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Abs tr a c t  

Memory testing has always been an important task since 

semiconductor memories are commonly used. Much has been 

published on functional fault models and memory test 

algorithms. With ongoing development of memories and 

shrinking technology, more and more new variants of fault 

models arose and recent tests have been developed. 

For this project the unique opportunity opened up to carry 

out a comprehensive analysis of memory test algorithms and 

faults on real productive test data. The study was initialized 

and enabled by Infineon Technologies AG and the tests took 

place on embedded SRAMs of 32-bit microcontroller devices. 

During full production, comprehensive tests on the 

embedded SRAMs could be executed, as due to improved 

Burn-In and test procedures extended tests have been made 

possible during 12 hours of Burn-In. The most important 

expectations on this project are new findings about 

detectability of memory faults and effectiveness of memory 

test algorithms, with the overall aim of test set optimization. 

In the beginning a comprehensive study on memory faults, 

test algorithms and the existing test hard- and software at 

Infineon was done. The present potential of embedded testing 

was analyzed and the possible potential was identified. 

To reach the project objectives 30 different march test 

algorithms have been combined to a study test set and were 

implemented into the productive test flow and performed 

several times at different temperature and supply voltage. The 

results are logged and collected in a huge data base. Via pure 

data mining of these productive test results, the analyses for 

this study could be executed. The effectiveness of memory test 

algorithms and the importance and effects of environmental 

and algorithmic stress parameters could be worked out and 

analyzed. A few algorithms could be identified that are 

outstanding and most effective to cover the largest part of 
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different fault models. In addition to the analysis of single test 

algorithms, the relationship of combinations of test algorithms 

was analyzed. An efficient combination of test algorithms 

avoids redundant testing and keeps the test time as short as 

possible. Through evaluating the results of test algorithms 

pairwise, efficient and inefficient combinations could be 

identified and a new approach to rate the quality of 

effectiveness of test algorithms could be established. These 

findings are important for the selection of algorithms for 

productive memory test sets - moreover the same results 

could be used to classify test algorithms and functional fault 

models, where algorithms with similar properties are 

allocated to a specific subset of functional fault models. 

With help of heuristic logic minimization, a formal 

approach to test set optimization was established. The test 

results could be processed and the set of essential test 

algorithms could be determined that fulfills two requirements 

at the same time: maximum fault coverage and minimum test 

effort. By weighted ordering of these essential algorithms, a 

“function” could be generated that relates fault coverage to 

test length. This is important for test set development, as 

desired yield and expected test time can be estimated. 

Depending on test requirements and desired yield, a subset of 

essential algorithms can be chosen and the necessary test time 

can be estimated. The analysis has shown that already the 

combination of three test algorithms is able to detect nearly 

98% of faults at a minimum of test time. 

Due to the fact that the comprehensive test set was 

performed during Burn-In, which causes artificial aging, the 

influence of high temperature and high voltage stress could 

also be analyzed and interesting results could be observed. 

Before and after the stress phase during Burn-In, tests have 

been executed at similar environmental test conditions. 

Hence, the results are comparable and the influence of Burn-

In stress on fault manifestation could be worked out. The 

analysis shows that Burn-In stress increases the number of 



Abstract v 

 

faults about four times. Especially for highly safety critical 

products, Burn-In has a not negligible effect in memory 

testing. Without Burn-In these faults remained undetected 

and latent, and would possibly appear during life time. Not 

only the number of faults increases due to stress, also the 

behavior and manifestation of some faults changes. By 

classifying the faults before and after Burn-In, a shift from 

dynamic to static faulty behavior became observable. The 

same faults that appeared as dynamic before stress, 

manifested as static afterwards. This finding influences the 

selection of test algorithms for different test sets before and 

after Burn-In or at wafer test. 

The results of this project are directly used to improve the 

memory test process at Infineon and some findings could 

already be fed back into the development of Built-In Self-Tests 

and the productive test flow. 
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Kur z fa s s ung  in  de uts c he r  Spr a c he  

Seit der massenhaften Verbreitung von Halbleiter 

Speichern ist auch deren Test immer ein wichtiges Thema 

gewesen. Seitdem wurde ständig daran gearbeitet und viel zu 

funktionalen Fehlermodellen und Testalgorithmen 

veröffentlicht. Mit fortschreitender Entwicklung und immer 

kleiner werdenden Strukturen wurden auch immer mehr 

neue Fehlermodelle entdeckt und neuere Tests entwickelt. 

Für das Projekt, das in dieser Arbeit beschrieben wird, hat 

sich die einmalige Gelegenheit ergeben eine umfangreiche 

Untersuchung von Fehlern und Testalgorithmen, basierend 

auf produktiven Messdaten vorzunehmen. Die gesamte 

Studie wurde durch die Infineon Technologies AG ermöglicht 

und auch die Untersuchungen der eingebetteten SRAMs in 

32-bit Mikrocontrollern fanden dort statt. Durch ein 

kombiniertes Test und Burn-In System wurden umfangreiche 

Tests der Speicher vor und nach einer 12-stündigen Burn-In 

Phase ermöglicht. Ziel dieser Studie war neue Erkenntnisse 

über die Detektierbarkeit von Speicherfehlern zu gewinnen 

und, vor dem Hintergrund die Zusammenstellung von 

Testsets zu optimieren, die Effektivität von Testalgorithmen 

zu untersuchen. 

Zu Beginn der Studie wurde eine ausführliche Recherche 

zu Fehlern in Halbleiterspeichern, Testalgorithmen und der 

Testhard- und software bei Infineon durchgeführt. Dazu 

wurde die aktuell Konfiguration und die potentiell mögliche 

Konfiguration des integrierten Testsystems analysiert. 

Um diese Ziele zu erreichen wurde ein Set von 30 

verschiedenen Testalgorithmen erstellt, das anschließend in 

den produktiven Testablauf eingeflochten wurde und bei 

verschiedenen Spannungen und Temperaturen wiederholt 

ausgeführt wurde. Die Ergebnisse dieser Tests wurden für die 

weitere Analyse in einer Datenbank gespeichert, auf deren 

Basis die Datenanalyse für diese Studie stattfand. Somit war 
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es möglich die Effizienz von Testalgorithmen und den Effekt, 

den verschiedene algorithmische Stressparameter oder 

Umgebungsparameter haben, herauszuarbeiten und zu 

analysieren. Einige Algorithmen konnten identifiziert 

werden, die in ihrem Verhalten herausstechen und mit deren 

Hilfe die meisten Fehlermodelle bereits gefunden werden 

können. Zusätzlich zur Analyse der Effizienz einzelner 

Testalgorithmen, wurde auch deren Kombination untersucht. 

Denn eine Effiziente Kombination aus Algorithmen in einem 

Testset vermeidet redundante Tests und die Testzeit kann so 

verringert werden. Durch den Vergleich der Testergebnisse 

von jeweils zwei Algorithmen konnten effiziente und 

ineffiziente Paarungen identifiziert werden und ein Ansatz 

zur Bewertung der Effizienz von Testalgorithmen wurde 

entwickelt. Die so gewonnenen Erkenntnisse sind wichtig für 

die Auswahl von Testalgorithmen für produktive Testsets. 

Überdies wurden die Ergebnisse aus dieser Analyse auch 

dafür verwendet, Algorithmen und Fehlermodelle zu 

klassifizieren, wobei Algorithmen mit ähnlichen 

Eigenschaften zusammengefasst und Gruppen von 

bestimmten Fehlermodellen zugeordnet wurden. 

Mit Hilfe heuristischer Logikminimierung wurde ein 

Ansatz für die formale Testset Optimierung entwickelt. Die 

Testergebnisse der Messungen wurden so verarbeitet, dass 

ein Set von essentielle Algorithmen ermittelt wurde, das 

sowohl die Anforderung an maximale Fehlerausbeute als 

auch an minimale Anzahl an nötigen Algorithmen erfüllt. 

Durch Gewichten dieser essentiellen Algorithmen wurde eine 

Zuordnung von Fehlerausbeute zu Testlänge in Form einer 

„Funktion“ möglich. Dies ist vor Allem für die Testset 

Entwicklung interessant, da abhängig von den 

Testanforderungen, die Algorithmen für eine gewünschte 

Ausbeute selektiert werden können und die notwenige 

Testzeit dafür dann abgeschätzt werden kann. Die Ergebnisse 

dieser Studie zeigen, dass bereits mit einer Kombination aus 
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nur drei Testalgorithmen nahezu 98% der Fehler entdeckt 

werden, wobei die Testzeit dabei relativ gering ist. 

Durch die Tatsache, dass die Untersuchungen in dieser 

Studie während des Burn-In Tests stattfanden, konnten auch 

die Auswirkungen von Hochtemperatur- und 

Hochspannungsstress auf das Fehlerverhalten der Speicher 

untersucht werden – mit interessanten Ergebnissen. Vor und 

nach der Stressphase wurden die Tests bei ähnlichen 

Umgebungsparametern durchgeführt. Somit war es möglich 

diese Ergebnisse miteinander zu vergleichen und so den 

Effekt, den Burn-In auf das Fehlerverhalten hat 

herauszuarbeiten. Die Analyse zeigt, dass sich die Anzahl der 

gefundenen Fehler nach Burn-In etwa vervierfacht hat. 

Besonders für sicherheitstechnisch relevante Produkte heißt 

das, dass Burn-In einen nicht zu vernachlässigenden Einfluss 

auf das Testen von Halbleiterspeichern hat. Ohne Burn-In 

wären diese Fehler unentdeckt geblieben und hätten sich erst 

im Laufe der Zeit manifestiert und so zu Ausfällen geführt. 

Aber nicht nur die Anzahl der Fehler stieg an sondern auch 

das Verhalten einzelner Fehler hat sich durch Burn-In 

verändert. Es wurde eine Veränderung von dynamischen 

Fehlern vor Burn-In hin zu statischem Verhalten beobachtet. 

Dieselben Fehler, die vorher als dynamisch klassifiziert 

wurden, haben sich durch Burn-In als statische Fehler 

manifestiert. Diese Erkenntnis beeinflusst die Selektion von 

Testalgorithmen für unterschiedliche Testsets vor und nach 

Burn-In oder bereits für das Wafertesten. 

Ergebnisse dieser Studie konnten bereits unmittelbar 

genutzt werden um Speichertests bei Infineon zu verbessern 

und einige Erkenntnisse konnten auch in die Entwicklung des 

integrierten Selbsttests für Produktionstests zurückgeführt 

werden. 
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C ha pte r  1   

I n t r o duc t io n  

In modern microcontroller devices for highly safety critical 

applications, it is essential to ensure the freedom from faults 

for the embedded memories. Therefore a very high effort is 

necessary to reach the aim of “zero defects”. For this project, 

the unique opportunity to perform a comprehensive analysis 

of memory tests became possible at Infineon Technologies 

AG. In contrast to simulation based test optimization, in this 

work, a large amount of productive memory test results is 

used for statistical analysis and evaluation. The aims of the 

project are to investigate the embedded self-tests of static 

semiconductor memories and to analyze productive memory 

test results of automotive microcontroller devices with the 

aim to improve and optimize the selection of tests for 

embedded SRAMs. 

The project became possible because during productive 

testing, extended test time due to Burn-In was available for 

comprehensive tests and analysis. Hence the project and the 

whole test setup and analysis were closely associated with the 

productive memory test flow. 
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1 . 1  P r e v i o u s  W o r k  

Much work has been published on memory testing (e.g. 

[1]-[31]). Before 1980, memory testing means “ad hoc testing”. 

Long and partly complex test patterns have been applied with 

the hope to detect as many faults as possible as fault models 

and proofs did not exist. Typical tests of this period are 

GALPAT or Walking 1/0, where the test time is extremely long 

and the test time of those tests grows quadratically with the 

memory size. 

During the early 1980s, functional fault models (FFMs) 

have been introduced. The tests that have been developed on 

basis of FFMs are typically of order O(n), i.e. linear with the 

memory size, where n is the memory size, and the desired 

fault coverage of these algorithms could mathematically be 

proven. Important FFMs have been stuck-at faults (SAFs), 

address decoder faults (AFs), coupling faults (CFs) and 

neighbourhood pattern sensitivity faults (NPSFs). Functional 

fault models are abstract and reflect the faulty behaviour of a 

memory independently of technology or real design. At that 

time also the inductive fault analysis (IFA) was used to 

establish new fault models based on simulated designs. More 

and more fault models have been developed and so also new 

march tests. For the first time, Ad van de Goor sums up the 

previous work on memory testing in his book [1] in 1998. It is 

a still important work that comprehensively treats memory 

testing, memory test algorithms and functional fault models. 

However, not all faults could be explained with the 

existing set of functional fault models. Hence, during the late 

1990s, the concept of fault primitives was introduced. Due to 

the complete description of fault primitives, the memory 

faults could be classified and additional functional fault 

models could be described such as write disturb faults, 

incorrect read faults or transition CFs. An important work, 

especially concerning the definition of memory faults, fault 
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models and fault primitives was done by Said Hamdioui, who 

sums up his experience in his book [2] in 2004. 

In [3] and [4], conditions for march sequences are 

described that have to be fulfilled to cover specific types of 

functional faults. Most publications on memory testing use 

these kinds of mathematical proofs of fault coverage to 

describe the performance and effectiveness of memory test 

algorithms. Comparatively rarely, real test results are 

presented in published work. Hamdioui et al. and Al-Ars et 

al. are presenting some industrial results in [3, 5, 6] and 

evaluate the test performance of different algorithmic tests 

and stress combinations. Additionally an approach to test set 

optimization is depicted, where the entire set of tests is 

reduced to a minimum necessary set of algorithms and stress 

combinations. The results of all algorithms are compared to 

each other in such a form that union and intersection of 

detected faults are determined and listed. This approach is 

also taken for a major part of the fault analysis in this work. 

However, the number of results presented in previous work 

is insufficient for a comprehensive test set optimization, and 

also the set of test algorithms that are taken into account is 

small. 

The performance of memory test algorithms is usually 

proven mathematically and the expected fault coverage is 

determined (e.g. [7, 8, 9]). However, in practice, there is only 

a simple fail or pass information and the fault model which is 

behind this fail is unknown. So, the selection of test algorithms 

can hardly be based on theory only, but experimental results 

have to be used for an efficient selection of test algorithms. 
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1 . 2  M o t i v a t i o n  

Many analyses and investigations have been done on 

memory test algorithms and functional fault models as 

described above. However, for industrial purpose the 

usability of test algorithms described in literature needs to be 

verified and efficient combinations of tests have to be 

identified for optimized test performance at industrial and 

productive semiconductor memory testing. 

Therefore, a comprehensive analysis on the efficiency of 

test algorithms and test parameters is necessary to determine 

new and efficient test sets to fulfill two main requirements for 

industrial semiconductor memory testing: 

 

 high fault coverage, and 

 low test effort. 

 

This analysis was done as a project in cooperation with 

Infineon Technologies, who provided a productive test 

environment for such comprehensive tests and statistical 

analyses. The planed outcome of the project is an optimization 

for productive testing of embedded semiconductor memories. 

The planed contents of this work are described in the 

following section. 

1 . 3  P l a n n e d  W o r k  a n d  P r o j e c t  O u t l i n e  

The intended content of this work was discussed with 

Infineon throughout the project, as both the course and the 

results of the investigation were not completely foreseeable in 

the beginning. For the initial definition of the project, the 

following items have been panned: 
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 Understand SRAM test concepts (SIST, MBIST+ various 

versions and generations) and test algorithms. 

 Carry out a literature survey on known SRAM 

technological problems, fault and failure causes. 

 Analysis of IBIS flow (Burn In) and current test flow. 

 Get basic knowledge about system of automotive 

microcontrollers, TC1797/TC1767, TC1787 … at least for 

MBIST+ / test access and access to memories through JTAG 

and system (mapping). 

 Comprehensive investigations about test algorithms, 

address algorithms, backgrounds, SRAM scrambling 

involvement, system scrambling involvement. 

 Analysis of environmental conditions (temperature, 

supply voltage) and other parameters (programmable self 

timings, weak write driver, digital margin mode) of SRAM 

and ROM. 

 Setup exhaustive test plan for TC1797/TC1767 and TC1787. 

 Setup database and visualization in html for tracking test 

results of exhaustive tests. 

 Create test setup for application in test flow using MBIST+ 

and drive implementation of these tests in test and IBIS 

flow. 

 Accumulate results in a database. 

 Map possible technological causes with observation 

findings. 

 Evaluate results for most efficient algorithms and test 

conditions. 

 Apply learning from 130nm technology (C11) to 90nm 

technology (L90) as there are more degrees of freedom in 

test generation in L90. 

 Influence future direction of MBIST+ design with learning 

outcome. 

 Minimize test time vs. effectiveness for C11 and L90 test 

flow using all parameters available. 

 



6 Introduction 

 

Not all of these items could be completed during the 

project as for some reasons concerning the productive test 

flow, the test setup for L90 could not be achieved completely 

and the number of devices that could be tested for L90 was not 

enough for meaningful and comparable statistics. Hence the 

investigations of the project are focused on the results of C11 

testing. 

However, during the project new aspects came into 

account and new ideas for analyses have been developed. So, 

the relation of faults and test algorithms has been analyzed 

and the distribution of different fault models within the tested 

memories was estimated based on the obtained test results. 

Also, variations of fault manifestation during Burn-In became 

visible and have been analyzed in more detail. 

The major outcomes of the project are: 

 

 Comprehensive literature survey on memory testing, test 

algorithms and memory faults. 

 Development of a suitable test strategy and setup and 

implementation of test to obtain productive memory test 

results. 

 Analysis of effectiveness of memory test algorithms. 

 Estimation of fault distribution after wafer test. 

 Test set optimization. 

 Analysis of variation of fault manifestation during Burn-

In. 

1 . 4  S e m i c o n d u c t o r  M e m o r i e s  

Semiconductor memories are very important storage 

elements in electronic devices. This project is entirely related 

to embedded SRAMs of microcontroller devices. As a short 

introduction to memory technology, this chapter gives an 

overview about the basic technological background of 
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semiconductor memories and Static Random Access 

Memories (SRAMs) in particular. 

 

1.4.1 Memory Technology 

Memories are part of most electronic devices to store 

program information or data. Usually the information is 

represented by ones and zeros, i.e. high and low potential in 

the electrical model. The simplest form of a block diagram for 

a memory is shown in Fig. 1.1 [1]. 

 

 

Figure 1.1. Block diagram of a memory 

 

The basic components of a memory are the memory cell 

array itself which contains the actual information and 

peripheral logic address decoder, write drivers and sense 

amplifiers. The address decoder is necessary to access the 
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single memory cells and write driver and sense amplifier 

enable to write to and read data from the memory. 

The types of semiconductor memories can be 

distinguished by their storage method, the form factor and the 

technology [10]. Basically volatile and non-volatile storage 

methods are common. Volatile means the stored information 

needs to be refreshed or supply voltage needs to be kept in 

order to keep the data, while non-volatile storage elements 

also keep the information without permanent supply voltage. 

A non-complete diagram of different and most common 

memory types is shown in Fig. 1.2. 

 

 

Figure 1.2. Types of semiconductor memories 

 

Depending on the desired application for a memory, 

factors like density, power consumption and performance 

have to be taken into consideration. In [10], these factors are 

compared and shown in a triangle. Following to [10], Fig. 1.3 

shows a few types of semiconductor memories where they are 

placed concerning their main properties: performance, power 

and density. ROM has the lowest power consumption of the 
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compared types. DRAM only needs low space as the density 

is very high but the power consumption is very high at the 

same time. SRAM has a good balanced ratio of power 

consumption, density and performance. 

 

 

Figure 1.3. Properties of different types of memories 

 

1.4.2 Static Random Access Memories 

Static random access memories (SRAMs) are the 

“workhorses of memories” [10]. Besides DRAMs, SRAMs are 

often used in systems on a chip (SoCs) if high speed memories 

are needed, such as caches in microprocessors [10]. 

SRAMs are, as the name suggests, static. In contrast to 

DRAMs, static RAMs need no refreshment of the data, but 

retain their state until it is overwritten as long as power is 

supplied (volatile memory). SRAM cells can enter two 

different stable states which represent logical values ‘0’ and 
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‘1’. Once the cell is in one state, it remains stable in it [2]. 

Basically a SRAM cell consists of two inverters that are fed 

back and thus stabilize themselves. The electrical model of a 

6-transistor SRAM cell is shown in Fig. 1.4. It consists of four 

transistors forming the two inverters and two gate transistors 

that enable the cell to access the bit-lines (BL and inverted bit-

line BL ) if the word-line (WL) is activated. 

 

 

Figure 1.4. 6-Transistor SRAM cell 

 

In a memory the cells are arranged in a regular array, 

where the single cells are accessed via word-line (horizontal 

address) and bit-lines (vertical address). Fig. 1.1 shows the 

memory array connected to address decoder, write driver and 

sense amplifier. A schematic of a regular SRAM array is 

shown in Fig. 1.5. A single cell can be accessed by accessing a 

specific word-line and bit-line. When addressing a word-line, 

all cells in the row are accessed. The desired cell is then 

selected by addressing the corresponding bit-line. Hence, one 

cell is uniquely identified by its horizontal and vertical 

address. 

Note that logical and physical cell addresses usually are 

not the same. Due to mirroring and scrambling, the physical 
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and logical layout of a cell array may differ extremely from 

each other. In Fig. 1.5 the SRAM cells are mirrored about the 

x- and y-axis. A mirroring about the x-axis facilitates the use 

of common power supply for two adjacent rows. Mirroring 

about the y-axis enables an optimized bit-line layout [10]. 

Furthermore, mirroring facilitates sharing isolation and 

power supply for adjacent rows or columns. 

On the one hand mirroring and scrambling is necessary 

because of layout considerations, and on the other hand it also 

may reduce interferences between adjacent cells due to 

compensating capacitive influence of bit- and word-lines. 

 

 

Figure 1.5. SRAM cell array 
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C ha pte r  2   

M e mo r y  Fa ul t s  

Memory faults often cause failing electronic devices. 

Wrong information stored or read from memories cause faulty 

behavior of the whole system. Actually physical defects cause 

the faults in a memory, but the defects are normally not visible 

to the outside. Only the faulty behavior is recognizable as 

functional fault. 

In this chapter a short introduction to memory faults and 

the definition of fault primitives and functional fault models 

is given. Fault primitives and functional fault models are base 

for a targeted memory test development. 

 



14 Memory Faults 

2 . 1  D e f i n i t i o n s  

The concepts of fault primitives and functional fault 

models are described in [2] and [11]. Accordingly, the 

following definitions apply. 

Fault primitives (FPs) describe the sensitizing operation 

sequence (SOS) and the corresponding faulty behavior of a 

certain fault. The SOS is a sequence of operations applied to 

the memory that results in faulty behavior. A fault primitive 

is denoted as <S/F/R>. S describes the SOS that sensitizes the 

fault; F describes the fault, i.e. the value or faulty behavior of 

the memory cell (e.g. the cell flips). R describes the logic 

output value of a read operation [2]. 

The concept of FPs allows to create the set of functional 

fault models (FFMs), which are defined as a non-empty set of 

fault primitives that inherit the properties of the FPs [2]. 

Both, FPs and FFMs, describe the faulty behavior of a memory 

cell and do not describe physical defects. Defects are the 

physical reason for a fault and, depending on technology, 

memory type, and other hardware reasons, there may be 

different types of defects that cause specific FPs. 

2 . 2  C l a s s i f i c a t i o n  o f  M e m o r y  F a u l t s  

Based on the SOS and faulty behavior, the FPs and FFMs 

can be classified according to [2]: 

 

1. the number of sequential operation in the SOS, into 

static and dynamic faults. 

2. the way of manifestation, into simple and linked faults. 

3. the number of different cells involved, into single-cell 

and multi-cell (coupling faults and neighborhood 

pattern sensitivity faults). 
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These classifications are independent of each other, as the 

factors of the SOS are independent. The classification of FFMs 

[2, 1] is summarized in Fig. 2.1. 

 

 

Figure 2.1. Classification of functional fault models 

 

Additional to memory cell array faults, Fig. 2.1 also shows 

address decoder faults and peripheral faults. 

2.2.1 Static versus Dynamic Faults 

Fault primitives can be divided into static and dynamic 

fault depending on the number of sequentially performed 

operation (#O) in a SOS [2]. 

Static FPs are always sensitized by the state of the cell (i.e. 

no operation) or at most one operation, i.e. #O ≤ 1. Dynamic 

faults are sensitized by more than one operation in the SOS, 

i.e. #O > 1. 
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2.2.2 Simple versus Linked Faults 

Fault primitives can manifest themselves as simple or 

linked faults. A simple fault cannot influence the behavior of 

another one, whereas linked faults (LFs) can influence the 

behavior of other faults and masking can occur [1, 2, 3]. The 

types of linked faults are illustrated in Fig. 2.2 [3, 12] 

 

 

Figure 2.2. Linked memory faults 

 

Depending on the number of faults involved, linked faults 

are divided into one-cell (LF1), two-cell (LF2) or three-cell 

(LF3) linked faults. The cells involved into a LF are called 
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operation on the aggressor causes a faulty behavior in the v-
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second a-cell at the same time and influences itself, where 

with LF3, there are two different a-cells beside the v-cell. 

For all types of linked faults, there are two FPs that 

influence the behavior of the v-cell in such a way, that the 

second FP may mask the fault of the first FP. Masking means 
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causes the v-cell to flip back (LF3), then the fault on the v-cell 

is masked. LF2s can furthermore be divided depending on 

which cell (a- or v-cell) the first and second FP appears into 

LF2aa, LF2av and LF2va. At a LF2aa linked fault, both FPs are 

coming from the a-cell, where at a LF2av linked faults, the first 

FP comes from the a-cell and the second FP comes from the v-

cell, and vice versa at a LF2va linked fault. 

2.2.3 Single-cell versus Coupling Faults 

Depending on the number of cells accessed during a SOS, 

the faults can be divided into single-cell and multi-cell faults 

(coupling faults). A single-cell fault occurs if only a single cell 

is involved into the SOS, whereas a coupling fault occurs if 

two or more cells are involved into the SOS. So, if a fault 

appears in the same cell, which the SOS is applied to, it is 

called single-cell fault; while, if the cell that sensitizes the fault 

is different from that where the fault appears, it is called a 

coupling fault. 

In Fig. 2.1 also neighborhood pattern sensitivity faults 

(NPSFs) are listed which are a special type of coupling faults, 

where the states of the cells in the neighborhood of the victim 

cell influence the faulty behavior of the victim cell. 

2.2.4 Address Decoder Faults 

Address decoder faults (AFs) are caused by defects in the 

address decoder or in bit-lines and word-lines. There are four 

types of faults that concern the accessibility of memory cells 

[1]. In Fig 2.3, the four types of address decoder faults are 

illustrated. 
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 No Access address fault (AFna): No cell is accessed with a 

certain address. Address Ax does not access cell Cx. 

 Multiple cell address fault (AFmc): One address accesses 

multiple cells. Address Ay accesses cells Cx and Cy. 

 Multiple address fault (AFma): One cell is accessed by two 

addresses. Addresses Ax and Ay access cell Cx. 

 Other cells address fault (AFoc): A certain address accesses 

multiple cells and one cell is accessed by multiple 

addresses. Address Ax and Ay access cell Cx, and Address 

Ay accesses cells Cx and Cy. 

 

 

Figure 2.3. Address decoder faults 

2.2.5 Peripheral Faults 

Peripheral faults are caused by defects of peripheral read 

and write logic of the memory. Peripheral faults are [13]: 

 

 Slow Write Driver Fault (SWDF) 

 Slow Sense Amplifier Fault (SSAF) 

 Slow Pre-charge Circuit Fault (SPRF) 

 Bit-Line Imbalance Fault (BLIF) 

 

Peripheral faults are not taken into account in the scope of 

this project. 
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2 . 3  F a u l t  P r i m i t i v e s  a n d  F u n c t i o n a l  

F a u l t  M o d e l s  

The topics of fault primitives and functional fault models 

are completely considered and described by Said Hamdioui 

in [2]. To introduce the faults in this work, Tables 2.1 and 2.2 

summarize single-cell and coupling faults. A detailed 

description and explanation of these types of faults can be 

found in [2]. 

The nomenclature of single-cell FPs is <S/F/R>, where S is 

the state or operation sensitizing the fault. E.g. 0r0 means that 

the cell is in state ‘0’ and a read operation is performed, where 

‘0’ is the expected value, or 0w1 means that the cell is in state 

‘0’ and a write 1 operation is performed. F denotes the faulty 

value of the failing cell, and R describes the logic output value 

of a read operation. 

 

Table 2.1. Single-cell FPs and FFMs 

# FFM FPs 

1 SF <1/0/->, <0/1/-> 

2 TF <0w1/0/->, <1w0/1/-> 

3 WDF <0w0/1/->, <1w1/0/-> 

4 RDF <0r0/1/1>, <1r1/0/0> 

5 DRDF <0r0/1/0>, <1r1/0/1> 

6 RRDF <0r0/1/?>, <1r1/0/?> 

7 IRF <0r0/0/1>, <1r1/1/0> 

8 RRF <0r0/0/?>, <1r1/1/?> 

9 USF <1/?/->, <0/?/-> 

10 UWF <0w0/?/->, <0w1/?/->, <1w0/?/->, <1w1/?/-> 

11 URF <0r0/?/0>, <0r0/?/1>, <0r0/?/?>, <1r1/?/1>, <1r1/?/0>, <1r1/?/?> 

12 SAF <1/0/->, <0w1/0/->, <1w1/0/->, <0/1/->, <1w0/1->, <0w0/1/-> 

13 NAF <0w1/0/->, <1w0/1/->, <0r0/0/?>, <1r1/1/?> 

14 DRF <0T/1/->, <1T/0/->, <0T/?/->, <1T/?/-> 
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Table 2.1 summarizes 14 functional fault models and 28 

fault primitives for single-cell faults. These FFMs and FPs are 

defined in detail in [2] and can be summarized as follows. 

 

 State Faults (SF): The value of the cell flips without any 

sensitizing operation and depends on the initial state of the 

cell. 

 Transition Faults (TF): The cell fails to flip when it is written 

with the opposite value. I.e. transition ‘0’  ‘1’ or ‘1’  ‘0’. 

 Write Destructive Fault (WDF): A non-transition write 

operation (0w0 or 1w1) causes a transition. 

 Read Destructive Fault (RDF): A read operation causes the 

cell to flip and the incorrect value is returned to the output. 

 Deceptive Read Destructive Fault (DRDF): A read operation 

causes the cell to change its value, however the correct 

output is returned. 

 Random Read Destructive Faults (RRDF): A read operation 

flips the cell and a random logic value is returned to the 

output. 

 Incorrect Read Fault (IRF): A read operation returns the 

incorrect value to the output; however the stored value in 

the cell remains correct. 

 Random Read Fault (RRF): A read operation returns a 

random logic value to the output while the stored value 

remains correct. 

 Undefined State Fault (USF): Without any sensitizing 

operation, the logic value of a cell flips into an undefined 

state. 

 Undefined Write Fault (UWF): An undefined state of the cell 

is causes by a write operation. 

 Undefined Read Fault (URF): The cell is brought into an 

undefined state by a read operation. 

 Stuck-At Fault (SAF): The cell remains stuck at a value for 

any operation. 

 No Access Fault (NAF): The cell cannot be accessed. A write 

operation cannot change the value of the cell and a read 
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operation returns a random value. A NAF needs not to be 

caused by the address decoder, but can also be caused by 

an open word-line. 

 Data Retention Fault (DRF): The value of a cell changes after 

a certain time T without accessing the cell. (E.g. <0T/1/-> 

denotes that the initial state of the cell is ‘0’ and flips to ‘1’ 

after a time T.) 

 

For two-cell FPs, the nomenclature looks like <Sa;Sv/F/R>, 

where Sa is the state of sensitizing operation of the aggressor 

cell and Sv is state of sensitizing operation of the victim cell. F 

and R are the same as for single-cell FPs. 

 

Table 2.2. Two-cell FPs and FFMs 

# FFM FPs 

1 CFst <0;0/1/->, <0;1/0/->, <1;0/1/->, <1;1/0/-> 

2 CFus <0;0/?/->, <0;1/?/->, <1;0/?/->, <1;1/?/-> 

3 CFds <xwy;0/1/->, <xwy;1/0/->, <rx;0/1/->, <rx;1/0/-> 

4 CFud <xwy;0/?/->, <xwy;1/?/->, <rx;0/?/->, <rx;1/?/-> 

5 CFid <0w1;0/1/->, <0w1;1/0/->, <1w0;0/1/->, <1w0;1/0/-> 

6 CFin {<0w1;0/1/->, <0w1;1/0/->}, {<1w0;0/1/->, <1w0;1/0/->} 

7 CFtr <0;0w1/0/->, <1;0w1/0/->, <0;1w0/1/->, <1;1w0/1/-> 

8 CFwd <0;0w0/1/->, <1;0w0/1/->, <0;1w1/0/->, <1;1w1/0/-> 

9 CFrd <0;0r0/1/1>, <1;0r0/1/1>, <0;1r1/0/0>, <1;1r1/0/0> 

10 CFdrd <0;0r0/1/0>, <1;0r0/1/0>, <0;1r1/0/1>, <1;1r1/0/1> 

11 CFrrd <0;0r0/1/?>, <1;0r0/1/?>, <0;1r1/0/?>, <1;1r1/0/?> 

12 CFir <0;0r0/0/1>, <1;0r0/0/1>, <0;1r1/1/0>, <1;1r1/1/0> 

13 CFrr <0;0r0/0/?>, <1;0r0/0/?>, <0;1r1/1/?>, <1;1r1/1/?> 

14 CFuw <x;0w0/?/->, <x;0w1/?/->, <x;1w0/?/->, <x;1w1/?/-> 

15 CFur 
<x;0r0/?/0>, <x;0r0/?/1>, <x;0r0/?/?>, 
<x;1r1/?/0>, <x;1r1/?/1>, <x;1r1/?/?> 

 

Table 2.2 summarizes the set of FFMs and FPs for coupling 

faults. A detailed definition can be found in [2]. The following 

items are a short summary. 
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 State coupling fault (CFst): The v-cell is forced into a given 

logic state if the a-cell is in a given logic state without 

performing any operation on the v-cell or a-cell. 

 Undefined State coupling fault (CFus): The state of the v-cell 

is undefined while the a-cell is in a given logic state 

without performing any operation on the v-cell or a-cell. 

 Disturb coupling fault (CFds): Any operation performed on 

the a-cell causes the v-cell to flip. 

 Undefined Disturb coupling fault (CFud): Any operation 

performed on the a-cell forces the v-cell into an undefined 

state. 

 Idempotent coupling fault (CFid): A transition write 

operation on the a-cell causes the v-cell to flip. 

 Inversion coupling fault (CFin): A transition write operation 

on the a-cell inverts the logic value of the v-cell. CFin 

consists of two pairs of FPs that have to be present 

simultaneously. (Denoted by { and } in the notation of the 

FPs.) 

 Transition coupling fault (CFtr): A given logic value in the a-

cell causes a failing transition write operation performed 

on the v-cell. 

 Write Destructive coupling fault (CFwd): A given logic state 

of the a-cell causes a transition in the v-cell although a non-

transition write operation is performed on the v-cell. 

 Read Destructive coupling fault (CFrd): If the a-cell is in a 

given state, a read operation on the v-cell changes its value 

and returns the incorrect value to the output. 

 Deceptive Read Destructive coupling fault (CFdrd): If the a-cell 

is in a given state, a read operation on the v-cell changes 

its value and the correct value is returned to the output. 

 Random Read Destructive coupling fault (CFrrd): If the a-cell 

is in a given state, a read operation on the v-cell changes 

the value in the v-cell and a random value is returned to 

the output. 
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 Incorrect Read coupling fault (CFir): If the a-cell is in a given 

state, a read operation on the v-cell returns the incorrect 

value to the output. 

 Random Read coupling fault (CFrr): If the a-cell is in a given 

state, a read operation on the v-cell returns a random value 

to the output while the value of the v-cell remains correct. 

 Undefined Write coupling fault (CFuw): A write operation on 

the v-cell forces it into an undefined state, while the a-cell 

is in a given state. 

 Undefined Read coupling fault (CFur): A read operation on 

the v-cell forces it into an undefined state, while the a-cell 

is in a given state. The value returned to the output can be 

correct, incorrect or random. 

 

 





 

C ha pte r  3   

M e mo r y  Te s t  Alg o r i thms  

Testing memories in order to detect all different fault 

primitives, tests are used that perform a specific algorithmic 

sequence of read and write operation, i.e. a specific sensitizing 

operation sequence. During algorithmic memory testing the 

test sequence is applied sequentially to all addresses of a 

memory and hence, the whole memory is tested evenly. 

In this chapter, the definition and structure of memory test 

algorithms are explained and algorithmic and environmental 

test parameters are described that are used in combination 

with memory test algorithms to improve the performance of 

the tests. 
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3 . 1  N o m e n c l a t u r e  

The sensitizing operation sequence (SOS), i.e. the sequence 

of read and write operation that activates and detects the fault, 

has to be defined for algorithmic memory testing. Therefore 

an open notation for memory tests [14] has been developed 

that describes the SOSs and their usage in march elements of 

test algorithms. 

Test algorithms consist of a sequence of march elements. 

The read and write operation of one march element are 

sequentially applied to one memory cell before moving to the 

next address, and one march element is applied to all 

addresses of a memory before moving to the next march 

element. For evaluating march algorithms, single march 

elements can be identified by numbering Mn. The numbering 

of march elements starts at n = 0; i.e. the first march element of 

an algorithm is M0. 

A test algorithm is delimited by curly brackets { and }, and 

each march element is delimited by parentheses ( and ). March 

elements are separated by a semicolon and the single read and 

write operation within a march element are separated by 

comas. An , , or  prior to the march elements denotes the 

addressing direction up (lowest address to highest), down 

(highest address to lowest) or arbitrary, respectively. An 

operation applied to a cell can be a ‘w0’ (write ‘0’), ‘r0’ (read 

‘0’), ‘w1’ or ‘r1’. A D in the notation for March G denotes delay 

time between two march elements. D depends on factors like 

technology and clock frequency and is in a range of µs to 

seconds. For all tests in the frame of this work, D is set to 

100ms. 

The biggest part of this work refers to this nomenclature; 

for the use of other complex and more-dimensional test 

algorithms, additional symbols and nomenclature may be 

used. A list of additional symbols is provided in Table 3.1. 
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Table 3.1 Symbols and Nomenclature 

Symbol Meaning 

 address increment 

 address decrement 

 don’t care address direction 

 address increment along main diagonal 

 N-E-S-W addressing around base cell 

 N-NE-E-SE-S-SW-W-NW addressing around base cell 

D delay time for detecting data retention faults 

b apply to base cell 

-b apply to all cells except the base cell 

Rep 
apply the operation k times to n-cells with a distance of 2k  
to the N, E, S & W of the b-cell 

R-b address row of base cell 

C-b address column of base cell 

x fast-x addressing (fast-row) 

y fast-y addressing (fast-column) 

3 . 2  T e s t  A l g o r i t h m s  

During development and definition of new fault 

primitives and functional fault models, the space of 

corresponding memory test algorithms also grows. 

Depending on the SOS, one or more faults models can be 

detected. In the beginning of the development of test 

algorithms during 1970’s and 1980’s, only few simple fault 

models like single-cell and static faults have been defined and 

hence also a few and simple test algorithms have been used. 

For example SCAN [1], MATS [1, 15, 16], March A [1, 17], 

March B [1, 17] or Algorithm B [18] are such traditional test 

algorithms. With the occurrence and definition of new and 

complex faults like linked and dynamic faults, new and 

specific test algorithms are needed. Based on the definition of 

specific FFMs, algorithms like March U [4], March LR [19], 

March RAW [20] or March AB1 [8] have been developed. 

Much has been published on memory test algorithms, and 

a widespread literature survey has been done to provide a 

comprehensive list of test algorithms to select a subset of 

algorithms for the study. As a result of the literature survey, a 
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list of 51 memory test algorithms could be determined which 

is provided in Table 3.2. The table also includes algorithms 

that have been developed with respect to the properties of 

MBISTPLUS (e.g. hammering or random algorithms). These 

algorithms are Hammer5R, Hammer5W and Ham_Walk. 

MBISTPLUS is the embedded self-test used at Infineon and 

will be described in chapter 4.2. 

Hammering means that the same read or write operation 

is repeatedly and sequentially performed during one march 

element. E.g. for Ham5R there are five sequential read 

operations in a march element (… (w0, r0, r0, r0, r0, r0) …). 
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Table 3.2. Memory test algorithms 

# Algorithm Sequence Reference 

1.  SCAN {(w0);(r0);(w1);(r1)} [1, 21] 

2.  SCAN+ {(w0);(r0);(w1);(r1);(w0);(r0);(w1);(r1)}  

3.  MATS {(w0);(r0,w1);(r1)} [1] 

4.  MATS+ {(w0);(r0,w1);(r1,w0)} [1, 16, 21] 

5.  MATS++ {(w0);(r0,w1);(r1,w0,r0)} [1, 16, 22] 

6.  March C- {(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0);(r0)} [1, 21, 22] 

7.  March C-- {(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0)} [21, 22] 

8.  March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} [1, 17] 

9.  March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} [1, 17, 21] 

10.  Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} [18, 22] 

11.  March C+ {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0); (r0)} [1] 

12.  PMOVI {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0)} [22, 23] 

13.  March 1/0 {(w0);(r0,w1,r1);(r1,w0,r0);(w1);(r1,w0,r0); (r0,w1,r1)} [24, 25] 

14.  March TP {(w0);(r0,w1);(r1,w0);(r0,w1,r1);(r1,w0,r0)} [22] 

15.  March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0)} [4] 

16.  March X {(w0);(r0,w1);(r1,w0);(r0)} [1] 

17.  March Y {(w0);(r0,w1,r1);(r1,w0,r0);(r0)} [1] 

18.  March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} [19] 

19.  March LA 
{(w0);(r0,w1,w0,w1,r1);(r1,w0,w1,w0,r0);(r0,w1,w0,w1,r1); 
   (r1,w0,w1,w0,r0);(r0)} 

[26] 

20.  March RAW 
{(w0);(r0,w0,r0,r0,w1,r1);(r1,w1,r1,r1,w0,r0);(r0,w0,r0,r0,w1,r1); 
   (r1,w1,r1,r1,w0,r0);(r0)} 

[20, 7] 

21.  
March 
RAW1 

{(w0);(w0,r0);(r0);(w1,r1);(r1);(w1,r1);(r1);(w0,r0);(r0)} [20, 7] 

22.  March AB 
{(w1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0); 
   (r0,w1,r1,w1,r1);(r1)} 

[8, 27] 

23.  March AB1 {(w0);(w1,r1,w1,r1,r1);(w0,r0,w0,r0,r0)} [8] 

24.  March BDN 
{(w0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1); 
   (r1,w0,r0,w0,r0);(r0)} 

[28] 

25.  March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} [29] 

26.  March SR+ {(w0);(r0,r0,w1,r1,r1,w0,r0); (r0);(w1);(r1,r1,w0,r0,r0,w1,r1);(r1)} [2, 29] 

27.  
March 
SRD+ 

{(w0);(r0,r0,w1,r1,r1,w0,r0);D; 
(r0);(w1);(r1,r1,w0,r0,r0,w1,r1);D;(r1)} 

[2] 

28.  March SS 
{(w0);(r0,r0,w0,r0,w1);(r1,r1,w1,r1,w0);(r0,r0,w0,r0,w1); 
   (r1,r1,w1,r1,w0);(r0)} 

[9] 

29.  March SL 
{(w0);(r0,r0,w1,w1,r1,r1,w0,w0,r0,w1);(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0); 
   (r0,r0,w1,w1,r1,r1,w0,w0,r0,w1);( r1,r1,w0,w0,r0,r0,w1,w1,r1,w0)} 

[30] 

30.  March G 
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0); 
   D;(r0,w1,r1);D;(r1,w0,r0)} 

[31] 

31.  GAL5R {(w0);b(w1b,(r0,r1b),w0b);(w1);b(w0b,(r1,r0b),w1b)} [21] 

32.  GAL9R {(w0);b(w1b,(r0,r1b),w0b);(w1);b(w0b,(r1,r0b),w1b)} [21] 

33.  GAL5W {(w0);b(w1b,(w0,r1b),w0b);(w1);b(w0b,(w1,r0b),w1b)} [21] 

34.  GAL9W {(w0);b(w1b,(w0,r1b),w0b);(w1);b(w0b,(w1,r0b),w1b)} [21] 

35.  Walking 1/0 {(w0);b(w1b,-b(r0),r1b,w0b);(w1);b(w0b,-b(r1),r0b,w1b)} [1] 

36.  Butterfly {(w0);b(w1b,Rep((r0),r1b),w0b);(w1);b(w0b,,Rep((r1),r0b),w1b)} [21] 

37.  GALPAT {(w0);b(w1b,-b(r0,r1b),w0b);(w1);b(w0b,-b(r1,r0b),w1b)} [1] 

38.  GALRow {(w0);b(w1b,R-b(r0,r1b),w0b);(w1);b(w0b,R-b(r1,r0b),w1b)} [1, 21] 

39.  GALCol {(w0);b(w1b,C-b(r0,r1b),w0b);(w1);b(w0b,C-b(r1,r0b),w1b)} [1, 21] 

40.  BLIF {(w0);x(w1,r1,w0);(w1);x(w0,r0,w1)} [22] 

41.  HamW16 {(w0);(r0,w116,r1);(r1,w016,r0);(r0,w116,r1);(r1,w016,r0)} [22] 

42.  HamR16 {(w0);(r0,w1,r116,r1);(r1,w0,r016,r0);(r0,w1,r116,r1);(r1,w0,r016,r0)} [22] 

43.  HamR28 {(w0);(w1,w0,r028);(w0,w1,r128);(w1,w0,r028); (w0,w1,r128)} [32] 

44.  Ham_Max {(w14,w04,r028);(w04,w14,r128)} [32] 

45.  Hammer_L {(w08);(r028);(w18);(r128)} [32] 

46.  Hammer 
{(w0);(w1b

1000,R-b(r0),r1b,C-b(r0),r1b,w0b);(w1); 
   (w0b

1000,R-b(r1),r0b,C-b(r1),r0b,w1b)} 
[22] 

47.  HamW {(w0);(w1b
16,C-b(r0),w0b);(w1);(w0b

16,C-b(r1),w1b)} [22] 

48.  Ham5R {(w0);(w1,r15);(w0,r05);(w1,r15);(w0,r05)} [32] 

49.  Ham5W {(w0);(w05,r0);(w15,r1);(w05,r0);(w15,r1)} [32] 

50.  Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)}  

51.  Random {?(w?,r?)} [32] 
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Note that the list of memory test algorithms cannot be 

assumed to be complete; however the most common 

algorithms are included. 

Two types of test algorithms can be distinguished 

concerning addressing sequence: one-dimensional and more-

dimensional algorithms. One-dimensional algorithms access 

one cell after another (marching algorithms), while more-

dimensional algorithms are hopping through the cell array 

(galloping pattern), e.g. GALPAT. Marching algorithms are 

predominantly data oriented test pattern, and galloping 

patterns are primarily address oriented [10]. A galloping 

pattern performs a typical “ping-pong action” between one 

base cell and each other cell. More-dimensional algorithms are 

complex and more difficult to realize as often two nested 

address counters are needed, but the expected fault coverage 

of those pattern is expected to be very high [10]. In scope of 

this analysis, only one-dimensional algorithms could be taken 

into account, as the embedded BIST which is used for the 

study only supported one-dimensional march tests. 

 

 

Figure 3.1. Addressing of one- and more-dimensional test algorithms 

 

The examples given in Fig. 3.1 are showing a one-

dimensional and a more-dimensional addressing sequence. 

The one-dimensional algorithm accesses one cell after the 

other, the more-dimensional example shows a GALPAT test 
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algorithm with cell 5 as base cell. At first the base cell is 

accessed by a write or read operation always prior to any 

other cell. The addressing sequence in this example is: 

“505152… …5F5”. Two independent, 

nested addressing sequences are used that make GALPAT 

complex. GALPAT is a 2-dimensional test algorithm. 

The sequence of one- or more-dimensional addressing is 

given by the algorithm itself and is part of the SOS. 

3 . 3  A l g o r i t h m i c  T e s t  P a r a m e t e r s  

Additional to the SOS of memory test algorithms, 

additional algorithmic test parameters are used to influence 

the test performance and improve the detectability of faults 

[5]. Algorithmic Test Parameters are directly linked to the 

performance of test algorithms. They influence the addressing 

and test data of the algorithm. These parameters are: 

 

 address direction 

 addressing mode 

 data background 

 

All of these algorithmic parameters can be combined 

independently of each other. 

3.3.1 Address Direction 

The address direction denotes the order of incrementing 

and decrementing the row and column address. Either the 

row address or column address can be incremented 

(decremented) first. Hence, there are two types of address 

direction. 
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Fast-x addressing increments (decrements) the row 

address first [33]. Fast-x is also known as fast-row because the 

row address changes faster than the column address.  

Fast-y addressing increments (decrements) the column 

address first. It is also named fast-column because each step 

goes to the next column [33]. 

In Fig.3.2 ,the address directions of fast-x and fast-y are 

illustrated at a 4x4 memory array with addresses 0 to F. 

 

Figure 3.2. Addressing directions 

3.3.2 Addressing Mode 

The addressing mode defines the counting sequence of 

addressing the memory cells. Addressing modes are: 

 

 linear 

 2i (power of i) 

 Grey code 

 address complement 

 

The addressing sequences of different addressing modes 

are illustrated in Fig. 3.3. The physical address layout for each 

example corresponds to the linear addressing mode. The 

numbering of the cell is showing the sequence. 
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Figure 3.3. Address modes 

Linear addressing accesses the memory cells along a row 

or column linearly one after another. This addressing mode is 

easy to realize and often used. The more complex addressing 

modes change the order of accessing the cells in specific ways. 

Power of i (POI, 2i) addressing [34, 35] accesses the 2nd (21), 

4th (22), 8th (23) … cell next, depending on i. In Fig. 3.3, 2i 

addressing is illustrated for i = 1. With POI, the position of the 

least significant bit (LSB) of the address can be varied. The 

exponent i denotes the position of the LSB in the address. 

Grey code addressing uses the sequence of Grey to access 

the cells [36]. One property of Grey addressing is a Hamming 

distance of one; that means that only one bit of the address 

changes from one step to the next. Hence, this mode could be 

useful for testing on address decoder faults in asynchronous 

SRAMs. To achieve this, each single address bit needs to be 

checked separately to meet the internal timing constraints of 

the memory. 

In contrast to Grey, address complement [34, 35] has the 

maximum hamming distance. With each step, all bits of the 

address are changed and additionally incremented 

(decremented) in each second step. So, each address is 

followed by its one’s complement. The sequence for address 

complement shown in Fig. 3.3 is: 0  F  1  E  …. 
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3.3.3 Data Background 

The data background describes the pattern that inverts or 

non-inverts the data written to the memory. It can be 

described as a mask laying on the memory array. Data 

backgrounds are [21, 24, 36]: 

 

 solid 

 row-stripe 

 column-stripe 

 checkerboard 

 

The illustration in Fig. 3.4 shows the pattern of non-

inverted (‘0’) and inverted (‘1’) data for these four data 

backgrounds. 

 

 

Figure 3.4. Data background patterns 

These four data backgrounds are most regular and most 

common. However, any other pattern would also be possible. 

Due to a hardware bug in our tested memories, column-stripe 

and checkerboard could not be realized accurately. The 

background we used as column-stripe and checkerboard 

always combines two columns. The patterns are illustrated in 

Fig. 3.5. 
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Figure 3.5. Buggy background patterns 

3 . 4  E n v i r o n m e n t a l  P a r a m e t e r s  

Additional to algorithmic parameters, environmental test 

parameters are influencing the test performance [37] and are 

used as stress parameters for the test. These parameters are 

given by the test environment and are: 

 

 temperature 

 supply voltage 

 clock frequency 

 

The environmental parameters are independent of the test 

algorithm and also of algorithmic parameters. They are also 

called non-algorithmic parameters. It depends on the test 

environment, which of the non-algorithmic stress parameters 

can be applied to the test. In the scope of this work, variations 

of temperature and supply voltage are taken into account. The 

frequency is not varied, but the tests are always performed at 

highest speed. 
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C ha pte r  4   

Tes t  E nv ir o nme nt  a nd  Se tup  

The study is completely done during full productive 

memory testing. In this chapter, the basic techniques, software 

and hardware for memory testing are described. In particular 

the properties of the Infineon MBIST and the test strategy as a 

result of these properties are explained. Furthermore, the 

existing productive memory test flow is described where the 

study tests are included, and the way of data acquisition is 

explained as part of the test strategy. 
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4 . 1  M e m o r y  T e s t i n g  

Two methods are well known for memory testing: MSIST 

(Memory Software-Implemented Self-Test, software based) 

and MBIST (Memory Built-In Self-Test, hardware based). Both 

are commonly used for productive memory tests and both 

have their specific advantages and disadvantages. 

4.1.1 MSIST 

In a software based memory test solution, a memory test 

program is executed via CPU [10] and the test patterns are 

written to the memory under test (MUT). The advantages of 

the so called Memory Software-Implemented Self-Test 

(MSIST) are high flexibility concerning test pattern update 

and easy implementation, as no additional logic is needed. 

However, the MUT needs to be accessible via CPU. Especially 

in large and complex SoCs smaller memories are eclipsed by 

logic and hence are not testable via MSIST. The program 

memory is also hardly testable in this way, because the read 

access may be limited and the write access may even be 

impossible. In contrast, the data memory is usually freely 

accessible by write and read operations. 

A block diagram of a DUT containing several SRAMs is 

shown in Fig. 4.1. The test program is stored in a ROM and 

executed by the CPU on the SRAMs. Smaller SRAMs may not 

be accessible via CPU. 
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Figure 4.1. DUT block diagram using MSIST 

4.1.2 MBIST 

The hardware based Memory Built-In Self-Test (MBIST) is 

realized as an additional logic attached to each memory block, 

which controls the algorithmic test sequences on the memory 

cells. A MBIST can be implemented in different ways: micro-

coded BIST or finite state machine BIST [10]. The BIST used 

for this study is a finite state machine (FSM) BIST. It basically 

consists of several registers and one or more finite state 

machines. Via the registers, the MBIST is configurable, while 

the test sequence is performed by the FSM. The advantages of 

MBIST are direct access to memories without CPU usage and 

the possibility of full speed testing. Also, even small memories 

that are not directly accessible via CPU can be tested via 

MBIST. A block diagram showing a device using MBISTs is 

given in Fig. 4.2. 
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Figure 4.2. DUT block diagram using MBIST 

 

Fig. 4.2 shows a device under test (DUT) with several 

SRAMs and MBISTs connected. One MBIST is attached to each 

SRAM, and the MBISTs are connected to the outside of the 

DUT to configure the test parameters and read the test results. 

The CPU is not in use for MBIST testing. 

4 . 2  M B I S T P L U S  

At Infineon a proprietary design of MBIST called 

MBISTPLUS [32, 38] (previous: MBIST+) is used for 

automotive microcontroller devices. MBISTPLUS is a 

configurable BIST that is able to perform predefined tests but 

also allows to program own algorithmic march tests and select 

a couple of algorithmic test parameters. Registers are available 

to configure the test settings and to store the test results. 
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If no own parameters are set, the standard setting (RESET 

configuration) automatically performs the following tests: 

 

 SCAN, linear, fast-y, row-stripe 

 SCAN, linear, fast-y, column-stripe 

 SCAN, linear, fast-y, solid 

 SCAN, linear, fast-y, checkerboard 

 March C+, linear, fast-y, solid 

 

However, the tests of the RESET configuration are only a 

very small part of potentially possible tests. In the scope of this 

project, two generations of MBISTPLUS have been taken into 

account: MBISTPLUS V3.0 and MBISTPLUS V4.2. Both 

versions have been analyzed concerning their properties and 

potentially possible tests prior to implementing a study test 

set. These properties of MBISTPLUS are summarized in 

table 4.1. 

 

Table 4.1. Properties of MBISTPLUS 

Parameters MBISTPLUS V3.0 MBISTPLUS V4.2 

Algorithms one-dimensional, marching 
(lengths of ME ≤ 6) 

one-dimensional, marching 
(lengths of MEs ≤ 6) 
GAL5R, GAL9R, Hammer, 
Random 

Addressing Mode linear linear, 2i, Grey-Code, 
Address Complement 

Address Direction fast-x, fast-y fast-x, fast-y 

Data Background solid, row-stripe, column-
stripe, checkerboard 

solid, row-stripe, column-
stripe, checkerboard 

Self Timing  read timing, write timing, 
weak write driver 

 

Both versions of MBISTPLUS are able to perform one-

dimensional marching algorithms where the length of single 

march elements is restricted to at most six operations. 

Furthermore, address directions fast-x and fast-y, as well as 

four data backgrounds solid, row-stripe, column-stripe and 
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checkerboard are supported. While MBISTPLUS V3.0 only 

supports linear addressing, MBISTPLUS V4.2 additionally 

contains the addressing modes POI, Grey-code and address 

complement. MBISTPLUS V4.2 also allows to perform 

predefined 2-dimensional algorithms GAL5R and GAL9R, 

and has special registers to configure explicit hammering and 

random tests. 

As only one-dimensional march algorithms are supported 

as self configurable test algorithms, the possible number of 

different algorithms is restricted by this fact. Hence, a 

selection of 30 algorithms that can be used with MBISTPLUS 

is given in Table 4.2. 

 

Table 4.2. Memory test algorithms 

# Algorithm Sequence 

1 SCAN {(w0);(r0);(w1);(r1)} 

2 SCAN+ {(w0);(r0);(w1);(r1);(w0);(r0);(w1);(r1)} 

3 MATS {(w0);(r0,w1);(r1)} 

4 MATS+ {(w0);(r0,w1);(r1,w0)} 

5 MATS++ {(w0);(r0,w1);(r1,w0,r0)} 

6 March C- {(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0);(r0)} 

7 March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} 

8 March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} 

9 Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} 

10 March C+ {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0); (r0)} 

11 PMOVI {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0)} 

12 March 1/0 {(w0);(r0,w1,r1);(r1,w0,r0);(w1);(r1,w0,r0); (r0,w1,r1)} 

13 March TP {(w0);(r0,w1);(r1,w0);(r0,w1,r1);(r1,w0,r0)} 

14 March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0)} 

15 March X {(w0);(r0,w1);(r1,w0);(r0)} 

16 March Y {(w0);(r0,w1,r1);(r1,w0,r0);(r0)} 

17 March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} 

18 March LA 
{(w0);(r0,w1,w0,w1,r1);(r1,w0,w1,w0,r0);(r0,w1,w0,w1,r1); 
   (r1,w0,w1,w0,r0);(r0)} 

19 March RAW 
{(w0);(r0,w0,r0,r0,w1,r1);(r1,w1,r1,r1,w0,r0);(r0,w0,r0,r0,w1,r1); 
   (r1,w1,r1,r1,w0,r0);(r0)} 

20 March RAW1 {(w0);(w0,r0);(r0);(w1,r1);(r1);(w1,r1);(r1);(w0,r0);(r0)} 

21 March AB 
{(w1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0); 
   (r0,w1,r1,w1,r1);(r1)} 

22 March AB1 {(w0);(w1,r1,w1,r1,r1);(w0,r0,w0,r0,r0)} 

23 March BDN 
{(w0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1); 
   (r1,w0,r0,w0,r0);(r0)} 

24 March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} 

25 March SS 
{(w0);(r0,r0,w0,r0,w1);(r1,r1,w1,r1,w0);(r0,r0,w0,r0,w1); 
   (r1,r1,w1,r1,w0);(r0)} 
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Table 4.2. Memory test algorithms (cont.) 

# Algorithm Sequence 

26 BLIF {(w0);x(w1,r1,w0);(w1);x(w0,r0,w1)} 

27 Ham5R {(w0);(w1,r15);(w0,r05);(w1,r15);(w0,r05)} 

28 Ham5W {(w0);(w05,r0);(w15,r1);(w05,r0);(w15,r1)} 

29 March G 
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0); 
   D;(r0,w1,r1);D;(r1,w0,r0)} 

30 Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)} 

 

With the selection of test algorithms and the properties of 

MBISTPLUS, a specific number of different tests can be 

combined and executed by the two version of MBISTPLUS 

used in this project. To estimate the quality of MBISTPLUS, 

the potential of each version of MBISTPLUS is analyzed. 

4.2.1 Potential of MBISTPLUS V3.0 

With 30 algorithms of Table 4.2, and the properties listed 

in Table 4.1, the following parameters can be configured in 

MBISTPLUS V3.0: 

 

 30 one-dimensional test algorithms 

 1 addressing mode 

 2 addressing directions 

 4 data backgrounds 

 

Hence, the total number of possibly configurable tests is: 

 

 24042130   (1) 

 

Any of these possible tests could be combined to a test set. 

If any combination is considered, the maximum number of 

possible test sets is: 

 

 2402  ( 7210 ) (2) 
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Even though only four parameters are configurable in 

MBISTPLUS V3.0, an enormous number of possible tests and 

test sets are possible. This shows that the RESET configuration 

which is used by default is not even close to the potential of 

the MBIST.  

4.2.2 Potential of MBISTPLUS V4.2 

With MBISTPLUS V4.2 even more parameters can be 

configured than in MBISTPLUS V3.0. Especially the 

configurable self timing enables an immense number of 

additional possibilities. The self timing parameters read 

timing, write timing and weak write driver are configurable 

by a 14-bit register. The setting influences the timing in such 

way, that read and write switching times are shifted and 

corner cases become faulty. With 14 bit, a number of 214 self 

timing settings are possible. Hence, the parameters of 

MBISTPLUS V4.2 are: 

 

 30 one-dimensional test algorithms 

 4 addressing modes 

 2 address directions 

 4 data backgrounds 

 214 self timing configurations 

 4 additional sequencer tests (GAL5R, GAL9R, Hammer, 

Random) 

 

The possible number of configurable tests is 

 

   157286444242430 14   (3) 

 

and the theoretical possible number of test sets is 

 

 215728644 (4) 
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Both, the number of possible tests and test sets far exceed 

the possibilities of productive memory testing. 

4 . 3  B u r n - I n  

Burn-In [39] is part of quality assurance of memory devices 

to detect latent faulty devices that would fail in long-term 

usage. In Fig. 4.3 the well known bathtub curve [40] and its 

three phases of life time (infant mortality, useful life time, and 

wear-out) is shown. 

 

 

Figure 4.3. Bathtub curve 

 

Aim of Burn-In is to keep the phase of early failures as 

short as possible, and delay the wear-out phase as much as 

possible to extend the phase of useful life time that has the 

minimum failure rate. During Burn-In the devices are exposed 

to high voltage and temperature stresses that cause artificial 

aging [1, 41]. Aging causes slowing down switching 

operations of transistors in the SRAM cell. Latent faults may 

be caused by weak transistors or marginal values of resistance 
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within a memory cell, causing setup and hold time violations 

[1]. Latent faults occur sporadically and need to be stabilized 

in order to be detected safely. 

Faults that become detectable due to Burn-In are often 

caused by sensitive design or process variation [2]. Latent 

faults become detectable early and can be sorted out. Hence, 

the detection of latent faults then decreases the phase of early 

failures and delays the wear-out phase at the same time. 

However, the delay of wear-out is less important as the 

economical lifetime of an electronic device is often shorter [1]. 

In Fig. 4.3, the bathtub curve is shown, and the effects of Burn-

In (broken line) are illustrated. 

4 . 4  T e s t  S t r a t e g y  

The objectives of the project are to analyze the effectiveness 

of memory test algorithms and test set optimization. That 

means to combine effective test algorithms into test sets, such 

that the number of detected faults is as high as possible while 

test time is as low as possible at the same time. 

The main strategy of the project is to use statistical analysis 

of productive test results to achieve knowledge about the 

faults that occur. In contrast to previous studies, the fault 

models are unknown in productive testing and the simple fail 

information of which algorithm detected a fault and which 

did not combined with the information about algorithmic and 

environmental test parameters is used to analyze the faulty 

behavior and to conclude possible functional fault models. 

The test algorithms for the study have to be placed into the 

productive test flow of memories and the results have to be 

stored and provided for the analysis. In order to achieve a 

meaningful outcome of the study, the number of test results 

has to be representative. Hence, a large number of different 

test algorithms should be performed over a long period of 

productive testing to gather a sufficient number of test results. 
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Both, tests and data acquisition needed to be inserted into the 

industrial, full productive test flow. 

The test strategy of the study is based on the so called 

“Kitchen-Sink-Principle” [6]. Any test should be applied to 

achieve the maximum number of test results; i.e. it is taken 

anything but the kitchen sink as the starting point of the 

analysis. Due to the fact that the maximal number of tests is 

applied at once, any analysis is possible. The application of a 

reduced set or independent sets would mean that not all 

relationships could be analyzed. 

It is necessary to apply as many algorithms as possible to 

as many devices and memories as possible to achieve a 

meaningful statistical basis. In difference to theory, the fault 

models that appear during testing are unknown, and so the 

selection of efficient algorithms cannot be based on theoretical 

relations between fault models and test algorithms. This study 

used the experimental results as starting point to analyze the 

efficiency of test algorithms and to draw conclusions on 

possible fault models from the statistical analysis. 

4 . 5  T e s t  S e t u p  

To achieve a sufficient number of test results for a 

meaningful statistical analysis, a study test set was placed into 

the productive test flow for embedded memories of 

microcontroller devices. For this analysis, a product was 

chosen that has been in full production, because a high 

throughput and hence a large number of test results could be 

expected. 
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4.5.1 Tested Devices and Memories 

For the study, Infineon TC1797 automotive 

microcontroller devices have been used.  The TC1797 

controller is a 32-bit microcontroller of 130 nm technology 

which contains MBISTPLUS V3.0. For all tests, the maximum 

frequency of 180MHz was used. The productive throughput 

of those devices has been high enough to obtain enough test 

results. During the time, the test data have been gathered, 

hundreds of thousands of devices have been tested. 

Each TC1797 controller contains thirteen embedded 

SRAMs of different size that were accessible via MBIST. The 

memories are sized between 1.38kB and 128kB and the total 

size of the tested memories is 261.56KB per device. Because of 

their size, instruction memory (PMI, 40kB) and data memory 

(DMI, 128kB) are most important for the study. A block 

diagram [42] of TC1797 is shown in Fig. 4.4. 

 

 

Figure 4.4. TC1797 block diagram 
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From the data given above, the necessary test time can be 

calculated according to formula (5), where memory_size (n) is 

261.56kB, frequency (f) is 180MHz and test_length and 

delay_time (D) depend on the test set. This is the pure test time 

without any time for setup, configuration of MBISTPLUS or 

read and storing time. 

 

 TT=
test_length∙memory_size

frequency
+ delay_time (5) 

 

4.5.2 Study Test Set 

According to the properties and possibilities of 

MBISTPLUS V3.0, a large study test set was combined of test 

algorithms and algorithmic test parameters. The conditions of 

the study test set are summarized in Table 4.3. 

 

Table 4.3. Study test set 

# Algorithm 
Test 
Length 

Algorithmic Parameter 

fast-x (fx) fast-y (fy) 

so rs cs cb so rs cs cb 

1 SCAN 4n + + + + + + + + 

2 SCAN+ 8n + + + + + + + + 

3 MATS 4n + + + + + + + + 

4 MATS+ 5n + + + + + + + + 

5 MATS++ 6n + + + + + + + + 

6 March C- 10n + + + + + + + + 

7 March A 15n + + + + + + + + 

8 March B 17n + + + + + + + + 

9 Algorithm B 17n + + + + + + + + 

10 March C+ 14n + + + + + + + + 

11 PMOVI 13n + + + + + + + + 

12 March 1/0 14n + + + + + + + + 

13 March TP 11n + + + + + + + + 

14 March U 14n + + + + + + + + 

15 March X 6n + + + + + + + + 
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Table 4.3. Study test set (cont.) 

# Algorithm 
Test 
Length 

Algorithmic Parameter 

fast-x (fx) fast-y (fy) 

so rs cs cb so rs cs cb 

16 March Y 8n + + + + + + + + 

17 March LR 14n + + + + + + + + 

18 March LA 22n + + + + + + + + 

19 March RAW 26n + + + + + + + + 

20 March RAW1 13n + + + + + + + + 

21 March AB 22n + + + + + + + + 

22 March AB1 11n + + + + + + + + 

23 March BDN 22n + + + + + + + + 

24 March SR 14n + + + + + + + + 

25 March SS 22n + + + + + + + + 

26 BLIF 8n + + + + - - - - 

27 Ham5R 25n + - - - + - - - 

28 Ham5W 25n + - - - + - - - 

29 March G 23n+2D + + + + + + + + 

30 Ham_Walk 15n + + + + + + + + 

 

A ‘+’ denotes that the algorithm was combined with the 

corresponding parameters, while a ‘-‘ denotes that the 

corresponding parameter was not applied.  The algorithmic 

parameters are address direction (fast-x and fast-y), and four 

data backgrounds solid (so), row-stripe (rs), column-stripe (cs) 

and checkerboard (cb). The test length is the number of 

operation per algorithms and hence denotes the duration of a 

test in n. 

Algorithm BLIF (#26) is only executed with fast-x 

addressing as it is especially designed for bit-line imbalance 

faults, and the two hammer tests Ham5R and Ham5W (#27 

and #28) are only executed with solid data background. 

In total, 224 different tests are performed by the study test 

set with a total length of 16D
f

n
3092  (test_length = 3092, 

delay_time = 16D with D = 100ms)). The test time for each 

cycle of the whole test set applied to all memories is then: 
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 2.75s100ms16
180MHz

32kB

81024
261.56kB

TTcycle 






3092

 (6) 

 

Note that the memories are accessed wordwise, so, 32Bits 

are always accessed in parallel and the memory size that is 

used for calculating the test time is converted. 

4.5.3 Test Environment 

Embedded memories of a product are tested several times 

at different stages of production. One of these tests is the so 

called IBIS (Interconnect Built-In Self-Test) flow [43]. The IBIS 

flow is placed after wafer test and packaging (see Fig. 4.5). 

That means that only devices that already have passed wafer 

testing appear in this study. And the faults that can be 

detected either slipped wafer testing or came into existence 

after wafer test or packaging. 

IBIS is an innovative test solution that integrates test and 

Burn-In in one system [44]. The DUTs are placed on a Burn-In 

board which is put into a Burn-In oven for a period of 12 

hours. Via the Burn-In board, the DUTs are connected to the 

outside and hence are controllable and testable. 

 

 

Figure 4.5. Memory test flow 
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4.5.4 Test Flow 

The study test set was integrated into the IBIS flow and is 

performed seven times during the IBIS flow at different 

environmental conditions before and after Burn-In and high 

voltage stress [45]. The IBIS flow is part of the productive test 

plan and had to be taken as given for the project. The relevant 

part of the test flow is shown in Fig. 4.6. Each block of tests is 

identified by a test number (TN), where the same set of tests 

was applied, however at different environmental test 

conditions. The test numbers and corresponding 

environmental conditions temperature and supply voltage are 

given in Table 4.4 and Fig. 4.7. 

 

 

Figure 4.6. Test flow 
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Table 4.4. Test numbers and environmental conditions 

Test Number Temperature Voltage 

3741 -40°C 1.30V 

3841 -40°C 1.50V 

3941 -40°C 1.80V 

4441 +25°C 1.30V 

4541 +25°C 1.80V 

1522 +125°C 1.35V 

1622 +125°C 1.80V 

6531 +145°C 1.35V 

6631 +145°C 1.80V 

 

 

Figure 4.7 Test numbers and environmental conditions 

 

There are only two tests cycles performed before Burn-In 

(TN 1522 and TN 1622), all other tests are performed after 

Burn-In. 

The fact that the test set is performed repeatedly at 

different environmental conditions before and after Burn-In, 

allows to analyze the influence of those conditions on the test 

results. The test number is used to identify the different test 

conditions. 
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An important note is that all the tests of the study were 

included into the IBIS flow. That means that all faults that are 

recognized in this study are either affected by Burn-In or the 

high voltage stress during the test flow, or have slipped 

through wafer test. 

4.5.5 Data Acquisition 

IBIS flow as well as MBISTPLUS has not been designed for 

such a large data analysis as in this project. So, the 

comprehensive test result data have to be buffered several 

times. During the tests, the fail information of each single test 

algorithm that is executed is stored as a fail bit in a register of 

MBISTPLUS. To clear the register for the next cycle, all fail bits 

of the previous cycle have to be buffered on the device. For 

this purpose a previously tested and fault free memory was 

used. After all tests are finished, the whole buffered fail 

information is readout by the IBIS system and the raw data are 

written to a test result file (TRF). However, the information of 

the TRF is highly compressed. 

For further analysis, the information has to be reprocessed 

and the test data are written to a SQL database for more 

comfortable handling. The SQL database then contains all fail 

information in combination with any information about test 

parameters (test number, environmental parameters and 

algorithmic parameters). Thus, each fault can exactly be 

identified and related to the conditions it occurred. 

In Fig. 4.8, the process of testing and data acquisition is 

illustrated as a block diagram. 
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Figure 4.8. IBIS flow and data acquisition 

 

The analysis of the test results is done by pure data mining 

of the information in the SQL database. Due to the detailed 

storage of data, the information can be combined to any query 

on relationship of algorithm, faults and parameters. The 

database does not contain any false positive results. False 

positive results could be caused by communication errors or 

test program errors that cause the test to fail, even though no 

memory error occurred. The pre-processing of the data 

ensures that only true faults (i.e. only fails caused by memory 

faults) are entered into the database. 
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C ha pte r  5   

Fa ul t  C o ve rag e  of  Te s t  Alg o r i thms  

In productive memory testing the efficiency of test 

algorithms is essential. The productive test time has to be kept 

short and the fault coverage has to be as high as possible at the 

same time. Hence, the selection of tests for a productive test 

set highly depends on the efficiency of test algorithms and test 

sets. 

In this chapter the performance of single algorithms, based 

on their fault coverage at different environmental conditions, 

and on the other hand also the efficiency of combinations of 

two algorithms is analyzed. Both results are used to classify 

the algorithms with similar properties concerning the 

coverage of specific fault models, and to estimate the 

distribution of those fault models within the test results. 

 



58 Fault Coverage of Test Algorithms 

5 . 1  D e f i n i t i o n s  

In this section, terms that are used for the analysis will be 

explained. 

5.1.1 Fault Coverage 

The fault coverage (FC) of a test or algorithm is the number 

of faults detected, related to the total number of faults. The 

fault coverage is then given as a percentage. The FC shows the 

amount of faults that a specific test or algorithm detects, and 

allows comparing the efficiency of single tests to each other. 

The higher the FC of a test or algorithm is, the more efficient 

it is. 

The following aspects are considered for the analysis: 

 

 fault coverage at specific environmental conditions 

 fault coverage of single test algorithms (at constant 

environmental conditions) 

5.1.2 Test 

A test is defined as the combination of test algorithm (see. 

chapter 3.2), algorithmic (chapter 3.3) and environmental test 

parameters (chapter 3.4), where the environmental test 

parameters are given as test number (see Table 4.4). These are 

the minimum requirements to perform a memory test. 

5.1.3 Test Set 

A test set is a sequence of two or more tests performed as 

a group. 
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5 . 2  F a u l t  C o v e r a g e  a t  D i f f e r e n t  

E n v i r o n m e n t a l  C o n d i t i o n s  

The fault coverage of the test varies with environmental 

test conditions. In this analysis, the effects of temperature and 

supply voltage are analyzed. The different conditions can be 

identified by the test number. According to Table 4.4 and Fig. 

4.7, for each test number (i.e. for each combination of 

temperature and supply voltage), the number of detected 

faults is determined; and also the number of faults that are 

exclusively detected at these test conditions. Hence, the fault 

coverage could be determined for each combination of 

environmental test conditions. 

5.2.1 Test Results 

The results of this analysis are given in Table 5.1. In total, 

2712 faults are analyzed. This is the maximum number of 

faults detected by all tests. So, for the following analysis, it is 

assumed that 2712 faults refer to 100% fault coverage, 

although there may be additional faults that could not be 

detected by any test of the set. For each test number, and 

hence, environmental test condition and cumulated over all 

test algorithms, the number of faults (# of faults) is determined 

and also the number of those faults that are detected 

exclusively (# of faults excl.), i.e. only with these test 

conditions. Additional to test numbers, the environmental 

parameters supply voltage (V) and temperature (T), and also 

FC for each TN are included in Table 5.1. 

 
  



60 Fault Coverage of Test Algorithms 

Table 5.1. Fault coverage per test number 

 before BI after Burn-In 

TN 1522 1622 6531 6631 3741 3841 3941 4441 4541 

V 1.35 1.80 1.35 1.80 1.30 1.50 1.80 1.30 1.80 

T +125 +125 +145 +145 -40 -40 -40 +25 +25 

# of faults 617 56 2439 175 237 70 46 165 25 

# of faults 
(excl.) 

4 1 811 48 37 0 12 3 0 

FC (total) 22,60% 2,03% 60,03% 4,68% 7,37% 2,58% 1,25% 5,97% 0,92% 

FC (excl.) 0,15% 0,04% 29,90% 1,77% 1,36% 0,00% 0,44% 0,11% 0,00% 

 

The fault coverage is graphically shown in Fig. 5.1, and the 

ratio of fault coverage and exclusive faults is given in Fig. 5.2. 

For both diagrams, 100% refers to the total number of 2712 

faults. 

 

 

Figure 5.1. Fault coverage 
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Figure 5.2. Fault coverage and exclusive faults 

 

Fig. 5.2 shows the total fault coverage for each test number 

and the part of faults that are detected exclusively as hachured 

area. 

5.2.2 Data Evaluation 

The highest fault coverage can be observed at TN6531 

(1.35V / +145°C). 2439 of 2712 faults are detected (89,9%), while 

the fault coverage of all other test number is significantly 

lower. The coverage of TN1522, which takes place at nearly 

the same environmental conditions (1,35V / +125°C) is only at 

23%. In this case, the effect of Burn-In becomes visible that 

increases the fault coverage comparing the results of TN1522 

before and TN6531 after Burn-In. For the same reason, the 

number of exclusive faults is highest at TN6531. However, the 

artificial aging dependent effects of Burn-In on the fault 

coverage will be analyzed and described in more detail in 

Chapter 8. 

Here, the effects of temperature and supply voltage are of 

interest. Comparing the results shown in Fig. 5.1, one can see 

that the fault coverage increases with increasing temperature 
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more pronounced with increasing temperature. Both causes a 

relatively higher fault coverage in the corner of low supply 

voltage and high temperature, and a low fault coverage in the 

corner of high supply voltage and low temperature. These 

corner cases are also called “slow corner” and “fast corner” 

respectively, because “cell delay increases with decreasing 

voltage and increasing temperature” [46]. This is because the 

environmental conditions temperature and voltage influence 

the timing of transistors [41]. The increase of fault coverage in 

the slow corner is much more pronounced, while the effect of 

the fast corner is hardly visible. The voltage dependent effect 

could be expected as similar results have been shown in 

previous investigations [33]. 

An interesting fact is that, concerning the tests performed 

at low supply voltage, the fault coverage decreases with 

decreasing temperature as expected, but increases again a 

little at lowest temperature (supply voltage: 1.30V, 

temperature: -40°C). 

In conclusion, the effects of temperature variation during 

tests are significantly recognizable, while the effects of supply 

voltage variation are lower in comparison. Nevertheless, both 

causes an increase of fault coverage in the slow corner, which 

means that the highest fault coverage is recognized at 

maximum temperature (+145°C) and low supply voltage 

(1.35V). High temperature testing is very effective to detect 

many faults and even exclusive faults. Nevertheless, at room 

and low temperature also exclusive faults are detected, so that 

testing at different environmental conditions is not avoidable. 
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5 . 3  F a u l t  C o v e r a g e  o f  T e s t  A l g o r i t h m s  

Each test algorithm is able to detect a couple of functional 

fault models. The number of faults that is detected by an 

algorithm denotes its fault coverage. In this section the fault 

coverage of the single algorithms within the study test set are 

analyzed and the effectiveness of these algorithms is 

evaluated. 

Due to the fact, that the test set is performed seven times 

at different environmental conditions, there are also seven 

different test results for the fault coverage of the test 

algorithms. The results of TN6531 are most meaningful; first, 

because this test gives the most results (2439 faults) and 

second, the test is performed after Burn-In and thus also 

includes the effects of Burn-In. 

So, the results of TN6531 will be evaluated in this chapter, 

and the results of all other tests are included in Appendix A. 

5.3.1 Test Results 

The number of faults for the 30 algorithms within the study 

test set and additionally for RESET configuration at TN6531 is 

given in Table 5.2. The total number of faults at this test is 

2439. The column ‘exclusive’ gives the number of faults 

uniquely detected with the particular algorithm. The fault 

coverage is summarized in Fig. 5.3, where 100% refers to 2439 

faults. 

 



64 Fault Coverage of Test Algorithms 

Table 5.2. Fault coverage of algorithms 

Algorithm |F| FC 
exclusive 

faults 

Total 2439 100%  

SCAN 684 28,0% 0 

SCAN+ 727 29,8% 0 

MATS 937 38,4% 0 

MATS+ 1047 42,9% 0 

MATS++ 1037 42,5% 0 

March C- 1092 44,8% 0 

March A 1109 45,5% 0 

March B 1148 47,1% 1 

Algorithm B 1908 78,2% 0 

March C+ 1074 44,0% 0 

PMOVI 1093 44,8% 0 

March 1/0 1083 44,4% 0 

March TP 1110 45,5% 0 

March U 1909 78,3% 1 

March X 1067 43,7% 0 

March Y 1056 43,3% 0 

March LR 1921 78,8% 1 

March LA 1414 58,0% 1 

March RAW 1563 64,1% 4 

March RAW1 1020 41,8% 0 

March AB 1402 57,5% 0 

March AB1 792 32,5% 5 

March BDN 1429 58,6% 0 

March SR 1898 77,8% 0 

March SS 1115 45,7% 0 

BLIF 1047 42,9% 0 

Ham5R 783 32,1% 10 

Ham5W 473 19,4% 0 

March G 1232 50,5% 4 

Ham_Walk 2063 84,6% 22 

RESET 540 22,1% 0 
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Figure 5.3. Fault coverage of algorithms 
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5.3.2 Evaluation of Fault Coverage 

Fig. 5.3 clearly shows that none of the algorithms is able to 

detect all faults. The highest fault coverage is reached with 

Algorithm Ham_Walk at about 83%. Four other algorithms, 

Algorithm B, March LR, March U and March SR, are also 

outstanding and similar in their fault coverage with about 

79%. Apparently these five algorithms seem to cover a couple 

of different fault models that appear frequently in the tested 

memories. 

Traditional test algorithms (SCAN trough March Y) show 

much lower fault coverage in the range of 28% to 47%. Here, 

fewer different fault models are covered. Other recent 

algorithms like March RAW, March AB or March DN, 

which have been developed with regard to dynamic fault 

models [20, 8, 28] are showing a higher fault coverage of 

nearly 60%. However, the relationship of algorithms and 

related fault models becomes not clear from this analysis. An 

estimation of the functional fault models that occur will be 

given in the following sections. 

Comparing the fault coverage of the single test algorithms 

with the result of RESET (standard configuration of 

MBISTPLUS, see Chapter 4.2) shows two big issues. The fault 

coverage of the RESET configuration is 22%, although the 

same tests have already been performed during wafer test. So, 

the faults that are detected in this analysis slipped through 

wafer testing (if detected before Burn-In) or occurred due to 

Burn-In. The expected result of RESET at that time in the test 

flow should be zero. Hence, these faults are either caused by 

the packaging process or by differences in the environmental 

parameters of the test. However, the occurrence of faults with 

RESET shows that the RESET configuration is far from the 

necessary test configuration for sufficient fault coverage. 

Many more faults could be detected with a more efficient 

combination of test algorithms. 
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This evaluation is done for TN6531, i.e. at environmental 

conditions high temperature and low voltage. For all other test 

numbers, the results are summarized in Appendix A. 

A similar distribution of fault coverage over the test 

algorithms can be observed for each test number. Especially 

dynamic fault related algorithms are showing high fault 

coverage independently of environmental conditions. 

Particularly at TN3841 (nominal voltage and low 

temperature), these outstanding algorithms are clearly visible 

as traditional algorithms are showing an extremely low fault 

coverage. As the voltage is at nominal value for these tests, the 

effect seems highly temperature dependent. For the other test 

series at low temperature (TN3741 at low voltage and TN3941 

at high voltage), the fault coverage of traditional algorithms is 

much higher. However, the distribution of fault coverage of 

test algorithms is not significantly changed due to 

environmental conditions. Hence, similar test sets should be 

distributed for all environmental test conditions. 

The analysis of the faults coverage of single test algorithms 

shows how effective an algorithm is independently from 

others. This is not yet sufficient to create an efficient set of 

tests, as for example two good performing tests could cover 

the same faults and would not improve the overall fault 

coverage. Therefore the effectiveness of pairs of algorithms is 

analyzed later in this chapter. 

5.3.3 Unique Faults 

Besides the total fault coverage of test algorithms, special 

attention should be paid to unique faults. Unique faults are 

exclusively detected by only one test algorithm. The coverage 

of unique faults is listed in Table 5.2 as exclusive faults per 

algorithm. The most exclusive faults are detected by 

Ham_Walk (22 unique faults) followed by Ham5R (10 unique 

faults). In these cases, obviously fault models appear that are 
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very special and can only be detected by special SOSs of 

specific test algorithms. Ham5R is the only algorithm 

containing five consecutive read operations in a march 

element. For the unique faults, this specific hammering 

sequence seems to be the crucial SOS that causes the cell to flip 

[47]. For algorithm Ham_Walk the following considerations 

have been done to describe reasons for the detection of unique 

faults. Ham_Walk is the only algorithm in the set that contains 

read-after-read back-to-back operations: 

 

 … (r0,…, r0) … 

 and (7) 

 … (r1,…, r1) … 

 

That means the last operation on one cell is read ‘0’ (resp. 

read ‘1’), which is immediately followed again by read ’0’ 

(read ‘1’) as first operation on the next cell. This SOS is very 

effective in detecting dynamic and timing related faults such 

as some address decoder delay faults, slow sense amplifier 

faults and slow pre-charge circuits. A specific explanation is 

not possible at that point because additionally to the SOS, 

algorithmic parameters are playing an important role. 

Especially the data background would be of special interest, 

but an detailed analysis of single devices would have been 

necessary to determine the exact circumstances. 

As this is characteristic for Ham_Walk in the set of 

algorithms, it can be assumed that the 22 unique faults 

detected by Ham_Walk are related to one of these fault 

models. However, from the test database, no physical defects 

could be analyzed. For a closer evaluation and confirmation 

of specific fault models, the corresponding faulty devices 

needed to be analyzed in detail. 

Also, the other unique faults seem to be related to dynamic 

faults. The specific SOS of Ham5R is a five times sequential 

read operation. This explicit hammering on one cell seems to 

activate and detect unique dynamic faults. The consecutive 
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access to one cell causes the cell to flip after a certain number 

of operations [47]. Each read operation decreases the charge 

of the memory cell until the cell flips after a certain number of 

sequential reads as the cell has no time to recover. The 

algorithms March RAW (4 unique faults) and March AB1 (5 

unique faults) are also developed with scope on dynamic 

faults [20, 8]. The importance of dynamic faults in new SRAM 

technologies and the properties of March RAW, based on 

experimental test results, have already been shown in [48]. 

These algorithms are also accessing one cell sequentially 

without changing its value, however read and write 

operations are mixed. In these cases the sequentially and 

repeated access may cause the cell to flip as recovery time is 

too low. 

The single unique faults of March B, March U, March LR 

and March LA could not be allocated to a specific SOS or 

specific fault model without a closer analysis of single 

memories. 

5 . 4  I n f l u e n c e  o f  A l g o r i t h m i c  T e s t  

P a r a m e t e r s  

The use of different algorithmic test parameters has an 

influence on the fault coverage of each test algorithm. In Table 

4.3 the combinations of algorithmic parameters are listed for 

all algorithms. Except for BLIF, Ham5R and Ham5W, the 

algorithms are used with eight different combinations of 

algorithmic parameters: address directions fast-x (fx) and fast-

y (fy) with data backgrounds solid (so), row-stripe (rs), 

column-stripe (cs) and checkerboard (cb). 

The fault coverage of the test algorithms, subdivided into 

the results for each combination of algorithmic parameters, is 

given in Table 5.3. The results are graphically summarized in 

Fig 5.4. It was not possible to split up the results for each 
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combination of environmental parameters, as the analysis tool 

did not support to distinguish between too many test 

parameters at once. So, the results of all test numbers are 

cumulated and 100% FC refers to 2712 faults. 

 

Table 5.3. Fault coverage of algorithmic test parameters 

Algorithm Algorithmic Test Parameters 

 fx_so fx_rs fx_cs fx_cb fy_so fy_rs fy_cs fy_cb 

SCAN 12% 15% 21% 25% 11% 11% 24% 23% 

SCAN+ 14% 16% 23% 27% 13% 13% 26% 26% 

MATS 16% 15% 35% 26% 14% 14% 30% 24% 

MATS+ 19% 15% 35% 25% 17% 15% 31% 25% 

MATS++ 18% 14% 35% 25% 17% 15% 33% 25% 

March C- 23% 19% 39% 29% 21% 19% 36% 30% 

March A 22% 19% 39% 30% 21% 19% 38% 31% 

March B 19% 20% 39% 32% 22% 18% 40% 31% 

Algorithm B 23% 20% 69% 32% 21% 20% 69% 32% 

March C+ 24% 20% 38% 30% 22% 20% 37% 31% 

PMOVI 23% 20% 39% 30% 21% 20% 37% 31% 

March 1/0 23% 19% 38% 29% 22% 19% 36% 30% 

March TP 22% 19% 41% 30% 20% 18% 37% 31% 

March U 24% 21% 69% 32% 23% 21% 69% 34% 

March X 20% 16% 36% 26% 17% 17% 31% 26% 

March Y 20% 16% 36% 27% 19% 17% 35% 27% 

March LR 20% 21% 70% 33% 20% 21% 71% 34% 

March LA 35% 29% 47% 39% 33% 28% 46% 40% 

March RAW 40% 32% 50% 42% 38% 31% 50% 43% 

March RAW1 20% 17% 33% 29% 18% 15% 34% 28% 

March AB 34% 28% 47% 39% 32% 28% 45% 39% 

March AB1 29% 21% 8% 8% 26% 21% 8% 8% 

March BDN 35% 29% 47% 39% 32% 28% 47% 39% 

March SR 19% 20% 68% 33% 20% 20% 69% 33% 

March SS 24% 21% 39% 30% 23% 20% 38% 13% 

BLIF 2% 1% 40% 4% - - - - 

Ham5R 36% - - - 33% - - - 

Ham5W 23% - - - 20% - - - 

March G 29% 25% 45% 37% 27% 24% 44% 37% 

Ham_Walk 23% 27% 71% 33% 23% 27% 69% 33% 
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Figure 5.4. Fault coverage of algorithmic parameters 
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Fig. 5.4 shows the fault coverage for each combination of 

test algorithm and algorithmic parameters. The fault coverage 

of Algorithm B, March U, March LR, March SR and 

Ham_Walk with column-stripe data background, 

independently of address directions fast-x and fast-y, is most 

outstanding, but not with any other combination of 

algorithmic parameters. The fault coverage of these tests is 

nearly at 70%, while the other combinations of algorithmic 

parameters only show a fault coverage of about 20% to 30%. It 

is also remarkable that only these five algorithms are best with 

only one type of data background. Obviously column-stripe 

data background is most effective, but only for those 

algorithms. Algorithm B, March U, March LR, March SR and 

Ham_Walk are of similar structure and of similar fault 

coverage. These algorithms contain specific march sequences 

to detect coupling or linked faults (see Chapter 6.4.2). 

Apparently, column-stripe data background supports the 

properties of these algorithms. Due to the constant pattern 

along one column, and so along the bit-lines, it is likely to 

assume that these faults are caused by bit-line fails, e.g. 

crosstalk. For a closer determination, the statistical analysis is 

not sufficient. A more detailed analysis of single devices could 

determine the fault in more detail. A similar outstanding 

effect of one specific data background cannot be observed 

with any other test algorithm. 

In general, the most effective data backgrounds are 

column-stripe and checkerboard for all algorithms, except 

March AB1. Here, solid and row-stripe data background are 

more effective; however, the overall fault coverage of 

March AB1 is relatively low. Unfortunately, this effect cannot 

be explained with the test results of this project. A more 

detailed analysis or simulation that also considers the memory 

structure and layout would have been necessary for an 

explanation. 

The difference in the usage of fast-x and fast-y is less 

significant than that of different data backgrounds. 
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Comparing the results in Table 5.3, the fault coverage is little 

higher with fast-x addressing, but it cannot be said to be much 

more efficient. 

As seen with March AB1, the effects of environmental test 

parameters are highly dependent on the memory structure 

and layout. Scrambling and mirroring may cause the 

differences in the results. So, the results of this analysis can 

only be related to those products that have been tested and 

cannot be generalized. For a general statement about the 

effectiveness of environmental test parameters, a more 

comprehensive analysis should be done on different products 

and memories of different structure and layout. However, as 

a result of this analysis, the most effective data backgrounds 

are column-stripe and checkerboard. For these data 

backgrounds, the background pattern alternates with each 

column. It is assumed that crosstalk between adjacent cells is 

then stronger and the different charges influence each other, 

so that more faults become visible with column-stripe and 

checkerboard data background. 

5 . 5  S u m m a r y  a n d  C o n c l u s i o n s  

The test algorithms have been evaluated separately, and 

the effectiveness of each algorithm is determined by its fault 

coverage. The more faults are detected by an algorithm, i.e. 

the higher its fault coverage, the more effective it is. 

Additionally, the influence of algorithmic test parameters 

addressing mode and data background is analyzed and 

effective test parameters are determined. 

A few test algorithms are outstanding regarding fault 

coverage: Algorithm B, March U, March LR, March SR and 

Ham_Walk are those algorithms with highest fault coverage 

and so are most effective. Considering algorithmic test 

parameters, especially the five algorithms mentioned above, 

the best results are achieved with column-stripe or 
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checkerboard data background independently of the 

addressing mode. For very simple tests that only use one test 

algorithm (e.g. for startup tests), one of these algorithms is 

recommended. 

 

 



 

C ha pte r  6   

E f f i c ie nc y  of  Tes t  Alg o r i thms  

The efficiency of single test algorithms is not a sufficient 

base to create an efficient set of tests. The combination of 

algorithms needs to be analyzed separately. Two algorithms 

could be efficient on their own, but a combination of both 

algorithms does not improve the overall efficiency, if both 

algorithms detect the same faults. 

Hence, the algorithms of the study test set are compared to 

each other and the efficiency and similarity of these pairs is 

determined. A method is described, that allows to classify 

similar algorithms based on their algorithmic structure and on 

the results of the analysis on efficiency, and a simple way is 

defined to find small and efficient test sets on base of statistical 

test results. As an outcome of this analysis and the 

classification of algorithms and faults, the distribution of fault 

models within the test results of this study is determined. 
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6 . 1  D e f i n i t i o n s  

To compare the efficiency of test algorithms, the theory of 

sets is used to describe the relation of number of faults, union, 

intersection and subsets of faults. Therefore, the set of faults 

detected by an algorithm is defined as F and the elements of 

this set are the single faults. For example, set FU contains all 

faults detected by algorithm March U. 

Two basic methods are used to compare the faults detected 

by two test algorithms: the ratio of intersection to union as 

degree for efficiency, and the consideration of subsets of faults 

as description of complete or partial coverage. 

Both are used to describe the efficiency of pairs of 

algorithms and to classify algorithms with similar properties 

into sets based on statistical data analysis. 

6.1.1 Union and Intersection 

To define the efficiency of a pair of algorithms, it needs to 

be determined how many faults are detected twice and how 

many faults are detected newly by each algorithm. The theory 

of sets is used to determine union and intersection from the 

number of faults |F|, which is the cardinality of F. The union 

is the combined number of fault detected by two algorithms, 

and the intersection is the part of faults detected twice by both 

algorithms. If the number of faults of two algorithms “1” and 

“2” are |F1| and |F2|, intersection (I) and union (U) are 

defined as (see also Fig. 6.1): 

 

 
21 FFI   (8) 

 
21 FFU   (9) 
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Figure 6.1. Union and intersection 

 

Efficiency means that as many faults as possible should be 

detected but the number of faults detected twice should be at 

minimum. So, a pair of algorithms is said to be efficient if the 

intersection is low but the union is high at the same time. A 

comparison of intersection and union is needed to describe the 

efficiency, and so, the ratio of intersection to union is taken as 

a degree for efficiency. This quotient is called quotient of 

efficiency QEff and is defined as: 

 

 
U

I
QEff   (10) 

 

QEff is then within the range of 0 to 1. Small intersection 

and large union means that few faults are detected twice, but 

the overall fault coverage is high. For this case, QEff goes to 

zero. This combination of algorithms is efficient for a test set, 

as due to the effort of a second algorithm (additional test time) 

the total fault coverage increases. 

If the intersection is large and approaches the union, QEff 

goes to one. The combination of algorithms is inefficient 

 
Union 

U = F1F2 

F2 

F1 

Intersection 

I = F1F2 
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because the additional effort of a second algorithm would 

hardly improve the total fault coverage, but a lot of faults are 

detected twice. These two cases are illustrated in Fig. 6.2. 

 

 

Figure 6.2. Efficiency of pairs of algorithms 

 

QEff as defined in (10) is only correct if F1 and F2 are of same 

cardinality. If the fault coverage is very different, the value QEff 

would be falsified. To correct this, the cardinalities |F1| and 

|F2| are taken into account as correction factor for QEff. QEff is 

then defined as: 

 

 
2

1
Eff

F

F

U

I
Q   (11) 

 

where |F1| > |F2|. 

Hence, for each pair of algorithms QEff can be determined 

and the efficiency of the algorithms can be stated. In the 

following sections, QEff is calculated for each pair of 

algorithms and listed in a table. For better perceptibility, the 

values of QEff are represented by different background colors. 

This color key is given in Fig 6.3. 

 

QEff → 0 
efficient combination 

QEff → 1 
inefficient combination 
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Figure 6.3. Color key 

 

There is a continuous color scale from red (QEff  1) to 

green (QEff  0), where yellow denotes QEff = 0.75, and three 

special cases that are illustrated in Fig. 6.4. 

If no overlapping of the two sets of faults occurs, i.e. if the 

intersection is zero, then QEff is zero. This case would be most 

efficient. In contrast, if the sets of faults are totally 

overlapping, QEff is one. In this case the faults detected by one 

algorithm are covered by the other set of faults, while the 

cardinality may be both, different (|F1| < |F2|) or the sets are 

even the same (F1# = F2). These cases would be most inefficient. 

 

 

Figure 6.4. Special cases of union and intersection 

 

 
QEff  1 QEff  0 QEff = 0.75 

QEff = 1 and |F1| < |F2| 

QEff = 1 and F1 = F2 

QEff = 0 

 

QEff = 0 
|I| = 0 

|U| = |F1| + |F2| 

QEff = 1 
I = F1 
U = F2 

QEff = 1 
I = U = F1 = F2 
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The color helps to evaluate the results quickly and easily, 

and to get a pretty good impression which combinations are 

efficient and which are not. 

6.1.2 Subsets and Coverage 

For a more precise classification of algorithms, QEff on its 

own is not sufficient enough. It needs to be considered if the 

fault coverage of one algorithm is a subset of another one, or 

if it is the same. For both cases, QEff  1, or even QEff = 1, the 

number of faults detected by both algorithms is compared and 

the following cases are distinguished. 

The number of faults of the first algorithm |F1| is lower 

than that of the second one |F2|, i.e. |F1| < |F2|. If so, F1 is a 

proper subset of F2, if QEff = 1 (F1  F2), and approximately a 

subset of F2, if QEff  1 (F1 ~  F2). 

If F1 = F2 for QEff = 1, and F1 ≈ F2, if QEff  1, then the sets are 

the same resp. approximately the same, and so are the 

properties of algorithms one and two. These four cases are 

illustrated in Fig. 6.5. 
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Figure 6.5. Subsets of fault coverage 

 

Based on these definitions of efficiency and the subsets of 

fault coverage, the test results could be evaluated. 

6 . 2  E v a l u a t i o n  M e t h o d  

The analysis of QEff and sets and subsets of faults is used to 

derive efficient pairs of test algorithms for memory test sets. 

At first, QEff is calculated for each pair of algorithms and the 

results are listed. As different background colors are used to 

represent QEff, a quick and easy analysis of the table can be 

done, and efficient pairs can easily be identified. This method 

is easy and allows establishing small test sets of two 

algorithms in a very simple way. For comprehensive test sets 

containing more algorithms, the analysis of only QEff is not 

sufficient. To achieve the comparison of more algorithms, they 

are grouped into sets with similar properties, where different 

 

QEff = 1 

21 F F   

QEff = 1 

F1 = F2 

QEff  1 

21 F F ~  

QEff  1 

F1 ≈ F2 
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functional fault models are allocated to each group. This 

classification and allocation is done by analyzing QEff and 

subsets of fault coverage within the test results on the one 

hand, and by analyzing characteristic sequences of march 

elements and allocated fault models on the other hand. So, 

two independent ways are used, statistical data mining, and 

deterministic analysis of march elements and test algorithms. 

The combination of both allows to select efficient 

combinations of test algorithms which are able to detect as 

many different faults as possible but avoid redundant testing 

by avoiding similar test algorithms at the same time. 

6 . 3  E f f i c i e n t  P a i r s  o f  A l g o r i t h m s  

All algorithms in this study are compared with each other 

pairwise and QEff is derived to determine efficient 

combinations. This method is suitable for a direct comparison 

of two algorithms based on statistical data analysis without 

further knowledge about properties of test algorithms. 

Furthermore this way is sufficient to find a set of two efficient 

algorithms. This section summarizes the test results and 

shows how to evaluate these data. 

6.3.1 Test Results 

Due to the fact that at TN6531 most faults are detected and 

hence, the statistical analysis is most meaningful, the test 

results of TN6531 are presented in this section. 

For each pair of algorithms the test results are taken and 

number of faults |F|, intersection |I| and union |U| are 

determined. The results are listed in Table 6.1. 
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Table 6.1. Effectiveness of pairs of algorithms 

 
  

SCN  

SCNP

MTS

MTSP

  MTSPP

  CM

  A

  B

  AlgB

  CP

  PMOVI

  1/0

  TP

  U

  X

  Y

  LR

  LA

  RAW

  RAW1

  AB

  AB1

  BDN

  SR

  SS

  BLIF

  Ham5R

  Ham5W

  G

  HamWk

6
8
4

6
6
1

6
5
1

6
5
9

6
5
6

6
7
9

6
8
0

6
8
2

6
7
9

6
7
1

6
6
3

6
6
5

6
7
3

6
8
1

6
6
1

6
5
8

6
8
0

6
7
8

6
7
2

6
6
3

6
7
0

2
5
9

6
7
9

6
8
0

6
7
9

2
0

2
5
8

1
3

6
8
4

6
8
0

  
S

C
N

7
5
0

7
2
7

6
7
8

6
8
5

6
8
3

7
1
6

7
1
9

7
1
9

7
1
6

7
0
0

6
9
8

6
9
5

7
1
2

7
1
6

6
9
0

6
8
0

7
1
8

7
1
3

7
0
1

6
9
6

7
1
0

2
5
8

7
1
1

7
1
9

7
0
7

1
8

2
5
8

1
2

7
2
7

7
1
7

  
S

C
N

P

9
7
0

9
8
6

9
3
7

8
8
5

8
9
0

9
0
0

9
0
6

9
1
5

9
2
6

8
8
1

8
8
5

8
8
4

9
0
6

9
2
4

8
7
9

8
7
2

9
1
6

8
9
7

8
8
8

8
5
9

8
8
9

2
8
0

9
0
4

9
1
4

8
8
8

2
1
2

2
7
3

2
6

9
2
8

9
2
8

  
M

T
S

1
0
7
2

1
0
8
9

1
0
9
9

1
0
4
7

9
8
3

9
9
2

1
0
0
0

1
0
0
6

1
0
2
7

9
7
8

9
7
1

9
8
3

9
9
0

1
0
3
2

9
9
0

9
7
2

1
0
2
8

9
9
9

9
9
4

9
3
3

9
8
8

3
6
1

1
0
0
4

1
0
1
9

9
8
5

3
0
3

3
5
4

8
6

1
0
2
6

1
0
3
3

  
M

T
S

P

1
0
6
5

1
0
8
1

1
0
8
4

1
1
0
1

1
0
3
7

9
8
9

1
0
0
2

1
0
0
2

1
0
2
2

9
7
6

9
6
9

9
8
2

9
9
0

1
0
2
0

9
7
7

9
7
6

1
0
1
6

1
0
0
1

9
9
6

9
4
3

9
9
0

3
5
2

1
0
0
0

1
0
1
1

9
8
7

2
9
8

3
4
6

8
5

1
0
2
2

1
0
2
6

  
M

T
S

P
P

1
0
9
7

1
1
0
3

1
1
2
9

1
1
4
7

1
1
4
0

1
0
9
2

1
0
3
2

1
0
4
4

1
0
7
1

1
0
1
5

1
0
1
5

1
0
1
8

1
0
2
9

1
0
7
0

1
0
0
0

9
8
0

1
0
6
6

1
0
4
4

1
0
3
0

9
6
4

1
0
3
4

3
6
7

1
0
4
5

1
0
5
9

1
0
3
3

3
0
7

3
6
9

1
0
0

1
0
7
7

1
0
7
3

  
C

M

1
1
1
3

1
1
1
7

1
1
4
0

1
1
5
6

1
1
4
4

1
1
6
9

1
1
0
9

1
0
6
9

1
0
8
8

1
0
1
5

1
0
1
7

1
0
1
7

1
0
4
5

1
0
8
3

1
0
1
1

1
0
0
0

1
0
8
2

1
0
5
3

1
0
3
6

9
7
9

1
0
4
0

3
6
5

1
0
5
7

1
0
8
0

1
0
2
9

3
1
0

3
5
5

8
8

1
0
9
4

1
0
8
6

  
A

1
1
5
0

1
1
5
6

1
1
7
0

1
1
8
9

1
1
8
3

1
1
9
6

1
1
8
8

1
1
4
8

1
1
1
6

1
0
2
9

1
0
3
2

1
0
3
0

1
0
5
2

1
1
1
1

1
0
2
6

1
0
1
2

1
1
1
2

1
0
6
9

1
0
5
9

9
9
0

1
0
5
7

3
7
1

1
0
7
8

1
1
0
9

1
0
4
9

3
3
5

3
6
5

9
3

1
1
1
7

1
1
1
5

  
B

1
9
1
3

1
9
1
9

1
9
1
9

1
9
2
8

1
9
2
3

1
9
2
9

1
9
2
9

1
9
4
0

1
9
0
8

1
0
6
5

1
0
6
6

1
0
6
7

1
0
8
1

1
8
3
4

1
0
4
6

1
0
3
8

1
8
4
2

1
1
8
7

1
2
1
5

1
0
0
5

1
1
8
2

4
9
0

1
1
9
3

1
8
1
8

1
0
8
7

1
0
0
3

4
6
5

1
7
8

1
1
7
1

1
8
6
8

  
A

lg
B

1
0
8
7

1
1
0
1

1
1
3
0

1
1
4
3

1
1
3
5

1
1
5
1

1
1
6
8

1
1
9
3

1
9
1
7

1
0
7
4

1
0
1
5

1
0
2
0

1
0
1
9

1
0
6
6

9
8
7

9
9
4

1
0
6
1

1
0
4
0

1
0
3
4

9
6
5

1
0
3
6

3
7
4

1
0
5
1

1
0
6
0

1
0
3
4

3
2
8

3
7
4

1
0
3

1
0
5
7

1
0
6
7

  
C

P

1
1
1
4

1
1
2
2

1
1
4
5

1
1
6
9

1
1
6
1

1
1
7
0

1
1
8
5

1
2
0
9

1
9
3
5

1
1
5
2

1
0
9
3

1
0
2
0

1
0
2
2

1
0
6
6

9
8
1

9
8
3

1
0
6
9

1
0
3
9

1
0
3
1

9
6
1

1
0
3
0

3
7
4

1
0
4
8

1
0
6
6

1
0
2
9

3
3
4

3
7
4

1
0
4

1
0
6
5

1
0
7
1

  
P
M

O
V

I

1
1
0
2

1
1
1
5

1
1
3
6

1
1
4
7

1
1
3
8

1
1
5
7

1
1
7
5

1
2
0
1

1
9
2
4

1
1
3
7

1
1
5
6

1
0
8
3

1
0
2
1

1
0
6
5

9
8
4

9
9
7

1
0
6
5

1
0
4
4

1
0
4
2

9
5
8

1
0
4
1

3
7
5

1
0
4
8

1
0
6
3

1
0
3
3

3
3
1

3
7
3

1
0
4

1
0
6
1

1
0
6
8

  
1
/0

1
1
2
1

1
1
2
5

1
1
4
1

1
1
6
7

1
1
5
7

1
1
7
3

1
1
7
4

1
2
0
6

1
9
3
7

1
1
6
5

1
1
8
1

1
1
7
2

1
1
1
0

1
0
8
1

9
9
6

9
8
5

1
0
8
2

1
0
4
9

1
0
4
4

9
6
6

1
0
3
8

3
6
2

1
0
5
9

1
0
7
5

1
0
2
9

3
2
2

3
6
1

9
6

1
0
8
6

1
0
8
7

  
T
P

1
9
1
2

1
9
2
0

1
9
2
2

1
9
2
4

1
9
2
6

1
9
3
1

1
9
3
5

1
9
4
6

1
9
8
3

1
9
1
7

1
9
3
6

1
9
2
7

1
9
3
8

1
9
0
9

1
0
5
1

1
0
3
7

1
8
4
2

1
1
8
7

1
2
1
4

1
0
0
8

1
1
8
2

4
9
3

1
2
0
3

1
8
2
4

1
0
9
0

1
0
0
8

4
6
6

1
8
0

1
1
6
9

1
8
7
5

  
U

1
0
9
0

1
1
0
4

1
1
2
5

1
1
2
4

1
1
2
7

1
1
5
9

1
1
6
5

1
1
8
9

1
9
2
9

1
1
5
4

1
1
7
9

1
1
6
6

1
1
8
1

1
9
2
5

1
0
6
7

9
7
8

1
0
3
8

1
0
0
4

1
0
0
6

9
5
5

1
0
1
0

3
7
2

1
0
2
2

1
0
3
3

1
0
0
1

3
0
7

3
6
3

8
8

1
0
4
4

1
0
4
8

  
X

1
0
8
2

1
1
0
3

1
1
2
1

1
1
3
1

1
1
1
7

1
1
6
8

1
1
6
5

1
1
9
2

1
9
2
6

1
1
3
6

1
1
6
6

1
1
4
2

1
1
8
1

1
9
2
8

1
1
4
5

1
0
5
6

1
0
3
5

1
0
0
7

1
0
1
1

9
5
1

1
0
0
2

3
7
1

1
0
2
1

1
0
2
8

9
9
9

3
1
7

3
6
2

9
3

1
0
3
4

1
0
3
7

  
Y

1
9
2
5

1
9
3
0

1
9
4
2

1
9
4
0

1
9
4
2

1
9
4
7

1
9
4
8

1
9
5
7

1
9
8
7

1
9
3
4

1
9
4
5

1
9
3
9

1
9
4
9

1
9
8
8

1
9
5
0

1
9
4
2

1
9
2
1

1
1
8
4

1
2
1
6

1
0
0
6

1
1
7
9

4
9
1

1
2
0
1

1
8
2
7

1
0
9
5

1
0
1
8

4
6
7

1
8
1

1
1
6
8

1
8
8
0

  
L
R

1
4
2
0

1
4
2
8

1
4
5
4

1
4
6
2

1
4
5
0

1
4
6
2

1
4
7
0

1
4
9
3

2
1
3
5

1
4
4
8

1
4
6
8

1
4
5
3

1
4
7
5

2
1
3
6

1
4
7
7

1
4
6
3

2
1
5
1

1
4
1
4

1
3
4
4

9
8
3

1
3
3
4

6
2
6

1
3
5
5

1
1
8
9

1
0
6
9

4
1
7

5
9
9

3
2
5

1
1
0
3

1
2
4
6

  
L
A

1
5
7
5

1
5
8
9

1
6
1
2

1
6
1
6

1
6
0
4

1
6
2
5

1
6
3
6

1
6
5
2

2
2
5
6

1
6
0
3

1
6
2
5

1
6
0
4

1
6
2
9

2
2
5
8

1
6
2
4

1
6
0
8

2
2
6
8

1
6
3
3

1
5
6
3

9
7
9

1
3
3
1

7
4
3

1
3
5
0

1
2
1
5

1
0
7
2

4
6
2

7
3
1

4
4
9

1
0
9
7

1
2
7
9

  
R

A
W

1
0
4
1

1
0
5
1

1
0
9
8

1
1
3
4

1
1
1
4

1
1
4
8

1
1
5
0

1
1
7
8

1
9
2
3

1
1
2
9

1
1
5
2

1
1
4
5

1
1
6
4

1
9
2
1

1
1
3
2

1
1
2
5

1
9
3
5

1
4
5
1

1
6
0
4

1
0
2
0

9
8
7

3
6
1

9
9
7

1
0
0
3

9
8
1

2
8
3

3
5
0

8
2

1
0
0
7

1
0
1
2

  
R

A
W

1

1
4
1
6

1
4
1
9

1
4
5
0

1
4
6
1

1
4
4
9

1
4
6
0

1
4
7
1

1
4
9
3

2
1
2
8

1
4
4
0

1
4
6
5

1
4
4
4

1
4
7
4

2
1
2
9

1
4
5
9

1
4
5
6

2
1
4
4

1
4
8
2

1
6
3
4

1
4
3
5

1
4
0
2

6
2
8

1
3
4
8

1
1
8
3

1
0
6
2

4
2
4

5
9
5

3
1
7

1
1
0
3

1
2
4
6

  
A

B

1
2
1
7

1
2
6
1

1
4
4
9

1
4
7
8

1
4
7
7

1
5
1
7

1
5
3
6

1
5
6
9

2
2
1
0

1
4
9
2

1
5
1
1

1
5
0
0

1
5
4
0

2
2
0
8

1
4
8
7

1
4
7
7

2
2
2
2

1
5
8
0

1
6
1
2

1
4
5
1

1
5
6
6

7
9
2

6
3
2

4
9
8

3
8
6

2
4
0

6
3
9

4
0
7

3
8
8

5
4
6

  
A

B
1

1
4
3
4

1
4
4
5

1
4
6
2

1
4
7
2

1
4
6
6

1
4
7
6

1
4
8
1

1
4
9
9

2
1
4
4

1
4
5
2

1
4
7
4

1
4
6
4

1
4
8
0

2
1
3
5

1
4
7
4

1
4
6
4

2
1
4
9

1
4
8
8

1
6
4
2

1
4
5
2

1
4
8
3

1
5
8
9

1
4
2
9

1
1
9
9

1
0
7
7

4
2
7

6
0
2

3
2
5

1
1
1
0

1
2
6
1

  
B

D
N

1
9
0
2

1
9
0
6

1
9
2
1

1
9
2
6

1
9
2
4

1
9
3
1

1
9
2
7

1
9
3
7

1
9
8
8

1
9
1
2

1
9
2
5

1
9
1
8

1
9
3
3

1
9
8
3

1
9
3
2

1
9
2
6

1
9
9
2

2
1
2
3

2
2
4
6

1
9
1
5

2
1
1
7

2
1
9
2

2
1
2
8

1
8
9
8

1
0
8
5

9
9
9

4
6
9

1
8
4

1
1
6
7

1
8
5
1

  
S

R

1
1
2
0

1
1
3
5

1
1
6
4

1
1
7
7

1
1
6
5

1
1
7
4

1
1
9
5

1
2
1
4

1
9
3
6

1
1
5
5

1
1
7
9

1
1
6
5

1
1
9
6

1
9
3
4

1
1
8
1

1
1
7
2

1
9
4
1

1
4
6
0

1
6
0
6

1
1
5
4

1
4
5
5

1
5
2
1

1
4
6
7

1
9
2
8

1
1
1
5

3
4
9

3
8
9

1
1
5

1
0
8
1

1
0
9
6

  
S

S

1
7
1
1

1
7
5
6

1
7
7
2

1
7
9
1

1
7
8
6

1
8
3
2

1
8
4
6

1
8
6
0

1
9
5
2

1
7
9
3

1
8
0
6

1
7
9
9

1
8
3
5

1
9
4
8

1
8
0
7

1
7
8
6

1
9
5
0

2
0
4
4

2
1
4
8

1
7
8
4

2
0
2
5

1
5
9
9

2
0
4
9

1
9
4
6

1
8
1
3

1
0
4
7

2
1
8

1
7
9

3
7
4

1
0
2
7

  
B

L
IF

1
2
0
9

1
2
5
2

1
4
4
7

1
4
7
6

1
4
7
4

1
5
0
6

1
5
3
7

1
5
6
6

2
2
2
6

1
4
8
3

1
5
0
2

1
4
9
3

1
5
3
2

2
2
2
6

1
4
8
7

1
4
7
7

2
2
3
7

1
5
9
8

1
6
1
5

1
4
5
3

1
5
9
0

9
3
6

1
6
1
0

2
2
1
2

1
5
0
9

1
6
1
2

7
8
3

4
5
8

3
8
3

5
0
0

  
H

a
m

5
R

1
1
4
4

1
1
8
8

1
3
8
4

1
4
3
4

1
4
2
5

1
4
6
5

1
4
9
4

1
5
2
8

2
2
0
3

1
4
4
4

1
4
6
2

1
4
5
2

1
4
8
7

2
2
0
2

1
4
5
2

1
4
3
6

2
2
1
3

1
5
6
2

1
5
8
7

1
4
1
1

1
5
5
8

8
5
8

1
5
7
7

2
1
8
7

1
4
7
3

1
3
4
1

7
9
8

4
7
3

1
0
8

2
1
2

  
H

a
m

5
W

1
2
3
2

1
2
3
2

1
2
4
1

1
2
5
3

1
2
4
7

1
2
4
7

1
2
4
7

1
2
6
3

1
9
6
9

1
2
4
9

1
2
6
0

1
2
5
4

1
2
5
6

1
9
7
2

1
2
5
5

1
2
5
4

1
9
8
5

1
5
4
3

1
6
9
8

1
2
4
5

1
5
3
1

1
6
3
6

1
5
5
1

1
9
6
3

1
2
6
6

1
9
0
5

1
6
3
2

1
5
9
7

1
2
3
2

1
1
8
7

  
G

2
0
6
7

2
0
7
3

2
0
7
2

2
0
7
7

2
0
7
4

2
0
8
2

2
0
8
6

2
0
9
6

2
1
0
3

2
0
7
0

2
0
8
5

2
0
7
8

2
0
8
6

2
0
9
7

2
0
8
2

2
0
8
2

2
1
0
4

2
2
3
1

2
3
4
7

2
0
7
1

2
2
1
9

2
3
0
9

2
2
3
1

2
1
1
0

2
0
8
2

2
0
8
3

2
3
4
6

2
3
2
4

2
1
0
8

2
0
6
3

  
H

a
m

W
k



84 Efficiency of Test Algorithms 

The algorithms of the study test set are listed horizontally 

and vertically. The main diagonal contains the number of 

faults covered by each algorithm (see also Table 5.2). For each 

pair, the intersection is entered above the main diagonal and 

the union below. 

QEff is calculated for each pair of algorithms according to 

formula (11) and is represented as background color 

according to the key in Fig 6.3. An uncolored table containing 

the values of QEff,, as well as the results for test numbers 

during the study are provided in Appendix A.2. 

6.3.2 Data Evaluation 

With help of Table 6.1, a quick and easy overview is 

possible to estimate the effectiveness of pairs of algorithms. 

One algorithm can easily be compared to each other by 

evaluating the results of one column or row. Each entry in the 

table that is marked red or orange denotes a inefficient pair of 

algorithms, where yellow and green entries are related to 

efficient combinations of algorithms. 

Examples of an efficient and an inefficient combination 

based on March U are given in Fig. 6.6. March U is compared 

to Ham5R on the one hand and to March SR on the other hand. 

 

 

Figure 6.6. Efficient and inefficient algorithms 

For March U combined with Ham5R, the following values 

are determined from table 6.1: 

 

March U 

Ham5R 

March U 

March SR 
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 Fault coverage of March U: |FU| = 1909 

 Fault coverage of Ham5R: |F5R| = 783 

 Intersection: |I| = 466 

 Union: |U| = 2226 

 

QEff for the combination of March U and Ham5R then is: 

 

 51.0
783

1909

2226

466


U

5R

Eff
F

F

U

I
(U,5R)Q  (12) 

 

For the combination of March U and March SR, the 

following values are determined: 

 

 Fault coverage of March U: |FU| = 1909 

 Fault coverage of March SR: |FSR| = 1898 

 Intersection: |I| = 1824 

 Union: |U| = 1934 

 

QEff for the combination March U with March SR is: 

 

 0.93
1898

1909

1934

1824

F

F

U

I
SR)(U,Q

U

SR
Eff   (13) 

 

The values of QEff are represented in Fig. 5.3 as green 

background color for the combination of March U and 

Ham5R, and as orange background for March U and 

March SR. 

Likewise, QEff is derived for each pair of algorithms, and 

interpreted as color in Table 6.1. But more than the single 

values, the table gives an overview of the efficiency of the 

algorithms. The algorithms can be characterized by analyzing 

Table 6.1 column by column. Each column represents one 

algorithm. If the entries in one column are predominantly 

orange or red (e.g. Algorithm B or March U), these algorithms 
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are covering most of the other algorithms or are covered by 

other algorithms (e.g. SCAN or MATS). In those cases, the 

values of union and intersection have to be considered. So, if 

algorithms are covering others, they can be assumed to be 

more effective than other algorithms. On the other hand, if a 

column is predominantly green, the algorithm detects 

additional other faults than the remaining algorithms. These 

algorithms seem to be March AB1, BLIF, Ham5R and Ham5W. 

However, these algorithms are also covered by other ones. 

E.g. the column of March AB1 is predominantly green, but the 

faults detected by March AB1 are nearly completely covered 

by March RAW, which covers 94% of the faults of March AB1 

(743 faults of 792). Anyway, this knowledge about coverage is 

very helpful for the estimation of faults. A special case occurs 

with March G and SCAN resp. SCAN+. Here, March G 

completely covers the other algorithms. A combination of 

these algorithms in a test set would be useless, as neither 

SCAN nor SCAN+ would improve the total fault coverage of 

the test set. 

Deriving QEff and analyzing the results of Table 6.1 does 

not yet consider the coverage of specific fault models. Only 

the pure ratio of union, intersection and fault coverage is 

taken into account to determine efficient combinations of 

algorithms and to provide a base for the further analysis and 

classification of test algorithms and functional faults. 

However, for simple test sets containing two test algorithms, 

the method by comparing QEff for each pair of algorithms in 

the study may be sufficient if irredundant testing is desired, 

and a quick method should be used to define a simple test set. 

6 . 4  C l a s s i f i c a t i o n  o f  A l g o r i t h m s  

The analysis of pairs of algorithms has shown that there 

are pairs of algorithms where the set of faults detected by one 

algorithm covers that of another algorithm completely or 
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partially. Using such a pair of algorithms together in one test 

set means redundant testing as one algorithm may replace the 

other one, and so unnecessary additional test time would be 

needed. This is inefficient in productive memory testing. 

Hence, test algorithms with similar fault coverage or similar 

properties should be avoided. Therefore the algorithms of this 

study are analyzed on their structure and fault coverage and 

are classified into groups. Each group of algorithms is then 

allocated to a specific group of functional fault models. 

The classification is done in two independent ways. 

Algorithms of similar structure containing characteristic 

march elements can be grouped and allocated to 

corresponding sets of functional faults. The information about 

characteristic march elements and corresponding functional 

fault is taken from literature where march algorithms are 

described in detail. On the other hand, the statistical analysis 

of test data is taken to group algorithms based on similar fault 

coverage and the coverage of subsets of faults. 

6.4.1 Similar Fault Coverage and Subsets 

For the analysis of similar fault coverage and subsets of 

faults, the results of the statistical analysis of productive test 

data are taken into account. The structure or structural 

properties of march elements are not of interest, but only the 

experimental test results are considered. As the test results of 

TN6531 are most meaningful, the results of Table 6.1 are taken 

for this analysis. 

Algorithm , March U, March LR, March SR and 

Ham_Walk form a set of similar algorithms. For each pair of 

algorithms in this set QEff is derived and entered in Table 6.2 

together with |F| of each algorithm on the main diagonal.
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Table 6.2. Fault coverage and QEff 

 Alg. B March U March LR March SR Ham_Walk 

Algorithm B 1908 0.925 0.933 0.919 0.960 

March U  1909 0.932 0.925 0.966 

March LR   1921 0.928 0.960 

March SR    1898 0.954 

Ham_Walk     2063 

 

The number of faults detected by these algorithms is 

approximately the same, except for Ham_Walk, where 

|FHam_Walk| is bigger than that of the other algorithms. 

However, QEff  1 for each pair and is approximately the 

same. This means that Ham_Walk covers the other algorithms 

in this set: 

 

 |FAlgB| ≈ |FU| ≈ |FLR| ≈ |FSR| (14) 

and 

 {FAlgB, FU, FLR, FSR} ~  FHam_Walk (15) 

 

These relationships are summarized in Fig 6.7. The Venn 

diagrams show the proportion of union and intersection 

related to March LR. Any other combination of these 

algorithms results in a similar Venn diagram. 

 

 

Figure 6.7. Venn diagrams I 

    
Algorithm B 

 
March LR 

March U 

 
March LR 

March SR 

 
March LR 

March LR 

 
Ham_Walk 

    
QEff = 0.933 QEff = 0.932 QEff = 0.928 QEff = 0.960 
|FAlgB| = 1908 
|FLR | = 1921 

|I| = 1842 
|U| = 1987 

|FU | = 1909 
|FLR | = 1921 

|I| = 1842 
|U| = 1988 

|FSR| = 1898 
|FLR | = 1921 

|I| = 1827 
|U| = 1992 

|FLR | = 1921 
|FHamWalk| = 2063 

|I| = 1880 
|U| = 2104 
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The comparison of March LR and Ham_Walk is of special 

interest. As described above, the structure of these algorithms 

is almost the same. The main difference is given by the RARwa 

sequence of Ham_Walk. It should be expected, that March LR 

is completely covered by Ham_Walk. However, this is not the 

case. A couple of 41 faults are still detected by March LR but 

not by Ham_Walk. The reason for that cannot be explained on 

base of statistical data analysis. These faults needed to be 

analyzed explicitly to exclude variation of operation 

conditions (e.g. minimal temperature variance) during the 

tests. On the other hand, the faults that are additionally 

detected by Ham_Walk can almost certainly be assumed to be 

detected by the RARwa sequence. However, any influence by 

the test process itself can also not be excluded. 

SCAN and SCAN+ are the only algorithms in this analysis, 

where the faults are completely covered by March G. The set 

of faults detected by SCAN and SCAN+ are even a proper 

subset of the faults detected by March G (see Fig. 6.8). 

 

 FSCAN  FG   and   FSCAN+  FG (16) 

 

 

Figure 6.8. Venn diagrams II 

 

   
SCAN 

 
SCAN+ 

SCAN 

 
March G 

SCAN+ 

 
March G 

 
  

xQEff = 0.937 QEff = 1.000 QEff = 1.000 
|FSCAN| = 684 
|FSCAN+| = 727 

|I| = 661 
|U| = 750 

|FSCAN| = 684 
|FG| = 1232 

|I| = 684 
|U| = 1232 

|FSCAN+| = 727 
|FG| = 1232 

|I| = 727 
|U| = 1232 
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Although the structure of SCAN is a proper subset of 

SCAN+ (see Table 3.2), FSCAN is not a proper subset of FSCAN+. 

So there are faults that are detected by SCAN but not by 

SCAN+. This is remarkable, as it should be expected that, from 

their structure, SCAN+ completely covers SCAN. However, it 

cannot be explained, as the statistical analysis is not sufficient 

to explain the behavior of single faults. A more 

comprehensive analysis of such faulty devices would be 

necessary to identify the fault model behind this effect, and to 

analyze if such a faulty behavior is repeatable or if it depends 

on environmental disturb factors (e.g. variations of 

environmental test parameters). 

The following results apply for hammering algorithm 

Ham5R and Ham5W. Both, Ham5R and Ham5W detect 

approximately a subset of those faults detected by 

March RAW (see Fig. 6.9). 

 

 FHam5W ~  FHam5R (17) 

 {FHam5W, FHam5R} ~  FRAW (18) 

 

Ham5R and March RAW are also compared to Ham_Walk 

and it shows up, that there are many faults that are not 

detected by Ham_Walk. Obviously there are fault models that 

cannot be detected by Ham_Walk but well by March RAW 

and Ham5R (Fig. 6.9). 
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Figure 6.9. Venn diagrams III 

 

A few algorithms are developed especially for dynamic 

faults. In the study test set, these are March RAW, 

March RAW1, March AB, March AB1 and March BDN. The 

statistical analysis shows that March RAW, March AB and 

March BDN are very similar (Fig. 6.10). From [8] and [28] this 

could be expected as March AB and March BDN are 

developed to detect the same set of dynamic faults as 

March RAW. The productive test results confirm this 

assumption. So is: 

 

 FAB ≈ FBDN ≈ FRAW (19) 

 

    
Ham5R 

 
Ham5W 

Ham5R 

 
March RAW 

Ham5R 

 
Ham_Walk 

March RAW 

 
Ham_Walk 

 
   

QEff = 0.950 QEff = 0.904 QEff = 0.562 QEff = 0.719 

|FHam5R| = 783 
|FHam5W| = 473 

|I| = 458 

|U| = 798 

|FHam5R| = 783 
|FRAW| = 1563 

|I| = 731 

|U| = 1615 

|FHam5R| = 783 
|FHamWalk| = 2063 

|I| = 500 

|U| = 2346 

|FRAW| = 1563 
|FHamWalk| = 2063 

|I| = 1279 

|U| = 2347 
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Figure 6.10. Venn diagrams IV 

 

Furthermore is: 

 

 FRAW1 ~  FRAW (20) 

and 

 FAB1 ~  FAB (21) 

 

The fault coverage of March RAW1 is a subset of 

March RAW and the March AB1 is a subset of March AB1 (see 

Fig. 6.11). It is known from [7] and [8] respectively, that 

March RAW1 and March AB1 are related to single-cell 

dynamic faults, whereas March RAW and March AB are also 

related to two-cell dynamic faults. Hence, the set of faults 

allocated to March RAW1 and March AB1 is a subset of the set 

of faults allocated to March RAW and March AB. The 

assumption that March RAW1 and March AB1 are covered by 

March RAW and March AB can so be shown by the 

experimental results (Fig. 6.11). 

However, the assumption that March AB1 reaches the 

same results as March RAW1 [8] cannot be confirmed. The 

Venn diagram in Fig. 6.11 shows that the two algorithms are 

very different in their fault coverage, and QEff = 0.320 also 

shows low similarity. But March AB1 is nevertheless covered 

by March RAW. So the set of faults detected by March AB1 is 

   
March AB 

 
March RAW 

March BDN 

 
March RAW 

March AB 

 
March BDN 

  
 

QEff = 0.908 QEff = 0.899 QEff = 0.926 

|FAB| = 1402 
|FRAW| = 1563 

|I| = 1331 
|U| = 1634 

|FBDN| = 1429 
|FRAW| = 1563 

|I| = 1350 
|U| = 1642 

|FAB| = 1402 
|FBDN| = 1429 

|I| = 1348 
|U| = 1483 
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still a subset of dynamic faults, but March AB1 cannot be used 

to replace March RAW1. 

 

 

Figure 6.11. Venn diagrams V 

Another very interesting comparison is the intersection of 

SCAN and Ham5W. With QEff = 0.016, this is obviously one of 

the most efficient combinations within the test results of this 

study. The sets of faults detected by these algorithms are 

nearly not overlapping. So, the performance is completely 

different, which is important to know as a criterion for 

exclusion for the classification of algorithms and allocation of 

functional fault models. For an overall test performance, 

SCAN and Ham5W seem not to play an important role, as 

both are almost covered by March RAW. And March RAW 

even covers the combination of both algorithms (see Fig. 6.12). 

 

    
March RAW1 

 
March RAW 

March AB1 

 
March AB 

March AB1 

 
March RAW1 

March AB1 

 
March RAW 

  
 

 

QEff = 0.935 QEff = 0.710 QEff = 0.320 QEff = 0.910 
|FRAW1| = 1020 
|FRAW| = 1563 

|I| = 979 
|U| = 1604 

|FAB1| = 792 
|FAB| = 1402 

|I| = 628 
|U| = 1566 

|FAB1| = 792 
|FRAW1| = 1020 

|I| = 361 
|U| = 1451 

|FAB1| = 792 
|FRAW| = 1563 

|I| = 743 
|U| = 1612 
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Figure 6.12. Venn diagrams VI 

 

The biggest part of algorithms has a fault coverage which 

is approximately a subset of that of Algorithm B, March U, 

March LR, March SR or Ham_Walk. The algorithms which are 

covered by this set are: SCAN, SCAN+, MATS, MATS+, 

MATS++, March A, March B, March C-, March C+, PMOVI, 

March 1/0, March TP, March X, March Y, March SS and BLIF. 

Furthermore, |FSCAN| and |FSCAN+| are relatively low and is 

approximately covered by the other algorithms in this list. 

Some algorithms show up to be important in classification 

as they stand out in their performance. These algorithms are 

March RAW, Ham_Walk, Ham5R and March G. For test set 

development, these algorithms are of special interest and 

seem to be indispensable. 

6.4.2 Characteristic March Elements 

In [4, 19], conditions are described that characterize 

specific sequences of march elements that are allocated to 

specific fault models. Some of these conditions are used to 

identify similar test algorithms and to classify them. The 

indications of these conditions “5”, “5S”, “6”, “6S” and “6SD” 

are taken from [4] and [19]. 

    
SCAN 

 
Ham5W 

SCAN 

 
March RAW 

March RAW 

 
Ham5W 

March RAW 
SCAN 

Ham5W 

 

   
QEff = 0.016 QEff = 0.975 QEff = 0.935  

|FSCAN| = 684 
|FHam5W| = 473 

|I| = 13 
|U| = 1144 

|FSCAN| = 684 
|FRAW| = 1563 

|I| = 672 
|U| = 1575 

|FHam5W| = 473 
|FRAW| = 1563 

|I| = 449 
|U| = 1587 
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Condition 5S is to detect all simple coupling faults [4] in 

SRAM memories and requires one of the following sequences 

of march elements: 

 

 

   

   



,xrxw,wx,,,xr

and

rx,;wx,,xw,rx,

;



 (22) 

or 

 

   

   



,xrxw,wx,,,xr

and

rx,;wx,,xw,rx,

;



 (23) 

 

where  0,1x . 

This sequence is performed exactly only by March LR. So, 

according to this condition, only March LR is able to detect all 

simple coupling faults. However, a couple of algorithms show 

the sequences in a slightly modified form. For example there 

is an additional read operation at the end of the first march 

element, the up/down-direction is different, or the second part 

of the sequence is missing. These algorithms are at least 

similar to March LR concerning this characteristic march 

sequence, but would not detect all simple coupling faults. In 

Table 6.3 algorithms are listed, and the characteristic march 

elements are marked. It is also listed which algorithm requires 

the condition totally by “5S”, if up/down-direction are 

inverted by “(5S)”, or if the read-write-sequence is incomplete 

by “((5S))”. 
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Table 6.3. March algorithms for simple coupling faults 

Algorithm Sequence Cond. 

March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} 5S 

March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} ((5S)) 

March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1):(r1,w0,w1,w0);(r0,w1,w0)} ((5S)) 

Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} ((5S)) 

March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,);(r0,w1,r1,w0);(r0)} (5S) 

March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} (5S) 

March G 
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0); 
   D;(r0,w1,r1);D;(r1,w0,r0)} 

((5S)) 

Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)} 5S 

 

For March A, March B and Algorithm B, the second part of 

the sequence is incomplete and the up/down-direction is 

changed. For Algorithm B, March U, March SR and March G, 

the sequences are complete but the up/down-direction is 

changed, and for March G, the second part of march elements 

is interrupted by a delay time D. 

Ham_Walk meets the requirement that both parts of the 

sequence are performed in up-direction. However, there is an 

additional read operation at the end of march elements M2 

and M4. 

Conditions for detecting linked faults are described in [19]. 

The space of linked faults is complex and factors like address 

order and sets of simple coupling faults which are linked to 

each other are playing an important role in detecting linked 

faults, three conditions are defined. Condition 6, conditions 6S 

and condition 6SD are detecting linked faults, where 

condition 6SD is the most comprehensive one and covers 

conditions 6S and 6, where condition 6S already covers 

condition 6. The following sequences of march elements are 

defined for condition 6SD. 

 

 

   

   



,xrxw,rx,wx,,xr

and

rx,;wx,,xr,xwrx,





;

 (24) 

or 
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   

   



,xrxw,rx,wx,,xr

and

rx,;wx,,xr,xwrx,





;

 (25) 

 

Condition 6S is developed from condition 6 by adding a 

second march element to the sequences, and condition 6SD is 

developed from condition 6S by adding a read operation. The 

structure of conditions 6 and 6S are given below. 

 

Conditions 6: 

 

   

   
 

xw,wx,,xr   and   wx,,xwrx,

or

xw,wx,,xr   and   wx,,xwrx,









 (26) 

 

Conditions 6S: 

 

       

       
 

xrxw,wx,,xr   and   rx;wx,,xwrx,

or

xrxw,wx,,xr   and   rx;wx,,xwrx,





;

;





 (27) 

 

An important characteristic of these conditions is that all 

march elements in one sequence are performed either in up or 

down direction. The direction must not change; otherwise 

some linked fault may be masked and undetected. 

Condition 6SD is exactly used by March LR. There are also 

a couple of other algorithms which are very similar to these 

conditions, but do not exactly meet the requirements, i.e. the 

up/down-direction changes during a characteristic sequence. 

So these algorithms would detect some linked faults but with 

exceptions. In Table 6.4 the algorithms are listed and the 

characteristic sequences are highlighted. If the up-down-

direction of a condition is incorrect, the condition is given in 

brackets. 
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Table 6.4. March algorithms for linked faults 

Algorithm Sequence Cond. 

March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} 6SD 

March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} (6) 

March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1):(r1,w0,w1,w0);(r0,w1,w0)} (6) 

Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} (6S) 

March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,);(r0,w1,r1,w0);(r0)} (6SD) 

March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} (6SD) 

March G 
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0); 
   D;(r0,w1,r1);D;(r1,w0,r0)} 

(6) 

Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)} 6SD 

 

March A, March B and Algorithm B nearly meet the 

requirements of condition 6, however the addressing direction 

changes during the sequence. The same occurs at March U, 

March SR and March G, where the sequences nearly meets the 

requirements of condition 6S. March G has also an additional 

delay time within the sequence. Ham_Walk is closest to 

condition 6SD, but there is an additional read operation 

within the sequence. 

Another class of algorithms is related to dynamic faults. 

These algorithms are previously described in literature 

[20, 27, 28]. A characteristic sequence performed by those 

algorithms is: 

 

 

   

   



,xrxr,xw,

and

rx,;rxwx,,

;

 (28) 

 

Additionally to these sequences, delay time between 

march elements enables detecting faults, and also traditional 

test algorithms are able to detect a reduced set of dynamic 

faults [7]. All algorithms that can be allocated to detect 

dynamic faults are listed in Table 6.5. 
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Table 6.5. March algorithms for dynamic faults 

Algorithm Sequence 

March RAW 
{(w0);(r0,w0,r0,r0,w1,r1);(r1,w1,r1,r1,w0,r0);(r0,w0,r0,r0,w1,r1) 
   (r1,w1,r1,r1,w0,r0)(r0)} 

March RAW1 {(w0);(w0,r0);(r0);(w1,r1);(r1);(w1);(w1,r1);(w0);(w0,r0)} 

March AB 
{(w1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0); 
   (r0,w1,r1,w1,r1);(r1)} 

March AB1 {(w0);(w1,r1,w1,r1,r1);(w0,r0,w0,r0,r0)} 

March BDN 
{(w0);(r0,w1,r1.w1,r1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1); 
   (r1,w0,r0,w0,r0);(r0)} 

March LA 
{(w0);(r0,w1,w0,w1,r1);(r1,w0,w1,w0,r0);(r0,w1,w0,w1,r1); 
   (r1,w0,w1,w0,r0)(r0)} 

Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)} 

March G 
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0); 
   D;(r0,w1,r1);D;(r1,w0,r0)} 

 

The most important algorithms for detecting dynamic 

faults in this list are March RAW, March AB, March AB1, 

March BDN and March G. These algorithms have been 

developed to predominantly detect dynamic faults. The 

characteristic march sequence is also included in algorithms 

March LA and Ham_Walk. The set of dynamic faults is not 

restricted to the algorithms in this list. Other algorithms like 

March C-, March , PMOVI, March U, March SR or March LR 

partially detect dynamic faults as well [7]. Ham_Walk is the 

only algorithm which contains a characteristic, walking read-

after-read (RaRwa) operation in march elements M2 and M4. 

Walking means that after applying the march sequence to the 

cell, it is in the same state as before. 

 

  rx,rx,  (29) 

 

Apart from this and an additional initializing write 

operation, Ham_Walk is the same as March LR. This RARwa 

operation is very effective to detect dynamic faults and timing 

related faults like some address decoder delay faults, slow 

sense amplifier and slow pre-charge circuit faults. Hence, 

Ham_Walk should be included to the set of algorithms 

detecting these dynamic faults. 
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Besides the pure analysis of characteristic march elements, 

algorithms are already described in literature and related to 

specific FFMs [1]. The allocation is summarized in Table 6.6. 

 

Table 6.6. Fault model coverage of traditional march tests 

Algorithm Fault Models 

MATS some AF, SAF 

MATS+ AF, SAF 

MATS+ AF, SAF, TF 

MATS++ AF, SAF, TF 

March X AF, SAF, TF, CFin 

March C- AF, SAF, TF, CFin, CFid 

March A AF, SAF, TF, CFin, linked CFid 

March Y AF, SAF, CFin, TF linked with CFin 

March B AF, SAF, CFin, linked CFid, TF linked with CFin 

6.4.3 Grouping and Classification 

The grouping and classification of march test algorithms is 

based on similar characteristics on one hand – derived from 

literature research, and on statistical determination on the 

other hand – derived from the statistical analysis. At the same 

time, the groups of algorithms are allocated to sets of 

functional fault models, which are predominantly detected by 

those algorithms. For the analysis in this section, the space of 

functional faults is limited to the following four supersets: 

 

 simple, static single cell faults (SSs), 

 simple, static coupling faults (CFs), 

 linked faults (LFs), and 

 dynamic faults (DFs). 

 

Five sets of algorithms could be determined and allocated 

to functional fault models. These sets are listed in Table 6.7. 
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Table 6.7. Sets of algorithms and functional faults 

 Set of Algorithms Set of FFMs 

Set I SCAN, SCAN+ simple static single-cell faults 

Set II 

MATS, MATS+, MATS++, March X, 
March Y, PMOVI, March 1/0, March C-, 
March C+, March TP, March A, 
March B, March SS, BLIF

simple static single-cell faults 
some simple CFs 

Set III Algorithm B, March U, March SR 
simple static single-cell faults 
most simple CFs 
some linked faults 

Set IV March LA, March LR, Ham_Walk 

simple static single-cell faults 
all simple CFs 
linked faults 
some dynamic faults 

Set V 
March RAW, March RAW1, March AB, 
March AB1, March BDN, Ham5R, 
Ham5W, March G 

simple static single-cell faults 
simple static coupling 
some linked faults 
dynamic faults 

 

Each of the sets is allocated to a certain number of 

functional fault models which are predominantly detected, 

but not limited to those functional faults. E.g., as described in 

[7], algorithms of sets II, III and IV also detect dynamic faults, 

however only partially. 

This classification of algorithms and fault models is base 

for efficient selection of test sets, as similar algorithms can be 

avoided, and so redundant testing. From the above findings 

about similar characteristics and fault coverage of test 

algorithms, the following conclusions can be drawn: 

 

 Set I and II are covered by set III. 

 March LR is similar to set III. 

 March RAW covers other algorithms detecting dynamic 

faults. 

 Ham_Walk is the only algorithm which contains a 

characteristic read-after-read operation and detects many 

unique faults. 

 

Hence, a test set which is able to detect many different 

faults and is irredundant would consist of March LR, 

March RAW and Ham_Walk. This combination of algorithms 

would be expected to be most efficient. 
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6.4.4 Consistencies and Inconsistencies 

Two independent ways have been used to classify the test 

algorithms. So, there may be differences in the results between 

the expected results based the analysis of march sequences 

and characteristic march elements, and the results of the 

empirical analysis of fault coverage and union and 

intersection. In this section, consistencies and inconsistencies 

between the two approaches are shown. 

The structure of Algorithm B, March U, March LR and 

March SR are similar (see Table 6.3) and so are their test results 

(see Fig. 6.7). The expectation to have a similar performance 

and fault coverage due to the similar structure of those 

algorithms could successfully be shown by the experimental 

results. It is remarkable that Algorithm B shows a similar 

performance as recent algorithms although Algorithm B [18] 

has been developed long before functional fault models and 

fault primitives have systematically been developed which 

are base for the development of recent algorithms like 

March LR and March SR. 

March AB and March AB1 have been designed to cover the 

same set of dynamic faults as March RAW and March RAW1 

[8]. So, the performance and fault coverage of those 

algorithms has been compared and it could be shown that the 

performance of March RAW and March AB is very similar. 

The biggest part of faults is detected by both algorithms 

equally (see Fig. 6.10). However, the results of the comparison 

of March RAW1 and March AB1 are different. There is not a 

high similarity in their overall performance and fault 

coverage. So, according to [8], if the set of dynamic faults 

detected by both algorithms is the same, there are also many 

faults detected by March RAW1 or March AB1 individually. 

This means that March AB1 cannot replace March RAW1 or 

vice versa to detect more than only single-cell dynamic faults. 
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The most obvious inconsistency between theory and 

practice becomes visible at the comparison of SCAN and 

SCAN+. Due to the fact that the structure of SCAN is even a 

proper subset of that of SCAN+, it should be expected that also 

the set of faults detected by SCAN is a proper subset of set of 

faults detected by SCAN+. However, there are faults that are 

detected by SCAN but not by SCAN+ (see Fig. 6.8). This is 

highly remarkable but unfortunately cannot be explained 

with the methods used in this project. A specific analysis of 

single faulty devices that show the explained behavior would 

be necessary and may help to find the reasons for that faults 

that are detected only by SCAN. 

6 . 5  E s t i m a t i o n  o f  F a u l t  D i s t r i b u t i o n  

To estimate the distribution of different fault models 

within the test results, a classification of algorithms and 

corresponding faults models is necessary. Afterwards, the 

results can be analyzed and the distribution of faults can be 

estimated. 

The sets of functional fault models from I to V differ in only 

one additional FFM from one set to the next. So, the fault 

estimation is done by evaluating the difference in the fault 

coverage from one set to the next. Beginning with the set of all 

faults, those faults are determined that are only detected by 

the algorithms of set I. Now the number of simple static 

single-cell faults is known. This set is now subtracted from the 

total set of faults, and the remaining set of faults is now 

without simple static single-cell faults. By repeated 

subtraction of one set after the other, the distribution of the 

four supersets of FFMs can be estimated within the test results 

[49]. 

Let Set 0 be the set of all algorithms (i.e. set I through V of 

Table 6.6) and let F0 be the whole set of faults models, then F0 

contains 100% of faults. 
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Starting with set 0 and F0, set I is subtracted from set 0, and 

at the same time the set of static simple single-cell faults (SSs) 

is subtracted from F0. The remaining set of faults is then FI, 

which contains any faults but no static simple single-cell 

faults. 

 

 0 – I      FI = F0 - {SS} (30) 

 

In general, the formula to derive the cardinality of each 

type of functional fault models is: 

 

 |{FFM}| = |Fn| - |Fn+1| (31) 

 

And so, the cardinality of SS is: 

 

 |{SS}| = |F0| -  |FI| (32) 

 

Hence, the quantity of simple static single-cell faults could 

be determined. Based on the productive test results, the 

following values could be derived: 

 

 |F0|= 2439   and   |FI| = 1610 

 |{SS}| = |F0| - |FI| = 829 (33) 

 

That means that 1610 of 2439 faults that have been 

detected, are simple static single cell faults, which are 34% of 

all faults. This process is repeated for all supersets of 

functional fault models until set V to estimate the whole fault 

distribution. 

In the way described above, the cardinality of FFMs for 

each set has been determined for TN6531. After repeated 

subtraction, the following values have been derived: for each 

set: |Fn| and |{FFM}|. The calculations are given in Appendix 

B and the results are summarized in Table 6.8. 
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Table 6.8. Determination of fault distribution 

N |Fn|  |{FFM}|  Percentage 

0 2439     

I 1610  |{SS}| = 829  34% 

II 1073  |{some CF}| = 537  22% 

III 390  |{remaining CF}| = 683  28% 

IV 171  |{LF}| = 219  9% 

V 0  |{DF}| = 171  7% 

 

According to (31), the cardinality and distribution of FFMs 

is as given in Table 6.9 and illustrated in Fig. 6.13. 

 

Table 6.9. Fault distribution 

FFMs Percentage 

simple static single cell faults (SS) 34% 

some coupling faults (CF) 22% 

remaining coupling faults (CF) 28% 

linked faults (LF) 9% 

dynamic faults (DF) 7% 

 

 

Figure 6.13. Fault distribution 

 

The results are for TN6531, i.e. for 2439 faults in total and 

a test that took place after Burn-In. 34% of the faults are 

linked faults

9%

dynamic faults

7%

remaining 

simple static 

coupling faults

28%
some simple 

static coupling 

faults

22%

simple static 

single-cell 

faults

34%
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assumed to be simple static single-cell faults and 50% (22% 

and 28%) of the faults are assumed to be simple static coupling 

faults. At least 9% are linked and 7% are dynamic faults. 

This estimation of fault distribution is hardly comparable 

to any other results. On the one hand, no comparable results 

of a similar research are available, and on the other hand, the 

results are related to only one product and only one series of 

tests. Anyhow, the enormous number of simple faults is 

impressing due to the fact that the test was performed after 

wafer test. Obviously a lot of fault slipped through wafer test 

or occurred later due to Burn-In, although due to the previous 

wafer test it should be expected that most of the simple faults 

have already been detected, as during wafer testing, the 

RESET configuration of MBISTPLUS, which contains the 

algorithms SCAN and March C+, should have detected many 

simple static single-cell faults. 

6 . 6  S u m m a r y  a n d  C o n c l u s i o n s  

An effective combination of memory test algorithms is 

essential for productive memory test sets. Redundant testing 

should be avoided and a maximum of fault coverage should 

be achieved. So, the algorithms used in this study are analyzed 

on efficient combinations. To determine the efficiency of pairs 

of test algorithms, a factor QEff is derived, which is a degree for 

efficiency of a combination of two test algorithms. A 

comparison of QEff for each combination of test algorithms has 

been done and efficient and inefficient combinations could be 

determined. 

The analysis of QEff, as well as a deterministic analysis of 

the structure of march elements and test algorithms is used to 

classify similar test algorithms. Characteristic march 

sequences that are allocated to specific fault models have been 

identified and corresponding test algorithms are grouped into 

sets. Especially march sequences related to simple coupling 



6.6 Summary and Conclusions 107 

faults, linked faults and dynamic faults are of special interest. 

In addition to this deterministic method, the analysis of QEff, 

and sub- and supersets of fault coverage is used to establish 

sets of similar algorithms. Algorithms with similar fault 

coverage are allocated to similar properties, and so to different 

functional fault models. Five sets of algorithms are defined 

which are allocated to specific sets of functional faults. Four 

algorithms seem to be of special interest for test sets: 

March RAW, March G, Ham5R and Ham_Walk. These 

algorithms are remarkable during the analysis of sub- and 

supersets. Obviously these algorithms are playing an 

important role for efficient test set generation. However, an 

optimization that leads to the minimal set of test algorithms is 

not possible with the previous method. The formal 

optimization and results of test set minimization will be 

presented in the following chapter. 

Based on this classification, the selection of algorithms for 

test sets can be efficient, as the use of similar algorithms, and 

so, redundant testing, can be avoided. 

As an application of classifying test algorithms, the 

distribution of faults within the test results of this project is 

estimated. Due to the repeated subtraction, the number of 

faults that are detected by a class of algorithms could be 

determined, and the functional fault modes could be 

allocated. It was determined that about one third of faults are 

simple static single cell faults, and half of the faults are simple 

static coupling faults. The remaining faults are either linked or 

dynamic faults. 

 

 





 

C ha pte r  7   

Tes t  Se t  O pt imiz a t io n  

Test set optimization means that the selection of tests for a 

productive memory test set should fulfill two requirements at 

the same time: maximum fault coverage and minimum test 

time. This means that from the whole set of test algorithms a 

minimal subset of algorithms is needed, which is able to detect 

all faults but the test effort should be as short as possible. That 

means that for production, the set of algorithms should be at 

a minimum. Therefore a formal optimization is needed, based 

on productive test results to determine the set of essential test 

algorithms. 

In this chapter, the formal optimization and the set of 

essential algorithms as a result of the optimization are 

presented. Furthermore, based on the set of essential 

algorithms, a function of fault coverage over test length is 

derived that, depending on a desired yield, allows selecting 

test algorithms and estimating the minimal necessary test 

length. 
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7 . 1  F o r m a l  O p t i m i z a t i o n  

The maximum fault coverage is surely achieved with the 

maximum set of algorithms. This means the whole study test 

set is applied to the memories. Then it can be assumed that the 

maximum of faults is detected. Now, optimization means to 

minimize the set of algorithms but keep the maximum fault 

coverage. The minimization is achieved with help of the well 

known ESPRESSO minimization algorithm [50] – [54]. 

ESPRESSO is a heuristic logic minimization algorithm 

developed to optimize digital logic gate circuits. However, the 

memory test results can be stated in such a way that 

ESPRESSO can be applied to optimize the memory test set. A 

brief description of ESPRESSO is given in Appendix C. 

7 . 2  T e s t  D a t a  P r e p a r a t i o n  

The memory test results have to be prepared to be 

processed with ESPRESSO. Therefore a system is assumed 

representing the algorithms as inputs and the faults detected 

by a test as outputs (Fig. 7.1). The number of inputs to the 

system is m, the number of outputs is n. 

 

 

Figure 7.1. System representing algorithms and faults 

 

The number of algorithms for each test is given by the 

study test set (Table 4.3). So, in this study, m is 30, and the 

algorithms (Aj) are indicated by their numbering given in 

 

Algorithms Faults 

m n 
 

System 
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Table 4.3; e.g. SCAN is represented by A1. The number of 

faults varies with the tests performed at different test 

numbers; e.g. n is 2439 for TN6531 (see Table 5.1). 

The behavior of the system can be determined from the test 

results and is represented as a truth table. The format of this 

table is shown in Table 7.1. 

 

Table 7.1. Algorithm-Fault truth table 

Fail # Fail 
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i Fi A1 A2 A3 A4 … Aj … A29 A30 

1 1 - - 1 - … … … - - 

2 1 1 1 1 1 … … … 1 1 

3 1 - - 1 1 … … … 1 1 

4 1 1 1 1 1 … … … 1 1 

5 1 - - - 1 … … … 1 1 

… … … … … … … … … … … 

n … … … … … … … … … … 

 

Each fault Fi (1 ≤ i ≤ n) is represented by one row of the 

table. A fault Fi is deemed to be detected, if at least one 

algorithm Aj (1 ≤ j ≤ 30) detected it. So, for each fault Fi is: if 

one of the inputs Aj is true, Fi is true. 

 

 302921 AAAAAF ji    (34) 

 

Note that Table 7.1 is only an excerpt of the whole 

representation of test results and explains the data 

representation. An ‘1’ denotes that an algorithm has detected 

a fault (i.e. input Aj is true), and ‘-’ denotes that an algorithm 

Aj did not detect the fault; i.e. input Aj is ‘Don’t Care’. For all 

entries in the table, the output Fi is always true, as of course 

faults that are listed have to be detected first. As shown in (34), 

the test results for each fault Fi are represented as disjunction 
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of the inputs. Hence, the whole truth table representing the 

test results is given in conjunctive normal form (CNF). For the 

optimal test set, all faults F1 … Fn have to be detected, that 

means the faults the fault information is conjunct. 

 

 nni FFFFF  121   (35) 

 

To be used with ESPRESSO software [52], the input format 

of the truth table has to be given in disjunctive normal form 

(DNF). The conversion from CNF to DNF is simply a 

conversion of all input and output values from ‘1’ to ‘0’, resp. 

‘0’ to ‘1’; don’t care values (‘-‘) remain. 

The input and output format for the software processing 

of the test results is explained in Appendix C. 

7 . 3  T e s t  R e s u l t s  

For each test number, the memory test data have been 

prepared for ESPRESSO and an input file was created. After 

minimization, the essential algorithms could be selected from 

the ESPRESSO output data. 

Moreover, the sequence of the essential algorithms could 

be ordered in such a way, that a “function” could be derived 

that represents the fault coverage as a function of test length. 

This ordering is interesting if a desired yield should be 

reached at productive testing. Depending on the results of the 

“function” a specific subset of essential algorithms could be 

selected, which is sufficient to reach a desired yield. 

7.3.1 Essential Algorithms 

The set of essential algorithms is the minimum necessary 

set of algorithms to achieve full fault coverage. The essential 
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algorithms are the immediate result of the ESPRESSO 

minimization. The most representative test results are again 

the results of TN6531. Hence, these results are covered in this 

section. The results of all other test numbers are given in 

Appendix D. 

The input table of the test results for TN6531 is a truth table 

containing 2439 rows - one for each fault. The output file for 

TN6531 is short enough and is given in Fig. 7.2. 

 

 

Figure 7.2. ESPRESSO output file of TN6531 

 

The output table of ESPRESSO consists of four rows. So, 

there are four equivalent sets of essential algorithms. 

Exemplarily the fourth results (marked in Fig. 7.2) is 

evaluated. The choice of a set of essential algorithm depends 

on criteria like the number or complexity of test algorithms. 

The more different algorithms are used, the more additional 

time is needed for configuration. Due to a minimal number of 

algorithms, this configuration time can be minimized. Also, if 

March G can be avoided in a test set, the test time can be kept 

very low as no additional delay time between march elements 

is necessary. Findings for effectiveness of pairs of algorithms 

are playing also a role in the choice of a set of essential 

algorithms (see Chapter 6). All these factors have been taken 

into account for the selection of sets of essential algorithms for 

all test numbers. The results for each test at different test 

numbers that are given in Appendix D follow these criteria 
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and only one possible set of essential algorithms is evaluated 

per test number. 

Each ‘1’ in the output table shown in Fig. 7.2 denotes an 

essential algorithm. According to position j, algorithm Aj is 

essential. Eleven algorithms are forming the set of essential 

algorithms, which is highlighted in Table 7.2. 

 

Table 7.2. Essential algorithms for TN6531 

Aj Algorithm Test Length 

A8 March B 17n 

A14 March U 14n 

A15 March X 6n 

A17 March LR 14n 

A18 March LA 22n 

A19 March RAW 26n 

A22 March AB1 11n 

A24 March SR 14n 

A27 Ham5R 25n 

A29 March G 24n + 2D 

A30 Ham_Walk 15n 

 

March LR, March RAW and Ham_Walk have already been 

determined as efficient test algorithms. The results of 

classifying algorithms presented in Chapter 6 show that due 

to statistical analysis, these algorithms are of high interest for 

efficient test sets. This finding is now confirmed by 

determining these algorithms as essential. 

In the same manner as presented for TN6531, the test 

results of each test number have been optimized, and for each 

test number not only one set of essential algorithms was 

derived, but several sets of essential algorithms are possible. 

The length of the set derived for TN6531 is 187n + 2D. This 

is the minimum test length to achieve full fault coverage with 

a set of eleven test algorithms. So, in this example optimal test 

set means the use of eleven algorithms with a minimal 
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necessary test length of 187n + 2D. The test time for this set of 

essential algorithms is then (see formula 5): 

 

 269.6ms100ms2
180MHz

32kB

81024
261.56kB

TT6531 






187
 (36) 

7.3.2 Fault Coverage related to Test Length 

Not only 100% fault coverage at minimal test length is 

necessary in productive memory testing, also less fault 

coverage may be acceptable if products are not highly safety 

critical or error correction is used. An important question was: 

“Can fault coverage be derived from test length and vice 

versa?” 

To answer this question, the essential algorithms can be 

taken and ordered in such way that the fault coverage (FC) is 

interpreted as function of the test length (TL). 

 

  TLFC f  (37) 

 

Of course this is not a mathematical function, as there is no 

rule that enables to derive the fault coverage from the test 

length. However, the results of the memory tests can be taken 

to illustrate the fault coverage over test length. For the 

allocation, the set of essential algorithms is taken, as this set is 

the minimum to achieve 100% fault coverage. The ordering of 

essential algorithms follows the weighting: 

 

1. maximum increase of fault coverage (maximum ∆FC) 

2. minimum increase of test length (minimum ∆TL) 

Hence, the first algorithm to be taken is the one with 

highest fault coverage, second, the one which increases the 

total fault coverage of the set most. If two or more algorithms 

are equivalent concerning ∆FC, the shortest one is taken. If 



116 Test Set Optimization 

 

two or more algorithms are of same length, the selection is 

arbitrary. According to the set of essential algorithms at 

TN6531 and the productive test results, the following data 

could be derived and listed in Table 7.3. Note that in this case, 

for ∆FC, the absolute number of difference of faults is given 

instead of a percentage, as the comparison of these values is 

easier than that of percentage. 

 

Table 7.3. Fault coverage over test length 

# Algorithm ∆FC ∆TL FC TL 

1 Ham_Walk 2063 15n 84.58% 15n 

2 March RAW 284 26n 96.23% 41n 

3 Ham5R 36 25n 97.70% 66n 

4 March G 30 23n+2D 98.93% 89n+2D 

5 March AB1 13 11n 99.47% 100n+2D 

6 March LR 5 14n 99.67% 114n+2D 

7 March X 3 6n 99.79% 120n+2D 

8 March LA 2 22n 99.88% 142n+2D 

9 March U 1 14n 99.92% 156n+2D 

10 March B 1 14n 99.96% 170n+2D 

11 March SR 1 17n 100% 187n+2D 

 

The results of Table 7.3 are illustrated in Fig 7.3. The fault 

coverage is plotted against test length. 
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Figure 7.3. Fault coverage over test length 

 

Note that the graphical illustration in Fig. 7.3 depends on 

discrete values at discrete test length. The single points are 

only connected to a continuous graph to point out the trend of 

fault coverage over test length. 

The weighted sequence of essential algorithms allows a 

selection of a subset to achieve a desired yield. One can see 

that the fault coverage increases very fast already at low test 

length. After applying three algorithms (Ham_Walk, 

March RAW and Ham5R) with length of 66n, a fault coverage 

of already 97.7% is reached. 

The test time for this reduced set of essential algorithms is: 
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In contrast, the effort for 100% fault coverage is relatively 

high (11 algorithms and 269.6ms test time). With increasing 

test length the increase of additionally covered faults (∆FC) 

decreases dramatically. Each of the last three algorithms in 

this ordering detects only one additional fault. These seem to 
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be the most interesting faults as they are uniquely detected 

and are of special interest for a specific fault analysis. 

Depending on the requirements on safety of products and 

hence on the specification of the productive test flow a 100% 

fault coverage may not be necessary. Remaining faults could 

be detected and corrected during operation by ECC methods. 

It turns out that very high fault coverage is already 

achieved with relatively low effort. Although the essential set 

consists of eleven test algorithms, a few of them are sufficient 

to reach a rather high yield. 

For all other test number, the same analysis is done and 

can be found in Appendix D. Especially algorithms 

March RAW, Ham_Walk and Ham5R are most important for 

all tests. At least one of these algorithms appears for each test 

number, and furthermore these algorithms are on top of the 

list of essential algorithms, and hence, are most important for 

high fault coverage. This is a highly remarkable fact, as these 

algorithms already have been identified as outstanding 

during analysis of sub- and supersets in Chapter 6. The 

assumption that these algorithms are important in test set 

generation is confirmed by the results in this chapter. 

So, independent of environmental test conditions, three 

algorithms could be identified that appear in each set of 

essential algorithms and that are most important for a high 

fault coverage of the optimal test set. 

This analysis and especially the ordering of test algorithms 

are interesting for tests with highly restricted test time. 

Depending on the test length, the expected yield can be 

estimated, and vice versa. A selection of test algorithms can 

now be done with respect to both, test length and desired 

yield. Depending on the properties and objectives of a specific 

test, an optimal proportion of test length and fault coverage 

can be selected. 
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7 . 4  S u m m a r y  a n d  C o n c l u s i o n s  

From the whole set of test and fail data, the essential test 

algorithms are determined that represent a set of test 

algorithms to achieve full fault coverage at a minimum test 

effort at the same time. By treating the test results as the 

representation of a logic system that uses the test algorithms 

as inputs and the fail information as output, the heuristic logic 

minimization algorithm ESPRESSO could be used to optimize 

the test set and to derive the essential algorithms. For all test 

conditions, more than one possible set of essential test 

algorithms has been derived. To choose which solution to use, 

criteria like test length, no delay time or effective pairs of 

algorithms within the set are relevant. For all test numbers, 

the most important algorithms are March RAW, Ham5W and 

Ham_Walk. 

The essential algorithms of a test could also be ordered in 

such a way that the fault coverage could be represented as a 

“function” of test length. This is a necessary requirement to 

select algorithms for a productive memory test set. If a specific 

yield is desired, the necessary number of test algorithms can 

be kept to a minimum and so the test time can be shortened. 

Exactly those three algorithms that are most essential 

(March RAW, Ham5R and Ham_Walk) are sufficient to 

achieve about 98% fault coverage for TN6531, and for all test 

numbers, at least one of the algorithms March RAW, Ham5R 

or Ham_Walk is included in the set of essential algorithms, 

however, mainly all of them. Furthermore, these algorithms 

are most important for the optimal test sets, as, if the 

algorithms are ordered, these algorithms are on top of the list 

detecting the major part of faults and hence improve the total 

fault coverage best. These algorithms are exactly those that 

have also been identified as important and outstanding 

during the analysis of sub- and supersets in the previous 

chapter. 
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Depending on the position of a test stage within the whole 

productive test flow, this might me sufficient as the remaining 

faults are covered by a later test in the flow or are treated by 

ECC methods. By ordering the algorithms the function relates 

test length and fault coverage, and depending on a desired 

yield, the necessary set of algorithms can be picked. 

 

 



 

C ha pte r  8   

Va r ia t io n  of  Fa ul t  M a nifes ta t io n  

Memory faults vary during life time. Previous 

investigations on embedded memories of single devices at 

Infineon have shown that the behavior of some faults is 

strange. Some faults only appear at certain circumstances, e.g. 

only during functional use of the device. However, these 

faults cannot be reproduced by any test during 

comprehensive investigations. 

This is a reason to carry out an analysis on the behavior 

and variation of faults [55, 56]. The test setup, which is used in 

this project, enables the analysis of fault variation during 

Burn-In and to analyze the behavior of faults before and after 

stresses. In this chapter the variation of fault manifestation 

during Burn-In is analyzed, and productive test results are 

presented that show this fault variation. 
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8 . 1  S e t u p  a n d  E n v i r o n m e n t  

To obtain comparable test results and to see the effects of 

Burn-In, the environmental test conditions before and after 

Burn-In stress should be the same. The environmental test 

conditions are defined by the productive test flow, and there 

are two tests before and after Burn-In with similar 

environmental test conditions: TN1522, TN1622 and TN6531 

and TN6631. From the total test flow (Fig. 4.6), the relevant 

part is shown in Fig 8.1. 

 

 

Figure 8.1. Test flow surrounding Burn-In 

 

Two pairs of test are compared: one with low and one with 

high supply voltage. The results of TN1522  are compared to 

those of TN6531, and the results of TN1622  are compared to 

TN6631. The difference of temperature before and after Burn-

In could not be avoided due to the predefined test flow. 

Hence, an influence of temperature variation can not entirely 

be excluded. However, these are the only tests for a 

comparison, and the difference in temperature is acceptable. 
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The analysis is done for low voltage and high voltage test 

results separately in order to recognize if the supply voltage 

has additional effects during Burn-In. The high voltage stress 

and Burn-In is performed at a temperature of 125°C, and the 

duration of Burn-In is 12 hours in this study. 

Two kinds of test results are analyzed [55, 56]:  

 

 Increase of fault coverage due to Burn-In. 

 Variation of faulty behavior due to Burn-In. 

 

Both data are examined for low and high voltage tests 

separately. 

8 . 2  I n c r e a s e  o f  F a u l t  C o v e r a g e  

The test results for low voltage (TN1522 and TN6531) and 

high voltage (TN1622 and TN6631) are summarized in 

Table 8.1. 

 

Table 8.1. Fault coverage during Burn-In 

 Test Number # of Faults 

low 
voltage 

1522 (before BI) 617 

6531 (after BI) 2439 

1522  6531 585 

1522  6531 2471 

high 
voltage 

1622 (before BI) 56 

6631 (after BI) 175 

1622  6631 43 

1622  6631 188 

 

The results show the number of faults detected before and 

after Burn-In, as well as intersection and union of these sets. 

The distribution of faults before and after Burn-In is 

illustrated in Fig 8.2 for low voltage (TN1522 and TN6531), 

and in Fig 8.3. for high voltage (TN1622 and TN6631). 
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Figure 8.2. Fault distribution at low voltage 

 

The comparison of fault coverage before and after Burn-In 

in Fig 8.2. shows impressively a four-times-increase from 617 

before to 2439 faults after Burn-In. 1854 faults have not been 

detected before Burn-In, and 585 faults are detected before 

and after Burn-In equally. A very small part of 32 faults only 

occurs before Burn-In. These faults are healed due to stress 

and are no longer detectable afterwards. This effect could not 

be analyzed in more detail, as the test data in this project are 

not detailed enough for a specific faults analysis. 

The high increase of faults could be expected. The 

characteristic of Burn-In is artificial aging, which is designed 

to activate latent faults that would appear during the course 

of life time of a product (see Bathtub-curve in Fig. 4.3) [41, 57]. 

After all, about 75% (1854 of 2471) of the faults that are treated 

in this analysis are only detected due to Burn-In and high 

voltage stress. With regard to these results, the effect of Burn-

In is enormous and cannot be ignored for productive memory 

testing – especially for highly safety critical products. 

Likewise, the results for high voltage are shown in Fig 8.3. 

 

TN6531: 
2439 faults 

TN1522: 
617 faults 
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32 faults before 
Burn-In only 
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Figure 8.3. Fault distribution at high voltage 

 

The same effects as with low supply voltage could be 

recognized at high voltage tests, even though the total number 

of faults is much lower. Hence, the results are less 

representative, but here also, the number of faults increases 

from 56 faults before to 175 faults after Burn-In. This is a more 

than three-times-increase. However, on base of 188 faults no 

meaningful and representative statistical analysis would be 

reasonable. 

8 . 3  V a r i a t i o n  o f  F a u l t  B e h a v i o r  

The results for low and high voltage tests show that the 

major part of Pre-Burn-In faults remains during Burn-In. 

These faults are of special interest concerning the variation of 

faulty behavior. In the following sections, it will be shown that 

Burn-In influences the manifestation of these faults, i.e. the 

fault model representing the fault changes due to stress, and 

the same fault shows up with a different behavior. 

 

TN6631: 
175 faults 

TN1622: 
56 faults 

43 faults 

132 faults after 
Burn-In only 

13 faults before 
Burn-In only 
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8.3.1 Data Evaluation Technique 

From the pure test results, the faulty behavior, i.e. the fault 

model, cannot be identified. But with help of the results for 

classification of algorithms and faults, presented in Chapter 6, 

the appearance of specific fault models can be estimated based 

on the fault coverage of specific test algorithms. This 

classification is used to distinguish between three kinds of 

faults: 

 

 static faults 

 coupling faults 

 dynamic faults 

 

To achieve the differentiation, three test algorithms are 

chosen that mainly detect the three types of faults. The 

algorithms are March C-, March LR and March RAW. The 

allocation of these algorithms and corresponding faults 

models are given in Table 8.2. 

 

Table 8.2. Algorithm-fault-allocation 

Algorithm predominantly corresponding fault models 

March C- static faults 

March LR 
static faults 
coupling faults 

March RAW 
static faults 
coupling faults 
dynamic faults 

 

The basic fault model is determined by analyzing the 

coverage of a fault. Dynamic faults are only covered by 

March RAW, coupling faults are additionally covered by 

March LR, and static faults are covered by any of the three test 

algorithms. Hence, if a fault is only detected by March RAW, 

it can be assumed to be dynamic. If a fault is detected by 

March LR and March RAW, but not by March C- it is assumed 
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to be coupling. And if a fault is detected by all three test 

algorithms, it is assumed to be static. Likewise to the 

classification of faults and algorithms, the distribution of 

faults is determined by repeated subtraction of sets of faults. 

This analysis is done only for those faults that are 

remaining after Burn-In, i.e. that have been present before and 

still appear after Burn-In. These faults are represented by the 

intersection in Figs. 8.2 and 8.3. For the low voltage test series, 

these are 585 faults, for high voltage tests there are 43 faults. 

8.3.2 Test Results 

For low voltage tests, the following distribution of fault 

models could be determined before and after Burn-In. 

 

Table 8.3. Fault model distribution at low voltage 

Fault Model 
before Burn-In after Burn-In 

|F| percentage |F| percentage 

static faults 126 52,0% 233 31,8% 

coupling faults 155 26,5% 166 28,4% 

dynamic faults 304 21,5% 186 39,8% 

Total 585 100% 585 100% 

 

The results for the low voltage test, i.e. at TN1522 before 

and at TN6531 after Burn-In, show that the distribution of 

static, coupling and linked faults varies before and after Burn-

In. From totally 585 faults, 126 faults are static before Burn-In 

and 233 faults are static after Burn-In. To the same extent the 

number of dynamic faults decreases from 304 before to 186 

faults afterwards. The number of coupling faults remains 

roughly at 155 resp. 166 faults. Due to the detailed information 

gathered during the tests, the faults could explicitly be 

identified, and the results before and after Burn-In refer 

exactly to the same set of faults. 
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Figure 8.4. Fault model distribution a low voltage 

 

The high voltage stress and Burn-In between the two tests 

influences some faults to change their appearance from 

dynamic to static. Dynamic means, the faults are latent before, 

and static means they are stable after Burn-In. The stress due 

to Burn-In causes these latent faults to manifest. This variation 

in faulty behavior is observable for about 20% of faults at low 

voltage test. 

The distribution of faults at high voltage test, i.e. at TN1622 

before and TN6631 after Burn-In is similar to those of low 

voltage. Table 8.4 summarizes the results for high voltage. 

 

Table 8.4. Fault model distribution at high voltage 

Fault Model 
before Burn-In after Burn-In 

|F| percentage |F| percentage 

static faults 18 44,1% 24 32,6% 

coupling faults 6 14,0% 5 11,6% 

dynamic faults 19 41,9% 14 55,8% 

Total 43 100%  100% 
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The variation of dynamic and static faults at high supply 

voltage is similar to that at low voltage. However the total 

number of faults in the analysis for high voltage is much 

lower. So, the results are less representative, but a variation is 

nevertheless observable. The results of Table 8.4 are illustrated 

in Fig 8.5. 

 

 

Figure 8.5. Fault model distribution at high voltage 

 

This finding shows that not only new faults appear after 

Burn-In, but also existing faults vary their behavior. This is 

important if different test sets should be used before (e.g. at 

wafer test) and after Burn-In. 

Also the quality of dynamic faults can be rated. The faults 

that have changed their behavior from dynamic into static are 

less stable than others. So the physical defects that cause these 

faults are possibly different from that of stable dynamic faults. 

A closer analysis of the physical defects could answer the 

question on reasons for the fault variation. 
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8 . 4  S u m m a r y  a n d  C o n c l u s i o n s  

Burn-In is a process of quality assurance during memory 

testing. Artificial aging due to high temperature and high 

voltage stress makes latent faults to become visible and 

influences their faulty behavior. Full test sets haven been 

performed at comparable environmental conditions before 

and after Burn-In stress, and the test results have been 

compared. Both, for lowered and raised supply voltage, the 

number of detectable faults increased during Burn-In. The 

number of faults increases by a factor of about four at low 

voltage, and about three at high voltage. Without Burn-In 

these additional faults would have remained undetected. 

Especially for highly safety critical products – as used in this 

project – Burn-In is indispensable to ensure memory quality. 

Besides the increase of detectable faults, also the 

manifestation of some faults have been present before Burn-

In and are still observable after Burn-In could be observed. 

Based on classification of faults and memory test algorithms, 

those faults that have been present before and after Burn-In 

have been analyzed on their behavior. Static, coupling and 

dynamic faults have been distinguished and the analysis has 

shown that faults that have been dynamic before Burn-In 

became static afterwards. About 20% faults are affected at 

lowered supply voltage and about 10% at increased supply 

voltage. This shows that faults are variable. The behavior of 

one fault is not fixed but it may change under environmental 

conditions and so, also the detectability varies. As the effort to 

detect dynamic faults is normally higher as they are latent, 

static faults are much easier to detect. This finding may 

influence the selection of test sets for different environmental 

conditions and for different stages in the test flow (before and 

after Burn-In), as different types of faults appear. 
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Pe r s pe c t ive s  

After all, basics on memory test, algorithms and faults, test 

setup and data acquisition, the analysis on effectiveness of test 

algorithms, test set optimization and fault analysis during 

Burn-In, this chapter is dedicated to future work. Not all 

questions could be answered in this work and many more 

questions arose during the project. 

One intention of the project was to run the memory tests 

on products of different technology, 130nm and 90nm 

Unfortunately, this could not be realized in the timeframe of 

this project, as the data acquisition using MBISTPLUS V4.2 is 

much more complex than originally supposed, and the 

existing test programs could not handle the enormous number 

of test data. Moreover the throughput of 90nm products was 

not yet high enough to obtain enough test results for a 

statistical analysis. So, a future task should be to repeat the 

statistical analysis with an extended test set on 90nm products 

using MBISTPLUS V4.2., and the following analyses should 

be done: 

 

 Comparing the test results of different technologies 

(130nm and 90nm), and analyze the impact of 

technological differences on fault coverage and failure 

classes [58]; especially the development of dynamic faults 

as a results of shrinking technology. 
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 Analyze the test results of additional test algorithms 

performed with MBISTPLUS V4.2.; especially the fault 

coverage of complex test algorithms GAL5 and GAL9. 

 Analyze the impact of additional addressing modes. 

 Analyze the impact of self timing parameters read timing, 

write timing and weak write driver, and determine the 

optimal setting of these parameters for optimal yield. 

 

All these analyses need the same background of a high 

amount of test results that guarantee a meaningful statistical 

analysis. With respect to dynamic faults, the influence of 

different delay time used with March G could also be 

analyzed. March G could be used with different settings of 

delay time and the variation of fault coverage could be 

observed. If there is a variation, it clearly depends on the 

variation of delay time. The faults that are only related to 

delay time are data retention faults and for the detection of 

these faults, the optimal setting of delay time could be 

determined. 

 

The results of this project are based on a large number of 

test data. However, the density of details in these data suffers 

from this fact. For a more detailed analysis, the productive test 

flow is inappropriate. Instead, single devices could be picked 

from the flow and analyzed manually. In this case, the 

classification of fault models and test algorithms could be 

more accurate, as single faulty read operations could be 

identified, and so the corresponding fault primitives. 

 

This project provides a large number of productive test 

results, which allow determining if a fault is detected by a 

certain test algorithm or not. This information could also be 

used for automatic test generation. In [8, 27, 28], the test 

algorithms are generated based on simulation results. The use 

of real test results may improve the automated test generation 

and so would increase the effectiveness of test algorithms. A 
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future project could bring these two things together and 

would allow generating memory test algorithms based on 

real, productive test data. 

 

Picking defect devices from the productive test flow means 

very high effort and is nearly impossible as the fail analysis 

could only take place after a certain number of devices has 

been tested to achieve a statistical meaningful number. So, 

effects that occur only with a few devices do not become 

visible immediately. Such faults could be single unique faults 

that occur only with some algorithms or faults that can only 

be detected by special and specific algorithms. However, such 

devices should be picked and analyzed in more detail for a 

more precise fault analysis. The results of this work help to 

identify such typical faults and the circumstances that make 

these faults detectable. If a comprehensive test set is used 

during ramp-up to optimize the selection of test algorithms 

and conditions, also an automated fault analysis could be 

added. Devices that contain unique faults or faults that occur 

only with specific test conditions and algorithms could be 

marked separately and picked. So the findings of a previous 

statistical analysis could be used to identify noticeable faults 

and to take them for a detailed analysis. If this process is done 

repeatedly, a database would grow that allows on-line 

automated fault analysis, also during productive testing, if 

single devices cannot be picked from the test flow. 
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Addi t io na l  R e s ul t s  o f  C hapte r  6  

This chapter contains additional tables and figures that 

show the test results for the fault coverage of test algorithms 

for each test, and the tables that summarize the test results for 

efficiency of pairs of algorithms. 

A . 1  F a u l t  C o v e r a g e  o f  A l g o r i t h m s  

This section contains the test results of all tests for all of the 

seven test number in the study. The total fault coverage and 

number of exclusive faults for each algorithm in the study test 

set is listed and additionally, the fault coverage is shown 

graphically. 100% always refers to the total number of faults 

detected at the respective test number. 

The results of TN1522 and TN1622 are of special interest as 

these tests are performed before Burn-In. Hence, the expected 

fault coverage of RESET was zero. Nevertheless, RESET 

detects 33 faults at TN1522 and 11 faults at TN 1622 although 

the RESET configuration already ran at wafer test. It has to be 

assumed that these faults are caused by the packaging process 

or due to handling between wafer and Burn-In test. 
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TN1522 (1.35V / +125°C) 

Table A.1. Fault coverage at TN1522 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 617   March Y 130 21% 0 

SCAN 50 8% 0 March LR 286 46% 0 

SCAN+ 59 10% 0 March LA 319 52% 0 

MATS 83 13% 0 March RAW 447 72% 1 

MATS+ 112 18% 0 March RAW1 101 16% 0 

MATS++ 108 18% 0 March AB 297 48% 0 

March C- 116 19% 0 March AB1 341 55% 3 

March A 120 19% 0 March BDN 318 52% 0 

March B 130 21% 0 March SR 276 45% 0 

Algorithm B 289 47% 0 March SS 134 22% 0 

March C+ 124 20% 0 BLIF 204 33% 0 

PMOVI 127 21% 0 Ham5R 346 56% 5 

March 1/0 120 19% 0 Ham5W 298 48% 2 

March TP 121 20% 0 March G 163 29% 0 

March U 280 45% 0 Ham_Walk 384 62% 2 

March X 110 18% 0 RESET 33 5% 0 

 

 

Figure A.1. Fault coverage at TN1522 
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TN1622 (1.80V / +125°C) 

Table A.2. Fault coverage at TN1622 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 56   March Y 24 43% 0 

SCAN 18 32% 0 March LR 30 54% 0 

SCAN+ 17 30% 0 March LA 29 52% 0 

MATS 21 38% 0 March RAW 46 82% 0 

MATS+ 21 38% 0 March RAW1 22 39% 0 

MATS++ 24 43% 0 March AB 27 48% 0 

March C- 23 41% 0 March AB1 24 43% 1 

March A 25 45% 0 March BDN 27 48% 0 

March B 26 46% 0 March SR 29 52% 0 

Algorithm B 32 57% 0 March SS 26 46% 0 

March C+ 26 46% 0 BLIF 12 21% 0 

PMOVI 27 48% 0 Ham5R 25 45% 0 

March 1/0 24 43% 0 Ham5W 23 41% 0 

March TP 28 50% 0 March G 28 50% 0 

March U 31 55% 0 Ham_Walk 33 59% 0 

March X 23 41% 0 RESET 11 20% 0 

 

 

Figure A.2. Fault coverage at TN1622 
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TN6531 (1.35V / +145°C) 

Table A.3. Fault coverage at TN6531 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 2439   March Y 1056 43% 0 

SCAN 684 28% 0 March LR 1921 49% 1 

SCAN+ 727 30% 0 March LA 1414 58% 1 

MATS 937 38% 0 March RAW 1563 64% 4 

MATS+ 1047 43% 0 March RAW1 1020 42% 0 

MATS++ 1037 43% 0 March AB 1402 57% 0 

March C- 1092 45% 0 March AB1 792 32% 5 

March A 1109 45% 0 March BDN 1429 59% 0 

March B 1148 47% 1 March SR 1898 78% 0 

Algorithm B 1908 78% 0 March SS 1115 46% 0 

March C+ 1074 44% 0 BLIF 1047 43% 0 

PMOVI 1093 45% 0 Ham5R 783 32% 10 

March 1/0 1083 44% 0 Ham5W 473 19% 0 

March TP 1110 46% 0 March G 1232 51% 4 

March U 1909 78% 1 Ham_Walk 2063 85% 22 

March X 1067 44% 0 RESET 540 22% 0 

 

 

Figure A.3. Fault coverage at TN6531 
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TN6631 (1.80V / +145°C) 

Table A.4. Fault coverage at TN6631 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 175   March Y 116 66% 0 

SCAN 83 47% 0 March LR 128 73% 0 

SCAN+ 94 54% 0 March LA 126 72% 0 

MATS 99 57% 0 March RAW 153 87% 0 

MATS+ 103 59% 0 March RAW1 113 65% 0 

MATS++ 99 57% 0 March AB 121 69% 0 

March C- 114 65% 0 March AB1 72 41% 0 

March A 109 62% 0 March BDN 120 69% 0 

March B 110 63% 0 March SR 122 70% 0 

Algorithm B 123 70% 0 March SS 115 66% 0 

March C+ 123 70% 0 BLIF 29 17% 0 

PMOVI 120 49% 0 Ham5R 82 47% 0 

March 1/0 114 45% 0 Ham5W 41 23% 0 

March TP 116 44% 0 March G 120 69% 2 

March U 123 70% 0 Ham_Walk 128 73% 0 

March X 104 59% 0 RESET 70 40% 0 

 

 

Figure A.4. Fault coverage at TN6631 
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TN3741 (1.30V / -40°C) 

Table A.5. Fault coverage at TN3741 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 237   March Y 124 52% 0 

SCAN 79 33% 0 March LR 113 48% 0 

SCAN+ 98 41% 0 March LA 165 70% 0 

MATS 82 35% 0 March RAW 199 84% 0 

MATS+ 105 44% 0 March RAW1 130 55% 1 

MATS++ 107 45% 0 March AB 184 78% 0 

March C- 109 46% 0 March AB1 166 70% 3 

March A 111 47% 0 March BDN 186 78% 2 

March B 125 53% 0 March SR 113 48% 1 

Algorithm B 124 52% 1 March SS 145 61% 0 

March C+ 134 57% 0 BLIF 68 29% 0 

PMOVI 131 55% 0 Ham5R 163 69% 2 

March 1/0 127 54% 0 Ham5W 113 48% 0 

March TP 130 55% 1 March G 159 67% 1 

March U 125 53% 0 Ham_Walk 154 65% 1 

March X 103 43% 0 RESET 99 42% 0 

 

 

Figure A.5. Fault coverage at TN3741 

 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e



Appendix A 149 

 

TN3841 (1.50V / -40°C) 

Table A.6. Fault coverage at TN3841 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 70   March Y 17 24% 0 

SCAN 10 14% 0 March LR 13 19% 0 

SCAN+ 13 19% 0 March LA 56 80% 0 

MATS 10 14% 0 March RAW 62 89% 0 

MATS+ 13 19% 0 March RAW1 14 20% 0 

MATS++ 16 23% 0 March AB 56 80% 0 

March C- 13 19% 0 March AB1 60 86% 2 

March A 11 16% 0 March BDN 53 76% 0 

March B 15 21% 0 March SR 15 21% 0 

Algorithm B 14 20% 0 March SS 19 27% 0 

March C+ 14 20% 0 BLIF 9 13% 0 

PMOVI 16 23% 0 Ham5R 58 83% 0 

March 1/0 18 26% 0 Ham5W 50 71% 0 

March TP 13 19% 0 March G 17 24% 0 

March U 14 20% 0 Ham_Walk 41 59% 0 

March X 12 17% 0 RESET 10 14% 0 

 

 

Figure A.6. Fault coverage at TN3841 
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TN3941 (1.80V / -40°C) 

Table A.7. Fault coverage at TN3941 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 46   March Y 19 41% 0 

SCAN 21 46% 0 March LR 21 46% 0 

SCAN+ 20 43% 0 March LA 36 78% 0 

MATS 20 43% 0 March RAW 37 80% 0 

MATS+ 20 43% 0 March RAW1 21 46% 0 

MATS++ 19 41% 0 March AB 37 80% 0 

March C- 20 43% 0 March AB1 37 80% 0 

March A 20 43% 0 March BDN 35 76% 0 

March B 22 48% 0 March SR 22 48% 0 

Algorithm B 20 43% 0 March SS 22 48% 0 

March C+ 22 48% 0 BLIF 19 41% 0 

PMOVI 22 48% 0 Ham5R 40 87% 0 

March 1/0 21 46% 0 Ham5W 32 70% 0 

March TP 20 43% 0 March G 23 50% 0 

March U 22 48% 0 Ham_Walk 28 61% 0 

March X 20 43% 0 RESET 20 43% 0 

 

 

Figure A.7. Fault coverage at TN3941 
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TN4441 (1.30V / +25°C) 

Table A.8. Fault coverage at TN4441 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 165   March Y 51 31% 0 

SCAN 34 21% 0 March LR 55 33% 0 

SCAN+ 36 22% 0 March LA 118 72% 0 

MATS 31 19% 0 March RAW 139 84% 1 

MATS+ 44 27% 0 March RAW1 54 33% 0 

MATS++ 50 30% 0 March AB 123 75% 0 

March C- 51 31% 0 March AB1 118 72% 0 

March A 49 30% 0 March BDN 120 73% 0 

March B 51 31% 0 March SR 53 32% 0 

Algorithm B 56 34% 0 March SS 63 38% 0 

March C+ 56 34% 0 BLIF 24 15% 0 

PMOVI 57 35% 0 Ham5R 130 79% 0 

March 1/0 58 35% 0 Ham5W 98 59% 0 

March TP 49 30% 0 March G 63 38% 0 

March U 61 37% 0 Ham_Walk 95 58% 2 

March X 44 27% 0 RESET 40 24% 0 

 

 

Figure A.8. Fault coverage at TN4441 
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TN4541 (1.80V / +25°C) 

Table A.9. Fault coverage at TN4541 

Algorithm |F| FC excl. Algorithm |F| FC excl. 

Total 25   March Y 5 20% 0 

SCAN 7 28% 0 March LR 8 32% 0 

SCAN+ 7 28% 0 March LA 19 76% 0 

MATS 4 16% 0 March RAW 21 84% 0 

MATS+ 4 16% 0 March RAW1 5 20% 0 

MATS++ 6 24% 0 March AB 17 68% 0 

March C- 6 24% 0 March AB1 17 68% 0 

March A 7 28% 0 March BDN 14 56% 0 

March B 7 28% 0 March SR 8 32% 0 

Algorithm B 7 28% 0 March SS 8 32% 0 

March C+ 8 32% 0 BLIF 3 12% 0 

PMOVI 6 24% 0 Ham5R 18 72% 0 

March 1/0 7 28% 0 Ham5W 18 72% 0 

March TP 7 28% 0 March G 8 32% 0 

March U 9 26% 0 Ham_Walk 10 40% 0 

March X 5 20% 0 RESET 6 24% 0 

 

 

Figure A.9. Fault coverage at TN4541 
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A . 2  E f f e c t i v e n e s s  o f  P a i r s  o f  

A l g o r i t h m s  

In this section, the test results of the analysis for 

effectiveness of pairs of algorithms are given for all seven tests 

during the study. For each test number, a table is derived that 

contains fault coverage, union and intersection. The colors 

represent QEff as defined in section Chapter 6 (see Fig. 6.3). 
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TN6531 (uncolored, values of QEff) 

Table A.10. Values of QEff at TN6531 
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TN1522 (1.35V / +125°C) 

Table A.11. Union and intersection at TN1522 
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TN1622 (1.80V / +125°C) 

Table A.12. Union and intersection at TN1622 
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TN6531 (1.35V / +145°C) 

Table A.13. Union and intersection at TN6531 
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Table A.14. Union and intersection at TN6631 
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Table A.15. Union and intersection at TN3741 
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Table A.16. Union and intersection at TN3841 
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Table A.17. Union and intersection at TN3941 
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Table A.18. Union and intersection at TN4441 
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TN4541 (1.80V / +25°C) 

Table A.19. Union and intersection at TN4541 
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Appe ndix  B   

C a lc ula t io n  o f  Fa ul t  D is t r ibut io n  

From the data based, the following values for the 

cardinality of sets have been determined: 

 

|F0| = 2439 

|F1| = 1610 

|F2| = 1073 

|F3| = 390 

|F4| = 171 

|F5| = 0 

 

So is for the number of different faults per fault modes: 

 

 |{SS}| = |F0| - |F1| = 2439 – 1610 = 829 (39) 

 

 |{some CF}| = |F1| - |F2| = 1610 - 1073 = 537 (40) 

 

 |{remaining CF}| = |F3| - |F1| = 1073 – 390 = 683 (41) 

 

 |{LF}| = |F3| - |F4| = 390 – 171 = 219 (42) 

 

 |{DF}| = |F4| - |F5| = 171 – 0 = 171 (43) 
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Appe ndix  C   

E SP R E SSO  Alg o r i thm  a nd 

So f tw ar e  

C . 1  E S P R E S S O  H e u r i s t i c  A l g o r i t h m  

ESPRESSO is a heuristic logic minimization algorithm 

developed for the optimization of digital logic gate circuits. 

ESPRESSO was developed early 1980s at IBM by Robert K. 

Brayton [50]. 

Classical minimization methods are the use of Karnaugh-

Maps or the Quine-McCluskey Algorithm. However, the use 

of a Karnough map is reasonable for small systems with few 

inputs, and if the minimization could be done manually. For 

large systems with many inputs, Quine-McCluskey would be 

feasible but ESPRESSO is much more efficient due to 

computation time. 

The ESPRESSO is a relatively complex algorithm that 

maps the truth table of a system into a geometrical 

representation of n-dimensional hyper cubes, where n is the 

number of inputs to the system. Three sets of input values are 

distinguished: 

 

 The On-Set, where the output is TRUE 

 the Off-Set, where the output is FALSE, and 

 the DC-Set, where the output is don’t care. 

 

Seven basic routines are involved into ESPRESSO-II 

minimization [50, 51]: COMPLEMEN, EXPAND, 

ESSENTIAL_PRIMES, IRREDUNDANT_COVER, REDUCE, 

LAST_GASP, MAKE_SPARES. 
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The ESPRESSO algorithm will not be explained in this 

work. For the computation of the optimal test sets, ESPRESSO 

was used in the software package “Logic Friday” from [52]. 

C . 2  E S P R E S S O  S o f t w a r e  

To compute the optimal test sets, ESPRESSO was used 

from the “Logic Friday” software package [52]. This section 

briefly describes the input and output format [53, 54] for the 

data. 

 

 

Figure C.1. Input and output file to ESPRESSO 

 

Figure C.1. shows the input (left) and output file of 

ESPRESSO, where 

 

 .i 30 specifies the number of input variables. 

 .o 1  specifies the number of output variables. 

 .type r specifies the OFF-Set as input. 

 .p 4  specifies the number of results 

 .e  denotes the end of the file. 

 

 

.i 30 

.o 1 

.type r 

--------0----0--0-0--0-00000-0 0 

000000000000000000000-000---00 0 

--0000000000000000000-0000--00 0 

-----------------00-000---00-- 0 

0000000000000000000000000-0-00 0 

--0000000000000000000-0000--00 0 

--------0----0--0------0-0---0 0 

------------------0--0--0-00-- 0 

---000000000000000000-0000--00 0 

--------0----0--0------0-0--00 0 

--------0-------0------------0 0 

---000000000000000000000000000 0 

---00---0--0-0-00-0----0-0--00 0 

--00000000-0000000000-0-0---00 0 

--0000000000000000000-0000--00 0 

--------0-------0------0-0---0 0 

--------0----0--0------000---0 0 

-------------0---------------- 0 

----------------0------------0 0 

--------0----0--0------0-0--00 0 

000000000000000000000-0        0 

00---000000000--0000 

    ----0----0-- 

.i 30 

.o 1 

.p 4 

-------1-----1--1111-1---11-11 1 

-------1-----11-111--1---11-11 1 

-------1-----1--1111-1-1--1-11 1 

-------1-----11-111--1-1--1-11 1 

.e 
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Both, input and output are text files. The input file contains 

the truth table to be minimized, the output file the minimized 

function. The 30 inputs are separated by a ‘space’ from the 

output. The sequence of inputs represents the sequence of 

algorithms A1 trough A30 as given in table 4.2. The truth table 

is in disjunctive normal form (DNF). 

The output file also contains the result of the minimization 

as truth table with inputs and output space-separated. A ‘1’ 

denotes that the corresponding algorithm Am is essential. If 

the table consists of more than one row, the solutions are 

equivalent. 
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Appe ndix  D   

Addi t io na l  R e s ul t s  o f  C hapte r  7  

For all test numbers the essential algorithms are 

determined and the relation of FC and TL is done. It is 

remarkable that for any test condition, at least one of the 

algorithms March RAW, Ham5R or Ham_Walk is essential 

and occurs on top of the list of weighted algorithms. 

Hence, for productive testing, a combination of these 

algorithms works well with any environmental test condition. 

 



172 Appendix D 

 

TN1522 (1.35V / +125°C) 

Table D.1. Fault coverage over test length at TN1522 

# Algorithm ∆FC ∆TL FC TL 

1 March RAW 447 26n 72.45% 26n 

2 Ham_Walk 133 15n 94.00% 41n 

3 Ham5R 20 25n 97.24% 66n 

4 March LA 5 22n 98.06% 88n 

5 March U 3 14n 98.54% 102n 

6 March AB1 3 11n 99.03% 113n 

7 March SS 3 22n 99.51% 135n 

8 Ham5W 2 25n 99.84% 160n 

9 March A 1 15n 100% 175n 

 

 

Figure D.1. Fault coverage over test length at TN1522 
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TN1622 (1.80V / +125°C) 

Table D.2. Fault coverage over test length at TN1622 

# Algorithm ∆FC ∆TL FC TL 

1 March RAW 46 26n 82.14% 46n 

2 Ham_Walk 7 15n 94.64% 41n 

3 March AB1 3 11n 100% 52n 

 

 

Figure D.2. Fault coverage over test length at TN1622 
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TN6531 (1.35V / +140°C) 

Table D.3. Fault coverage over test length at TN6531 

# Algorithm ∆FC ∆TL FC TL 

1 Ham_Walk 2063 15n 84.58% 15n 

2 March RAW 284 26n 96.23% 41n 

3 Ham5R 36 25n 97.70% 66n 

4 March G 30 23n+2D 98.93% 89n+2D 

5 March AB1 13 11n 99.47% 100+2D 

6 March LR 5 14n 99.67% 114+2D 

7 March X 3 6n 99.79% 120+2D 

8 March LA 2 22n 99.88% 142+2D 

9 March U 1 14n 99.92% 156+2D 

10 March B 1 14n 99.96% 170+2D 

11 March SR 1 17n 100% 187+2D 

 

 

Figure D.3. Fault coverage over test length at TN6531 
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TN6631 (1.80V / +140°C) 

Table D.4. Fault coverage over test length at TN6631 

# Algorithm ∆FC ∆TL FC TL 

1 March RAW 153 26n 87.43% 26n 

2 Ham_Walk 13 15n 94.86% 41n 

3 March G 5 23n+2D 97.71% 64n+2D 

4 March AB1 2 11n 98.86% 75n+2D 

5 March LR 2 14n 100% 89n+2D 

 

 

Figure D.4. Fault coverage over test length at TN6631 
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TN3741 (1.30V / -40°C) 

Table D.5. Fault coverage over test length at TN3741 

# Algorithm ∆FC ∆TL FC TL 

1 March RAW 199 26n 83.97% 26n 

2 Ham5R 16 25n 90.72% 51n 

3 March AB 7 22n 93.67% 73n 

4 March AB1 4 11n 95.36% 84n 

5 March SR 3 14n 96.62% 98n 

6 March RAW1 2 13n 97.47% 111n 

7 March BDN 2 22n 98.31% 133n 

8 March TP 1 11n 98.73% 144n 

9 Ham_Walk 1 15n 99.16% 159n 

10 Algorithm B 1 17n 99.58% 176n 

11 March G 1 23n+2D 100% 199n+2D 

 

 

Figure D.5. Fault coverage over test length at TN3741 
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TN3841 (1.50V / -40°C) 

Table D.6. Fault coverage over test length at TN3841 

# Algorithm ∆FC ∆TL FC TL 

1 March RAW 62 26n 89.86% 26n 

2 March AB1 5 11n 97.10% 37n 

3 SCAN+ 2 8n 100% 45n 

 

 

Figure D.6. Fault coverage over test length at TN3841 
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TN3941 (1.80V / -40°C) 

Table D.7. Fault coverage over test length at TN3941 

# Algorithm ∆FC ∆TL FC TL 

1 Ham5R 40 25n 86.96% 25n 

2 Ham_Walk 3 15n 93.48% 40n 

3 March RAW 2 26n 97.83% 66n 

4 Ham5W 1 25n 100% 91n 

 

 

Figure D.7. Fault coverage over test length at TN3941 
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TN4441 (1.30V / +25°C) 

Table D.8. Fault coverage over test length at TN4441 

# Algorithm ∆FC ∆TL FC TL 

1 March RAW 139 26n 84.76% 26n 

2 Ham5R 11 25n 91.46% 51n 

3 Ham_Walk 7 15n 95.73% 66n 

4 March C- 4 10n 98.17% 76n 

5 MATS+ 2 5n 99.39% 81n 

6 MATS++ 1 6n 100% 87n 

 

 

Figure D.8. Fault coverage over test length at TN4441 
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TN4541 (1.80V / +25°C) 

Table D.9. Fault coverage over test length at TN4541 

# Algorithm ∆FC ∆TL FC TL 

1 Ham5R 18 25n 72.00% 25n 

2 March AB1 5 11n 92.00% 36n 

3 March SR 2 14n 100% 50n 

 

 

Figure D.9. Fault coverage over test length at TN4541 
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