensor are measured more accurately by another, and it is therefore possible to compensate
the influence of the less sensitive measurements by building a combination of the star sensors.

Figure 6.15.: Method for the combination of the measurements from two star sensors.

The combination method is the same as implemented within the ground processing of the GRACE (Gravity
Recovery and Climate Experiment) mission. In the following the mathematical background is briefly explained.
For sake of simplicity, the rotation of the star sensor quaternions from the SSRF to GRF has been omitted. Note
that in the new processing, the related rotation matrices have been determined individually for each measurement
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phase with the ESA-L calibration method (Chapter 4), whereas in the original processing the rotation matrices
have been used as determined from a co-alignment between the three STRs, using STR 1 as a reference (Strand-
berg, 2010). For a complete description of the algorithm, see the corresponding GRACE literature (Romans,
2003; Wu et al., 2006), or also Siemes (2011).

The measured quaternion qmeasIRF→SSRFx is modelled as the true quaternion qtrueIRF→SSRFx plus a small
measurement error qnoiseSTRx

qmeasIRF→SSRFx = qtrueIRF→SSRFx ⋆ qnoiseSTRx , (6.7)

with

qnoiseSTRx =


1

0.5 · eSTRx
1

0.5 · eSTRx
2

0.5 · eSTRx
3


and eSTRx

1 , eSTRx
2 , eSTRx

3 representing small angles. The ⋆ operator indicates quaternion multiplication, as
defined in Appendix B. The optimal quaternion is found by minimizing the weighted square-sum

Ω =
∑
x

(
eSTRx

)T · PSTRx · eSTRx, (6.8)

where

eSTRx =

 eSTRx
1

eSTRx
2

eSTRx
3


contains the star sensor noise and

PSTRx =

 1 0 0
0 1 0
0 0 0.01


is the weighting matrix. The element being equal to 0.01 reflects that the attitude about the boresight is 10 times
less accurate than the attitude about the axes in the focal plane of the star sensor.

The solution for the optimal quaternion is

qoptIRF→SSRFx = qmeasIRF→SSRFx ⋆

[
1

−0.5 · eSTRx

]
.

eSTRx can be derived from the small relative errors between the measurements of two star sensors.

Due to the fact that the three GOCE star sensors are mounted on board GOCE with a minimum angle of 40◦,
the leaking of less sensitive measurements into the very accurate ones, when performing the rotation from the
SSRF to GRF, can be avoided by the combination of the different star sensors. The accuracy of the combined
star sensor quaternions in GRF is almost identical for the rotations about all three axes, cf. Fig. 6.16, i.e. the
accuracy of the combined star sensor data in GRF is improved by up to a factor of about 10 with respect to the
accuracy of the data from only one single star sensor, cf. Fig. 5.14.
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Figure 6.16.: Root PSD of angular rate (in GRF) from combination of STR 1 and STR 2.

6.5. Calibration

One pre-requisite for achieving highly accurate gravity gradients is a successful calibration of the gradiometer.
The calibration, which takes place in-flight, consists of two parts. The first part is the determination and
elimination of the so-called quadratic factors, cf. Sect. 4.2. They represent a non-linearity in the accelerometer
transfer function, which relates the control voltages to the accelerations (Lamarre, 2007). The quadratic factors
are zeroed by physically adjusting the accelerometer proof mass position.

The second part of the gradiometer calibration is the determination of the ICMs, cf. Chapter 4. There exist three
ICMs, one for each gradiometer arm. The ICMs account for the remaining gradiometer imperfections. These are
the accelerometer scale factors, (slightly) non-orthogonal accelerometer axes and accelerometer misalignments,
meaning small deviations of the accelerometers from their nominal positions (Cesare and Catastini, 2008b),
cf. Sect. 4.1. The ICMs are determined from the data of dedicated satellite shaking phases, which last for one
day and take place approximately every two months, cf. Sect. 4.3.1.

In the original L1b processing, the calibration of the accelerations is based on the ICMs from the previous
calibration phase, assuming that the temporal stability of the ICMs is sufficient throughout a measurement cycle.
Frommknecht et al. (2011) show for the first six calibrations that the calibration parameters are in general very
stable. Especially the ICM elements corresponding to non-orthogonal accelerometer axes and misalignments are
very stable. These elements describe the mechanical stability of the gradiometer. For some of the accelerometer
scale factors the situation is different. The variation of some scale factors in between two calibrations was found to
be larger than expected, cf. Figs. 5.9 and 5.10. This leads to a degradation of the gravity gradient performance,
which is increasing with time during a measurement cycle. In the new L1b gradiometer processing the time
dependency of the calibration parameters is taken into account by linear interpolation of the ICMs from the
previous and following calibrations. This will prevent the quality of the gravity gradients from degradation with
time.

Figure 6.17 shows the evolution of the differential scale factor along the gradiometer arm 25 (dSF25y) for the
time from November 2009 to May 2010. For this time period, e.g. Frommknecht et al. (2011) have shown that
only the variation of dSF25y has a significant impact on the accuracy of the gravity gradients. In the original
L1b processing, the calibration of the accelerations is based on the ICMs from the previous calibration event,
cf. Fig. 6.17 (option 1, red lines). In the updated L1b processing, the variation of the ICM elements is taken
into account by a linear interpolation of the ICMs in between two successive calibrations, (Fig. 6.17, option 2,
blue lines). Moreover, the ICMs can be determined with an independent validation method, here called ESA-S
method, which uses science mode data and can thus deliver the ICMs on a two-daily basis, (Siemes et al. (2010,
2012), black dots in Fig. 6.17). From the validation values for the dSF25y a small bias with respect to the linearly
interpolated dSF25y of the calibration events (Fig. 6.17, blue curve) can be determined. This results in the green
curve of Fig. 6.17 (option 3). For the first measurement cycle, from November 2009 to January 2010, this offset
has a value of -36 ppm.

All the analysis of the updated calibration in Sects. 7.1 and 7.2 is based on option 3, Fig. 6.17.
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Figure 6.17.: Evolution of differential scale factor in y-direction for gradiometer arm 25. Red: estimate from in-flight calibration;
black dots: validation in science mode with error bars; blue: linear interpolation between successive in-flight calibrations; green:
linear interpolation and offset applied.





7. Results from the alternative gradiometer
processing

In this chapter the impact of the four L1b processor updates (new ARR method, STR combination, interpolation
of calibration parameters and new ATR method) is discussed, starting with a brief description of the used data
sets. First, the individual impact of the four updated processing steps is in the focus. For these analyses, five
different sets of gravity gradients and attitude quaternions, cf. Table 7.1, have been derived. They are analyzed at
the level of gravity gradients (Sect. 7.1) and also at the level of gravity field solutions (Sect. 7.2), which have been
derived with the gravity field processor Quick-Look Gravity Field Analysis (Pail et al., 2007), and wich are based
only on satellite gravity gradiometry. Note that large part of Sects. 7.1 and 7.2 has already been published in
Stummer et al. (2011) and Stummer et al. (2012). Second, the overall impact of the L1b reprocessing is discussed
for full scale gravity field solutions in Sect. 7.3. In Sect. 7.3.1 the benefit of the L1b reprocessing is shown for
full scale SGG-only gravity field solutions. In Sect. 7.3.2 the remaining benefit for combined gravity field models,
which include the SST component is discussed.

All numerical studies presented in the following are based on 61 days of GOCE data (1 November 2009 to
31 December 2009). For the generation of the gravity gradients the following L1b products have been used:

• EGG NOM 1b: gradiometer control voltages

• STR VC2 1b, STR VC3 1b: star sensor inertial attitude quaternions

• AUX EGG DB: gradiometer arm lengths and SSRFs to GRF rotation matrices

• AUX ICM 1b: calibration parameters (ICMs)

To assure the universality of the results, we have tested the L1b processor updates at the level of gravity gradients
also for several shorter time periods of one or a few days and for a time period of 20 days (12 March 2011 to
31 March 2011). Our findings as shown in this work for November and December 2009 have been confirmed (not
shown here).

7.1. Gravity gradients

To highlight the impact of the individual processing steps, i.e. the new ARR and ATR methods, the STR
combination and the interpolation of the calibration parameters, five different sets of gravity gradients and
attitude quaternions have been computed. They are summarized in Table 7.1.

Table 7.1.: Five sets of gravity gradients and attitude quaternions.

case ARR STR ICM ATR
method combination calibration method

A old old old old
B new old old old
C new new old old
D new new new old
E new new new new

Note that the absolute orientation with respect to the inertial frame, which is given by the IAQs, is not needed
for the determination of the gravity gradients in the GRF. Hence, the gravity gradients of case D are the same
as the ones of case E. The difference between these two cases is, that one time the IAQs are obtained from the
original ATR method (case D) and one time from the new ATR approach (case E).

109
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Case A, which reflects the original L1b processing, serves as a reference in the analysis of cases B to E. From
cases B to E, the upgraded processing steps, i.e. the new ARR method, STR combination, interpolation of
calibration parameters, and the new ATR approach have been activated step-by-step.

The performance of the gravity gradients can be evaluated using the trace condition for the GGT. Figure 7.1
shows the root PSD of the GGT trace of the four sets A to D of gravity gradients. Since the GGT trace is
invariant against rotations, it does not reflect the impact of the upgraded attitude reconstruction, case E. It can
be noted:

• In a large part of the MB (except for frequencies below about 8 mHz) all four GG sets have a similar noise
root PSD. For frequencies lower than about 8 mHz, the trace of gravity gradient set A (blue), which reflects
the original L1b processing, has the largest noise root PSD.

• Gravity gradient set B (green), reflecting the use of the new ARR method, shows a significant improvement
with respect to the set A. The largest noise reduction is observed for lower frequencies, in particular at the
frequency of one cycle per revolution (1 cpr ≈ 1.85 · 10−4 Hz) and multiples of it. Here the improvement
is about one order of magnitude. A smaller improvement can still be observed for frequencies up to about
8 mHz.

• Due to the additional use of the STR combination (gravity gradient set C, grey), the GGT trace performance
can be further improved. However, the improvement is much smaller than the improvement due to the new
ARR method. In this case, the improvement is mainly visible in the frequency range from 0.2 to 5 mHz.

• The trace of gravity gradient set D, which reflects the interpolation of the calibration parameters, and thus
the performance of the completely upgraded L1b processing, shows a further improvement in the frequency
range from 1 to 8 mHz. Here, the impact coming from the variation of the calibration parameters (mainly
of dSF25y, cf. Sect. 6.5) on the gravity gradients (mainly on Vyy) can be reduced. This improvement seems
rather small, when compared to the impact of the other processor updates. In Sect. 7.2, however, it is
shown that the corresponding improvement at gravity field level can be very large at regional scale.

Overall, i.e. from case A to case D, the standard deviation of the gravity gradient tensor trace can be reduced by
about 90 % for the frequencies below the MB and by about 4 % within the MB.
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Figure 7.1.: Improvement of GGT trace due to the new method for angular rate reconstruction, star sensor combination and the
interpolation of the calibration parameters. Since the GGT trace is invariant against rotations, it does not reflect the impact of the
upgraded attitude reconstruction.

The quality of the gravity gradients and attitude quaternions can be analyzed by comparison to reference gravity
gradients along the GOCE orbit in GRF. The reference gravity gradients have been derived from the ITG-
Grace2010s gravity field model (Mayer-Gürr et al., 2010) up to degree/order 180, which is only based on satellite
data from the GRACE mission, and which is thus independent from the GOCE measurements. We did not
compare to a combined gravity field model like EGM2008 (Pavlis et al., 2012), which includes also terrestrial
data, because we have found that this model seems to be inaccurate for several regions (Amazon region, Africa,
Antarctica, Himalaya), where probably terrestrial gravity data of lower quality has been used, cf. Fig. 7.6. In order
to avoid a related manipulation of our analysis, which includes also filtering of the gravity gradients, we preferred
to use the ITG-Grace2010s model. For the rotation in GRF the IAQs either from the original ATR method
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(cases A to D) or from the new ATR method (case E) have been used. Figures 7.2 to 7.5 show geographical maps
of the differences between the GOCE gravity gradients (Vxx, Vyy, Vzz, Vxz) and the reference gravity gradients
in GRF, filtered to the frequencies between 1 and 50 mHz.

For Vxx (Fig. 7.2) and Vzz (Fig. 7.4) the differences to the reference gravity gradients can be reduced the most from
case A to B, i.e. due to the new ARR method. For Vyy (Fig. 7.3) we observe in addition to the strong reduction
due to the new ARR method also a very strong reduction due to the new calibration strategy (from case C to D).
The component Vxz is extremely sensitive with respect to rotational errors (Pail, 2005), cf. Fig. 5.3(e). Hence,
we can expect that this component benefits most from an improved attitude information. The analysis of Vxz
(Fig. 7.5) shows that this is indeed the case. Only for case E, where the new IAQs are used for the rotation of
the reference gradients in GRF, a strong reduction can be achieved. This confirms that the quality of the IAQs
is improving significantly with the new ATR method.

In the following we want to explain the error structures in Figs. 7.2 to 7.5. For the gradients from the original
processing (cases A) we observe a rather scattered pattern, in which the ground-tracks of GOCE can be roughly
identified. Due to the processor updates the dominating patterns change. For the main diagonal GGT elements
this change takes already place for the cases B, i.e. when using the new method for ARR. For Vxz (Fig. 5.3(e))
the change can not be observed until all processor updates are enabled, i.e. only after also the new method for
ATR (case E) is used.

In the remaining error patterns (cases E) a strong signal can be seen following the magnetic equator. According
to Peterseim et al. (2011) this signal is most likely caused by ionospheric turbulences acting upon the satellite.
For Vyy (Fig. 7.3) cases A, B, and C we observe a strong signal at the auroral oval region south of Australia,
especially in the ascending tracks. In the following, we try to explain possible reasons for this pattern. From the
accelerometer data of the CHAMP mission Lühr et al. (2007) found out that strong cross track winds occur in
these regions. Moreover, Liu et al. (2005) discovered at CHAMP altitudes a thermospheric mass density over the
polar regions, especially concerning the auroral ovals, which is 20-30 % higher during night hours local time than
the estimation of commonly used models, cf. Peterseim et al. (2011). This could be the reason, why the signal is
stronger in the ascending tracks of Vyy (Fig. 7.3, left). These are always related to dusk in local time.

These strong atmospheric signals are reflected in the CM accelerations as measured by GOCE. The goal of the
calibration is to better separate the DM and CM signal using the ICMs, cf. Eq. 4.15. If there are remaining CM
signals in the DM and thus also in the gravity gradients (here in Vyy), this means that the principle of common
mode rejection did not work perfectly, because the variation of the CM signal was too strong, and the ICMs have
not been capable to reject the CM signal completely.

Mainly Vyy is affected, because the cross winds are measured primarily by the (in-line) cross-track component
ac,25,y, which is coupled with the DM ad,25,y via the scale factor dSF25y (Eq. 4.15). Also in Sect. 5.1.4 we have
shown that the dSF25y is changing significantly with time. Furthermore, the DM acceleration ad,25,y contains
the GGT component Vyy, cf. Eq. 2.51. With the new calibration approach (case D), which takes into account
the temporal variations of the ICM elements, the strong pattern at the auroral region south of Australia vanishes
almost completely.
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Figure 7.2.: Differences of gravity gradient Vxx to the ITG-Grace2010s model in GRF for case A to E, filtered to 1 to 50 mHz.
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Figure 7.3.: Differences of gravity gradient Vyy to the ITG-Grace2010s model in GRF for case A to E, filtered to 1 to 50 mHz.
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Figure 7.4.: Differences of gravity gradient Vzz to the ITG-Grace2010s model in GRF for case A to E, filtered to 1 to 50 mHz.
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Figure 7.5.: Differences of gravity gradient Vxz to the ITG-Grace2010s model in GRF for case A to E, filtered to 1 to 50 mHz.
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7.2. Satellite Gravity Gradiometry gravity field solutions

To evaluate the impact of the four upgraded processing steps on the level of gravity field solutions, five gravity
field scenarios (GFS), according to the cases given in Table 7.1, have been computed and analyzed.

The fast gravity field processor Quick-Look Gravity Field Analysis (QL-GFA) has been applied, which has also
been used in the frame of GOCE HPF in the regular processing chain during the nominal operational phase,
with short latency, for the purpose of system performance analysis. A detailed description of the architecture
and functionality of the QL-GFA processor can be found in Pail et al. (2007). Operational results as provided in
Mayrhofer et al. (2010) demonstrate that gravity field models with a quality competitive to rigorous gravity field
solutions can be achieved by QL-GFA.

The L1b updates have also been analyzed by Stummer et al. (2012) with an independent gravity field processor
based on least squares adjustment of the gravity gradients, where the stochastic model for the gravity gradient
noise is implemented by one auto-regressive moving-average (ARMA) filter per gravity gradient (Schuh, 1996).
The results of both gravity field processors are in accordance with each other.

In order to analyze the sole effect of the L1b updates, gravity field models based only on the SGG components Vxx,
Vyy, Vzz and Vxz have been computed, and the SST component has been disregarded. Since gravity field models
derived from GPS orbits are also sensitive to the low to medium frequency range of the harmonic spectrum,
they would partly mask the effect of the modifications discussed here. The impact of the L1b reprocessing for
combined gravity field models, which include the SST component is further discussed in Sect. 7.3.2.

The scenarios A to D are in accordance with the gravity gradient sets of case A to D from Sect. 7.1, using the
attitude quaternions from the original processing. For scenario E the gravity gradients from set E (new ARR
method, with STR combination, with ICM interpolation) and the attitude quaternions from the new processing
have been used. Scenario A reflects the status of the original processing, whereas scenario E shows the overall
impact of the new processing.

In the following (cf. Figs. 7.6 and 7.7), the five gravity field scenarios are analyzed in the spatial domain in terms
of geoid heights, computed between degree and order 10 to 200.

(a) Current processing (GFS A) minus EGM2008 (b) New processing (GFS E) minus EGM2008

Figure 7.6.: Difference in geoid heights (degree/order 10-200) between EGM2008 and (a) the solution based on the original L1b data,
and (b) the solution based on the improved L1b data.

Figure 7.6(a) shows the differences between EGM2008 (coefficients up to degree/order 360 used) and the solution
based on the original processing (GFS A). EGM2008 is a combined gravity field model containing, among others,
GRACE, terrestrial gravity and satellite altimetry data. Since the performance of GRACE included in EGM2008
is superior to GOCE in the low to medium degrees (up to degree 150 for a GOCE solution based on 2 months
of data), EGM2008 can serve as a very good reference for the SGG-only GFS A to E at least for the low degree
coefficients. We observe a north-south striping pattern with a magnitude of ±1 m. We attribute the north-south
striping to errors in the low degree (sectorial) coefficients of GFS A. Figure 7.6(b) shows the differences between
EGM2008 and the solution based on the new processing (GFS E), at the same scale as Fig. 7.6(a). With the
new processing, the north-south striping is not visible anymore. We can conclude that the low degree coefficients
of GOCE SGG-only gravity field solutions are improved due to the processor updates by at least one order of
magnitude. In addition, we observe large differences in the Amazon region, Africa, Antarctica, and Himalaya.
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The differences can be mainly attributed to terrestrial gravity data of lower quality which have been included
in EGM2008 in these regions. This can be proven by the fact that solutions based on GOCE data, which show
a homogenous global error structure, fit very well to EGM2008 in regions where a high quantity and quality of
terrestrial data are available.

In the following, the gradual improvement due to the four upgraded processing steps is discussed. Figure 7.7(a)
reflects the impact of the new ARR method. We observe a similar north-south pattern in the same order of
magnitude as in Fig. 7.6(a). We can conclude that the improvement in the low degree coefficients, as seen from
the comparison between Figs. 7.6(a) and 7.6(b), is mainly due to the new ARR method. Fig. 7.7(b) shows that
the additional improvement due to the star sensor combination is rather small. It has a magnitude of ±10 cm
and a chessboard-like pattern, which is related to the (tesseral) low degree coefficients. The impact of the new
calibration approach can be seen in Fig. 7.7(c). The common mode rejection does not work properly in regions
with large, highly dynamical common mode signals in the original calibration approach (Siemes et al., 2010). For
the data period shown here, this is particularly the case for the region south of Australia, where we observe an
improvement with a magnitude of up to ±30 cm. The new ATR method, see Fig. 7.7(d), reduces on top mainly
the north-south striping in the order of ±15 cm.

(a) Impact of the new angular rate reconstruction,
(GFS B minus GFS A)

(b) Impact of the star sensor combination,
(GFS C minus GFS B)

(c) Impact of interpolation of calibration parameters,
(GFS D minus GFS C)

(d) Impact of the new attitude reconstruction,
(GFS E minus GFS D)

Figure 7.7.: Improvement in geoid heights (degree/order 10 to 200) due to the four improved processing steps, (a) new angular rate
reconstruction, (b) star sensor combination, (c) interpolation of calibration parameters and (d) new attitude reconstruction.

Next, the five gravity field scenarios are spectrally analyzed. The degree (error) median, the cumulative geoid
and gravity anomaly errors as well as the error estimates of the individual coefficients are discussed.

Figure 7.8 shows the deviation of the estimated coefficients from the GRACE-only model ITG-Grace2010s (Mayer-
Gürr et al., 2010) in terms of degree medians up to degree/order 180. Since degree median errors are a robust
estimate of the accuracy, they have been multiplied by a factor of 1.4826 to make them comparable with corre-
sponding standard deviations (Hettmansperger and McKean, 1998, p. 199). Also the corresponding signal (solid
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black curve) and formal errors (dashed black curve) of the GRACE solution are given. For the low to medium
degrees, the GRACE solution can serve as a reference to evaluate mainly the errors in the GOCE solutions.
For degrees/orders higher than about 155 the formal errors of ITG-Grace2010s exceed the (error) median of
the GOCE solutions. Thus, the GRACE solution can not serve as a reference for the higher degrees. Detailed
studies show that the formal errors of both, the ITG-Grace2010s model and the GOCE solutions, are a very good
estimate for their true error behavior, cf. e.g. Pail et al. (2010). Compared to the nominal scenario A (blue curve),
we observe a substantially improved performance mainly in the lower harmonic degrees up to about degree 120
for the results of the new processing (GFS E, dashed cyan curve). When only the new ARR method (GFS B,
green curve) is used, the improvement in the median is visible up to degree 70. The additional benefit of using
the star sensor combination (GFS C, dashed grey curve) is too small to show up markedly in the comparison
to GFS B (green curve). When also interpolating the calibration parameters (GFS D, dashed red curve), the
performance can again be significantly improved. The improvement is visible up to degree 120. Above degree
120, the improvement is likely to be obscured by the errors of the ITG-Grace2010s model, which can be seen
from the formal errors. The additional use of the new attitude quaternions (GFS E, dashed cyan curve) results
in another visible improvement in the lower degrees up to degree 60.
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Figure 7.8.: Degree median differences between the five GFS and ITG-Grace2010s.

Figures 7.9(a) and 7.9(b) show the cumulative geoid and gravity anomaly differences, respectively, between the
five gravity field models and ITG-Grace2010s. Again, the GRACE solution serves as a reference for the low
to medium degrees. The computation of the cumulative errors is based on the degree median, scaled to the
corresponding standard deviation by multiplication with the factor 1.4826, between degrees 20 and 150. We did
not use the lower degrees for this analysis, because they can not be determined precisely with SGG-only solutions.
The large error of the low degrees would therefore partly mask the analysis of the medium to high degrees, which
are most important for SGG-only gravity field solutions. The cumulative geoid error can be reduced in total from
3.0 to 2.2 cm while the gravity anomaly error from 0.7 to 0.5 mGal (cf. the blue and cyan curves of Figs. 7.9(a)
and 7.9(b) at degree 150). When the four upgraded processing steps are gradually included from GFS A to E, we
observe that two steps contribute most to the overall improvement. These are the new ARR method (green) and
the new calibration approach (red). The star sensor combination and the new ATR method cause only minor
improvements.

Fig. 7.10 shows the root PSD estimates of the gravity gradient residuals after the gravity field adjustment, i.e. the
difference between adjusted and original observations for Vxx, Vyy and Vzz. The residuals are an estimate for the
total errors in the system, projected onto Vxx, Vyy, Vzz (and Vxz). The residuals of Vxz are discussed in the next
paragraph, cf. Fig. 7.11. There are significant improvements mainly due to the new ARR method (green) with
respect to the original processing (blue), which take place mainly below the MB and e.g. for Vxx also in the lower
MB, with a strong reduction of the peaks which occur as multiples of the 1 cpr frequency. The residuals of Vyy,
Fig. 7.10(b), can be strongly reduced for the frequencies between about 3 and 10 mHz due to the new calibration
approach (red curve). Note that this strong reduction is mainly caused by the improvement in only a few areas
on Earth, like e.g. in the region under Australia in Fig. 7.7(c). The star sensor combination and the new ATR
method cause again only minor improvements.

The GGT component Vxz is very sensitive to rotations, as demonstrated e.g. in Pail (2005). Hence, it can be
used for a quality assessment of and comparison between the original and new IAQ. Figure 7.11 shows in black
the root PSD of Vxz, computed from the gravity field model EGM2008 (coefficients up to degree/order 360 used)
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Figure 7.9.: Cumulative geoid differences (a) and cumulative gravity anomaly differences (b) between the five GFS and ITG-
Grace2010s. The computation is based on the respective degree median between degrees 20 and 150.

and rotated in the GRF with the IAQs from the original processing. We refer to this curve as reference gravity
gradient Vxz. The yellow curve reflects the difference between this reference and the measured gravity gradient
Vxz. In addition, the residuals of GFS D (red), new processing, but original ATR method (i.e. original IAQ are
used here) and GFS E (cyan) with complete new processing (i.e. new IAQ are used here) are shown. For the
frequencies between about 0.1 and 10 mHz the residuals of GFS D (red) are in very good agreement with the
difference between the reference and measured gravity gradient Vxz (yellow). We conclude that the Vxz residuals
are (for these frequencies) a very good estimate of the true errors. With the use of the new ATR method (i.e. with
the new IAQ), the Vxz residuals can be significantly reduced for the frequencies between about 0.1 and 3 mHz.
Again, especially the peaks which occur as multiples of the 1 cpr frequency are reduced. We conclude that the
restricting factor for the quality of Vxz (for the frequencies below the MB) is the accuracy of the IAQ. Hence, the
use of the improved ATR method is essential for the quality of Vxz.

While e.g. the degree median plot in Fig. 7.8 gives an overall picture on the improvement in the harmonic
spectrum, the details of the impact of the L1b processor updates can be seen even more lucidly when analyzing
individual coefficients. Figure 7.12 shows the improvement of individual coefficients in percent, computed from
the error estimates (main diagonal elements of the a posteriori variance-covariance matrix) of the scenarios A
and E. Note that for this visualization the scale has been confined to a maximum of 100 %. In reality, the
accuracy of some very low degree coefficients is improved by more than 200 %.

Two effects are evident: first, the accuracies of the low degree coefficients could be generally improved; this
conclusion is in accordance with Fig. 7.8. In particular, the (near-)sectorial coefficients could be improved,
because their accurate estimation requires relatively more information from below the MB. Second, and equally
important, the improvement occurs predominantly at characteristic bands at the orders k · 16, with integer k,
reflecting the mapping of the peaks of the gradiometer error spectra (cf. Fig. 7.1) onto the gravity field solution.
These coefficients of order k · 16 are particularly sensitive to those frequencies which show significantly degraded
accuracies due to a lower signal to noise ratio. With the new L1b processing, these stripes at orders k · 16
are markedly reduced, i.e. the achievable accuracy for these coefficients is significantly increased. Since the
largest differences (improvements) occur for these specific coefficients, the degree medians shown in Fig. 7.8 even
underestimate the impact of the new processing. As Fig. 7.12 demonstrates, for selected groups of coefficients
there is an impact up to high harmonic degrees.

At this point it should be emphasized that these rather large improvements are observed for SGG-only solutions.
Due to the fact that the gain due to the L1b processor updates occur to a large extent in the long wavelength
range, which is largely covered by GPS-SST, the overall improvement of combined GOCE SST and SGG solutions
is expected to be significantly smaller. This aspect is further analyzed in Sect. 7.3.2.
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(a) Vxx.
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(b) Vyy.
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B: plus upgraded ARR
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(c) Vzz.

Figure 7.10.: Root PSD of residuals of the main diagonal GGT elements.
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Figure 7.11.: Root PSD of gravity gradient Vxz , comparison with reference gradient and with Quick-Look residuals.
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Figure 7.12.: Improvement in formal errors from GFS A to E.
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7.3. Full-scale gravity field solutions

The overall impact of the EGG processor updates has been further analyzed at the level of full-scale gravity field
solutions. A full-scale gravity field solver, which is implemented at IAPG (Pail et al., 2012), has been used. Note
that this is, in contrast to the QL-GFA tool, which was used in Sect. 7.2, a rigorous processor which does not
make use of any simplifications or approximations. In Sect. 7.2 the focus was on the analysis of the four processor
updates, individually. In this section, we further intend to illuminate the overall improvement due to the new
EGG processing, as implemented in PDS, for full-scale SGG-only gravity field solutions and for models which
include in addition to the SGG also the SST component.

Table 7.2 gives an overview of the four gravity field models, which are analyzed in this section. We will discuss the
impact of the new EGG processing for full-scale SGG-only gravity field models (O1 and N1) and for GOCE-only
models (O2 and N2), based on a combination of GOCE SST and SGG data. For the models O1 and O2 the SGG
data, as obtained from the original L1b EGG processing, have been used, whereas for N1 and N2 the SGG data
from the improved L1b processing have been used. Further description of the four gravity field models will be
given in the following in the beginning of the respective sections, (Sects. 7.3.1 and 7.3.2).

Table 7.2.: Overview of the four gravity field solutions. Models O1 and N1 are full-scale SGG solutions, either based on the original
(O1) or the new (N1) EGG processor. Models O2 and N2 are combinations of the SGG components, either from O1 or N1, with
GOCE GPS-SST data.

GF Type Maximum degree/order Time period
O1 GOCE SGG original 224 2 months
N1 GOCE SGG new 224 2 months
O2 GOCE SST + SGG original SST 100, SGG 224 SST 2 months, SGG 2 months
N2 GOCE SST + SGG new SST 100, SGG 224 SST 2 months, SGG 2 months

7.3.1. Satellite Gravity Gradiometry gravity field solutions

In this section the impact of the new processing is analyzed for the two SGG gravity field models O1 and N1,
cf. Table 7.2, which have been computed at IAPG, up to degree/order 224. Both models are based on Vxx, Vyy,
Vzz, and Vxz from November and December 2009. The same (Kaula) regularization has been applied to zonal
and near-zonal coefficients which are affected by the polar gap effect (Sneeuw and van Gelderen, 1997).

In the following (cf. Fig. 7.13), the two gravity field scenarios O1 and N1 are analyzed in the spatial domain in
terms of gravity anomalies, computed between degree and order 10 to 200. Note that a similar analysis in terms
of geoid heights is made in Sect. 7.2, Fig. 7.6(a) for the SGG-only GFS A and D, as derived with the QL gravity
field processor.

Figure 7.13(a) shows the differences between EGM2008 (coefficients up to degree/order 360 used) and the solution
based on the original processing (GFS O1). Since GRACE data is included in EGM2008, it can serve as a reference
for the SGG-only GFS for the low degree coefficients. We observe a north-south striping pattern with a magnitude
of about ±5 mgal. Figure 7.13(b) shows the differences between EGM2008 and the solution based on the new
processing (GFS N1). With the new data, the north-south striping is not visible anymore. We can conclude that
the low degree coefficients of GOCE SGG-only gravity field solutions are improved due to the processor updates
by at least one order of magnitude. These findings are in very good agreement with the findings of Sect. 7.2 for
the QL gravity field solutions. This also confirms additionally that the quality of QL gravity field solutions is
competitive to rigorous gravity field solutions. Figure 7.13(c) shows the differences between the solutions based on
the original (GFS O1) and the new processing (GFS N1). Here, again, the north-south striping clearly appears.
Furthermore, large improvements in the south auroral region, here particularly in the area south of Australia and
south of South America, occur. These improvements are due to the new calibration approach, which takes into
account the time dependence of the calibration parameters, in particular of dSF25y. Mainly Vyy (cf. Fig. 7.3,
ascending tracks) is affected by this aspect, as shown in Sect. 7.1.

Figure 7.14 shows the square root of degree variances of the differences of the two models O1 (SGG original)
and N1 (SGG new) and ITG-Grace2010s, which shall serve again as a reference for the low to medium degrees.
The solid lines represent the degree error variances estimated from the difference to the GRACE solution, the
dashed lines are the degree error variances computed from the estimated coefficient standard deviations. Also
the corresponding signal (solid black curve) and formal errors (dashed black curve) of the GRACE solution are
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(a) Original processing (GFS O1) minus EGM2008 (b) New processing (GFS N1) minus EGM2008

(c) New processing (GFS N1) minus original one (GFS O1)

Figure 7.13.: Difference in gravity anomalies (degree/order 10-200) between EGM2008 and (a) the full-scale SGG-only solution O1
based on the original L1b data, and (b) the full-scale SGG-only solution N1 based on the improved L1b data; (c) difference between
the new processing (N1) and the original one (O1).

20 40 60 80 100 120 140 160 180
10

−4

10
−3

10
−2

10
−1

10
0

Degree n

D
eg

re
e 

(e
rr

or
) 

va
ria

nc
es

 [m
]

 

 

ITG−Grace2010s
ITG−Grace2010s error
O1 (SGG original) − ITG−Grace2010s
O1 (SGG original) error
N1 (SGG new) − ITG−Grace2010s
N1 (SGG new) error

Figure 7.14.: Square root of degree (error) variances of the two models O1 (SGG original) and N1 (SGG new) with respect to ITG-
Grace2010s. The near-zonal coefficients are excluded in the computations. The solid lines are degree error variances estimated
from the difference to the reference solution, the dashed lines are the degree error variances computed from the estimated coefficient
accuracies.
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shown. We observe a strong reduction of both, the formal errors, and the differences to the GRACE solution,
due to the L1b reprocessing. As expected, the improvements occur mainly at the low to medium degrees. To a
small extent (about 6 %), the formal errors of the GFS N1 (red, dashed) are smaller than those of the GFS O1
(blue, dashed) even up to degree 180. In the difference of GFS O1 to the GRACE solution (blue) we observe
three peaks, for which the curve exceeds the one of the formal errors (blue, dashed). These peaks occur around
the degrees 16, 32, and 48, which corresponds with the orbital frequency and its first two harmonics. However,
in Fig. 7.12 we have shown that the peaks in the gradiometer error spectra at the orbital frequency and its
harmonics are predominantly propagated onto the gravity field solution at characteristic bands at the orders
(not degrees) k · 16, with integer k. When using the reprocessed SGG data, cf. the difference of GFS N1 to the
GRACE solution (red), these peaks are eliminated completely. As shown in Sect.7.1 the low-frequency error of
the gravity gradients, especially at the orbital frequency and its harmonics can be reduced significantly due to
the new method for ARR.

Figures 7.15(a) and 7.15(b) show the cumulative geoid and gravity anomaly differences, respectively, between
the two full-scale SGG solutions (O1 and N1) and ITG-Grace2010s, starting at degree 20. Again, the GRACE
solution serves as a reference for the low to medium degrees. The computation of the cumulative errors has been
performed in the same way as for Fig. 7.9, where the cumulative errors of the five QL SGG solutions are shown.
This means that the computation is based on the degree median, scaled to the corresponding standard deviation
by multiplication with the factor 1.4826, between degrees 20 and 150. The cumulative geoid error can be reduced
in total from 3.0 to 2.1 cm, and the gravity anomaly error from 0.7 to 0.5 mGal (cf. the blue (SGG original, O2)
and red (SGG new, N1) curves of Figs. 7.15(a) and 7.15(b) at degree 150). These numbers are again in very good
agreement with the ones obtained from the QL SGG-only gravity field solutions of Sect. 7.2.
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Figure 7.15.: Cumulative geoid differences (a) and cumulative gravity anomaly differences (b) between the two full-scale SGG mod-
els O1 (SGG original) and N1 (SGG new) to ITG-Grace2010s. The computation is based on the respective degree median between
degrees 20 and 150 (not shown).

For the generation of the SGG-only GFS O1 and N1 stochastic models for the gravity gradient noise have been
derived, cf. Pail et al. (2012). These stochastic models do not describe the peaks of the gravity gradient noise at
the orbital frequency and its harmonics, as observed e.g. for the GGT trace, cf. Fig. 7.1, and for the residuals of
the QL SGG-only gravity field solutions in Sect. 7.2, cf. Fig. 7.10. Note that also the stochastic modelling for the
official GOCE Level 2 gravity field solutions does not include these peaks (Pail et al., 2011). According to Schuh
et al. (2010) a more complex stochastic modelling, which includes the peaks, does not improve the quality of the
spherical harmonic (SH) coefficients.

Figure 7.16 shows the absolute differences of the SH coefficients of GFS O1 (original SGG data) and N1 (new
SGG data). We observe the same main features as visible in the improvement of the formal errors in Fig. 7.12.
This means that the low degree coefficients can be improved in general, and the (near-)sectorial coefficients in
particular, as expected. Moreover, the improvement occurs again predominantly at characteristic bands at the
orders k · 16. In Sect. 7.2 it was shown that these bands reflect the mapping of the peaks of the gradiometer error
spectra, cf. Fig 7.10, onto the gravity field solution, cf. Fig. 7.12.

From the two full-scale SGG-only gravity field models for November and December 2009 based on the original
(O1) and the new (N1) L1b processing one can analyze the effects of the reprocessing on the single gradiometer
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Figure 7.16.: Absolute differences of spherical harmonic coefficients of the original (GFS O1) and new (GFS N1) full-scale SGG-only
models (degree/order 0-224).

components. Figure 7.17 shows the root PSD estimates of the gravity gradient residuals for Vxx, Vyy, Vzz and
Vxz as obtained from the gravity field analyses for O1 (blue) and N1 (red). We observe a significant reduction of
these noise representations for frequencies below about 10 mHz for all four components. Note that these noise
estimates coincide very well with the ones obtained with the QL gravity field processor in Sect. 7.2 for the main
diagonal GGT elements (Fig. 7.10) and for Vxz (Fig. 7.11). In addition to the gravity gradient residuals, also
the estimated noise models for Vxx, Vyy, Vzz and Vxz, which have been used for generating the stochastic models
for the GFS O1 (black) and N1 (grey, dashed) are shown. Each of these noise models is defined as a cascade of
two ARMA models, which are based on the so-called first Durbin method (Durbin, 1960), as described in Stetter
(2012).

With the semi-analytical approach (Sneeuw, 2000) the root PSDs of the gravity gradient residuals (Fig. 7.17) have
been mapped onto the SH spectrum resulting in standard deviations for all coefficients up to degree/order 224.
A comparison of the results with and without the reprocessing gives the absolute changes for each of the four
components. These changes are shown in Fig. 7.18 in percent. Vyy shows the largest improvements for the
sectorial coefficients up to 100 %. In general the peak effects around orders of multiples of 16 are reduced in all
four components.
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Figure 7.17.: Root PSD of Vxx, Vyy , Vzz and Vxz residuals as obtained from the GFS O1 (SGG original) and N1 (SGG new), which
have been used for semi-analytical error propagation. In addition, the estimated noise models for the GGT components, which have
been used for generating the stochastic models for GFS O1 and N1 are shown.
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Figure 7.18.: Absolute changes [%] of standard deviations of the single GGT components Vxx, Vyy , Vzz and Vxz due to the L1b
reprocessing.

7.3.2. Combination with SST

In this section we analyze the impact of the L1b reprocessing on gravity field solutions, which include besides the
SGG also the SST component. The two models, O2 and N2, cf. Table 7.2, have been determined by combining
the normal equations of the SGG-only solutions O1 (SGG original) and N1 (SGG new) with the normal equations
of a SST solution, which is based on the approach of Mayer-Gürr (2012), using 2 months of GOCE orbit data.

In the following (cf. Fig. 7.19), the two gravity field scenarios O2 and N2 are analyzed in the spatial domain in
terms of gravity anomalies, computed between degree and order 10 to 200. Figure 7.19(a) shows the differences
between EGM2008 and GFS O2 (SST and SGG original). As expected, we do not observe a north-south striping
pattern, as obtained for the SGG-only solution O1, which is based on the original L1b data, cf. Fig. 7.13(a).
The SST component, which is very accurate for the low SH degree/order coefficients, seems to be capable of
compensating the long wavelength error of the original L1b gradiometer data. Figure 7.19(b) shows the differences
between EGM2008 and GFS N2 (SST and SGG new). We only observe marginal differences due to the new SGG
data when comparing to Fig. 7.19(a). Figure 7.19(c) shows the differences between the combined solutions, using
the original SGG component (GFS O2), and the new one (GFS N2). In the auroral regions, in particular in
the area south of Australia, large improvements occur with the new SGG data. As expected, the artifacts in
this area, due to non-perfect common mode rejection in the original L1b gradiometer data, are also present in
the combined gravity field model O2. In this respect gravity field models, which are based on a combination of
GOCE SST and SSG, benefit a lot from the L1b reprocessing.

Figure 7.20 shows the square root of degree variances of the differences of the two models O2 (SST and SGG
original) and N2 (STT and SGG new) and ITG-Grace2010s. The solid lines represent the degree error variances
estimated from the difference to the GRACE solution, the dashed lines are the degree error variances computed
from the estimated coefficient accuracies. Also the corresponding signal (solid black curve) and formal errors
(dashed black curve) of the GRACE solution are given. The formal errors of the GFS N2 (red, dashed) are
smaller than the ones of the GFS O2 (blue, dashed) for the degrees 10 to 180. Only the lowest degrees (2 to 10),
which are almost completely determined from the SST component, do not show a significant change. The impact
of the SGG component becomes visible for degrees greater than 10. The decrease of the formal errors is confirmed
by the decrease of the differences from GFS O2 (blue) and GFS N2 (red) to the GRACE reference model. This
demonstrates that not only the low degree SH coefficients are improved due to the L1b preprocessing, but that
there is in general a benefit for the complete SH spectrum, even of combined gravity field solutions. Note that
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(a) Original processing (GFS O2) minus EGM2008 (b) New processing (GFS N2) minus EGM2008

(c) New processing (GFS N2) minus original one (GFS O2)

Figure 7.19.: Difference in gravity anomalies (degree/order 10-200) between EGM2008 and (a) the GOCE-only solution O2 based on
the original L1b data, and (b) the GOCE-only solution N2 based on the improved L1b data; (c) difference between the new processing
(N2) and the original one (O2).
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Figure 7.20.: Square root of degree (error) variances of the two models O2 (GOCE SST and SGG original) and N2 (GOCE SST and
SGG new) with respect to ITG-Grace2010s. The near-zonal coefficients are excluded in the computations. The solid lines are degree
error variances estimated from the difference to the reference solution, the dashed lines are the degree error variances computed from
the estimated coefficient standard deviations.
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these findings are also confirmed by Brockmann et al. (2012), who compare the official Level 2 gravity field
TIM RL01, which is based on the first 71 days of GOCE SST and SGG data, with a new preliminary gravity
field version, that makes use of the reprocessed gradiometer data.

Figures 7.21(a) and 7.21(b) show the cumulative geoid and gravity anomaly differences, respectively, between the
two combined (SST and SGG) solutions (O2 and N2) and ITG-Grace2010s, starting at degree 20. The cumulative
geoid error can be reduced in total from 2.1 to 1.9 cm, and the gravity anomaly error from 0.48 to 0.43 mGal
(cf. the blue (SGG original, O2) and red (SGG new, N1) curves of Figs. 7.21(a) and 7.21(b) at degree 150). This
means a reduction of about 10 %. For comparison, we found for the SGG-only solutions, cf. Fig. 7.15, a reduction
of about 30 %. We conclude (again) that also combined models, which make use of the SST component, still
benefit a lot from the L1b reprocessing.
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Figure 7.21.: Cumulative geoid differences (a) and cumulative gravity anomaly differences (b) between the two models O2 and N2 to
ITG-Grace2010s. The computation is based on the respective degree median between degrees 20 and 150 (not shown).

In order to obtain an overall picture on the improvement in the SH spectrum, Fig. 7.22 shows the improvement of
the individual coefficients in percent, computed from the error estimates of the GFS O2 and N2. Note that for this
visualization the scale has been confined to a maximum of 50 %. The SH coefficients up to a degree of about 15,
and the (near-)sectorial coefficients up to a degree of about 60, are determined almost completely from the SST
component. Hence, we do not observe a change for these coefficients. The impact of the SGG component starts
to become visible for the degrees higher than about 15. The improvement due to the L1b reprocessing is largest
for the coefficients with relatively low degrees between 15 and 35 (except for the near-sectorial ones) and for the
higher degree (near-)sectorial coefficients, because their accurate estimation requires relatively more information
from below the MB. Figure 7.22 does not show the characteristic bands at the orders k ·16 (cf. Fig. 7.12), because
the related peaks are not included in the stochastic noise models of the SGG-only solutions O1 and N1. We
have shown with Fig. 7.16, however, that the related coefficients of the SGG solutions O1 and N1 are improved
significantly. We conclude that also for the combined SST and SGG solutions O2 and N2 the related coefficients
still benefit a lot, even if not visible in the formal errors.
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Figure 7.22.: Improvement in formal errors from GFS O2 (GOCE SST and SGG original) to N2 (GOCE SST and SGG new).



8. Summary, Conclusions, and Outlook

Since GOCE’s launch in March 2009, for the first time ever a gradiometer is used is space for the recovery of
the Earth’s gravity field. The theory of satellite gradiometry, however, goes back several decades, cf. e.g. Carroll
and Savet (1959) or Rummel (1986). In this work the basic concepts of satellite gradiometry are explained.
Gravitational gradiometry is the measurement of the second derivatives of the gravitational potential. Hence, the
gravitational gradients form a second-order tensor field with 3×3 components, the GGT. The GGT is symmetric,
which follows from the assumption that the respective acceleration vector field is curl-free and, moreover, the
GGT is trace-free, because the acceleration vector field can be regarded as source-free (Laplace equation). A
geometrical interpretation of the GGT is given, and also its invariants are discussed. Moreover, the classical
series expansion of the Earth’s gravitational field in terms of spherical harmonics is given. Next, the basic
concepts of satellite gradiometry with GOCE and its gradiometer, which is made of three orthogonally arranged
one-axis gradiometers, are discussed. The gradiometer, which is rigidly mounted into the spacecraft, rotates in
space. Thus, in the GRF the accelerometers pick up any rotational motion, in addition to the gravitational signal.
Hence, the separation of the angular rate terms from the total measured signal plays a key role in the GOCE
processing. Each accelerometer is ultra-precise along two orthogonal directions, but much less sensitive along
its third axis. Hence, the arrangement of the accelerometers within the gradiometer as a whole is essential for
the quality of the various GGT elements. An equally important property is related to the error behavior of the
GOCE accelerometers. Their high precision of 10−12 m/s2/

√
Hz is only achieved in the MB between 5 · 10−3 Hz

and 0.1 Hz, while the noise increases with 1/f at lower frequencies. The basic equations for the computation of
the GOCE gravity gradients, taking into account the influence of the LS accelerometer axes, are discussed, and
simulated gravity gradients (and attitude quaternions) are shown as a reference for the following GOCE data
analysis.

The original L1b gradiometer processing is described in detail. The main processing steps are the de-packeting of
the Level 0 gradiometer data and the conversion into engineering units, the conversion of the control voltages into
accelerations, e.g. in CM and DM accelerations as well as angular accelerations, the retrieval of the proof-mass
accelerations, by correction of the CM and DM accelerations with the ICMs, the angular rate reconstruction,
which is based on a combination of star sensor and gradiometer data, and finally the computation of the gravity
gradients. Each processing step is complementarily illustrated by a flowchart. The major input and output data
sets are visualized for a sample day, 11 November 2009, in time as well as in frequency domain. This allows some
first quality assessment of the GOCE data. The root PSD of the gravity gradients, Fig. 3.24, follows for the
frequencies below about 30 mHz the expected behavior. For frequencies higher than about 30 mHz (and lower
than about 0.2 Hz) the root PSD is approximately flat, with a level of about 10 mE/

√
Hz for Vxx, Vyy and Vxz,

about 20 mE/
√
Hz for Vzz, and about 0.6 to 0.8 E/

√
Hz for the two LS GGT elements Vxy and Vyz.

For the calibration of the gradiometer, two main types of imperfections have to be considered. The first ones
are non-linearities in the accelerometer transfer functions called quadratic factors, and the second ones are ac-
celerometer scale factor errors, misalignments and non-orthogonalities, which are contained in the ICMs. The
quadratic factors are measured by injection of a high-frequency signal into the accelerometer control loop. If the
transfer function is not linear, an offset appears in the output voltages which is proportional to the quadratic
factor, and an adequate adjustment of the proof-mass position can be made. In contrast to the quadratic factor
calibration, which is performed by physical adjustment, the calibration of the second group of imperfections is
performed on data level within the L1b ground processing using three sets of ICMs, which are determined from
the data of dedicated satellite shaking events, which take place approximately every two months. Two methods
for the determination of the ICMs are discussed in detail. The first one is the original L1b method, as defined by
TAS. This method has been implemented at IAPG and is used for further GOCE data analysis. The second one
is the ESA-L method, named after its inventor Daniel Lamarre. This method has proven partly more advanta-
geous compared to the TAS method, and is hence used for calibrating the accelerations within the official L1b
processing.

Based on the concept and realization of satellite gradiometry with GOCE discussed here, further data analyses
have been made. The root PSD of the angular rates and DM accelerations have been compared to the one of
the gravity gradients (Fig. 5.3). A possible reason for the systematic behavior of the root PSD of the gravity
gradients (Fig. 5.4) could be e.g. the different low frequency systematic error behavior of each of the gradiometer
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components. The measurements of individual electrode pairs and also of complete accelerometers have been
omitted in the processing and replaced by either the measurements of a corresponding electrode pair or by a so-
called virtual accelerometer. The impact due to replacement of control voltages on the gravity gradients has been
summarized in Table 5.2. It can be excluded that there is one electrode pair with a particularly bad performance.
For the virtual accelerometers, the GGT trace is degraded the most, if accelerometer 2 or 5 (on y-axis in GRF) is
replaced, cf. Fig. 5.6. Combinations of CM accelerations have been built, which should ideally be identical, and
which can be seen as a good indicator of the US or LS acceleration noise. The combinations of CM accelerations
show best results when calibrated with the ICMs from the ESA-L method (Fig. 5.7). The development of the
first 11 calibration events has been discussed (Figs. 5.9 and 5.10). The variation of the differential scale factors
dSF14x and dSF25y is much larger than expected. The three star sensors and their arrangement with respect
to the gradiometer, Fig. 5.11, have been analyzed. A star sensor can measure the rotation about its boresight
axis only approximately 10 times worse than about the other two perpendicular axes. When rotating the STR
measurements in GRF, the less accurate components leak into the very accurate ones respectively, cf. e.g. Fig. 5.14.
A significant repeat pattern appears at the frequency of 1 cpr and with a 1/f-decreasing magnitude towards higher
frequencies also at the corresponding harmonics (Figs. 5.12 and 5.13). The use of different star sensors in the
TAS ICM calibration method is analyzed and compared to the results of the ESA-L method, which makes use of
a star sensor combination (Fig. 5.16).

Four upgrades of the GOCE L1b gradiometer processing with respect to the previously applied procedures have
been introduced, cf. Stummer et al. (2012). These are the methods for the determination of the angular rates
and the attitude quaternions, the calibration of the accelerations, and a new approach for the combination of
all available star sensor measurements. The mathematical background and the advantages of the new processing
strategies have been discussed. The new ARR method has been developed in the frequency domain first, as
described in Stummer et al. (2011), and has then been transformed to the time domain for the use in the official
L1b processing by PDS. One big advantage of the new ARR implementation in PDS is, besides an improved
performance of the resulting gravity gradients, that the new FIR filters are short compared to the Kalman filter
transient of the original ARR implementation. This means that in the case of a long gap in the gradiometer
measurements, the corresponding data loss in the gravity gradients can be reduced by a factor of about four.
The new ATR method is separated from the ARR, but uses a very similar FIR filter approach. Additionally, the
mathematical formulation of the combination of all simultaneously available star sensor measurements has been
presented, which is very similar to the approach used for the GRACE data processing. For the calibration of the
accelerations, the time dependence of some calibration parameters is taken into account by linear interpolation
of all elements of the ICMs from the previous and the following calibration event.

The benefit of the four upgraded processing steps has been analyzed step-by-step as well as in total. At the level
of gravity gradients, the noise of the diagonal GGT components, reflected by the root PSD of the GGT trace, is
reduced up to a factor of 10 below the MB and to a smaller extent up to the frequency of 8 mHz. The largest
improvement is due to the new ARR method. Geographical maps of filtered differences between the GOCE gravity
gradients and those derived from the ITG-Grace2010s model in GRF show the strongest improvement due to the
new ARR method in Vxx, (Vyy) and Vzz, due to the new calibration in Vyy and due to the new ATR method in
Vxz. The benefit of the corresponding SGG-only gravity field solutions has been analyzed by comparing them
to the EGM2008 and ITG-Grace2010s models. In the geographical plots of geoid height differences as well as in
the degree error median, the cumulative geoid and gravity anomaly error and the root PSD of the Quick-Look
residuals, the largest improvements have been achieved due to the new ARR method and the new calibration
approach. The benefit of the star sensor combination and the new ATR method is one order of magnitude smaller,
except for Vxz, where the Quick-Look residuals show a strong improvement due to the new ATR method. The
overall improvement of the new gradiometer processing in terms of geoid heights of SGG-only solutions amounts
up to 1 m, between degree and order 10 to 200. The cumulative geoid error, as well as the cumulative gravity
anomaly error, between degrees 20 and 150, can be reduced by more than one quarter.

The overall impact of the L1b processor update has been further analyzed for two full-scale SGG-only gravity
field solutions, calculated at IAPG. Our findings for the rigorous solutions are in very good agreement with those
of the Quick-Look processor. Additionally, the root PSDs of the gravity gradient residuals have been mapped
onto the SH spectrum using a semi-analytical approach. The results indicate that the largest improvements occur
for the (near-)sectorial coefficients of gravity gradient Vyy and that in general the peak effects around orders of
multiples of 16 are reduced strongly in all four components Vxx, Vyy, Vzz, and Vxz, cf. Fig. 7.18.

The full-scale SGG-only solutions, which are either based on the original or the new L1b processing, have been
combined at the level of normal equations with GOCE GPS-SST data. In this case, the improvement due to
the L1b reprocessing becomes much smaller. The L1b processor updates mainly occur in the long to medium
wavelength range, where these complementary data contribute significantly to the combined solution. However,
we have shown that also combined GOCE SST and SGG solutions still benefit from the L1b reprocessing. In
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regions where large, highly dynamical common mode signals occur, as it has been shown in Fig. 7.7(c), the
interpolation of the calibration parameters improves the gravity field quality in these regions over the whole
spectral range. Hence, this is an improvement which is also present for combined SST and SGG solutions, as
shown in Fig. 7.19(c). The cumulative geoid error, as well as the cumulative gravity anomaly error, between
degrees 20 and 150, can be reduced for the combined solutions by 10 %.

In the framework of a combined (SST and SGG) GOCE gravity field solution or in combination with complemen-
tary satellite (CHAMP, GRACE) and terrestrial data, it is worthwhile to use the upgraded gravity gradients with
the best possible performance also in the low to medium degree range of the harmonic spectrum. In addition to
the general reduction of the error level below the measurement bandwidth, in Fig. 7.1 it could be shown that by
the new L1b processing methods also the accuracy of frequencies which are multiples of the orbital frequency can
be significantly improved. The noise reduction of these specific frequencies results also in an improved estimation
of harmonic coefficients which are multiples of order 16 in the harmonic gravity field spectrum, cf. Fig. 7.12. For
these specific orders, the performance gain shows up almost to the full resolution of GOCE models. Therefore,
in the framework of the combination process they will get a higher relative weighting, resulting in a relatively
larger contribution by GOCE. This is also true for the combination of GOCE with complementary gravity data
on gravity gradient level, which could also be an important product for geophysical interpretation.

In general, it is highly valuable to increase the signal-to-noise ratio of the GOCE gradiometer data as much as
possible, and to provide the best possible gravity gradient product to the users. This justifies also the upgrade
of the L1b processor and the reprocessing effort of the complete mission by ESA. There are several applications
which do not only use the gravity field models, but which rather intend to exploit the gravity gradients directly.
As an example, since the new observation type of gravity gradients is particularly sensitive to high-frequency
signals, individual GGT components or also combinations of them (such as invariants) are sensitive and thus
best suited for the derivation of 3D sub-surface structures. Therefore, they can be used directly in geophysical
applications for the modelling of structures of the lithosphere, cf. e.g. Hosse et al. (2011). For a user, the significant
reduction of noise in the low frequency range will also facilitate the handling of the colored noise behavior of the
gradiometer instrument when dealing with the gradients directly.

The upgrades as described in this work have been implemented into the official L1b processor in August 2011. The
complete mission has been reprocessed, starting from the beginning of the mission operation phase in October
2009, and the resulting data products are successively provided to the users. In the framework of GOCE-HPF,
there will also be new releases of GOCE gravity field models based on the new data, covering the nominal mission
phase (October 2009 to April 2011) as well as the extended mission phase (until December 2012).

We close with some suggestions for future research. The Wiener filters for the angular rate and attitude deter-
mination methods as developed in Sect. 6.2.1 are based on simple stochastic models for the gradiometer and star
sensor angular rates. These models have been derived from a comprehensive data analysis of both sensor types
and an empirical refinement concerning the related cross-over frequencies. In Chapter 7 it was demonstrated
that the gravity gradients and corresponding gravity fields can be significantly improved with the related filters,
although they are based on rather simple error models. Moreover, simple error models can be expressed with
short filters, whereas more sophisticated error models would lead to longer filters and consequently more data
loss. Nevertheless, it might be worthwhile to investigate the potential benefit of more sophisticated error models
for the gradiometer and star sensor data, which could possibly also include a representation of the peaks which
occur at the 1 cpr frequency and its harmonics.

In Sect. 5.2.3 the impact of the used star sensor on the TAS ICM calibration results is analyzed and compared
to the results of the ESA-L method. For this investigation the data of only one star sensor were used in the TAS
method implemented at IAPG, whereas the results of the ESA-L method are based on a combination of star
sensor data. It might be interesting to see how the TAS method behaves when also combined star sensor data
is used, or similarly if the orbital harmonics are removed from the angular rate estimates, as suggested for the
ESA-L method in case only one star sensor is available.

In the new L1b gradiometer processing a combination of all simultaneously available star sensor data (contained
in virtual channel 2 as well as in virtual channel 3) is implemented, cf. Sect. 6.4. In the original processing chain
only one star sensor, namely the one contained in virtual channel 2, had been used. Due to the combination
the (LS) star sensor attitude information can be improved up to a factor of about 10. On the other hand,
the combination holds the potential risk of worsening the results in the case of star sensor data of poor quality
contained in virtual channel 3. This risk is reduced due to the fact that the star sensor data of virtual channel 3 is
not used for periods where the respective star camera head is blinded by the Sun or Moon and its measurements
are hence known to be of poor quality. Nevertheless, it might be valuable to investigate the quality of the star
sensor data in the vicinity of the periods where the camera heads are blinded and in general before doing the
combination. This could be done in the form of an outlier detection. One could also think about refining the
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star sensor combination by taking into account stochastic modelling of the star sensor measurements, based on
additional information, like e.g. the number of stars found in an image of the star camera.

Finally, one major goal of GOCE sensor analysis and progress in processing is still not reached and therefore
remains a strong motivation for future investigations. It is to understand and possibly to overcome the degraded
performance with respect to pre-launch expectations of the gravity gradient component Vzz by a factor of about 2.2
for frequencies in the upper MB. In this respect it would also be worthwhile to continue various investigations
performed within this work for other time periods, like the spectral analysis of the gravity gradients, cf. Sect. 5.1.2,
or the spectral error analysis using common mode accelerations, cf. Sect. 5.1.3. It might also be interesting to
investigate an integrated approach, linking the L1b processing and the gravity field processing, where also a
co-estimation of selected (calibration) parameters could be performed.



A. Reference frames of the GOCE gradiometer

In this section the major reference frames on instrument level of the GOCE gradiometer, as given in Cesare et al.
(2008) and Gruber et al. (2010a), are specified.

A.1. AESRF - Accelerometer Electrode System Reference Frame

This is the coordinate system with respect to which the locations of the control electrodes of the accelerometer
proof mass are referred. For each accelerometer it is defined as follows, cf. Figs. A.1 and 3.3:

• Origin OAESRF located at the center of the accelerometer

• XAESRF , YAESRF and ZAESRF axes parallel to the axes of the ARF but not corresponding

• with XAESRF along the less sensitive axis of the accelerometer (pointing from the ground plate to the proof
mass)

• and YAESRF , ZAESRF along the ultra sensitive axes of the accelerometer, so to form a right-handed coor-
dinate system.

Figure A.1.: Schematic view of GOCE accelerometer (left) and realistic view (right).
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A.2. ARF - Accelerometer Reference Frame

This is the reference frame in which the components of the acceleration of the proof mass relative to the cage are
measured by the sensor. It is defined in a different way for the three accelerometer pairs belonging to the three
one-axis gradiometers (OAGs) (see below), so that the corresponding axes of all ARFs are nominally aligned
when the six accelerometers are installed in the three-axis gradiometer. All ARFs for the six accelerometers are
shown in Fig. A.2 (and Fig. 2.2):

• For the accelerometers the origin of each ARF O1 to O6 is located in the center of the accelerometer A1 to
A6.

• For the accelerometers A1 and A4 forming the OAG1 the ARF is defined as:

– XARF1/4 axis is parallel to the accelerometer ultra-sensitive axis nominally aligned with the OAG1

baseline, positive from A4 to A1.

– ZARF1/4 axis is defined by XARF1/4 × LARF1/4 , where XARF1/4 is the unit vector of the XARF1/4

axis and LARF1/4 is the unit vector normal to the internal wall of the lower electrode plate of the
cage (the lower plate is placed on the same side of the sole plate), positive in the opposite direction of
the sole plate. ZARF1/4 is nominally parallel to the second ultra-sensitive axis of the accelerometer,
cf. Fig. A.1.

– YARF1/4 axis parallel to ZARF1/4 ×XARF1/4 with the same sign of ZARF1/4 ×XARF1/4. YARF1/4 is
nominally parallel to the less sensitive axis of the accelerometer.

• For the accelerometers A2 and A5 forming the OAG2 the ARF is defined as:

– YARF2/5 axis is parallel to the accelerometer ultra-sensitive axis nominally aligned with the OAG2

baseline, positive from A5 to A2.

– XARF2/5 axis is defined by Y ARF2/5×LARF2/5, where Y ARF2/5 is the unit vector of the YARF2/5 axis
and LARF2/5 is the unit vector normal to the internal wall of the lower plate of the cage (the lower
plate is placed on the same side of the sole plate), positive in the opposite direction of the sole plate.
XARF2/5 is nominally parallel to the second ultra-sensitive axis of the accelerometer.

– ZARF2/5 axis parallel to XARF2/5 × Y ARF2/5 with the same sign of XARF2/5 × Y ARF2/5. ZARF2/5 is
nominally parallel to the less sensitive axis of the accelerometer.

• For the accelerometers A3 and A6 forming the OAG3 the ARF is defined as:

– ZARF3/6 axis is parallel to the accelerometer ultra-sensitive axis nominally aligned with the OAG3

baseline, positive from A6 to A3.

– XARF3/6 axis is defined by LARF3/6×ZARF2/5, where ZARF3/6 is the unit vector of the ZARF3/6 axis
and LARF3/6 is the unit vector normal to the internal wall of the lower plate of the cage (the lower
plate is placed on the same side of the sole plate), positive in the opposite direction of the sole plate.
XARF3/6 is nominally parallel to the second ultra-sensitive axis of the accelerometer.

– YARF3/6 axis parallel to ZARF3/6 ×XARF3/6 with the same sign of ZARF3/6 ×XARF3/6. YARF3/6 is
nominally parallel to the less sensitive axis of the accelerometer.
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A.3. OAGRF - One-Axis Gradiometer Reference Frame

This is the reference frame in which the components of the gravity gradients are measured by the one-axis
gradiometer. It is defined as follows, cf. Figs. A.1, A.2, and 4.8:

• For OAG1, which is composed of accelerometers A1 and A4:

– Origin OOAG1 is located at the midpoint of the straight line joining the origin of ARF4 and ARF1.

– XOAG1 axis is parallel to the line joining O4 to O1, oriented from O4 to O1.

– YOAG1 axis is parallel to and with the same versus of the vector Y OAG1 =
Y ′

ARF1

|Y ′
ARF1|

+
Y ′

ARF4

|Y ′
ARF4|

where

Y ′
ARF1, Y

′
ARF4 are the projections of the vectors Y ARF1 and Y ARF4 on the plane perpendicular to

the XOAG1 axis.

– ZOAG1 axis is parallel to XOAG1 × Y OAG1 with the same sign of XOAG1 × Y OAG1

• For OAG2, which is composed of accelerometers A2 and A5:

– Origin OOAG2 is located at the midpoint of the straight line joining the origin of ARF5 and ARF2.

– YOAG2 axis is parallel to the line joining O5 to O2, oriented from O5 to O2.

– ZOAG2 axis is parallel to and with the same versus of the vector ZOAG2 =
Z′

ARF2

|Z′
ARF2|

+
Z′

ARF5

|Z′
ARF5|

where

Z ′
ARF2, Z

′
ARF5 are the projections of the vectors ZARF2 and ZARF5 on the plane perpendicular to

the YOAG2 axis.

– XOAG2 axis is parallel to Y OAG2 × ZOAG2 with the same sign of Y OAG2 × ZOAG2

• For OAG3, which is composed of accelerometers A3 and A6:

– Origin OOAG3 is located at the midpoint of the straight line joining the origin of ARF6 and ARF3.

– ZOAG3 axis is parallel to the line joining O6 to O3, oriented from O6 to O3.

– YOAG3 axis is parallel to and with the same versus of the vector Y OAG3 =
Y ′

ARF3

|Y ′
ARF3|

+
Y ′

ARF6

|Y ′
ARF6|

where

Y ′
ARF3, Y

′
ARF6 are the projections of the vectors Y ARF3 and Y ARF6 on the plane perpendicular to

the ZOAG3 axis.

– XOAG3 axis is parallel to Y OAG3 × ZOAG3 with the same sign of Y OAG3 × ZOAG3
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A.4. GRF - Gradiometer Reference Frame

This is the coordinate system in which the gravity gradients are measured by GOCE. The GRF represents
the three-axis gradiometer common reference for the mutual positioning and alignment of the three one-axis
gradiometers and for the positioning and orientation of the whole instrument with respect to external reference
frames, cf. Fig. A.2.

• Origin OGRF is located at the origin of the OAGRF3.

• XGRF , YGRF , ZGRF axes are parallel to the corresponding axes of OAGRF3 with the same sign.

Nominally the origins of all OAGRFs coincide in one intersection point. The corresponding axes of each of the
three OAGRFs are parallel and point in the same directions. The corresponding six ARFs are parallel and point
in the same direction.

Figure A.2.: Arrangement of the six accelerometers and their respective ARF in the GOCE gradiometer and its respective GRF.



B. Orientation representations and coordinate
transforms

Direction cosine matrix

An orientation representation is the description of the orientation of a coordinate system (target system) with
respect to another coordinate system (source system), see Frommknecht (2008). A very common way of repre-
sentation is the direction cosine matrix (DCM). It is defined as (cf. Wertz (1991)):

Rt
s =

 X̂s′

t

Ŷs′

t

Ẑs′

t

 =

 Xs
t,1 Xs

t,2 Xs
t,3

Y s
t,1 Y s

t,2 Y s
t,3

Zs
t,1 Zs

t,2 Zs
t,3

 , (B.1)

where

X̂s
t =

 Xt,1

Xt,2

Xt,3

 , (B.2)

Ŷs
t =

 Yt,1
Yt,2
Yt,3

 , (B.3)

Ẑs
t =

 Zt,1

Zt,2

Zt,3

 (B.4)

are the unit base vectors of the target coordinate system expressed in the source coordinate system. If the vectors
are arranged row wise as described above, the resulting matrix Rt

s transforms a vector from the source system to
the target system by a multiplication from the left:

Vt = Rt
s ·Vs. (B.5)

The inverse transformation is given by:
Vs = (Rt

s)
−1 ·Vt, (B.6)

where

(Rt
s)

−1 = (Rt
s)

′ =

 Xs
t,1 Y s

t,1 Zs
t,1

Xs
t,2 Y s

t,2 Zs
t,2

Xs
t,3 Y s

t,3 Zs
t,3

 . (B.7)

The inverse of the rotation matrix is just its transpose as it is orthonormal. Consecutive rotations can be
represented as a single rotation matrix:

Rc
a = Rc

b · R
b
a. (B.8)

Quaternions

The quaternion representation of a rotation involves the Euler symmetric parameters. Originally they were
introduced by Hamilton (1853) and Whittaker (1940); the following description is from Wertz (1991) and can
also be found in Frommknecht (2008). A quaternion is a hypercomplex number, having one real part and three
complex parts:

Q
t

s = (q0 + iq1 + jq2 + kq3)

= (cos(
Φ

2
) + sin(

Φ

2
) · ex + sin(

Φ

2
) · ey + sin(

Φ

2
) · ez), (B.9)

(Q
t

s)
−1 = (−q0 + iq1 + jq2 + kq3) = (q0 − iq1 − jq2 − kq3). (B.10)
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The element q0 = cos(Φ/2) depends on the rotation angle Φ and q1 to q3 on the axis of the rotation. ex, ey, ez
are the components of the rotation axis. Consecutive rotations are represented by the multiplication of the
quaternions representing the rotations from the right, not from the left as for the representation by the DCM:

Q
′′

= Q ⋆Q
′
, (B.11)

q′′1
q′′2
q′′3
q′′0

 =


q′0 q′3 −q′2 q′1

−q′3 q′0 q′1 q′2
q′2 −q′1 q′0 q′3

−q′1 −q′2 −q′3 q′0

 ·


q1
q2
q3
q0

 . (B.12)

The transformation of a vector can be accomplished by the following operation:

Vt = (Q
t

s)
−1 ⋆Vs ⋆Q

t

s, (B.13)

where

Vs =


xs
ys
zs
0

 , Vt =


xt
yt
zt
0

 . (B.14)

Direction cosine matrix to quaternion

From a direction cosine matrix Rt
s, the corresponding quaternion Q

t

s can be derived in the following way, cf. Cesare
et al. (2008) and Wertz (1991) (or also the GRACE document Wu et al. (2006)):

q0 =
√
1 +R1,1 +R2,2 +R3,3/2, (B.15)

q1 = −(R2,3 −R3,2)/4q0, (B.16)

q2 = −(R3,1 −R1,3)/4q0, (B.17)

q3 = −(R1,2 −R2,1)/4q0, (B.18)

Q
t

s =


q1
q2
q3
q0

 . (B.19)

Quaternion to direction cosine matrix

From a given quaternion Q
t

s, the corresponding direction cosine matrix Rt
s can be derived in the following way,

cf. Cesare et al. (2008) and Wertz (1991) (or again Wu et al. (2006)):

Rt
s =

 q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3− q0q2)
2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)
2(q1q3 + q0q2) 2(q2q3− q0q1) q20 − q21 − q22 + q23

 . (B.20)

Attitude dynamics

The dynamics of a body’s attitude are reflected in the time dependency of its orientation (Frommknecht, 2008).
There are two possibilities for representing a change in the orientation:

• the source system changes,

• the target system changes.

The logic of dealing with changes of orientation depends on the application: If the source system changes, one
transforms first back from the changed, “new” source system to the original, “old” source system and then, using
the original orientation, to the target system. If the target system changes one transforms to the “old” target
system by using the original orientation and then to the changed, “new” target system.

Here, we will consider only the option of changing the target system. There are in principal two practical
applications:
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• The angular rates of the target system (satellite fixed body system) are known and the change in the
orientation is to be derived,

• The time series of the orientation of the target system is given and the corresponding angular rates are to
be derived.

Both aspects are treated by the Poisson or “kinematic” equations, cf. Wittenburg (1977), describing the connection
between the orientation of a body and its angular velocity.

First, formulations for the change in orientation resulting from known angular rates are given. If the orientation
is represented by quaternions, we get the following formulation, cf. Wertz (1991):

Q(t+∆t) =

cos
∆Φ

2
· 1 + sin

∆Φ

2
·


0 ez −ey ex

−ez 0 ex ey
ey −ex 0 ez

−ex −ey −ez 0


 ·Q(t)

=

cos
∆Φ

2
· 1 +

sin ∆Φ
2

ω
·


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


 ·Q(t). (B.21)

∆Φ =
√
ω2
x + ω2

y + ω2
z ·∆t = ω ·∆t is the rotation angle during ∆t and 1 is a 4× 4 identity matrix. The angular

velocities ωx, ωy, ωz refer to the respective body axes. Simplified we get:

Q(t+∆t) = Q(t) ⋆


sin(∆Φ

2 ) · ωx

ω

sin(∆Φ
2 ) · ωy

ω

sin(∆Φ
2 ) · ωz

ω

cos(∆Φ
2 )


= Q(t) ⋆Υ(t). (B.22)

From a given time series of quaternions, the angular rates can be derived in the following way:

Υ(t) = Q(t)−1 ⋆Q(t+∆t) =


υ1
υ2
υ3
υ4

 , (B.23)

∆Φ = 2 · arccos(υ4), (B.24)

ω = ∆Φ/∆t, (B.25)

ωx = υ1 ·
ω

sin(∆Φ
2 )

, (B.26)

ωy = υ2 ·
ω

sin(∆Φ
2 )

, (B.27)

ωz = υ3 ·
ω

sin(∆Φ
2 )

. (B.28)

If we assume ∆t and/or ω is small, we can use the small angles approximations

cos(
∆Φ

2
) ≈ 1,

sin(
∆Φ

2
) ≈ 1

2
ω ·∆t
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to obtain

Q(t+∆t) =

1 +
1

2
·∆t ·


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0


 ·Q(t)

= Q(t) +
1

2
·∆t ·Q(t) ⋆


ωx

ωy

ωz

0



=
1

2
·∆t ·Q(t) ⋆


ωx

ωy

ωz
2
∆t


=

1

2
·∆t ·Q(t) ⋆ Ω(t). (B.29)

For the inverse task, the derivation of angular rates from a time series of quaternions, we obtain:

Ω(t) = 2 ·Q−1
(t) ⋆

Q(t+∆t)

∆t
. (B.30)

For the orientation representation by DCM, we get:

R(t+∆t) = Rω · R(t)

=

 1
∆t ωz −ωy

−ωz
1
∆t ωx

ωy −ωx
1
∆t

 ·∆t

 · R(t)

=
[
Ω′(t) ·∆t

]
· R(t). (B.31)

The angular rates can then be obtained from:

Ω′(t) =
R(t+∆t)

∆t
· R−1(t) =

R(t+∆t)

∆t
· R′(t). (B.32)



C. Discrete Fourier Transform and comparison of
window functions

C.1. Discrete Fourier Transform (DFT)

The discrete spectrum X[k] of a time series x[n] of N elements given at sampling intervals dt and spanning the
interval T = N · dt is given by the Discrete Fourier Transform (DFT), cf. e.g. Meyer (1998):

X[k] =

Nh∑
n=−Nh

x[n] · e−i2π· k
T ·n·dt. (C.1)

The maximum frequency index Nh = (N − 1)/2 for odd N and Nh = N/2 for even N is half the number of
samples. The time series x[n] corresponding to a spectrum X[k] is given by the Inverse Discrete Fourier Transform
(IDFT):

x[n] =
1

N

Nh∑
k=−Nh

X[k] · ei2π· k
T ·n·dt. (C.2)

C.2. Comparison of window functions for DFT

Each measurement time series is only an extract of a true signal and is, hence, in general not periodic, cf. Meyer
(1998). However, when computing the Discrete Fourier Transform (DFT) of a measured signal, periodicity is
assumed, and also a non-periodic signal components are carried forward periodically. This introduces disconti-
nuities at the junction points, leading to a degradation of the spectrum, which contains in this case amplitudes
at certain frequencies which are not contained in the spectrum of the true signal. This effect is called spectral
leakage. According to Meyer (1998) spectral leakage can be reduced, when the measured signal is multiplied with
a window function, before building the DFT. The idea of the windowing is to weight down the first and last
samples and, hence, to achieve a smooth transition when the signal is carried forward periodically.

For an illustration of different window functions in time and frequency domain it is referred to Meyer (1998).
The effect of applying different window functions is illustrated with the following example. Figure C.1(a) shows
the function

y = 4 · sin(2w0t) + 5 · sin(2000w0t) (C.3)

with main frequency w0 = 2·π
T , period T = 1000 seconds, and a sampling interval of 0.01 seconds. We use the

function y for a time window of 2.75 ·T , in order to have a realistic situation where the measured signal is not an
integer multiple of the period T and thus discontinuities occur when the signal is carried forward periodically for
the DFT. Figure C.1(b) shows the amplitude spectra of the function y, when using different window functions,
before applying the DFT. Additionally, the “ideal” amplitude spectrum of the function y for a time window of
3 · T without spectral leakage is shown (magenta).

“Boxcar” (red) refers to the case where no additional weighting is used, besides the fact that only a certain
time window (here 2750 seconds) of the signal y is used, which can also be interpreted as weighting y with a
Boxcar window of length 2750 seconds. The Fourier spectrum of y theoretically contains only two peaks, one
at a frequency of 2 · 10−3 Hz and one at a frequency of 20 Hz, cf. the magenta curve for the “ideal” case. Due
to the spectral leakage (large) amplitudes appear also at other frequencies, when applying the Boxcar window.
For comparison also the amplitude spectra of y, when applying a Triang, Hamming, Hanning or Kaiser window
(alpha = 20) are shown. The Kaiser window (blue) has the advantage of rapidly decreasing side maxima in the
spectrum. The parameter alpha is an arbitrary real number that determines the shape of the Kaiser window.

We observe the steepest decay of the (leakage) amplitudes next to the peak at the frequency of 2 · 10−3 Hz,
towards higher frequencies, of all shown window functions. The Kaiser window has the disadvantage of a broad
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Figure C.1.: Example for a measured signal (a) and its amplitude spectra (b), when applying different window functions.

main lobe in the spectrum. In Fig. C.1(b) it is the case with the slowest decay of the (leakage) amplitudes next
to the peak at the frequency of 2 · 10−3 Hz. This means that the peak can in this case only be solved with the
poorest resolution. According to Meyer (1998), one has to find, in general, a compromise between good resolution
(and bad selectivity) or good selectivity (and bad resolution), depending on the application. Further investigates
on the effect of leakage for spectral analysis with DFT can also be found, e.g., in Fackler (2005).

In this work, we primarily focus on the spectral analysis of high-frequency signal content. Note that the gra-
diometer MB is from 5-100 mHz. The resolution of low frequency signal content is only of minor importance.
Hence, we use a Kaiser window for all spectral analyses in this work.



D. Limit values for on-orbit gradiometer calibration
parameters

D.1. Upper limits of the calibration matrices by construction

accelerometer pair 14
dMc,14,11 < 4.05 · 10−3 dMc,14,12 < 1.30 · 10−4 dMc,14,13 < 1.30 · 10−4

dMc,14,21 < 1.30 · 10−4 dMc,14,22 < 5.18 · 10−2 dMc,14,23 < 1.00 · 10−5

dMc,14,31 < 1.30 · 10−4 dMc,14,32 < 1.00 · 10−5 dMc,14,33 < 4.05 · 10−3

dMd,14,11 < 4.05 · 10−3 dMd,14,12 < 1.30 · 10−4 dMd,14,13 < 1.30 · 10−4

dMd,14,21 < 1.30 · 10−4 dMd,14,22 < 5.18 · 10−2 dMd,14,23 < 1.30 · 10−4

dMd,14,31 < 1.30 · 10−4 dMd,14,32 < 1.30 · 10−4 dMd,14,33 < 4.05 · 10−3

accelerometer pair 25
dMc,25,11 < 4.05 · 10−3 dMc,25,12 < 1.30 · 10−4 dMc,25,13 < 1.00 · 10−5

dMc,25,21 < 1.30 · 10−4 dMc,25,22 < 4.05 · 10−3 dMc,25,23 < 1.30 · 10−4

dMc,25,31 < 1.00 · 10−5 dMc,25,32 < 1.30 · 10−4 dMc,25,33 < 5.18 · 10−2

dMd,25,11 < 4.05 · 10−3 dMd,25,12 < 1.30 · 10−4 dMd,25,13 < 1.30 · 10−4

dMd,25,21 < 1.30 · 10−4 dMd,25,22 < 4.05 · 10−3 dMd,25,23 < 1.30 · 10−4

dMd,25,31 < 1.30 · 10−4 dMd,25,32 < 1.30 · 10−4 dMd,25,33 < 5.18 · 10−2

accelerometer pair 36
dMc,36,11 < 4.05 · 10−3 dMc,36,12 < 1.30 · 10−4 dMc,36,13 < 1.30 · 10−4

dMc,36,21 < 1.00 · 10−5 dMc,36,22 < 5.18 · 10−2 dMc,36,23 < 1.30 · 10−4

dMc,36,31 < 1.30 · 10−4 dMc,36,32 < 1.30 · 10−4 dMc,36,33 < 4.05 · 10−3

dMd,36,11 < 4.05 · 10−3 dMd,36,12 < 1.30 · 10−4 dMd,36,13 < 1.30 · 10−4

dMd,36,21 < 1.00 · 10−5 dMd,36,22 < 5.18 · 10−2 dMd,36,23 < 1.30 · 10−4

dMd,36,31 < 1.30 · 10−4 dMd,36,32 < 1.30 · 10−4 dMd,36,33 < 4.05 · 10−3

Table D.1.: Upper limits for the elements of the calibration matrices by construction. First three rows of the dMc (above) and dMd

(below) of the three accelerometer pairs.
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D.2. Upper limits of the errors due to inversion of the calibration matrices
by truncated series expansion

accelerometer pair 14
∆MI14,11 < 3.31 · 10−5 ∆MI14,12 < 1.61 · 10−5 ∆MI14,13 < 2.15 · 10−6

∆MI14,21 < 1.61 · 10−5 ∆MI14,22 < 5.92 · 10−3 ∆MI14,23 < 8.67 · 10−6

∆MI14,31 < 2.15 · 10−6 ∆MI14,32 < 8.67 · 10−6 ∆MI14,33 < 3.31 · 10−5

∆MI14,14 < 3.31 · 10−5 ∆MI14,15 < 1.61 · 10−5 ∆MI14,16 < 2.15 · 10−6

∆MI14,24 < 1.61 · 10−5 ∆MI14,25 < 5.92 · 10−3 ∆MI14,26 < 8.67 · 10−6

∆MI14,34 < 2.15 · 10−6 ∆MI14,35 < 8.67 · 10−6 ∆MI14,36 < 3.31 · 10−5

accelerometer pair 25
∆MI25,11 < 3.31 · 10−5 ∆MI25,12 < 2.15 · 10−6 ∆MI25,13 < 8.67 · 10−6

∆MI25,21 < 2.15 · 10−6 ∆MI25,22 < 3.31 · 10−5 ∆MI25,23 < 1.61 · 10−5

∆MI25,31 < 8.67 · 10−6 ∆MI25,32 < 1.61 · 10−5 ∆MI25,33 < 5.92 · 10−3

∆MI25,14 < 3.31 · 10−5 ∆MI25,15 < 2.15 · 10−6 ∆MI25,16 < 8.67 · 10−6

∆MI25,24 < 2.15 · 10−6 ∆MI25,25 < 3.31 · 10−5 ∆MI25,26 < 1.61 · 10−5

∆MI25,34 < 8.67 · 10−6 ∆MI25,35 < 1.61 · 10−5 ∆MI25,36 < 5.92 · 10−3

accelerometer pair 36
∆MI36,11 < 3.31 · 10−5 ∆MI36,12 < 8.67 · 10−6 ∆MI36,13 < 2.15 · 10−6

∆MI36,21 < 8.67 · 10−6 ∆MI36,22 < 5.92 · 10−3 ∆MI36,23 < 1.61 · 10−5

∆MI36,31 < 2.15 · 10−6 ∆MI36,32 < 1.61 · 10−5 ∆MI36,33 < 3.31 · 10−5

∆MI36,14 < 3.31 · 10−5 ∆MI36,15 < 8.67 · 10−6 ∆MI36,16 < 2.15 · 10−6

∆MI36,24 < 8.67 · 10−6 ∆MI36,25 < 5.92 · 10−3 ∆MI36,26 < 1.61 · 10−5

∆MI36,34 < 2.15 · 10−6 ∆MI36,35 < 1.61 · 10−5 ∆MI36,36 < 3.31 · 10−5

Table D.2.: Upper limits of the errors due to inversion of the calibration matrices by series expansion. First three rows of the ∆MI
of the three accelerometer pairs.
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D.3. Upper limits of the inverse calibration matrices by construction

accelerometer pair 14
dMI14,11 < 4.08 · 10−3 MI14,12 < 1.46 · 10−4 MI14,13 < 1.32 · 10−4

MI14,21 < 1.46 · 10−4 dMI14,22 < 5.77 · 10−2 MI14,23 < 1.87 · 10−5

MI14,31 < 1.32 · 10−4 MI14,32 < 1.87 · 10−5 dMI14,33 < 4.08 · 10−3

dMI14,14 < 4.08 · 10−3 MI14,15 < 1.46 · 10−4 MI14,16 < 1.32 · 10−4

MI14,24 < 1.46 · 10−4 dMI14,25 < 5.77 · 10−2 MI14,26 < 1.39 · 10−4

MI14,34 < 1.32 · 10−4 MI14,35 < 1.39 · 10−4 dMI14,36 < 4.08 · 10−3

accelerometer pair 25
dMI25,11 < 4.08 · 10−3 MI25,12 < 1.32 · 10−4 MI25,13 < 1.87 · 10−5

MI25,21 < 1.32 · 10−4 dMI25,22 < 4.08 · 10−3 MI25,23 < 1.46 · 10−4

MI25,31 < 1.87 · 10−5 MI25,32 < 1.46 · 10−4 dMI25,33 < 5.77 · 10−2

dMI25,14 < 4.08 · 10−3 MI25,15 < 1.32 · 10−4 MI25,16 < 1.39 · 10−4

MI25,24 < 1.32 · 10−4 dMI25,25 < 4.08 · 10−3 MI25,26 < 1.46 · 10−4

MI25,34 < 1.39 · 10−4 MI25,35 < 1.46 · 10−4 dMI25,36 < 5.77 · 10−2

accelerometer pair 36
dMI36,11 < 4.08 · 10−3 MI36,12 < 1.87 · 10−5 MI36,13 < 1.32 · 10−4

MI36,21 < 1.87 · 10−5 dMI36,22 < 5.77 · 10−2 MI36,23 < 1.46 · 10−4

MI36,31 < 1.32 · 10−4 MI36,32 < 1.46 · 10−4 dMI36,33 < 4.08 · 10−3

dMI36,14 < 4.08 · 10−3 MI36,15 < 1.39 · 10−4 MI36,16 < 1.32 · 10−4

MI36,24 < 1.39 · 10−4 dMI36,25 < 5.77 · 10−2 MI36,26 < 1.46 · 10−4

MI36,34 < 1.32 · 10−4 MI36,35 < 1.46 · 10−4 dMI36,36 < 4.08 · 10−3

Table D.3.: Expected upper limits (by construction) all along the on-orbit mission lifetime for the inverse calibration matrices. First
three rows of the MI (ICMs) of the three accelerometer pairs.
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D.4. Upper limits due to relationship between the sub-matrices of the
inverse calibration matrices

accelerometer pair 14
∆MIc,14,11 = ∆MId,14,11 = ∆MIc,14,12 = ∆MId,14,12 = ∆MIc,14,13 = ∆MId,14,13 =
∆MI14,11 +∆MI14,44 < 6.6 · 10−5 ∆MI14,12 +∆MI14,45 < 3.2 · 10−5 ∆MI14,13 +∆MI14,46 < 4.4 · 10−6

∆MIc,14,21 = ∆MId,14,21 = ∆MIc,14,22 = ∆MId,14,22 = ∆MIc,14,23 = ∆MId,14,23 =
∆MI14,21 +∆MI14,54 < 3.2 · 10−5 ∆MI14,22 +∆MI14,55 < 1.2 · 10−2 ∆MI14,23 +∆MI14,56 < 1.7 · 10−5

∆MIc,14,31 = ∆MId,14,31 = ∆MIc,14,32 = ∆MId,14,32 = ∆MIc,14,33 = ∆MId,14,33 =
∆MI14,31 +∆MI14,64 < 4.4 · 10−6 ∆MI14,32 +∆MI14,65 < 1.7 · 10−5 ∆MI14,33 +∆MI14,66 < 6.6 · 10−5

accelerometer pair 25
∆MIc,25,11 = ∆MId,25,11 = ∆MIc,25,12 = ∆MId,25,12 = ∆MIc,25,13 = ∆MId,25,13 =
∆MI25,11 +∆MI25,44 < 6.6 · 10−5 ∆MI25,12 +∆MI25,45 < 4.4 · 10−6 ∆MI25,13 +∆MI25,46 < 1.7 · 10−5

∆MIc,25,21 = ∆MId,25,21 = ∆MIc,25,22 = ∆MId,25,22 = ∆MIc,25,23 = ∆MId,25,23 =
∆MI25,21 +∆MI25,54 < 4.4 · 10−6 ∆MI25,22 +∆MI25,55 < 6.6 · 10−5 ∆MI25,23 +∆MI25,56 < 3.2 · 10−5

∆MIc,25,31 = ∆MId,25,31 = ∆MIc,25,32 = ∆MId,25,32 = ∆MIc,25,33 = ∆MId,25,33 =
∆MI25,31 +∆MI25,64 < 1.7 · 10−5 ∆MI25,32 +∆MI25,65 < 3.2 · 10−5 ∆MI25,33 +∆MI25,66 < 1.2 · 10−2

accelerometer pair 36
∆MIc,36,11 = ∆MId,36,11 = ∆MIc,36,12 = ∆MId,36,12 = ∆MIc,36,13 = ∆MId,36,13 =
∆MI36,11 +∆MI36,44 < 6.6 · 10−5 ∆MI36,12 +∆MI36,45 < 1.7 · 10−5 ∆MI36,13 +∆MI36,46 < 4.4 · 10−6

∆MIc,36,21 = ∆MId,36,21 = ∆MIc,36,22 = ∆MId,36,22 = ∆MIc,36,23 = ∆MId,36,23 =
∆MI36,21 +∆MI36,54 < 1.7 · 10−5 ∆MI36,22 +∆MI36,55 < 1.2 · 10−2 ∆MI36,23 +∆MI36,56 < 3.2 · 10−5

∆MIc,36,31 = ∆MId,36,31 = ∆MIc,36,32 = ∆MId,36,32 = ∆MIc,36,33 = ∆MId,36,33 =
∆MI36,31 +∆MI36,64 < 4.4 · 10−6 ∆MI36,32 +∆MI36,65 < 3.2 · 10−5 ∆MI36,33 +∆MI36,66 < 6.6 · 10−5

Table D.4.: Upper limits of the errors for computation of the first three rows of the ICMs from the last three rows. All values of
∆MIc,ij and ∆MId,ij for the three accelerometer pairs.
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D.5. Upper limits due to orthogonality relationship

accelerometer pair 14

MI14,12 =−MI14,21 +∆MI14,12−21, with ∆MI14,12−21 = −2 · εc,14 +∆MI14,12 +∆MI14,21 < 5.2 · 10−5

MI14,13 =−MI14,31 +∆MI14,13−31, with ∆MI14,13−31 = −2 · ηc,14 +∆MI14,13 +∆MI14,31 < 2.4 · 10−5

MI14,23 =−MI14,32 +∆MI14,23−32, with ∆MI14,23−32 = −2 · ςc,14 +∆MI14,23 +∆MI14,32 < 3.7 · 10−5

MI14,15 =−MI14,24 +∆MI14,15−24, with ∆MI14,15−24 = −2 · εd,14 +∆MI14,15 +∆MI14,24 < 5.2 · 10−5

MI14,16 =−MI14,34 +∆MI14,16−34, with ∆MI14,16−34 = −2 · ηd,14 +∆MI14,16 +∆MI14,34 < 2.4 · 10−5

MI14,26 =−MI14,35 +∆MI14,26−35, with ∆MI14,26−35 = −2 · ςd,14 +∆MI14,26 +∆MI14,35 < 3.7 · 10−5

MI14,42 =−MI14,51 +∆MI14,42−51, with ∆MI14,42−51 = −2 · εd,14 +∆MI14,42 +∆MI14,51 < 5.2 · 10−5

MI14,43 =−MI14,61 +∆MI14,43−61, with ∆MI14,43−61 = −2 · ηd,14 +∆MI14,43 +∆MI14,61 < 2.4 · 10−5

MI14,53 =−MI14,62 +∆MI14,53−62, with ∆MI14,53−62 = −2 · ςd,14 +∆MI14,53 +∆MI14,62 < 3.7 · 10−5

MI14,45 =−MI14,54 +∆MI14,45−54, with ∆MI14,45−54 = −2 · εc,14 +∆MI14,45 +∆MI14,54 < 5.2 · 10−5

MI14,46 =−MI14,64 +∆MI14,46−64, with ∆MI14,46−64 = −2 · ηc,14 +∆MI14,46 +∆MI14,64 < 2.4 · 10−5

MI14,56 =−MI14,65 +∆MI14,56−65, with ∆MI14,56−65 = −2 · ςc,14 +∆MI14,56 +∆MI14,65 < 3.7 · 10−5

accelerometer pair 25

MI25,12 =−MI25,21 +∆MI25,12−21, with ∆MI25,12−21 = −2 · εc,25 +∆MI25,12 +∆MI25,21 < 2.4 · 10−5

MI25,13 =−MI25,31 +∆MI25,13−31, with ∆MI25,13−31 = −2 · ηc,25 +∆MI25,13 +∆MI25,31 < 3.7 · 10−5

MI25,23 =−MI25,32 +∆MI25,23−32, with ∆MI25,23−32 = −2 · ςc,25 +∆MI25,23 +∆MI25,32 < 5.2 · 10−5

MI25,15 =−MI25,24 +∆MI25,15−24, with ∆MI25,15−24 = −2 · εd,ij +∆MI25,15 +∆MI25,24 < 2.4 · 10−5

MI25,16 =−MI25,34 +∆MI25,16−34, with ∆MI25,16−34 = −2 · ηd,25 +∆MI25,16 +∆MI25,34 < 3.7 · 10−5

MI25,26 =−MI25,35 +∆MI25,26−35, with ∆MI25,26−35 = −2 · ςd,25 +∆MI25,26 +∆MI25,35 < 5.2 · 10−5

MI25,42 =−MI25,51 +∆MI25,42−51, with ∆MI25,42−51 = −2 · εd,25 +∆MI25,42 +∆MI25,51 < 2.4 · 10−5

MI25,43 =−MI25,61 +∆MI25,43−61, with ∆MI25,43−61 = −2 · ηd,25 +∆MI25,43 +∆MI25,61 < 3.7 · 10−5

MI25,53 =−MI25,62 +∆MI25,53−62, with ∆MI25,53−62 = −2 · ςd,25 +∆MI25,53 +∆MI25,62 < 5.2 · 10−5

MI25,45 =−MI25,54 +∆MI25,45−54, with ∆MI25,45−54 = −2 · εc,25 +∆MI25,45 +∆MI25,54 < 2.4 · 10−5

MI25,46 =−MI25,64 +∆MI25,46−64, with ∆MI25,46−64 = −2 · ηc,25 +∆MI25,46 +∆MI25,64 < 3.7 · 10−5

MI25,56 =−MI25,65 +∆MI25,56−65, with ∆MI25,56−65 = −2 · ςc,25 +∆MI25,56 +∆MI25,65 < 5.2 · 10−5

accelerometer pair 36

MI36,12 =−MI36,21 +∆MI36,12−21, with ∆MI36,12−21 = −2 · εc,36 +∆MI36,12 +∆MI36,21 < 3.7 · 10−5

MI36,13 =−MI36,31 +∆MI36,13−31, with ∆MI36,13−31 = −2 · ηc,36 +∆MI36,13 +∆MI36,31 < 2.4 · 10−5

MI36,23 =−MI36,32 +∆MI36,23−32, with ∆MI36,23−32 = −2 · ςc,36 +∆MI36,23 +∆MI36,32 < 5.2 · 10−5

MI36,15 =−MI36,24 +∆MI36,15−24, with ∆MI36,15−24 = −2 · εd,ij +∆MI36,15 +∆MI36,24 < 3.7 · 10−5

MI36,16 =−MI36,34 +∆MI36,16−34, with ∆MI36,16−34 = −2 · ηd,36 +∆MI36,16 +∆MI36,34 < 2.4 · 10−5

MI36,26 =−MI36,35 +∆MI36,26−35, with ∆MI36,26−35 = −2 · ςd,36 +∆MI36,26 +∆MI36,35 < 5.2 · 10−5

MI36,42 =−MI36,51 +∆MI36,42−51, with ∆MI36,42−51 = −2 · εd,36 +∆MI36,42 +∆MI36,51 < 3.7 · 10−5

MI36,43 =−MI36,61 +∆MI36,43−61, with ∆MI36,43−61 = −2 · ηd,36 +∆MI36,43 +∆MI36,61 < 2.4 · 10−5

MI36,53 =−MI36,62 +∆MI36,53−62, with ∆MI36,53−62 = −2 · ςd,36 +∆MI36,53 +∆MI36,62 < 5.2 · 10−5

MI36,45 =−MI36,54 +∆MI36,45−54, with ∆MI36,45−54 = −2 · εc,36 +∆MI36,45 +∆MI36,54 < 3.7 · 10−5

MI36,46 =−MI36,64 +∆MI36,46−64, with ∆MI36,46−64 = −2 · ηc,36 +∆MI36,46 +∆MI36,64 < 2.4 · 10−5

MI36,56 =−MI36,65 +∆MI36,56−65, with ∆MI36,56−65 = −2 · ςc,36 +∆MI36,56 +∆MI36,65 < 5.2 · 10−5

(D.1)
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D.6. Required knowledge accuracy of the inverse calibration matrices

accelerometer pair 14
δMI14,41 < 1.4 · 10−5 δMI14,42 < 5.0 · 10−6 δMI14,43 < 5.0 · 10−6

δMI14,51 < 1.5 · 10−4 δMI14,52 < 5.5 · 10−4 δMI14,53 < 1.5 · 10−4

δMI14,61 < 5.0 · 10−5 δMI14,62 < 5.0 · 10−5 δMI14,63 < 5.8 · 10−5

δMI14,44 < 2.02 · 10−3 δMI14,45 < 5.1 · 10−5 δMI14,46 < 5.1 · 10−5

δMI14,54 < 1.5 · 10−4 δMI14,55 < 1.01 · 10−2 δMI14,56 < 1.5 · 10−4

δMI14,64 < 1.5 · 10−4 δMI14,65 < 1.5 · 10−4 δMI14,66 < 2.02 · 10−3

accelerometer pair 25
δMI25,41 < 1.5 · 10−4 δMI25,42 < 1.5 · 10−4 δMI25,43 < 1.5 · 10−4

δMI25,51 < 5.0 · 10−6 δMI25,52 < 1.4 · 10−5 δMI25,53 < 5.0 · 10−6

δMI25,61 < 1.5 · 10−4 δMI25,62 < 5.5 · 10−4 δMI25,63 < 5.5 · 10−4

δMI25,44 < 2.1 · 10−3 δMI25,45 < 1.5 · 10−4 δMI25,46 < 1.5 · 10−4

δMI25,54 < 5.1 · 10−5 δMI25,55 < 2.02 · 10−3 δMI25,56 < 5.1 · 10−5

δMI25,64 < 1.5 · 10−4 δMI25,65 < 1.5 · 10−4 δMI25,66 < 1.01 · 10−2

accelerometer pair 36
δMI36,41 < 5.8 · 10−5 δMI36,42 < 5.0 · 10−5 δMI36,43 < 5.0 · 10−5

δMI36,51 < 1.5 · 10−4 δMI36,52 < 5.5 · 10−4 δMI36,53 < 1.5 · 10−4

δMI36,61 < 5.0 · 10−6 δMI36,62 < 5.0 · 10−6 δMI36,63 < 1.4 · 10−5

δMI36,44 < 2.02 · 10−3 δMI36,45 < 1.5 · 10−4 δMI36,46 < 1.5 · 10−4

δMI36,54 < 1.5 · 10−4 δMI36,55 < 1.01 · 10−2 δMI36,56 < 1.5 · 10−4

δMI36,64 < 5.1 · 10−5 δMI36,65 < 5.1 · 10−5 δMI36,66 < 2.02 · 10−3

Table D.5.: Required knowledge accuracy of the last three rows of the MI (ICMs) during the measurement phases.
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D.7. Upper limits for the ICM element variations

accelerometer pair 14
δMI14,41 < 9.05 · 10−6 δMI14,42 < 5.0 · 10−7 δMI14,43 < 5.0 · 10−7

δMI14,51 < 5.0 · 10−5 δMI14,52 < 5.0 · 10−5 δMI14,53 < 1.5 · 10−5

δMI14,61 < 5.0 · 10−6 δMI14,62 < 5.0 · 10−6 δMI14,63 < 9.05 · 10−6

δMI14,44 < 2.0 · 10−5 δMI14,45 < 1.0 · 10−6 δMI14,46 < 1.0 · 10−6

δMI14,54 < 1.0 · 10−4 δMI14,55 < 1.0 · 10−4 δMI14,56 < 1.0 · 10−4

δMI14,64 < 1.0 · 10−4 δMI14,65 < 1.0 · 10−4 δMI14,66 < 2.0 · 10−5

accelerometer pair 25
δMI25,41 < 5.0 · 10−5 δMI25,42 < 5.0 · 10−5 δMI25,43 < 5.0 · 10−5

δMI25,51 < 5.0 · 10−7 δMI25,52 < 9.05 · 10−6 δMI25,53 < 5.0 · 10−7

δMI25,61 < 5.0 · 10−5 δMI25,62 < 5.0 · 10−5 δMI25,63 < 5.0 · 10−5

δMI25,44 < 1.0 · 10−4 δMI25,45 < 1.0 · 10−4 δMI25,46 < 1.0 · 10−4

δMI25,54 < 1.0 · 10−6 δMI25,55 < 2.0 · 10−5 δMI25,56 < 1.0 · 10−6

δMI25,64 < 1.0 · 10−4 δMI25,65 < 1.0 · 10−4 δMI25,66 < 1.0 · 10−4

accelerometer pair 36
δMI36,41 < 9.05 · 10−6 δMI36,42 < 5.0 · 10−6 δMI36,43 < 5.0 · 10−6

δMI36,51 < 5.0 · 10−5 δMI36,52 < 5.0 · 10−5 δMI36,53 < 5.0 · 10−5

δMI36,61 < 5.0 · 10−7 δMI36,62 < 5.0 · 10−7 δMI36,63 < 9.05 · 10−6

δMI36,44 < 2.0 · 10−5 δMI36,45 < 1.0 · 10−4 δMI36,46 < 1.0 · 10−4

δMI36,54 < 1.0 · 10−4 δMI36,55 < 1.0 · 10−4 δMI36,56 < 1.0 · 10−4

δMI36,64 < 1.0 · 10−6 δMI36,65 < 1.0 · 10−6 δMI36,66 < 2.0 · 10−5

Table D.6.: Upper limits for the variations of the last three rows of the MI (ICMs) during one measurement cycle.
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D.8. Required measurement accuracy of the inverse calibration matrices

accelerometer pair 14
δMI14,41 < 4.7 · 10−6 δMI14,42 < 4.5 · 10−6 δMI14,43 < 4.5 · 10−6

δMI14,51 < 1.0 · 10−4 δMI14,52 < 5.0 · 10−4 δMI14,53 < 1.0 · 10−4

δMI14,61 < 4.5 · 10−5 δMI14,62 < 4.5 · 10−5 δMI14,63 < 4.87 · 10−5

δMI14,44 < 2.0 · 10−3 δMI14,45 < 5.0 · 10−5 δMI14,46 < 5.0 · 10−5

δMI14,54 < 5.0 · 10−5 δMI14,55 < 1.0 · 10−2 δMI14,56 < 5.0 · 10−5

δMI14,64 < 5.0 · 10−5 δMI14,65 < 5.0 · 10−5 δMI14,66 < 2.0 · 10−3

accelerometer pair 25
δMI25,41 < 1.0 · 10−4 δMI25,42 < 1.0 · 10−4 δMI25,43 < 1.0 · 10−4

δMI25,51 < 4.5 · 10−6 δMI25,52 < 4.7 · 10−6 δMI25,53 < 4.5 · 10−6

δMI25,61 < 1.0 · 10−4 δMI25,62 < 1.0 · 10−4 δMI25,63 < 5.0 · 10−4

δMI25,44 < 2.0 · 10−3 δMI25,45 < 5.0 · 10−5 δMI25,46 < 5.0 · 10−5

δMI25,54 < 5.0 · 10−5 δMI25,55 < 2.0 · 10−3 δMI25,56 < 5.0 · 10−5

δMI25,64 < 5.0 · 10−5 δMI25,65 < 5.0 · 10−5 δMI25,66 < 1.0 · 10−2

accelerometer pair 36
δMI36,41 < 4.87 · 10−5 δMI36,42 < 4.5 · 10−5 δMI36,43 < 4.5 · 10−5

δMI36,51 < 1.0 · 10−4 δMI36,52 < 5.0 · 10−4 δMI36,53 < 1.0 · 10−4

δMI36,61 < 4.5 · 10−6 δMI36,62 < 4.5 · 10−6 δMI36,63 < 4.7 · 10−6

δMI36,44 < 2.0 · 10−3 δMI36,45 < 5.0 · 10−5 δMI36,46 < 5.0 · 10−5

δMI36,54 < 5.0 · 10−5 δMI36,55 < 1.0 · 10−2 δMI36,56 < 5.0 · 10−5

δMI36,64 < 5.0 · 10−5 δMI36,65 < 5.0 · 10−5 δMI36,66 < 2.0 · 10−3

Table D.7.: Required measurement accuracy of the last three rows of the MI (ICMs) during the measurement phases.



E. Abbreviations

AESRF Accelerometer Electrode System Reference Frame

ARF Accelerometer Reference Frame

ARMA Auto-Regressive Moving-Average

ARR Angular Rate Reconstruction

ATR Attitude Reconstruction

CHAMP CHAllenging MiniPayload

CM Common Mode

DC Direct Current

DCM Direction Cosine Matrix

DFC Drag-Free Control

DFT Discrete Fourier Transform

DM Differential Mode

EGG Electrostatic Gravity Gradiometer

ESA European Space Agency

FIR Finite Impulse Response

GAR Gradiometer Angular Accelerations

GCD Gradiometer Calibration Device

GFA Gravity Field Analysis

GFS Gravity Field Scenario

GGT Gravity Gradient Tensor

GOCE Gravity Field and Steady-state Ocean Circulation Explorer

GRACE Gravity Recovery And Climate Experiment

GRF Gradiometer Reference Frame

HPF High-Level Processing Facility

IAQ Inertial Attitude Quaternions

ICM Inverse Calibration Matrix

IDFT Inverse Discrete Fourier Transform

IRF Inertial Reference Frame

LS Less Sensitive

L1b Level 1b

MB Measurement Band

MDS Measurement Data Set

OAG One-Axis Gradiometer

OAGRF One-Axis Gradiometer Reference Frame
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154 E Abbreviations

PDS Payload Data Segment

PSD Power Spectral Density

QL Quick Look

SGG Satellite Gravity Gradiometry

SH Spherical Harmonic

SST Satellite-to-Satellite Tracking

STR Star Tracker / Star Sensor

TAS Thales Alenia Space

UMB Upper Measurement Band

US Ultra-Sensitive
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of Geodesy, 58(2): 151–179. doi: 10.1007/BF02520899.

Baur, O. (2007). Die Invariantendarstellung in der Satellitengradiometrie: theoretische Betrachtungen und nu-
merische Realisierung anhand der Fallstudie GOCE. DGK, Reihe C, 609, Verlag der Bayerischen Akademie
der Wissenschaften, München. ISBN: 3-7696-5048-4.

Baur, O., Sneeuw, N., and Grafarend, E. W. (2007). Methodology and use of tensor invariants for satellite gravity
gradiometry. Journal of Geodesy, 82(4-5):279–293. doi: 10.1007/s00190-007-0178-5.

Best, R. (1991). Digitale Meßwertverarbeitung. R. Ouldenbourg, München,Wien.

Bigazzi, A. and Frommknecht, B. (2010). Note on GOCE instruments Positioning. XGCE-GSEG-EOPG-TN-09-
0007, Frascati, Italy, http://earth.esa.int/download/goce/.

Bouman, J. (2008). Synthesis Analysis of Internal and External Calibration. Technical Report GO-TN-HPF-GS-
0221, Issue 1.

Bouman, J., Fiorot, S., Fuchs, M., Gruber, T., Schrama, E., Tscherning, C. C., Veicherts, M., and Visser,
P. (2011). GOCE gravitational gradients along the orbit. Journal of Geodesy, 85(11):791-805. doi:
10.1007/s00190-011-0464-0.

Bouman, J., Koop, R., Tscherning, C., and Visser, P. (2004). Calibration of GOCE SGG data using high-
low SST, terrestrial gravity data and global gravity field models. Journal of Geodesy, 78(1-2):124-137. doi:
10.1007/s00190-004-0382-5.
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J., Güntner, A., and Schöne, T., editors, System Earth via Geodetic-Geophysical Space Techniques, Advanced
Technologies in Earth Sciences, pages 159–168. doi: 10.1007/978-3-642-10228-8 13, ISBN: 978-3-642-10227-1.

Mayrhofer, R., Pail, R., and Fecher, T. (2010). Quick-look gravity field solution as part of the GOCE quality
assessment. Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway.
ESA SP-686 (CD-ROM).

McGuirk, J. M., Foster, G. T., Fixler, J. B., Snadden, M. J., and Kasevich, M. A. (2002). Sensitive absolute-gravity
gradiometry using atom interferometry. Physical Review A, 65(3):033608. doi: 10.1103/PhysRevA.65.033608.

Meyer, M. (1998). Signalverarbeitung. Friedrich Vieweg & Sohn, Braunschweig/Wiesbaden.

Moritz, H. (1980). Advanced physical geodesy. Herbert Wichmann Verlag, Karlsruhe.



158 Bibliography

Müller, J. (2001). Die Satellitengradiometriemission GOCE - Theorie, technische Realisierung und wis-
senschaftliche Nutzung. Habilitation, DGK, Reihe C, 541, Verlag der Bayerischen Akademie der Wissen-
schaften, München. ISBN: 3-7696-9580-1.

Ohanian, H. C. and Ruffini, R. (1994). Gravitation and spacetime. Norton & Company, New York, 2rd edition.

Oppenheim, A. and Schafer, R. (1989). Discrete-Time Signal Processing. Prentice hall.

Pail, R. (2005). A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery.
Journal of Geodesy, 79(4-5):231-241. doi: 10.1007/s00190-005-0464-z.

Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.-D., Höck, E., Reguzzoni, M., Brock-
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