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Abstract

For many programs in high performance computing, but also in every day
computational tasks, the performance bottleneck is caused by memory ac-
cesses instead of CPU time. To tackle this problem in a theoretical way, the
I/O-model (external memory model) was introduced which models a fast
internal memory (cache) of limited size where computations are performed,
and an infinite external memory (disk) organised in blocks. The number of
block transfers between the two memory layers is called the I/O complex-
ity. Recently, the parallel external memory model (PEM) was introduced to
model a parallel structure consisting of multiple processors with caches and
a shared disk. Tasks including sparse matrices often induce a very irregular
memory access pattern leading to a bad I/O behaviour. A prominent non-
obvious example related to sparse matrices is the MapReduce framework
where intermediate results produced by Map can be seen as a sparse matrix
that is transposed in the so called shuffle step.

This thesis considers the parallel I/O complexity of several tasks involv-
ing sparse matrices over a semiring: the multiplication of a sparse matrix
with either multiple vectors, dense matrices or sparse matrices; creating the
bilinear form of two vectors defined by a sparse matrix; the transposition of
a sparse matrix. For all these tasks and all meaningful choices of dimensions,
sparsity, memory size and block size, we determine the I/O complexity, i.e.
we present lower bounds and algorithms that mostly differ only by a con-
stant factor in the number of I/Os. Solely for the task of multiplying two
sparse matrices, upper and lower bounds become tight only for very sparse
matrices.

All the lower bounds are based on counting and can only show existence
of worst-case instances but are not constructive. This leads to the question
of identifying the difficulty of an instance. In this regard, we refute a natural
conjecture regarding the expansion of an associated graph. Furthermore, we
present a substantially simpler proof for the low I/O complexity of BMMC-
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permutations that gives an intuitive explanation for the easiness of these per-
mutations.

The work is complemented by a consideration of the MapReduce frame-
work. This consideration yields further insights on the I/O complexity of a
task modelled in Map Reduce, and it strengthens the theoretical foundation
of MapReduce by creating a comparison of the MapReduce model and the
(parallel) external memory model.
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1
Introduction

1.1 Motivation

Computing matrix products is a fundamental operation in many computa-
tional tasks. The broad field of matrix computation has a long tradition dat-
ing back over several centuries with first appearances even being found to
be over 1500 years old. This shows its importance and it explains its strong
linkage to other fields. The main focus of this thesis lies on the consideration
of sparse matrix products where most of the matrix entries are zero. More
precisely, we examine communication required for multiplying a sparse ma-
trix with either one or several dense vectors, with a dense matrix, or with
another sparse matrix.

Sparse matrix products are strongly involved in many areas, like sci-
entific computing and engineering. Applications arise not only in linear
systems, eigenvalue problems and least squares problems, but also in data
mining and web search. In many cases, one sparse matrix is multiplied re-
peatedly with several vectors, thus justifying a preprocessing phase on the
data structures. The insights gained are not only specific to the mathematical
background, but can also be applied to describe communication in tasks like
MapReduce [DG04].

Matrix multiplication is a deeply studied area in terms of computation
involving a vast amount of research. Despite this, the computational com-
plexity is still not settled, and it is not clear whether O(n2) operations are
sufficient to multiply two dense n × n matrices. It was not until 1969 that
computational methods which require less than the trivial n3 multiplications
to compute the product of two n × n matrices were revealed. In his seminal
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paper [Str69], Strassen presented an algorithm which computes the matrix
product with O(nlog2 7) arithmetic operations. Ever since, the algorithmic
complexity has been decreased [Pan78, BCRL79, Sch81, CW90, Vas11] lead-
ing to O(nω) for ω < 2.373 recently. We survey this history briefly in Sec-
tion 1.4.1. However, the best known upper bound has not been changed
significantly for more than two decades, apart from recent rather small re-
ductions of ω that rely on the same techniques as previously. On the other
side, Bläser showed in [Blä99] that 5

2
n2 − 3n multiplications are required for

matrix multiplication. For the multiplication of binary matrices over GF(2),
Shpilka presented a lower bound of 3n2 − o (n2) on the number of multipli-
cations in [Shp01]. He also slightly improves the bound of Bläser for finite
fields in the factor of n2. However, if the size of the field approaching infinity,
the factor goes to 5

2
like in [Blä99].

On the contrary, for sparse matrix dense vector multiplication, the trivial
lower bound of accessing each of the matrix entries at least once is asymptot-
ically matched by the direct algorithm of creating each elementary product
explicitly. This leads to a computational complexity of Θ (H) for a sparse
matrix with H non-zero entries.1 When multiplying a sparse matrix with
another matrix, tools like the Strassen algorithm [Str69] or the Coppersmith-
Winograd algorithm [CW90] can become useful. However, to the best of the
author’s knowledge, up until now, no computational techniques to exploit
sparsity of a matrix are known in this context. The known fast matrix mul-
tiplication algorithms (i.e. those that operate in time o (n3)) all depend on a
recursive structure where in each recursion step the density increases – lead-
ing in many cases to the same number of multiplications as dense matrix
products (see Section 1.4 for details). For evenly distributed non-zero en-
tries in both matrices, the increase of density in the Strassen algorithm was
studied in [MS04]. Yuster and Zwick [YZ04] presented a combined approach
that uses a fast matrix multiplication algorithm for denser parts of the prod-
uct while applying the direct algorithm for the other part. Improving on the
costs induced by the direct algorithm hence also improves on the costs of
their approach. We also note that, depending on the sparsity of the multi-
plied matrices, a direct algorithm can still be faster.

In this thesis, we consider classes of algorithms that compute each ele-
mentary product explicitly at least once throughout the computation pro-
cess. To this end, we restrict ourselves to computations over an arbitrary
semiring where inverse elements are neither guaranteed for multiplication
nor addition. The reader shall be aware that we will not tackle the problem

1Note that allowing a preprocessing step depending on the matrix, the multiplication process
can be reduced [Wil07].
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of a general lower bound for matrix multiplication.
For the naı̈ve implementation of simply creating the required elementary

products one after another in any given order, it has been observed that the
CPU-usage is even less than 10% [JS10, Vud03]. This relies upon the design
of current memory architectures, and the fact that sparse matrices can induce
a totally irregular access pattern in memory. Tackling the problem of irreg-
ular accesses and stating complexity results for memory accesses will form
the main focus of this work. Thus, let us consider today’s memory hierarchy
in the following pages. With this understanding, we derive some compu-
tational models culminating in the PEM model, which is mostly considered
throughout this thesis.

It is a well-known fact that in comparison to the evolution of CPU clock
speed, memory access time has always lagged behind. The famous Moore’s
law predicts an exponential growth of transistors density on a CPU die. It
has been observed that the number of transistors on a chip have doubled
about every 18-24 months. Until recent years, this improvement of transis-
tors per space proportionally led to a doubling of CPU speed in about the
same period. Despite its permanent further development, RAM access time
could not catch up with this evolution. One reason is that, additionally to
access time, a main focus of memory design is capacity. This forms a limit-
ing factor in that high capacity requires more space, and memory cells need
to be further away from the CPU. By the laws of physics, a higher latency
follows immediately. Even though the increase of CPU speed has recently
slowed down, Moore’s law still holds on, but trends have changed towards
providing multiple cores on a single chip.

This historical progress has led to a performance gap between CPU clock
speed and memory access time of several orders of magnitude. At the time of
writing this thesis, a typical working machine performed a CPU cycle within
3 ⋅ 10−10s. Access times of solid-state-drives were in the order of 10−4s and
even working memory access time still laid roughly a factor 100 away from
CPU cycles. On the other hand, multi-core architectures require the simul-
taneous access of data in order for the cores to compute (independently) in
parallel.

Luckily, it can be observed that many programs reveal some type of lo-
cality in their induced memory accesses. In general, two types of locality are
distinguished: Temporal locality refers to multiple accesses to the same data
within a short time period. A program is said to have spacial locality if it is
likely to access data in the close neighbourhood of an earlier access.

Temporal locality can be exploited using caches. This reflects current
hardware design where it is common sense to have a small but very fast
cache attached to the CPU. Spacial locality leads to the idea of memory trans-
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fer in blocks. If a single date is required for computation, not only the date
but its neighbourhood up to some specific size is transferred into the cache.
This behaviour can be found in so called cache-lines that are loaded simulta-
neously. The use of caches can thus take advantage of locality by simulating
a fast, large memory. This is even brought further in that a hierarchy of mem-
ory layers is part of today’s computer systems. The L1 cache, a small cache
built of the fastest, most expensive memory cells, is located closest to the
CPU. In order to provide fast access, these cells have to be wired in short dis-
tance to the CPU which, apart from its cost, is another limiting factor of the
size of L1 cache. The L1 cache is followed by the L2 cache, and with growing
consensus by another L3 cache – all being built on the CPU die. The most
commonly known layers (outside the CPU) are the working memory aka
RAM and a permanent mass storage device such as magnetic hard drives or
solid-state drives. Since the access time of each layer is high compared to the
next deeper layer (towards the CPU), the layers are connected with higher
bandwidth to amortise memory accesses of programs with spacial locality.
For multi-core processors, L1 cache is usually private to each core while L3
cache is shared by all of them. This provides fast private calculations, and
communication via shared memory.

The mapping of data between layers of the hierarchy is done automat-
ically by the hardware. If an element is required within a layer but not
present, it is propagated from above through the layers automatically. This
case is known as a cache miss: There is a request for an element which is cur-
rently not in the considered cache. If the element is found in cache, the event
is called a cache hit. Cache hits usually account only for 2-3 CPU cycles. If
a cache miss occurs, larger costs incur. The access time to the next memory
layer requires the program to wait until data is present in the cache.

To exploit spacial locality, the transfer between memory layers is usually
done in blocks of neighbouring data. In the L1 to L3 caches, these chunks
are referred to as cache-lines. The pages in RAM lead to a similar behaviour
between mass storage and RAM. Finally, it can be observed that the time
to access a single random date from magnetic disks has a high latency for
positioning the reading head and waiting for the right position to come on
the disk. It then only takes a small amount of time to access all data that is on
the same track on the disk. Usually, the further away from CPU, the larger
the transferred blocks become in order to amortise latency.

As with the introduction of L3 cache, the trend seems to be that even more
layers are added to the hierarchy. It is furthermore beyond dispute that par-
allelism will become an increasingly important factor in modern computers.
Thus, parallel behaviour has to be exploited and independent threads of ex-
ecution should be supported. Another interesting change taking place is the
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switch from magnetic disks to solid-state drives which induce a different,
asymmetric memory access behaviour in that writing date is more expensive
than reading.

In current environments, a scan through data, i.e. reading data in the or-
der it is written on the disk, becomes quite fast with the help of the memory
hierarchy. With optimised compilers and prefetching techniques, many sim-
ple tasks can be accelerated. However, it seems not plausible that good com-
pilers will be able to optimise any implementation of a task towards locality
in the future. Even if one counts on compilers optimisations, it is necessary
to develop the right techniques to provide such optimisations.

Algorithms are, however, often constructed with the aim of minimising
CPU cycles. The most commonly used model in algorithm analytics is the
von Neumann aka Random Access Machine (RAM) model. This model de-
scribes a CPU with few registers and access to a large set of memory cells. An
operation can perform calculations on elements in registers, or load records
from memory into registers and write them back to memory respectively.
The RAM model, however, does not reflect any terms of locality.

1.2 Models of Computation

A good model should be simple enough to allow for the design of algo-
rithms. It is further desirable to provide comparability of algorithms to other
models while it is comparable itself to other models. Yet, it should be capable
of describing real hardware up to an extent that algorithms which perform
well in the model are also efficient in practice. In the following, we describe
a model that has served in a vast amount of work to design algorithms that
optimise locality and are therefore well adapted to the memory hierarchy.
Note, however, that the model does not reflect the costs of CPU operations.

1.2.1 The External Memory Model (EM or I/O-Model)

In a seminal paper by Hong and Kung [HK81] in 1981, a model was intro-
duced which can be interpreted as an internal memory of limited capacity
connected to an external memory of infinite size. Calculations can only be
performed with records that reside in internal memory. To this end, records
can be copied from external to internal memory and vice versa with an input,
or output respectively (both are also referred to as I/O operations). Since in-
ternal memory size is restricted, for large enough problem instances, some
records have to be evicted from internal memory to provide space for others
during the computation. The ordering in which calculations are performed,
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and the decision which records are kept in memory therefore becomes cru-
cial to the number of I/O operations. However, their model does not expose
the ordering of records in external memory.

Several tasks such as matrix matrix multiplication2 and FFT have been
examined in this model, leading to an understanding of an optimal mem-
ory behaviour. For the considered tasks, both upper and lower bounds are
derived. In order to obtain lower bounds, they assume what they call inde-
pendent evaluation: For any given polynomial to be computed, all its mono-
mials have to be calculated explicitly at some point within the computational
process. Their model however encourages temporal locality only. It does not
reflect the tracks or cache lines present in real hardware.

C P U

m1m2m3m4m5 ⋯⋅ mM

M

⋯ ⋯

B

x1 x2 x3 ⋯ xB

⋯

x1 x2 x3 xB

Figure 1.1: The I/O-model (External Memory model) with an input opera-
tion.

In 1988, Aggarwal and Vitter [AV88] introduced the External Memory
model (EM) a.k.a. I/O-model which consists of the same components, but
additionally external memory is organised in blocks. Each input and out-
put operation moves a whole block between internal and external memory
(cf. Figure 1.1). This reflects real hardware settings and provides a good
model to design algorithms where locality of memory accesses is optimised.
Since then, the I/O-model served for a broad field of research to provide
an understanding of the I/O behaviour of common algorithms, as well as
to lead to I/O optimised algorithms. One can wonder whether a model of
two memory layers is sufficient to model real hardware’s memory hierarchy.
However, the two layers are usually thought of being the highest level of
cache hierarchy with I/O operations induced. Since memory accesses have a
much higher latency the higher they appear in the hierarchy, I/O operations
in deeper layers are dominated in time by the highest level. By now, this
model is accepted and the I/O complexity, i.e. the (asymptotic) number of
I/O operations, of many tasks is well understood.

2the direct method with n3 multiplications
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1.2.2 The Ideal Cache-Oblivious Model

In the EM model, the programmer usually has to specify M andB as param-
eters before being able to run the program. This leads to algorithms that are
fine tuned for a specific layer of the hierarchy of a specific machine. In order
to make programs applicable to a broad range of computers, the Ideal Cache-
Oblivious model was proposed in [FLPR99]. Therein, the memory and block
sizes are unknown to the algorithm, and can only be used for runtime anal-
yses. One can consider algorithms in the Ideal Cache-Oblivious model to be
written for the RAM model, but analysed in the I/O-model. In contrast to
the explicit description of I/O operations in a program, it is assumed that an
optimal cache replacement strategy is provided. This corresponds to real set-
tings and takes away one of the specifications in algorithmic design. Though
an optimal cache replacement strategy seems somewhat unrealistic, LRU or
FIFO yield an approximation by only a constant factor [FLPR99]. Note that
programs that perform optimally in a cache-oblivious setting are optimised
for all layers of the memory hierarchy, not only for the communication be-
tween two layers.

1.2.3 The Parallel External Memory Model (PEM)

Since the early 2000s, a change in processor design paradigm from the pure
increase of speed towards providing multiple cores on a single chip has been
observed. Moore’s law is no longer applicable to predict CPU speed, and
nowadays, the number of cores per die is increasing. This shifts interests in
algorithm design more towards good parallelisation which also raises a need
for good parallel models.

As one of the earliest models to describe parallel computation, the Paral-
lel Random Access Machine (PRAM) was suggested as a parallel version of
the RAM (see e.g. [KR90]). In this model, multiple processors (usually syn-
chronised) communicate via a shared memory. This gives rise to the question
how parallel accesses to memory cells are handled. Variants are (i) exclusive
read exclusive write (EREW) where each memory cell can only be accessed
by one single processor at a time, independent from whether it will be read or
written, (ii) concurrent read exclusive write (CREW) where a cell can be read
by multiple processors at a time but write access is restricted to one, and (iii)
concurrent read concurrent write where multiple processors can both read
and write a single memory cell. In the last case, one further has to specify
how write conflicts by multiple processors have to be handled, and what the
result of the cell will be in that case.

The current multi-core architectures reflect this model in that a shared
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memory is commonly used by all cores. However, another common property
is that private caches are attached to each core. The L1 cache is generally
private to a single core. L2 cache in contrast is either assigned to a single, or
only a few cores, depending on the architecture, and L3 cache is shared by
all cores on the chip.

Following current multi-core memory design, the Parallel External Mem-
ory model (PEM) was proposed by Arge et al. [AGNS08] replacing the single
CPU-cache in the EM model by P parallel caches with a CPU operating on
each of them (cf. Figure 1.2 ). External memory is treated as shared mem-
ory, and within one parallel I/O, each processor can perform an input or an
output of one block between its internal memory and the disk. Similar to
the PRAM model, one has to define how concurrent access to the same cell
is handled. Since concurrent access is always critical, a minimised access to
shared data is desired. This corresponds to a maximisation of the local usage
of data, i.e. an optimal use of private cache data. To handle multiple accesses
to shared memory, we allow concurrent read exclusive write (CREW) in this
work. However, the results can be easily modified for CRCW or EREW.

CPU CPU CPU

. . .

CPU

⋯ ⋯

Figure 1.2: The Parallel External Memory model (PEM).

In this work, we follow [BBF+07] where the idea of independent evalua-
tions from [HK81] is combined with the EM model described in [AV88]. Re-
ferred to as the Semiring I/O-model, this model was used by Bender, Brodal,
Fagerberg, Jacob and Vicari to obtain upper and lower bounds for the prod-
uct of a sparse N ×N matrix with a dense vector. The restriction to indepen-
dent evaluations is realised by considering computation over a commutative
semiring. We extend this notion to the PEM model, considering computation
over an arbitrary semiring in this thesis. Corresponding to the definition of
the PEM model, calculations can only be performed with records residing in
internal memory, whereas the programs input and output have to be stored
in external memory.

A commutative semiring S = (R,+, ⋅) is an algebraic structure consist-
ing of a set R with binary operations addition (+) and multiplication (⋅) that
are both associative and commutative. Multiplication is distributive over
addition. Furthermore, there is a neutral element 0 for addition, 1 for multi-
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plication and 0 is annihilating with respect to multiplication. In contrast to
rings and fields, inverse elements are neither guaranteed for addition nor for
multiplication, i.e. programs are not allowed to use subtraction and division.

For all algorithmic considerations in this work, if not otherwise noted, we
consider the number of I/Os induced by a program in the Semiring PEM
model. In analogy to the memory hierarchy, we sometimes refer to exter-
nal memory as disk, and to internal memory as cache. In the following, we
give a detailed description of the capabilities of this model as it will be used
throughout this thesis.

Definition 1.1 (Semiring PEM Model, cf. [BBF+07, AGNS08]). The Semiring
PEM machine consists of P parallel processors, each connected to an internal mem-
ory which can hold up to M records of a commutative semiring S = (R,+, ⋅), and a
shared external memory of infinite size which is organised in blocks of B consecu-
tive positions. The current configuration of a machine is described by the content
of internal memoriesM1, . . .MP of the processors whereMp = (mp,1, . . . ,mp,M)

for mp,j ∈ R, 1 ≤ p ≤ P , 1 ≤ j ≤ M , and an infinite sequence of blocks ti ∈ RB ,
i ∈ N of external memory. The positions in internal and external memory will be
denoted as cells and their content as record. An operation is a transformation of
one configuration into another, which can be one of the following types

● Computation: perform either one of the algebraic operations mi ∶=mj +mk

or mi ∶= mj ⋅mk, set mi ∶= 1, set mi ∶= 0 (deletion), or assign mj ∶= mi

(copying) within internal memory of one processor.

● Input: copy the records from block ti in external memory for some i ∈ N to
records mp,j1 , . . . ,mp,jB inMp for arbitrary j1, . . . , jB ∈ {1, . . . ,M}, and a
processor p ∈ {1, . . . , P}.

● Output: copy the records mp,j1 , . . . ,mp,jB fromMp to block ti for arbitrary
i ∈N, j1, . . . , jB ∈ {1, . . . ,M}, and p ∈ {1, . . . , P}.

We also refer to the latter two as I/O operations or simply I/Os. Within one par-
allel I/O, each processor can perform either an input or an output operation. I.e.
one parallel I/O refers to a sequence of I/O operations involving each processor once
at the most.

Using this, we define a program P as a finite sequence of operations. The
number of parallel I/O operations describes the I/O costs of P . If not other-
wise noted, when referring to the number of I/Os as the costs of a program,
we always mean parallel I/Os. An algorithm is a family of programs where
the program can be chosen according to input size, and other parameters
such as sparsity and the conformation of a matrix, i.e. the position of the
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non-zero entries. We use the notion of uniform and non-uniform similar
to the use in the theory of circuits. A uniform algorithm depends only on
the parameters B, M , and P and is applicable for any input size, i.e. ma-
trix dimensions and number of non-zero entries. In a uniform algorithm,
we allow branching based on the comparison of indices (not involving the
semiring elements) to decide on the program progressively during runtime.
A non-uniform algorithm in contrast is specifically adapted to the input size,
and more importantly, to the conformation(s) of the given problem instance.
Hence, the semiring elements specifying the input represent the only degree
of freedom for a non-uniform algorithm. Throughout this thesis, we inves-
tigate the asymptotical number of I/O operations induced by a program, an
algorithm, or by any algorithm for a specific problem. This is refer to as the
I/O complexity of the program, algorithm, or problem. We aim to provide
good upper and lower bounds on the I/O complexity in this thesis.

The input-records are initially given as contiguous records in external
memory. Similarly, the output-records have reside contiguously in external
memory at the end of the program. Depending on the task, the input and
output describe vectors and matrices. For the non-zero entries of a sparse
matrix, we usually think of a record to consist of an element of the semiring,
annotated with the natural numbers defining its position in the matrix. This
will be described more detailed in Section 1.3.

If a record r is an operand of a computation operation with result p, we
call r a predecessor of p, and p a successor of r. We extend this notation
to the transitive closure so that any record r used to derive p after several
operations is called a predecessor of p, and p is its successor. As mentioned
above, we consider CREW environments if not otherwise noted.

1.2.4 A Comparison to Other Parallel Models

First observe that there is a close relation between the PRAM and the PEM
model when letting M be a constant and B = 1. In this case, the only dif-
ference is that multiple arithmetic operations that involve the same register
elements in PRAM do not induce costs in the PEM model. However, as-
suming that a record can only represent a constant number of elements, the
complexities of PEM and PRAM differ only by a constant factor.

Another famous model in the design of parallel algorithms is the Bulk-
Synchronous Parallel model (BSP) [Val90]. One of the main differences
to PRAM is that communication between processors is done via a network
structure – usually managed by a router. Hence, there is no external storage
device and all data has to be stored locally at the processors / computation
nodes. A program for the BSP model is a sequence of supersteps where a
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superstep consist of independent (local) computation and a communication
phase. Each L time units, it is checked whether the computational part of the
superstep is completed by all processors. If so, the processors are synchro-
nised for communication where the communication is realised in a so-called
h-relation: Each processor is allowed to send and to receive up to hmessages
from other processors. Note (especially for h = 1) that a processor does not
need to send to the same processors it receives from. For each superstep, a
latency / startup cost s is assumed. The total communication cost of an algo-
rithm with T supersteps is then T ⋅ (hg + s) where g is the throughput of the
router – sometimes defined in ratio to the number of computations per time
step to relate communication and computation times.

In contrast to the PRAM model where a shared memory allows for im-
mediate communication throughout the computation, the BSP model mod-
els a rather coarsely synchronised environment where computation nodes
operate independently within a superstep. The BSP model is therefore most
applicable to describe environments of high bandwidth and high latency.
It models a network structure such as internet communication quite ade-
quately. The PRAM model on the contrary reflects a low bandwidth and low
latency setting, and is thus more suitable for multi-core architectures. Also
the PEM model was intended for such a setting [Sit09].

However, replacing shared memory in the PEM model by a direct com-
munication network and setting B = 1 basically yields a BSP model. It is
often assumed that processors in the BSP model have a restricted memory,
e.g. M = N/P for input size N . Note here that M ≥ N/P is required for the
BSP model in order to store the input. If memory is unrestricted in the BSP
model, one can set M = N , or even larger, in the PEM model to consider only
costs that are induced by communication instead of costs induced by the re-
stricted internal memory size. A special variant of the BSP model, which is
described in the following, reveals many similarities to the PEM model.

The BSP∗ Model

As a significant change compared to [Val90] one can define the latency s in
relation to the number of connections each processor has to establish. This
is justified not only for hand shake protocols but also for the encapsulation
process of messages performed by the network layers in the OSI model, i.e.
todays network protocols. Hence, an incentive is given to send a number
of records in a magnitude comparable to the connection-latency to the same
processor. Another way to express this is the BSP∗ model in [BDH95] which
encourages block-wise communication by defining a cost model per super-
step of max{gh ⌈m/B⌉ , L} for the maximum message length m, and L time
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steps for computation within a superstep. If communication is more expen-
sive than computation, as is assumed in the PEM model, the cost reduces
to gh ⌈m/B⌉. In this case, we can assume that m ≤ B. Otherwise the com-
munication can be split into ⌈m/B⌉ multiple communication steps without
changing the induced costs.

Any BSP∗ algorithm with ` supersteps on input size N can be simulated
in the EREW PEM with 2h`+ ⌈ n

PB
⌉ + ⌈ o

PB
⌉ parallel I/Os where n is the input

size and o the output size, and internal memories are as large as memories in
the BSP∗-model. If there is no restriction on memory in the considered BSP∗

model, we set internal memory size M to the maximum number of records
concurrently in memory of a computation node. For each superstep the h
blocks that are sent via h-relation are written to external memory, causing h
parallel I/Os. In h subsequent parallel inputs, these blocks are input by their
destined processor. Additionally, input- and output-records may need to be
read and written in the PEM model whereas a BSP model assumes input and
output to be spread over processors / computation nodes. Altogether, all our
lower bounds larger than ⌈n+o

PB
⌉ asymptotically hold for the BSP∗ model by

a factor 1/h. Note that the simulation can be non-uniform which, however,
does not change the statement.

Similarly, a 1-BSP∗ algorithm can be derived from an EREW PEM algo-
rithm that fulfils a certain communication balancing property. For each out-
put that is made by the PEM algorithm, the corresponding block is sent to
the processor that will read the block nearest in the future. In general, this
implies that multiple blocks can be sent to the same processor violating the
1-relation. To tackle this problem, we annotate each block on disk during the
PEM program by a processor id where it belongs to and demand that with
one I/O, each processor may obtain at most one new block. Our algorithms
can be observed to fulfil this condition in that they operate in phases where
data is evenly (re)divided upon the processors. Furthermore, the assign-
ment of input and output is not necessary in the BSP model, and the parallel
sorting algorithm, which we use frequently, is even derived from a BSP algo-
rithm (see [AGNS08]). However, since we consider CREW, additional scatter
tasks may be required to obtain an algorithm for EREW. We omit a detailed
transformation here since it is beyond the scope of this work.

1.2.5 The MapReduce Programming Paradigm

The MapReduce framework has been introduced in [DG04] by Dean and
Ghemawat to provide a simple parallel model for the design of algorithms
on huge data sets. It allows an easy design of parallel programs that scale
to large clusters of hundreds or thousands of PCs. A MapReduce algorithm
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consists of a number of rounds that interleave serial functions, run in par-
allel, with parallel communication phases. A MapReduce round starts with
splitting the input data among several workers such that a serial Map func-
tion can be executed in parallel for each part of the input. The intermediate
results generated by these Map functions are then redistributed among the
workers in the shuffle step. This is followed by a serial Reduce function
which is executed on each worker to transform the intermediate results sent
to this worker into a final output.

Since its introduction in 2004, apart from its intensive use by Google for
tasks involving petabytes of data each day [DG10], the open source imple-
mentation Hadoop [Whi09] has found many applications including regular
use by companies like Yahoo!, eBay, Facebook, Twitter and IBM. This success
can be traced back to both the short development time of programs, even
for programmers without experience in parallel and distributed programs,
and the fast and fault tolerant execution of many tasks. However, there
is also criticism passed on current progression towards MapReduce [DS,
PPR+09,SAD+10]. This includes criticism on the applicability of MapReduce
in all its simplicity to tasks where more evolved techniques have been ex-
amined already. Hence, it is of high importance to gain an understanding
when and when not the MapReduce model can lead to implementations that
are efficient in practice. In this spirit, MapReduce has been compared to
PRAM [KSV10] and BSP [GSZ11] by presenting simulations in MapReduce.
But theoretical foundations are still evolving.

MapReduce is usually applied in high performance computing on large
data sets where fast memory access is especially important in order to pro-
vide fast computation. In clusters consisting of a large number of machines,
the communication introduces a bottleneck of a kind similar to memory ac-
cesses. Therefore, we believe that the PEM model provides an important
context in which MapReduce should be examined.

In Chapter 7, we provide further insights, contributing to the discus-
sion on the applicability of MapReduce, in that we shed light on the I/O-
efficiency loss when expressing an algorithm in MapReduce. Our inves-
tigation bounds the complexity that can be “hidden” in the framework of
MapReduce in comparison to the parallel external memory (PEM) model.
To this end, the I/O complexity of the shuffle step is considered. This step
is the single communication phase between processors / workers during a
MapReduce round. The redistribution of data is a reordering of intermediate
results in shared or distributed memory. Since the communication is in gen-
eral sparse, i.e. not all workers send to all other workers, we can relate the
shuffle step to a sparse matrix transposition, considering the intermediate
results as non-zero entries of a matrix. In this context, we consider several
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layouts, i.e. orderings of intermediate results, that seem natural in the context
of MapReduce.

1.3 Sparse Matrix Computations

We use the notation [N] = {1, . . . ,N} in order to classify indices in the fol-
lowing. Furthermore, throughout this thesis, matrices and vectors are bold
symbols to distinguish them from scalars. In all the tasks regarding matrix
multiplication in this thesis, we consider a sparse Ny × Nx matrix A with
max{Nx,Ny} ≤ H ≤ NxNy non-zero entries. We assume that A contains no
empty rows or columns. When referring to a matrix as dense, we usually
mean that all entries are non-zero. Nevertheless, for our asymptotic results,
H = Θ (NyNx) is sufficient to call A dense. A matrix A is considered sparse
if the number of non-zero entries isO(NyNx). Most important are the results
forH = o (NxNy). However, using this definition for sparsity, our complexity
results for sparse matrix tasks carry over to dense matrices as well.

To the creation of the product Ax where x is a dense vector of dimen-
sion Nx, we refer to as SPMV. This task is considered for the product of
A = (aij)i∈[Ny],j∈[Nx] with w < B vectors x(1), . . . ,x(w) simultaneously where
x(i) = (xj

(i))j∈[Nx]. The output is denoted by y(i) = Ax(i), 1 ≤ w ≤ B, and the
matrices given by the input and output vectors are X = [x(1) . . . x(w)] and

Y = [y(1) . . . y(w)]. Note that a record of the output vectors is given by the
polynomial yj(i) = ∑k∈Aj ajkxk

(i) where Aj ⊆ [Nx] is the set of indices of the
non-zero entries in the jth row of A.

Multiplying A with a dense Nx ×Nz matrix B for Nz ≥ B will be called
SDM throughout this thesis. To distinguish this case from SPMV where the
dense matrix consists of less than B columns, we denote the output matrix
by C =A ⋅B. The value of an output record cji of the result matrix C is given
by ∑k∈Aj ajk ⋅ bki where Aj ⊆ [Nx] describes again the positions of non-zero
entries in the jth row of A.

The same terminology is used when considering the product of A with
another sparse matrix B which we refer to as SSM. The number of non-zero
entries in the result matrix C depends crucially on the conformation of the
input matrices. For the ith column of A, ai, and the jth row of B, bj , the
result can be calculated C = ∑i aibi. Hence, the number of multiplications
over a semiring can be computed ∑i αiβi where αi, and βi are the number
of non-zero entries in ai, bi respectively (note that aibi is a matrix). In a
similar fashion, the number of non-zero entries in the jth row of C can be
bounded above by ∑i∈Aj βi. It is common to describe the structure of the
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matrix product as a tripartite graph where the input matrices are considered
adjacency matrices of bipartite graphs, connected in one dimension (here
Ny) [Coh98]. A more detailed description is given in Chapter 6.

Additionally, we consider the computation of bilinear forms, denoted
BIL. A bilinear form on a vector space is a linear function that maps two
vectors x and y to a scalar z based on a matrix A by creating the product
z = yTAx. The scalar product yTx of two vectors of the same dimension is a
special case of bilinear forms where the identity serves as the matrix A. Note
that distributive law can be used for bilinear forms to reduce the number
of multiplications in the semiring from 2H to H + min{Nx,Ny}. Similar to
SPMV, we consider BIL for w < B vector pairs for the same matrix A, per-
formed simultaneously. The results are denoted by z(i) and are described by
the polynomial z(i) = ∑1≤j≤Ny ∑k∈Aj yj

(i)ajkxk
(i) for 1 ≤ i ≤ w.

1.3.1 Memory Layouts

By the memory layout, we denote the ordering of (input-)records in external
memory. Considering sparse matrices, we assume that only non-zero entries
are written in external memory. Here, we assume that a record describes
the triple (value, column index, row index) where column and row indices
are natural numbers. For a (sparse or dense) matrix A, we distinguish the
following layouts where the non-zero entries are given as contiguous records
(cf. Figure 1.3).

• Column major layout: The records of A are ordered by column first,
and by row index within a column.

• Row major layout: The records of A are order row-wise first, and
column-wise within a row. Observe that row major layout can be ob-
tained from column major layout by transposing A, and vice versa.

• Recursive layouts: For completeness, recursive layouts shall be men-
tioned here as well. Such layouts are often helpful to construct effi-
cient cache-oblivious algorithm. Many applications involve (recursive)
space filling curves to define the ordering of records. However, we do
not consider such layouts here.

• Best-case layout: When talking about the best-case layout, we consider
the layout that induces asymptotically the fewest I/Os for given pa-
rameters and matrix conformation. It can be thought of that an algo-
rithm may decide in which layout the matrix shall be provided. In
terms of I/O complexity, we consider the worst-case over all confor-
mations given the best-case layout.
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Figure 1.3: Upper left: A sparse matrix in column major layout with its block
structure. Upper right: Row layout with its block structure of the same matrix.
Lower left: Ordering of records in a layout with meta-columns where meta-
columns are internally ordered row-wise. Lower right: A recursive Z-layout.

• Worst-case layout: Analogously, the worst-case layout can be defined
to be the layout inducing the most I/Os.

The I/O complexity not only depends upon the layout of the input ma-
trices, but also on the layout of the input vectors. However, a permutation
on the records of a single vector can be shifted towards the matrix layout.
Instead of considering a given ordering of vector records, these records can
be considered contiguous while the matrix columns are considered to be per-
muted, leading to a different matrix layout.

1.3.2 Intermediate Results

The input of a program is specified by the input-records. These can be,
depending on the considered task, matrix entries aij , bij , or vector entries
xj

(i), yj(i). For matrix vector multiplication and bilinear forms, we introduce
the following terminology. Products of the form ajkxk

(i), yj(i)ajk, xk(i)yj(i)

and yj
(i)ajkxk

(i), for 1 ≤ i ≤ w, j ∈ [Nx], k ∈ [Ny], are referred to as ele-
mentary products. In the context of bilinear forms, elementary products of
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the last form will be denoted complete elementary product. Sums of the
form∑k∈Sx ajkxk

(i),∑j∈Sy yj
(i)ajk, and∑j∈Sy ∑k∈Sx yj

(i)ajkxk
(i), with 1 ≤ i ≤ w,

Sx ⊆ [Nx] and Sy ⊆ [Ny], are generally called partial sums. Altogether, the
term partial result refers to any of these forms. Since our model is based on a
semiring, the computation of y(1), . . . ,y(w) in SPMV includes the calculation
of exactly wH elementary products ajk ⋅ xk(i).

For the matrix matrix multiplication tasks SDM and SSM, we use the
same terminology, by simply replacing xj

(i) with bji. No type of bilinear
forms is considered therein so that all forms including some yj(i) can be omit-
ted.

It is easy to see that in the case of a matrix vector multiplication only ele-
mentary products and partial sums of the form ajkxk

(i), and∑ajkxk(i) respec-
tively, can arise as detailed in [BBF+10]. For the case of evaluating a bilinear
form, the distributive law can be useful, and some additional arguments are
necessary to specify which intermediate results can be generated. Firstly, ob-
serve that no intermediate result that uses input-records from different pairs
of vectors can be useful. Moreover, monomials with coefficient > 1 or with
more than one xk(i), yj(i) or ajk are useless. The same holds true if there is
a mismatch in row or column between matrix coefficient and vector record.
Hence, all monomials must be elementary products. Furthermore, any poly-
nomial with at least two monomials that are elementary products of different
types will continue to have this property and is hence not a predecessor of
an output-record. Also a (non-trivial) sum of at least two monomials of type
xk

(i)yj
(i) is useless because it eventually has to be multiplied with some ajk

which would lead to mismatching monomials. Hence, the elementary prod-
ucts and partial sums listed above are sufficient to describe all intermediate
results that arise during a program for BIL.

1.4 Previous Work

1.4.1 Matrix Multiplication

The complexity of computing the product of two n × n matrices over an ar-
bitrary field is a long standing open problem. Until 1969, it was believed
that O(n3) arithmetic operations is essentially optimal when Strassen came
up with the first subcubic algorithm. The widely known Strassen algorithm
exploits distributivity and inverse elements of a field to reduce the number
of multiplications. The Strassen algorithm [Str69], and its variant by Wino-
grad [Win71] (which induces 15 instead of 18 additions) obtain the result by
dividing each matrix into four quarters, and performing 7 instead of 8 ma-
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trix multiplications which leads to only O(nω) arithmetic operations for ω =

log2 7 ≤ 2.808. It took another nine years for the exponent ω to be decreased
further. First by Pan [Pan78], showing how to multiply two 70 × 70 matrices
with 143640 arithmetic operations, and thus, ω ≤ log7 0143640 < 2.796, fol-
lowed by Bini et al. [BCRL79] with ω < 2.78 introducing approximate algo-
rithms, and then in 1981 by Schönhage [Sch81] to ω < 2.522. Schönhage intro-
duced a technique which is also used to obtain the exponents ω in following
works. In 1986, Strassen [Str86] presented a new attack on the matrix mul-
tiplication problem yielding ω < 2.479. Coppersmith and Winograd [CW90]
combined Strassen’s technique with a novel analysis and obtained ω < 2.376
which remained the best known upper bound for more than two decades.
Recently, their technique was explored further by Stothers [Sto10], and then
Williams [Vas11] who finally gave the bound ω < 2.373. However, note that
the asymptotically fastest matrix multiplication algorithms are more of a the-
oretical nature, and Winograd’s variant of the Strassen algorithm [Win71] is
still the most widely used fast matrix multiplication algorithm.

It is widely believed that ω = 2. Nevertheless, since two decades, no
significant progress was made in this direction. Instead, several conjectures
implying ω = 2 have been made in [CW90] and in [CKSU05], the latter one
relying on a new group-theoretic approach. Unfortunately, both conjectures
from [CW90], and one of the two conjectures in [CKSU05] have been found
in [ASU11] to contradict another widely believed conjecture (the sunflower
conjecture by Erdös and Rado [ER60]), leaving a focus on the remaining one
by Cohn et al. [CKSU05].

Since all of these fast matrix multiplication algorithms rely on a recursive
structure where parts of the matrix get summed, the number of non-zeros en-
tries increases in each recursion. Thus, in general, sparsity does not lead to
an asymptotic speed up. As described in Section 1.3, the number of multipli-
cations, and the number of non-zero entries in the result matrix C depends
strongly on the structure of the input matrices. For uniformly chosen in-
put matrices (for a fixed number of non-zero entries), the expected running
time of a hybrid version of the Strassen algorithm is examined in [MS04].
There, the recursion is stopped at a certain level, and the direct algorithm is
used. By estimating the density of the matrices in recursion depth k of the
Strassen algorithm, a formula is derived yielding the expected number of
multiplications of this hybrid approach given the number of recursions and
the densities of the input matrices.

Addressing upper bounds on the worst-case complexity, in [YZ04] Yuster
and Zwick present an algorithm that applies a fast matrix multiplication al-
gorithm like Coppersmith-Winograd to a denser set of columns while the
product of the remaining columns is created with the classical direct ap-
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proach. In contrast to [MS04], their algorithm has guaranteed running times
even for products that become dense already after few recursion steps in
Strassen’s algorithm. For the numbers of non-zero entries m1 and m2 in the
two input matrices, Yuster and Zwick obtain a running time bounded by
O((m1m2)

0.35n1.2 + n2+o(1)). Hence, for multiplying a sparse with a dense
matrix, the complexity of their algorithm is O(m0.35

1 n1.9 + n2+o(1)). The di-
rect approach instead requires O(m1n) multiplications which is still better
form1 < n

1.38. For two sparse matrices that are both column-regular, i.e. each
column containsm1/n,m2/n respectively, non-zero entries,O(m1m2/n) mul-
tiplications are sufficient in a direct approach. A direct approach thus outper-
forms the algorithm in [YZ04] form1m2 < n

3.38. However, note that reducing
the exponent ω of fast matrix multiplication also improves on the complexity
of their algorithm.

1.4.2 I/O-model and PEM model

In their seminal paper [HK81], Hong and Kung present lower bounds on the
I/O complexity and asymptotically optimal algorithms for several problems,
including dense matrix multiplication and FFT. Applying their technique of
partitioning the computation process (see Section 2.1), they show that any
program for FFT requires Ω (N logM N) I/Os. For multiplying two N × N

matrices with independent evaluations, they give a lower bound of Ω ( N3
√
M

)

I/Os. They also present an algorithm for matrix multiplication where the
matrices are partitioned into

√
M ×

√
M tiles. Two tiles can be multiplied

with O(M) I/Os, evaluating M3/2 elementary products, thus inducing a to-
tal of O( N3

√
M

) I/Os. Though not directly stated for block sizes B > 1, the
algorithm can be extended straightforward to arbitrary block sizes inducing
O( N3

B
√
M

) I/Os, given an appropriate layout. For column or row major lay-
out, the internal memory size has to fulfil M ≥ B2 in order to load a tile with
O(M/B) I/Os.

Aggarwal and Vitter [AV88], who introduced the classical I/O-model
with block size B ≥ 1, study permuting N records in external memory, as
well as sorting and FFT. Using an argument for comparison-based sorting
which is similar to lower bounds in other computational models based on
comparison, they derive a bound of Ω (N

B
logM/B

N
B
) on the number of I/Os.

This complexity is achieved up to constant factors by an M/B-way merge
sort described in [AV88] as well. Within an iteration of this merge sort, in
each block of internal memory an input stream is buffered to generate a sin-
gle merged output stream. Hence, each iteration reduces the number of runs
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– initially N in an unsorted array – with one scan by a factor M/B. It is
worth noting that corresponding to the concept of merge sort algorithms,
their merge sort can be started with any number of pre-sorted runs (even of
arbitrarily differing size), and can be stopped at any time to obtain a certain
number of sorted runs. For FFT, they obtain a similar complexity as for sort-
ing by using an insight from [WF81] that three FFT graphs can be used to
construct a permutation network.

Aggarwal and Vitter further study the task of permutingN records. Note
that scanning N contiguous records takes ⌈N/B⌉ I/Os while a random ac-
cess, like a direct permuting, induces N I/Os in the worst-case. They prove
a complexity Θ (min{N, N

B
logM/B

N
B
}) for permuting, using a counting ar-

gument that we describe for the PEM model in Section 2.2. Given the sim-
plicity of the task and its trivial complexity in RAM, it seems somewhat sur-
prising that permuting in external memory is nearly as hard as sorting. Us-
ing a potential – which we consider in Section 2.3 – it is shown that dense
matrix transposition in row or column major layout is a rather easy per-
mutation task. The transposition of a dense Ny × Nx matrix has complex-
ity Θ (

NxNy

B
logM/B min{B,Nx,Ny,NxNy/B}). Recall that transposing corre-

sponds to a layout change from column to row major layout, or vice versa.
Given a dense matrix in column major layout, the columns can be used as
pre-sorted runs and sets of basically B columns are merged together with
the M/B-way merge sort, to obtain a row major layout. Under the so called
tall-cache assumption, i.e. M ≥ B1+ε for constant ε > 0, the I/O complexity
reduces to Θ (NxNy/B).

Another class of easy permutations is considered in [CW93]. There, the
I/O complexity of bit-matrix-multiply/complement (BMMC) permutations
is studied. A permutation is called BMMC if the source indices are mapped
to the target indices by an affine transformation of the bit vectors of source
and target indices. This involves dense matrix transposition, and has the
same worst-case complexity. In Chapter 8, we present a simpler proof of the
upper bound leading to a much simpler algorithm.

Evaluating the matrix vector product Ax for an N × N matrix A with
kN non-zero entries with a single vector has been investigated in [BBF+07,
BBF+10]. They show that the I/O complexity of this task for matrices in
column major layout is Θ (min{kN

B
logM

B

N
max{M,k} , kN})3 and for a layout

chosen by the program (best-case layout) it is Θ (min{kN
B

logM
B

N
Mk

, kN}), as
long as k ≤ Nγ for some constant γ > 0 depending on the layout. In [BBF+10],
the results are extended to the worst-case layout yielding a bound on the

3logb(x) ∶=max{logb(x),1}
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number of I/Os of Θ (min{kN
B

logM
B

N
M
, kN}).

The evaluation of bilinear forms in the I/O-model was considered as an
optimisation problem in [Lie09]. There it is shown that an optimal program
for the evaluation of matrix vector products is NP-hard to find, even for
B = 1, given that M is part of the input. Recently, they showed that the prob-
lem is even NP-hard for fixed M [LJ12]. In [RJG+07], the I/O complexity
of evaluating the bilinear form for an implicitly given (non-square) Ny ×Nx

matrix with H entries that form a diagonal band, i.e. entries are only placed
near the diagonal, is determined to be Θ ( H

BM
+
Nx+Ny

B
).

In the context of the Ideal Cache-Oblivious model, several works con-
sider restrictions on the parameter space in order to obtain optimal cache-
oblivious algorithms. Most famous is the tall-cache assumption M ≥ B1+ε

for constant ε > 0 under which an optimal sorting algorithm is presented
in [FLPR99]. Note that any lower bound for the complexity in the I/O-model
carries over to the Ideal Cache-Oblivious model. However, since algorithms
are more restricted, not all upper bounds in the I/O-model can be achieved
in a cache-oblivious setting. Brodal and Fagerberg [BF03] prove that with-
out the tall-cache assumption, sorting cannot be performed optimally. Ad-
ditionally, they show that permuting is not possible cache-obliviously, not
even under the tall-cache assumption. Intuitively speaking, the minimum
min{N, N

B
logM/B

N
B
} cannot be decided without knowledge of M and B in

order to apply either a sorting algorithm or perform the direct approach. Us-
ing a similar argument, for the subclass of permutations that describe dense
matrix transposition, optimality is proven to exist only under the tall-cache
assumption [Sil07]. Hence, this statement also applies to BMMC permuta-
tions.

The PEM model was first introduced by Arge, Goodrich, Nelson and
Sitchinava in [AGNS08] where a parallel merge sort is presented. This sort-
ing algorithm is shown to perform optimal for the number of processors
P ≤ N/B2 and M = BO(1). In Chapter 2, we make a slight modification
to this algorithm, and show its optimality if P ≤ N

B logε(N/B) for constant
ε > 0, or B ≥ logM/BN holds. Other tasks are considered in the PEM model
in [Sit09], and [AGS10].

Using a different model of parallel caches, Irony et al. [ITT04] extended
the results of Hong and Kung [HK81] to the parallel case. Similarly to [HK81],
they require the independent evaluation of each monomial (elementary prod-
uct). Using block size B = 1, they consider communication between P par-
allel processors with bounded memory each of size M . It is not surprising,
they obtain a lower bound of Ω ( W

P
√
M

) where W is the number of arithmetic
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operations required. For dense matrix multiplication, this bound can be ob-
tained algorithmically, especially with algorithms that rely on the replication
of the input. In the same setting, lower bounds for several other algebraic
matrix computations are studied by Ballard et al. [BDHS10, BDHS11b]. This
involves the complexity of LU factorisation, Cholesky factorisation, LDLT

factorisation, QR factorisation, and eigenvalues and singular values algo-
rithms. Recently, the I/O complexity of the Strassen algorithm was analysed
in [BDHS11a]. For their proof, which applies a method closely related to
Hong and Kung rounds but with a focus on graph expansion properties,
they have to disallow the recomputation of intermediate results.

In practice, there often exist well-understood structures in the non-zero
entries of sparse matrices which can be exploited. See [DDE+05, Vud03] for
a survey on the vast amount of practical research on this topic. Several li-
braries supply techniques to analyse the structure and allow for fast compu-
tation, see [FC00, jIY00, RP96, VDY05, VDY06] among others. However, the
focus of this thesis lies on the consideration of worst-case I/O-complexities
and average case I/O-complexities over uniformly chosen matrices (gener-
ally without any restrictions on the conformation).

1.5 Structure and Contribution of this Thesis

In Chapter 2, we describe several techniques to obtain lower bounds in the
I/O-model. These techniques are extended to the PEM model in this thesis,
allowing for the first work with a focus on lower bounds in the PEM model.
Using these techniques, we prove lower bounds on sorting and permuting
in the PEM model. As explained in Chapter 2 it is in general not possible to
adapt a given lower bound for the I/O-model to the PEM model simply by
dividing by P . It is in fact possible to obtain a speed-up larger then P , when
using P parallel processors since the overall internal memory becomesM ⋅P .

Succeeding the lower bound techniques, we describe our modifications
to the PEM merge sort [AGNS08] which widens the parameter range of an
efficient performance for a number of processor P ≤ N/B (previously P ≤

N/B2). The lower bound techniques show that this algorithm is optimal
for sorting and permuting unless a direct strategy is superior for any P ≤

N
B logε(N/B) . Concluding this chapter, some basic algorithmic building blocks
which are required for our parallel algorithms are described.

In the remainder of the thesis, we consider the parallel I/O complexities
of SPMV, BIL, SDM, SSM, the MapReduce shuffle step, and two subclasses
of permutations. In Chapter 3, we present a reduction of BIL to SPMV and
vice versa. Thus, all complexities shown for SPMV carry over to BIL up to an



1.5. STRUCTURE AND CONTRIBUTION OF THIS THESIS 23

additive factorO(logP ), hence, reducing the set of problems that have to be
considered. We also use the reduction in that some algorithms in Chapter 4
are expressed for BIL, hence, yielding algorithms for SPMV by the transfor-
mation.

Previous work by Bender et al. [BBF+07] on SPMV is extended in Chap-
ter 4 in several ways. Most straightforward to name are the extensions to
non-square matrices and from the I/O- to the PEM model. On the algorith-
mic side, a different variant of the direct algorithm is presented, involving
a look-up table generated from the input. This allows dropping a previous
condition on the sparsity (the average number of non-zero entries per col-
umn was previously polynomially bounded). Additionally, we study the
product of a fixed matrix with several vectors simultaneously. There, the
number of vectors (or vector pairs for BIL) is restricted to w < B.

Multiplying a sparse matrix A with a dense matrix consisting of at leastB
columns is analysed in Chapter 5. The complexity of this task reveals a com-
pletely different character in that the I/O-performance depends crucially on
the existence of denser than average submatrices of A. For a low density,
computing each row of the result matrix C directly is optimal. In higher
densities, a modification of the tile-based algorithm in [HK81] performs op-
timally. For an intermediate density range, above average dense submatrices
can be exploited. More precisely, a submatrix does not have to consist of a
consecutive part of the matrix, but is defined by the entries aij of A that be-
long to the intersection of a set of rows Sr and a set of columns Sc. It will be
proven that such submatrices exist with a certain density greater or equal to
a threshold ∆, and that there are matrices without any submatrices of higher
density than ∆. Hence, we obtain upper and lower bounds that match up
to constant factors. Nevertheless, the upper bounds depending on denser
submatrices are theoretical in nature, and are stated more to complement the
lower bounds than to be implemented. In a preprocessing step, such denser
submatrices have to be identified first. To show that this is possible in poly-
nomial time, we present a derandomisation argument to find a denser than
average submatrix.

In Chapter 6, we extend the techniques used in the previous results to
study the I/O complexity of multiplying two sparse matrices. For simplicity,
we restrict ourselves in this chapter to square matrices that allow for a direct
estimation of the number of elementary products which have to be created.
These are matrices that have the same number of non-zero entries in each
column, or in each row. Unfortunately, it turns out that the used techniques
are not strong enough to obtain asymptotically matching upper and lower
bounds for most parameter ranges. By a reduction from SPMV, we derive
lower bounds that can be matched algorithmically only for a number of non-
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zero entries per column/row less than min{B,N/B} for matrix dimension
N . Techniques that rely on denser than average parts of the matrices, similar
to Chapter 5, can only be exploited for a lower bound on the I/O complexity
of a subclass of algorithms.

Complementing the considerations of sparse matrix tasks, we investigate
the parallel I/O complexity of the shuffle step in MapReduce. This step is
provided by the framework itself. In Chapter 7, we present lower bounds for
the complexity of this step for several variants of MapReduce rounds. This
bounds the complexity that can be hidden in the framework, when express-
ing an algorithm in MapReduce. It also bounds the worst-case efficiency loss
when analysing a MapReduce algorithm in the PEM model. To match our
lower bounds, we provide algorithms for all the considered variants. These
are closely related to the algorithms in Chapter 4. However, we also extend
them to sparse matrix transposition.

Finally, we consider two classes of permutations in Chapter 8. The one
class, BMMC permutations, is known to be easy, i.e. can be processed with
O(N

B
logM/B B) I/Os [CW93]. We introduce the block graph; a new no-

tion to analyse the structure of permutations in external memory with block
size B. This allows for a much simpler proof of the complexity of BMMC-
permutations, and a simple and parallelisable algorithm. Secondly, in an
attempt to determine what makes a permutation difficult, we refute a conjec-
ture that arises naturally. We construct a class of permutations whose block
graphs have good expansion properties, but which are still easy to perform.

Concluding this thesis, we carve out some problems that still remain
open. In particular, all our lower bounds rely on counting arguments and
are not constructive. Thus, it is not completely understood what in particu-
lar makes an instance hard.

Several results in this thesis where previously published as conference
proceedings or technical reports [GJ10a, GJ10b, GJ10c, GJ11, GJ12]. We will
explain in the respective chapters if the results where published before, and
if so, how they are extended here. For all our bounds, we assume that a
program requires at least one I/O, and, hence, mean at least 1 when writing
complexities using O, Θ or Ω.



2
Techniques

Throughout this work, we make use of several common techniques to obtain
upper and lower bounds on I/O complexities. These are described in the fol-
lowing sections. The first five sections are dedicated to standard techniques
for lower bounds. All these techniques are extended here to the PEM model.
The remaining sections cover some basic tasks that are required frequently
for the PEM algorithms presented in the next chapters, most important a mi-
nor modification of the PEM merge sort from [AGNS08].

Concerning lower bounds, observe that the following reason makes it
necessary to revise all the methods for the PEM model. For other parallel
models, such as PRAM, the speed-up of a parallel environment compared to
the single processor case is bounded by the number of parallel processors P .
This is the case since any parallel program can be transformed into a single
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Figure 2.1: Simulating a PEM program with permanent communication in
the I/O-model.
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processor program by simulating each of the P processors in a round robin
fashion. Hence, given a lower bound for a task in the serial RAM model, a
lower bound for PRAM can be obtained by multiplying a factor 1/P . Such
a statement is however not given for the PEM model. A round-robin sim-
ulation of the P processors leads in worst-case to a factor Θ (P M

B
) in the

number of I/Os because the entire memory of each simulated processor has
to be loaded for every simulation step (cf. Figure 2.1).

On the other hand, we extend the lower bound techniques to cases where
the total number of records throughout the computation is smaller than the
overall memory P ⋅M , i.e. internal memory is larger than necessary. Such
a situation leads to a trivial setting for any constant number of processors.
In contrast to the classical I/O-model, one can still obtain non-trivial lower
bounds in the PEM model for non-constant P . This sheds a different light
on the capabilities of the PEM model, in that I/Os are not only required to
cope with the limited size of internal memory, but for the communication
between parallel processors/machines. This reveals some of the similarities
to the BSP model described in Section 1.2.4.

In many proofs, the binomial coefficients are estimates by the following
well-known inequalities (see for instance [DK03]).

Observation 2.1. For x ≥ y ≥ 1 it holds

(
x

y
)
y (a)
≤ (

x

y
)

(b)
≤ (

ex

y
)
y

.

Proof. Inequality (a) is obvious since x−i
y−i ≥

x
y

holds for all i ≥ 0. Inequality (b)

is given by the well-known inequality y! ≥ (
y
e
)
y

(cf. [DK03]) and x!
(x−y)! ≤

xy .

Normalisations Throughout this thesis, we usually consider programs that
are normalised as follows. In a normalised program, all intermediate results
are predecessors of an output-record. This includes any record in internal
memory that is not used for any further computation leading to a predeces-
sor of an output-record. Since I/Os can copy records, records are removed
immediately from internal memory after an I/O if they are not involved in
any further computation. Similarly, for any computation operation, records
are removed immediately after the operation if not required further. Observe
that every program for a task can be transformed into a normalised program
for the same task without increasing the number of I/Os. If an intermediate
result is not a predecessor of an output-record, it can be removed from the
calculations along with all its successors.
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2.1 Hong Kung Rounds

In [HK81], a method to obtain lower bounds on the I/O complexity of evalu-
ating an algebraic function f is presented which is based on the computation
graph describing the function.

Definition 2.2 (Computation Graph). The computation graph is a directed
acyclic graph (DAG). Each node v corresponds to either an input (if v does not
have any ingoing edges), or to an algebraic/computation operation, and its result.
An ingoing edge e = (u, v) of a vertex v means that v involves the result of u as an
operand.

They describe the red-blue pebble game which is played on this graph,
implementing an I/O-model with block size B = 1. A red pebble located
on a node defines that the record described by the node is situated in inter-
nal memory, a blue pebble symbolises that it exists in external memory. A
blue pebble can be placed on a node having a red pebble on it, and a red
pebble can be placed if a blue pebble is existent (corresponding to I/O oper-
ations). A computation operation can be performed if all ingoing edges have
red pebbles on them, i.e. all operands are in internal memory. Then, the node
corresponding to the computation and its result is pebbled red. The number
of red pebbles during the game must never exceed M . Additionally, peb-
bles can be removed at any time throughout the game. The goal is to find a
pebbling strategy to pebble a defined set of output nodes blue, given a set of
input nodes with blue pebbles at the start of the game. A pebbling strategy
fulfilling this goal corresponds to a valid I/O program.

In their main theorem in [HK81], Hong and Kung describe that a par-
titioning of the computation graph according to the following rules yields a
lower bound on the number of I/O operations. Any partition set S may have
a dominating set of size at most 2M where a dominating set D is a minimal
set of nodes such that each path from an input node to S includes a node
from D. Furthermore, a partition set S may include no more than 2M nodes
without a child in S. They prove that given a lower bound on the number of
partition sets p(2M) in any such partitioning, the minimal number of I/Os
of any program is M ⋅ (p(2M) − 1).

A maybe more intuitive interpretation of this result can be phrased as
follows. We describe the single processor case first by using a reduction ar-
gument.

Lemma 2.3. Assume there is an I/O program A performing ` I/Os for parameters
M andB. Then there is an I/O program B computing the same function performing
at most 3`+M/B I/Os for parameters 2M andB, that works in rounds: Each round



28 CHAPTER 2. TECHNIQUES

consists of 2M/B input operations, an arbitrary number of computation operations
followed by 2M/B output operations such that after each round internal memory is
empty.

Proof. A program B can be created by splitting the computation of A into
rounds of M/B consecutive I/Os. With the additional memory, input and
output can be serialised/buffered as claimed. The final content of internal
memory in each round can be transferred to the next round with 2M/B I/Os.

Upper bounding the progress that can be performed within one round,
yields a lower bound on the number of rounds in a round-based program
which in turn yields a general lower bound on the number of I/Os for any
program. However, for a PEM program where processors can interchange
records within a round, I/Os cannot be serialised like in Lemma 2.3. Thus,
we describe a different view which allows for a similar result.

Consider a processor p, and the maximum number of records in its in-
ternal memory Mmax ≤ M during a program. During a sequence σ of op-
erations performed by p involving at most Mmax/B I/Os, there are at most
2Mmax records that can be predecessors of the computations performed dur-
ing σ: At most Mmax records that stem from input operations within σ, and
at most Mmax records that where present in internal memory at the begin-
ning of σ. Similarly, at most 2Mmax records created during σ can be involved
in succeeding computations. To measure the progress, a potential Φ is used,
e.g. to describe the number of computation operations that are already per-
formed. Note that there must be one processor in any program to evaluate
f that causes a total potential change of at least (Φ(`) −Φ(0)) /P where Φ(`)
is the final and Φ(0) the initial potential. These considerations lead to the
following lemma.

Lemma 2.4. Given a potential Φ describing the evaluation of a function f where
Φ(0) denotes the initial potential and Φ(`) the potential after evaluating f . Let
∆(2Mmax) be an upper bound on the change of the potential by computation in-
volving at most 2Mmax predecessors, and having at most 2Mmax successors. Every
(parallel) program to evaluate f requires at least (⌈

Φ(`)−Φ(0)
P ⋅∆(2Mmax)⌉ − 1) Mmax

B
(paral-

lel) I/Os.

For all the tasks considered in this thesis, the computations are quite sim-
ple. Computing over an arbitrary semiring, for each monomial in the func-
tion describing an output record, there is at least one (separate) multiplica-
tion operation creating a predecessor of this monomial. Hence, the number
of elementary products created can be used for the potential Φ. For our lower
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bounds obtained with this method, we usually upper bound the number of
elementary products that can be created within one sequence, involving at
most 2Mmax predecessors and creating at most 2Mmax records to leave the
sequence.

2.2 Lower Bounds by Counting Arguments

2.2.1 Time Forward Analysis

In [AV88], a lower bound for permuting is presented which is based on a
counting argument. There, the number of different tasks (output permuta-
tions) for a given array is compared to the number of different configurations
an I/O-machine can reach after ` I/Os. For a family of programs that can cre-
ate every permutation of an array of N records, there have to be at least N !
different configurations reached by the family. Considering the degrees of
freedom of a parallel I/O, the number of distinct configurations that can be
reached by programs with ` parallel I/Os can be bounded above. Relating
the number of permutationsN !, and thus the number of different output con-
figurations, with the number of configurations reached by programs with `
I/Os yields a bound on `.

This counting argument is also a main piece of the lower bounds for
square sparse matrix dense vector multiplication in [BBF+10]. In this sec-
tion, we bound the number of distinct configurations that can be reached in
the PEM model after ` parallel I/Os, thus, the number of different programs
with maximum number of I/Os `. The main difference to the considerations
in [AV88, BBF+10] is that parallel I/O operations have to be considered here.
The concurrent read policy, for instance, allows for implicit copy operations.
Additionally, we distinguish the case that internal memory of processors is
not entirely filled. This leads to different bounds for cases where the input
size falls below the total size of internal memories PM .

In the following, we assume a fixed input of total size n and abstract in
a similar way to [BBF+10]. In an abstract configuration, empty blocks are
ignored completely. Only the ordering of the non-empty blocks and their
content is considered. Since we require the output to be written contigu-
ously on disk, this is not a restriction. It only abstracts from programs that
produce the same output, but have intermediate results written with a differ-
ent number of empty blocks in between. Furthermore, we abstract from the
ordering and multiplicity of records in blocks and in internal memory. Note
that this may reduce the number of different tasks. For the case of permut-
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ing N records, we consider thus only N !/B!⌈N/B⌉ different abstract output
configurations.

For permuting records there is no computation required and it suffices
to consider I/O operations only. To derive lower bounds for matrix compu-
tation tasks, in the contrary, we have to keep track of computation opera-
tions in order to determine the number of (abstract) configurations that can
be reached. Since we abstracted from the multiplicity of records in blocks
and internal memory, we do not have to consider copy operations. Note
that in a normalised programs, deletion operations appear only immedi-
ately after an I/O, a sum operation, or a multiplication operation. Hence,
we consider deletion operations always together with their preceding I/O,
sum, or multiplication operation – and each of these operations is always
considered together with possible succeeding deletion operations. For the
following lemma, we consider the I/O operations in a program separately
from the computation operations. To this end, we define the I/O trace and
the computation trace. Both are required to describe a program. However,
for a fixed computation trace there can be many valid programs with differ-
ent I/O traces, and for a fixed I/O-trace there can be many valid programs
with different computation trace. The computation trace fixes the sum and
multiplication operations in a program, i.e. their position in the ordering of
operations. Furthermore, for each computation operation, the cells (posi-
tions in the abstraction set) of internal memory that serve as operands and
the cell that will contain the result are specified in the computation trace. Fi-
nally, the operands that are deleted afterwards are identified. The I/O trace
defines the sequence of (parallel) I/O operations in a program by specifying
which records are read or written and which positions on disk are accessed.
Given the I/O trace of a program and its computation trace, the abstract con-
figuration after the program is determined uniquely.

Lemma 2.5. Given a family F of normalised programs with at most ` (parallel)
I/Os and fixed computation trace, the number of abstract configurations that can be
reached by F for a fixed input of size n is at most

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B ⋅ 2(⌈n/B⌉ + P`) (2.1)

where Mp,l is any upper bound on the number of records in internal memory of
processor p before the lth I/O. We use ⌈n/B⌉ + P` to upper bound the number of
non-empty blocks in external memory at a time.

Proof. For a fixed input, the initial configuration is unique for all programs.
Given an abstract configuration, we examine the number of possible suc-
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ceeding abstract configurations that can be obtained by an arbitrary (parallel)
I/O.

To this end, first assume that during the `th I/O, processor p performs an
input while all the other processors stay idle. Let n be the total input size.
After ` (parallel) I/Os, there can be at most ⌈n/B⌉ + P` non-empty blocks
in external memory, which can be read by the input operation. Afterwards,
up to B new records are added to internal memory of processor p. In a nor-
malised program, unneeded records that are copied into internal memory are
removed immediately after an I/O, which leads to at most another 2B dis-
tinct abstract configurations. Altogether, there can be at most 2B(⌈n/P ⌉+P`)
succeeding abstract configurations.

Now consider the case processor p performs an output. There are less
than 2(⌈n/B⌉ + P`) positions available relative to the non-empty blocks to
perform the output to: Considering the `th I/O to be the output, there are
at most ⌈n/B⌉ + P (` − 1) non-empty blocks that can be overwritten and an-
other ⌈n/B⌉ + P (` − 1) + 1 empty positions relative to the non-empty blocks.
Additionally, the content of the output block consists of up to B out of the
Mp,l records currently in internal memory of processor p. Records that shall
not be copied and are not needed further in internal memory are removed
right after the output which constitutes another 2B different possible abstract
configurations.

Each of the P processors can perform either an input, an output, or be
idle during the lth parallel I/O. Thus, there are up to

3P
P

∏
p=1

(
Mp,l +B

B
) ⋅ 2B ⋅ 2(⌈n/B⌉ + P`)

possible configurations succeeding a given configuration caused by a (paral-
lel) I/O operation. Creating the product over all ` (parallel) I/Os, this yields
the lemma. Note that we also cover programs with l < ` I/Os since for each
such program there is a corresponding program with ` I/Os and ` − l idle
operations.

2.2.2 Time Backward Analysis

Additionally to considering how many configurations can be reached from
a single configuration over time, the proofs in [BBF+10] rely on the analysis
of how many initial configuration can lead to a single final configuration.
Thus, the change of configurations is analysed backwards in time, starting
with a unique final abstract configuration. While the time forward analy-
sis usually serves here and in [BBF+10] to analyse a distribution behaviour
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involving copy operations, the time backward analysis is used to consider
a reducing character, like creating sums of records. In contrast to [BBF+10],
we consider the changes of configurations directly here, instead of giving a
transformation to inverse time in a program.

In the model in [BBF+10], I/O operations move records between memory
layers whereas in our model, the records are copied by an I/O to enable con-
current reads. To consider a unique final configuration, independent from
any intermediate results on disk, we ignore records in external memory that
do not have a successor. Hence, we assume in an abstract configuration that
records in external memory that do not belong to the final output disinte-
grate when read for the last time. This has especially implications for output
operations that replace records. The replaced records cannot be read any
more and hence disintegrated in an abstract configuration before. Thus, out-
puts are only performed to empty blocks in an abstract configuration.

The following lemma shows that a similar number of configurations is
reached in both, the time forward analysis and the time backward analyses
(cf. Lemma 2.5). This fact is caused by the simplicity of our model in which
an input is very similar to an output considered time backwards and vice
versa.

Lemma 2.6. Given a family F of normalised programs with at most ` (parallel)
I/Os and fixed computation trace, the number of initial abstract configurations for
F that reach the same abstract output of size n is at most

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B2(⌈n/B⌉ + P`) (2.2)

where Mp,l is any upper bound on the number of records in internal memory of
processor p after the lth I/O. Again, ⌈n/B⌉ + P` is an upper bound for the number
of non-empty blocks in external memory.

Proof. Considering only abstract configurations and given the computation
trace, it remains to consider the I/O operations and their possible succeeding
delete operations. Given a certain configuration after l I/Os, we now need to
count the number of possible preceding abstract configurations. We start with
the final configuration after ` I/Os. Since all blocks that do not belong to the
output disintegrated, the final abstract configuration is unique for all pro-
grams that compute the same (abstract) output. Note that within ` (parallel)
I/Os, there can be at most `P blocks that disintegrated completely. Hence,
the total number of non-empty blocks in external memory throughout a nor-
malised program is upper bounded by ⌈n/B⌉+ `P . During the description of



2.2. LOWER BOUNDS BY COUNTING ARGUMENTS 33

our upper bound, we sometimes overestimate and ignore the possibility of
considering inconsistent I/O traces.

For the lth (parallel) I/O, consider the case processor p performs an in-
put. We upper bound the number of abstract configurations preceding the
lth configuration. There are at most ⌈n/B⌉ + P` non-empty positions on
disk from which the input block could have been read. If the block disin-
tegrated after the I/O, also one of the ⌈n/B⌉ + P` empty positions relative to
⌈n/B⌉ + P` − 1 non-empty blocks could have been read. Furthermore, there
are at most B records – which are not deleted right away – that stem from
the current input. For Mp,l being the number of distinct records in inter-
nal memory after the lth I/O, there are at most (

Mp,l+B
B

) possibilities which
records have been read. However, in an abstract configuration, the records
(i.e. a copy) could have been present in internal memory before. Hence, for
each set of accessed records, there are up to 2B possible preceding abstract
configurations, depending on whether the records were present before or ap-
pear as a new record. Since we assume that records that are never read after-
wards disintegrated immediately after the input, the configuration on disk
before the input can differ from the situation afterwards. However, for a de-
fined set of records that have been input, and since the multiplicity of records
in a block is ignored in an abstract configuration, the abstract configuration
before the I/O is determined. Altogether, there are up to (

Mp,l+B
B

)2B2P` pre-
ceding configurations if processor p performs an input, while all other pro-
cessors are idle.

Now, consider the case that processor p performs an output. This alters
one block on disk that was empty before. Hence, there are up to ⌈n/B⌉ +

P` possible preceding configurations. In the preceding configuration, the
records of the output block are in internal memory. However, when fixing
the block position where the output is performed to, these records are deter-
mined by the (known) abstract configuration after the output.

Each of the P processors can perform either an input, an output or be idle
during the lth I/O. Thus, there are up to 3P ∏

P
p=1 (

Mp,l+B
B

)2B2(⌈n/B⌉ + P`)
possible preceding abstract configurations for any given abstract configura-
tion if a (parallel) I/O is performed. A family of programs with ` (parallel)
I/Os and fixed computation trace can hence create the matrix vector product
from at most

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B2(⌈n/B⌉ + P`)

initial abstract configurations.
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Theorem 2.7 (Lower Bound for Permuting). The average- and worst-case num-
ber of parallel I/Os required to permute N records in the PEM model with P ≤ N/B
processors is

Ω(min{
N

P
,
N

PB
logd

N

B
})

where d = max{2,min{M
B
, N
PB

}}.

Proof. First, observe that copying or deleting a record does not contribute to
the number of possible permutations since only one version of the record
appears in the output. The same holds for any computational operation.
Hence, the computation trace is empty for all programs. In using Lemma 2.5,
we also consider abstract configurations where a record disintegrates if it is
not a predecessor of an output record. Records that are not deleted in internal
memory after an input, automatically disintegrate on disk. Hence, the upper
bound on the number of preceding configurations in (2.1) is not changed.

The number of abstract configurations described by all the N ! permu-
tations is N !/B!N/B since the ordering of records in a block is ignored. By
Lemma 2.5, we thus require

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B ⋅ 2(⌈n/B⌉ + P`) ≥

N !

B!N/B

for the worst-case number of I/Os.
Since the total number of records (that did not disintegrate in the abstrac-

tion) at any time during a program is at most N , there can be no more than
N non-empty blocks at a time. Hence, only N non-empty blocks can be used
for an input. Additionally, when performing an output, one of the posi-
tions relative to the at most N − 1 non-empty blocks on disk can be accessed
(at least one record is in internal memory of a processor to perform an out-
put). Observe furthermore that the product of the binomial coefficients can
be bounded above by the single binomial coefficient given by drawing all
at once from the union of all sets. The product of binomial coefficients can
hence be bounded by

P

∏
p=1

(
Mp,l +B

B
) ≤ (

∑
P
p=1(Mp,l +B)

PB
) ≤ (

min{MP,N} + PB

PB
) .

Altogether, by replacing the upper bound on the number of non-empty blocks
in Lemma 2.5 and bounding the product of binomial coefficients, we obtain

(3P(
min{MP,N} + PB

PB
)2PB ⋅NP

)

`

≥
N !

B!N/B . (2.3)
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Taking logarithms and estimating binomial coefficients according to Ob-
servation 2.1, we get

`P (log 3N +B +B log
e(min{MP,N} + PB)

PB
) ≥ N log

N

eB
.

Assuming M ≥ B, and considering the cases N < PB, and vice versa, yields

`P (log 3N +B +B log 2emax{1,min{
M

B
,
N

PB
}}) ≥ N log

N

eB
.

Hence, we have a bound of

` ≥
N

P

log N
eB

log 3N +B log 4emax{1,min{M
B
, N
PB

}}
.

Finally, we distinguish according to which term in the denominator is
dominating. In the case of log 3N > B log 4emax{1,min{M

B
, N
PB

}}, the block
size is bounded by B < log 3N so that log(N/B) ≥ log(N/ log 3N) = Ω (logN)

holds. Together with the contrary case, the theorem is obtained.
A result for the average-case can be obtained by considering the worst-

case complexity of the N !/2 permutations with the the least I/Os required.
This changes the calculations for the worst-case bound by at most a constant
factor.

2.3 Lower Bounds with a Potential Function

Another method to obtain a lower bound for the I/O complexity is presented
in [AV88]. They use a potential function to lower bound the complexity
of dense matrix transposition. The potential describes only the movement
of records, and is not capable of computational tasks. Lower bounds ob-
tained with this method never reach beyond Ω ( n

B
logM/B B) for a number

of blocks ⌈n/B⌉ in the single processor case. Hence, they match only sort-
ing algorithms for rather simplistic permutation classes such as bit-matrix-
multiply/complement (BMMC) permutations (cf. Chapter 8). In the follow-
ing, we extend the potential from [AV88] to the PEM model for a given input
of n records.

For each block j present on disk at time t, its togetherness rating is de-
fined by

βj(t) =
⌈n/B⌉

∑
i=1

ϕ(xij(t))



36 CHAPTER 2. TECHNIQUES

where xij(t) is the number of records present in block j at time t that belong
to the ith output block, and

ϕ(x) =

⎧⎪⎪
⎨
⎪⎪⎩

x logx for x > 0

0 otw.

Similarly, for the internal memory of processor p, a togetherness rating of

µp(t) =
⌈n/B⌉

∑
i=1

ϕ(yip(t))

is assigned with yik(t) being the number of records that belong to output
block i and reside at time t in internal memory of processor k. The potential
is then defined by

Φ(t) =
P

∑
p=1

µp(t) +
∞
∑
j=1

βj(t) . (2.4)

In [AV88], the change of the potential induced by an I/O is bounded by
∆Φ(t) < 2B log M

B
. To extend the bound for the PEM model, we have to

restate this argument for parallel I/Os. While the argument in [AV88] goes a
little short (a “simple convexity argument” is mentioned), we state a com-
plete proof here which makes use of a well-known property of the Kull-
back–Leibler divergence [KL51]. Our proof naturally applies to the single
processor case as well.

Lemma 2.8. The increase of the potential during one parallel I/O is bounded by

∆Φ(t + 1) ≤ PB log (2e ⋅max{1,min{
M

B
,
n

PB
}}) .

Proof. Obviously, an output can never increase the potential. An input of
block j by processor p, in contrast, induces the following change in the po-
tential

∆Φ(t + 1) =
⌈n/B⌉

∑
i=1

ϕ(yip(t) + xij(t)) − ϕ(yip(t)) − ϕ(xij(t)) .

Hence, since in the worst-case all processors perform an input, the maximal
increase of the potential function is bounded by

∆Φ(t + 1) ≤
P

∑
p=1

⌈n/B⌉

∑
i=1

ϕ(yip(t) + xijp(t)) − ϕ(yip(t)) − ϕ(xijp(t))
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where jp is the index of the block read by processor p.
Let Ip(t) be the set of indices i such that xijp(t) ≥ 1 and yip(t) ≥ 1. Substi-

tuting ϕ(x), we obtain

∆Φ(t+1) ≤
P

∑
p=1

∑
i∈Ip(t)

(yip(t) log
yip(t) + xijp(t)

yip(t)
+ xijp(t) log

yip(t) + xijp(t)

xijp(t)
) .

We distinguish in the following between indices i ∈ Ip(t) with xijp(t) > yip(t)
and otherwise. To this end, we partition Ip(t) into sets Ixp(t) ∶= {i ∈ Ip(t) ∣

xijp(t) > yip(t)} and Iyp(t) ∶= {i ∈ Ip(t) ∣ xijp(t) ≤ yip(t)}. Using this, we can
upper bound

∆Φ(t + 1) ≤ χ(t + 1) + ψ(t + 1)

with

χ(t + 1) ≤
P

∑
p=1

∑
i∈Ixp

(yip(t) log
2xijp(t)

yip(t)
+ xijp(t) log(1 +

yip(t)

xijp(t)
))

and

ψ(t + 1) ≤
P

∑
p=1

∑
i∈Iyp

(yip(t) log(1 +
xijp(t)

yip(t)
) + xijp(t) log

2yip(t)

xijp(t)
) .

Observe that log(1 + a) ≤ a log e for a ≥ 0: Equality holds for a = 0. The
derivative of f(a) ∶= log(1 + a) is f ′(a) = log e/(1 + a). Because log a is a
concave function, the gradient f ′(0) = log e is a sufficient condition. Using
x log(1 + y

x
) ≤ y log e for x, y ≥ 0, yields

χ(t + 1) ≤
P

∑
p=1

∑
i∈Ixp

(yip(t) log
2exijp(t)

yip(t)
)

and

ψ(t + 1) ≤
P

∑
p=1

∑
i∈Iyp

(xijp(t) log
2eyip(t)

xijp(t)
) .

Now, let Xa(t) ∶= ∑
P
p=1∑i∈Iap (t) xijp(t), and Ya(t) ∶= ∑Pp=1∑i∈Iap (t) yij(t) for

a ∈ {x, y}. Furthermore, let X(t) = Xx(t) + Xy(t) and Y (t) = Yx(t) + Yy(t)
and note that X(t) ≤ min{PB,n} and Y (t) ≤ min{PM,n}. We can then
substitute x̂ijp(t) = xijp(t)/Xy(t) and ŷip(t) = yip(t)/Yy(t) in ψ(t + 1), which
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leads to

ψ(t + 1) ≤ Xy(t) log 2e +
P

∑
p=1

∑
i∈Iyp(t)

Xy(t)x̂ijp(t) [log
ŷip(t)

x̂ijp(t)
+ log

Yy(t)

Xy(t)
]

= Xy(t) log 2e +Xy(t) log
Yy(t)

Xy(t)
+Xy(t)

P

∑
p=1

∑
i∈Iyp(t)

x̂ijp(t) log
ŷip(t)

x̂ijp(t)
.

The last sum can be understood as a negative Kullback–Leibler divergence
where, for fixed t, x̂ijp(t) and ŷip(t) constitute a probability distribution over
{1, . . . , P} × Iyp(t). The Kullback–Leibler divergence is minimised when both
probability distributions equal, and positive otherwise [KL51]. Hence, since
it appears in a negative form, the last term is upper bounded by 0.

It remains to bound χ(t + 1). By substituting x̂ijp(t) = xijp(t)/Xx(t)
and ŷip(t) = yip(t)/Yx(t), and bounding the Kullback-Leibler divergence, we
have

χ(t + 1) ≤
P

∑
p=1

∑
i∈Iyp(t)

Yx(t)ŷip(t) [log
x̂ijp(t)

ŷip(t)
+ log

2eXx(t)

Yx(t)
]

≤ Yx(t) log
2eXx(t)

Yx(t)
≤Xx(t) log 2e

where the last inequality is obtained by maximising y log 2ex
y

under the con-
dition x > y. Note that f(y) ∶= y log 2ex

y
is positive for any 2ex > y and

has its only extremum at y = 2x which is a maximum: The derivative is
f ′(y) = log 2ex

y
− log e which is monotonically falling in y and 0 for y = 2x.

However, because we have Xx(t) > Yx(t), an upper bound is obtained when
setting Yx(t) =Xx(t).

Altogether, a lower bound of

∆Φ(t + 1) ≤ (Xx(t) +Xy(t)) log 2e +Xy(t) log
Yy(t)

Xy(t)

is derived. This term is maximised for Xy(t) =X(t) and Yy(t) = Y (t), result-
ing in an upper bound of X(t) log 2eY (t)

X(t) ≤ X(t) log 2e⋅min{PM,n}
X(t) . We remark

again that x log 2ey
x

is maximised for x = 2y, and monotonically increasing for
x < 2y. The term is hence maximised for X(t) = min{PB,n}. This results in
an overall upper bound of

∆Φ(t + 1) ≤ PB log (2e ⋅max{1,min{
M

B
,
n

PB
}}) .
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Given this bound on the increase of the potential per I/O, we can extend
the lower bound for dense matrix transposition in [AV88] to the PEM model.

Theorem 2.9. The number of parallel I/Os required to transpose a dense Ny ×Nx

matrix stored in column major layout in the PEM model with P ≤ NxNy/B proces-
sors is

Ω(
NxNy

PB
logd min{B,Nx,Ny,

NxNy

B
})

where d = max{2,min{M
B
, N
PB

}}.

Proof. The proof follows that of [AV88], but with the potential according to
our extension to the multi-processor case in (2.4). Let ` be the number of I/Os
of a program for transposing the matrix. Because by the end of the algorithm
all records have to reside in their target blocks, each block has a togetherness
rating of B logB. This yields a final potential of Φ(`) = NxNy logB since
internal memories are empty. The initial togetherness ratings, and hence
the initial potential Φ(0), depend on the dimensions of the matrix. If B ≤

min{Nx,Ny}, no input block intersects an output block by more than one
record (cf. Figure 2.2). Hence, each target group xij(t) is at most 1, and the
initial potential is Φ(0) = 0.

For the case min{Nx,Ny} ≤ B < max{Nx,Ny}, assume w.l.o.g. that Nx >

Ny. Now, one block of a column major layout spans several columns. More
specifically, it contains at most ⌈B/Ny⌉ records from each row. A block of
the desired row major layout instead contains from each column at most one
record. Hence, each input block contains at most ⌈B/Ny⌉ records from the
same output block and the initial potential is Φ(0) ≤ NxNy logB/min{Nx,Ny}.

Finally, if B < min{Nx,Ny}, both, input and output blocks, cover several
columns/rows. An input block covers at most ⌈B/Ny⌉ columns and an out-
put block covers at most ⌈B/Nx⌉ rows. The initial potential is hence given by
Φ(0) ≤ NxNy log B2

NxNy
. Applying Lemma 2.8 to bound the number of I/Os

` ≥
H logB −Φ(0)

∆Φ(t)

proves the theorem.

2.4 A Parallel Lower Bound for Simple Functions

The lower bound described here mostly matches the asymptotic complex-
ity of the gather and scatter tasks described below in Section 2.7.1. These
tasks are generally used in this thesis to create sums of partial results that are
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Figure 2.2: Block structures of dense matrices in column major layout
(framed) and row major layout (white/gray background) for different ma-
trix dimensions and block sizes. The togetherness rating of the hatched in-
put block and the dotted output block is in (a) 1, in (b) ⌈B/Ny⌉ = 3 and in (c)
⌈B/Nx⌉ ⋅ ⌈B/Ny⌉ = 6.

spread among multiple processors, and to distribute records to processors
that are not aware of the position on disk to read them.

Considering worst-case lower bounds, we can think of creating SPMV
for a matrix A with a dense row. All theNx records (the elementary products
created with these records respectively) in this row have to be summed up.
A lower bound for computing the logical “or” of N boolean values for the
PRAM model was presented in [CDR86], and for the BSP model in [Goo99].
Arge et al. extend this bound to the PEM model in [AGNS08], proving a
lower bound of Ω (log N

B
) parallel I/Os. This bound reflects the intuition

that computing the result in a binary tree-like fashion is optimal.
The presented lower bound not only applies to the logical “OR”, but to

any function f on N bits that has an input I such that f(I) ≠ f(I(k)) for all
k where I(k) is the input given by inverting the kth bit in I . This implies
the same lower bound for other function such as the “XOR”-, and “AND”-
function. Since we consider computations over an arbitrary semiring, the
evaluation of an “XOR”-function on the entries of a row in A is implicitly
required (e.g. for GF (2)). Hence, we obtain a lower bound of Ω (log Nx

B
) in

an EREW and CREW environment.
While the above lower bounds hold for any layout of A, we can obtain

a stronger lower bound if A is in column major layout. In this case, the
records that belong to a certain row can be spread such that no two records
of this row are in the same block. This is possible for H/B ≥ Nx. Otherwise,
the records can be spread over the H/B blocks. Hence, there have to be
min{H/B,Nx} blocks considered in the worst-case which leads to a lower
bound of Ω (log min{H/B,Nx}).
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Finally, observe that for for computing the bilinear form of two all-ones
vectors with a sparse matrix A, the logical “OR” over all non-zero entries
in A has to be evaluated for the semiring GF (2). Thus, BIL induces an I/O
complexity of Ω (logH/B).

2.5 A Lower Bound for Sorting in the Comparison
Model

This section considers another method for lower bounds used in [AV88]. It is
related to the counting argument from Section 2.2, but focuses on the num-
ber of comparisons required to identify a permutation. We restrict ourselves
to the comparison model, where only comparisons of input-records are al-
lowed but no computation on them, and apply a common method to lower
bound sorting-complexity in the RAM model. An extension of Theorem 3.1
in [AV88] from the I/O-model to the PEM model is expressed in the follow-
ing. Similar to the other bounds, we obtain a speed-up of P while the base
of the logarithm changes for the PEM.

Theorem 2.10. ForM ≥ 2B and P ≤ N
B logε(N/B) with constant ε > 0, the average-

case and worst-case parallel I/O complexity of sorting N records is Ω ( N
PB

logd
N
B
)

with d = max{2,min{M
B
, N
PB

}}.

Proof of Theorem 2.10 for the Worst-Case. Each instance of a sorting problem
describes a permutation. However, the permutation that has to be performed
is not known to the algorithm and has to be determined by comparisons.
Without restrictions on the input, an input of N records can lead to N ! per-
mutations. After sorting the N records, the permutation is obviously de-
termined uniquely. Hence, bounding the number of comparisons required
to determine the permutation lower bounds the complexity of sorting N
records.

We assume an adversary who decides the outcome of each comparison,
consistently with his/her previous decisions. Note that the result of each
comparison divides the space of possible permutations. After each compari-
son there is a set of permutations that are still potential output permutations,
and a set of permutations that contradict one of the comparison results so far.
In order to derive a lower bound for the worst-case, we assume that the ad-
versary chooses the outcome of each comparison so that the set of potential
output permutations is maximised. This guarantees for a large number of
comparisons required to shrink the set to size 1.
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We assume for our programs, that all comparisons are determined imme-
diately after the input of a block. Consider processor p performing an input
of block ti. If ti is accessed for the first time, there are at mostB! possible out-
comes when determining the ordering of these up to B records. Otherwise,
the ordering is already fixed. Furthermore, the ordering of the records of ti
within the records in internal memory of p has to be determined. Let Mp,l be
the number of records residing in internal memory of p before the input is
performed. There are at most (Mp,l+B

B
) possible outcomes for this.

Hence, after an input of processor p the possible decisions of the adver-
sary partition the space of potential output permutations into (

Mp,l+B
B

) sets if
ti has been accessed before, and B!(Mp,l+B

B
) if not. By choosing the decisions

such that the remaining set of potential output permutations is maximised

reduces this set by a factor of at most (Mp,l+B
B

)
−1

, (B!(Mp,l+B
B

))
−1

respectively.
Note that there are onlyN/B input operations of input blocks that lead to

B!(Mp,l+B
B

) outcomes. All other inputs partition the set of allowed orderings
into (

Mp,l+B
B

) sets. For the up to P inputs performed during one parallel
I/O, the decisions of the adversary can be performed for each processor one
after another in an arbitrary ordering. Hence, after ` parallel I/Os, the set of
remaining potential output permutations is at most

N !
⎛

⎝
B!N/B

`

∏
l=1

P

∏
p=1

(
Mp,l +B

B
)
⎞

⎠

−1

. (2.5)

We obtain a lower bound for the worst-case, by choosing ` such that (2.5) is
at most 1 so that the output is uniquely determined. Taking logarithms and
estimating binomial coefficients according to 2.1, we obtain the inequality

N logN ≤ N log eB +
`

∑
l=1

P

∑
p=1

B log
e(Mp,l +B)

B
.

Observe that each Mp,l is bounded by min{M,` ⋅B}. Hence, basic transfor-
mations yield

` ≥
N log N

eB

PB log (2e ⋅min{M
B
, `})

≥
N log N

eB

PB log (2e ⋅min{M
B
, N
PB

log N
B
})

.

Assuming P ≤ N
B logε(N/B) for constant ε > 0, implying log ( N

PB
log N

B
) =

O (log N
PB

), we obtain

` = Ω(
N

PB
logd

N

B
)
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where d = max{2,min{M
B
, N
PB

}}.

For the average-case analysis, we use the following lemma.

Lemma 2.11. Let δ, b, k, p be positive integers with k ≥ p. Given a (comparison)
tree T with each internal node vi having an upper bound δ ⋅ bi, 1 ≤ bi ≤ b

p on the
number of children, and for each path S to a leave, ∏i∈S bi ≤ b

k has to hold. Then,
the number of internal nodes of depth t plus the number of leaves with depth at most
t is bounded from above by δtbmin{k,tp}.

Proof. We prove the lemma by upper bounding the number of leaves l(t, k)
of such a comparison tree with depth exactly t for given k. This bound ex-
tends to comparison trees of depth greater t by thinking of removing all
nodes with higher depth, hence, turning internal nodes in depth t into leaves.
The bound on l(t, k) is proven by induction over t.

For t = 1, the number of leaves is at most δbp. Thus, we have l(1, k) ≤ δbp

for any k (we required p ≤ k). Now assume l(t − 1, k′) ≤ δt−1bmin{k′,(t−1)p}.
A comparison tree T of depth t can be seen as the composition of multiple
comparison trees T1, . . . , Tn of depth at most t − 1 connected by the root r of
T . Let the degree of r be δbx, x ≤ p. Hence, the comparison trees T1, . . . Tn
have parameter k′ ≤ k − x. The number of leaves of T is therefore at most
δbx ⋅ l(t − 1, k − x) ≤ δtbmin{k,tp}.

Proof of Theorem 2.10 for the Average-Case. To prove the average-case, we con-
sider the tree induced by the comparisons performed by an arbitrary algo-
rithm for sorting N records (where we assume again that all comparisons
are performed immediately after an input operation). In such a compari-
son tree, each node corresponds to a parallel input operation, and its out-
going edges correspond to the outcome of the comparisons performed after-

wards. Hence, the degree of internal nodes is bounded by d = (
M ′+B
B

)
P

where
M ′ = min{M,` ⋅B}, except for nodes that include the input of one or more
blocks that have not been read before. Any such node can have degree up to
dB!k where k ≤ P is the number of blocks that are input by the parallel input
operation and have not been read before by any processor. However, on any
path to a leave, the product of the multiplicative factors B!k for blocks not
read before must not exceed B!N/B .

Similar to the proof for the worst-case complexity, each node of the tree
partitions the number of possible output permutations. Hence, the internal
nodes in depth t together with all leaves with depth at most t constitute a
partitioning of the N ! permutations. We want to upper bound the number of
partitions in any comparison tree for a certain depth.
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Let t ∶= logN !−NB logB!

2P log (M′+B
B

)
≥ N

2PB
log(N/eB)

log(2e⋅min{M/B,`}) which is in Ω ( N
PB

logd
N
B
)

for P ≤ N
B logε(N/B) with constant ε > 0. By Lemma 2.11 with δ = d, b = B!,

k = N/B and p = P , the number of partitions after t I/Os is bounded from
above by

(
M ′ +B

B
)

Pt

B!N/B
=

√

B!N/BN !

because of the choice of t. Only permutations that are contained in a par-
tition set of size 1 can be determined with t I/Os. In other words, at most√
B!N/BN ! permutations can be sorted in t I/Os. Since there are N ! permu-

tations in total, using any comparison tree, N ! −
√
B!N/BN ! permutations

remain after t comparisons that are not completely determined yet, and re-
quire hence more than t I/Os. Note that B!N/B = ∏

B
i=1 i

N/B = ∏
N
j=1 ⌈

j
N/B ⌉

which for N ≥ 2B and N ≥ 3 is less than N !/4. Hence, there are at least N !/2
permutations that require more than t I/Os. This results in an average I/O
complexity of Ω ( N

PB
logd

N
B
) even when assuming that N !/2 permutations

require no I/Os at all.

2.6 The PEM Merge Sort

We use the PEM merge sort by Arge et al. [AGNS08] within several algo-
rithms in this work. Recall that a merge sort algorithm with degree d merges
in each iteration d sorted lists, aka runs, to produce one combined (sorted)
run. Starting with N single record lists, after logdN iterations, a sorted list
is obtained. The classical M/B-way merge sort for the I/O-model, which is
described in [AV88], uses the M/B blocks that fit into internal memory to
buffer M/B runs as input-streams. Hence, with one scan of the data, M/B
runs can be merged which yields an optimal sorting algorithm for the single
processor case.

While single processor implementations are straightforward, communi-
cation in parallel models make this algorithm more involved. A first Parallel
merge sort for the PRAM model was presented by Cole in [Col88] (also note
the correction of a flaw [Col93]). Based on this algorithm, Goodrich pro-
posed a BSP version in [Goo99] with a merging degree d = max{

√
N/P ,2}

to sort N records with P processors. The PEM merge sort in [AGNS08] is in
turn based on this BSP merge sort algorithm, changing the merging degree
to d = max{2,min{

√
N/P ,M/B}}. We describe its principle coarsely in the
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following where we will not go into details of the quite complicated merging
procedure.

The data is divided evenly upon the P processors throughout the al-
gorithm such that each processor is permanently responsible for O(N/P )

records. It starts with an optimal (single processor) external memory sort-
ing algorithm such as the classical M/B-way merge sort [AV88] to create
P pre-sorted runs of approximately even size. Then, the created runs are
merged in a parallel way with a merging degree ⌈d⌉, where we use d =

max{2,min{N/(PB),
√
N/P ,M/B}} in this thesis. In contrast to [AGNS08],

we slightly changed this merging degree in that we added the term N/(PB)

to the minimum. This maintains the I/O complexity within the original
range in [AGNS08] while it improves on the number of I/Os for any larger
number of processors. Additionally, we have matching lower bounds pro-
vided by Theorem 2.7 and Theorem 2.10 for a wider range of parameter set-
tings. For asymptotic consideration, using

d(N,M,B,P ) = max{2,min{
N

PB
,
M

B
}}

is even sufficient as shown in the Theorem 2.12. There, it is show that sorting
N records has a parallel I/O complexity of O( N

PB
logd(N,M,B,P )

N
B
) where

log(x) =

⎧⎪⎪
⎨
⎪⎪⎩

log(x) if x > 2,
1 otw.

Usually, the parametersM ,B and P are clear and fixed throughout a section.
Then, we abstain from mentioning these parameters and write only d(N).
Furthermore, if even the volume N that shall be sorted is obvious from the
context, we simply use d for the sake of readability. In this case, we usually
write out d once, like in the following theorem.

Theorem 2.12. The I/O complexity of sorting N records with the PEM merge sort
algorithm usingP ≤ N

B
processors isO( N

PB
logd

N
B
) for d = max{2,min{ N

PB
, M
B

}}.

Proof. Runs are merged with a merging degree ⌈d′⌉ for

d′ = max

⎧⎪⎪
⎨
⎪⎪⎩

2,min

⎧⎪⎪
⎨
⎪⎪⎩

N

PB
,

√
N

P
,
M

B

⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

.

For max{2,min{ N
PB

,
√

N
P
, M
B

}} = max{2,min{

√
N
P
, M
B

}}, the original de-

scription of the algorithm and its analysis does not need to be modified. Oth-

erwise, N
PB

<

√
N
P

has to hold and the following can be observed. This case
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is equivalent to P > N
B2 which is not considered in the analysis of the PEM

merge sort in [AGNS08]. However, it is mentioned that the algorithm is still
correct for larger P whereas their given I/O-bounds do not hold anymore
(since they do not include the term N

PB
in the degree). The PEM merge sort

is essentially the same as the BSP merge sort but takes care of restricted in-
ternal memory size and communication through shared memory in blocks.
Reducing the merging degree does not violate any properties of the algo-
rithm. It only increases the number of merging iterations to finish. In con-
trast, observe that the costs of one iteration in the PEM model is decreased
when setting d′ = N

PB
for the case P > N

B2 . By the analysis in [AGNS08], each

iteration induces O( N
PB

+ 2d′2
B

+ d′) parallel I/Os which is still O( N
PB

) for

P > N
B2 when setting d′ = N

PB
.

Recall that the merging degree influences the I/O complexity of the PEM
merge sort by a factor log d′. For asymptotic calculations it is hence sufficient

to consider d′ = d = max{2,min{ N
PB

, M
B

}}: Observe that log N
PB

≤ 2 log
√

N
P

and thus, N
PB

log√
N
P

N
B
= O ( N

PB
log N

PB

N
B
).

Lemma 2.13. The PEM merge sort is optimal if either P ≤ N
B logε(N/B) for constant

ε > 0, or B ≥ logM/BN holds.

Proof. For P ≤ N
B logε(N/B) and constant ε > 0, the optimality is given by

Theorem 2.10. Obviously, a lower bound for permuting N records is a lower
bound for sorting N records. If B ≥ logM/BN , the permuting complexity
from Theorem 2.7 reduces to Ω ( N

PB
logd

N
B
).

Changing the Number of Runs The PEM merge sort reduces in each iter-
ation the number of sorted runs by a factor d. Stopping the PEM merge sort
after k iterations leads obviously to ⌈N/dk⌉ runs of length at most dk each.

Additionally, given r pre-sorted runs, the PEM merge sort can be started
with these runs to reduce the number of iterations to logd r. If all runs have
equal size, this corresponds to an arbitrary iteration of the PEM merge sort,
and is hence described in [AGNS08]. Otherwise, we divide runs that contain
more than N/r records into several runs, and runs that contain less than N/r
records are filled with dummy records. This can be done such that there are
in the end c ⋅ r runs for a constant c ≥ 1 with N/r records each.

To achieve this modification of runs in parallel, we use the range-bounded
load-balancing algorithm described below in Section 2.7.3. With this algo-
rithm, at most ⌈2N/P ⌉ records from at most ⌈2r/P ⌉ runs are assigned to each
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processor, by inducingO( N
PB

+ log min{B,P, r}) I/Os. Then, each processor
can split and fill its at most ⌈2r/P ⌉ assigned runs within O( N

PB
) I/Os.

Starting the PEM merge sort with r pre-sorted runs and stopping it as
soon as there are less than q runs hence has I/O complexity O(N

B
logd

r
q
) if

the r runs all have the same size, and O(N
B

logd
r
q
+ log min{B,P, r}) other-

wise.

2.6.1 Dense Matrix Transposition

As observed in [AV88], a merge sort can be applied to transpose a dense
Ny ×Nx matrix from column to row major layout (and vice versa) with

O(
NxNy

B
logM

B
min{B,Nx,Ny,

NxNy

B
})

I/Os in the (serial) I/O-model. This term reflects the togetherness ratings
in the construction of the lower bound in Theorem 2.9. Similar to the initial
potential there, depending on the dimensions and the block size, the task
becomes less difficult if multiple records that belong to a single output block
are in the same input block already. While the original algorithm for the
I/O-model involves the classical M/B-way merge sort in [AV88], it is easy
to extend the algorithm to the PEM model using the PEM merge sort.

Obviously, a complete resorting of the records can yield a row major
layout with O(

NxNy

PB
logd(NxNy)

NxNy

B
) I/Os by using the PEM merge sort. If

Ny > B, the Nx columns can be used as pre-sorted runs. Hence, as described
above, O(

NxNy

PB
logd(NxNy)Nx) I/Os are sufficient.

For the other cases, we aim to create meta-columns of B columns that are
in a row-wise ordering. To this end, the matrix is partitioned into ⌈Nx/B⌉

sets of at most B contiguous columns. For each set of columns, the PEM
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Figure 2.3: Meta-columns of B columns are sorted by row index using the
PEM Merge sort.
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merge sort is applied using the B contiguous columns as pre-sorted runs. If
Nx is an integer multiple of B, the block structure of all rows is similar (as
depicted in Figure 2.3) and the meta-columns can be chosen to match the
output block structure. In this case, we are already done. Otherwise, the
records of each output block can be contained in two meta-columns. Then,
each processor is assigned to create NxNy

PB
output blocks. With at most two

I/Os per assigned block per processor, the row major layout is constructed.
This last step induces O(

NxNy

PB
) I/Os.

2.7 Building Blocks for Parallel Algorithms

In this section, we describe some basic building blocks that are required fre-
quently for the parallel algorithms in this thesis.

2.7.1 Gather and Scatter Tasks

To form a block from records that are spread over several internal memories,
the P involved processors can communicate records in a tree-like fashion to
form the complete block in O(log min{P,B}) I/Os. This is referred to as
gather operation. If a block is created by computations involving records
from P processors (e.g. summing multiple blocks) still O(logP ) I/Os are
sufficient. Similarly, a block can be distributed to multiple processors with
O(logP ) I/Os by a scatter operation (cf. Figure 2.4). If n independent blocks
for each processor have to be scattered / gathered, this can be serialised.
Since each processor is involved only once within each gather/scatter task,
O(n + logP ) I/Os are sufficient. Note that for all gather and scatter tasks,
the communication structure has to be known to each participant. This is
for example the case when participating processors constitute an ordered
set which is known to all. In most cases, the participating processors have
consecutive id, and the ids of the first and last processors are known to all
processors. Hence, each processor is in knowledge of its rank within the task.

2.7.2 Prefix Sums

Sometimes, we require the computation of prefix sums. This task has been
extensively studied in parallel models. For the PEM model see [AGNS08] for
a description.
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Figure 2.4: Scattering a block to B consecutive processors. Each processor is
involved once during the process.

2.7.3 Range-Bounded Load-Balancing

Due to load-balancing reasons, the following task will appear several times.
Given n tuples (i, x) that are located in contiguous external memory, ordered
by some non-unique key i ∈ {1, . . . ,m} for m ≤ n. Assign the n tuples to P
processors such that each processor gets at most ⌈2n/P ⌉ tuples assigned to it,
but keys are within a range of size no more than ⌈2m/P ⌉.

The task can be solved by dividing the P processors into ⌈P /2⌉ volume
processors and ⌊P /2⌋ range processors. First, data is assigned to the volume
processors by volume. To this end, each volume processor gets a consecutive
piece of at most ⌈2n/P ⌉ tuples assigned to it. For communication purpose,
we assume that for each processor there is an exclusive block reserved for
messages in external memory denoted as inbox.

For the next step, think of the ordered set of keys (1, . . . ,m) being par-
titioned into P /2 ranges of at most ⌈2m/P ⌉ continuous keys each (further
referred to as key range). To cope with the problem of having too many dif-
ferent keys assigned to the same volume processor, we reserve the ith range
processor to become responsible for tuples within the (i + 1)th key range.
Now, each volume processor scans its assigned area and keeps track of the
position in external memory where a new key range begins. This requires
only O( n

PB
) I/Os for scanning the assigned tuples while one block in mem-

ory is reserved to buffer and output the starting positions of a new key range.
Afterwards, each volume processors with more than ⌈2m/P ⌉ keys as-

signed to it, created a list of memory positions where a new key range begins.
This list is than scattered block-wise to the range processors reserved for the
corresponding key ranges. Although we assume CREW, it is necessary to
distribute this information because a program running on a range processor
is not aware of the memory position to find the information since it depends
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on which volume processor got assigned the key range. The distribution can
be achieved with O( n

PB
+ log min{m,B,P}) parallel I/Os where each block

of a list is written into the inbox of the first range processor concerned by this
block, and from there spread by a scatter operation to the other range pro-
cessors (cf. Figure 2.4). In this manner, each processor can be informed about
both the beginning and the end of its assigned area. Note that it can never
happen that a range processor receives information from multiple volume
processors because for a key range divided to multiple volume processors
only the first can dispose the tuples.

2.7.4 Contraction

Given an input sequence of n records written in m blocks on disk, where
some of the memory cells are empty, it is possible to contract the sequence
such that empty cells are removed and the sequence is written in the same or-
dering as before, but with records stored contiguously with O(m/P + logP )

I/Os. To this end, the input blocks are assigned equally to the P processors.
Each processor gets a contiguous piece of up to ⌈m/P ⌉ blocks assigned to
it, and processors are assigned in ascending order. Within one scan, each
processor can determine the number of non-empty cells contained in its as-
signed area. With this information, and the given ordering of processors,
using prefix sum computation, in O(logP ) I/Os, it is known to each pro-
cessor where its records shall be placed in a contiguous output. However,
some of the output blocks may contain records that are assigned to multiple
processors. For each such block, the processor with the first, and the pro-
cessor with the last record assigned to it are in knowledge of the fact, given
the prefix sum results. Since processors are assigned in ascending order, a
gather operation can be used to create blocks with records assigned to sev-
eral processors. Note that each processor only needs to participate in at most
two gather operations. The gather process can be achieved by an output of
each first and last processor of a block, in that both write their indices into a
designated table. Then, each processor can read this information and send
its records to the inbox of the responsible processor in the gather process.
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Bilinear Forms

In this chapter, we show that in terms of the (parallel) semiring I/O com-
plexity the tasks BIL and SPMV are asymptotically similar. This implies that
it is sufficient to state a bound on the I/O complexity for one of the tasks in
order to derive a bound for the respective other task, up to constant factors.
A slightly weaker version of the proofs was published in [GJ10b]. We will
use this equivalence throughout the thesis several times to derive upper and
lower bounds for both tasks. The equivalence is shown by describing how a
program for one of the tasks can be transformed into one for the respective
other task.

For the sake of illustration, it will be useful to describe the computa-
tion graph of a program as introduced in Definition 2.2. We consider a
slightly modified version where nodes with multiple outgoing edges are re-
placed by nodes with out-degree 1, followed by a copy-node with higher
out-degree. These computation graphs reflect the computation operations
the I/O- and the PEM model are capable of, according to their definition in
Section 1.2.1. We distinguish according to their corresponding operation be-
tween sum-nodes, product-nodes and copy-nodes. Sum- and product-nodes
are restricted to an out-degree of at most 1. Copy-nodes have exactly one
ingoing edge, and an arbitrary number of outgoing edges. This implies that
we require every computation operation to delete its operands. A program
can be transformed to fulfil this condition by performing an additional copy
operation for every operand that shall not be deleted before the computation
operation. Since we consider only computation operations involving two
operands, this can be achieved without changing the number of I/Os when
allowing an internal memory of size M + 2. Note that this modification is
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not a strict requirement, but it eases the transformation without changing
the asymptotics in our results.

For the proofs in this chapter, we consider normalised programs accord-
ing to Chapter 2. Recall that in a normalised program, all intermediate re-
sults are predecessors of an output-record. Moreover, we add the following
normalisation here: A normalised program does not contain multiplications
where one operand is a record created by the operation mi ∶= 1. Since 1 is
the neutral element of multiplication, operations that multiply by 1 indepen-
dently from the input can be removed, which can only reduce the number of
I/Os.

The restriction to elements from a semiring allows us to characterise all
intermediate results as polynomials over the input-records. Let pr be the
polynomial that describes the record r. The absence of inverse elements im-
plies that the set of variables in pr is a subset of the variables in ps for any
successors s of r. Similarly, if some product a ⋅ b is part of one of the mono-
mials in pr, then there will be a monomial in ps that contains a ⋅ b for all
successors s of r. Hence, for a normalised program for BIL, any directed
path in the computation graph contains at most two product-nodes because
z(i) = ∑jk xk

(i)ajkyj
(i).

For the transformation, we consider programs in time-inverse execution,
exchanging the roles of input and output operations. While this is easy to
handle in the single processor I/O-model, in the PEM model, asymmetric
access permissions like CREW can present a problem. Therefore, we first
assume a parallel program for the transformation to be specified either for
the EREW policy, or for CRCW where a concurrent write magically adds
up all the elements that are to be written to the same record. We consider
a CREW policy later on. The main result of this chapter is the following
theorem.

Theorem 3.1. Let A be a matrix, given in a fixed layout, andw pairs of vectors x(i),
y(i), 1 ≤ i ≤ w. The evaluation of BIL for w bilinear forms y(i)TAx(i), 1 ≤ i ≤ w,
has the same asymptotic (parallel) I/O complexity as evaluating SPMV for the w
matrix vector products Ax(i).

The proof of one direction of the equivalence in Theorem 3.1 is straight-
forward and given in the next lemma. Note that the layout of the matrix A
is not of concern, it just has to be the same for both tasks.

Lemma 3.2. If SPMV can be computed for a matrix A and w vectors x(i), 1 ≤ i ≤
w, with ` (parallel) I/Os, then BIL can be evaluated for A and w vector pairs y(i),
x(i) with O(` + logNy/B) (parallel) I/Os.
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Proof. For each vector pair x(i),y(i), the bilinear form is computed by mul-
tiplying y(i) with the corresponding result vector c(i) = Ax(i). Even if c(i)

contains empty records, only the blocks of y(i) that correspond to non-empty
blocks of c(i) need to be accessed for multiplication. Because the algorithm at
least wrote each c(i), this scanning of y(i) for each 1 ≤ i ≤ w takes certainly no
more than an additional ` I/Os. The non-empty blocks of all c(i) get assigned
equally to the (first) min{wNy/B,P} processors such that min{Ny/B,P /w}

processors are assigned to the same vector pair. Then, each processor reads
its assigned blocks together with the corresponding blocks of y(i), and cre-
ates the (partial) scalar products. The partial results of the min{Ny/B,P /w}

processors that are assigned to the same task then use a gather operation (cf.
Section 2.7.1) to create the output. This induces O(log min{Ny/B,P /w} + 1)
I/Os.

To show the other direction of Theorem 3.1 is more involved. We discuss
in the remainder of this chapter how a program for BIL can be transformed
into one for SPMV. In this transformation, the operations that create elemen-
tary products play an important role. We say that an operation (it must be
a multiplication) creates an elementary product, if the elementary product is
one of the monomials of the result, but not part of any monomial in the di-
rect predecessors. One multiplication can create many elementary products,
but the total number of such operations is limited by the total number of el-
ementary products. This relies upon the following Lemma, which is easy to
prove.

Lemma 3.3. In a normalised semiring I/O program for BIL on multiple vector pairs,
no elementary product is created twice.

Proof. In a normalised program, every elementary product that is created,
is contained in one of the w output records. If two intermediate results
that both contain the same elementary product are added or multiplied,
all the successors contain this elementary product twice or squared. Re-
call that the polynomial constituting the ith output record is of the form
∑j∑k yj

(i)ajkxk
(i). Hence, neither the square of an elementary product can

be a predecessor of an output record, nor can an elementary product be con-
tained twice in a polynomial constituting an output record. A normalised
program therefore never creates the same elementary product twice.

Lemma 3.4. If BIL can be evaluated for a matrix A and w vector pairs y(i),x(i),
with internal memory size M and block size B using ` (parallel) I/Os, then SPMV
can be computed for A and the w vectors x(i) using 5` (parallel) I/Os with internal
memory size 3M + 4 and block size B.
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Proof. Given a program to evaluate BIL for w bilinear forms using ` I/Os,
the program can be transformed into a program with ` I/Os and computa-
tion operations that delete their operands for the semiring I/O-model with
internal memory size M + 2. By Lemma 3.3, there is a normalised program
P for the same task, which computes only canonical partial results and does
not create an elementary product more than once, with at most ` I/Os.

Overview The intuition of our approach is the following. In a first phase, P
is transformed into a program P̂ where each block in external memory that
results from an output operation of P̂ will never be removed / overwritten.
Furthermore, we divide P̂ into rounds of M/B I/Os. After each round, the
content of internal memories is copied to disk to produce an image of internal
memory at the end of the round. Note that in contrast to other Hong Kung
like round arguments, we do not empty internal memory between rounds.

These outputs / intermediate results of P can be used in a second phase
to create the matrix vector product. The program R̂ for the second phase as-
sumes internal memories of size 3M+4. It also operates in rounds where each
round reflects a round of P̂ . A round of P̂ by a processor can be simulated
in R̂ by loading the at most 2M/B blocks that where accessed by the pro-
cessor in P̂ during this specific round. This supplies R̂ with all the records
that are in internal memory at some point in time within the round of the
processor in P̂ . Hence, the same computations performed by P̂ in this round
can be performed by R̂. However, the ordering of the simulated rounds in R̂
is inverse to the ordering of the rounds in P̂ .

To this end, in each processor 2M internal memory records are reserved
in R̂ to keep the unmodified records of P̂ throughout a round. AnotherM+4
records are used by the following program. A time-inverse variant ofP leads
intermediate results that belong to c(i) =Ax(i) towards the initial position of
y(i) on disk. Recall that the polynomial describing the result z(i) = y(i)TAx(i)

is a sum of elementary products yj(i)aj,kxk(i). To create each of these elemen-
tary products, one copy of some yj(i) is involved in the computation at some
point. The copy process of yj(i) records in P can hence be used in the time-
inverse program, to lead elementary products and partial sums to the initial
positions of yj(i) (cf. Figure 3.1).

Phase 1 The program P̂ simulates P where P̂ remaps the block indices of
input and output operations of P as follows to avoid overwriting operations.
Let (H + Nx + Ny)/B =∶ J be the size of the input which we assume to be
located contiguously starting at the first block in external memory. If the lth
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I/O operation of the pth processor is an output, it is written to the (J+p`+l)th
block. Inputs are mapped accordingly to the altered index of the required
block.

After each M/B (parallel) I/Os performed by P , the content of internal
memory of each processor is copied to external memory. To avoid conflicts
withP , these outputs are written contiguously starting from the (J+P`+1)th
block. We call such a sequence of M/B I/Os in the simulation of P a round.
Note that given the blocks that are read by processor p during the ith round
of P , and the copy of p’s internal memory performed by P̂ at the end of
the previous round, all the computations within the ith round of p can be
replicated. The program P̂ is executed with input A and x(i), 1 ≤ i ≤ w, as
given, but all vectors y(1) = ⋅ ⋅ ⋅ = y(w) = (1, . . . ,1). P̂ performs only I/Os made
by P , plus an additional M

B
outputs per round. This results in `+⌊ `B

M
⌋⋅M
B

≤ 2`
I/Os.

Phase 2 In the second phase, a program R̂ is executed which simulates P
in a time-inverse fashion within the first M records of internal memory. For
now, just notice that in this simulated time-inverse program – we denote it
by R – the ordering of operations is reversed. We explain in the next para-
graph how operations have to be adapted to yield a correct program. For
the ith operation ρpi of processor p in P , we denote the corresponding opera-
tion in R by ρpi . According to the partition of P into rounds, we consider R
partitioned into rounds of M/B I/Os backwards, starting with the last I/O.
Hence, rounds are enumerated in reverse order inR. In each round of R̂, the
blocks that are accessed during the round in P are buffered in 2M records of
internal memory, denoted asMR. Before the first operation of the ith round
of processor p in R, all blocks that are input by p during round i in P are
loaded intoMR. For i > 1, additionally the image of internal memory after
the previous round in P̂ is loaded into MR. This results in at most 3M/B
I/Os per round.

Observe that any record of P that is involved in operation ρpi can be repli-
cated from the provided records when ρpi is performed in R. To this end,
we reserve some extra space in internal memory for the replicating compu-
tations. Let ms be the record involved in ρpi which shall be replicated, and
r(ρpi ) be the round containing ρpi . Hence, ms stems either from an input dur-
ing r(ρpi ), it was in memory at the beginning of r(ρpi ), or it was generated by
a computation operations during r(ρpi ). In the first two cases, ms is present
inMR when ρpi is performed. If ms was generated by a computation opera-
tion, the same three choices hold in turn for the origin of the operands. Since
a round contains a limited number of operations, there is a set of predeces-
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sors of ms inMR which is sufficient to compute ms. Recall that each record
describes a polynomial of maximum degree three. The replication of ms in
R̂ can be performed with two additional records in internal memory: One
record to keep a partial sum of the polynomial, and a second record to write
(and add) the results of elementary products.

In the following, we describe how operations of P are adapted in R. To
this end, we introduce the following notation. If an operation in P accesses
a record m, we denote the corresponding counterpart record in R̂ by m. To
simplifyR, we remove all records m throughoutR where the record m in P
does not describe a polynomial containing any yj(i).

Naturally, an input translates into an output when time is inverted, and
vice versa. However, if not in a magically adding CRCW environment, we
have to consider this more in detail since records are copied and not moved.
First of all, when performing an output operation ρ in P , the output records
are allowed to stay in internal memory. This introduces implicit copy oper-
ations that have to be considered. To tackle this problem in R̂, we allow one
extra block in internal memory where ρ performs the input to. Then, each
record m that is read by ρ is added to the position where m was located be-
fore ρ if m was not deleted/overwritten immediately after ρ. Otherwise, it is
copied to the position of m. Recall that in a normalised program, all records
that are not a predecessor of an output-record are removed immediately af-
ter an I/O. A similar problem is caused by the fact that a block can be read
by P multiple times. This is handled in the following way. Let ti be the block
that is input in P , and letmj1 , . . . ,mjB be the records that are input. InR, the
records of the corresponding block ti where the output is performed to are
loaded into the additional block of internal memory. Then, each record mj

is added to the location of mj in P if it is not immediately removed after the
input, and it is copied otherwise. Afterwards, the results are written back to
ti. This increases the number of I/Os by a factor of at most 2.

Now consider the transformation of computation operations. Each copy
operation ofP that setsmr ∶=ms is replaced by a sum operationms ∶=ms+mr

in R. Each sum operation mq ∶= mr +ms is replaced by a copy operation
mr ∶=ms ∶=mq inR. Operations in P that set a record to 0 or 1 are simply ig-
nored in R̂, i.e. nothing has to be created. Multiplication operations are more
involved to deal with since they serve to lead elementary products to the ini-
tial position of the y(i) records in R. We define the transformation here and
explain its effects in the subsequent paragraphs. Let ρ be a multiplication
operation in P of the form mq ∶= mr ⋅ms where mr is a polynomial contain-
ing yj

(i). Recall that we can replicate the record ms in R. The operation ρ
performs the multiplication mr ∶=ms ⋅mq after replicating ms.
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According to this construction, R̂ is executed where each of the inputs z(i)

for R is set to 1. This finishes the second phase and the result vector c(i) is
stored at the initial positions of y(i) in external memory for 1 ≤ i ≤ w.

Correctness To illustrate the modifications in R, we consider the compu-
tation graphs GP of P and GR of R. Note that in a normalised program
canonical partial results never contain input-records from different vector
pairs. Hence, it suffices to consider the operations for each vector separately.

In the following, we denote a record mr in R̂ a yj(i)-container (or simply
y-container) if mr = yj

(i) in P̂ . Note that mr has not been involved in any
algebraic operation before. The record mr can result only from an initial
input of yj(i) or be a copy of it. Hence, mr will be summed up with other
results (possibly 0) in R̂. If an elementary product is written into a yj

(i)-
container in R̂, it will eventually be contained as a summand in the input-
record yj(i) in external memory. It is thus our goal to show that all elementary
products of the form ajkxk

(i) are written into a yj(i)-container.
Observe that on every directed path from yj

(i) to z(i) inGP , there is at least
one multiplication operation. Otherwise, yj(i) appears as a monomial in the
polynomial describing z(i) which contradicts that P is a correct program for
BIL. In R̂, a sum operation sums up several y-containers, and writes the re-
sult into a y-container. The only operation that writes into a y-container with-
out having y-containers as its operands is a transformed multiplication oper-
ation. We will show in the following that indeed all the elementary products
ajkxk

(i) for non-zero entries ajk will be written into a yj(i)-container, and that
no other elements are introduced into a yj(i)-container. To this end, we con-
sider all the possible multiplications ρ that set mq ∶= mr ⋅ms and their corre-
sponding counterpart ρ. We consider the operations first where ρ writes into
a y-container. Recall that we eliminated records that do not contain some yj(i)

so that operations that multiply aj,k with xk(i) can be ignored.
Let ms = ∑ajkxk

(i), and hence mr = yj
(i). By construction, the operation

ρ performs the multiplication mr ∶= ms ⋅mq . There is no multiplication op-
eration succeeding ρ since otherwise a product of four variables would be
contained in the polynomial describing z(i). Since there is no multiplication
succeeding ρ, mq is a copy of z(i) = 1 in R̂. Hence, ms = ∑ajkxk

(i) is written
into the yj(i)-container mr (cf. Figure 3.1, upmost transfer).

Now consider the case ms = ajk so that mr is either yj(i) or yj(i)xk(i). In the
first case, ρ must be succeeded by a multiplication operation ρ′ that involves
xk

(i). More precisely, either mq = yj
(i)ajk is directly multiplied with xk

(i), or
a sum ∑ yj

(i)ajk containing mq is multiplied with xk(i). Let mt be the record
that is multiplied with xk

(i) in ρ′. Note that in both cases mt is a successor
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Figure 3.1: The computation graph of the transformed program. Squares are
copy-nodes, circles are product-nodes, and diamonds are sum-nodes. The
left-hand side illustrates P , the right-hand side the time-inverse R. Dashed
lines represent replicated records involved in multiplication operations ofR.

of mq . Furthermore, there is no other multiplication operation succeeding ρ′.
Hence, xk(i) is written – multiplied by 1 – into record mt by ρ′. The record mt

is a predecessor of mq implying that mq is equal to, or a copy of mt (recall
that ρ and ρ′ are the only multiplication operations on this directed path in
GP ). The record mq = xk

(i) is then multiplied with ms = ajk, and written into
the yj(i)-container mr by ρ (cf. Figure 3.1, lowest transfer). The second case,
i.e. mr = yj

(i)xk
(i), is covered implicitly in the next paragraph.

In the last case, we assume ms = xk
(i) which means that mr is either yj(i)

or ∑ yj(i)ajk. The second case is already covered by the previous paragraph:
For each summand in ∑ yj(i)ajk, there must be a preceding multiplication.
This corresponds to the case considered in the previous paragraph. The first
case instead, can be shown analogously: There is a succeeding multiplication
operation ρ′ that involves ajk in P . Hence, the operation ρ′ provides ajk as a
predecessor of mq . In ρ, the record mq = ajk is multiplied by xk(i) and written
into the yj(i)-container mr.

This case distinction shows that only elementary products ajkxk(i), or par-
tial sums ∑k ajkxk(i) are written into a yj

(i)-container. Furthermore, every
elementary product yj(i)ajkxk(i) has exactly one input-record yj(i) as a prede-
cessor in P . Thus, for each elementary product yj(i)ajkxk(i) that is produced
in P , the elementary product ajkxk(i) is added to the polynomial describ-
ing the final record yj

(i) in external memory in the time-inverse program R̂.
Since all the wH elementary products yj(i)ajkxk(i) have to be created for BIL,
the created vectors y(i) =Ax(i), 1 ≤ i ≤ w, are correct.

Observation 3.5. Using Lemma 3.4, a non-uniform program for SPMV in CREW
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models can be obtained with an additional ` I/Os.

Proof. Depending on the processor, all outputs of R̂ are performed to sep-
arate sections on disk such that no concurrent write is required. Using this
transformation, there will be P partial outputs in the end of the program. In a
non-uniform setting, the processors can then be assigned to the output blocks
to perform a parallel sum operation in order to yield the result vectors. Let
m be the overall number of the output blocks in this separated program. We
assign the m blocks evenly, non-uniformly to the P processors such that for
P < m, blocks containing partial results from the same row are assigned to
as few processors as possible. Afterwards, with a gather operation according
to Section 2.7.1, the blocks can be summed together to form the final output
blocks. Since each of the m output blocks was written the original number of
I/Os ofR is ` ≥m/P .

To finish the proof of Theorem 3.1, it remains to show that the asymp-
totical I/O complexity of the tasks does not change, when altering M by
constant factors. We show this by presenting upper and lower bounds in
Chapter 4.
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Multiple Vectors

4.1 Introduction

In this chapter, we consider the problem of computing w < B matrix vec-
tors products c(i) = Ax(i), 1 ≤ i ≤ w, where A is an Ny × Nx matrix with H
non-zero entries, and x(1), . . . ,x(w) are dense vectors. The results presented
here are based on [GJ10a, GJ10b]. However, we improve on some of these
results here. Furthermore, the results are extended to the PEM model. In
Chapter 3, we showed that the (non-uniform) I/O complexities of SPMV
and BIL differ in our model only by constant factors and an additive term
O(logNy/B). Hence, we derive upper and lower bounds for both tasks. Re-
call that BIL has the additional input y(1), . . . ,y(w) and asks for the computa-
tion of z(i) = y(i)TAx(i) for 1 ≤ i ≤ w. While all bounds are uniform for BIL, for
SPMV some of the algorithms presented in this chapter remain non-uniform
(adapted to the conformation of the matrix) for load-balancing reasons. A
uniform algorithm can be obtained when including a preprocessing step to
determine the conformation of the matrix.

Bender, Brodal, Fagerberg, Jacob and Vicari [BBF+07,BBF+10] determined
the I/O complexity of computing SPMV for a square matrix with a single
vector in the I/O-model. For the number of non-zero entries H ≤ N2−ε with
matrix dimension N they present upper and lower bounds that match up to
constant factors for worst-case and column major layout, and for the best-
case layout given H ≤ N1+1/3. These results are generalised here in the fol-
lowing ways: (i) the dimensions of the matrix (and thus the dimension of the
vectors) are relaxed to arbitrary, non-square situations, (ii) the product of one
matrix with several vectors, performed simultaneously, is considered, (iii) the
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parameter range is extended to cover all ranges ofH (from sparse up to dense
matrices), (iv) the complexity is determined in the PEM model. For most of
the considered parameters, we present lower bounds and upper bounds in
form of algorithms that match up to constant factors.

The results from Chapter 3 allow to extend all upper and lower bounds
for column major layout to row major layout. Given A in row major lay-
out, we can reduce Ax to yTAx using Chapter 3. Observe that yTAx =

(xTATy)T , so that both tasks have the same complexity. Again by Chap-
ter 3, (xTATy)T can be reduced to ATy which is a matrix vector product
with a matrix in column major layout. The algorithms can be transformed
in a similar way. Hence, all bounds for column major layout yield respective
bounds for row major layout in which only the dimensions Nx and Ny need
to be swapped.

Considering the evaluation of matrix vector products for w < B vectors is
a step towards sparse matrix dense matrix multiplication since the task is to
create the product Y =A ⋅X where X is a dense Nx ×w matrix. Note that the
vectors are assumed to be given as contiguous records in memory. Thus, the
matrix X constituted by the vectors is always given in column major layout,
and the matrix Y has to be output in column major layout. It is important
to consider the case w < B separately from w ≥ B because in the former
case, independently of the layout of X, a block always contains records from
multiple rows of X (since a row contains less than B records). This is not
the case if X is a matrix in row major layout with more than B columns.
Multiplying a sparse matrix with a dense matrix with more than B columns
is considered in Chapter 5.

On the algorithmic side, it will turn out that it can be useful to change
the layout of A into a best-case layout when performing multiple products.
Moreover, for very asymmetric situations, and also for rather dense matri-
ces, a class of algorithms becomes relevant where tuples of input vector en-
tries are generated initially. For the lower bounds, it is worth noting that the
lower bound for best-case layouts of [BBF+10] needs to be combined with an
argument originating from the considerations by Hong and Kung [HK81],
in order to derive matching bounds for multiple vectors. To this end, the
number of records of a specific type within a sequence of M/B (parallel)
I/Os is considered. In order to achieve a lower bound for the PEM model,
we adapt this argument in comparison to the published results for the I/O-
model in [GJ10a, GJ10b].

We make use of the results of Chapter 3 by stating some of the algorithms
for matrix vector products and some for the evaluation of bilinear forms.
This simplifies some expositions. The transformations in Chapter 3 can be
used to derive an algorithm for the respective other task. However, all the
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presented algorithms are simple enough to allow for a direct transformation.
In any case, we were not able to present efficient uniform algorithms for
all parameter ranges in the CREW PEM model for SPMV because of load-
balancing reasons. While all our lower bounds hold for the non-uniform
I/O complexity, thus implying a lower bound for uniform programs, the
table-based and direct algorithms in Section 4.2 are uniform only for BIL. If
the records of the matrix are annotated with their ranking in a row major
layout, also for SPMV a uniform program can be stated. The problem of
non-uniform algorithms, however, appears only in the parallel case where a
proper load-balancing between processors is required.

The following paragraphs give an overview over the I/O-complexities
that are achieved by the algorithms presented in Section 4.2, and bounded
by the lower bounds in Section 4.3. For some restrictions on the parameter
space, we obtain upper and lower bounds matching up to constant factors.

Results for Column Major Layout

Theorem 4.1. Given an Ny × Nx matrix A with H non-zero entries in column
major layout and PEM parameters P , M , and B where M ≥ 4B. Evaluating w
instances of SPMV or BIL simultaneously for A over an arbitrary semiring has
(worst-case) parallel I/O complexity

O
⎛
⎜
⎝

min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H log min{
Ny

B
,
NxNy

H
}

P log min{H
B
,Nx}

+
w(Nx +Ny)

PB
logd(w(Nx+Ny))w ,

H

PB
logd(H) min{

Ny

B
,
NxNy

H
} +

wH

PB
logd(wH)

NxNy

BH

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎞
⎟
⎠

+O(
wH

PB
+ log min{P,

H

B
}) .

Recall that d(n) = max{2,min{M
B
, n
PB

}}. The first term in the minimum
is achieved by an algorithm in which c-tuples of vector records are created
initially. This allows for an input of c (non-neighbouring) vector dimensions
with one I/O. The second term can be achieved by a sorting approach sim-
ilar to [BBF+10] where columns of the matrix are merged by a merge sort
algorithm. For multiple vectors, it can make sense to change the layout of
the matrix to a best-case layout initially. All algorithms are formulated for
a restricted number of processors. However, for larger P note that the algo-
rithmic complexity is dominated by the term logNx.
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Theorem 4.2. Given anNy×Nx matrix A withH non-zero entries in column major
layout and PEM parameters P , M , B where M ≥ 4B. Evaluating w instances of
SPMV or BIL simultaneously for A with w ≤ B over an arbitrary semiring has
(worst-case) parallel I/O complexity

Ω
⎛
⎜
⎝

min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H log min{
Ny

B
,
NxNy

H
}

P logH
,

H

PB
logd(H) min{

Ny

B
,
NxNy

H
} +

wH

PB
logd(wH)

NxNy

BH
}

+ log min{
H

B
,Nx}) .

The lower bounds are obtained by a modification of the proof in [BBF+10]
for a single matrix vector product, also keeping track of the different ma-
trix dimensions. The bounds are extended to the PEM model using the con-
siderations from Section 2.2 Additionally, the lower bounds of Theorem 4.5
for best-case layout apply which yield the second term of the sum in Theo-
rem 4.2. Finally, a lower bound of Ω (log min{H

B
,Nx}) for gather operations

as described in Section 2.4 applies. Note again that this dominates the bound
in Theorem 4.2 for any P > H

B
.

For the following parameter ranges, we obtain asymptotically matching
upper and lower bounds.

Lemma 4.3. Let M ≥ 4B1+ε (tall cache), P ≤ wH/B1+ε, and B1+ε ≤ Ny ≤ N
c
x for

constant ε > 0 and constant c. Then, evaluating w ≤ B matrix vector products over
an arbitrary semiring has (worst-case) parallel I/O complexity

Θ(min{
H

P
logNx

NxNy

H
,
wH

PB
logd(wH)

NxNy

H
} + logNx) (4.1)

if

H ≤ min{
NxNy

M
, (NyNx)

1
1+ξ w

B }

for constant ξ > 0.

Proof. First, observe that the lower bound from Theorem 4.2 is Ω (wH
PB

) in case

H ≤ min{NxNy/M,NyN
1−ξw/B
x }: Because Ny ≥ B1+ε, we have logNy/B ≥

ε logNy. This reduces the first term of the minimum since H ≥ Nx, and we
can further estimate

H

P
logH

NxNy

H
≥
H

P
logH H

ξw/B
≥ ξ

wH

PB
.
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Similarly, the second term in Theorem 4.2 can be bounded

wH

PB
logd(wH)

NxNy

BH
≥
wH

PB
logd(wH)

M

B
≥ ξ

wH

PB

since d(wH) ≤M/B. Furthermore, assuming Ny ≤ N
c
x yields

logH ≤ 2 log max{Ny,Nx} ≤ 2c logNx

and, by using H ≥ Ny ≥ B
1+ε, we obtain

log
H

B
≥ logH −

1

1 + ε
logH ≥

ε

2
logH ≥

ε

2
logNx

which together yields the base of the logarithm in the first term of the min-
imum in (4.1). By similar arguments, we have logH/B ≤ 2c logNx yielding
the last term. Finally, observe that for M ≥ 4B1+ε and P ≤ wH/B1+ε, it holds

logd(wH)w ≤ logd(wH)B ≤
logB

logBε
≤ 1/ε

since d(wH) = max{2,min{M
B
, wH
PB

}}. Using this, w(Nx+Ny)
PB

logd(w(Nx+Ny))w ≤
wH
PB

logd(wH)w ≤ 1
ε
wH
PB

. Additionally, we can ignore parameters at most B in
the logarithm of the second term in the minimum.

Results for Best-Case Layout

Theorem 4.4. Given an Ny ×Nx matrix A with H entries in best-case layout and
PEM parameters P , M , B where M ≥ 4B. W.l.o.g. let Ny ≤ Nx. Evaluating w ≤ B
matrix vector products with A over an arbitrary semiring has (worst-case) parallel
I/O complexity

O
⎛
⎜
⎝

min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H log (
w2NxNy

HBmin{M,H/P} log Nx

min{M,H/P})

P log Nx

min{M,H/P}
+
wNx

PB
logd(wNx)w ,

wH

PB
logd(wH)

NxNy

HB
}) +O(

wH

PB
+ log min{P,

H

B
}) .

The algorithms are similar to the ones for column major layout. A simple
extension of the sorting algorithm in [BBF+10] yields the first term of the
minimum. Similar to [BBF+10], the optimal layout consists of meta-columns
of width m which are internally ordered row-wise. For the parallel case,
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we use m = max{B,min{M −B, ⌈H/P ⌉}}. The first term of the minimum
is obtained by an algorithm that creates tuples of vector records. For this
algorithm, an optimal layout is given by a partition of the matrix into meta-
columns of even larger width.

Theorem 4.5. Given an Ny ×Nx matrix A with H entries in best-case layout and
PEM parameters P , M , B. Let M ≥ 4B, w ≤ B, and w.l.o.g. Ny ≤ Nx. Evaluating
wmatrix vector products with A over an arbitrary semiring has (worst-case) parallel
I/O complexity

Ω
⎛
⎜
⎝

min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

H log (
wNxNy

HBmin{M,wH/P} logH)

P logH
,
wH

PB
logd(wH)

NxNy

HB

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+ log
Nx

B

⎞
⎟
⎠
.

The lower bound for best-case layout in [BBF+10] can be adapted straight-
forward to non-square matrices. However, the proof does not extend directly
to the consideration of multiple vectors. To tackle this, only the vector x(i)

that contributes the least I/O volume within a program is considered. Again,
Section 2.4 yields a lower bound of Ω (log Nx

B
).

The second part of the minimum in Theorem 4.5 is especially interest-
ing for iterative multiplications of the form x(i+1) = Ax(i). For any program,
that writes each (intermediate result) xj(i) at some time to external memory,
the following insight is obtained: For the case w

B
logM/BH ≤ 1, it is optimal

to generate the complete vectors x(i) one after another. Hence, in this set-
ting it is not of importance whether all vectors are given initially, or derived
throughout the computation.

Lemma 4.6. Assuming M ≥ 4B1+ε (tall cache), P ≤ wH/B1+ε, Nx ≥ B1+ε for
constant ε > 0 and w.l.o.g. Ny ≤ Nx, evaluating w ≤ B matrix vector products over
an arbitrary semiring has (worst-case) parallel I/O complexity

Θ(min{
H

P
logNx

NxNy

H
,
wH

PB
logd(wH)

NxNy

H
} + logNx) .

if H ≤ (
NxNy

min{M,wH/P})
1

1+ξ w
B for constant ξ > 0.

Proof. We start again by showing that the lower bound, given by Theorem 4.5,
is Ω (wH

PB
) for H bounded according to the lemma. Let m ∶= min{M,wH/P}.

First note, that if the first term in the minimum applies, we have logH ≥
B
w

log d(wH). Thus, we have

H log (
wNxNy

HBm
logH)

P logH
≥
H log (

NxNy

Hm
)

P logH
≥ ξ

wH

PB
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by the bound on H . Obviously, the second term is also bounded from below
by Ω (wH

PB
) since we have a stronger bound on H than in Lemma 4.3.

Analogously to Lemma 4.3, the tall-cache assumption and the limit on the
number of processors imply that parameters B and w inside the logarithms
with base d(wH), H or Nx/m lead only to constant factors. Hence, under the
given assumptions, we have an upper bound of

O(min{
H

P
logNx

m
(
NxNy

H
log

Nx

m
) ,

wH

PB
logd(wH)

NxNy

H
} + log min{P,

H

B
})

and a lower bound of

Ω(min{
H

P
logH

NxNy

Hm
,
wH

PB
logd(wH)

NxNy

H
} + log

Nx

B
) .

Similarly to parameters B and w, the parameter m can be ignored inside
the logarithm of the first term of the lower bound: If the minimum in the
lower bound corresponds to the first term, then logH ≥ B

w
log d(wH) holds.

Following the proof of Lemma 4.3, it thus holds logH B ≤ w/(εB). Addi-
tionally, in this case holds logHm ≤ logH Bd(wH) ≤ w/(εB) + 1. Hence, if
NxNy

H
< m2, the lower bound becomes no stronger than Ω (wH

PB
). Otherwise,

we can ignore the parameter m.
For the upper bound, assume that log Nx

m
is the leading term in the log-

arithm of the first term, i.e. NxNy

H
< log Nx

m
. By our lower bound of Ω (wH

PB
),

we can infer log log Nx

m
/ log Nx

m
≥ εw

B
for some ε > 0. This is equivalent to

log Nx

m
/ log log Nx

m
≤ B
εw

, so we can estimate log Nx

m
< ( B

εw
)

2
which yields again

an upper bound of O(wH
PB

).
For the bases of the logarithms in the respective first terms of the upper

and lower bound, consider the case Nx < m2. Since H ≥ Nx, the first term
reduces to O(wH

PB
). On the other hand, Nx > m

2 implies logNx/m ≥ 1
2

logNx

which is hence sufficient in the upper bound. Since we assume furthermore
that Nx ≥ Ny, and we generally have H ≤ NxNy, we can use logNx ≥

1
2
H for

the lower bound.
Finally, for Nx ≥ B

1+ε for constant ε > 0, we have log(Nx/B) ≥ ε
1+ε logNx.

For the last term of the upper bound, we can estimate log(H/B) ≤ logH ≤
1
2

logNx.

4.2 Algorithms

We remark again, that our algorithms yield upper bounds for both bilinear
forms and matrix vector products. In general, it is easier to transform our
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algorithms when stated for bilinear forms towards matrix vector products
than by applying the transformation of Chapter 3. However, using the trans-
formation in Chapter 3 yields an algorithm with asymptotically the same
I/O complexity for the respective other task. This transformation requires
sometimes internal memory size to be larger by a constant factor. Observe
that this does not change the asymptotic complexities.

Note that we describe the algorithms for CREW. For a transformation, we
required however a CRCW or EREW model. Hence, the algorithms that are
stated for BIL yield only CRCW algorithms for SPMV. However, in a non-
uniform setting where the algorithm is tuned for the conformation of the
matrix, CREW algorithms for SPMV are obtained according to Lemma 3.5.
Such an algorithm can be obtained with a pre-processing step, and can hence
be optimal if A is used for several multiplications. Unfortunately, we were
not able to obtain uniform algorithms for SPMV for the tasks stated for BIL
in the parallel case because of load-balancing reasons.

4.2.1 Direct Algorithm

Though a more general version of this algorithm is explained later on, we
describe the straightforward direct algorithm for completeness. When cre-
ating SPMV or BIL for a single vector / for a single vector pair only, each
elementary product that is required is created by directly accessing its multi-
plicands, and adding the result to a partial result of the output. Note that this
can induce a constant number of I/Os for each non-zero entry because ma-
trix or vector /records are accessed in an irregular pattern. For w < B vectors
/ vector pairs, the w (complete) elementary products that involve the same
non-zero entry aij can be created with a constant number of I/Os. Thus, the
asymptotic worst-case complexity of this algorithm does not change for any
w < B. Like all the algorithms in this section, this algorithm is optimal for
certain parameter ranges. It is described in the following for BIL.

Reading the non-zero entries of A in an arbitrary order, the computation
of w ≤ B bilinear forms is possible with

O(
H

P
+
w(Nx +Ny)

PB
logd(w(Nx+Ny))w + log min{

H

B
,Nx})

I/Os. Recall that log(x) is at least 1 and corresponds to log(x) for x > 2. To
this end, w records are reserved in internal memory of each processor to con-
tain partial sums of the results z(1), . . . , z(w). The records of A are distributed
evenly among the processors, yielding at most ⌈H/P ⌉ records per processor.
For every assigned non-zero entry ajk the vector records xk(1), . . . , xk(w) and
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yk
(1), . . . , yk

(w) are read and the w elementary products xk(i)ajkyj(i), 1 ≤ i ≤ w,
are created and added to the respective current partial sums z(1), . . . , z(w). For
this to incur only a constant number of I/Os per non-zero entry, the values
xk

(1), . . . , xk
(w) need to be stored in one block (or at least consecutively on

disk), similarly to yj(1), . . . , yj(w). Since we allow concurrent read, the records
can then be accessed by all processors when required. This can be achieved
by transposing the matrices X = [x(1) . . . x(w)] and Y = [y(1) . . . y(w)], which

is possible withO(
w(Nx+Ny)

PB
logdw) I/Os for d = max{2,min{M

B
,
w(Nx+Ny)

PB
}}

using the modified PEM merge sort described in Section 2.6. Finally, with a
gather step (cf. Section 2.7.1), the P blocks partial sums of each processor can
be summed together to form the output records with O(logH/B) I/Os.

4.2.2 Sorting Based Algorithms

Reordering the records during the computation of SPMV has been identified
in [BBF+10] to be optimal for square matrices in the I/O-model for many (real
world) parameter settings. We first extend the algorithms presented there to
SPMV for non-square matrices with a single vector x in the PEM model. The
case of several vectors will be considered later on. For the single vector case,
we consider column major layout and best-case layout. For multiple vectors
instead, it is asymptotically optimal to transform a column major layout into
a best-case layout. This is described in the paragraph on multiple vectors. In
general, these algorithms aim to create elementary products within one scan
of A and x, followed by a sorting phase. After the sorting phase, elementary
products can be summed immediately in scanning time to create the result
vector.

Column Major Layout The sorting based algorithms perform three phases
(cf. Figure 4.1): First, elementary products are created and written into the
matrix A. In a second step, columns of this layout of elementary products are
merged together to form H/Nx meta-columns. Then, the elementary prod-
ucts are summed together to create the output vector.

For a matrix A given in column major layout, the ordering of A allows
elementary products to be created by scanning A and x simultaneously. To
this end, the records of A are distributed evenly among the P processors
such that each processor gets at most ⌈ H

PB
⌉ blocks assigned to it. Now, each

processor scans its assigned records of A together with the at most ⌈ H
PB

⌉

blocks of x that are required to create elementary products. The elementary
products are written back in the same layout as A – either using the space
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of A, or if A is still required, to another area of external memory. Since we
allow concurrent reads, multiple processors can access the same records of x.
Furthermore, by using only P ≤ H

2B
processors, there are no two processors

that write to the same block at the same time. The creation of elementary
products hence takes O( H

PB
) (parallel) I/Os.
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Figure 4.1: Steps of the sorting-based algorithm for SPMV: Initial column
major layout of A with blocks visualised for B = 4 (upper left), layout of
elementary products A′ (upper right), meta-columns of elementary products
after merging (lower left), summing on average dense meta-columns (lower
right).

Let A′ denote the matrix of elementary products. Since A′ is also in col-
umn major layout, the columns of A′ constitute Nx runs of records that are
each sorted by row index. However, if H/Nx < B, i.e. the average number
of entries per column is smaller than a block, the pre-sorted columns are in-
significant, and each block of A′ serves as a run. The r = min{Nx,H/B} runs
are bottom up merged, sorted by their row index, by using the modified PEM
merge sort algorithm described in Section 2.6. This sorting step, each time
reducing the number of runs by a factor of d(H) = max{2,min{M

B
, H
PB

}},
is continued as long as there are more than H/Ny runs remaining. The total
number of I/Os for this is bounded byO( H

PB
logd(H) rNy/H + log r). Each of
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the at most H/Ny remaining runs contains on average Ny elementary prod-
ucts.

In a last phase, we aim to sum up elementary products to form the output
vector y in parallel. To this end, we think of dividing A′ into tiles where each
tile consists of the records in one meta-column that are to be summed into the
same block of y. Hence, there are at most H/Ny ⋅ ⌈Ny/B⌉ ≈ H/B tiles. While
these tiles are given on disk ordered by column, processors shall be assigned
to them in a row major ordering to allow for an efficient creation of row sums.

First, we create a well-organised layout where each tile consists of exactly
one block to ensure a good load-balancing. To this end, elementary products
within a meta-column of A′ that belong to the same row are summed to-
gether. Since meta-columns are in row major layout, elementary products of
the same row are written as consecutive records. By explicitly writing a 0
record for each empty row in a meta-column, afterwards each meta-column
will consist of Ny records. Hence, the output position of each partial sum
is perfectly determined. For this pre-summing, we assign records to proces-
sors by the range-bounded load-balancing described in Section 2.7.3 where
the tile index is used as key. Hence, with O( H

PB
+ log min{H

P
,B,P}) I/Os,

at most ⌈2H/P ⌉ contiguous records from at most ⌈2H/PB⌉ tiles are assigned
to each processor. If the records of a tile are assigned to the same proces-
sor, records can be summed immediately to create one block of partial sums.
Summing consecutive records is clearly possible withO( H

PB
) I/Os. For tiles

with records spread among multiple processors, a gather step according to
Section 2.7.1 is necessary. By the range-bounded load-balancing, we divided
processors into volume processors and range processors. Within the set of
range processors, the records of a tile are assigned to a unique processor. For
volume processors, the records of a tile can be spread among multiple (con-
tiguous) processors. Hence, it is sufficient to divide this phase into a first part
where volume processors operate and perform gather operations, followed
by second part where range processors add their partial results. Note that
each volume processor is involved in at most two gather operations: It can
be the last processor in a collection of processors with records from a certain
tile, and be the first processor in a collection of processors for another tile.
Additionally, some tiles can be assigned exclusively to this processor. If it is
involved in two gather operations, both gather-operations can be performed
simultaneously. Since it is the last processor for one gather operation and
the last for another, the two operations will not intersect. After perform-
ing the gather operations, within another O( H

PB
) I/Os, the partial sums of

range processors can be added. Altogether, the pre-summing is possible with
O( H

PB
+ log H

B
) I/Os.

To finally sum partial results, the processors get reassigned in a row-wise
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ordering of the tiles in the new layout of partial sums. Since the layout of
partial sums is independent from the conformation of A, the beginning of
each tile is clear to all processors. Assigning tiles to processors in a row-
wise ordering, we distinguish the case P > Ny/B and P ≤ Ny/B. In the latter
case, compete rows of tiles are distributed equally among the processors such
that at most ⌈Ny/PB⌉ rows of tiles are be assigned to each processor. Then,
each processor can sum up tiles to create blocks of c with one scan inducing
O( H

PB
) I/Os. For P > Ny/B, PB/Ny (contiguous) processors are assigned

to each row of tiles. A gather task is invoked for each row of tiles, inducing
O(log PB

Ny
) = O (log H

Ny
) I/Os because P ≤H/B. Since we have P > Ny/B for

this case, and H ≤ NyNx, this is O(log min{H/B,Nx}). This final summing
of tiles constitutes the result vector c ∶=Ax. The overall number of (parallel)
I/Os is thus O( H

PB
logd(H) min{

NxNy

H
,
Ny

B
} + log H

B
).

Best-Case Layout The best-case layout reflects a layout which allows for
the best possible worst-case I/O-performance (over all possible matrix con-
formations). In this layout, we have the non-zero entries of A partitioned
into meta-columns each of which consisting of m ∶= min{M −B,H/P} con-
secutive columns. Each meta-column is given in row major layout in external
memory. This allows to load and keep them vector records x(j−1)m+1, . . . ,xjm
corresponding to the jth meta-column of A in internal memory of a proces-
sor, then scan the jth meta-column (with the remaining block), and write
elementary products back to external memory. To this end, we divide the
records of A evenly upon the P processors, each getting assigned no more
than ⌈H/P ⌉ contiguous records. Since we allow concurrent read, the vector
records required to form elementary products can be read simultaneously
by multiple processors. Note that the number of vector records required for
the computation of elementary products by one processor does not exceed
the number of matrix records assigned to it. This step incurs thus O( H

PB
)

I/Os, and creates the matrix A′ of elementary results in the same layout
as A. The final process is similar to the algorithm above: Meta-columns
are merged together in parallel as long as there are more than H/Ny runs
left. These runs are finally summed together in the same manner as de-
scribed for the previous algorithm. This constitutes the result vector c. Since
there are ⌈Nx/m⌉ pre-sorted runs in the beginning, the task is possible with
O(H

B
logd(H)

NxNy

mH
+ log Nx

m
) = O ( H

PB
logd(H)

NxNy

BH
+ log Nx

B
) (parallel) I/Os.

With slight modifications, this algorithm can be described for a broader
class of best-case layouts. In this class, the matrix A is given as a partition
of its columns into meta-columns where each meta-column is written in row
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≈m ≈m ≈m

≤ 2 ⌈H/Ny⌉

Figure 4.2: The structure of a best-case layout for the sorting based algorithm.

major layout. The columns within a meta-column have to be contiguous,
each column is assigned to only one meta-column, and each meta-column
consists of an arbitrary number of columns, but at most m. Additionally, the
number of meta-columns is limited to at most 2 ⌈Nx/B⌉ + 2 ⌈H/Ny⌉ (cf. Fig-
ure 4.2). Since each meta-column consists of no more than m ≤ M − B con-
tiguous columns, the corresponding records of x fit into internal memory
while the meta-column is scanned in order to create elementary products.
From the so created matrix A′ of elementary products, meta-columns are
again merged until there are at most 3 ⌈H/Ny⌉ runs. Note that there might
be no merging process required at all. However, this process can be com-
pleted with O( H

PB
logd(H)

Nx/B+H/Ny

H/Ny
) = O ( H

PB
logd(H)

NxNy

BH
) I/Os. Again,

the resulting runs can be summed together to form the output vector c with
O( H

PB
+ log H

B
) I/Os.

Multiple Vectors For the evaluation of w matrix vector products, we con-
sider the w matrix vectors products as w independent SPMV tasks. Hence,
the previous algorithms can be executed for each single vector. To this end,
the processors are divided equally among the w SPMV tasks. For P ≥ w,
there are at least ⌊P /w⌋ processors assigned to each matrix vector product.
This reduces the number of processors by a factor w in the asymptotic com-
plexity of the single vector sorting based algorithms. For P < w, each pro-
cessor performs its ⌈w

P
⌉ tasks one after another. Unfortunately, the gather

operations induced throughout the summing process require w
P

log H
B

I/Os
when performed one after another. However, this can be reduced by seri-
alising the gather tasks as follows. Because all products are created with
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the same matrix, the structure of the summing tasks is similar for all vec-
tors. First, the w/P sorting phases to create meta-columns of elementary
products are performed. Then, the output vectors can be obtained by syn-
chronising the w/P summing phases before each gather operation. The at
most 2w/P gather operations performed by each processor are then seri-
alised (as described in Section 2.7.1) to induce only O(wH

PB
+ log H

B
) I/Os.

Altogether, this increases the overall running time for the sorting and scan-
ning phases by a factor w, while the degree is changed to d(H,M,B,P /w) =

d(wH,M,B,P ) = max{2,min{M
B
, wH
PB

}} and only O(wH
PB

+ logH/B) I/Os
are induced by gather operations.

However, if given in column major layout, a change of the layout of A
into a best-case layout can speed-up the process. In our layout transfor-
mation, we distinguish two cases, depending on the parameters, similar to
the one vector algorithm for column major layout above. Both cases mimic
the creation of initial meta-columns of length m while the number of meta-
columns shall not fall below H/Ny.

The first case handles situations where Nx ≤ H/m, i.e. a column consists
on average of more than m = min{M −B,H/P} (already sorted) records.
Then, theNx columns are merged by the PEM merge sort, reducing the num-
ber of runs by a factor d in each iteration. The merging process is stopped
after at most ⌊logd(H)m⌋ iterations, or if the number of meta-columns falls
below H/Ny. In the former case, a meta-column consists finally of at least
B, and at most m columns. This parallel merging is upper bounded by
O( H

PB
logd(H) min{m,

NxNy

H
} + logNx) I/Os, and afterwards there are at most

max{⌈Nx/B⌉ , ⌈H/Ny⌉} meta-columns.
The second case assumes H/m ≤ Nx. The possibility of columns having

vastly different numbers of entries makes this slightly more involved. We
aim to merge groups of at most Ny records that span at most m columns in
order to create meta-columns.

For P ≤ Nx

m
+ H
Ny

, each processor performs the following sequential al-
gorithm where the records of A are distributed evenly among the P pro-
cessors, such that each processor gets at most ⌈H/P ⌉ records assigned to
it. The assigned records of A are scanned, and each maximal group of at
most Ny records from at most m columns is transformed into row major
layout by merging records in O( H

PB
logd(H)

Ny

B
) I/Os. This yields at most

⌈H/Ny⌉ + ⌈Nx/m⌉ + P ≤ 2 ⌈H/Ny⌉ + 2 ⌈Nx/m⌉ meta-columns consisting of up
to m columns each.

If P ≥ Nx

m
+ H
Ny

, we divide the set of processors into two sets of size ⌈P /2⌉

and ⌊P /2⌋. The records of A are then distributed among the first set of ⌈P /2⌉
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processors such that each processor gets at most ⌈2H/P ⌉ records assigned.
Now, the records are grouped to construct meta-columns of a best-case lay-
out as follows. Every Nyth record in A begins a new group. Addition-
ally, the first record of every mth column begins a new group. This yields
⌈H/Ny⌉+⌈Nx/m⌉ groups. These groups shall then be turned into a row-major
layout. Groups that are spread among multiple processors have to be merged
in parallel by the processors they are assigned to. To this end, the range of
processors has to be determined for each group in order to apply the PEM
merge sort algorithm. Each processor containing a border of a group, but not
the complete group, writes its id into a table, hence identifying that it is the
first or last in the range of processors on this group. This takes at most two
parallel output operations. By reading concurrently from the table, each pro-
cessor can determine the range of processors that belong to the same group.
Because each group contains at most Ny records, a group can be transformed
into row major layout with O(logd(H)

Ny

B
) PEM merge sort iterations. How-

ever, a processor can belong to up to two such groups because it can be the
first processor in one group and the last processor in another. To tackle this
problem, the role of a processor containing the first records of a group (other
than the first group) is replaced by a processor from the second set of pro-
cessors (consisting of ⌊P /2⌋ processors). To this end, the ith processor in the
second set of processors is reserved to take over the role of processor i + 1
in the first set. Hence, each group that is spread over multiple processors, is
assigned to a unique set of processors. After O( H

PB
logd(H)

Ny

B
) I/Os, these

groups are transformed into row major layout. Transforming groups that
are assigned to a single processor only can be achieved according to the case
P ≤ Nx

m
+ H
Ny

with anotherO( H
PB

logd(H)
Ny

B
) I/Os. The whole transformation

process is hence possible with O( H
PB

logd(H)
Ny

B
) (parallel) I/Os, and yields

⌈H/Ny⌉ + ⌈Nx/m⌉ meta-columns.

4.2.3 Table Based Algorithms

In the worst-case, the direct algorithm performs one input of vector records
for every single non-zero entry of A. Thus, an access to a block of vector
records leads to the creation of a single elementary product for each vec-
tor only. Though for rather sparse cases sometimes optimal, this can be im-
proved by initially creating tuples of vector records. We exploit this in the
following algorithms which are formulated for bilinear forms.

In these algorithms, t tables of c-tuples are created in an initial phase. A
c-tuple consists of c rows of Y = [y(1) . . . y(w)], hence, containing cw records.
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Each of the t tables contains all the c-tuples from a range of ⌈Ny/t⌉ rows,
in lexicographical order of row indices. Thus, a tuple consists of the cw
records ([yi1

(1), . . . , yi1
(w)], . . . , [yic

(1), . . . , yic
(w)]) for i1, . . . , ic within one of the

t ranges in [1, . . . ,Ny] (cf. Figure 4.3). Note that the indices i1, . . . , ic are an
arbitrary (ordered) subset of the t row indices of a table, i.e. they do not have
to refer to contiguous positions in a vector. The total number of tuples in all
tables is thus given by t(Ny/t

c
). Since we consider ordered tuples, it obviously

has to hold c ≤ Ny/t. We restrict ourselves here to Ny/t ≥ 3c.
Note that it is sufficient to assume c ≤ B/w for an optimal algorithm. For

any c′ > c = B/w, the size of the tables is strictly larger than for c. In contrast,
any c′-tuple – which requires ⌈c′w/B⌉ I/Os to be loaded – can be loaded by
accessing ⌈c′/c⌉ = ⌈c′w/B⌉ c-tuples.

When loading a tuple into internal memory, on average at least a constant
fraction of the c contained records can be used to create elementary products
for sufficiently large t. Given the tables of tuples, this leads to algorithms
with I/O complexityO( H

cP
) which improve on the direct algorithm for non-

constant c. In order to achieve a low overall I/O complexity, the creation of
tuple tables is also approximately I/O-bounded by this term. It will turn out
that the creation of the tables is dominated by the output operations to write
them which requires ⌈t(Ny/t

c
) ⋅ cw/PB⌉ I/Os. Hence, we require

t(
Ny/t

c
) ⋅

cw

PB
≤
H

cP

which is implied by

c ≤
log HB

c2wt

log
eNy

ct

(4.2)

Y =

y1
(1)y1(2)

y2
(1)y2(2)

y3
(1)y3(2)

y4
(1)y4(2)

y5
(1)y5(2)

⋮

yNy
(1)yNy

(2)

y1
(1)y1(2)y2(1)y2(2)y3(1)y3(2)

y1
(1)y1(2)y2(1)y2(2)y4(1)y4(2)

y1
(1)y1(2)y2(1)y2(2)y5(1)y5(2)

y1
(1)y1(2)y3(1)y3(2)y4(1)y4(2)

y2
(1)y2(2)y4(1)y4(2)y5(1)y5(2)

y3
(1)y3(2)y4(1)y4(2)y5(1)y5(2)

⋮

y6
(1)y6(2)y7(1)y7(2)y8(1)y8(2)

y6
(1)y6(2)y7(1)y7(2)y9(1)y9(2)

y6
(1)y6(2)y7(1)y7(2)y10(1)y10(2)

y6
(1)y6(2)y8(1)y8(2)y9(1)y9(2)

y7
(1)y7(2)y9(1)y9(2)y10(1)y10(2)

y8
(1)y8(2)y9(1)y9(2)y10(1)y10(2)

⋮

. . .

Figure 4.3: Tables of c-tuples for w = 2 vectors with c = 3 and t = 5. A block
spans B/cw rows in a table.
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using (
n
k
) ≤ ( en

k
)
k
.

The creation of tuple tables can be achieved as follows. By transposing
Y – which we assume to be given column/vector wise – into row major
layout, the trivial 1-tuples are created. This takes O(

wNy

PB
logd(wNy)w) I/Os.

Afterwards, the size of tuples is increased iteratively. Given a table T of
(c − 1)-tuples, a table of c-tuples can be generated by extending each tuple
of T by one row of Y. Since we aim to create a table of unique ordered
sets, it is sufficient to extend a (c − 1)-tuple by rows that have higher row
index than the greatest row index present in the (c − 1)-tuple. We divide the
P processors equally among the (

Ny/t
c

) tuples that have to be created such

that each processor is assigned to at most ⌈(Ny/t
c

)/P ⌉ contiguous tuples of the
task. Each processor creates its tuples by scanning the required tuples of T ,
and for each (c− 1)-tuple by scanning the corresponding rows of Y required
to extend the tuple. Since we have M ≥ 4B, internal memory can hold one
block of T , one of Y and a block to buffer output tuples. The creation of a
table is then dominated by writing the tuples in each iteration. Increasing
the size of tuples by 1 increases the size of the table by a factor at least

c(Ny/t
c

)

(c − 1)(Ny/t
c−1

)
=

c

c − 1

Ny/t − (c − 1)

c
≥
Ny

ct
− 1 .

Note that each iteration requires at least one parallel I/O. The total number
of I/Os to write all tables in all iterations is thus bounded by

c

∑
i=1

⌈t(
Ny/t

i
)
iw

PB
⌉ ≤

⎡
⎢
⎢
⎢
⎢
⎣

t(
Ny/t

c
)
cw

PB

∞
∑
j=0

⎛

⎝

1
Ny

ct
− 1

⎞

⎠

j⎤
⎥
⎥
⎥
⎥
⎦

+ c ≤ 2t(
Ny/t

c
)
cw

PB
+ c

where the last inequality results from Ny/t ≥ 3c.
Note that in the current construction, a c-tuple can cross block borders in

external memory so that two I/Os are required to read this tuple. To tackle
this problem, during the construction of the final table of c-tuples, this case is
avoided by writing only ⌊ B

cw
⌋ tuples in each block. This increases the number

of I/Os by a factor 2 at most.
It remains to choose t in order to minimise the I/O complexity. For large

t, the total number of tuples in all tables becomes small. This leads to a larger
c according to (4.2). However, if chosen too large, there might be less than
c contiguous non-zero entries in a range of Ny/t rows in the layout of A. In
this case, loading a tuple leads to less than c elementary products. Hence, we
choose t in the following such that in the layout of A, c contiguous non-zero
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entries span on average Ny/t rows. The total number of I/Os to create the
tables and the results z(1), . . . , z(w) is then O( H

cP
+ c).

Column Major Layout The bilinear forms y(i)TAx(i) for w vector pairs
with a matrix A in column-major layout can be evaluated with

O
⎛
⎜
⎝

max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

wH

PB
,
H log min{

NxNy

H
,
Ny

B
}

P log min{Nx,
H
B
}

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

+ log
H

B

⎞
⎟
⎠

(parallel) I/Os. To this end, let

t ∶= max{
H

3Nxc
,
B

c
} (4.3)

which leads by using (4.2) and estimating cw ≤ B to

c ∶= min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⌊
B

w
⌋ ,

⎢
⎢
⎢
⎢
⎢
⎢
⎣

log min{3Nx,
H
B
}

log min{
3eNxNy

H
,
eNy

B
}

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (4.4)

The intuition behind the choice of t stems from the following considera-
tions. Recall that t is chosen so that c contiguous non-zero entries span on
average Ny/t rows. Like in the sorting based algorithm for column major
layout in Section 4.2.2, we distinguish between two bounds depending on
the cases H/Nx ≤ B and vice versa. In a column there are on average H/cNx

groups of c contiguous non-zero entries, leading to the first term of the max-
imum in (4.3). Similarly, in each block there are B/c groups of c non-zero en-
tries which yields the second term of the maximum. Note that we assumed
Ny ≥M ≥ 4B so that B/c ≤ Ny/4c. Since moreover H ≤ NxNy, the number of
tables t is bounded from above by Ny/3c as we require.

In the algorithm, processors are assigned by the range-bounded load-bal-
ancing such that each processor gets assigned at most ⌈ 2H

P
⌉ records from at

most ⌈ 2Nx

P
⌉ columns. Each processor scans its assigned records of A simul-

taneously with the corresponding records of X. To this end, X is transposed
first which takes O(wNx

PB
logd(wNx)w) I/Os. For each c non-zero entries, the

corresponding c-tuple is loaded if it is existent in a table. Otherwise, the c
non-zero entries correspond to rows from multiple tables, and from each of
these tables one tuple containing the required records is loaded. The cre-
ated elementary products are then summed into a reserved block in internal
memory, keeping the partial results of z(1), . . . , z(w). Finally, the partial re-
sults of all processors are summed together with a gather step to form the
final output with O(log min{P,H/B}) I/Os.
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On average each c non-zero entries induce at most 2 accesses to a table:
The first case induces at most H

cP
inputs of c-tuples. The second case can

occur at most two times per table in each column (once for a c-tuple ending
in table T , and a second time for another tuple starting T ), thus incurring no
more than 2 ⌈ 2Nx

P
⌉ t I/Os per processor. It is however also restricted to occur

twice at the most per table for each block of A which yields a stronger bound
for B ≥ H/Nx. Hence, the total number of table accesses is upper bounded
by H

cP
+ 2t ⋅min{⌈ 2Nx

P
⌉ , ⌈ 2H

PB
⌉} ≤ 5 ⌈ H

cP
⌉.

Best-Case Layout The bilinear forms y(i)TAx(i) for w vector pairs with a
matrix A in best-case layout can be evaluated with

O
⎛
⎜
⎝

max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

wH

PB
,
H log (

w2NxNy

BHmin{M,H/P} log Nx

min{M,H/P})

P log Nx

min{M,H/P}
+ log

H

B

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎞
⎟
⎠

(parallel) I/Os. For this, let

t ∶= min{
BHmin{M,H/P}

c2w2Nx
,
Ny

3c
} (4.5)

so that it is sufficient for (4.2) to choose

c ∶= min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⌊
B

w
⌋ ,

⎢
⎢
⎢
⎢
⎢
⎢
⎣

log Nx
min{M,H/P}

log (
ew2NxNy

BHmin{M,H/P} log Nx
min{M,H/P})

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (4.6)

To exploit these settings of c and t, the following layout is used: The
matrix A is organised in meta-columns consisting of s = ⌈Bm

cw2 ⌉ columns for
m ∶= min{M −B, ⌈H

P
⌉} and each meta-column is in row major layout. Thus,

in each meta-column there are sH/Nx non-zero entries, and hence sH/cNx

groups of c contiguous non-zero entries, on average (cf. Figure 4.4).
The processors are assigned to the records of A using the range-bounded

load-balancing using the meta-column index as key such that each proces-
sor gets assigned at most ⌈2H/P ⌉ records from at most ⌈

2⌈Nx/s⌉
P

⌉ different
meta-columns. Recall that the range-bounded load-balancing algorithm for
Nx/s = O (Nx/B) keys induces O( H

PB
+ logNx/B) I/Os. During the algo-

rithm, each processor reads its assigned records of A in pieces of m/w con-
tiguous non-zero entries. For each piece, the corresponding vector records
of X and tuples of Y are loaded to create elementary products. Hence, X is
initially transposed again, taking O(wNx

PB
logd(wNx)w) I/Os. Loading the X
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s = ⌈Bm
cw2 ⌉

t = ⌈min{ BHm
c2w2Nx

,
Ny

3c
}⌉

Figure 4.4: Meta-columns of the best-case layout for the table based algo-
rithm. In each tile are on average c non-zero entries.

records corresponding to a meta-column requires ⌈sw/B⌉ = ⌈m/cw⌉ I/Os. If a
piece covers more than one meta-column, reading the corresponding records
of X is more expensive. However, this can happen at most ⌈ 2⌈Nx/s⌉

P
⌉−1 times

per processor, inducingO(wNx

mP
) I/Os in total. The overall number of I/Os to

records of X is thus restricted to ⌈
⌈2H/P ⌉
m/w ⌉ ⋅ ⌈m/cw⌉ +O (wNx

mP
) = O ( H

cP
+ wNx

PB
).

Bounding the accesses to Y tuples follows closely the analysis of the al-
gorithm for column-major layout. Each c non-zero entries require the input
of at least one c-tuple. This induces at most 3 H

cP
parallel inputs of c-tuples

and another at most t ⌈ 2⌈Nx/s⌉
P

⌉ = O ( H
cP

) I/Os for groups of c non-zero entries
that cover several ranges of tables.

4.3 Lower Bounds

A lower bound for sparse N ×N matrices in the I/O-model was presented
in [BBF+10]. For the proof of a lower bound in column major layout, we
follow closely their description but have to restate the proof for the PEM
model. Moreover, the dimensions are substituted by Nx and Ny. To obtain
a lower bound for the best-case layout with multiple vectors, the approach
of [BBF+10] has to be extended further. In all the presented lower bounds,
we only consider SPMV, implying lower bounds for BIL by Chapter 3.
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4.3.1 Column Major Layout

In this section, we consider the product of a sparse matrix with a single vector
only. Algorithmically, it can make sense to change the layout of the matrix A
for multiple evaluations of SPMV into a best-case layout. Lower bounds for
SPMV with multiple vectors and a matrix in best-case layout are presented
in the next section, and imply lower bounds for matrices in column major
layout. Thus, Theorem 4.2 is a combination of the results in this section, and
the lower bound in Section 4.3.2. To obtain a lower bound for non-square
matrices in the I/O-model, it is sufficient to replace the dimensions of A
in the proof in [BBF+10]. Since we extend the bounds to the PEM model
using the considerations given in Section 2.2, we also restate the required
arguments.

Following [BBF+10], to obtain a lower bound for SPMV with a matrix in
column major layout, it suffices to consider the multiplication of the matrix
with the all-ones-vector. This corresponds to the task of creating row sums
of the matrix. In [BBF+10], a copy task is considered where a sparse matrix
is created from copies of the vector records of a given vector. The analysis of
this task yields a preliminary result for the analysis of SPMV. In Section 7.3.1,
a broad range of tasks is analysed involving an extension of the copy task in
the PEM model. While Bender et al. [BBF+10] gave a transformation from the
copy task to SPMV by reversing the direction of time in a program, we con-
sider SPMV directly. To this end, the change of configurations is considered
backwards in time. Observe that there are multiple input forms depending
on the conformation that can all create the same output.

Abstract Configurations We consider programs that are normalised accord-
ing to Chapter 2. Hence, only direct predecessors of the output records exist,
and after each operation, records that are not required further are removed
immediately. Moreover, to apply Lemma 2.6, we consider abstract configu-
rations as described in Section 2.2.2: The ordering and multiplicity of records
in a block and in internal memory is ignored, as well as empty blocks in ex-
ternal memory.

We make one further abstraction here, in that we reduce records to their
row indices. A similar abstraction is also made in [BBF+10]. This is possible
because we consider only records of A and sums of them in this task. Since
in a normalised program, only records from the same row of A are summed,
each intermediate result can be related to a single row index. Together with
the previous abstraction, blocks and internal memories are considered sub-
sets of [Ny], each set having limited size. Hence, the ordering and the num-
ber of distinct records with the same row index is ignored.
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Description of Abstract Programs In this view, copy operations and sum
operations do not change the abstract configuration. Similarly, deletions of
operands after a sum operation become invisible in the sequence of abstract
configuration. Furthermore, in the task of creating row sums, no multiplica-
tion operations are required (and are hence not performed in a normalised
program). Thus, there is only a single abstract computation trace in the set
of normalised programs for this task, and it remains to consider the change
of abstract configurations made by I/O operations.

By Lemma 2.6, the number of initial abstract configurations, that can lead
to a single abstract (output) configuration after ` I/Os is bounded by

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B2(⌈n/B⌉ + P`)

where Mp,l is the number of records in internal memory of processor p af-
ter the lth I/O is performed, and n is the total input size. Recall that in an
abstract configuration according to Section 2.2.2, records that do not belong
to the final output are ignored. For fixed parameters Nx, Ny, and H , the
abstract output configuration is hence unique. In contrast, the initial config-
uration depends on the conformation of the matrix, i.e. the positions of the
non-zero entries. The changes of abstract configurations can be consider as
a tree rooted in the final configuration. Each leaf corresponds to a different
matrix conformation and each layer of depth i corresponds to the configura-
tions at time ` − i.

Note that during the execution of a normalised program for SPMV with
a single vector, in any configuration there can be no more than H non-empty
records, and thus at mostH non-empty blocks on disk. Observe furthermore
that the product of several binomial coefficients can be bounded above by a
single binomial coefficient: The number of possibilities to choose multiple
times from small sets is exceeded by the number of choices when drawing
all at once from the union of all sets. The product of binomial coefficients can
hence be bounded by

P

∏
p=1

(
Mp,l +B

B
) ≤ (

∑
P
p=1Mp,l + PB

PB
) ≤ (

min{MP,H} + PB

PB
)

and together with bounding the number of blocks 2(⌈n/B⌉ + P`) that can be
read, we obtain

(3P(
min{MP,H} + PB

PB
)2PBHP

)

`

as an upper bound on the number of abstract configurations that can lead to
the same configuration after ` I/Os.
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Number of Abstract Matrix Conformations It will be sufficient to consider
only matrices that have the same number of non-zero entries in each column.
To this end, we assume for the lower bound that H is an integer multiple of

Ny. Then, there are in total ( Ny

H/Nx
)
Nx

different conformations of Ny ×Nx ma-
trices with H/Nx non-zero entries per column. However, since we consider
abstract configurations and ignore the ordering and multiplicity of records
within a block, the number of initial abstract configurations is smaller. For
an abstract configuration, it is not clear whether a row index in a block stems
from a single or from multiple columns, neither from which of them. Fol-
lowing [BBF+10], we distinguish three cases depending on how the number
of records per column H/Nx and the block size B relate to each other. If
H/Nx = B, each block corresponds to exactly one column so that each ab-
stract configuration describes only a single conformation. In case H/Nx > B,
a block contains entries from at most two rows. Hence, a column index in
the abstract description of a block can originate either from the first, second
or both rows. For H/Nx < B, a block contains entries from ⌈BNx/H⌉ differ-
ent columns. A column can however only contain indices from at most two

blocks. Thus, there are (
2B
H/Nx

)
Nx orderings of records in external memory

with the same abstract description.

Calculations The above considerations yield the following inequality

(3P(
min{MP,H} + PB

PB
)2PB(2H)

P
)

`

≥ (
Ny

H/Nx
)

Nx

/τ

with

τ =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

3H for H/Nx > B,
1 for H/Nx = B,

(
2B
H/Nx

)
Nx for H/Nx < B.

For H/Nx < B, by taking logarithms and estimating binomial coefficients
according to Observation 2.1, we obtain

`P (log 6H +B log
2e(m + PB)

PB
) ≥H log

Ny

H/Nx
−H log

2eBNx

H

with m ∶= min{MP,H} (and the Euler number e). Because we assume M ≥

2B and H ≥ PB, we get

` ≥
H

P

log
Ny

2eB

log 6H +B log 4em
B

. (4.7)
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For H/Nx ≥ B, we have

`P (log 6H +B log
2e(m + PB)

PB
) ≥H log

NxNy

H
−H log 3

which yields

` ≥
H

P

log
NxNy

3H

log 6H +B log 4em
B

. (4.8)

Combining (4.7) and (4.8), we obtain

` ≥
H

P

log min{
NyNx

3H
,
Ny

2eB
}

log 6H +B log 4em
B

, (4.9)

and it remains to distinguish the leading terms in the denominator.
For log 6H ≤ B log 4em

B
, (4.9) asymptotically matches the sorting based al-

gorithm. Observe that for d = max{2,min{M
B
, H
PB

}}, it holds log m
B
+ log 4e <

log m
B
+ 3.5 ≤ 9

2
log d. Thus, we get

` ≥
H

9PB
logd min{

NxNy

3H
,
Ny

2eB
} ,

and it holds
` ≥

H

12PB
logd min{

NxNy

H
,
Ny

B
} (4.10)

for log2 min{
NxNy

H
,
Ny

B
} ≥ 10 using x − log2 2e ≥ 3

4
x for x ≥ 10. Otherwise, if

log2 min{
NxNy

H
,
Ny

B
} < 10, a scanning bound of H

PB
for reading A implies (4.10).

Now, consider the case log 6H > B log 4em
B

. Using H ≥ 6, we have

` ≥
H

4P

log min{
NxNy

3H
,
Ny

2eB
}

logH
,

implying

` ≥
H

7P

log min{
NxNy

H
,
Ny

B
}

logH
. (4.11)

for the assumption log2 min{
NxNy

H
,
Ny

B
} ≥ 6 so that we can use x− log2 2e ≥ 4

7
x

for x ≥ 6. Otherwise, for log2 min{
NxNy

H
,
Ny

B
} < 6, a scanning bound of H

PB

holds. Additionally, we have log 6H > B log 4em
B

≥ 2B so that H
PB

≥ H
P logH

holds which justifies (4.11) for this case as well.
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4.3.2 Best-Case Layout

As described in Section 1.2.1, for the best-case layout, we consider a lay-
out for A that allows for the best possible I/O complexity for SPMV. The
proof presented in the previous section is based on the task of computing
row sums. To obtain a lower bound for the best-case layout, we have to use a
different approach because producing row sums is trivial when using a row
major layout. Instead, the movement of both, input-records from X and par-
tial results of the output C = [c(1) . . . c(w)], is considered. Additionally, we
consider the computation trace of a program. The accesses to A are ignored
which can only weaken the lower bound. We think of having the set of pro-
grams for SPMV with at most ` I/Os given, and extract the trace information
to count the number of different matrix conformation that can be handled by
programs in the set.

This approach was used in [BBF+10] for a lower bound for SPMV with a
square sparse matrix in best-case layout with one vector. While it is straight-
forward to adapt their proof to non-square situations, the consideration of
SPMV with multiple vectors requires a different technique. Their original
proof uses the counting arguments of Section 2.2 to identify the traces of X
and C records. To this end, the movement of partial results of C is traced
backwards from the final configuration according to Section 2.2.2, similar to
Section 4.3.1. Additionally, the movement of X records is traced forwards
from the initial configuration according to Section 2.2.1. Furthermore, the
computation trace is identified by considering the number of possible multi-
plication operations in a program with fixed traces of X and C records.

For multiple evaluations of SPMV, we extract a program for the evalu-
ation of only one of the w matrix vector products. This extracted program
computes SPMV for the input vector x(i) which induces the smallest number
of records in internal memories and in blocks that are input/output during
the execution of the program. For each conformation of the matrix A, there
must be at least one extracted program computing c(i) = Ax(i). In order to
identify the number of extracted programs for different matrix conforma-
tions, we describe how to determine the matrix conformation uniquely for
a given extracted program. Since we abstract from the ordering and multi-
plicity of records in Section 2.2, the I/O-trace of records alone does not iden-
tify the conformation uniquely. However, given the computation trace, the
matrix conformation can be determined. A multiplication operation with
operand xk

(i) which creates an elementary product that is a predecessor of
cj

(i), describes the existence of a non-zero entry ajk in A (cf. Figure 4.5).
A version of the lower bound for the I/O-model was published in [GJ10a]

using a statement that combines the counting argument with Hong Kung
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x(i)

c(i)A

x(i)j

c(i)k∗

x(i)l

∗

Figure 4.5: Tracing the records for only one vector pair x(i), c(i). The move-
ment of records, and the multiplications in a program identifies the confor-
mation of the matrix.

rounds (cf. Section 2.1). Recall that by Lemma 2.3, any program with ` (par-
allel) I/Os can be converted into a program for internal memories of size 2M ,
operating in ⌈ `B

M
⌉ rounds. Each round consists of up to 2M/B (parallel) in-

put operations, followed by a sequence of computation operations, and ends
with at most 2M/B output operations. All previous results are extended
to the PEM model in this thesis. A classical round-based program, how-
ever, excludes communication between processors during a round. Hence,
we state the lower bound here for normal programs, using insights that are
gained from the analysis of round-based programs. We remark that an ar-
gument similar to Hong Kung rounds exists for PEM programs as well (see
Section 2.1). However, applying it does not simplify the proof nor does it
yield further insights.

The extracted programs analysed below are obtained as follows. Con-
sider a program P for w instances of SPMV with a matrix A. Every block
transferred by an I/O in P can be separated into values belonging to the w
different tasks of SPMV implied by the w pairs of vectors. Hence, for the lth
I/O performed by processor p, we have the number b(i)p,l of records belonging
to vector pair x(i), c(i). Similarly, we have the number of records belonging
to vector pair i in internal memory of processor p at the time the lth I/O is
performedm(i)

p,l. Clearly, we have∑p,i,l b
(i)
p,l ≤ `PB, and∑p,i,lm

(i)
p,l ≤ `PM . Let

f (i) = ∑p∑l(b
(i)
p,l+

B
M
m(i)
p,l) so that∑i f (i) ≤ 2`PB. By averaging, there is some

i such that f (i) ≤ 2`PB/w.
We extract a program P(i) for Ax(i) from P . To this end, all records from

x(j), and partial sums of c(j) for j ≠ i are ignored. Similarly, all records that
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are not a predecessor of some ck(i) are ignored, and computation operations
that do not create a predecessor of some ck(i) are removed. Note that this does
however not change the number of I/O operations. Ignoring the computa-
tion for other c(j), j ≠ i allows for a normalisation of the extracted program.
Since we ignore records that are no predecessors of the output c(i), the multi-
plication operations in P(i) can be moved. In a normalised program, a multi-
plication operation is performed immediately when the required records are
in internal memory of a processor. Obviously, this must be immediately af-
ter an input. This modification is possible because in an extracted program,
a non-zero entry aj,k is used for exactly one elementary product, and hence,
involved in exactly one multiplication operation. The result of the multipli-
cation can hence be written into the record containing aj,k after the preceding
input is performed. Modifying a program according to this normalisation
does not change the number of I/Os, nor does it change the conformation(s)
that can be handled by the program.

Abstract Configurations We distinguish between two abstractions for each
configuration, similar as in [BBF+10]. In the abstract row configuration, only
records that contain a partial result of c(i) are considered. We abstract similar
to Section 4.3.1 such that only sets of row indices are considered in the ab-
stract row configuration. In the abstract column configuration, only records
from x(i) are considered, and we abstract from the content of a record xj

(i)

to its (column) index j. Hence, in the abstract column configuration, blocks
and internal memories are considered subsets of [Nx]. The abstraction to
row and column indices still allows for the multiplication trace to identify
the conformation of the matrix uniquely.

The I/O Trace To determine the number of distinct I/O-traces described by
the two abstract configurations, we apply Lemma 2.5 and 2.6. Recall that the
maximum number of distinct (abstract) conformations that can be reached
by a family of programs with ` I/Os for fixed input, or that can reach a fixed
output, is

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B2(⌈n/B⌉ + P`)

for input size (output size respectively) n. The term (
Mp,l+B
B

) describes the
number of possible relations between the records of an input/output block
and internal memory. In the time-forward analysis, it is the number of pos-
sibilities to choose the records from internal memory for an output, in the
time-backwards analysis, it refers to the number of choices which records
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have been input. However, note that in an extracted program, the number
of records transferred by an I/O is on average B/w. A better trace can be
obtained when specifying the number of records that are transferred by each
I/O. There are B`P possibilities to choose the `P values b(i)p,l ≤ B. The values
m(i)
p,l are determined by the previous I/Os considered in the I/O-trace, and

the computation trace below. Knowing the number of records b(i)p,l chosen for
the considered I/O, there is no longer need to choose from B empty records
(as provided by the term Mp,l +B in the binomial coefficient). For the given
values of b(i)p,l and m(i)

p,l, we get

⎡
⎢
⎢
⎢
⎢
⎣

`

∏
l=1

3P
P

∏
p=1

(
m(i)
p,l

b(i)p,l
)2B2(⌈

H

B
⌉ + P`)

⎤
⎥
⎥
⎥
⎥
⎦

⋅B`P (4.12)

possibilities for the two I/O traces defining the sequence of abstract row and
column configurations where we use Nx,Ny ≤H .

Because there are H elementary products created, and each elementary
product requires only one record of x(i), the total number of copies of x(i)

records at a time in internal and external memory is bounded above by H
for a normalised program. Similarly, there are at most H partial results that
are predecessors of the output vector c(i). Furthermore, using the bound on
f (i), we have ∑p∑l b

(i)
p,l ≤ 2`PB/w, and ∑p∑lm

(i)
p,l ≤ 2`PM/w leading to the

total number of reached abstract configuration being bounded above by

(3P(
min{2`PM/w, `H}

2`PB/w
)2PB2P (⌈

H

B
⌉ + P`)

P

)

2`

⋅B`P (4.13)

where we consider both abstract traces, leading to an exponent 2 ⋅ `.

The Computation Trace In the abstract configurations described above,
sum and copy operations are ignored. It remains to consider the possible
multiplication operations and their connected deletions of operands. For the
latter consideration, there are at most 2H possibilities whether to delete the
xj

(i) operand of each multiplication. Additionally, in the sequence of abstract
row configurations, the row index created by a multiplication operation can
be present in internal memory before the multiplication operation, or be in-
troduced as a new index. This contributes another factor 2H .

Now, we determine the number of possible multiplications that can be
performed in an extracted program with fixed I/O trace. We modified ex-
tracted programs such that a multiplication is performed as soon as both
operands are in internal memory of a processor. After the lth input opera-
tion of processor p, there are at most b(i)p,l new records of x(i) introduced into
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internal memory. Each of which can be multiplied to create an elementary
product contributing to one of the at most m(i)

p,l+1 partial results in internal
memory before the next I/O operation. This leads to ∏p,l b

(i)
p,l ⋅m

(i)
p,l+1 possi-

ble positions for a multiplication operation (defining a non-zero entry of A)
which is maximised for b(i)p,l = B and m(i)

p,l+1 = M for `P /w index pairs (p, l).

Hence, there are at most 4H(
MB`P /w

H
) different multiplication traces for a

fixed I/O trace. Moreover, because for fixed l and i,∑pm
(i)
p,l ≤H , the number

of multiplication traces for a fixed I/O trace is also bounded by 4H(
`BH
H

).
Note that maximising the term in this manner contrasts the table based

algorithms where in each round, the numbers b(i)p,l andm(i)
p,l are approximately

B/w, M/w respectively, for all i, p, l. The table-based algorithm can hence
not be matched by the lower bounds derived here. In the calculations of the
lower bounds, we make use of the following technical lemmas which can be
found in [BBF+10]. The proofs are cited here for completeness.

Lemma 4.7 (Lemma A.1 in [BBF+10]). For every x > 1 and b ≥ 2, the following
inequality holds: logb 2x ≥ 2 logb logb x.

Proof from [BBF+10]. By exponentiating both sides of the inequality we get
2x ≥ log2

b x. Define g(x) ∶= 2x − log2
b x, then, g(1) = 2 > 0 and

g′(x) = 2 −
2

ln2 b

lnx

x
≥ 2 −

2

ln2 b
⋅
1

e
≥ 2 −

2

ln2 2
⋅
1

e
> 0

for all x ≥ 0, since ln(x)/x ≤ 1/e. Thus g is always positive and the claim
follows.

Lemma 4.8 (Lemma A.2 in [BBF+10]). Let b ≥ 2 and s, t > 0. For all positive real
numbers x, we have x ≥ logb(s/x)

t
implies x ≥ 1

2
logb(s⋅t)

t
.

Proof from [BBF+10]. If s ⋅ t ≤ 1, the implied inequality holds trivially. Hence,
in the following we assume s ⋅ t > 1. Assume x ≥ logb(s/x)/t and, for a
contradiction also x < 1/2 logb(s ⋅ t)/t. Then we get

x ≥
logb(s/x)

t
>

logb
2s⋅t

logb(s⋅t)

t
=

logb(2s ⋅ t) − logb logb(s ⋅ t)

t

≥
logb(2s ⋅ t) −

1
2

logb(2s ⋅ t)

t
=

1

2

logb(2s ⋅ t)

t
,

where the last inequality stems from Lemma 4.7. This contradiction to the
assumed upper bound on x establishes the lemma.
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Calculations With the above discussion, we get

4H(
`BPm/w

H
) ⋅ (3P(

4`Pm/w

2`PB/w
)2PB (⌈

H

B
⌉ + P`)

P

)

2`

B`P ≥ (
Ny

H
)

Nx

with m = min{M,wH/P} as a requirement for a family of programs with `
being able to evaluate SPMV for w vectors. W.l.o.g. we assume Nx ≥ Ny in
the following. Taking logarithms, estimating binomial coefficients according
to Observation 2.1, and rearranging terms yields

2`P (
2B

w
log 4e

m

B
+ log 6PB`) ≥H log

NxNy/4H

e`BPm/wH
.

This is equivalent to

` ≥
H

2P
⋅

log
wNxNy

4e`BPm
2B
w

log 4em
B
+ log 6PB`

.

Applying Lemma 4.8 for x = `, t = 2P
H

( 2B
w

log 4em
B
+ log 6PB`), s = wNxNy

4eBPm
,

and estimating t ≥ 2P
H

( 2B
w
+ log 6PB`), we get

` ≥
H

2P
⋅
log (

wNxNy

4eBPm
⋅ 2P
H

( 2B
w
+ log 6PB`))

2B
w

log 4em
B
+ log 6PB`

.

Now, it remains to distinguish according to the leading term in the denomi-
nator.

I. For the first case, we assume 2B
w

log 4em
B
≥ log 6PB` which yields

` ≥
wH

8PB

log
NxNy

eHm

log 4em
B

=
wH

8PB

⎛

⎝

log
4NxNy

HB

log 4em
B

− 1
⎞

⎠
.

Using again log 4em
B
≤ 9

2
log d for d = max{2,min{M

B
, wH
PB

}}, we get

` ≥
wH

36PB
logd

NxNy

HB
− 1

which matches asymptotically the sorting based algorithm.
II. If 2B

w
log 4em

B
< log 6PB`, we get

` ≥
H

4P

log (
wNxNy

2eBHm
log 6`PB)

log 6PB`
>
H

4P

log (
NxNy

2eBHmin{M,H/P} log 2HB)

log 2HB
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which matches asymptotically the bound obtained by the table based algo-
rithm for many parameter settings. Note furthermore that H < 2B makes
the task trivially solvable with no more than 4 I/Os. Otherwise, it holds
log 2HB ≤ 2 logH so that we obtain

` ≥
H

16P

log (
NxNy

BHmin{M,H/P} logH)

logH
.

4.4 Conclusion

We presented upper and lower bounds for the task of evaluating SPMV for
a matrix A with w ≤ B vectors simultaneously in this chapter. All the bound
extend to BIL by the considerations in Chapter 3. This extends on previ-
ous work by Bender et al. [BBF+07] in that multiple vectors are multiplied
with a non-square matrix. Additionally, we improve on previously published
results [GJ10a] in that we consider the complexity in the PEM model, for ma-
trices with arbitrary density. The presented lower bounds hold for an arbi-
trary number of processors. However, for a number of processors exceeding
wH/B, a lower bound for the gather tasks dominates the I/O complexities.

Furthermore, the reduction to BIL yields algorithms and lower bounds
for matrices in row major layout. Some of the algorithms for SPMV are
non-uniform in that a proper load-balancing among the processors has to
be determined in a preprocessing step. While this applies especially to col-
umn major layout, in the CREW PEM model, a row major layout does not
reflect the problem of non-uniformity. Since the non-uniformity is required
for a balanced gathering during the summing process, uniform algorithms
are easily obtained for row major layout. The same holds for matrices in
best-case layout with Nx ≥ Ny so that in the table-based algorithm, a table is
created for the input vectors only.
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A × B

Sparse × Dense

5.1 Introduction

We consider the multiplication of a sparse Ny × Nx matrix A containing H
non-zero entries with a dense Nx ×Nz matrix B for Nz ≥ B. The I/O com-
plexity of computing the Ny ×Nz matrix C =A ⋅B over an arbitrary semiring
is determined here. This is referred to as SDM, as mentioned in Chapter 1.
We present lower bounds on the I/O complexity and upper bounds in form
of algorithms that match up to constant factors. One of the three presented
algorithms is non-uniform in the sense that we ask for a program that, de-
pending on the conformation of A, computes C with few I/Os. Such a pro-
gram that is adapted to a certain matrix conformation can be generated in a
preprocessing step which will be discussed in Section 5.3. Each of the pre-
sented algorithms is optimal within a certain parameter range. Furthermore,
the complexity results for SDM are obtained for a best-case layout of the ma-
trices A, B and C. However, in many cases transforming the layout of A
from another layout is dominated by the I/Os for SDM. Obtaining the re-
quired layouts – mostly a column or row major layout suffices – is discussed
in Section 5.2.1.

While the results in this chapter where published for square matrices in
the I/O-model in [GJ10c], we extend the bounds to the PEM model as in the
previous chapters, and consider non-square matrices. In contrast to the pre-
vious chapter where the number of processors was not limited, we restrict
the number of processors here to P ≤ HNz

M3/2 . As we will see, this guarantees
that internal memory of a processor is fully exploited: By our lower bounds,
expressed below in equation (5.1), the number of I/Os required for SDM
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is Ω ( HNz

PB
√
M

). Restricting the number of processors, each processor reads
Ω (M) records. However, this number of processors still allows for algo-
rithms that replicate the input. Using a larger number of processors will be
discussed in the conclusion of this chapter.

Additionally, we propose an efficient algorithm to determine parts of the
matrix A that are denser than average. This can be used as a preprocessing
step in order to generate an efficient program for SDM within a certain pa-
rameter range. Given a tall cache M ≥ B1+ε the parallel I/O complexity of
SDM is

Θ(max{
HNz

PB∆
,
HNz

PB
√
M
,
H +NxNz +NyNz

PB
, log

Nx

B
}) (5.1)

where

∆ = max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ln
Nx+Ny

M

ln (
NxNy

HM
ln2 Nx+Ny

M
)
,

√
HM

NxNy

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

and we use ln(x) = ln(x) for x > e and ln(x) = 1 otherwise.
This expression yields three interesting ranges of the density H/NxNy of

A. For all densities the I/O complexity boils down to the question how many
of the HNz elementary products can be performed on M records that are
simultaneously in internal memory of a processor. This corresponds to the
consideration of Hong-Kung rounds/sequences according to Section 2.1. For
larger H/NxNy, the situation is similar to that of multiplying two dense ma-
trices. In particular, for H = NyNx it coincides with the classical result of
Hong and Kung [HK81] that multiplying two square dense matrices in the
I/O-model has complexity Θ ( N3

B
√
M

), i.e, that at most M
3
2 multiplications

per round are possible and can be achieved by using
√
M ×

√
M tiles. This

statement was extended to non-square situations in a parallel model by Irony
et al. [ITT04] yielding a parallel I/O complexity of Θ (

NxNyNz

BP
√
M

). A tile-based
approach with differing tile-dimensions depending on the sparsity of A is
presented here. For small density, (5.1) resembles the situation of A being
a permutation matrix where M multiplications per round are best possible
(i.e. loaded records cannot be reused).

Additionally, there is a density range where the complexity (given by the
reuse of loaded operands) can be described by above average dense subma-
trices consisting of M entries and having on average min{∆,

√
M} entries

per row and column. Our complexity analysis proceeds by showing that
there exist matrices that have essentially no denser submatrices. We get a
matching upper bound by showing that every matrix that has sufficiently
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many entries must have such dense submatrices. The resulting algorithm
hence depends upon the conformation of the sparse input matrix in a com-
plicated manner (which does not influence the theoretical statement). One
key difference in the considerations here and the previous chapters is that in
this chapter the block size B is basically irrelevant whereas SPMV becomes
trivial for B = 1. It only matters when changing the layout of the matrices
into the layout required for the optimal algorithm.

Observe that for Hmin{Nx

Ny
,
Ny

Nx
} ≤ M the complexity reduces to scan-

ning the matrices. This case corresponds to a square segment of H with
dimensions min{Nx,Ny} fitting entirely into internal memory. Let w.l.o.g.

Nx ≥ Ny. Since ∆ ≥
√

HM
NxNy

, it holds that max{ HNz

PB∆
, HNz

PB
√
M

} ≤

√
HNxNy

M
Nz

PB
.

For HNy/Nx ≤M , this term is bounded above by NxNy

PB
. An algorithm for this

special case is stated in Section 5.2.5.

5.2 Algorithms

Theorem 5.1. SDM is possible with

O
⎛

⎝
min

⎧⎪⎪
⎨
⎪⎪⎩

HNz

PB
,

√
HNxNy

M

Nz

B
,
HNz

PBD

⎫⎪⎪
⎬
⎪⎪⎭

+
H +NxNz +NyNz

PB
+ logNx

⎞

⎠

I/Os for

D = min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ln
Nx+Ny

M

ln (
NxNy

HM
ln2 Nx+Ny

M
)
,
√
M

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

if M ≥ B1+ε (tall-cache assumption). Here, we use again

ln(x) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

ln(x) if x > e
1 otw.

This is equivalent to an I/O complexity of

O(max{
HNz

PB∆
,
HNz

PB
√
M
,
H +NxNz +NyNz

PB
, log

Nx

B
})

for

∆ = max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ln
Nx+Ny

M

ln (
NxNy

HM
ln2 Nx+Ny

M
)
,

√
HM

NxNy

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭
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given the tall-cache assumption, and a number of processors such that each processor
reads at least M = Ω (logB) records. Note that ∆ is lower bounded by a constant.

It can be helpful to visualise a matrix multiplication in the following way.
The computation can be considered a cuboid whose faces are described by
the three matrices aligned at their common dimension such that opposing
faces correspond to the same matrix (cf. Figure 5.1). A discrete point in the
cuboid, described by the coordinates i, j, k, corresponds to the elementary
product aijbjk, which is required for the computation of cik. Since B (and,
hence, C) are dense matrices while A is a sparse matrix, the non-zero entries
of A induce poles orthogonal to A inside the cuboid.

A

B

C

Nz

Nx

Ny

A

B

C

Nz

Nx

Ny

Figure 5.1: A cuboid view of matrix matrix multiplication.

For convenience, we omit the use of ceiling functions for fractions greater
or equal 1 in the following. Since the number of products involving such
terms in our calculations is a constant, this only increases the bounds by
constant factors.

5.2.1 Layouts

As mentioned above, we assume the matrices A, B and C to be in best-
case layout. The I/O cost for transforming the layouts is not counted in
Theorem 5.1.

Note that given a permutation matrix A, SDM is the permutation of rows
in B. For arbitrary A with H non-zero entries, each row in C can be con-
sidered a weighted sum over a set of rows of B. Using this intuition, row
major layout seems to be a reasonable layout for B and C. It turns out that
for a wide range of parameter settings – expressed in the optimality of two
out of the three presented algorithms – row major layout leads indeed to an
optimal number of I/Os. However, for the tile-based algorithm described in
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Section 5.2.3, a column major layout allows for the separation into tiles (since
we assume a tall cache). Recall that transposing B and C from column ma-
jor to row major layout, and vice versa, is possible with O(

(Nx+Ny)Nz

PB
) I/Os,

given the tall cache (M ≥ B1+ε). As we prove by lower bounds, a different
layout than row or column major, chosen by the algorithm, does not lead to
an asymptotic speed up.

The layout of the matrix A is unimportant for the direct algorithm. For
all the other algorithms, the desired layout can be obtained by sorting. Sort-
ing the records of A with the PEM merge sort from Section 2.6 induces
O( H

PB
logd

H
B
) I/Os for d = max{2,min{M/B,H/(PB)}}. Transposing the

matrix from column to row major layout (or vice versa) is considered in
Chapter 7, and has I/O complexity

O(min{
H

P
,
H

PB
logd min{

HB

NxNz
,Nx,Ny}}) .

5.2.2 Direct Algorithm

In the direct algorithm for permuting, each record is simply moved to its
destination. This concept can be extended from permutation to arbitrary
matrices, and from single records to rows that have to be moved/summed.
We assume that A, B and C are given in row major layout. Let bi be the ith
row of B, and ci the ith row of C. By one (parallel) scan of A while adding
for each non-zero entry aij the product aijbj to (a processor-owned copy on
disk of) ci, partial results involving all the HNz elementary products can be
computed. Hence, a single processor can compute SDM withO(HNz

B
) I/Os.

In a multi-processor environment, an instance of SDM can be divided
into subtasks using a layout where the matrices B and C are organised in
min{Nz/B,P} meta-columns. Given the tall-cache assumption, a row major
layout is sufficient for this, since a meta-column contains at least B columns,
and hence, one block per row. For each meta-column, SDM can then be
evaluated independently. If P ≤ Nz/B, each subtask is solved by a single
processor algorithm. Each processor scans A and creates the output for the
Nz/P meta-columns of C with O(HNz

PB
) I/Os.

Otherwise, there are p = PB/Nz processors assigned to each meta-column
(consisting of B columns) of B and C. Then, A is divided among the p
processors. For a proper load-balancing, we apply the range-bounded load-
balancing from Section 2.7.3 where the row index of a record in A serves as
key. Thus, each processor gets at most 2H/p non-zero entries from at most
⌈2Ny/p⌉ rows of A assigned to it. Each processor scans its assigned records
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of A and creates partial sums from rows of C for the meta-column assigned
to it. This is done with O(H/p) = O (HNz

PB
) I/Os.

Because several processors might have been assigned to the same row
of A (thus created partial sums for the same row of C), partial results have
to be gathered to form the final output. The gather process is invoked for
each row of each meta-column separately, creating a single block only. Note
that each processor is involved in at most two gather processes, and to each
gather process, volume processors are assigned with contiguous id. If a pro-
cessor is involved in two processes, it is the first and the last processor for
the respective tasks. Hence, the gather processes can be performed in paral-
lel without any collision. To this end, each processor determines whether it
is assigned to the first or last record of a row in A, and if so, writes its index
into a table of 2Ny blocks. This takes O(Ny/p) = O (NyNz/PB) I/Os. Each
processor that is involved in a gather task can then determine the range of
volume processors (according to Section 2.7.3) that are assigned to the same
row of A. With O(NyNz/PB + logNx/B) I/Os, partial sums of the volume
processors are summed up by the gather processes. With another O(Ny/p)
I/Os, the range processors add their partial sums to create the final output.

It turns out that for H ≤ (NxNy/M)
1−ε and any constant ε > 0 this algo-

rithm is asymptotically optimal because ∆ in Theorem 5.1 becomes a con-
stant and Theorem 5.6 yields a matching lower bound.

5.2.3 Tile-Based Algorithm

For denser cases of A, a modification of the tile-based algorithm from [KW03]
clearly outperforms the direct algorithm. This modified algorithm works for
any H ≥

NxNy

M
and M ≤ min{Nx/Ny,Ny/Nx} ⋅ H . The other cases are cov-

ered by the algorithms in the remaining subsections. For the ease of nota-
tion, let 3M be the internal memory size. In this approach, the matrix B
is assumed to be given partitioned into tiles of size a × min{M/a,Nz} for
a =

√
MNxNy/H . The output matrix C is generated in the same tiles as B,

while A is given partitioned into tiles of size a×a (cf. Fig. 5.2). Note that this
requires a ≤ min{M,Nx,Ny} in order that a tile does not exceed the dimen-
sions of a matrix. This requirement is reflected in the conditions above for
the algorithm to work. Let Aij , Bij , and Cij denote the jth tile within the
ith tile row of the respective matrix. Clearly, it holds Cij = ∑

nx
l=1 AilBlj with

nx = Nx/a. Throughout the calculation of a certain tile Cij , partial results can
be kept in internal memory while pairs of Ail and Blj are loaded consecu-
tively for each l. Since each B-tile contains at most M records, each such tile
can be loaded in a whole and it can be kept in internal memory throughout
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the calculation of a Cij . Keeping the partial results of Cij and the records
of Blj in internal memory, the records of Ail can be scanned to create all the
required elementary products.

a

a

A

M/a

a

B

M/a

a

C

Figure 5.2: An illustration of the tiles in A, B, and C. The grey tiles in A and
B are required for the grey tile in C.

In the single processor case, the following I/O complexity is obtained
by this algorithm. For saving all C-tiles, no more than NyNz

B
I/Os are re-

quired. Each tile Ail, and thus, each record in A has to be loaded for the
calculation of all tiles of C in the corresponding row. There are ⌈Nz/

M
a
⌉

tiles in a row of C. Therefore, loading the non-zero entries of A requires

at most H
B
⋅max{1,

Nz

√
NxNy√
HM

} I/Os. Loading B-tiles costs at most NxNz

B
⋅
Ny

a
=

√
HNxNy

M
Nz

B
I/Os. Altogether, this sums up to

O
⎛

⎝
max

⎧⎪⎪
⎨
⎪⎪⎩

√
HNxNy

M

Nz

B
,
H

B

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠

I/Os for the computation of C.
The following considerations yield an efficient parallelisation of the above

algorithm. Note that since the matrices B and C are dense, the ranges of their
tiles in external memory can be determined by calculation, and are hence
known to each processor. Similar to the direct algorithm, we first distribute
C column-wise among the processors. Let nz ∶= ⌈Nza/M⌉ be the number of
tiles per row in C. For 1 < P ≤ nz , each processor computes SDM for nz/P
columns of tiles of C by the described single processor approach. By the

previous paragraph, loading A requires at most H
B
⋅
nz

√
NxNy√
HM

I/Os (note that

nz > 1). The access of B-tiles induces at most Nxnz
B

⋅
Ny

a
I/Os. This yields an

algorithm with O(

√
HNxNy

M
Nz

PB
) I/Os.



100 CHAPTER 5. SPARSE × DENSE

For larger P , p = P /nz processors are assigned to each column of tiles.
Each group of p processors is then assigned to A using the range-bounded
load-balancing policy of Section 2.7.3 with the tile index (which are assumed
to be ordered macroscopically in row major layout) as key. Hence, a pro-
cessor is assigned to at most 2H/p records of A from at most 2NxNy/a

2p =

2H/Mp tiles. Each processor creates partial sums for a local copy of tiles
of C. For each new tile Ail, the corresponding tile Blj is loaded into in-
ternal memory. By scanning Ail, elementary products for Cij can be cre-
ated. Loading records of A and B causes henceO(

H/p
B

+ H
Mp

M
B

) = O (Hnz
PB

) =

O(max{ H
PB

,
√

HNxNy

M
Nz

PB
}) I/Os, where we distinguished the cases nz = 1

and Nza/M > 1. Again, the records of C are kept in internal memory of each
processor until no more elementary products are created for this tile of C.
Each processor creates partial results for at most 2Ny

ap
+ 1 rows of tiles in C.

Hence, writing partial sums of C takes O(
NyNz

PB
) I/Os.

Finally, partial sums of multiple processors that were created for the same
tile of C have to be gathered to form the final output. Similar to the gathering
part of the direct algorithm, the range of volume processors that created par-
tial results for the same tile of C can be identified. However, since each tile
contains more than one block, the gather process itself is more involved than
for the direct algorithm. Summing partial results from one tile can be seri-
alised such that the gather process takes only O(

NyNz

PB
+ log Nx

B
) I/Os. Note

that the gather processes of different tiles can interfere. To tackle this prob-
lem, first the gather processes of odd rows of tiles is invoked for the volume
processors, and afterwards for even rows. Similarly, the range processors
can gather their partial results to create the final output C.

5.2.4 Using Dense Parts of A

In this section, we show that by loading M records from each matrix, even
for H <

NxNy

M
where the tile-based algorithm is not applicable, a number of

ω (M) elementary products can be obtained, i.e. more than the direct algo-
rithm achieves. This is done by loading denser than average parts of A.

For the sake of illustration, we consider the matrix A as an adjacency ma-
trix of a bipartite graphG = (U ∪V,E), where aij ≠ 0 constitutes a connection
between the ith node of U and the jth node of V . Any induced subgraph
reflects a submatrix in A (cf. Figure 5.3). If there are sufficiently many sub-
graphs containingO(M) edges, with average degree Ω (D), SDM is possible
with O( HNz

PBD
) I/Os.
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Figure 5.3: An induced subgraph and the corresponding submatrix.

Lemma 5.2. Given a bipartite graph G = (U ∪ V,E), ∣U ∣ = Nx, ∣V ∣ = Ny, ∣E∣ = H

with Nx ≥ Ny ≥ 8M . Then, for 2Nx ≤ H ≤
NxNy

32M
ln2 Nx

M
there exist two non-empty

subsets X ⊆ U , Y ⊆ V , such that the subgraph induced by X and Y has average
degree at least

D = min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ln Nx

M

2 ln (
NxNy

4MH
ln2 Nx

M
)
,

√
M

2
,
H

2Nx

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

and it holds that ∣X ∣, ∣Y ∣ ≤M/D.

Before showing this, we need the following lemma and the subsequent
observations.

Lemma 5.3. ForH ≤
NxNy

32M
ln2 Nx

M
, Nx ≥ Ny ≥ 8M , andD according to Lemma 5.2,

the inequality

H ≤
NxNyD

4M
ln
Nx

M
(5.2)

is satisfied.

Proof. We distinguish the three cases of the minimum for D in Lemma 5.2.

If the first term dominates the minimum, substituting D =
ln Nx

M

2 ln(NxNy
4HM ln2 Nx

M )
in

(5.2) yields

H ln(
NxNy

4HM
ln2 Nx

M
) ≤

NxNy

8M
ln2 Nx

M
. (5.3)

Observe that for x
k
≥ e, the term k ln x

k
for x > 0 is monotonically increasing

in k. Its derivative is ln x
k
− 1, and hence, is non-negative for x

k
≥ e. Since by
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assumption NxNy

4HM
ln2 Nx

M
≥ 8 > e, we can substitute both appearances of H in

(5.3) resulting in
NxNy ln 8

32M
ln2 Nx

M
≤
NxNy

8M
ln2 Nx

M

which is obviously true.
If the second term of the minimum in D applies, i.e. D =

√
M/2, we

distinguish the cases NxNy

32M
ln2 Nx

M
< NxNy and vice versa. Note that in the

latter case H ≤ NxNy is the only restriction on H . By substituting D and H in
(5.2) both cases hold within the desired range: For the first case NxNy

32M
ln2 Nx

M
<

NxNy, multiplying both sides by the left-hand side and taking the square root
on both sides, we get

NxNy

32M
ln2 Nx

M
<
NxNy

4
√

2M
ln
Nx

M
=
NxNyD

4M
ln
Nx

M
.

Hence, this upper bound holds for H as well, yielding (5.2). For the other
case, i.e. NxNy

32M
ln2 Nx

M
≥ NxNy, taking the square root and multiplying both

sides by
√
NxNy yields

NxNy

4
√

2M
ln
Nx

M
≥ NxNy .

Substituting
√

2M =M/D, we obtain

NxNyD

4M
ln
Nx

M
≥ NxNy .

Hence, the right hand side of (5.2) is greater or equal NxNy, and since H ≤

NxNy, the claim holds again.
Finally, for D = H/2Nx, (5.2) is equivalent to H ≤

HNy

8M
ln Nx

M
which obvi-

ously holds for Nx ≥ Ny ≥ 8M .

Observation 5.4. For 0 ≤ x ≤ 1/2, it holds that ln(1 − x) ≥ −2x.

Proof. Consider f(x) = ln(1 − x) + 2x. Observe that f(0) = 0 and

f ′(x) =
−1

1 − x
+ 2 =

1

x − 1
+ 2 ≥

−1

1/2
+ 2 = 0 .

Hence, f(x) ≥ 0 for 0 ≤ x ≤ 1/2.

Observation 5.5. For D,x, y > 0, the inequality D ln(Dy) ≤ x is satisfied for

D ≤
x

ln(xy)
.
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Proof. By substitution, we obtain

D ln(Dy) ≤
x

ln(xy)
ln(y

x

ln(xy)
) ≤

x

ln(xy)
ln(y

x

1
) ≤ x

since ln(x) = 1 for x ≤ e and thus, ln(x) ≥ 1.

Proof of Lemma 5.2. To show the existence of the sets X and Y , we consider
Y ⊆ V , ∣Y ∣ = M/D, chosen uniformly at random, and bound the expected
number of nodes in U that have at least D neighbours in Y . Let ZYu ∈ {0,1}
be the random variable indicating if u ∈ U has at least D neighbours in Y .
Showing that E [∑u∈U Z

Y
u ] ≥ M/D implies that there is at least one set Y

such that M/D nodes from U have degree at least D into Y . These nodes
from U constitute the set X .

To exploit linearity of expectation, and consider ZYu for a single u only,
we use a transformation of G with fixed degree for each node. To this end,
G is transformed so that the maximal degree in U is restricted to at most
k/2 for k ∶= H/Nx. Note that by assumption k/2 ≥ 1. Each node ui ∈ U
with degree di > k/2 is split into ui,1, . . . , ui,⌈2di/k⌉ so that each new node
has degree k/2 except at most one. Let U ′ denote this transformation of U ,
E′ the transformed set of edges, and G′ = (U ′ ∪ V,E′) the created graph.
By construction, the size of U will increase by no more than 2H/k = 2Nx,
implying that ∣U ′∣ ≤ 3Nx. We can conclude that there are at least Nx nodes
with degree k/2: Suppose that c nodes in the original set U have degree less
than k/2. Hence, the degrees of the remaining Nx−c nodes sum up to at least
H − ck/2. For each node in G with degree di > k/2, by construction of U ′,
there will be at most one new node with degree less than k/2. This leads to
no less than H − ck/2 − (Nx − c)k/2 =H/2 edges that have to belong to nodes
with degree k/2. Dividing the at least H/2 edges among nodes with degree
k/2, there have to be at least Nx nodes with degree k/2. We call the subset of
these nodes U ′′.

Observe that any subgraph G′
S in G′ with average degree D consisting

of nodes X ⊆ U ′ and Y ⊆ V can be transformed into a subgraph GS of G
with average degree at least D by simply replacing any ui,j ∈X by the corre-
sponding node ui of the original graph. The subgraph GS induced by X and
the vertices corresponding to Y contains at least the edges ofG′

S and no more
nodes than G′

S . Hence, it suffices to show the existence of the desired X and
Y for G′. We show E [ZYu ] ≥ M

D∣U ′′∣ for fixed u ∈ U ′′ which yields the result by
linearity of expectation. Since ZYu ∈ {0,1}, the aim is to find an appropriate
D such that Pr [ZYu = 1] ≥ M

DNx
.
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To estimate this probability, choose Y ⊆ V uniformly at random and con-
sider a vertex u ∈ U ′′. The number of vertices chosen for Y in the neighbour-
hood of u is given by a hypergeometric distribution. Choosing Y resembles
drawing M/D times without replacement from an urn with Ny marbles, k/2
of which are black. The event we are interested in is that at least D of the
drawn marbles are black.

We lower bound this probability by considering only the case of drawing
precisely D black marbles. This probability is given by

(
k/2
D

)(
Ny−k/2
M/D−D)

(
Ny

M/D)
=

(
M/D
D

)(
Ny−M/D
k/2−D )

(
Ny

k/2)
.

This well-known equality, which is easy to check, leads to the insight of ex-
pressing the probability as follows: Draw k/2 times from an urn withNy mar-
bles, M/D of which are black. Now consider drawing the k/2 marbles one
after another, and fix precisely D positions where black marbles are drawn.
The probability of such a drawing can be calculated as the product of the
fractions of black (white) marbles that are left in the urn before each draw-
ing. For black marbles the fraction is at least p = (M

D
−D)/Ny, for white it is

at least q = 1 − M
D

/(Ny −
k
2
). In the following, we use D ≤

√
M/2, i.e. D ≤ M

2D
,

and k ≤ Ny to simplify these expressions. Hence, we obtain p ≥ M
2DNy

and

q ≥ 1 − 2M
DNy

.
The overall probability of drawing D black marbles can then be bounded

by summing the probabilities of all possible choices to position the D black
marbles in the consecutive drawing. For Yi being the number of black mar-
bles drawn, we can lower bound the probability similar to a binomial distri-
bution:

Pr [Yi =D] ≥ (
k/2

D
)pDqk/2−D ≥ (

k

2D

M

2DNy
)

D

(1 −
2M

DNy
)

k/2

where we used qk/2−D ≥ qk/2 since q < 1, and Observation 2.1 to estimate the
binomial coefficient. Taking logarithm yields

ln Pr [Yi =D] ≥D ln
Mk

4NyD2
+
k

2
ln(1 −

2M

NyD
) ≥D ln

Mk

4NyD2
− k

2M

NyD

where the last inequality is justified by Observation 5.4 and 4M ≤ Ny. Since
we consider at least Nx nodes, the goal is now to choose the biggest D satis-
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fying Pr [Yi =D] ≥ M
DNx

. This holds by implication if

D ln
4NyD

2

Mk
+ k

2M

NyD
≤ ln

NxD

M
.

By Lemma 5.3, H ≤
NxNyD

4M
ln Nx

M
, i.e. k 2M

NyD
≤ 1

2
ln Nx

M
, holds. Hence, we are

interested in

D ln
4NyD

2

Mk
≤

1

2
ln
Nx

M
+ lnD

which is implied by

D ln
2
√
NyD

√
Mk

≤
1

4
ln
Nx

M
(5.4)

because D ≥ 1.
Now, we can use Observation 5.5 with y =

√
4Ny

Mk
and x = 1

4
ln Nx

M
, and get

the approximation

D ≤
x

lnxf
=

ln Nx

M

2 ln (
Ny

4Mk
ln2 Nx

M
)

for which inequality (5.4) holds.

In the following, we assume an internal memory of size 2M to ease nota-
tion. Consider a subgraph GS = (US ∪ VS ,ES) with average degree at least
D and ∣US ∣, ∣VS ∣ ≤ M/D. By construction of G = (U ∪ V,E), we considered
a non-zero entry aij as an edge between ui and vj . Let IU , IV be the set of
indices of vertices in US , VS respectively. In order to create elementary prod-
ucts corresponding to ES , the m ∶= ∣ES ∣ ≤M corresponding non-zero entries
aij with i ∈ IU , j ∈ IV have to be loaded. Then, for each column 1 ≤ k ≤ Nz

in B and C, by loading all records bjk with row indices j ∈ IV together, m
elementary products can be obtained for C with row indices in IU . Hence,
by accessing m records of A, and Nz ⋅m/D records each in B and C, partial
results containing mNz elementary products are created.

To efficiently load certain records of a column in B, we extract these rows
into a separate ∣IV ∣ ×Nz matrix and transpose it to column major layout. For
a single processor, this is possible with 2Nzm

BD
I/Os since we assume B to be

in row major layout. Then, records corresponding to a certain column can be
loaded with at most m

DB
I/Os. Similarly, partial products can be stored into

a ∣IU ∣ × Nz matrix in column major layout. Transposing this, and adding
the rows to the corresponding rows in C requires no more than 3Nzm

DB
I/Os.

Hence, given a subgraph with m edges and average degree D, Nzm elemen-
tary products can be created with at most 6Nzm

DB
+ m
B
= O (Nzm

DB
) I/Os.
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Lemma 5.2 only states the existence of at least one dense subgraph. How-
ever, after creating all the elementary products corresponding to the edges of
a dense subgraph, one can think of removing these edges. This will decrease
the number of edges by m and we can use Lemma 5.2 for graphs with H −m
edges again. Clearly, half of the elementary products can be obtained by sub-
graphs with average degree at least D(H/2) where D(H/2) is obtained from
Lemma 5.2 by substituting H with H/2. We describe in the next section how
these subgraphs can be obtained in a preprocessing step by derandomising
the proof of Lemma 5.2.

The H
2M

subgraphs of average degree at leastD(H/2) are divided equally
among the P processors.For P ≤ H

2M
, the HNz/2 elementary products can be

created and saved with H
2PM

⋅ ( NzM
BD(H/2) +

M
B

) = O ( HNz

PBD(H/2)) I/Os. In case

P > H
2M

, each subgraph is assigned to p = 2PM
H

processors. We can hence
divide the MNz elementary products that are created for a subgraph among
the p processors. Creating elementary products thus causes O( NzM

pBD(H/2)) =

O ( HNz

PBD(H/2)) I/Os. Additionally, the extraction and transposition of rows
of B, and the transposition and summing of rows of C has to be parallelised.
Extracting the rows can obviously be parallelised leading to O(NzM

pBD
) I/Os.

Transposing these rows into a column major layout can be achieved with
O(NzM

pBD
logd(NzH/D)B) I/Os by the PEM merge sort. Because we assume

P ≤ HNz

M3/2 , we have NzM
pBD

= HNz

2PBD
≤ M3/2

2BD
≤ M

2B
. The complexity for transposing

the extracted rows of B is thus given byO( HNz

PBD
logM/B B) = O ( HNz

PBD
) since

we assume a tall cache. Transposing the partial results of C has the same
complexity. We displace the summing of generated rows to the very end of
the algorithm. Evaluating the H/2 elementary products associated with the
dense subgraphs yields a table of O(HNz

D
) records.

Let D(1)(H) =
ln Nx

M

ln(NxNy
4HM ln2 Nx

M )
, i.e. the first argument of the minimum of

D in Lemma 5.2. Altogether, the number of I/Os necessary to create all ele-
mentary products for C is bounded above by

L(H,N) ≤
H

PB
+

∞
∑
i=1

6 max{
2HNz

2iPB
√
M
,

HNz

2iPBD(1)(H/2i)
}

≤
H

PB
+

12HNz

PB
√
M

+ 6HNz

∞
∑
i=0

ln (
NxNy

4HM
ln2 Nx

M
) + ln 2i

2iPB ln Nx

M

= O(
HNz

PBD
) .

Observe that for H ≥
NxNy

32M
ln2 Nx

M
,
√

H
M

= Ω (ln Nx

M
) and thus, the tile-based
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algorithm is asymptotically better.
Assuming a preprocessing in order to identify dense subgraphs, we in-

clude the construction of an efficient scheduling to sum up the created par-
tial sums in parallel. For the final summing, processors are assigned equally,
row-wise to the table of partial sums such that each processor gets O(HNz

PD
)

contiguous records assigned to it. Let t be the number of rows of the table.
Each row of the table can be associated with the row index of C it contributes
partial results to. For P ≤ t, each processor has to be assigned to multiple
rows of the table. However, after the preprocessing step that identifies the
dense subgraphs, the row indices of C associated with the rows of the table
are determined. Hence, processors can be assigned within the summing pro-
cess such that rows of the table are assigned greedily, ordered by the associ-
ated row index to the processors. In case P ≥ t, each processor gets assigned
to at most one row. By dividing the records of each row among the t/P pro-
cessors that are assigned to each row at a common column index of C, each
processor is involved in only one gather process to form the output. Note
that there are at most Nx rows of the table that are associated with the same
row in C. The gathering of partial results can be serialised, by determining
within the preprocessing step which processors are assigned to rows that are
associated with the same row index of C. Hence, the output C is created in
a gathering step with O( HNz

PBD
+ log min{P,Nx}) I/Os.

5.2.5 Small Instances

For smaller instances where M ≥ min{
Ny

Nx
, Nx

Ny
}H , the tile-based algorithm

is not applicable whereas a degenerated version of the tile-based approach
can be used once M ≥ min{

Ny

Nx
, Nx

Ny
}H + min{Nx,Ny} + B. With this algo-

rithm, SDM can be computed with O(
(Nx+Ny)Nz

PB
) I/Os. To this end, A is

divided into tiles of dimension a × a where a = min{Nx,Ny}. W.l.o.g. as-
sume Nx ≥ Ny in the following. Each tile that consists of more than HNy/Nx

records is divided into subtiles so that each subtile (except at most one per
tile) contains HNy/Nx records. The division into tiles of dimension a × a in-
troduces at most Nx/Ny borders to separate the records into tiles. Dividing
the H non-zero records into subtiles that consist of at most HNy/Nx records
can introduce another Nx/Ny borders. Thus, the total number of (sub)tiles is
at most 2Nx/Ny + 1.

For the single processor case, one (sub)tile of A after another is loaded
into internal memory with O(

HNy

NxB
) I/Os. Keeping records of the (sub)tile

in memory, elementary products can be generated by loading records of
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B column-wise. For each of the Nz columns of B and C, the Ny records
of C corresponding to the current (sub)tile are loaded into internal mem-
ory. With the remaining block of internal memory, the Ny corresponding
records in the column of B can be scanned, elementary products are created
and summed to the records of C. Hence, with another O(

NyNz

B
) I/Os per

(sub)tile, the output C is created. This results in a total I/O complexity of
2Nx

Ny
⋅ O (

HNy

NxB
+
NyNz

B
) = O (H+NxNz

B
) I/Os.

In a multiprocessor setting, processors are evenly assigned to (sub)tiles.
Each processor creates partial results of C in a private area. In case P ≤

2Nx/Ny, we apply the range-bounded load-balancing from Section 2.7.3 us-
ing the tile index as a key. Note that the tile index of a record in A is given
by ⌈i/Ny⌉ where i is the column index. Each processor applies the single
processor algorithm from above for its assigned area of A. This results in
O( H

PB
+ NxNz

PB
) I/Os for creating partial results. Theses partial results can

then be summed up in a gathering phase similar to Section 5.2.3.
For P > 2Nx/Ny, the set of processors is divided into p = PNy/2Nx groups

of 2Nx/Ny processors. Each group creates partial results for a range of Nz/p
columns of B and C. The number of I/Os for reading B and writing C is
thus O(NxNz

PB
). However, each processor has to read a complete (sub)tile of

A, inducing O(HNy/Nx) I/Os. Recalling that we assume P ≤ HNz/M
3/2,

we have M
B

≤ HNz

PB
√
M

. Note that using H ≤ NxNy the latter term is at most
√
HNxNyNz

PB
√
M

which in turn is bounded above by NxNz

PB
since M ≥ HNy/Nx.

Hence, the I/O complexity is dominated by O(NxNz

PB
).

5.3 Derandomisation

Lemma 5.2 from the previous section only proves the existence of two setsX ,
Y inducing a subgraph withM edges and average degreeD. This suffices for
an upper bound on the I/O complexity given a preprocessing step. Here, we
show that such a dense subgraph can be found withO(NxNy) computational
steps, and O(NxNy/B) I/Os. We describe the algorithm for the non-parallel
case here.

Recall that by the proof of Lemma 5.2, E [∑u∈U Z
Y
u ] ≥ M/D for Y ⊆ V ,

∣Y ∣ ≤M/D chosen uniformly at random, and ZYu ∈ {0,1} is the random vari-
able indicating if u has at least D neighbours in Y . Similar to the proof of
Lemma 5.2, we consider the graph G′ = (U ′ ∪ V,E′) obtained by transfor-
mation from G such that ∣U ′∣ ≤ 3Nx, and nodes in U ′ have degree at most
k/2 = H/2Nx. As it is shown there, G′ contains at least Nx nodes in U ′ that
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have degree exactly k/2. For the following considerations, we use the set of
nodes in U ′ that have degree exactly k/2, denoted by U ′′. Given the matrix
A in column major layout, the graph G′′ = (U ′′ ∪ V,E′′), E′′ = E′ ∩ (U ′′ × V ),
can be obtained with one scan of A by dividing columns with more than k/2
non-zero entries, and ignoring columns with less than k/2 entries, inducing
O(H/B) I/Os. With anotherH I/Os, the matrix can be transposed to supply
the nodes of V with an adjacency list.

From now on, let ZYu ∈ {0,1} indicate whether u ∈ U ′′ has exactly D
neighbours in Y . Following standard techniques for derandomisation, we
make use of the law of total probability, yielding

E [ ∑
u∈U ′′

ZYu ] =
1

2
E [ ∑

u∈U ′′
ZYu ∣ vi ∈ Y ] +

1

2
E [ ∑

u∈U ′′
ZYu ∣ vi ∉ Y ] ,

for any vi ∈ V and hence, E [∑u∈U ′′ ZYu ∣ vi ∈ Y ] ≥ M
D

or E [∑u∈U ′′ ZYu ∣ vi ∉ Y ] ≥
M
D

has to hold. Furthermore, according to Lemma 5.2,

E [ ∑
u∈U ′′

ZYu ] = ∑
u∈U ′′

Pr [ZYu = 1] = ∑
u∈U ′′

H(Ny,
k

2
,
M

D
,D)

where H(N,m,n, k) =
(m
k
)(N−m
n−k )

(N
n
) is the hypergeometric distribution, drawing

n times from an urn with N marbles, m of which yield a success, and the
number of successful draws is k. In the following, we assume an arbitrary
ordering v1, . . . , vNy of the nodes in V .

Now, consider the case v1 ∈ Y and the remaining M/D − 1 nodes in Y
are drawn uniformly at random. This reduces the number of possible nodes
to draw from to Ny − 1, and only M/D − 1 nodes are drawn. For a node u
which is not a neighbour of v1, the probability becomes Pr [ZYu = 1 ∣ v1 ∈ Y ] =

H(Ny−1, k
2
, M
D
−1,D). For the probability of a node u′ adjacent to v1, the num-

ber of successes (chosen neighbours) reduces to k/2 − 1, while the required
number of neighbours that are chosen at random becomes D − 1. Hence the
probability is Pr [ZYu′ = 1 ∣ v1 ∈ Y ] = H(Ny − 1, k

2
− 1, M

D
− 1,D − 1).

In case, v1 ∉ Y and the remaining M/D − 1 nodes in Y are chosen uni-
formly at random, only the number of nodes to choose from reduces toNy−1
while it is still drawn M/D times. The probability Pr [ZYu = 1 ∣ v1 ∉ Y ] for a
node u not adjacent to v1 is then given by H(Ny − 1, k

2
, M
D
,D). For a node u′

adjacent to v1, the probability is Pr [ZYu′ = 1 ∣ v1 ∉ Y ] = H(Ny − 1, k
2
− 1, M

D
,D).

By calculating the probabilities for each node, the expected values for
E [∑u∈U ′′ ZYu ∣ v1 ∈ Y ] and E [∑u∈U ′′ ZYu ∣ v1 ∉ Y ] can be computed. Depend-
ing on which of the two expectations is larger, we either fix v1 to be included
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in Y , or to be excluded from Y in the following. Since, by the law of total
probability, the larger expectation is at least M/D, there exists a set Y1 ⊆ V ,
∣Y1∣ ≤ M/D, conform with the choice of including/excluding v1 such that at
leastM/D nodes in U ′′ haveD neighbours in Y . Subsequently, the probabili-
ties over all u ∈ U ′′ are evaluated conditioned on both, including and exclud-
ing v2 from Y1. One node after another, the nodes of V can be included in,
and excluded from Y , never reducing the expectation. Eventually, there are
M/D nodes fixed to be included in Y . Determining M/D nodes that have
degree at least D into Y yields the set X so that the required subgraph is
obtained.

We describe in the following an algorithm for this derandomisation. For
any setting of sets A ⊆ Y of included nodes, and B ∩ Y = ∅ of nodes that are
excluded from Y , the probability for a node u to have D neighbours in Y can
be calculated as follows. Let au be the number of neighbours of u in A, and
bu the number of neighbours in B. The probability for u is

Pr [ZYu ∣ A ⊂ Y ∧B ∩ Y = ∅] =

H(Ny − (∣A∣ + ∣B∣),
k

2
− (au + bu),

M

D
− ∣A∣,D − au)

if au ≤D and k/2−bu ≥D, and Pr [ZYu ∣ A ⊂ Y ∧B ∩ Y = ∅] = 0 otherwise (we
used ZYu synonymously with the event that ZYu = 1). Observe that the de-
nominator (

Ny−∣A∣−∣B∣
M/D−∣A∣ ) of the hypergeometric distribution H is independent

from the considered node. To distinguish the expectations, it is hence suffi-
cient to normalise from probabilities to the number of possibilities to choose
the remaining nodes for an appropriate Y . The change in the number of
possibilities when including/excluding a node from Y can be expressed as
follows. When including a new neighbour of a node, the binomial coeffi-
cient for choosing neighbours gets reduced. This causes a change by a fac-
tor (

k
2 −(au+bu)−1
D−au−1

)/(
k
2 −(au+bu)
D−au

). Excluding a neighbour of a node changes the

number of possible sets Y that fulfil ZYu by a factor (
k
2 −(au+bu)−1

D−au
)/(

k
2 −(au+bu)
D−au

).
Including a non-neighbour of a node changes the number of possibilities

to choose the non-neighbours for Y . Thus, a factor

(
Ny − (∣A∣ + ∣B∣) − (k

2
− (au + bu)) − 1

M
D
− ∣A∣ − (D − au) − 1

)

(
Ny − (∣A∣ + ∣B∣) − (k

2
− (au + bu))

M
D
− ∣A∣ − (D − au)

)

is contributed. Similarly changes the number of non-neighbours to choose
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from when excluding a non-neighbour. Using (
n−1
k

) = n−k
n

(
n
k
), and (

n−1
k−1

) =
k
n
(
n
k
) yields Table 5.1. Since all nodes u ∈ U ′′ start with the same number of

possibilities, it is furthermore sufficient to normalise to the sum of products
of factors.

Include vi Exclude vi

Adjacent to u D−au
k
2 −(au+bu)

k
2 −bu−D

k
2 −(au+bu)

Non-adjacent to u
M
D −∣A∣−D+au

Ny−∣A∣−∣B∣− k2 +au+bu
Ny−∣B∣− k2 +bu−

M
D +D

Ny−∣A∣−∣B∣− k2 +au+bu

Table 5.1: Factors for the change of possibilities to have Y with ZYu = 1 for a
node u when including or excluding vi from Y .

To this end, we annotate each node u ∈ U ′′ with the two values au and
bu, and a current factor γu. For each node vi one after another, temporary γu
values are calculated for the case of including and for the case of excluding
vi. Summing over these γu values, it is decided whether vi will be included
or excluded. Depending on this decision, the respective temporary γu values
become the new current factors.

For the computation of the γu values, we assume that each node in V has
its neighbours given in an adjacency list. To determine the temporary γu val-
ues for each node u ∈ U , U is scanned simultaneously with the adjacency list
of vi, keeping one block of the adjacency list, and one block of U in internal
memory at a time. A new block of the adjacency list is loaded when all the
nodes of the current block have been used for calculating their temporary γu
value. Given the au and bu values, the corresponding factor from Table 5.1
can be multiplied to γu which is then saved into a list of temporary γu-values.
During this process, the algorithm checks if au >D or k/2− bu <D occurs for
a node u which causes γu = 0.

This evaluation to decide whether vi is included or excluded from Y in-
curs O(Nx

B
) I/Os. The total number of I/Os until appropriate sets Y and X

are determined is hence O(
NxNy

B
), and the number computation operations

is O(NxNy).
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5.4 Lower Bounds

Theorem 5.6. For 1 ≤ k ≤ N any program for SDM needs

Ω(max{
HNz

PB∆
,
HNz

PB
√
M
,
H +NxNz +NyNz

PB
, log

Nx

B
})

I/Os, with ∆ according to Theorem 5.1.

Theorem 5.6 will be proven throughout this section. First observe that
the last term of the maximum can be obtained by the lower bound from Sec-
tion 2.4 corresponding to gather processes. For the other terms, we make use
of the technique of partitioning programs into rounds/sequences of M/B
I/Os which was introduced by Hong and Kung and is described in Sec-
tion 2.1. Recall that in each sequence at most 2M input-records can be used
to create partial results for at most 2M output-records. Upper bounding the
number of elementary products that can be created within a sequence yields
a lower bound on the number of sequences, hence bounding the number of
I/Os from below.

The overall number of elementary products that have to be created for
SDM is HNz. Thus, it suffices to state an upper bound on the number of el-
ementary products that can be created within an arbitrary sequence of M/B
I/Os. We will do this by showing that there are matrices with only few
dense submatrices of limited size. In other words, by loading M records
from A, only few elementary products can be obtained. For the sake of illus-
tration, we consider the matrix A as an adjacency matrix of a bipartite graph
G = (U ∪ V,E), ∣U ∣ = Nx, ∣V ∣ = Ny, where aij ≠ 0 constitutes a connection
between the jth node of U and the ith node of V . By bounding the degree of
subgraphs with at most M edges, a lower bound on the number elementary
products created in a sequence can be stated.

To prove the statement, we require the following observations:

Observation 5.7. For 0 < a ≤ e, for any x > 0 it holds x ≥ a lnx.

Proof. The first derivation of f(x) = x−a lnx is f ′(x) = 1−a/x. Hence, x = a is
an extremal point with function value f(a) = a − a lna ≥ 0 since lna ≤ 1. The
second derivation yields f ′′(x) = 2a/x which is strictly positive for all values
of a, x ≥ 0. Thus, the extremal point is a minimum.

Observation 5.8. For D,x, y ≥ 0 with Dy > 1, the inequality D ln(Dy) > x is
fulfilled if

D >
2x

ln(2xy)
.
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Proof. Substituting D yields

D ln(Dy) >
2x

ln(2xy)
ln(y

2x

ln(2xy)
) ≥

2x

ln(2xy)
ln

√
2xy = x

where we use
√

2xy ≥ 2 ln
√

2xy given by Observation 5.7.

Observation 5.9. For n ≥ k ≥ a ≥ 1 it holds

(
n

k
) ≥ (

n − k

k
)

a

(
n

k − a
).

Proof. By definition of binomial coefficients

(
n

k
) ⋅ (

n

k − a
)
−1

=
n!(n − k + a)!(k − a)!

(n − k)!k!n!
=

a

∏
i=1

n − k + i

k − a + i
≥ (

n − k

k
)

a

.

Lemma 5.10. Let G be the family of bipartite graphs G = (U ∪V,E) with ∣U ∣ = Nx,
∣V ∣ = Ny and ∣E∣ =H for H ≤ NxNy/2.

For every M ≤ H there is a graph G ∈ G such that G contains no subgraph
GS = (US ∪ VS ,ES) with ∣ES ∣ =M and average degree

D′
M > max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

8 ln
Nx+Ny

2M

ln (
16NxNy

HM
ln2 Nx+Ny

2M
)
, e4

⋅

√
HM

NxNy

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (5.5)

Proof. We will show this by upper bounding the number of graphs contain-
ing at least one such dense subgraph and compare this to the cardinality of G.
The upper bound is given by the number of possibilities to choose 2M/D′

M

vertices fromU∪V and the number of possibilities to insertM edges between
the selected vertices. Furthermore, the remaining H −M edges are chosen
arbitrarily within the graph. The former presumes 2M/D′

M ≤ Nx +Ny. How-
ever, since M ≤ H and D′

M >
√

HM
NxNy

this is implied. Furthermore, we can

assume D′
M ≤

√
M since this is the maximum average degree of a subgraph

consisting of M edges. Hence, if the inequality

(
Nx +Ny

2M/D′
M

)(
(M/D′

M)2

M
)(

NxNy

H −M
) < (

NxNy

H
)

holds for the parameters given, Lemma 5.10 is proven. Observation 5.9
yields

(
Nx +Ny

2M/D′
M

)(
(M/D′

M)2

M
) < (

NxNy −H

H
)

M

.
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Estimating binomial coefficients according to Observation 2.1, taking loga-
rithms and multiplying by D′

M /M , we obtain

2 ln
eD′

M(Nx +Ny)

2M
+D′

M ln
eM

D′
M

2
<D′

M ln
NxNy

H
+D′

M ln(1 −
H

NxNy
) .

The last term can be estimated for H ≤ NxNy/2 by using ln(1 − x) ≥ −2x from
Observation 5.4, resulting in

2 ln
eD′

M(Nx +Ny)

2M
+D′

M ln
eM

D′
M

2
<D′

M ln
NxNy

H
−D′

M

2H

NxNy
.

And by simple equivalence transformations, we obtain

D′
M ln

D′
M

2
NxNy

HM
> 2 ln

Nx +Ny

2M
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term 1

+2 ln eD′
M +D′

M (1 + 2
H

NxNy
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term 2

. (5.6)

Equation 5.6 is implied if Terms 1 and 2 are both bounded by 1
2
D′
M ln

D′
M

2
NxNy

HM
.

We first check this for Term 2 only. By Observation 5.7, it holds ln(eD′
M) ≤

D′
M . Thus,

1

2
D′
M ln

D′
M

2
NxNy

HM
> 2 ln(eD′

M) + 2D′
M

is implied by D′
M > e4 ⋅

√
HM
NxNy

yielding the second term of the maximum in
the final inequality (5.8). For any such D′

M , Inequality (5.6) holds if

D′
M ln

D′
M

√
NxNy

√
HM

> 2 ln
Nx +Ny

2M
. (5.7)

By substitution of D′
M by e4 ⋅

√
HM
NxNy

, Inequality (5.7) already holds if
√
H > 1

2e4

√
NxNy

M
ln

Nx+Ny

2M
. For

√
H ≤ 1

2e4

√
NxNy

M
ln

Nx+Ny

2M
, we use Observa-

tion 5.8 with y =

√
NxNy

HM
and x = 2 ln Nx+Nx

2M
yielding the first term of the

maximum in (5.8). Altogether, for

D′
M > max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

8 ln
Nx+Ny

2M

ln (
16NxNy

HM
ln2 Nx+Ny

2M
)
, e4

⋅

√
HM

NxNy

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(5.8)

not all possible graphs in G are covered and therefore, Lemma 5.10 holds.

Since the second term is a sufficient bound for any
√
H > 1

2e4

√
NxNy

M
ln

Nx+Ny

2M
,
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we use ln – which is at least 1 – instead of ln to derive a closed formula by
bounding the first term. Finally, note thatD′

M > 4 holds forH ≥ max{Nx,Ny}.

Lemma 5.11. Let G be the family of bipartite graphs G = (U ∪V,E) with ∣U ∣ = Nx,
∣V ∣ = Ny and ∣E∣ =H for H ≤ NxNy/2.

For anyM ≤H , there is a graphG ∈ G such thatG contains at mostM −1 edges
in subgraphs GS = (US ∪ VS ,ES) with ∣ES ∣ ≤ M and average degree D′ ≥ 2e4∆
where ∆ is defined according to Theorem 5.6.

Proof. By Lemma 5.10, this holds already for subgraphs consisting of exactly
M edges. For smaller subgraphs, we prove the statement by contradiction.

Suppose that there are at leastM edges in subgraphs with average degree
at leastD′ consisting of less thanM edges. Let S be the set of such subgraphs.
Since each subgraph in S has less than M edges, there exists a subset S′ of
subgraphs in S with a total number of cM edges for 1 ≤ c < 2. The subgraph
GS′ = (US′ ∪ VS′ ,ES′) induced by S′ has obviously still average degree at
least D′.

W.l.o.g. let ∣US′ ∣ ≥ ∣VS′ ∣ and consider the vertices US′ in GS′ . Now choose
the ⌈M

D′ ⌉ vertices in US′ with highest degree, and let U ′
S′ denote the set of

these. Since the verticesUS′ have average degree at leastD′ inGS′ , the subset
U ′
S′ cannot have a lower average degree than that. Hence, the subgraph G′

S′

induced by U ′
S′ and VS′ contains at least M edges, but consists of no more

than M
D′ +

cM
D′ + 1 vertices. Therefore, any subgraph induced by exactly M

edges of G′
S′ has average degree at least 2MD′

M+cM+D′ . Since D′ ≤
√
M , the

average degree is at least 2D′
2+c ≥ 1

2
D′. This contradicts Lemma 5.10 for any

D′ ≥ 2D′
M .

With the use of this lemma, we can finally prove Theorem 5.6. To this
end, we apply the method by Hong and Kung described in Section 2.1. Re-
call that Lemma 5.10, and thus, 5.11 fails for D′

M >
√
M . However, the

maximum average degree of a subgraph with M edges is
√
M . The total

number of elementary products necessary for SDM is HNz. Thus, we use
Lemma 2.4 with the potential Φ describing the number of elementary prod-
ucts such that the final potential is Φ(T ) =HNz. By Lemma 5.11, there are at
most Nz(M − 1) elementary products which might be calculated faster than
the rest. Hence, we ignore the computation of these elementary products
and let Φ(0) = Nz(M − 1). For the remaining HNz −NzM +Nz elementary
products, the following holds. Within each sequence of M/B I/Os, there
are at most 2M records of B and C loaded. Let sij , tij be the number of
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records from the jth column of B, C respectively, loaded during the ith se-
quence. By Lemma 5.11 and the observation that any subgraph has degree
at most

√
M , there can be made no more than ∑Nz

j=1 min{D′,
√
M} ⋅ sijtij =

2M ⋅min{D′,
√
M} elementary products in each sequence. This implies a po-

tential change by each sequence of ∆(M) ≤ 2M ⋅min{D′,
√
M}. Hence, there

have to be at least
HNz −NzM +Nz

2M ⋅min{D′,
√
M}P

sequences per processor which yields a lower bound of

M

B

⎛

⎝

HNz −NzM +Nz

2M ⋅min{D′,
√
M}P

− 1
⎞

⎠
= Ω(max{

HNz

PB∆
,
HNz

PB
√
M

})

I/Os for SDM given that M ≤H/2.
Note that in our lower bound, we also considered matrices that con-

tain empty columns or rows, i.e. without any non-zero entries, because we
did not require that each vertex has degree at least 1. However, by adding
max{Nx,Ny} to any matrix, a matrix without any empty columns or rows
can be obtained. Hence, the lower bounds hold for matrices with H non-
zero entries that have no empty columns or rows, by using H −max{Nx,Ny}

as the number of edges. This does not change the statement asymptotically
for any H ≥ 2 ⋅max{Nx,Ny}.

5.4.1 Closing the Parameter Range

Recall that Lemma 5.11 only holds forH ≤ NxNy/2, and we assumedH ≥ 2M .
However, Ω (max{ HNz

PB∆
, HNz

PB
√
M

}) is a lower bound for NxNy/2 ≤ H ≤ NxNy

as well since increasing the number of non-zero entries in A cannot decrease
the number of I/Os. For H ≤ M a scanning bound of Ω (

H+NxNz+NyNz

PB
)

holds for reading the inputs A, B, and writing the output C. As argued
in Section 5.1, the scanning bound dominates the term max{ HNz

PB∆
, HNz

PB
√
M

}

for H ≤M .

5.5 Conclusion

We presented upper and lower bounds for the task of multiplying a sparse
matrix with a dense matrix, for arbitrary dimensions Nx,Ny,Nz ≥ B and
number of non-zero entries H in the sparse matrix. Assuming a tall cache
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M ≥ B1+ε, upper and lower bounds are matching up to constant factors.
In order to show that a program for the non-uniform algorithm can be con-
structed in polynomial (preprocessing) time, we presented a deterministic
strategy to identify a subgraph, limited by the number of edges, with a guar-
anteed degree above the average degree for every bipartite graph. Together
with Chapter 4, this yields lower bounds, and asymptotically optimal algo-
rithms, for multiplying a sparse matrix with an arbitrary number of dense
vectors – or equivalently multiplying a sparse matrix with a dense matrix
with arbitrary dimensions. However, the lower bounds of both chapters rely
on significantly different arguments.

For the results presented in this chapter, we restricted ourselves to the
case P ≤ HNz

M3/2 . However, all the algorithms can be extended to larger P
as long as HNz

P
≥ B3/2+ε. This allows for transposing B and C in scanning

time. To this end, internal memory can simply be restricted to a smaller

virtual internal memory of size M ′ such that HNz√
M ′P

=M ′, i.e. M ′ = (HNz

P
)

2/3
.

The algorithms can obviously be executed for PEM parameters B,P , and
M ′ <M .

For a lower bound on the number of I/Os, we can argue as follows.
After ` I/Os, internal memory of each processor can contain at most `B
records. Hence, for `B < M , we consider a sequence of ` I/Os and apply
the arguments for Hong-Kung sequences from Section 2.1 similar to Sec-
tion 5.4. Assuming `B ≤ 1

2
H , at least H/2 non-zero entries cannot be as-

signed to a subgraph with average degree more than min{D′
`B ,

√
`B} by

Lemma 5.11. The number elementary products involving these H/2 non-
zero entries that can be created in the sequence of ` I/Os is thus bounded
above by 2`BP min{D′

`B ,
√
`B}. Calling for this term to be at least HNz/2

leads to a lower bound on the number of I/Os of

Ω(max{
HNz

PBD′
`B

,
(HNz)

3/2

P 3/2B
,
H +NxNz +NyNz

PB
}) (5.9)

for SDM. Finally, for M > `B > 1
2
H , a scanning lower bound is sufficient

for matching upper and lower bounds. However, this case is included in
(5.9) as explained in the last paragraph of the introduction when applying
M ′ = `B < M . These complexities are obviously matched by the presented
algorithms restricted to smaller virtual internal memory M ′.
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A × B

Sparse × Sparse

6.1 Introduction

Having considered the multiplication of a sparse matrix with a dense ma-
trix, the natural question arises which I/O complexities are implied when
multiplying a sparse matrix with another sparse matrix (SSM). This is also
an interesting problem in database queries [ACP10]. Multiplying two sparse
matrices reveals some similarities to the join operation in relational database
systems in that the two matrices are joined by the column index of A and
the row index of B. However, if not combined with other operations, a join
operation does not involve any process similar to the summation of elemen-
tary products. When requiring the output in column major layout, a join
operation that is similar to matrix multiplication could be expressed by the
following mySQL statement.

SELECT t1.value, t2.value FROM t1 JOIN t2 ON t1.column=t2.row

ORDER BY t2.column, t1.row

Of course, this similarity holds for dense matrix multiplication as well. Nev-
ertheless, tables in database applications are usually rather sparse.

Multiplying a sparse matrix A with a single sparse vector changes the
considerations in Chapter 4 only in that some columns of A become irrel-
evant. Ignoring the non-zero entries of A within the not required columns
only changes the layout of A. Especially, if Nx > H/B, i.e. the average col-
umn spans more than one block, the asymptotic complexities correspond to
the multiplication with the matrix A′ where the irrelevant columns are re-
moved. However, when considering the multiplication of A with another
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sparse matrix B with arbitrary conformation, all the non-zero entries of A
can be important again.

For simplicity of exposition, we restrict ourselves in this chapter to the
case of multiplying square matrices. The number of elementary products
that have to be created for the matrix C = A ⋅ B strongly depends on the
conformations of A and B, and so does the number of non-zero entries in C.
For the simple task of multiplying anN×N matrix A that contains one dense
column (w.l.o.g. let the first column contain only non-zero entries) with the
N × N matrix B having a dense row in matching dimension (the first row
contains only non-zero entries), N2 elementary products and N2 entries of
C have to be created. In this case, the I/O complexity is dominated by the
output of the dense matrix C which requires Θ ( N

2

PB
) I/Os. The efficient

estimation of the size of the result matrix C is a problem of its own (see
e.g. [ACP10]) that we will not tackle here.

Hence, we restrict ourselves to matrices that are regular in their columns
or rows, i.e. that have a fixed number of non-zero entries per column or row.
The product can be written as C = ∑

N
i=1 aibi where ai is the ith column vector

of A and bi is the ith row vector of B. Observe that a matrix C can have at
most k1k2N entries in the following two cases: If A is k1-column regular, i.e.
has k1 non-zero entries in each column, the number of elementary products
is ∑Ni=1 k1 ⋅ bi = k1k2N where bi is the number of non-zero entries in the ith
row of B. Similarly, if B is k2-row regular, i.e. contains k2 non-zero entries
per row, each non-zero entry in A is multiplied with k2 records of B such that
there are k1k2N elementary products that have to be evaluated. Obviously,
the number of elementary products bounds the number of non-zero entries
in C from above. However, only for k1k2 < N this yields a non-trivial upper
bound.

In the worst-case, for any k1k2 ≤ N/14, the result matrix C contains at
least k1k2N/4 non-zero entries. To this end, consider A as the adjacency
matrix of a bipartite graph with degree k1. We aim to find A such that any
subset of k2 nodes on one side has at least k1k2/4 neighbours. In Lemma 6.1,
it is shown that such a bipartite (expander) graph exists. Then, any sum of
k2 column vectors of A contains at least k1k2/4 non-zero entries. Since each
column vector in C is a (weighted) sum of column vectors of A, C contains
at least k1k2N/4 non-zero entries for such A if B is k2-column regular.

Lemma 6.1. For k1k2 ≤ N
14

, there is a bipartite graph G = (U ∪ V,E) with ∣U ∣ =

∣V ∣ = N where every node in U has degree k1, and any set S ⊆ U of k2 nodes has at
least k1k2

4
neighbours.

Proof. Several considerations of expanders are presented in Chapter 8. Thus,
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we refer the reader kindly forward to Lemma 8.17 presented in Chapter 8.
There, the class of bipartite graphs G = (U ∪ V,E) with ∣U ∣ = N1, ∣V ∣ = N2,
degree D for each node in U and degree N1D/N2 for each node in V is con-
sidered. For this class, the existence of a graph in the class is shown where
each subset S ⊆ U of size ∣S∣ ≤ N2/((1 − ε)e

3/εD) has a neighbourhood of
size (1 − ε)D∣S∣. Setting ε = 3

4
and using k1k2 ≤ 4N/e4, there is a graph for

N1 = N2 = N and D = k1 such that each set S ⊆ U of size ∣S∣ ≤ k2 has at least
k1k2

4
neighbours in V .

Unfortunately, SSM seems more difficult to analyse than the previous
tasks. The lower bounds derived from the techniques in Chapter 2 are match-
ing our algorithms only for few parameter ranges. With the counting tech-
nique applied in Chapter 4 for a lower bound on SPMV, the impact of the
block structure of external memory on SSM can be exploited. However, it
turns out that upper and lower bounds are matching only for the case that
k1 and k2 are smaller than B, and smaller than N/(2B). As we will see, es-
pecially the complexity of the direct algorithm cannot be obtained by this
technique.

The fact that we have matching upper and lower bounds only if k1, k2 ≤ B
seem to indicate a similar separation of the complexities as for SPMV with
multiple vectors, where different techniques where required for w < B and
w > B (which we considered as SDM). Hence, we apply a technique similar
to Chapter 5 which ignores the block structure. These bounds are usually
most useful for the case B = 1, but naturally imply a lower bound for arbi-
trary block size, by a factor 1/B weaker. On the algorithmic side, an exten-
sion of the tile-base algorithm to SSM can be shown to perform well. How-
ever, its optimality can only be shown within a special class of algorithms.
An algorithm in this class creates in each sequence of M/B I/Os only partial
results for C that lie within a submatrix, consisting of the intersection of a set
of columns and a set of rows, with at most M records.

Similar to Chapter 5, the existence of denser than average parts of the
matrices can be shown. However, different than for SDM, the existence of
a single denser zone cannot be used directly to obtain a fast (non-uniform)
algorithm. Nevertheless, we state the proof of the existence to show what
bounds on the density can be achieved.

We make use of a probabilistic argument based on the graph represen-
tation of the matrix product of A and B. Consider each matrix as the ad-
jacency matrix of a bipartite graph, where each non-zero entry aij in row i
and column j induces an edge from Ui to Vj . Recall that in matrix matrix
multiplication, the number of columns of A and the number of rows of B
correspond. Let GA = (U ⊍ V,EA) be the bipartite graph described by A and
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GB = (V ⊍W,EB) be the bipartite graph of B. Then, the combined graph is
G = (U ⊍ V ⊍W,EA ⊍EB) (cf. Figure 6.1). This is a common representation
used for sparse matrix multiplication (see e.g. [Coh98]). Any path of length
2 from a node ui ∈ U over vj ∈ V to a node wk ∈ W can now be considered
as an elementary product aij ⋅ bjk, which is thus part of the resulting entry
cik. Consequently, if there is no path of length 2 from some ui ∈ U to wk ∈W ,
the position cik in the result matrix will be zero. On the other hand, note that
if a subgraph contains multiple paths (ui, vj ,wk) for fixed i, k including sev-
eral nodes vj1 , . . . , vjD the partial sum for cik consisting of the D elementary
products aij1bj1k +⋅ ⋅ ⋅+aijDbjDk can be computed using only edges (non-zero
entries) present in the subgraph.

6.2 Algorithms

6.2.1 Direct Algorithm and its Variants

As usually, for the direct algorithm, each elementary product is created by
accessing the required records directly, and adding the result to the partial
sum in C. The k1k2N elementary products can be created in an arbitrary
order, each inducing one access to records of A and B, and possibly a partial
result of C, and one output of the partial sum for C. Thus, the result matrix

u1 u1

w1 w1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

u2 u2

w2 w2

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

u3 u3

w3 w3

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

u4 u4

w4 w4

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

u5 u5

w5 w5

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0u6 u6

w6 w6

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
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⋅ =

u1 w1

u2 w2

u3 w3

u4 w4

u5 w5

u6 w6

u1 w1

u2 w2

u3 w3

u4 w4

u5 w5

u6 w6

Figure 6.1: Sparse matrix multiplication considered as a graph. Each path of
length 2 from left to right stands for an elementary product.
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C can be created with O(k1k2N) I/Os by a single processor. When using
P ≤ N2

B
processors, each processor can be assigned to compute the results in

N2

PB
blocks of C. Then, O(k1k2N

P
) I/Os are sufficient.

Recall that if B is a dense matrix, the direct algorithm for SDM from
Chapter 5 only induces O(k1N

2

B
) I/Os. In the same sense, the evaluation of

elementary products can be performed for SSM with only O(k1k2N
PB

) I/Os:
Multiplying each record of B with the records in a single column of A in-
duces O(k2N

P
⌈k1
B
⌉) I/Os if A is in column major layout. However, organis-

ing the results in a desired layout for C, and especially summing up elemen-
tary products presents a problem.

If a column major layout is desired and B is k2-column regular, the fol-
lowing can be done. The k1k2N elementary products are evaluated as de-
scribed above with O(max{k1k2N

PB
, k2N
P

}) I/Os, where B is read column-
wise. The results are written to disk in the order they are created. Hence,
there are k1k2 elementary products that belong to the same column of C writ-
ten as contiguous records, consisting of k2 runs of k1 elementary products are
ordered by row index. Then, it is possible to merge the k2 runs to form a col-
umn of C. This takesO(k1k2N

PB
logd k2) I/Os for d = max{2,min{M

B
, k1k2N

PB
}},

and with another scan, elementary products that belong to the same output
record cij can be summed up.

If A is k2-row regular, and B is in row major layout, C can be created
in a row major layout with O(max{k1N

P
, k1k2N

PB
} + k1k2N

PB
logd k1) I/Os in the

same manner.

6.2.2 Sorting-Based Algorithm

In the following, we describe an algorithm for the case that A and B are
both in column major layout, and C is required in column major layout as
well. Furthermore, we assume again that B is k2-column regular. First, the
columns of B are used as pre-sorted runs for the PEM merge sort to form k2

meta-columns which are internally ordered row-wise, each consisting of N
records. According to the description of sorting-based algorithms for SPMV
in Section 4.2.2, this merging is possible with O(k2N

PB
logd

N
max{B,k2}) I/Os.

Now, for each meta-column, the matrix A is scanned simultaneously with
the records of the meta-column to create all the elementary products that
involve records from the current meta-column. Because the meta-columns
are in row-major layout and A is in column major layout, one scan of A per
meta-column in B is sufficient. Thus, this step requiresO(k1k2N

PB
) I/Os. Note

that each record of B is involved in k1 elementary products. After scanning
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A and creating elementary products in a meta-column, there are hence k1N
elementary products created for this meta-column which are still in some
arbitrary ordering.

Sorting the elementary products that result from a meta-column of B by
their column index (and row index within a column) in the output C takes
O(k1N

PB
logd

k1N
B

) I/Os. Performing the sorting for all of the k2 meta-columns
yields a column major layout of all elementary products of C. With another
scan, elementary products that belong to the same position in C are summed
together. A possible gather step induces O(logN) I/Os and is justified for
column major layout by the lower bound in Section 2.4. Altogether, this
algorithm has an I/O complexity ofO(k1k2N

PB
logd

k1N
B

+ logN) which can be
shown to be optimal for k1, k2 ≤ B.

6.2.3 Tile-Based Algorithm

This algorithm is an extension of the tile-based algorithm in Section 5.2.3,
which in turn was based on an algorithm for dense matrix multiplication
(see [KW03]). The output matrix C is generated, partitioned into x × y tiles
with x ⋅ y =M As described in Lemma 6.1, for k1k2 ≤ N/14 there are graphs
where the number of elementary products in a tile of C is only a constant
factor higher than the number of matrix positions in the tile. Hence, this
algorithm only becomes interesting when k1k2 > N . The layout of the input
matrices is assumed to be given in meta-rows and meta-columns according
to the tiles in C. We assume that A is given in meta-rows of x rows which
are internally ordered in a column major layout. The matrix B is given in
meta-columns of y columns that are each ordered row-wise. For the ease of
notation, we assume an internal memory size of 3M for this algorithm. This
will, however, not change the asymptotic I/O complexity.

Let x =
√
Mk2/k1 and y =

√
Mk1/k2. For each x× y tile in C, we compute

its content by scanning simultaneously through the meta-row of A consist-
ing of the x corresponding rows and meta-column of B that consists of the
y corresponding columns. This yields all the required records to create all
elementary products for the tile. In this scanning, the (at most) M partial
results of the tile are kept in memory, and for each 1 ≤ i ≤ N the ith column
of the meta-row in A is read together with the ith row of the meta-column
in B. Since the number of rows in a meta-column of A is less than M , all the
records of a column from this area can be kept in memory. The same holds
for B.

The number of tiles in a row of C is ⌈N/y⌉. Similarly, we have ⌈N/x⌉ tiles
per column in C. Recall again that a record in A is only required for tiles



6.3. LOWER BOUNDS 125

of C that lie in the same row. Hence, each of the k1N records of A is read
at most ⌈N/y⌉ times. Similarly, each of the k2N records of B is read at most
⌈N/x⌉ times.

Hence, in the serial case, the number of accesses to A is bounded by
k1N
B

⌈N/y⌉ = ⌈
N2√k1k2
B
√
M

⌉ I/Os. The same number of I/Os are sufficient for

reading B. For writing the results, O(N2/B) I/Os suffice. Altogether, the

algorithm requires O(N
2

B
(

√
k1k2
M

+ 1)) I/Os in the serial case. Thus, the

tile-based algorithm can asymptotically outperform the direct algorithm for
k1k2 ≥ N

2/M by a factor of N√
k1k2M

.
For any number of processors P ≤ N2/B, the tiles can be computed sep-

arately by different processors. This reduces the number of parallel I/Os to

O( N
2

PB
⌈

√
k1k2
M

⌉).

6.3 Lower Bounds

6.3.1 Lower Bound for By Counting Arguments

From Chapter 4, we can derive the following simple reduction. If B is a ma-
trix with k2/2 ≤ B dense columns, we can apply Theorem 4.5 which is stated
for SPMV with w vectors, by setting w = k2/2, Nx = Ny = N , and H = k1N .
Note that such a B can especially be k2-row regular, and recall that in the
proof of Theorem 4.5, column-regular matrices A are investigated. Hence,
the considered case of matrix multiplication are covered by the theorem. This
yields a lower bound of

Ω
⎛
⎜
⎝

min

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

k1N log ( k2N
k1Bmin{M,k1k2N/P} log k1N)

P log k1N
,
k1k2N

PB
logd

N

k1B

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

⎞
⎟
⎠
.

Similarly, by exchanging the roles of A and B in the reduction, assume that
A is a (k1-column regular) matrix with k1/2 ≤ B dense rows. Thus, we obtain
a lower bound of

Ω(
k1k2N

PB
logd

N

min{k1, k2}B
)

for the case that min{k1, k2} ≤ B logdN . This comes close to the complexity
of the sorting-based algorithm and is asymptotically matching if furthermore
k1 ≤ N/(2B) holds.

The reduction is most obvious for the case that B, or A, contains dense
columns, or rows respectively. However, the bounds hold basically in any
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setting where B contains at least k2/c records in each row for some constant
c ≥ 1, or A contains at least k1/c records per column.

6.3.2 Lower Bound for a Class of Algorithms

In the following, we construct a lower bound on the number of I/Os any
program P for SSM induces if each sequence of M/B I/Os in P writes only
partial results from C to disk that lie within a (pseudo rectangular) subma-
trix consisting of at most M positions. We refer to this class of algorithms as
pseudo rectangular algorithms. Similar to Chapter 5, a pseudo rectangular
submatrix consists of the matrix entries that belong to the intersection of a
set of columns and a set of rows (permuting rows and columns in the ma-
trix yields a rectangular submatrix). Hence, we require that the product of
the number of selected columns and the number of selected rows is at most
M . In other words, the bound holds for any program P where within any
sequence of M/B I/Os in P , at least a constant fraction of the elementary
results that can be created, are created and are predecessors of C.

While this seems to be a somewhat arbitrary assumption, any such algo-
rithm reveals spacial locality when writing and summing partial results of C.
For block size B > 1, it seems desirable to write partial results in a structured
layout which enables fast summation of partial results for the same output-
record. We conjecture that the presented bound holds for the worst-case I/O
complexity of any algorithm for SSM. Unfortunately, we where not able to
prove the general case.

Theorem 6.2. There are twoN ×N matrices A and B where A contains k1N non-
zero entries and B contains k2N non-zero entries such that any pseudo rectangular
algorithm requires

Ω
⎛

⎝

k1k2N

PBmin{D,
√
M}

⎞

⎠

I/Os for

D = max

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(7 − 4ε) logN

log ( N2

8k1k2M
log2N)

,2e

√
k1k2M

N

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (6.1)

if M ≤ N1−ε with constant ε > 0. Furthermore, A and B are regular in one dimen-
sion such that at most k1k2N elementary products have to be created.

We prove the theorem in the remainder of this section. Similar to the
lower bound in the previous chapter, we make use of the technique of consid-
ering the progress within sequences of M/B I/Os, like introduced in [HK81]
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by Hong and Kung and described for the PEM model in Section 2.1. Re-
call that within one sequence of M/B I/Os, each single processor can per-
form computations involving at most 2M records: M records that are read
throughout the sequence and another M records that resided in internal
memory at the beginning of the sequence. Similarly, at most 2M results can
be written to external memory or reside in internal memory at the end of the
sequence. Hence, only 2M results can serve as predecessors of the output.

Since there are k1k2N elementary products that have to be created for
SSM, it is sufficient to bound the number elementary products that can be
created within a sequence of M/B I/Os by a single processor. For a given
upper bound D, we can apply Lemma 2.4 where the number of elementary
products created so far serves as the potential Φ. Hence, we have Φ(0) = 0,
Φ(`) = k1k2N and an upper bound on the change of the potential cause by
a single processor within a sequence of M/B I/Os ∆ ≤ D. Lemma 2.4 then
yields Theorem 6.2 if the bound on D is shown.

Recall that in Chapter 5 it was sufficient to consider denser submatrices
with at most M records in A only. In these considerations, the bound was
stated for submatrices with exactly M records because too many smaller
dense submatrices imply that there is a dense submatrix with exactly M
records of A. The number of records from B that are loaded and the number
of partial results written to external memory for C only influence the argu-
ment of Hong Kung sequences. If both A and B are sparse matrices, we
have to consider denser submatrices in A and B that consist together of at
most M records. In this case, it could be possible that one of the submatri-
ces always consists of strictly less than M records, even if both submatrices
together contain M records. To account for these asymmetric situations, we
parameterise the number of records that are accessed during one sequence
of M/B I/Os.

To lower bound the number of I/Os of a program that creates all the re-
quired k1k2N elementary products (each of them being a predecessor of an
output-record), we upper bound the progress of an arbitrary round, i.e. the
number of elementary products created as a predecessor of the output. To
this end, letMA andMB be the records of A and B that are involved in com-
putations within the considered sequence, and letMC be the results serving
as predecessors of the output C. Obviously, we have ∣MA∣ + ∣MB∣ ≤ 2M and
∣MC∣ ≤ 2M . Let us now consider possible distributions of records in MA,
MB andMC within the matrices A, B and C that lead to many elementary
products. Similar to the previous chapters, we assume that programs are
normalised as described in Chapter 2 such that only elementary products
are created which are a predecessor of an output-record (i.e. no product is
created which is deleted afterwards). We show that, for any M ≤ N1−ε, the
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overall number of elementary products that can be created by a single pro-
cessor within a sequence of M/B I/Os is bounded from above by 5DM . To
this end, we first carve out interesting parts ofMA,MB andMC as follows.

For the ease of notation, let Mi = ∣Mi∣ for i ∈ {A,B,C} from now on.
Furthermore, we assume an internal memory of M/2 such that Mi ≤ M ,
i ∈ {A,B,C}, holds. Following the proof of the lower bound for dense matrix
multiplication in [HK81], the following observations can be made: Firstly,
note that each record in B can only be multiplied with records from a single
column in A. Consider the set of columns in A with at most DA ∶=DM/MB

records inMA so that each record from B can be used to create only DA ele-
mentary products. Since onlyMB records from B can be involved in compu-
tations, at most DAMB =DM elementary products can be created involving
columns of A with no more than DA records inMA. Note that there are at
most MA/DA = MAMB/DM columns of A with more than DA records in
MA. Similarly, each record in A can be multiplied with records from one
row in B. Any row in B with no more than DB ∶= DM/MA records inMB

can lead to at most DBMA = DM elementary products. It remains to con-
sider indices i ∈ {1, . . . ,N} such thatMA contains at least DA records from
column i andMB contains at leastDB records from row i. The set of such in-
dices has size at most MAMB/DM , which yields a bound on the interesting
parts ofMA andMB that do not trivially lead to at most 2DM elementary
products.

By similar arguments, the number of interesting rows in A and C is lim-
ited to MAMC

DM
, and the number of interesting columns in B and C is at most

MBMC

DM
: Each partial result in C contains only elementary products involving

A

B

C

≤ MAMB

DM

≤ MAMC

DM

≤ MBMC

DM

Figure 6.2: Parts of the matrices that can lead to a faster computation. In
this case, the pseudo rectangular submatrices are rectangles, which can be
achieved by permuting rows and columns in A, B and C.
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a single row of A (and a single column of B). Hence, all rows of A with less
than DM/MC records in MA contribute to at most DM elementary prod-
ucts, and there are at most MAMC/DM rows with more records inMA. The
number of columns in B with more than DM/MC records inMB is limited
to MBMC

DM
. Altogether, the overall number of elementary products that can be

created with records (i) from columns of A with at most DA records inMA,
(ii) from rows of B with few records in MB, (iii) from rows of A and (iv)
from columns of B with few records loaded, is upper bounded by 4DM .

Only an intersection of MAMB

DM
columns of A and rows of B, with MAMC

DM

rows in A, or MBMC

DM
columns in B respectively, can lead to more than DM

elementary products in the sequence. Hence, we can assume in the fol-
lowing for an upper bound on D that all records of MA, MB and MC

lie within such interesting parts. All this holds for any algorithm, not only
those that create pseudo rectangular submatrices in C. In the following, we
restrict ourselves to algorithms that create a pseudo rectangular submatrix
withMC ≤M records in C. We identify the extend of such a pseudo rectangle
by its number of rows γ ≤ MAMC

DM
and the number of columnsMC/γ ≤ MBMC

DM
.

A part in A that can lead to more than DM elementary products in a
pseudo rectangular submatrix of C has dimensions at most γ × MAMB

DM
. For

the ease of notation, let δ ∶= MAMB

DM
in the following. Note that by assumption

γ ⋅ δ ≥ MA has to hold in order to have all records ofMA in the interesting

part. By the above considerations, we have γ ⋅δ ≤ M2
AMBMC

D2M2 and hence require

D ≤
√
MAMBMC

M
≤

√
M . We aim to estimate the number of N ×N matrices

with k1 non-zero entries per column that contain a γ × δ submatrix with MA

non-zero entries. To this end, we fix the δ columns in A and bound the
number of possibilities to choose the γ rows of the submatrix. Together with
the number of choices to place k1 non-zero entries in the remaining columns,
the number of choices to fill the γ × δ submatrix, and the possibilities to fill
the δ columns such that each column contains k1 entries, we have

(
N

γ
)(
N

k1
)

N−δ
⋅ ∑
x∈X

δ

∏
i=1

(
γ

xi
)(

N

k1 − xi
) (6.2)

where X ⊂ Nδ is the set of vectors of dimension δ such that for each vector
x ∈ X, x = (x1, . . . , xδ), it holds xi ≤ k1 and∑δi=1 xi =MA. Using the following
observation, the fraction of matrices that contain MA non-zero entries in a
submatrix can be bounded from above.

Observation 6.3. Let x1, . . . , xs be natural numbers with 0 ≤ xi ≤ k ≤ N/2,
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1 ≤ i ≤ s, and ∑si=1 xi =M ≤ N . Then, it holds

(
N
k
)
s

∏
s
i=1 (

N
k−xi)

≥ (
N − k

k
)

M

. (6.3)

Proof. By definition of binomial coefficients, we have

(
N
k
)

(
N
k−xi)

=
N !(k − xi)!(N − k + xi)!

N !k!(N − k)!
=
xi−1

∏
j=0

N − k + xi − j

k − j
≥
xi−1

∏
j=0

N − k − j

k − j
.

Observe that for k ≤ N/2, for each 0 ≤ j < k it holds that N−k−j
k−j ≥ N−k

k
. Using

∑
s
i=1 xi =M establishes the lemma.

Applying Observation 6.3 to (6.2) shows that a fraction of at most

(
N

γ
) ⋅ (

γδ

∑x∈X xi
)(

k1

N − k1
)

MA

= (
N

γ
) ⋅ (

γδ

MA
)(

k1

N − k1
)

MA

of all possible k1 regular N × N matrices contains a γ × δ submatrix with
MA non-zero entries for a fixed set of δ columns. By estimating the binomial
coefficient using Observation 2.1 and the trivial bound of (

n
k
) ≤ nk, and by

substituting δ, we obtain an upper bound of

Nγ
(
eγMB

DM
)

MA

(
k1

N − k1
)

MA

.

Furthermore, this term can be bounded from above by estimating MB ≤ M ,
k1 ≤ N/2 and γ ≤ MAMC

DM
≤ MA

D
yielding

α(MA, γ) ∶= min{1,N
MA
D (

2ek1γ

DN
)

MA

} . (6.4)

where we used that the fraction can be at most 1.
In the same manner, the fraction of k2 regular N ×N matrices with MB

records in a MAMB

DM
×MC/γ submatrix with a fixed row set is upper bounded

by

β(MB, γ) ∶= min{1,N
MB
D (

2ek2M

DNγ
)

MB

} (6.5)

where we estimate similarly MA,MC ≤ M , MC/γ ≤ MBMC

DM
≤ MB

D
and k2 ≤

N/2.
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Only if both matrices contain a submatrix with sufficiently many non-
zero entries, DM elementary products can be created. Similarly to the proof
of the lower bound in Chapter 5, we show that this is not always the case,
i.e. not for all combinations of matrices A and B. To this end, we prove that
the product of the fractions of matrices A and B that contain the required
submatrices is strictly smaller than 1 for D according to Equation 6.1. This
holds even for the sum over the fractions of “bad” matrices for all choices of
MA, MB and MC which is expressed in the following inequality.

M

∑
MA=1

M

∑
MB=1

M

∑
MC=1

MAMC
DM

∑
γ=D

(
N

γ
)α(MA, γ) ⋅ β(MB, γ) < 1 (6.6)

We prove (6.6) throughout this section. To this end, we show that every
single summand is upper bounded, i.e.

(
N

MAMB

DM

)α(MA, γ) ⋅ β(MB, γ) <
1

M4
(6.7)

for any choice of MA,MB,MC, and γ. Thus, it is sufficient to show that

f(MA,MB, γ) ∶= N
MAMB
DM α(MA, γ) ⋅ β(MB, γ) <

1

M4
. (6.8)

In the following, we distinguish between three cases depending on α(MA, γ)
and β(MB, γ).

Case I Assume that

α(MA, γ) < (
1

N
)

MA
2D

β(MB, γ) < (
1

N
)

MB
2D

.

The exponent ofN in (6.8) can be bounded MAMB

DM
≤ MA

2D
MB

2D
so that bounding

(N
MA
2D α(MA, γ)) ⋅ (N

MA
2D β(MB, γ)) (6.9)

yields the desired result. Note that reducing MA or MB, which appear only
as exponents, can only increase (6.9) in the considered case. Hence, (6.9)
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can be bounded by substituting MA and MB with M ′ ∶= min{MA,MB}.
Substituting α(MA, γ) and β(MB, γ) in (6.9) yields an upper bound of

N
3M′
D (

4e2k1k2M

D2N2
)

M ′

.

Taking logarithms, it remains to show that

3
M ′

D
logN +M ′ log

4e2k1k2M

D2N2
< −4 logM

which is equivalent to

D log
D2N2

4e2k1k2M
> 3 logN +

4D

M ′ logM .

Note that M ′ = min{MA,MB} ≥ D is required to create DM elementary
products. Furthermore, we assume M ≤ N1−ε so that

D log
D2N2

4e2k1k2M
> (7 − 4ε) logN

needs to be shown. This is the case if the logarithm on the left-hand side is
positive, i.e.

D > 2e

√
k1k2M

N

and additionally, by Observation 5.8,

D >
(7 − 4ε) logN

log ( N2

4e2k1k2M
⋅ (7 − 4ε)

2
log2N)

.

To fulfil the last inequality,

D >
(7 − 4ε) logN

log ( N2

4k1k2M
log2N)

is a sufficient condition. Thus, for D according to inequality (6.1) there are at
least two matrices A and B such that no submatrices exist that lead to DM
elementary products with only M I/Os by a single processor.
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Case II Now, assume that

α(MA, γ) ≥ (
1

N
)

MA
2D

.

Then, we obtain by substituting α(MA, γ)

N
3MA
2D (

2ek1γ

DN
)

MA

≥ 1

which is equivalent to
1

γ
≤

2ek1

DN
⋅N

3
2D . (6.10)

Since α(MA, γ) is bounded from above by 1, we have

f(MA,MB, γ) ≤ N
MAMB

D β(MB, γ).

Plugging in β(MB, γ) and γ from (6.10), and using the estimation MA ≤ M
yields

f(MA,MB, γ) ≤ N
5MB
2D (

4e2k1k2M

D2N2
)

MB

.

Using this upper bound on f(MA,MB, γ) for (6.8), we obtain after taking
logarithms

5MB

2D
logN +MB log

4e2k1k2M

D2N2
< −4 logM

and by multiplying by D/MB, we finally get

D log
D2N2

4e2k1k2M
>

5

2
logN +

4D

MB
logM

which was already shown for D according to (6.1) in Case I.

Case III Finally, assume that

β(MB, γ) ≥ (
1

N
)

MB
2D

which implies

γ ≤
2ek2M

DN
⋅N

3
2D .
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Using β(MB, γ) ≤ 1 yields

f(MA,MB, γ) ≤ N
MA
D α(MA, γ) ,

and by substituting α(MA, γ) and γ, we obtain

f(MA,MB, γ) ≤ N
5MA
2D (

4e2k1k2M

D2N2
)

MA

which yields the same result as Case II.

The Existence of Dense Structures

While the second term in the maximum of D in (6.1) is matched by the tile-
based algorithm in Section 6.2.3, the first term reveals some similarities to the
upper bound in Section 5.2.4 obtained by the existence of dense subgraphs.
Similar to Section 5.2.4, the existence of denser than average parts can be
shown by a probabilistic argument for SSM as well. Following Chapter 5,
this argument is based on the graph representation of the matrix product
of A and B. However, other than in Chapter 5, the existence of only a sin-
gle dense part does not directly imply sufficiently many such structures that
would allow for a fast computation. While in Section 5.2.4, all elementary
products that involve records from the dense subgraph in A can be eval-
uated quickly, once the records are in memory, for SSM only dense zones
in A and B together lead to a fast computation. Thus, it is not clear if the
records in a subgraph, for instance from A, that lead to a fast computation
involving records within a certain subgraph in B, can be used to obtain el-
ementary products as fast with other records from B. Referring to the three
dimensional view depicted in Figure 6.2, only a small cuboid of elementary
products can be evaluated.

In this sense, we only show the existence of a single dense part to match
the bounds on denser parts in Section 6.3.2. To this end, we will look for sets
of edges SA ⊆ EA, SB ⊆ EB, ∣SA ∪ SB∣ ≤M such that as many distinct paths
(i.e. elementary products) as possible can be generated for only M pairs of
nodes from U ×W . If, in this setting, for each of the M pairs from U ×W on
averageD paths exist, by loading SA∪SB records, DM elementary products
can be created and added up to output only M records.

Lemma 6.4. LetG = (U ⊍V ⊍W,E) be a bipartite graph with ∣U ∣ = ∣V ∣ = ∣W ∣ = N ,
where each node in U has degree k1 ≤ N/2 and each node inW has degree k2 ≤ N/2.
For k1k2 ≤

N2

9M
ln2 N

M
and 2M ≤ N , there is a subgraph GS = (X ⊍ S ⊍ Y,ES) for
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X ⊆ U , S ⊆ V , Y ⊆W with M edges, ∣X ∣ ⋅ ∣Y ∣ ≤M and average degree

D = min

⎧⎪⎪
⎨
⎪⎪⎩

ln N
M

3 ln N2

9Mk1k2
ln2 N

M

,

√
M

2
,
min{k1, k2}

2

⎫⎪⎪
⎬
⎪⎪⎭

for nodes from S into each set X and Y .

Proof. We are aiming to find a set S ⊆ V , ∣S∣ = M/D such that for two sets
X ⊆ U , ∣X ∣ = M/γ, Y ⊆ W , ∣Y ∣ = γ drawn uniformly at random, each vertex
v ∈ S has on average at least D neighbours in both X and Y . To this end, we
first estimate the probability for an arbitrary vertex v ∈ V to have at least D
neighbours in X . This probability is lower bounded by the probability that
X contains exactly D neighbours of v. Hence, Pr [∣Γ(v) ∩X ∣ ≥D] is given by
a hypergeometric distribution:

Pr [∣Γ(v) ∩X ∣ ≥D] ≥ (
M/γ

D
)(

k1 −D

N
)

D

(1 −
k1

N −M/γ
)

M/γ−D

.

Assuming that M/γ ≥ 2D, D ≤ k1/2, and N ≥ 2M/γ, we obtain

Pr [∣Γ(v) ∩X ∣ ≥D] ≥ (
M/γ

D
)(

k1

2N
)

D

(1 −
2k1

N
)

M
2γ

. (6.11)

Similarly, for the neighbourhood of v in Y , we get

Pr [∣Γ(v) ∩ Y ∣ ≥D] ≥ (
γ

D
)(

k2

2N
)

D

(1 −
2k2

N
)

γ
2

(6.12)

assuming D ≤ k2/2, γ ≥ 2D, and N ≥ 2γ.
Since X and Y are chosen independently, the probability of v having in

both sets at least D neighbours is given by the product of (6.11) and (6.12).
Note that there must be a set of S ⊆ V of nodes with at least D neighbours in
X and Y , if the expected value of such nodes is at least ∣S∣. Hence, we want
to choose D and γ such that

(
M/γ

D
)(

k1

2N
)

D

(1 −
2k1

N
)

M
2γ

⋅ (
γ

D
)(

k2

2N
)

D

(1 −
2k2

N
)

γ
2

≥
M

DN

holds. Taking logarithms and estimating binomial coefficients yields

D ln
M

D2
+D ln

k1k2

4N2
+
M

2γ
ln(1 −

2k1

N
) +

γ

2
ln(1 −

2k2

N
) ≥ ln

M

DN
.
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By Lemma 5.4, we have log(1 − x) ≥ −2x for x ≤ 1/2 so that the above is
implied for k1, k2 ≤ N/2 if

D ln
Mk1k2

4N2D2
−

2k1M

Nγ
−

2k2γ

N
≥ ln

M

DN

which is equivalent to

D ln
4N2D2

Mk1k2
+

2k1M

Nγ
+

2k2γ

N
≤ ln

DN

M
. (6.13)

In the following, we investigate for which D and γ each summand on the
left-hand side of (6.13) is bounded from above by 1

3
ln N

M
(recall that D ≥ 1).

For the first term, we want to bound D so that D ln 2ND√
Mk1k2

≤ 1
6

ln N
M

.
Similarly to Chapter 5, we apply Lemma 5.5 which yields

D ≤
ln N

M

6 ln 2N
6
√
k1k2M

ln N
M

. (6.14)

The second term leads to the inequality γ ≥ 6 N
k1M lnN/M =∶ a, while the

third term demands γ ≤ N
6k2

lnN/M =∶ b. Furthermore, we required γ ≥ 2D

and M/γ ≥ 2D throughout our calculations, i.e. 2D ≤ γ ≤M/2D. Hence, we
have to show that there exists a γ fulfilling all these conditions.

We distinguish between the following cases:

• 2D ≤ a and b ≤M/2D: We only have to show that a ≤ b. This is equiva-
lent to k1k2 ≤

N2

9M
ln2 N

M
which holds by our initial assumption on k1k2.

• a ≤ 2D and M/2D ≤ b: There is a γ if D ≤
√
M/2 which holds by

definition of D.

• a ≤ 2D and b ≤ M/2D: We have to prove that 2D ≤ b holds. For k2 ≤

N/2, we have b ≥ 1
3

lnN/M . Any D ≤ 1
6

lnN/M allows therefore the
existence of an appropriate γ.

• 2D ≤ a and M/2D ≤ b: We want to show a ≤ M/2D, i.e. 3 N
k1M lnN/M ≤

M/2D. This is fulfilled for any D ≥ 1
3
k1
N

lnN/M which holds again by
definition since k1 ≤ N/2.

This proves the existence of a γ such that (6.13) holds. Together with
(6.14), this finishes the proof.
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6.4 Conclusion

In this chapter, we applied our techniques – which have been used success-
fully for SPMV and SDM – to derive bounds on the I/O complexities of mul-
tiplying two sparse matrices. With the algorithms presented in Section 6.2 we
achieve an I/O complexity of

O
⎛

⎝
min

⎧⎪⎪
⎨
⎪⎪⎩

k1k2N

P
,
k1k2N

PB
logd k2,

k1k2N

PB
logd

k1N

B
,
N2

PB

⎡
⎢
⎢
⎢
⎢
⎢

√
k1k2

M

⎤
⎥
⎥
⎥
⎥
⎥

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠
.

However, even for k1 and k2 being upper bounded by Nξ for sufficiently
small ξ < 1, our only general lower bound on the number of I/Os becomes
no stronger than

Ω(min{max{
k1N

P
,
k2N

P
} ,

k1k2N

PB
logd

N

min{k1, k2}B
}) .

Hence, we only have asymptotically matching upper and lower bounds for
the case k1, k2 ≤ min{B,N/(2B)}.

Similar to the lower bound above, a counting argument that is based on
comparing the number of programs with the number of tasks can never lead
to a lower bound beyond Ω ((k1 + k2)N/P ): The number of different tasks is
bounded above by

(
N2

k1N
)(

N2

k2N
) ≤ (

eN

k1
)

k1N

(
eN

k2
)

k2N

.

With (k1 + k2)N/P I/Os, any permutation of the (k1 + k2)N records can be
achieved in a direct manner. Hence, there are (k1N + k2N)! configurations
reached by programs with (k1 + k2)N/P I/Os, which exceeds the number
of different SSM tasks. Note that for k1, k2 ≥ B and k1k2 ≤ N , a lower
bound for writing the output of k1k2N

PB
I/Os is already stronger than any

lower bound obtained by the classical comparison of the number of differ-
ent configurations/traces to the number of tasks. Thus, we conjecture that
the lower bounds derived by the counting techniques are too weak. Another
technique seems to be required instead.

Unfortunately, we could neither derive a lower bound for the general
case using density arguments that are similar to Chapter 5. To obtain a lower
bound that seems natural - especially because SDM is a special case of SS
– we had to restrict ourselves to the class of pseudo rectangular algorithms.
However, we believe that a similar lower bound also holds for other algo-
rithms. If the partial results that are created for C within a sequence of M/B
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I/Os do not lie within a pseudo rectangular submatrix, our bound becomes
significantly weaker. Instead, it might be possible to bound the number of
output-records in C, for which at last D elementary products can be created
within a sequence. While the expected number of such records looks promis-
ing, the events are highly dependent and a simple tail bound is not sufficient.
Hence, it seems that more involved arguments and probabilistic estimations
are required to tackle this problem.
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7.1 Introduction

Since its introduction in 2004 [DG04], the MapReduce framework has be-
come one of the standard approaches in massive distributed and parallel
computation. In contrast to its intensive use in practice, theoretical footing is
still limited and only little work has been done yet to put MapReduce on a
par with the major computational models.

In this chapter, a first step towards a comparison to the PEM model is
given. On the one hand, we consider the I/O-efficiency of an algorithm ex-
pressed in MapReduce by presenting algorithms for the simulation of the
framework. On the other hand, our investigation bounds the complexity that
can be “hidden” in the framework of MapReduce in comparison to the PEM
model. The main technical contribution is the consideration of the shuffle step
which is the single communication phase between processors/workers dur-
ing a MapReduce round. In this step, all information is redistributed among
the workers. The insights gained can be helpful when considering the trade-
off between a fitted parallel algorithm and the simple expression and com-
munication structure of MapReduce. It also highlights the work that is done
automatically by the framework. This chapter is based on results that were
published in [GJ11, GJ12].

MapReduce Framework The MapReduce framework [DG04,DG10] can be
understood as an interleaved model of parallel and serial computation. It op-
erates in rounds where within one round the user-defined serial functions are
executed independently in parallel. Each round consists of the consecutive
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execution of a map, shuffle and reduce step. The input is a set of ⟨key, value⟩
pairs.

A round of the MapReduce framework begins with the parallel execu-
tion of independent map operations. Each map operation is supplied with
a single ⟨key, value⟩ pair as input and generates a number of intermediate
⟨key, value⟩ pairs. To allow for parallel execution, it is important that map
operations are independent from each other and rely on a single input pair
only. In the shuffle step, the set of all intermediate pairs is redistributed such
that lists of pairs with the same key are available for the reduce step. The
reduce operation for key k is provided with the list of intermediate pairs with
key k and generates a new (usually smaller) set of pairs.

The original description in [DG04, DG10], and current implementations,
like Hadoop [Whi09], realise this framework by first performing a split func-
tion to distribute input data to workers. Usually, multiple map and reduce
tasks are assigned to a single worker. During the map phase, intermedi-
ate pairs are already partitioned according to their keys into sets that will
be reduced by the same worker. The intermediate pairs still reside at the
worker that performed the map operation and are then pulled by the reduce
worker. Sorting the intermediate pairs of one reduce worker by key finalises
the shuffle phase. Finally, the reduce operations are executed to complete
the round. A common extension of the framework is the introduction of a
combiner function that is similar in spirit to the reduce function. However,
a combine function is already applied during the map execution, as soon as
enough intermediate pairs with the same key have been generated.

Typically, a MapReduce program involves several rounds where the out-
put of one round’s reduce functions serves as the input of the next round’s
map functions. Although most examples are simple enough to be solved in
one round, there are many tasks that involve several rounds such as comput-
ing page rank or prefix sums. In this case, a consideration of the shuffle step
becomes most important, especially when map and reduce are I/O-bounded
by writing and reading intermediate keys. If map and reduce functions are
hard to evaluate and large data sets are reduced in their size by the map func-
tion, it is important to find optimised techniques for the evaluation of these
functions. However, this shall not be the focus here. Karloff et al. [KSV10]
mention that because the shuffle step is a time consuming operation, it is a
general aim to reduce the number of MapReduce rounds.

One can see the shuffle step as the transposition of a (sparse) matrix: Con-
sidering columns as origin and rows as destination, there is a non-zero entry
xij iff there is a pair ⟨i, xij⟩ emitted by the jth map operation (and hence will
be sent to reducer i). Data is first given partitioned by column, and the task
of the shuffle step is to reorder non-zero entries row-wise. Since each mapper
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and reducer is responsible for a certain (known) key, w.l.o.g. we can rename
keys to be contiguous and starting with one. Note that there is consensus in
current implementations to use a partition operation during the map opera-
tion as described above. This can be considered as a first part of the shuffle
step.

Related Work Feldman et al. [FMS+10] started a first theoretical compar-
ison of MapReduce and streaming computation. They address the class of
symmetric functions (that are invariant under permutation of the input) and
restrict communication and space for each worker to be polylogarithmic in
the input size N (but mention that results extend to other sublinear func-
tions). In [KSV10], Karloff et al. state a theoretical formulation of the MapRe-
duce model where space restriction and the number of workers is limited
by O(N1−ε). Similarly, space restrictions limit the number of records each
worker can send or receive. In contrast to other theoretical models, they al-
low several map and reduce tasks to be run on a single worker. Based on this
model, the complexity classMRCi is defined to consist of MapReduce algo-
rithms with O(logiN) rounds. For this model, they present an efficient sim-
ulation for a subclass of EREW PRAM algorithms. Goodrich et al. [GSZ11]
introduce the parameter M to restrict the number of records sent or received
by a machine. Their MapReduce model compares to the BSP model with M -
relation, i.e. a restricted message passing degree of M per super-step. The
main difference, is that in all the MapReduce models, information cannot re-
side in the memory of a worker, but the workers have to resent it to itself
in order to preserve the data for the next round. A simulation of BSP and
CRCW PRAM algorithms is presented based on this model.

The restriction of worker-to-worker communication allows for the num-
ber of rounds to be a meaningful performance measure. As noted in [KSV10]
and [GSZ11], without restrictions on space/communication there is always
a trivial non-parallel one-round algorithm where a single reducer performs
a sequential algorithm.

On the experimental side, MapReduce has been applied to multi-core ma-
chines with shared memory [RRP+07]. They found several classes of prob-
lems that perform well in MapReduce even on a single machine.

Contribution of this Chapter We provide upper and lower bounds on the
parallel I/O complexity of the shuffle step. To this end, we revise the algo-
rithms and lower bound techniques from Chapter 4 with a special adaption
to the different types of map and reduce functions. With the derived bounds,
we can show that current implementations of the MapReduce model as a
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framework are almost optimal in the sense of worst-case asymptotic parallel
I/O complexity. This further yields a simple method to consider the external
memory performance of an algorithm expressed in MapReduce.

Following the abstract description of MapReduce [GSZ11, KSV10], the
input of each map function is a single ⟨key, value⟩ pair. The output of reduce
instead can be any finite set of pairs. In terms of I/O complexity, however, it
is not important how many pairs are emitted, but rather the size of the input
/ output matters.

We analyse several different types of map and reduce functions. For map,
we first consider an arbitrary order of the emitted intermediate pairs. This is
most commonly phrased as the standard shuffle step provided by a frame-
work. Another case is that intermediate pairs are emitted ordered by their
key. Moreover, as a last case, we allow evaluations of a map function in
parallel by multiple processors. For reduce, we consider the standard imple-
mentation which guarantees that a single processor gets data for the reduce
operations ordered by intermediate key. Additionally, we consider another
type of reduce which is assumed to be associative and parallelisable. This
is comparable to the combiner function described before (cf. [DG04]). For
the cases where we actually consider the evaluation of map and reduce func-
tions, we assume that input (output) of a single map (reduce) function fits
into internal memory. We further assume in these cases that input and out-
put read by a single processor does not exceed the number of intermediate
pairs it accesses. Otherwise, the complexity of the task can be dominated by
reading the input, or writing the output respectively, which leads to a differ-
ent character that is strongly influenced by the implementation of map and
reduce. For the most general case of MapReduce, we simply assume that in-
termediate keys have already been generated by the map function, and have
to be reordered to be provided as a list to the reduce workers.

We assume similarly to [KSV10] and [GSZ11] that the number of mes-
sages sent and received by a processor is restricted. More precisely, for NM
being the number of map operations and NR the number of reducers, we
require that each reducer receives at most N1−γ

M intermediate pairs, and each
mapper emits at most N1−γ

R where γ depends on the type of map operation.
However, for the first and the second types of map as described above, any
γ > 0 is sufficient. Only, when considering an associative, parallelisable map
function, we require γ ≥ 5

6
. For NM and NR being meaningful parameters,

we further assume that each mapper emits at least one intermediate pair and
each reducer receives at least one.
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7.2 Upper Bounds for the Shuffle Step

For a clearer understanding of the shuffle step and to use the insights de-
veloped, we use the analogy of a sparse matrix. Let NM be the number of
distinct input keys, and NR be the number of distinct intermediate keys (i.e.
independent reduce runs). Each pair ⟨i, xij⟩ emitted by map operation j can
be considered a triple (i, j, xij), j ∈ [NM ], i ∈ [NR]. Using this notation, one
can think of a sparse NR ×NM matrix with non-zero entries xij . This matrix
is given in some layout determined by the map function and has to be either
reordered into a row-wise ordering, or a layout where rows can be reduced
easily. In the following, we consider input keys as column indices and in-
termediate keys as row indices. The total number of intermediate pairs /
non-zero records is denoted by H . Additionally, we have w, the number of
records emitted by a reduce function, and v, the size of the input to a map
function, where v,w ≤ min{M −B, ⌈H/P ⌉} as argued in the introduction.
Although we consider a broader class of sparse matrix tasks, the algorithms
presented here are similar in spirit to those of Chapter 4. However, they are
revised here in order to adapt them to the special cases of map and reduce,
we consider. Note that the number of records w emitted by reduce functions
does not correspond to the number of SPMV tasks in Chapter 4.

An overview of the algorithmic complexities is given in Table 7.1. Due
to space restrictions, terms O(logP ) for gather tasks and prefix sums are
omitted in Table 7.1. Similarly as before, we use logb x ∶= max{logb x,1}.
The complexities given in Table 7.1 only differ from the descriptions in the
following sections in that we distinguish the special case that a single meta-
column is prepared, i.e. the matrix is transposed immediately, and we make
use of the observation O(logd(x/d)) = O (logd x). For all our algorithms we
assume H/P ≥ B similarly to Chapter 4, i.e. there are less processors than
blocks in the input and each processor can get a complete block assigned to
it.

Non-parallel reduce Parallel reduce

Unordered map O( H
PB logdNR) O ( H

PB logd
NRw

B )

Sorted map O( H
PB logd min{NMNRB

H ,NR,NM}) O ( H
PB logd min{NMNRw

H ,
NRw

B })

Parallel map O( H
PB logd min{NMNRv

H ,
NMv

B }) O ( H
PB logd

NMNRvw

BH )

Direct shuffling O(H/P ) (non-uniform)

Complete merge O( H
PB logd

H
B

)

Table 7.1: Overview of the algorithmic complexities d = d(H).
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7.2.1 Direct Shuffling

Obviously, the shuffle step can be completed by accessing each record once
and writing it to its destination. For a non-uniform algorithm, O(H/P ) par-
allel I/Os are sufficient as described in Chapter 4. To this end, the output
can be partitioned into H/P consecutive parts. Since we assume H/P ≥ B,
collisions when writing can be avoided. In contrast, reading the records in
order to write them to their destination can be performed concurrently be-
cause we consider CREW. We restrict ourselves in this case to a non-uniform
algorithm to match the lower bounds in Section 7.3. This shows that our
lower bounds are asymptotically tight. Such a direct shuffle approach can
be optimal. However, for other cases that are closer to real world parameter
settings a more evolved approach is given by the sorting-based algorithms
presented in the following.

7.2.2 Map-Dependent Shuffle Part

In this part, we describe for the different types of map functions how to pre-
pare intermediate pairs to be reduced in a next step. To this end, during the
first step R meta-runs of non-zero entries from ranges of different columns
will be formed. Afterwards, these meta-runs are processed further to obtain
the final result. The meta-runs shall be internally ordered row-wise (aka row
major layout). If intermediate pairs have to be written in sorted order before
the reduce operation can be applied, we set R = ⌈ H

NRB
⌉. Otherwise, if the

reduce function is associative, it will suffice to set R = ⌈ H
NRmax{w,B}⌉.

Non-Parallel Map, Unordered Intermediate Pairs We first consider the
most general (standard) case of MapReduce where we only assume that in-
termediate pairs from different map execution are written in external mem-
ory one after another. The records are ordered by column but within a col-
umn no ordering is given. We refer to this as mixed column layout. We apply
the PEM merge sort to sort records by row index and stop the merging pro-
cess when the number of runs is less than R. Thus, we get a parallel I/O
complexity of O( H

PB
logd

H
BR

) for d = max{2,min{M
B
, H
PB

}}. Note that this
ordering can only be exploited algorithmically if a non-parallel reduce func-
tions is applied afterwards so that a row major layout has to be constructed,
and only in the sense that intermediate keys are already ordered by input
key.
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Non-Parallel Map, Sorted Intermediate Pairs Here, we assume that within
a column, records are additionally ordered by row index, i.e. intermediate
pairs are emitted sorted by their key. This corresponds to the column major
layout. In the following, we assume H/NR ≥ B. Otherwise, the previous al-
gorithm is applied, or simply columns are merged together as described in a
later paragraph.

Since columns are ordered internally, each column can serve as a pre-
sorted run. Thus, we start the PEM Merge sort with the NM pre-sorted runs
and stop as soon as there are at most R runs left. This leads to an I/O com-
plexity of O( H

PB
logd

NM
R

+ log min{P,B,NM}).

Parallel Map, Sorted Intermediate Pairs In the following, we describe the
case with the best possible I/O complexity for the shuffle step when no fur-
ther restrictions on the distribution of intermediate keys are made. This is
the only case where we actually consider the execution of the map function
itself. Note that even if a map function emits all intermediate pairs one af-
ter another, pairs from a predefined key range can be extracted without in-
ducing more I/Os. This is possible since intermediate pairs are generated
in internal memory, and can be deleted immediately, while pairs within the
range of interest are kept and written to disk. In a model with considerations
of the computational cost, it would be more appropriate to consider a map
function which can be parallelised to emit pairs in a predefined intermediate
key range.

We first describe the layout of intermediate pairs in external memory
that shall be produced. This layout is similar to the best-case layout for
the sorting-based algorithm in Chapter 4. In contrast to Chapter 4, where
we assume that a best-case layout is given in external memory, we have to
construct the layout from the output of the map functions here. Let m =

min{M −B, ⌈H/P ⌉}. Intermediate pairs shall be written in meta-columns
of m/v columns each, which are internally ordered row-wise. Hence, when
creating this layout, each processor can keep its memory filled with the m
input-records required for each meta-column while writing the intermediate
results.

To create this layout efficiently in parallel, the volume of each meta-col-
umn has to be determined first by creating and counting intermediate re-
sults in parallel without writing them to disk. Since there are vNM /m meta-
columns, it is sufficient to use at most vNM /m processors for this step. With a
parallel prefix sum computation (cf. Section 2.7.2), it can be determined how
many, and which range of processor shall be assigned to each meta-column
in order to realise an equal load-balancing. The prefix sum computation and
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the scattering of the processor assignment is possible with O(logP ) I/Os.
After the assignment of processors to meta-columns, each processor reads
and keeps input pairs for a whole meta-column in internal memory. Using
the map function, intermediate pairs are requested and extracted, and then
written to external memory in row-wise order (within a meta-column). If
a processor is assigned to multiple meta-columns, it processes each meta-
column one after another. Since we assume H/P ≥ B, multiple processors
never have to write to the same block at the same time.

Because we already formed row-wise sorted meta-columns of m
v

columns,
the number of merge iterations to generate R row-wise sorted meta-runs is
reduced. If NM

m
≤ R, nothing needs to be done because the number of meta-

columns is already less than the desired number of meta-runs. Otherwise,
we use the PEM merge sort to reduce theNMv/mmeta-columns intoRmeta-
runs, which induces an I/O complexity of O( H

PB
logd

NMv
min{M,H/P}R + logP).

7.2.3 Reduce-Dependent Shuffle Part

Non-Parallel Reduce Function For the most general case of having a non-
parallel reduce function, intermediate keys of the same key have to be pro-
vided consecutively to the reduce worker, i.e. a row major layout has to be
created. Given the at most ⌈ H

NRB
⌉ meta-runs produced in the previous phase,

this can be obtained in a manner similar to the direct algorithm, by moving
blocks directly. We describe the current layout in tiles, where one tile consists
of the records in one row within a meta-column. The macroscopic ordering
of these tiles is currently a column major layout (cf. Figure 7.1). To obtain the
desired layout, tiles only need to be rearranged into a row major layout.

≈ H
NRB

Figure 7.1: Transformation of the tile structure for non-parallel reduce.



7.2. UPPER BOUNDS FOR THE SHUFFLE STEP 147

Observe that there areR = O ( H
NRB

) meta-runs withNR rows each so that

there areO(H
B
) tiles. Each tile covers at most two blocks that contain records

from another tile (and need to be accessed separately). However, these are
stillO( H

PB
) parallel I/Os to access these blocks. The remainingO(H

B
) blocks

that belong entirely to a tile contribute another O( H
PB

) I/Os.
To rearrange tiles, we assign records to processors balanced by volume

and range-bounded by the tile index (ordered by meta-runs first, and by row
within a meta-run). In order to write the output in parallel, the destined
positions of each of its assigned records has to be known to the processors.
To this end, each processor scans its assigned records, and for each begin-
ning of a new tile, the memory position is stored in a table S (consisting of
O(H/B) entries, one blocks each). Afterwards, using this table, the size of
each tile is determined and written to a new table D. With table D a prefix
sum computation is started in row major layout (inducing O(logP ) I/Os)
such that D now contains the relative output destination of each row within
each meta-run.

In a CRCW model, with the same assignment of records as before, tiles
can now be written to their destination to form the output using table D. For
CREW, when first creating D, one can ceil the tile sizes to full blocks. The
resulting layout will obviously contain blocks that are not entirely filled, but
contain empty memory cells. However, using the contraction described in
Section 2.7.4, one can extract these empty cells. The whole step to finalise the
shuffle step has I/O complexity O( H

PB
+ logP ).

Parallel (Associative) Reduce Function Assuming a parallelisable reduce,
each processor can perform multiple reduce functions simultaneously on a
subset of records with intermediate key in a certain range. In a final step,
the results of these partial reduce executions are then collected and reduced
to the final result. By considering addition as the reduce function, this step
is completely analogous to the summing process of the elementary products
for SPMV which is described in detail in Section 4.2.2.

For an extension to w emitted result vectors, the range of intermediate
keys is partitioned into ⌈NRPw/H⌉ ranges of up to ⌈H/(Pw)⌉ keys. Us-
ing the range-bounded load-balancing algorithm from Section 2.7.3, records
(still ordered in meta-runs) are assigned to processors such that each pro-
cessor gets records from at most two pieces of row indices. This can be
achieved by using the tuple (meta-run index, row index) as key, and induces
O( H

PB
+ logP) I/Os. If a processor got assigned records that belong to the

same reduce function, records can be reduced immediately by the processor.
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Afterwards, for each key range, records can be gathered to form the final
result of the reduce function. This is possible with O( H

PB
+ logP ) I/Os.

7.2.4 Complete Sorting/Merging

For some choices of parameters, especially for small instances, it can be op-
timal to simply apply a sorting algorithm to shuffle records row-wise. Using
the PEM merge sort, this has I/O complexity O( H

PB
logd

H
B
). Furthermore,

if the matrix is given in column major layout, theNM already sorted columns
serve as pre-sorted runs. This results in an I/O complexity ofO( H

PB
logdNM).

7.3 Lower Bounds for the Shuffle Step

In order to obtain lower bounds for the shuffle step, we consider the analogy
to sparse matrix computations and use the following reduction. A simple
task in MapReduce is creating the product of a sparse matrix A with a vec-
tor. Assuming that the matrix entries are implicitly given by the map func-
tion, the task can be accomplished within one round if the matrix contains
at most N1−ε

R non-zero entries per column and N1−ε
M per row. To this end,

map function j is supplied with input vector record xj and emits ⟨i, xjaij⟩.
The reduce function simply sums up values of the same intermediate key.
Hence, a lower bound for matrix vector multiplication immediately implies
a lower bound for the shuffle step. Since reduce can be an arbitrary function,
we restrict ourselves to matrix multiplication in a semiring, where the exis-
tence of inverse records is not guaranteed. These considerations allow us to
revise the lower bounds in [BBF+10] and the extensions to the PEM model
in Chapter 2 together with their application in Chapter 4 in order to obtain
lower bounds for the shuffle step.

However, we are considering tasks where multiple input- and output-
records are associated with each intermediate pair / non-zero entry. More
specifically, we have v input and w output vectors. Any intermediate pair –
in SPMV an elementary product ajkxk(i) – can consist of a linear combina-
tion ajk∑i∈I⊆[NM ] xk

(i) of the v corresponding vector records, and any output
record can be a linear combination of intermediate pairs with corresponding
intermediate key. It suffices for a lower bound to consider a simplified ver-
sion of this task. In the simplified task, each intermediate pair is a copy of
one of the v input-records, and it is required for the computation of precisely
one output record. The ith coordinate of the lth output vector is then the
sum of all intermediate pairs that were associated with vector l. Hence, in
contrast to Chapter 4, the task considered here corresponds to multiplying



7.3. LOWER BOUNDS FOR THE SHUFFLE STEP 149

each non-zero entry aij with only one of the v vector records x(1)j , . . . , x
(v)
j .

The assignment which vector is used for which non-zero entry is part of the
input. Each non-zero entry has, apart from its position in the matrix and its
value, two further variables assigned to it, defining origin of the input vector
record and destination of the elementary product. We refer to this task as the
combined matrix vector product of a given matrix, a set of v input vectors,
the number of output vectors w and a given assignment of non-zero entries
to input/output vectors. The following theorem is proven throughout the
next sections.

Theorem 7.1. Given parameters B, M ≥ 3B and P ≤ H
B

. Creating the combined
matrix vector product for a sparse NR × NM matrix with H non-zero entries for
H/NR ≤ N1−ε

M and H/NM ≤ N1−ε
R for ε > 0 from v ≤ H/NM input vectors to

w ≤H/NR output vectors has (parallel) I/O complexity

• Ω (min{H
P
, H
PB

logd
NRw
B

}) if the matrix is in mixed column layout

• Ω (min{H
P
, H
PB

logd min{NMNRw
H

, NRw
B

}}) if given in column major layout

• and Ω (min{H
P
, H
PB

logd
NMNRvw

Hmin{M,H/P}}) for the best-case layout ifH/NR ≤

6
√
NM and H/NM ≤ 6

√
NR

where d = max{2,min{M/B,H/(PB)}}.

These lower bounds already match the algorithmic complexities for par-
allel reduce in Section 7.2. Moreover, a lower bound for creating a matrix in
row major layout from v vectors can be obtained (cf. parallel map & non-
parallel reduce).

Lemma 7.2. Given parametersB,M ≥ 3B and P ≤ H
B

. Creating a sparseNR×NM
matrix with H non-zero entries in row major layout from v vectors x(1), . . . , x(v)

such that for all non-zero entries holds aij = x
(k)
j for some k has (parallel) I/O

complexity

Ω(min{
H

P
,
H

PB
logd min{

NMNRv

H
,
NMv

B
}})

for H/NR ≤ N1−ε
M and H/NM ≤ N1−ε

R , ε > 0.

Theorem 7.1 and Lemma 7.2 both hold not only in the worst-case, but for
a fraction of the possible sparse matrices exponentially close to one. Hence,
for distributions over the matrix conformations (position of the non-zero en-
tries), even if not uniform but somehow biased, the lower bounds still hold
on average if a constant fraction of the space of matrix conformations has
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constant probability. Similarly, the bounds hold on average for distribu-
tions where a constant fraction of the non-zero entries is drawn with constant
probability from a constant fraction of the possible position.

The following technical lemma is required for the proofs in this section.

Lemma 7.3. Assume log 3H ≥ 7
2
B log min{M

B
, 2H
PB

}, H ≥ max{N1,N2} ≥ 2,
H/N2 ≤ N

1−ε
1 , then

(i) H ≤ N
1/ε
2

(ii) N2 ≥ 28 implies B ≤ 1
eε
N

3/8
2 .

(iii) N2 ≥ 28 and H/N2 ≤ N
1/6
1 implies min{M

B
, 2H
BP

} ≤ N
3

7B

2 .

Proof. Combining H/N2 ≤ N1−ε
1 with H ≥ N1 yields N1 ≤ N2N

1−ε
1 , i.e. N2 ≤

N
1/ε
1 . Substituting N1 in H ≤ N2N

1−ε
1 results in (i).

For (ii), we have B ≤ 2
7

log 3H ≤ 1
e

logH since H ≥ N2 ≥ 28 so that we can
use 3 ⋅ 28 < 210 and note that 5

4
⋅ 2

7
≤ 1
e

. Using (i), we get B ≤ 1
e

logN
1/ε
2 ≤

1
eε

logN2. Finally, we simply use the additional observation logx ≤ x3/8 for
x ≥ 28.

The last results is derived from the main assumption, which can be rewrit-

ten as 3H ≥ min{M
B
, 2H
BP

}
7B/2

. Again, using 3H ≤ H5/4 for H ≥ N2 ≥ 28, we

get H ≥ min{M
B
, 2H
BP

}
14B/5

. H in turn is bounded from above by N6/5
2 so that

we have min{M
B
, H
BP

} ≤ (N
6/5
2 )5/(14B) ≤ N

3/(7B)
2 .

7.3.1 Best-Case to Row Major Layout with Multiple Input
Pairs

To begin with, we consider a task that is related to the matrix vector product
but seems somewhat simpler. In [BBF+10], a copy task is described, where a
matrix in column major layout is created from a vector such that each non-
zero entry in row i is a copy of the ith vector record. This allows for a time
forward analysis as described in Section 2.2.1, similar to the lower bound for
permuting in [AV88] and in Theorem 2.7. In [BBF+10], the copy task is only
used as a preliminary task, and is reduced to the matrix vector product to ob-
tain a lower bound. Here, we can actually use the task itself to state a lower
bound. Observe that the copy task is equivalent to the creation of a sparse
matrix in row major layout where each non-zero entry in column j is a copy
of the jth vector record. This corresponds to the special case of MapReduce
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where a map function simply copies its input value H/NM times with ran-
dom intermediate keys which then have to be ordered by intermediate key.
Thus, a lower bound for this task states a lower bound for the shuffle step
with parallel map functions but non-parallel reduce. We extend this task fur-
ther to v multiple input vectors, such that in the created matrix each non-zero
entry in column j is a copy of of the jth vector record of a specified one of
the v vector.

Abstract Configurations In the following, we bound the number of I/Os
required for a family of programs for this copy task such that every matrix
conformation can be created by a program. To this end, we consider the
change of configurations as defined in Chapter 1. Analogously to [BBF+10]
and Section 2.2.1, we abstract from the actual configuration in that the ab-
stract configuration at time t refers to the concatenation of non-empty mem-
ory cells of external and internal memory between the tth I/O and the t+1th
I/O. Recall that in this abstraction the ordering and multiplicity of similar
records in a block or internal memory is ignored. As usually, we consider
programs that are normalised according to the description of normalised
programs in Section 2, i.e. every intermediate record is a predecessor of the
output.

Similar to [BBF+10], and like in Section 4.3, we abstract furthermore from
the actual value of a record to the indices describing its positioning in the
task. Instead of the full information of a record, we consider only the set
of (column index, origin vector index) tuples of the records in a block or in
internal memory. Hence, blocks and internal memory are considered subsets
of {(1,1), . . . , (NM , v)} of size at most B and M , respectively. This abstracts
especially from the ordering and multiplicity of (distinct) records that have
the same tuple of indices.

By Lemma 2.5, a family of normalised programs with ` parallel I/Os and
a fixed computation trace can lead to

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B ⋅ 2(⌈n/B⌉ + P`)

distinct abstract configurations where n is the input size andMp,l is the num-
ber of distinct records in internal memory of processor p before the lth paral-
lel I/O. For a non-trivial bound ` > n

PB
(obtained by reading the input), we

obtain a number of distinct abstract configurations after ` I/Os of

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B ⋅ 4P` ≤ (3P(

min{MP,H} + PB

PB
)2PB4P`)

`

(7.1)
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where the last inequality stems from bounding the product of binomial coef-
ficients, similar to Section 4.3.1, by using that the maximal number of records
concurrently in internal memories in an abstract conformation is at most H .

Since a normalised program for the copy task does not involve any com-
putation operations such as summing or multiplication, there is only a single
(empty) computation trace over the entire set of programs for the copy task.
For fixed input sizes NM , NR, and H , the initial abstract configuration is
unique over all programs. The final abstract configuration in contrast de-
pends on the conformation of the matrix that is generated.

Number of Abstract Matrix Conformations For a family of programs be-
ing able to produce all conformations, ` needs to be large enough so that
(7.1) is at least as large as the number of abstract configurations representing

all conformations. There are (
NM
H/NR

)
NR different conformations of NR ×NM

matrices with H/NR non-zero entries per row. For the ease of notation, we
assume for a lower bound that H is an integer multiple of NR. Furthermore,
each of the non-zero entries can stem from one of the v input vectors. How-
ever, since we consider abstract configurations and ignore the ordering and
multiplicity of records within a block, the number of final abstract configu-
rations is less. For an abstract configuration, it is not clear whether a tuple
of indices in a block stems from one or multiple rows, neither from which
of them. Analogously to [BBF+10] and as already considered in Section 4.3,
the following three cases have to be distinguished. If H/NR = B, each block
corresponds to exactly one row so that each abstract configuration describes
only a single conformation. In case H/NR > B, a block contains entries from
at most two rows. Hence, a column index in the abstract description of a
block can originate either from the first, the second or from both rows. For
H/NR < B, a block contains entries from ⌈BNR/H⌉ different rows. A row
can however only contain indices from at most two blocks. Thus, there are

(
2B

H/NR
)
NR orderings of records in external memory with the same abstract

description.

Theorem 7.4. Given the block size B, internal memory size M ≥ 3B and the num-
ber of processors P ≤ H

B
. Creating a sparse NR × NM matrix with H non-zero

entries in row major layout from v ≤ H/NM vectors such that aij = x
(k)
j for a

k ∈ {1, . . . , v} for each non-zero entry such that H/NR ≤ N1−ε
M and H/NM ≤ N1−ε

R

for (constant) ε > 0 with NM ≥ 91/ε has (parallel) I/O complexity

` ≥ min{
ε2

5

H

P
,
H

7PB
logmin{MB ,

2H
PB

} min{
NMNRv

3H
,
NMv

eB
}} .
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Proof. If a family of programs with ` I/Os is able to create all conformations
of NR ×NM matrices in row major layout with H non-zero entries, then

(3P(
min{MP,H} + PB

PB
)2PB4P`)

`

≥ (
NR

H/NM
)

NM

vH/τR (7.2)

with

τR ≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

3H if B <H/NR

1 if B =H/NR

(2eBNR/H)H if B >H/NR

has to hold. For ` ≥ 1
5
H
P

, the claim is already proven, so we can assume in
the following ` < 1

4
H
P

. Similar, if NM ≤ 28, then the logarithm in Theorem 7.4
is smaller than 7 so that the theorem is proven with a scanning bound of H

PB
which is required for reading the input. Hence, also assumeNM > 28. Taking
logarithms and estimating binomial coefficients in (7.2) yields

`P (B + log 3H +B log e
min{M,H/P} +B

B
) ≥H log

NMNR
H

+H log v−log τR .

After substituting τ and isolating `, we obtain

` ≥
H

P

log min{NMNRv
3H

, NMv
2eB

}

log 3H +B log (2e(min{M
B
, H
PB

} + 1))

and using the assumptions M ≥ 3B and H/(PB) ≥ 1, we get

` ≥
H

P

log min{NMNRv
3H

, NMv
2eB

}

log 3H + 7
2
B log min{M

B
, 2H
PB

}
.

where we used that 2e(x + 1) ≤ (2x)7/2 for x ≥ 1.
Case 1: For log 3H ≤ 7

2
B log min{M

B
, 2H
PB

}, we have

` ≥
H

7PB
logmin{MB ,

2H
PB

} min{
NMNRv

3H
,
NMv

2eB
} .

Case 2: If log 3H ≥ 7
2
B log min{M

B
, 2H
PB

}, we can use 3H ≤ H5/4 for H ≥ NM ≥

28, and with Lemma 7.3.i, we obtain

` ≥
H

P

log min{NMNRv
3H

, NMv
2eB

}

5
2

logN
1/ε
M

.
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Using Lemma 7.3.ii with N1 = NR and N2 = NM , and ignoring v, i.e. v = 1,
we have

` ≥
H

P

log min{ 1
3
Nε
M ,

ε
2
N

5/8
M }

5
2

logN
1/ε
M

.

For NM ≥ 32/ε, we obtain

` ≥
H

P

log min{N
ε/2
M , ε

2
N

5/8
M }

5
2

logN
1/ε
M

≥
H

P

logN
ε/2
M

5
2

logN
1/ε
M

≥
ε2

5

H

P

because ε
2
N

5/8
M ≥ N

ε/2
M holds for NM ≥ 28 for all 0 < ε < 1: Using NM = 28,

we have ε24 ≥ 24ε which holds obviously for 0 < ε ≤ 1. Larger NM can only
increase the absolute difference between the terms.

7.3.2 Mixed Column Layout with Multiple Output Pairs

This case is similar to the lower bound for column major layout in Sec-
tion 4.3.1. The main differences are that in a mixed column layout, the records
within a column are not ordered whereas for column major layout, records
are ordered row-wise within a column. Additionally, we consider the com-
bined matrix vector product instead of SPMV. Following [BBF+10] and as
described in Section 4.3.1, it suffices for a matrix vector product with the ma-
trix in column major layout to consider the multiplication of a matrix with
the all-ones-vector, i.e. the task of creating row sums from the matrix. In the
combined matrix vector product, each elementary product is only used for
the calculations of one of the w output vectors. Hence, we consider w inde-
pendent tasks of building subsets of row sums. This task can be seen as a
time-inverse variant of the copy task described in Section 7.3.1. Instead of
spreading copies of input-records, the scattered matrix records of the same
row have to be collected and summed up to w subset sums. Thus, we ap-
ply the time-backwards analysis from Lemma 2.6 to identify the number of
initial abstract configurations that can reach a single abstract output config-
uration.

Abstract Configurations Again, we consider normalised programs by their
abstract configurations according to Section 2.2.2, i.e. we consider blocks and
internal memory as sets of records, we ignore empty blocks, and addition-
ally, records that do not belong to the final output and are not accessed after
the considered configuration, are ignored. Furthermore, instead of actual
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records only the set tuples of row indices and destinations vector are consid-
ered. Note that a sum can only consist of records from the same row having
the same destination vector in a normalised program. Hence, internal mem-
ory and each block states a subset of {(1,1), . . . , (NR,w)} of size up toM and
B, respectively.

Description of Abstract Programs Consider the final configuration after `
I/Os. Since all records that do not belong to the output are ignored, the final
abstract configuration is unique for all programs that compute the matrix
vector product for fixedNR. In contrast, the initial configuration depends on
the conformation of the matrix. Hence, by Lemma 2.6 there are at most

`

∏
l=1

3P
P

∏
p=1

(
Mp,l +B

B
)2B2(⌈n/B⌉ + P`) ≤ (3P(

min{MP,H} + PB

PB
)2PB4P`)

`

(7.3)
initial abstract configuration that lead to the same abstract output configura-
tion for fixed computation trace, whereMp,l is the number of distinct records
in internal memory of processor p after the lth I/O. We bounded again the
product of binomial coefficients, using that there exist at mostH (non-empty)
records in an abstract configuration at a time, and assumed P` > ⌈H

B
⌉ in (7.3)

justified by a lower bound for reading the input.
In the considered task, no multiplication operation is required. Further-

more, sum operations and their following deletion operations are not visible
in our view of abstract configurations. The computation trace does hence not
influence the sequence of abstract configuration.

Number of Abstract Matrix Conformations To obtain a lower bound on
the I/O complexity of the mixed column layout, (7.3) is lower bounded by
the number of different matrix conformations in mixed column layout ex-
pressed by an abstract configuration. We consider matrices with exactly
H/NM records per column, hence, we assume thatH is an integer multiple of
NM Think of drawing the non-zero entries for each column one after another.
For the number of non-zero entries per column H/NM ≤ NR/2, there are at
least (NR/2) possibilities to draw the position of a non-zero entry. Further-
more, each record can be involved in the computation of one of the w output
vectors. In total, there are at least (NR/2)

HwH different matrix conforma-
tions. However, in an abstract configuration, the ordering of records within
a block gets hidden. Additionally, if a block contains records from several
columns, in an abstract configuration it is not clear from which column(s)
a tuple may stem. The number of different conformation that correspond
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to the same abstract conformation can be bounded from above by BH since
each record can be one of the at most B row indices in the set describing its
block (if it is the ith record in the layout, its block is the ⌈i/B⌉th).

Theorem 7.5. Given block size B, internal memory M ≥ 3B and the number of
processors P ≤ H

B
. Creating the combined matrix vector product for a sparse NR ×

NM matrix in mixed column layout with H non-zero entries for w ≤H/NR output
vectors andH/NR ≤ N1−ε

M ,H/NM ≤ N1−ε
R , andNR ≥ 1/ε8/3 for ε > 0 has (parallel)

I/O complexity

` ≥ min{
ε

10

H

P
,
H

7PB
logmin{MB ,

2H
PB

}
NRw

2B
} .

Proof. A lower bound on the minimal number of I/Os ` required for a family
of programs that create the matrix vector product for NR×NM matrices with
H entries in mixed column layout is given from (7.3) by

(3P(
min{MP,H} + PB

PB
)2PB4P`)

`

≥ (
NR
2B

)

H

wH . (7.4)

With similar arguments as in the proof of Theorem 7.4, we can assume ` <
1
4
H/P , and NR ≥ 28. Otherwise the theorem holds trivially. Taking loga-

rithms and estimating binomial coefficients yields

`P (B + log 3H +B log e
min{M,H/P} +B

B
) ≥H log

NRw

2B
+H logw .

Isolating `, we can obtain

` ≥
H

P

log NRw
2B

log 3H + 7
2
B log min{M

B
, 2H
PB

}
.

where we used again M ≥ 3B and H/(PB) ≥ 1.
Case 1: For log 3H ≤ 7

2
B log min{M

B
, 2H
PB

}, the lower bound matches the
sorting algorithm:

` ≥
H

7PB
logmin{MB ,

2H
PB

}
NRw

2B

Case 2: For log 3H > 7
2
B log min{M

B
, 2H
PB

}, we get

` ≥
H

P

log NRw
2B

2 log 3H
.
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Using Lemma 7.3.i, and 3H ≥H5/4 for H ≥ 28, we have

` ≥
H

P

log NRw
2B

5
2

logN
1/ε
R

and with Lemma 7.3.ii, we get

` ≥
H

P

log εN
5/8
R w

5
2

logN
1/ε
R

≥
ε

10

H

P

for NR ≥ 1/ε8/3 which is matched by the direct algorithm.

7.3.3 Column Major Layout with Multiple Output Pairs

For column major layout, the number of different abstract matrix confor-
mations corresponds to the number of abstract conformation described in
Section 7.3.1 but with NM and NR exchanged.

If a family of programs with ` I/Os is able to create the matrix vector
product with each NR × NM matrix with H non-zero entries to obtain w ≤

H/NR vectors of row sum subsets, then

(3P(
min{MP,H} + PB

PB
)2PB4P`)

`

≥ (
NM
H/NR

)

NR

wH/τM (7.5)

with

τM ≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

3H if B <H/NM

1 if B =H/NM

(2eBNM /H)H if B >H/NM

has to hold. This yields the following theorem.

Theorem 7.6. Given the block size B, internal memory M ≥ 3B and the number
of processors P ≤ H

B
. Creating the combined matrix vector product for a sparse

NR × NM matrix in column major layout with H non-zero entries for w output
vectors and H/NR ≤ N1−ε

M , H/NM ≤ N1−ε
R , and NM ≥ 91/ε for ε > 0 has (parallel)

I/O complexity

` ≥ min{
ε2

5

H

P
,
H

7PB
logmin{MB ,

2H
PB

} min{
NMNRw

3H
,
NRw

eB
}} .
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7.3.4 Best-Case Layout with Multiple Input and Output Pairs

For the best-case layout, the algorithm is allowed to choose the layout of the
matrix as described in Chapter 1. Recall that this makes the task of building
row sums become trivial by setting the layout of the matrix to row major
layout. Hence, we follow the movement and copying of input vector records
as well, like in Section 4.3.2.

In contrast to Section 4.3.2, we investigate bounds for the combined ma-
trix product, where we consider both, multiple input and multiple output
vectors. Recall that any intermediate pair stems from exactly one input-
record, and it is required for the computation of only a single output record.
For each of the H non-zero entries in our matrix there is not only a choice
of its position but also the choice from which of the v records it stems from
and which of the w records is its destination. This results in a total number
of (

NMNR
H

)vHwH different tasks. We assume that v ≥ H/NM and w ≥ H/NR
so that all input- and output-records can be useful.

The task of creating this type of matrix vector product can be seen as first
spreading the input-records to create elementary products aijx

(kij)
j – where

kij denotes the index vector that is required for the elementary product in-
volving aij – and then collecting these elementary products to form the out-
put vectors. To describe these two main tasks, we distinguish between ma-
trix entries ai,j , elementary products aijx

(kij)
j and partial sums ∑j∈S aijx

(kij)
j

which we trace as described in Section 7.3.3, and input vector records which
will be followed as described below. To the first group (matrix entries, ele-
mentary products, partial sums), we also refer as row records and we call the
row index their index.

Abstraction As before, we consider an abstraction of the current config-
uration according to Section 2.2. As usually, the considered programs are
normalised as described in Chapter 2. Additionally, we normalise programs
in that a multiplication is performed as soon as both records are in internal
memory. Since a non-zero entry ai,j is used for exactly one multiplication
in the task, it can be replaced by the product. Hence, this normalisation re-
quires no further space in internal memory, and the number of I/Os does not
change.

Similar to Section 4.3.2, we distinguish between two abstract configura-
tions for each configuration, the abstract row configuration and the abstract
column configuration. The abstract column configuration is analogous to
Section 7.3.1: Only records that are a copy of one of the NMv input vector
records are considered, all other records are ignored. The records are fur-



7.3. LOWER BOUNDS FOR THE SHUFFLE STEP 159

ther reduced to the tuple describing their column index and the index of the
vector they stem from. Hence, the internal memory of each processor and
each block are considered subsets of {(1,1), . . . , (NM , v)}. In the abstract row
configuration only partial sums∑j∈S aijx

(kij)
j are considered, analogously to

Section 7.3.2. Abstracting from records to row and destination vector indices,
internal memories and blocks are considered subsets of {(1,1), . . . , (NR,w)}.

Description of Programs Again, the final abstract row configuration over
all programs that create the matrix vector product is unique for fixed NR.
Hence, we can apply our time-backwards analysis from Section 2.2.2 which
we also used in Section 7.3.3 to describe the I/O trace of the abstract row
configurations for programs with ` I/Os. To describe the I/O trace of abstract
input configurations, we use the time-forward analysis from Section 2.2.1
which we used in Section 7.3.1.

It remains to bound the number of computation traces. Since we abstract
from multiplicity and actual records to indices, copy and sum operations do
not change the trace of abstract configurations. There is only one operation
that performs an interaction, and that is multiplying an input-record with
a non-zero entry which creates a row record. For each non-zero entry aij ,
exactly one multiplication with a x(kij)j is performed during the whole exe-
cution of the program. Hence, if in our abstraction, a row record with index i
was created by multiplication from an input variable with index j, this fixes
aij to be non-zero. We normalised programs such that an elementary prod-
uct is created immediately when both records appear in internal memory
together for the first time. This can only happen after an input. Thus, for
each input there are at most B new records in internal memory and some
Mp,l records that are already in internal memory. Hence, there are at most
BMp,l possibilities where a multiplication can be done for each processor af-
ter each I/O. In total, we get Y = ∑

`
l=1∑

P
p=1BMp,l ≤ `B ⋅min{PM,H} possi-

bilities where a multiplication can be performed. After each multiplication,
the operands can be deleted, yielding an additional factor of 4H . Together
with the abstract I/O traces for input and row records, this gives a unique
description of the abstract matrix conformation.

Theorem 7.7. Given the block size B, internal memory M ≥ 3B, and the number
of processors P ≤ H

B
. Creating the combined matrix vector product for a sparseNR×

NM matrix in best-case layout with H non-zero entries for v ≤ H/NM input and
w ≤ H/NR output vectors, with H/NR ≤ N

1/6
M and H/NM ≤ N

1/6
R has (parallel)
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I/O complexity

` ≥ min{
1

24

H

P
,

H

14PB
logmin{MB ,

2H
PB

}
NMNRvw

4Hmin{M,H/P}
} .

Proof. With the above observations, for a family of programs with ` I/Os that
create the matrix vector product for any NR ×NM matrix with H non-zero
entries where the layout of the matrix can be chosen by the program it has to
hold

4H(
Y

H
) ⋅

⎡
⎢
⎢
⎢
⎢
⎣

(3P(
min{MP,H} + PB

PB
)2PB4P`)

`⎤
⎥
⎥
⎥
⎥
⎦

2

≥ (
NR

H/NM
)

NM

vHwH .

Like in the proofs before, we argue that ` < H
4P

and NR ≥ 28, otherwise the
claim holds trivially. Estimating binomial coefficients and taking logarithms,
we have

2`P (log 3H +
7

2
B log min{

M

B
,

2H

PB
}) ≥H (log

NMNRvw/4H

e`Bmin{PM,H} /H
)

where we followed the calculations given for the other layouts. Reordering
terms, we obtain

` ≥
H

P

log NMNRvw
4e`Bmin{PM,H}

log 3H + 7
2
B log d

with d = min{M/B,2H/(PB)}. By Lemma 4.8, x ≥
logb(s/x)

t
implies x ≥

logb(s⋅t)
2t

. For x = `, s = NMNR
4eBmin{PM,H} and t = P

H
(log 3H + 7

2
B log d) this results

in

` ≥
H

2P

log
NMNRvwP(log 3H+ 7

2B log d)
4eBHmin{PM,H}

log 3H + 7
2
B log d

.

Case 1: For log 3H ≤ 7
2
B log d, we get a lower bound of

` ≥
H

14P

log NMNRvw
4Hmin{M,H/P}

B log d
.

Case 2: For log 3H > 7
2
B log d, we get

` ≥
H

4P

log NMNRvw log 3H
4eBHmin{M,H/P}

log 3H
≥
H

4P

log NMNR7 log d
8eHdB

5
4

logH



7.3. LOWER BOUNDS FOR THE SHUFFLE STEP 161

using H ≥ 28. Assuming H/NM ≤ N
1
6

R and using Lemma 7.3.i with ε = 5
6

, we
get

` ≥
H

5P

log
7N

5/6
R

8eBd

logN
6/5
R

for NR ≥ 9. Using Lemma 7.3.ii and 7.3.iii, with N1 = NM and N2 = NR, we
finally get

` ≥
H

6P

log
7⋅ 56N

5/6
R

8N
3/8
R

N
3/(7B)
R

logNR
>
H

6P

log 2
3
N

1/3
R

logNR
≥

H

24P

for B ≥ 4, by using NR ≥ 28 > ( 3
2
)12 so that 5

6
N

1/3
R ≥ N

1/3−1/12
R ≥ N

1/4
R .

7.3.5 Transposing Bound

Another method is presented in [AV88] to obtain lower bounds on the I/O
complexity of dense matrix transposition. This potential-based approach
was extended to the PEM in Section 2.3. The bound can also be applied
to sparse matrix transposition if the matrix is given in column major layout.

Theorem 7.8. For B > 4, the transposition of a sparse NR ×NM matrix with H
non-zero entries has worst-case parallel I/O complexity

Ω(
H

PB
logd min{B,NM ,NR,

H

B
})

where d = max{2,min{M
B
, H
PB

}}.

Proof. Note that this task does not require any computation operations. Now
consider the potential defined by the togetherness ratings in Section 2.3. A
normalised program has obviously a final potential of Φ(`) = H logB. The
initial potential in contrast has to be considered for each matrix separately.
Note that the task is symmetric, i.e. transposing from column to row major
layout has the same I/O complexity as the other way around. W.l.o.g. let
NM ≥ NR in the following.

For H/NM ≥ B, any matrix that is row-wise H/NM -regular and column-
wise H/NR-regular has an initial potential of Φ(0) ≤ H log 4: Observe that
in this case each input block intersects with an output block in at most four
records: Each block in the initial layout covers at most two columns, and
each block in the output layout covers at most two rows. By Lemma 2.8,
the increase of the potential during one parallel I/O is bounded above by
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PB log 2e + PB log min{M,H/P}
B

. This yields a lower bound for the number of
I/Os of

` ≥
H logB − 2H

PB log 2e + PB log min{M,H/P}
B

so that ` = Ω ( H
PB

logdB) holds.
For H/NM < B, we consider the following matrix. All non-zero entry aij

are located at coordinates where (i−1)H/NR+1 ≤ j ≤ iH/NR mod NM holds.
This yields a sparse matrix that is regular in both dimensions (cf. Figure 7.2).
Any matrix with such a conformation stored in column or row major layout
corresponds directly to a dense H/NM ×NM matrix in column major layout,
row major respectively. A block of the output covers hence ⌈B/NM ⌉ rows.
The blocks of the initial layout cover at most ⌈BNM /H⌉ columns. Conform
with [AV88] an initial potential of Φ(0) ≤ H log max{1, ⌈BNM

H
⌉ , ⌈ B

NM
⌉ , ⌈B

2

H
⌉}

is obtained. Hence, we get a lower bound of

Ω(
H

PB
logd min{B,

H

NM
,NM ,

H

B
}) . (7.6)

Combining the Bounds

A combination of the previous bound and Theorem 7.1 matches the algo-
rithmic complexities given in Section 7.2 for non-parallel reduce. For the
scenario NM > B > H/NM , the minimum breaks down to the term H/NM .
Combining the results from Theorem 7.6 with the above bound, we get

Ω(
H

PB
(logd

H

NM
+ logd

NMNR
H

))

which is bound from below by Ω ( H
PB

logdNR). Similar observations hold
for NR > B > H/NR. Considering the other cases for the minimum in (7.6),
we get a lower bound of

Ω(min{
H

P
,
H

PB
logd min{

NMNRB

H
,NM ,NR,

H

B
}})

I/Os for matrices in column major layout.
Given a matrix in mixed column layout, we can apply (7.6) as well since

column major is a special case of the mixed column layout. Hence, with
similar considerations, we obtain a lower bound of

Ω(min{
H

P
,
H

PB
logd min{NR,

H

B
}})
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H/NR

NM

H
NM

H
NM

Figure 7.2: The matrix conformation to obtain a lower bound for transposing
in the case H/NM ≤ B.

I/Os for matrices in mixed column layout.

Lower Bound for Scatter/Gather and Prefix Sums

To cover all the algorithmic complexities, it remains to consider complexities
induced by the scatter and gather tasks and the prefix sum computation that
are required for the exclusive write policy, and the load-balancing. A match-
ing lower bound for some of the tasks can be obtained from Section 2.4. From
there, we derive a lower bound of log min{H/B,NM} for matrices in mixed
column and column major layout, and log(NM /B) for the best-case layout.
Since we have H ≤ N

1/ε
M from Lemma 7.3.i using N2 = NM , we can estimate

logNM ≥ ε logH ≥ ε logH/B ≥ ε logP

which yields asymptotically matching complexities for mixed column and
column major layout. For the best-case layout, we have to assume NM ≥

B1+ε, implying log(NM /B) ≥ ε logNM , which then yields a matching lower
bound as before. Otherwise, at most an additive term O(logP ) differs be-
tween our upper and lower bounds.
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7.4 Conclusion

We determined the parallel worst-case I/O complexity of the shuffle step for
most meaningful parameter settings. All our upper and lower bounds for
the considered variants of map and reduce functions match up to constant
factors. Although worst-case complexities are considered, most of the lower
bounds hold with probability exponentially close to 1 over uniformly drawn
shuffle tasks. We considered several types of map and reduce operations,
depending on the ordering in which intermediate pairs are emitted and the
ability to parallelise the map and reduce operations. All our results hold
especially for the case where the internal memory of the processors is never
exceeded but (block) communication is required.

Our results show that for parameters that are comparable to real world
settings, sorting in parallel is optimal for the shuffle step. This is met by cur-
rent implementations of the MapReduce framework where the shuffle step
consists of several sorting steps, instead of directly sending each record to
its destination. In practice one can observe that a merge sort usually does
not perform well, but rather a distribution sort does. The partition step and
the network communication in current implementations to realise the shuf-
fle step can be seen as iterations of a distribution sort. Still, our bounds sug-
gest a slightly better performance when in knowledge of the block size. If
block and memory size are unknown to the algorithm, which corresponds
to the so called cache-oblivious model, it is known that already permuting
(NM = NR = H) cannot be performed optimally. Sorting instead can be
achieved optimally, but only if M ≥ B2 [BF03]. However, when assuming
that the naı̈ve algorithm with O(H

P
) I/Os is not optimal, and M ≥ B2, all

the considered variants have the same complexity and reduce to sorting all
intermediate pairs in parallel.
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Permutations

We consider the problem of permuting N records in external memory where
each record i in the input contains its future position π(i) as one of its values.
This involves the exchange of records from the ⌈N/B⌉ input to the ⌈N/B⌉

output blocks. In this chapter, we introduce a new notion to describe permu-
tations of records in a block structure. The block graph relates input and out-
put blocks that share a record by an edge in a bipartite graph (cf. Figure 8.1).
This abstracts from the ordering of records within a block. However, with
one scan of the output blocks, every block can be permuted internally. In
case that each output block differs from the input block at the corresponding
position, i.e. it needs to be written at some point in time, the required block
internal permutation can be generated before the final output.

Definition 8.1 (Block graph). For a permutation π ∶ [N] → [N], we define
the block graph of π to be the bipartite graph Gπ = (Vin ∪ Vout,E) with Vin =

{l1, . . . , lN/B} and Vout = {r1, . . . , rN/B} where for each li, rj there is an edge if
and only if the jth output block contains a record from the ith input block. Nodes in
Vin are referred to as input nodes, those of Vout as output nodes.

4 2 5 8 1 11 3 15 10 6 14 7 16 9 13 12

Figure 8.1: Extracting the block graph from a permutation
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For simplicity, we assume thatB dividesN , and w.l.o.g. input and output
start at the border of a block. Hence, both input and output consist of exactly
N/B entirely filled blocks. By construction, a block graph has maximum
degree B, and when allowing parallel edges, its degree is exactly B. Some
examples of permutations and their block graphs are given in Figure 8.2.

Many permutations that reveal a very structured block graph – with many
similar subgraphs, or with small connected components – imply a simple
I/O complexity. This includes dense matrix transposition and the more gen-
eral bit-matrix-multiply/complement (BMMC) permutations. The class of
BMMC permutations maps source addresses to their target by an affine trans-
formation of the bit vectors. This is realised by multiplying the address bit
vector with a nonsingular matrix and adding a complement vector. These
permutations were investigated in the I/O-model by Cormen et al. in [CW93]
who gave a rather complicated though asymptotically optimal algorithm to
perform BMMC permutations withO(N

B
logM/B rankγ) I/Os, where γ is the

lower left log(N/B) × logB submatrix of the bit matrix as described later on.
In their algorithm, once the BMMC permutation is identified, the bit matrix
is factored into simpler bit matrix permutations (e.g. using Gaussian elimi-
nation). These can be of four kinds. For one of them, which appears at most
once as a factor, O(N

B
logM/B rankγ) I/Os are shown to be sufficient. From

the other kinds, there can be at mostO(logM/B rankγ), each of which can be
realised with O(N/B) I/Os.

The remainder of this chapter is twofold. We consider the block graph
of BMMC matrices, and show that BMMC permutations induce small con-
nected components. Our way to describe permutations by the block graph
leads to a more intuitive understanding of why BMMC permutations form
an easy subclass of permutations in the I/O- and the PEM model. Build-
ing upon this, we present a new simple and parallel algorithm for BMMC

(a) (b) (c) (d)

Figure 8.2: Block graphs for (a) cyclic shifting records by i ∈ {1, . . . ,B} posi-
tions, (b) moving blocks and permuting each block internally, (c) transposing
a 3 × 6 matrix for block size B = 3, (d) π(i) = 2i mod 12 for B = 2.
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permutations.
Secondly, we investigate graph expansion as an indicator for hard permu-

tations. Graphs with good expansion properties reveal a good connectivity
which might oppose the simplicity of small connected components in the
context of permuting. In contrast to this assumption, we can exclude this
property up to some extend by showing that there are simple permutations
that describe an expander with nearly asymptotically maximal expansion
properties, only a factor O(logB) away from maximal expansion. Hence,
we conclude that neither connectivity nor expansion lead to an understand-
ing of what makes permuting in the I/O-model nearly as difficult as sorting.

8.1 BMMC-Permutations

Considering bit operations in this section, computations are made over the
field F2 over {0,1} with addition ⊕ (XOR), and multiplication ∧ (AND). To
perform calculations on bit strings, the vector space Fn2 is used. In addressing
a record by a vector, the first entries correspond to the least significant bits.
For convenience reasons, we shall assume thatN , M andB are exact powers
of 2. Like in Chapter 1, we use the notation [N] to refer to the set {1, . . . ,N}.

Definition 8.2. Let π ∶ [N] → [N] be a permutation on N records and n = logN .
Further let i denote the bit vector representing i ∈ [N] with least significant posi-
tions first.

A permutation is called BMMC permutation if there is A ∈ Fn2 ×Fn2 and c ∈ Fn2
such that for all i ∈ [N], π(i) = j is equivalent to Ai⊕ c = j.

Note that since π is a permutation and hence bijective, A needs to have
full rank. Moreover, every bit matrix with full rank describes a permutation.
The following observation was exposed in [Cor93] where the membership
for bit-permute/complement permutations, a subclass of BMMC permuta-
tions, is demonstrated. This yields a lower bound on the I/O complexity of
performing a BMMC permutations, also in the PEM model, by Theorem 2.9

Observation 8.3. Dense matrix transposition is a BMMC permutation. Given an
N ×M matrix in column major layout with N and M being exact powers of 2.
The bit matrix corresponding to the transposition of the matrix is a cyclic shift of
the logN + logM bits by logN positions to the left (bit vectors are again in little
endian).

Proof. The first logN positions of the bit vector determine the row index of a
record within its column. The remaining logM positions describe the index
of the column. Hence, a swap of the first logN positions with the last logM ,
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which corresponds to a cyclic left-shift by logN bits, yields a row major lay-
out.

In the remainder of this section, we show that a BMMC permutation in-
duces a block graph with small connected components of similar structure
and describe a simple algorithm to detect and perform BMMC permutations.

Theorem 8.4. The block graph of a BMMC permutation with bit matrix A and
complement vector c consists of disconnected subgraphs of size 21+rankγ with γ
being the lower left n − b × b submatrix of A.

Proof. We first define the n − b × n matrix P which removes the first (least
significant) b bits of any bit vector and leaves all the other bits as they are
(removing the first b rows of the identity matrix I with dimension n yields
P ). Thus for any i ∈ [N], Pi yields the bit vector indexing the block of
x. Similarly, PAi yields the index of the target/output block of i. Now let
U = kernP + kernPA and Fn2 /U be the quotient space of Fn2 modulo U with
equivalence classes (cosets) [x] = x +U for any x ∈ Fn2 .

For any two records i, j ∈ [N] that are located in the same input block it
follows by definition of P that Pi = Pj, and hence, P (i− j) = 0. This means
that i−j ∈ kernP and there is u ∈ kernP ⊆ U such that i = j+u. Consequently,
[i] = [j + u] = [j]. In other words, all records within an input block belong
to the same coset defined by Fn2 /U . By the same argument, P (Ai⊕ c) =

P (Aj ⊕ c) holds if i− j ∈ kernPA ⊆ U (observe that the complement vector
c is irrelevant), and thus, implies [i] = [j]. Hence, any two records that share
a target block belong to the same coset as well.

As argued above, an input block contains only records from the same
coset. Similarly, an output block consists of records within a single coset.
Since an edge in the block graph describes a record that belongs to the ad-
jacent input and output blocks, the records of both blocks all belong to the
same coset. Hence, any connected component of the block graph consists
of blocks whose records are in the same coset. Since each coset has (finite)
cardinality ∣U ∣, we conclude that all the connected components of the block
graph are of the same size, namely 2 ⋅ ∣U ∣/B (recall that in the block graph
each record is involved in 2 blocks).

U is a subspace of Fn2 , so we know ∣U ∣ = 2dimU (the number of linear com-
binations for a vector basis, and the maximal number of linearly indepen-
dent vectors respectively). By definition, dimU = dim (kernP + kernPA) =

dim kernP + dim kernPA− dim (kernP ∩ kernPA) where kernP ∩ kernPA
can be expressed as kernPA ∣kernP in which PA ∣kernP is the restriction
of PA to kernP . By the rank theorem, dim kernPA ∣kernP = dim kernP −

rankPA ∣kernP so that dimU = dim kernPA + rankPA ∣kernP . Since kernP
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is spanned by the unit vectors e1, . . . ,eb, PA ∣kernP consists exactly of the
first b columns of A. The transformation P annihilates the first b rows, so
that rankPA ∣kernP = rankγ where γ is the lower left n − b × b submatrix
of A. Finally, because we have dim kernPA = b, the dimension of U is
b + rankγ and every connected component of the block graph has size at
most 21+rankγ ≤ 2B.

A lower bound using the potential from [AV88] (which we extended to
the PEM model in Section 2.3) is presented in [CW93]. This lower bound
matches the observation that each block contains records from 2rankγ differ-
ent target blocks. Hence, the initial potential is Φ(0) = B/2rankγ , yielding the
following lower bound.

Lemma 8.5. The number of I/Os required to perform a BMMC permutation with bit
matrix A is bounded below by Ω (N

B
logd 2rankγ) for d = max{2,min{M

B
, N
PB

}}.

8.1.1 A Simple Algorithm for BMMC Permutations

An algorithm with optimal I/O complexity for the single processor case is
given in [CW93]. However, as described above, this algorithm operates with
rather complex matrix multiplications arguments to yield a factorisation of
the permutation matrix A. Having shown that a BMMC permutation in-
duces small connected components, one can apply a permuting algorithm to
each of the connected components.

For any number of processors P ≤ N
B

, the following algorithm can be
used once the connected components are known. A description on how to
identify the connected components, or to refuse the input if not a BMMC
permutation, follows below. Given the N

2rankγ groups of blocks that describe a
connected component, each group can be considered a separate permutation.
The P processors are then assign evenly among the N

2rankγ permutation tasks.
Since each tasks consists of 2rankγ blocks, a reordering of the records within
each group takes O( N

PB
rankγ
log d

) I/Os. Note that tasks can consist of non-
consecutive blocks. The output blocks of each permutation task are then
written to the block position specified by the overall permutation to form the
output.

Now, we discuss how the connected components are identified. Recall
that U is the combination of kernP and kernPA. While kernP is trivially
given, kernPA can be obtained by identifying all blocks that contain records
that are to be permuted into the same output block. I.e. it suffices to identify
a single connected component to determine U . In the following, we consider
records that are permuted into the first output block. Using U , for each block
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it can be determined whether it has the lowest block id of the coset, i.e. in the
connected component. This yields one block for each connected component
(and the set U to address all other blocks of the connected component) so
that the permutation tasks can be assigned among the processors.

The connected component including the first input block can be deter-
mined withO( N

PB
+ log N

B
) (parallel) I/Os as follows. First, the N

B
blocks are

assigned evenly among the processors such that at most ⌈ N
PB

⌉ records are
assigned to each processor. Scanning the assigned blocks, it is determined
whether a record in the block is to be permuted into the first output block.
A block that is – in terms of the block graph – connected to the first output
block is marked (marking blocks can be achieved by reserving an additional
N
B

records in external memory to contain the marking). Recall that the ids
of marked blocks are sufficient to describe U . Since kernPA ≤ B, and each
record can hold a number in [N], the ids of input blocks within the first coset
can be saved in one block. Let the set of these block ids be U ′. In order
to identify one block for each coset, U is provided to each processor. To this
end, a parallel prefix sum computation is invoked after reading (and possibly
marking) all blocks to assign each marked block with a unique, consecutive
index (with O(logP ) I/Os). Afterwards, the block ids are written into a ta-
ble which takes O( N

PB
) I/Os so that U is provided. With the same number

of I/Os, the table can be read in parallel to provide each processor with U ′.
In a second step, for each block in the assigned area of a processor, it

is checked whether it has lowest id within its connected component. This
can certainly be done by exoring the block ids with each of the ids in U ′.
Each block with lowest block id in its connected component is marked, and,
with a prefix sum computation, a consecutive indexing is generated. Then,
a table containing one block id for each coset is built. Using this table, the
N

2rankγ groups can be assigned to processors. Before starting the permutation
tasks, each processor checks if all blocks within a group permute to the same
output blocks. Otherwise, the permutation is not a BMMC permutation and
is refused. Finally note that the permutations successfully performed with
this algorithm are not necessarily BMMC permutation. However, the class
of BMMC permutations is contained.

8.1.2 Extension to Other Fields

The proof of Theorem 8.4 can also be extended to permutations defined by a
matrix A on indices from a vector space over any galois field GF (Z) for N
and B being exact powers of Z. For this, the projection matrix P is defined
such that the first logZ B positions are removed. The cardinality of the cosets
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is then ∣U ∣ = ZdimU = ZrankγZ ≤ B where γZ is the lower left logZ
N
B
× logZ B

submatrix of A. Thus, the connected components still have size no more
than 2B.

8.2 Expander Block Graphs

Considering the block graph of permutations, especially in the context of
BMMC permutations, leads to the intuition that low connectivity and a struc-
tured neighbourhood function implies an “easy” permutation. For the class
of BMMC permutations studied before, “easy” refers to an I/O complexity of
O(N

B
logM/B B) – which for M ≥ B1+ε (tall cache) reduces to scanning time

– opposing a lower bound for general permuting of min{N, N
B

logM/BN}.
This leads to the conjecture that high connectivity might be an indicator for
hard permutation tasks. However, we disprove this conjecture by presenting
a construction of a class of expander block graphs which describe easy per-
mutations. The proposed expanders guarantee a vertex expansion of O(B)

for sets of size up toO( N
B2 logB). This is almost optimal in the sense that the

maximum size of sets which still expand can only be improved by a factor
logB. Our construction is inspired by the construction of the zig-zag product
in [RVW00].

8.2.1 Definitions

Throughout this section, we consider discrete random variables on finite sets,
i.e. a variable X ∶ S → [0,1] with finite sample set S. The probability mass
function (pmf) of X is pX(s) = Pr [X = s] for s ∈ S.

Definition 8.6 (Support). For a random variableX , the support ofX (Supp(X)),
is the support the pmf pX ∶ S → [0,1] underlyingX , i.e. the set {s ∈ S ∣ pX(s) > 0}.

Definition 8.7. For a function f ∶ A → B and a random variable X on A with
distribution pX ∶ A → [0,1], the random variable Y = f(X) on B has probability
distribution pY ∶ B → [0,1] with pY (b) = ∑

a∈A∣f(a)=b
pX(a) for all b ∈ B.

Definition 8.8 (ε-close). Two random variables X and Y are called ε-close if for
the probability distributions pX and pY holds∑s∈Supp(X) ∣pX(s)−pY (s)∣+ ≤ εwhere

∣x∣+ =

⎧⎪⎪
⎨
⎪⎪⎩

x if x > 0,
0 otw.

Note that this is equivalent to l1 distance ≤ 2ε, and is hence symmetric.
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Definition 8.9 (Min-entropy). The min-entropy of a finite random variable X
with range S is given by H∞(X) = − log maxs∈S Pr [X = s].

Definition 8.10 (Sources). A k-source is a random variable with min-entropy at
least k. A random variable is called (k, ε)-source if there is a k-source ε-close to it.
A flat source is a random variable whose possible values (with positive probability)
all have the same probability.

A well-known relation between flat and arbitrary k-sources is given in
the following lemma.

Lemma 8.11. Every distribution of a k-source over a finite set is a convex combi-
nation of distributions of flat k-sources.

Proof. A random variable X on a finite set A is a k-source if 0 ≤ pX(a) ≤ 2−k

for all a ∈ A. We can describe a probability distribution as a vector p ∈ [0,1]∣A∣

where pX(ai) = pi for some ordering a1, . . . , a∣A∣ of the elements in A. This
defines the space of probability distributions of k-sources as the intersection
of the hypercube [0,2−k]∣A∣ and the hyperplane defined by ∑∣S∣

i=1 pi = 1. Be-
cause this intersection yields a convex polytope, any point of the polytope
can be written as a convex combination of the vertices of the polytope. Ob-
serve that the hyperplane cannot intersect the hypercube at a pure edge of
its boundary, i.e. a point with one 0 > pi > 2−k and all other pi = 2−k or pi = 0.
Hence, the vertices of the polytope are exactly the vertices of the hypercube
that lie on the hyperplane, i.e. pi = 2−k for 2k i’s and pi = 0 for the rest.

For the sake of readability, we denote the set of n-bit strings by (n) in the
following.

Definition 8.12 (Definition 10.2 from [HLW06]). A function E ∶ (n) × (d) →
(m) is a (kmax, a, ε)-conductor if for any k ≤ kmax and any k-source X over (n),
the random variableE(X,Ud) is a (k+a, ε)-source (whereUd is the random variable
described by the uniform distribution over (d)).

E is called (kmax, ε)-lossless conductor if it is a (kmax, d, ε)-conductor. A
pair of functions ⟨E,C⟩ ∶ (n)×(d) → (m)×(b), where n+d =m+ b is a (lossless)
permutation conductor if E is a (lossless) conductor and ⟨E,C⟩ is a permutation
over (n + d).

Definition 8.13 (Modification of Definition 10.3 from [HLW06]). LetG = (U ⊎
V,E) be a bipartite graph where ∣U ∣ = N , ∣V ∣ =M , and all vertices in U have degree
D. The graph G is a (Kmax, δ)-expander if every set of K ≤Kmax left vertices has
at least δK neighbours.
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8.2.2 An Non-Trivial Easy Expander

Theorem 8.14. For ε > 0, let B ≥ 8/ε and logB ∣ B. Given an ( N
B3C

, (1 −

ε) B
logB

)-expander G1 = (V1 ⊎ U1,E1) with degree B
logB

and ∣V1∣ = ∣U1∣ =
N
B2 , one

can construct a ( N
B2C

, (1 − ε)e3/ε B
logB

)-expander G = (V ⊎ U,E) with degree B
and ∣V ∣ = ∣U ∣ = N

B
such that a permutation described by the block graph G can be

performed with O( N
PB

logdB) I/Os for d = max{2,min{M
B
, N
PB

}}.

To prove the theorem, we change our view to conductors. First observe
the well-known relationship between lossless conductors and expanders:

Lemma 8.15. A (kmax, ε)-lossless conductor C ∶ (n) × (d) → (m) induces a
(Kmax, δ) expander G = (U ⊎ V,E), and vice versa, where U = (n), V = (m),
Kmax = 2kmax , δ = (1 − ε)2d, and left-degree D = 2d in the following way

{x, y} ∈ E iff ∃a ∶ C(x, a) = y .

Proof. “conductor⇒ expander”:
For any vertex set S ⊆ VL with ∣S∣ = 2k ≤ 2kmax the flat source US with

support S has min-entropy k. By definition ofC, there is Ỹ with min-entropy
k+d which is ε-close to Y = C(US , Ud). Considering the definition of ε-close,
when summing pỸ over the support of Y , we get ∑i∈Supp(Y ) pỸ (i) ≥ 1 − ε.
Since pỸ (i) ≤ 2−(k+d) for all i ∈ (m), the support of Y has to have size at least
(1 − ε)2k+d, i.e. the neighbourhood of S has size at least (1 − ε)2k+d.

“expander⇒ conductor”: To this end, we will show that for an arbitrary
k-sourceX ,C(X,Ud) as induced byG is a (k+d, ε)-source. We start by show-
ing this for flat k-sources X only. Let S ⊆ V be the vertices corresponding
to Supp(X). Since G is a (Kmax, δ)-expander S has at least δ∣S∣ = (1 − ε)2k+d

neighbours. Each vertex in the neighbourhood of S has at least one incoming
edge. Thus, for all i ∈ Supp(C(X,Ud)), it holds Pr [C(X,Ud) = i] ≥ 2−k ⋅ 2−d.
The additional probability above 2−k ⋅ 2−d for each i which has to be shifted
to form a flat (k + d)-source is bounded from above by 1 − δ∣S∣ ⋅ 2−(k+d) = ε.
Therefore, C(X,Ud) is a (k + d, ε)-source.

Now let us generalise this to all kinds of k-sources. By Lemma 8.11, we
can write the probability distribution of X as a convex combination pX(x) =

∑i αipXi(x) with ∑i αi = 1, αi > 0 where Xi are flat k-sources. Recall that
Y = C(X,Ud) has probability distribution pY (j) = ∑i αipYi(j). For each i, let
Ỹi be a (k + d)-source which is ε-close to Yi = C(Xi, Ud). It is easy to see that
by definition of ε-close, also Ỹ with pỸ (j) = ∑i αipỸi(j) for all j ∈ image(C)

is ε-close to Y because

∑
j∈Supp(Y )

∣pY (j) − pỸ (j)∣+ ≤ ∑
j∈Supp(Y )

∑
i

αi∣pYi(j) − pỸi(j)∣
+
≤ ε



174 CHAPTER 8. PERMUTATIONS

since ∑i αi = 1.

With this, we can reduce the proof of the theorem to conductors. In a first
step, we will explain the general construction of the desired conductor and
prove its expansion properties. This is followed by a proof of existence of the
required parts including a precise parametrisation. Finally, the degree of the
corresponding graph is considered to show that it is a block graph of a valid
permutation. By presenting an algorithm, we demonstrate that in terms of
asymptotic I/O complexity the described permutations are no harder than
BMMC permutations.

Lemma 8.16. Let ⟨E1,C1⟩ ∶ (n − 2b) × (b − a) → (n − 2b) × (b − a) be an (n −
3b+ a− c1, ε)-lossless permutation conductor and let E2 ∶ (2b− a) × (a) → (b) be a
(b−a− c2, ε)-lossless conductor. Then the function E ∶ (n− b)× (b) → (n− b) with

• y1 = E1(x1, r2)

• z = C1(x1, r1)

• y2 = E2(zx2, r2)

• E(x1x2, r1r2) = y1y2

is an (n − 2b + a − c1, b − a − c2,2ε)-conductor (see Figure 8.3).

Proof. Let k be the total min-entropy in (X1X2). Because it is unknown how
much entropy remains on which bits, we partition Supp(Y1) into

A = {i ∈ Supp(Y1) ∣H∞(ZX2 ∣ Y1 = i) ≤ b − a − c2}

and B = Supp(Y1) ∖A.
For any i ∈ A, since E2 is a (b − a − c2, ε)-lossless conductor, we find that

(Y2 ∣ Y1 = i) is a (k′ + a, ε)-source with k′ = H∞(ZX2 ∣ Y1 = i), i.e. there is a
Ỹ2,i ε-close to (Y2 ∣ Y1 = i) with

max
j∈(b)

Pr [Ỹ2,i = j] ≤ max
j∈(2b−a)

Pr [ZX2 = j ∣ Y1 = i] ⋅ 2
−a. (8.1)

Furthermore, ⟨E1,C1⟩ is a permutation conductor so thatH∞(X1X2R1) =

H∞(Y1ZX2) = k+ b−a. By definition of the min-entropy, this is equivalent to

max
i∈(n−2b)

Pr [Y1 = i] max
j∈(2b−a)

Pr [ZX2 = j ∣ Y1 = i] = 2−(k+b−a) .
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x2

(b)
(b-a)

E1 C1

E2

n-b

r1
(b-a)

r2

(n-2b)

b

(a)

y1

x1

(n-2b)

y2

z

(b)

n-b

Figure 8.3: The composition of simpler expanders towards a bigger expan-
sion. The upper and lower rectangles correspond to bit positions of the over-
all input/output (n − b bits specify vertices/blocks, the additional b bits of
the input specify edges/records within a block). The two inner shapes corre-
spond to conductors with funnels being input, and output respectively. Each
edge is annotated with the variable name and the number of bits in brackets.

Together with (8.1) we get

max
i∈A

Pr [Y1 = i]max
j∈(b)

Pr [Ỹ2,i = j] ≤ 2−(k+b). (8.2)

For the case Y1 = i, i ∈ B, the random variable (Y2 ∣ Y1 = i) is ε-close to a
source with min-entropy b−c2. Furthermore, since E1 is an (n−3b+a−c1, ε)-
lossless conductor, Y1 = E1(X1,R1) is a (min{k′′ + b−a,n− 2b− c1}, ε)-source
with k′′ = H∞(X1) ≥ k − b. Thus, there exists a Ỹ1 which is ε-close to Y1 and
has min-entropy at least min{k − a,n − 2b − c1}. Together with the (b − c2)-
sources Ỹ2,i that are ε-close to (Y2 ∣ Y1 = i) for each i ∈ B, we obtain

max
i∈B

Pr [Ỹ1 = i]max
j∈(b)

Pr [Ỹ2,i = j] ≤ max{2−(k−a),2−(n−2b−c1)} ⋅ 2−(b−c2) (8.3)

where we chose Ỹ2,i uniformly distributed over (b) for all i ∈ Supp(Ỹ1) ∖

Supp(Y1).
Observe that (8.2) is a stronger bound than (8.2), and hence (8.3) is a gen-

eral upper bound for i ∈ A ∪ B. Thus, using (8.3) we can define (Ỹ1Ỹ2) by
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Pr [Ỹ2 = j ∣ Ỹ1 = i] = Pr [Ỹ2,i = j] so that we get

max
i∈(n−2b)

Pr [Ỹ1 = i]max
j∈(b)

Pr [Ỹ2 = j ∣ Ỹ1 = i] ≤ max{2−(k+b−a−c2),2−(n−b−c1−c2)} ,

(8.4)
i.e. (Ỹ1Ỹ2) is a min{k + b − a − c2, n − b − c1 − c2}-source.

Finally, observe that (Ỹ1Ỹ2) is 2ε-close to (Y1Y2): For any i ∈ Supp(Y1), we
know that there exists Ỹ2,i with the desired min-entropy which is ε-close to
(Y2 ∣ Y1 = i), i.e.

∑
j∈Supp(Y2∣Y1=i)

∣p(Y2∣Y1=i)(j) − pỸ2,i
(j)∣+ ≤ ε .

The distance of (Y1Ỹ2) to (Y1Y2) is given by

∑
ij∈Supp(Y1Y2)

∣pY1(i)p(Y2∣Y1=i)(j) − pY1(i)pỸ2,i
(j)∣+

which is obviously upper bounded by ε because ∑i pY1(i) = 1. Similarly, for
Y1 and Ỹ1 holds

∑
i∈Supp(Y1)

∣pY1(i) − pỸ1
(i)∣+ ≤ ε

so that by the same argument (Ỹ1Ỹ2) is 2ε-close to (Y1Y2).

To apply Lemma 8.16 we have to show the existence of the required con-
ductors. This will be shown by the following lemma.

Lemma 8.17. For every 0 < ε < 1, there is a (kmax, ε)-lossless permutation con-
ductor ⟨C,D⟩ ∶ (n1) × (d) ↦ (n2) × (d′) with kmax = n2 − d −

3 log(e)
ε

− log(1 − ε)
when d ≥ log(n1 − n2 + d + 3/ε).

Proof. We show the existence of an appropriate expander graph G = (U ∪

V,E) which has on each vertex set U and V constant degree (this implies
a permutation conductor). Applying Lemma 8.15 proves the lemma. Let
again N1 = 2n1 , N2 = 2n2 , Kmax = 2kmax and D = 2d. Hence, we want to prove
the existence of a (Kmax, (1 − ε)D)-expander graph G = (U ⊎ V,E) where
∣U ∣ = N1, ∣V ∣ = N2, with all u ∈ U having (out-)degree D, and all v ∈ V having
(in-)degree N1D/N2. To ensure the expansion of G, we require for each set
S ⊆ U , ∣S∣ = K ≤ Kmax that there is no set T ⊆ V , ∣T ∣ < (1 − ε)DK such that
all DK edges from S go to T . For a uniformly chosen regular graph, let XS,T

be the random variable which is 1 if all edges from S do go to T . Now fix
the sets S and T . We can think of drawing the neighbours for each vertex in
U one after another. Since we aim for a graph which has constant degree on
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each side, during this process it can appear that a node in V already has full
degree and can not be drawn anymore. However, the probability for a node
in S to have a neighbour in T is bounded from above by ∣T ∣/N2. This yields
an overall probability for XS,T = 1 of at most (∣T ∣/N2)

DK .
If the expectation of ∑S,T XS,T over all such sets S and T is strictly less

than 1, there is a graph which is a (Kmax, (1 − ε)D)-expander. For a fixed
set S, it is sufficient to consider only sets T that have size exactly (1 − ε)DK.
Hence, we want to bound

E

⎡
⎢
⎢
⎢
⎢
⎣

∑
S,T

XS,T

⎤
⎥
⎥
⎥
⎥
⎦

≤
Kmax

∑
K=1

(
N1

K
)(

N2

(1 − ε)DK
)(

(1 − ε)DK

N2
)

DK

from above by a constant smaller 1. Therefore, we show that the choice of D
and Kmax implies an upper bound of e−K on the Kth term of the sum (note
that ∑∞

i=1 e
−i = 1

e−1
< 1).

Taking logarithm and estimating binomial coefficients, we need to show

K (ln
N1

K
+ 1) + (1 − ε)DK (ln

N2

(1 − ε)DK
+ 1) +DK ln

(1 − ε)DK

N2
< −K .

Rearranging terms and dividing by K yields

2 + (1 − ε)D + ln
N1

K
< εD ln

N2

(1 − ε)DK
, (8.5)

and separating K

2 + (1 − ε)D + lnN1 + (εD − 1) lnK < εD ln
N2

(1 − ε)D
. (8.6)

Recall that we requireD ≥ log N1D
N2

+ 3
ε

in the lemma, and thusD > 1/ε. Hence,
the left-hand side of (8.6) is monotonically increasing in K and is sufficient
to prove (8.5) for K =Kmax.

Furthermore, we claim Kmax = N2/((1 − ε)e
3/εD) so that it holds

2 + (1 − ε)D + ln
N1

Kmax
≤ 2 + (1 − ε)D + ln

(1 − ε)e3/εDN1

N2
≤ 2 + 2D . (8.7)

Similarly, by substituting Kmax on the right-hand side of (8.5), we obtain

εD ln
N2

(1 − ε)DK
≥ εD ln e3/ε

= 3D . (8.8)

Finally, (8.5) is implied by (8.7) and (8.8) because D ≥ 3/ε and ε < 1.
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Lemma 8.18. For every 0 < ε < 1, there is a (b − a − c2, ε)-lossless permutation
conductor ⟨C,D⟩ ∶ (2b − a) × (a) ↦ (b) × (b) with

• c2 =
3 log(e)

ε
+ log(1 − ε)

• a = log(b + 3/ε).

Lemma 8.19. For every 0 < ε < 1, there is a (n−3b+a−c1, ε)-lossless permutation
conductor ⟨C,D⟩ ∶ (n − 2b) × (b − a) ↦ (n − 2b) × (b − a) with

• c1 =
3 log(e)

ε
+ log(1 − ε)

• b − a = log(6/ε).

Proof. Observe that d ≥ log(6/ε) implies d ≥ log(d+3/ε) because 3/ε > log(6/ε)
(which is equivalent to 8 ⋅ 21/ε > 6 ⋅ 1

ε
and true for 0 < ε < 1).

Hence, there is a function E2 ∶ (2b−a)×(a) ↦ (b) which is a (b−a− c2, ε)-
lossless conductor for a = log(2b + 3/ε) and c2 = 4

ε
+ log(1 − ε) under the

setting B ≥ 6/ε. The function E has constant-right degree if E2 has constant
right degree because ⟨E1,C2⟩ is a permutation. Being a permutation implies
that the mapping of X1X2R1R2 to Y1ZX2R2 is bijective. Having E2 from
Lemma 8.17 with right-degree B, there are B inputs mapped on each value
of Y1Y2.

It remains to show that the result of the construction of Lemma 8.16 de-
scribes easy permutations.

Lemma 8.20. A permutation with block graphG2 requiresO( N
PB

logdB) I/Os for
d = max{2,min{M

B
, N
PB

}}.

Proof. To prove the lemma, we consider the block graph after performing
an intermediate permutation. The block graph is then used to describe the
remaining permutation to obtain the desired output permutation. More de-
tailed, we consider how the edges within the block graph are changed by the
intermediate permutation. Our aim is to transform the block graph into a
matching (cf. Figure 8.2 (b)). Then, the inter-block permutations have been
realised. Only the ordering of the output blocks and their internal order is
not necessarily correct. However, during the last output of each block (or
with an additional scan), the blocks can be written with the desired order
which yields the complete permutation.

First, we partition the index space of blocks (n−b) into sets P1, . . . , PN/B2

such that Pi = {ij ∈ (n − b) ∣ j ∈ (b)}, i.e. the first n − 2b bits are i. The
sets Pi have obviously size 2b = B. Note that for any v,w ∈ Pi and j ∈ (b),
E1(v, j) = E1(w, j) because E1 considers only the first n − 2b bits (and the
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last b − a bits). Because there are B nodes in each Pi, and we have constant
degree B, we can perform the following permutation, leading to a simpler
block graph. For each Pi, we choose an arbitrary ordering v1, . . . , vB of the
blocks in Pi and assign the kth record of each block to vk. This reordering
of the records in a group of B blocks corresponds to a transposition of the
B ×B records (considering each block as a column) in Pi, which is obviously
possible by sorting with O( N

PB
logdB) I/Os. In means of the block graph,

this corresponds to ordering the nodes v1, . . . , vB and assigning all the kth
edges to vk, i.e. replacing the edges (vk, j), (vj , k) by (vk, k), (vj , j) for each
1 ≤ j, k ≤ B. After this transformation, the first n − 2b bits of each node’s
neighbours are the same, given by E1 since the first n − 2b bits and the last
b−a bits are the same for all records in a block. In other words, for all v there
is i such that ⋃kE(v, k) ⊆ Pi in the resulting block graph.

In a second step, we define Q1, . . . ,QN/B2 where Qi = {j ∈ (n − b) ∣

⋃kE(j, k) ⊆ Pi}. Note that this is a partition of (n − b) after the first change
operations were applied. Furthermore, since ∣Pi∣ = B and E is B-regular,
there are B2 records j, k with E(j, k) ∈ Pi. Every j ∈ Qi has all its B neigh-
bours in Pi. Hence, there are exactly B nodes in Qi. Thus, since the neigh-
bourhood of Qi is Pi, and ∣Qi∣ = ∣Pi∣ = B, the records in the blocks of each Qi
can be sorted with the PEM merge sort, resulting in another O( N

PB
logdB)

I/Os. With this reordering, all the records that cause an edge to node vk ∈ Pi
are moved into the same block. Hence, in the resulting block graph each
node has only one neighbour. The block graph now corresponds to a match-
ing which finalises the permutation with a total number of O( N

PB
logdB)

I/Os.

8.3 Conclusion

We considered two classes of permutations that are fundamentally easier in
their I/O complexity than the worst-case over all permutations. The first one
is the class of BMMC permutations for which the (serial) I/O complexity was
determined in [CW93]. Their rather complicated proof of an upper bound
was simplified here using insights that are gained from the description of
the permutation with the block graph. Furthermore, our view leads to an
easy parallelisation involving N/B2 independent tasks.

Having seen that BMMC permutations induce a block graph with small
connected components, as a second class, we considered permutations that
induce block graphs with high connectivity that are fairly good expanders.
In the construction of this class, we started with B independent and sim-
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ilar permutations of N/B records each (used as the expander E1). Such
a permutation can be realised with O( N

PB
logd(N)B) I/Os. It is hence not

more difficult than a BMMC permutation. The connected components of the
block graph on the contrary have larger size (Θ (N/B2) instead of O(B) for
BMMC permutations). Any structure can be chosen for the B similar per-
mutations, especially expansion within the connected components is possi-
ble. However, it is not connected and its connected components are all of
the same kind. Since the block graph of the overall permutation consists
of at least B connected components, such a graph cannot be a (Kmax,B)-
expander for any Kmax > N/B2.

With our construction in Section 8.2, we amplified the expansion proper-
ties in that we showed the existence of a class of permutations with a block
graphs that is an (Ω (N/B) ,Ω (B/ logB))-expander. This separates from the
trivial setting of having B disconnected expander graphs and shows that ex-
pansion of the block graph, even up to this extend, cannot be a property used
to identify difficult permutations. Note that with a similar construction, one
can easily change the size of x2 and z to c and c − a respectively, such that
an (Ω (CN/B2) ,Ω (B/ logC))-expander is obtained for arbitrary C = 2c ≤ B
and a = log c.



9
Conclusion

Throughout this thesis, we investigated several computational tasks that de-
pend on sparse matrices, in order to gain an understanding of their com-
plexity in the PEM model. Computations were always carried out over a
semiring which guarantees the independent evaluation of each elementary
product. For all the considered sparse matrix computation tasks, we pre-
sented I/O-optimised algorithms and derived lower bounds on the number
of I/Os that are required by any program in the worst- and average-case.
All our lower bounds hold not only over uniform algorithms, but bound the
number of I/Os required for any non-uniform program, i.e. a program that
is designed for a certain matrix conformation. On the contrary, many of the
(uniform) algorithms we presented can be proven to be asymptotically opti-
mal for parameter ranges that can be considered most relevant in real world
settings.

Clearly, the results presented here are theoretical in nature and some of
the presented algorithms are stated more to complement the lower bounds
than to be implemented. The theoretical nature of our results allows for
clearly formulated mathematical theorems, which comes at the price of ab-
straction in our model of computation. We neglected everything but the
memory access patterns of a program, and disallowed Strassen-like algo-
rithms. Furthermore, our focus is on worst-case behaviour whereas in prac-
tice the structure of the input can often be exploited. However, our theoret-
ical understandings give important indications on the limits of what can be
expected from a practical algorithm. They can also be considered as a refer-
ence point for the design of practical algorithms that reduce the worst-case
number of cache misses, which is especially relevant if the sparse matrix is
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not known to have any special distribution of its non-zero entries. In this
context, we remark again that the benefit of Strassen-like algorithms is not
clear for sparse matrix multiplication (below certain sparsity thresholds, no
helpful techniques are known). Furthermore, the well-known fact that mem-
ory access patterns can be improved by applying a sorting procedure arises
many times throughout our analyses. In practice, a simplified and adjusted
sorting procedure often turns out to be efficient, even for structured matrices.

Summary In order to derive upper and lower bounds, we first extended
some important known techniques from the I/O-model to the PEM model.
In Chapter 3, we then reduced the number of considered tasks by presenting
a reduction of the computation of the matrix vector product SPMV to the
computation of bilinear products BIL, and vice versa. Hence, it suffices to
consider one of the tasks to obtain lower and upper bounds – at least in a
non-uniform fashion – for the respective other task. Only the I/Os induced
for parallel gather and scatter tasks differ since the evaluated functions rely
on a different number of input variables.

This reduction was used in Chapter 4 to obtain algorithms and lower
bounds on the parallel I/O complexity of both, SPMV and BIL, where the
sparse matrix can be in column major, row major, or best-case layout. We
extended previous work by Bender et al. [BBF+10] to the parallel processor
case involving non-square matrices that are multiplied with multiple vectors
simultaneously. Therein, the number of vectors that are multiplied with the
same matrix is upper bounded by w ≤ B. Given the tall-cache assumption
M ≥ B1+ε for constant ε and a number of processors P such that each pro-
cessor reads at least B1+ε records in an equal partitioning of the data among
the processors, the asymptotic parallel I/O complexity was determined.

For higher numbers of vectors – which corresponds to the multiplica-
tion with a dense matrix (SDM) having more than B columns – the paral-
lel I/O complexity was analysed in Chapter 5. In contrast to the previous
chapters, the analysis of SDM is based on the consideration of subgraphs
consisting of a limited number of edges within random bipartite graphs.
By a derandomisation argument, we could show that a denser than aver-
age subgraph can be found in time proportional to the size of the matrix
NxNy (if such a density exists in the worst-case over the considered random
bipartite graphs). For matrices that are beyond a certain density threshold
(H ≥ (NxNy/M) log2

((Nx +Ny)/M)), a more practical algorithm was shown
to be optimal. This algorithm is an extension of the tile-based cache aware
algorithm for dense matrix multiplications. The obtained upper and lower
bounds on the I/O complexity are again matching, given the tall-cache as-
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sumption and number of processors that allows each processor to fill its en-
tire memory during an (asymptotically optimal) algorithm.

A similar technique was applied to the multiplication of two sparse ma-
trices (SSM). However, we could not exploit denser than average subgraphs
algorithmically. Also our lower bound inspired by Chapter 5 eludes gen-
erality. Only for a subclass of algorithms – the class of pseudo rectangular
algorithms – lower bounds could be obtained by this technique. Using a sim-
ple reduction, we derived lower bounds for SSM from Chapter 4 which are
matching the presented algorithms for k1, k2 ≤ min{B,N/(2B)}.

Finally, our techniques for sparse matrix computation were applied to
the MapReduce framework in Chapter 7. This allows for an analysis of the
parallel I/O complexity induced by the shuffle step. Since this step is the
only explicit communication phase, which is performed in each round, this
yields bounds on the (parallel) I/O-efficiency of the MapReduce framework.

In a last chapter, we investigated the complexity of two classes of per-
mutations. As shown by the I/O complexity of the presented algorithms,
both classes reflect rather easy permutations. In the PEM model, the con-
sidered permutations are no harder than dense matrix transposition whose
I/O complexity is among the easiest, non-trivial ones, and becomes trivial
under the tall-cache assumption. This rejects a candidate class for difficult
permutations, namely that of permutations with block graphs being good
expanders.

Open Problems All our lower bounds rely, similarly to the ones in this con-
text in [AV88] and [BBF+10], on a counting argument. Though this shows the
existence of difficult instances and bounds the minimum number of I/Os,
there is no characterisation of which (permutation) matrices are difficult to
multiply with. In order to obtain algorithms that perform well on instances
that appear in practice, it is desirable to gain an understanding of what
makes an instance hard. With such knowledge, algorithms can be adapted
to classes of instances that have a different worst-case behaviour.

Furthermore, we only considered worst-case or average-case complexi-
ties in this thesis. To find an optimal program for a given permutation or
matrix vector multiplication is another problem of its own. In [Lie09], it is
shown that finding an optimal program is NP-complete, even for B = 1 if
M is part of the input. They present an algorithm which is fixed-parameter
tractable inM and the number of non-compulsory I/O (that are not required
to read/write the input/output). Moreover, they showed recently [LJ12] that
the problem is even NP-hard for fixed M ≥ 2, and gave an approximation
algorithm for M = 2.
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The lower bounds presented in this thesis hold for any non-uniform pro-
gram. However, especially in the parallel case, the matrix conformation is
crucial for a proper load-balancing among the processors. This load-balanc-
ing which seems required if the matrix conformation is not known to the
algorithm cannot be characterised using the techniques in Chapter 2. In this
context, it is for instance not clear wether a prefix sum computation is re-
quired or not, to transpose a sparse matrix in column major layout directly.
Recall that we required a prefix sum computation in order to determine the
target position of a record.

In a similar manner, the CREW policy with its asymmetric access policy
requires balanced gather tasks. We were not able to derive a uniform parallel
algorithm for the direct matrix vector multiplication with a matrix in column
major layout. Here, we note that this problem does not arise for BIL, nor if
each record is annotated with both, its column rank and its row rank.

In Chapter 2, we improved on the I/O-efficiency of the PEM merge sort
from [AGNS08] for sorting N records with P ≥ N/B2 processors. A lower
bound for permuting indicates that the algorithm is optimal for any number
of processors P ≤ N/B, unless the direct algorithm is optimal. A bound in
the comparison model holds even in a setting where the direct algorithm is
optimal for permuting. Recall that there have to be sufficient comparisons
to determine uniquely which permutation has to be realised by the sorting
instance. However, there are settings, when a sufficient number of compar-
isons have been performed, but there is no global knowledge of what per-
mutation has to be realised. Excluding such cases, we only have matching
lower bounds for P ≤ N

B logεN
for constant ε > 0. It would be interesting to

either improve the lower bounds, or construct an algorithm to identify, and
then to perform the permutation directly.

Finally, our attempts to identify the asymptotical I/O complexity of SSM
did only yield partial results. The I/O complexity for most parameter ranges
is not understood yet. It seems that our techniques – especially the count-
ing based techniques – are not strong enough to tackle this problem, at least
not for non-trivial block sizes. A stronger technique that is not based on a
counting argument could moreover lead to an understanding of the difficult
instances. However, even for block size B = 1, SSM remains an interesting
problem. In this case, we obtained bounds for a special class of algorithms.
For a bound on the I/O complexity of any algorithm, we lack of more in-
volved probabilistic estimations.
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