

TECHNISCHE UNIVERSTIÄT MÜNCHEN

Lehrstuhl für Entwurfsautomatisierung

Test Set Optimization for Industrial SRAM Testing

Michael Linder

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und

Informationstechnik der Technischen Universität München zur

Erlangung des akademischen Grades eines

Doktor Ingenieurs

genehmigten Dissertation.

Vorsitzende: Univ.-Prof. Dr. rer. nat. Doris Schmitt-Landsiedel

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Ulf Schlichtmann

2. Associate Prof. Said Hamdioui, Ph.D.,

Delft University of Technology / Niederlande

3. Prof. Dr.-Ing. Dr. h.c. Alfred Eder, Hochschule Augsburg

Die Dissertation wurde am 06.11.2012 bei der Technischen Universität

München eingereicht und von der Fakultät für Elektrotechnik und

Informationstechnik am 13.09.2013 angenommen.

Acknowledgments i

Ac kno w le dg me nts

This project was done during the time when I was applied

as a PhD student at the department of electrical engineering

at the Hochschule Augsburg in cooperation with Infineon

Technologies AG and Technische Universität Müchen. The

study was commissioned and completely financed by

Infineon Technologies AG. Special tanks to the examiners

Prof. Dr.-Ing. Alfred Eder, who supervised the project and

reviewed this work, and to Prof. Dr.-Ing. Ulf Schlichtmann for

his commitment and his support as reviewer.

Furthermore I want to thank everyone at Infineon who

was involved into the project and who gave me all the support

and information I needed to perform the study as a part of

productive memory testing. Thanks to the whole team of

productive memory testing (PTE) and especially to Dr.-Ing.

Martin Huch for his advices and to Dipl.-Ing. (FH) Klaus

Oberländer, who initialized the project and acted as

supervisor at Infineon. His support enabled me to become a

part of the team.

Very special thanks to Prof. Dr. ir. Ad van de Goor and

Prof. Dr. ir. Said Hamdioui who I got to know during the

project for their helpful advises and lead through memory

testing. And finally, special thanks to my parents, Gerlinde

and Bernhard Linder. Without their support, this project

would not have been realized.

Abstract iii

Abs tr a c t

Memory testing has always been an important task since

semiconductor memories are commonly used. Much has been

published on functional fault models and memory test

algorithms. With ongoing development of memories and

shrinking technology, more and more new variants of fault

models arose and recent tests have been developed.

For this project the unique opportunity opened up to carry

out a comprehensive analysis of memory test algorithms and

faults on real productive test data. The study was initialized

and enabled by Infineon Technologies AG and the tests took

place on embedded SRAMs of 32-bit microcontroller devices.

During full production, comprehensive tests on the

embedded SRAMs could be executed, as due to improved

Burn-In and test procedures extended tests have been made

possible during 12 hours of Burn-In. The most important

expectations on this project are new findings about

detectability of memory faults and effectiveness of memory

test algorithms, with the overall aim of test set optimization.

In the beginning a comprehensive study on memory faults,

test algorithms and the existing test hard- and software at

Infineon was done. The present potential of embedded testing

was analyzed and the possible potential was identified.

To reach the project objectives 30 different march test

algorithms have been combined to a study test set and were

implemented into the productive test flow and performed

several times at different temperature and supply voltage. The

results are logged and collected in a huge data base. Via pure

data mining of these productive test results, the analyses for

this study could be executed. The effectiveness of memory test

algorithms and the importance and effects of environmental

and algorithmic stress parameters could be worked out and

analyzed. A few algorithms could be identified that are

outstanding and most effective to cover the largest part of

iv Abstract

different fault models. In addition to the analysis of single test

algorithms, the relationship of combinations of test algorithms

was analyzed. An efficient combination of test algorithms

avoids redundant testing and keeps the test time as short as

possible. Through evaluating the results of test algorithms

pairwise, efficient and inefficient combinations could be

identified and a new approach to rate the quality of

effectiveness of test algorithms could be established. These

findings are important for the selection of algorithms for

productive memory test sets - moreover the same results

could be used to classify test algorithms and functional fault

models, where algorithms with similar properties are

allocated to a specific subset of functional fault models.

With help of heuristic logic minimization, a formal

approach to test set optimization was established. The test

results could be processed and the set of essential test

algorithms could be determined that fulfills two requirements

at the same time: maximum fault coverage and minimum test

effort. By weighted ordering of these essential algorithms, a

“function” could be generated that relates fault coverage to

test length. This is important for test set development, as

desired yield and expected test time can be estimated.

Depending on test requirements and desired yield, a subset of

essential algorithms can be chosen and the necessary test time

can be estimated. The analysis has shown that already the

combination of three test algorithms is able to detect nearly

98% of faults at a minimum of test time.

Due to the fact that the comprehensive test set was

performed during Burn-In, which causes artificial aging, the

influence of high temperature and high voltage stress could

also be analyzed and interesting results could be observed.

Before and after the stress phase during Burn-In, tests have

been executed at similar environmental test conditions.

Hence, the results are comparable and the influence of Burn-

In stress on fault manifestation could be worked out. The

analysis shows that Burn-In stress increases the number of

Abstract v

faults about four times. Especially for highly safety critical

products, Burn-In has a not negligible effect in memory

testing. Without Burn-In these faults remained undetected

and latent, and would possibly appear during life time. Not

only the number of faults increases due to stress, also the

behavior and manifestation of some faults changes. By

classifying the faults before and after Burn-In, a shift from

dynamic to static faulty behavior became observable. The

same faults that appeared as dynamic before stress,

manifested as static afterwards. This finding influences the

selection of test algorithms for different test sets before and

after Burn-In or at wafer test.

The results of this project are directly used to improve the

memory test process at Infineon and some findings could

already be fed back into the development of Built-In Self-Tests

and the productive test flow.

Kurzfassung in deutscher Sprache vii

Kur z fa s s ung in de uts c he r Spr a c he

Seit der massenhaften Verbreitung von Halbleiter

Speichern ist auch deren Test immer ein wichtiges Thema

gewesen. Seitdem wurde ständig daran gearbeitet und viel zu

funktionalen Fehlermodellen und Testalgorithmen

veröffentlicht. Mit fortschreitender Entwicklung und immer

kleiner werdenden Strukturen wurden auch immer mehr

neue Fehlermodelle entdeckt und neuere Tests entwickelt.

Für das Projekt, das in dieser Arbeit beschrieben wird, hat

sich die einmalige Gelegenheit ergeben eine umfangreiche

Untersuchung von Fehlern und Testalgorithmen, basierend

auf produktiven Messdaten vorzunehmen. Die gesamte

Studie wurde durch die Infineon Technologies AG ermöglicht

und auch die Untersuchungen der eingebetteten SRAMs in

32-bit Mikrocontrollern fanden dort statt. Durch ein

kombiniertes Test und Burn-In System wurden umfangreiche

Tests der Speicher vor und nach einer 12-stündigen Burn-In

Phase ermöglicht. Ziel dieser Studie war neue Erkenntnisse

über die Detektierbarkeit von Speicherfehlern zu gewinnen

und, vor dem Hintergrund die Zusammenstellung von

Testsets zu optimieren, die Effektivität von Testalgorithmen

zu untersuchen.

Zu Beginn der Studie wurde eine ausführliche Recherche

zu Fehlern in Halbleiterspeichern, Testalgorithmen und der

Testhard- und software bei Infineon durchgeführt. Dazu

wurde die aktuell Konfiguration und die potentiell mögliche

Konfiguration des integrierten Testsystems analysiert.

Um diese Ziele zu erreichen wurde ein Set von 30

verschiedenen Testalgorithmen erstellt, das anschließend in

den produktiven Testablauf eingeflochten wurde und bei

verschiedenen Spannungen und Temperaturen wiederholt

ausgeführt wurde. Die Ergebnisse dieser Tests wurden für die

weitere Analyse in einer Datenbank gespeichert, auf deren

Basis die Datenanalyse für diese Studie stattfand. Somit war

viii Kurzfassung in deutscher Sprache

es möglich die Effizienz von Testalgorithmen und den Effekt,

den verschiedene algorithmische Stressparameter oder

Umgebungsparameter haben, herauszuarbeiten und zu

analysieren. Einige Algorithmen konnten identifiziert

werden, die in ihrem Verhalten herausstechen und mit deren

Hilfe die meisten Fehlermodelle bereits gefunden werden

können. Zusätzlich zur Analyse der Effizienz einzelner

Testalgorithmen, wurde auch deren Kombination untersucht.

Denn eine Effiziente Kombination aus Algorithmen in einem

Testset vermeidet redundante Tests und die Testzeit kann so

verringert werden. Durch den Vergleich der Testergebnisse

von jeweils zwei Algorithmen konnten effiziente und

ineffiziente Paarungen identifiziert werden und ein Ansatz

zur Bewertung der Effizienz von Testalgorithmen wurde

entwickelt. Die so gewonnenen Erkenntnisse sind wichtig für

die Auswahl von Testalgorithmen für produktive Testsets.

Überdies wurden die Ergebnisse aus dieser Analyse auch

dafür verwendet, Algorithmen und Fehlermodelle zu

klassifizieren, wobei Algorithmen mit ähnlichen

Eigenschaften zusammengefasst und Gruppen von

bestimmten Fehlermodellen zugeordnet wurden.

Mit Hilfe heuristischer Logikminimierung wurde ein

Ansatz für die formale Testset Optimierung entwickelt. Die

Testergebnisse der Messungen wurden so verarbeitet, dass

ein Set von essentielle Algorithmen ermittelt wurde, das

sowohl die Anforderung an maximale Fehlerausbeute als

auch an minimale Anzahl an nötigen Algorithmen erfüllt.

Durch Gewichten dieser essentiellen Algorithmen wurde eine

Zuordnung von Fehlerausbeute zu Testlänge in Form einer

„Funktion“ möglich. Dies ist vor Allem für die Testset

Entwicklung interessant, da abhängig von den

Testanforderungen, die Algorithmen für eine gewünschte

Ausbeute selektiert werden können und die notwenige

Testzeit dafür dann abgeschätzt werden kann. Die Ergebnisse

dieser Studie zeigen, dass bereits mit einer Kombination aus

Kurzfassung in deutscher Sprache ix

nur drei Testalgorithmen nahezu 98% der Fehler entdeckt

werden, wobei die Testzeit dabei relativ gering ist.

Durch die Tatsache, dass die Untersuchungen in dieser

Studie während des Burn-In Tests stattfanden, konnten auch

die Auswirkungen von Hochtemperatur- und

Hochspannungsstress auf das Fehlerverhalten der Speicher

untersucht werden – mit interessanten Ergebnissen. Vor und

nach der Stressphase wurden die Tests bei ähnlichen

Umgebungsparametern durchgeführt. Somit war es möglich

diese Ergebnisse miteinander zu vergleichen und so den

Effekt, den Burn-In auf das Fehlerverhalten hat

herauszuarbeiten. Die Analyse zeigt, dass sich die Anzahl der

gefundenen Fehler nach Burn-In etwa vervierfacht hat.

Besonders für sicherheitstechnisch relevante Produkte heißt

das, dass Burn-In einen nicht zu vernachlässigenden Einfluss

auf das Testen von Halbleiterspeichern hat. Ohne Burn-In

wären diese Fehler unentdeckt geblieben und hätten sich erst

im Laufe der Zeit manifestiert und so zu Ausfällen geführt.

Aber nicht nur die Anzahl der Fehler stieg an sondern auch

das Verhalten einzelner Fehler hat sich durch Burn-In

verändert. Es wurde eine Veränderung von dynamischen

Fehlern vor Burn-In hin zu statischem Verhalten beobachtet.

Dieselben Fehler, die vorher als dynamisch klassifiziert

wurden, haben sich durch Burn-In als statische Fehler

manifestiert. Diese Erkenntnis beeinflusst die Selektion von

Testalgorithmen für unterschiedliche Testsets vor und nach

Burn-In oder bereits für das Wafertesten.

Ergebnisse dieser Studie konnten bereits unmittelbar

genutzt werden um Speichertests bei Infineon zu verbessern

und einige Erkenntnisse konnten auch in die Entwicklung des

integrierten Selbsttests für Produktionstests zurückgeführt

werden.

Contents xi

C o nte nts

Chapter 1 Introduction .. 1

1.1 Previous Work .. 2

1.2 Motivation ... 4

1.3 Planned Work and Project Outline 4

1.4 Semiconductor Memories 6

1.4.1 Memory Technology .. 7

1.4.2 Static Random Access Memories 9

Chapter 2 Memory Faults .. 13

2.1 Definitions ... 14

2.2 Classification of Memory Faults 14

2.2.1 Static versus Dynamic Faults 15

2.2.2 Simple versus Linked Faults 16

2.2.3 Single-cell versus Coupling Faults 17

2.2.4 Address Decoder Faults 17

2.2.5 Peripheral Faults ... 18

2.3 Fault Primitives and Functional Fault Models .. 19

Chapter 3 Memory Test Algorithms 25

3.1 Nomenclature ... 26

3.2 Test Algorithms .. 27

3.3 Algorithmic Test Parameters 31

3.3.1 Address Direction ... 31

3.3.2 Addressing Mode ... 32

3.3.3 Data Background .. 34

3.4 Environmental Parameters 35

Chapter 4 Test Environment and Setup 37

4.1 Memory Testing ... 38

4.1.1 MSIST ... 38

4.1.2 MBIST ... 39

4.2 MBISTPLUS .. 40

4.2.1 Potential of MBISTPLUS V3.0 43

4.2.2 Potential of MBISTPLUS V4.2 44

4.3 Burn-In... 45

xii Contents

4.4 Test Strategy ..46

4.5 Test Setup ..47

4.5.1 Tested Devices and Memories48

4.5.2 Study Test Set ...49

4.5.3 Test Environment ..51

4.5.4 Test Flow ...52

4.5.5 Data Acquisition ..54

Chapter 5 Fault Coverage of Test Algorithms57

5.1 Definitions ...58

5.1.1 Fault Coverage ...58

5.1.2 Test ...58

5.1.3 Test Set ..58

5.2 Fault Coverage at Different Environmental

Conditions ...59

5.2.1 Test Results ...59

5.2.2 Data Evaluation ...61

5.3 Fault Coverage of Test Algorithms63

5.3.1 Test Results ...63

5.3.2 Evaluation of Fault Coverage66

5.3.3 Unique Faults ...67

5.4 Influence of Algorithmic Test Parameters69

5.5 Summary and Conclusions73

Chapter 6 Effectiveness of Test Algorithms75

6.1 Definitions ...76

6.1.1 Union and Intersection76

6.1.2 Subsets and Coverage80

6.2 Evaluation Method ...81

6.3 Efficient Pairs of Algorithms82

6.3.1 Test Results ...82

6.3.2 Data Evaluation ...84

6.4 Classification of Algorithms86

6.4.1 Similar Fault Coverage and Subsets87

6.4.2 Characteristic March Elements94

6.4.3 Grouping and Classification100

6.4.4 Consistencies and Inconsistencies102

Contents xiii

6.5 Estimation of Fault Distribution 103

6.6 Summary and Conclusions 106

Chapter 7 Test Set Optimization 109

7.1 Formal Optimization ... 110

7.2 Test Data Preparation .. 110

7.3 Test Results ... 112

7.3.1 Essential Algorithms 112

7.3.2 Fault Coverage related to Test Length....... 115

7.4 Summary and Conclusions 119

Chapter 8 Variation of Fault Manifestation 121

8.1 Setup and Environment 122

8.2 Increase of Fault Coverage 123

8.3 Variation of Fault Behavior 125

8.3.1 Data Evaluation Technique 126

8.3.2 Test Results .. 127

8.4 Summary and Conclusions 130

Chapter 9 Perspectives ... 131

References ... 135

Additional Literature .. 139

Appendix A Additional Results of Chapter 6 143

A.1 Fault Coverage of Algorithms 143

A.2 Effectiveness of Pairs of Algorithms 153

Appendix B Calculation of Fault Distribution 165

Appendix C ESPRESSO Algorithm and Software 167

C.1 ESPRESSO Heuristic Algorithm 167

C.2 ESPRESSO Software .. 168

Appendix D Additional Results of Chapter 7 171

List of Figures xv

L is t o f F ig ure s

Figure 1.1. Block diagram of a memory 7

Figure 1.2. Types of semiconductor memories 8

Figure 1.3. Properties of different types of memories 9

Figure 1.4. 6-Transistor SRAM cell ... 10

Figure 1.5. SRAM cell array ... 11

Figure 2.1. Classification of functional fault models 15

Figure 2.2. Linked memory faults .. 16

Figure 2.3. Address decoder faults ... 18

Figure 3.1. Addressing of one- and more-dimensional test

algorithms .. 30

Figure 3.2. Addressing directions ... 32

Figure 3.3. Address modes .. 33

Figure 3.4. Data background patterns 34

Figure 3.5. Buggy background patterns 35

Figure 4.1. DUT block diagram using MSIST 39

Figure 4.2. DUT block diagram using MBIST 40

Figure 4.3. Bathtub curve ... 45

Figure 4.4. TC1797 block diagram .. 48

Figure 4.5. Memory test flow .. 51

Figure 4.6. Test flow ... 52

Figure 4.7 Test numbers and environmental conditions 53

Figure 4.8. IBIS flow and data acquisition 55

Figure 5.1. Fault coverage .. 60

Figure 5.2. Fault coverage and exclusive faults 61

Figure 5.3. Fault coverage of algorithms 65

Figure 5.4. Fault coverage of algorithmic parameters 71

Figure 6.1. Union and intersection ... 77

Figure 6.2. Efficiency of pairs of algorithms 78

Figure 6.3. Color key .. 79

Figure 6.4. Special cases of union and intersection 79

Figure 6.5. Subsets of fault coverage .. 81

Figure 6.6. Efficient and inefficient algorithms 84

Figure 6.7. Venn diagrams I .. 88

xvi List of Figures

Figure 6.8. Venn diagrams II ..89

Figure 6.9. Venn diagrams III ..91

Figure 6.10. Venn diagrams IV ..92

Figure 6.11. Venn diagrams V..93

Figure 6.12. Venn diagrams VI ..94

Figure 6.13. Fault distribution ...105

Figure 7.1. System representing algorithms and faults110

Figure 7.2. ESPRESSO output file of TN6531113

Figure 7.3. Fault coverage over test length117

Figure 8.1. Test flow surrounding Burn-In122

Figure 8.2. Fault distribution at low voltage124

Figure 8.3. Fault distribution at high voltage125

Figure 8.4. Fault model distribution a low voltage128

Figure 8.5. Fault model distribution at high voltage129

Figure A.1. Fault coverage at TN1522 144

Figure A.2. Fault coverage at TN1622 145

Figure A.3. Fault coverage at TN6531 146

Figure A.4. Fault coverage at TN6631 147

Figure A.5. Fault coverage at TN3741 148

Figure A.6. Fault coverage at TN3841 149

Figure A.7. Fault coverage at TN3941 150

Figure A.8. Fault coverage at TN4441 151

Figure A.9. Fault coverage at TN4541 152

Figure C.1. ESPRESSO input and output file 168

Figure D.1. Fault coverage over test length at TN1522 172

Figure D.2. Fault coverage over test length at TN1622 173

Figure D.3. Fault coverage over test length at TN6531 174

Figure D.4. Fault coverage over test length at TN6631 175

Figure D.5. Fault coverage over test length at TN3741 176

Figure D.6. Fault coverage over test length at TN3841 177

Figure D.7. Fault coverage over test length at TN3941 178

Figure D.8. Fault coverage over test length at TN4441 179

Figure D.9. Fault coverage over test length at TN4541 180

List of Tables xvii

L is t o f T a bles

Table 2.1. Single-cell FPs and FFMs ... 19

Table 2.2. Two-cell FPs and FFMs .. 21

Table 3.1 Symbols and Nomenclature 27

Table 3.2. Memory test algorithms ... 29

Table 4.1. Properties of MBISTPLUS .. 41

Table 4.2. Memory test algorithms ... 42

Table 4.3. Study test set .. 49

Table 4.4. Test numbers and environmental conditions 53

Table 5.1. Fault coverage per test number 60

Table 5.2. Fault coverage of algorithms 64

Table 5.3. Fault coverage of algorithmic test parameters 70

Table 6.1. Effectiveness of pairs of algorithms 83

Table 6.2. Fault coverage and QEff ... 88

Table 6.3. March algorithms for simple coupling faults 96

Table 6.4. March algorithms for linked faults 98

Table 6.5. March algorithms for dynamic faults 99

Table 6.6. Fault model coverage of traditional march tests 100

Table 6.7. Sets of algorithms and functional faults 101

Table 6.8. Determination of fault distribution 105

Table 6.9. Fault distribution .. 105

Table 7.1. Algorithm-Fault truth table 111

Table 7.2. Essential algorithms for TN6531 114

Table 7.3. Fault coverage over test length 116

Table 8.1. Fault coverage during Burn-In 123

Table 8.2. Algorithm-fault-allocation 126

Table 8.3. Fault model distribution at low voltage 127

Table 8.4. Fault model distribution at high voltage 128

Table A.1. Fault coverage at TN1522 144

Table A.2. Fault coverage at TN1622 145

Table A.3. Fault coverage at TN6531 146

Table A.4. Fault coverage at TN6631 147

Table A.5. Fault coverage at TN3741 148

Table A.6. Fault coverage at TN3841 149

xviii List of Tables

Table A.7. Fault coverage at TN3941 150

Table A.8. Fault coverage at TN4441 151

Table A.9. Fault coverage at TN4541 152

Table A.10. Values of QEff at TN6531 154

Table A.11. Union and intersection at TN1522 155

Table A.12. Union and intersection at TN1622 156

Table A.13. Union and intersection at TN6531 157

Table A.14. Union and intersection at TN6631 158

Table A.15. Union and intersection at TN3741 159

Table A.16. Union and intersection at TN3841 160

Table A.17. Union and intersection at TN3941 161

Table A.18. Union and intersection at TN4441 162

Table A.19. Union and intersection at TN4541 163

Table D.1. Fault coverage over test length at TN1522 172

Table D.2. Fault coverage over test length at TN1622 173

Table D.3. Fault coverage over test length at TN6531 174

Table D.4. Fault coverage over test length at TN6631 175

Table D.5. Fault coverage over test length at TN3741 176

Table D.6. Fault coverage over test length at TN3841 177

Table D.7. Fault coverage over test length at TN3941 178

Table D.8. Fault coverage over test length at TN4441 179

Table D.9. Fault coverage over test length at TN4541 180

Abbreviations and Symbols xix

Abbr e v ia t io ns a nd Sy mbo ls

2i see: POI

AF Address decoder fault

BI Burn-In

BL Bit-line

BL Inverted bit-line

C11 130 nm technology

cb Checkerboard data background

CF Coupling fault

CFdrd Deceptive read destructive coupling fault

CFds Disturb coupling fault

CFid Idempotent coupling fault

CFin Inversion coupling fault

CFir Incorrect read coupling fault

CFrd Read destructive coupling fault

CFrr Random read coupling fault

CFrrd Random read destructive coupling fault

CFst State coupling fault

CFtr Transition coupling fault

CFud Undefined disturb coupling fault

CFur Undefined read coupling fault

CFus Undefined state coupling fault

CFuw Undefined write coupling fault

CFwd Write destructive coupling fault

CPU Central Processing Unit

cs Column-stripe data background

D Delay between march elements

DDR Double Data Rate SDRAM

DMI Data Memory Interface

DRDF Deceptive read destructive fault

DRF Data retention fault

DUT Device Under Test

ECC Error Correcting Code

EEPROM Electrically Erasable PROM

xx Abbreviations and Symbols

EPROM Erasable PROM

F Set of faults

|F| Cardinality of a set of faults (number of

faults)

FC Fault Coverage

fx Fast-x addressing mode

fy Fast-y addressing mode

FFM Functional Fault Model

FSM Finite State Machine

FP Fault Primitive

DRAM Dynamic Random Access Memory

I Intersection

IBIS Interconnect Built-In Self-Test

IFA Inducted Fault Analysis

IRF Incorrect read fault

JTAG Joint Test Action Group

L90 90 nm technology

LF Linked Fault

n Number of operations (length of a test

algorithm)

MBIST Memory Built-In Self-Test

MBIST+ see: MBISTPLUS

MBISTPLUS Infineon MBIST

ME March Element

MUT Memory Under Test

MSIST Memory Software-Implemented Self-Test

NAF No access fault

#O Number of Operations

PMI Program Memory Interface

POI Power of i (addressing mode)

PROM Programmable ROM

QEff Quotient of Efficiency

r Read operation

RARwa walking read-after-read sequence

RDF Read destructive fault

ROM Read-Only Memory

Abbreviations and Symbols xxi

RRDF Random read destructive fault

RRF Random read fault

rs Row-stripe data background

SAF Stuck-at fault

SDRAM Synchronous DRAM

SF State fault

so Solid data background

SoC System-on-a-Chip

SOS Sensitizing Operation Sequence

SQL Structured Query Language

SRAM Static Random Access Memory

SS Simple static single-cell fault

TF Transition fault

TL Test Length

TN Test Number

TRF Test Result File

TT Test Time

U Union

URF Undefined read fault

USF Undefined state fault

UWF Undefined write fault

w Write operation

WDF Write destructive fault

WL Word-line

0 Logic zero

1 Logic one

() Delimiter of march elements

{ } Delimiter of march algorithms

 Arbitrary address direction

 Up address direction (lowest to highest)

 Down address direction (highest to lowest)

 … is subset of …

~ … is approximately subset of …

C ha pte r 1

I n t r o duc t io n

In modern microcontroller devices for highly safety critical

applications, it is essential to ensure the freedom from faults

for the embedded memories. Therefore a very high effort is

necessary to reach the aim of “zero defects”. For this project,

the unique opportunity to perform a comprehensive analysis

of memory tests became possible at Infineon Technologies

AG. In contrast to simulation based test optimization, in this

work, a large amount of productive memory test results is

used for statistical analysis and evaluation. The aims of the

project are to investigate the embedded self-tests of static

semiconductor memories and to analyze productive memory

test results of automotive microcontroller devices with the

aim to improve and optimize the selection of tests for

embedded SRAMs.

The project became possible because during productive

testing, extended test time due to Burn-In was available for

comprehensive tests and analysis. Hence the project and the

whole test setup and analysis were closely associated with the

productive memory test flow.

2 Introduction

1 . 1 P r e v i o u s W o r k

Much work has been published on memory testing (e.g.

[1]-[31]). Before 1980, memory testing means “ad hoc testing”.

Long and partly complex test patterns have been applied with

the hope to detect as many faults as possible as fault models

and proofs did not exist. Typical tests of this period are

GALPAT or Walking 1/0, where the test time is extremely long

and the test time of those tests grows quadratically with the

memory size.

During the early 1980s, functional fault models (FFMs)

have been introduced. The tests that have been developed on

basis of FFMs are typically of order O(n), i.e. linear with the

memory size, where n is the memory size, and the desired

fault coverage of these algorithms could mathematically be

proven. Important FFMs have been stuck-at faults (SAFs),

address decoder faults (AFs), coupling faults (CFs) and

neighbourhood pattern sensitivity faults (NPSFs). Functional

fault models are abstract and reflect the faulty behaviour of a

memory independently of technology or real design. At that

time also the inductive fault analysis (IFA) was used to

establish new fault models based on simulated designs. More

and more fault models have been developed and so also new

march tests. For the first time, Ad van de Goor sums up the

previous work on memory testing in his book [1] in 1998. It is

a still important work that comprehensively treats memory

testing, memory test algorithms and functional fault models.

However, not all faults could be explained with the

existing set of functional fault models. Hence, during the late

1990s, the concept of fault primitives was introduced. Due to

the complete description of fault primitives, the memory

faults could be classified and additional functional fault

models could be described such as write disturb faults,

incorrect read faults or transition CFs. An important work,

especially concerning the definition of memory faults, fault

1.1 Previous Work 3

models and fault primitives was done by Said Hamdioui, who

sums up his experience in his book [2] in 2004.

In [3] and [4], conditions for march sequences are

described that have to be fulfilled to cover specific types of

functional faults. Most publications on memory testing use

these kinds of mathematical proofs of fault coverage to

describe the performance and effectiveness of memory test

algorithms. Comparatively rarely, real test results are

presented in published work. Hamdioui et al. and Al-Ars et

al. are presenting some industrial results in [3, 5, 6] and

evaluate the test performance of different algorithmic tests

and stress combinations. Additionally an approach to test set

optimization is depicted, where the entire set of tests is

reduced to a minimum necessary set of algorithms and stress

combinations. The results of all algorithms are compared to

each other in such a form that union and intersection of

detected faults are determined and listed. This approach is

also taken for a major part of the fault analysis in this work.

However, the number of results presented in previous work

is insufficient for a comprehensive test set optimization, and

also the set of test algorithms that are taken into account is

small.

The performance of memory test algorithms is usually

proven mathematically and the expected fault coverage is

determined (e.g. [7, 8, 9]). However, in practice, there is only

a simple fail or pass information and the fault model which is

behind this fail is unknown. So, the selection of test algorithms

can hardly be based on theory only, but experimental results

have to be used for an efficient selection of test algorithms.

4 Introduction

1 . 2 M o t i v a t i o n

Many analyses and investigations have been done on

memory test algorithms and functional fault models as

described above. However, for industrial purpose the

usability of test algorithms described in literature needs to be

verified and efficient combinations of tests have to be

identified for optimized test performance at industrial and

productive semiconductor memory testing.

Therefore, a comprehensive analysis on the efficiency of

test algorithms and test parameters is necessary to determine

new and efficient test sets to fulfill two main requirements for

industrial semiconductor memory testing:

 high fault coverage, and

 low test effort.

This analysis was done as a project in cooperation with

Infineon Technologies, who provided a productive test

environment for such comprehensive tests and statistical

analyses. The planed outcome of the project is an optimization

for productive testing of embedded semiconductor memories.

The planed contents of this work are described in the

following section.

1 . 3 P l a n n e d W o r k a n d P r o j e c t O u t l i n e

The intended content of this work was discussed with

Infineon throughout the project, as both the course and the

results of the investigation were not completely foreseeable in

the beginning. For the initial definition of the project, the

following items have been panned:

1.3 Planned Work and Project Outline 5

 Understand SRAM test concepts (SIST, MBIST+ various

versions and generations) and test algorithms.

 Carry out a literature survey on known SRAM

technological problems, fault and failure causes.

 Analysis of IBIS flow (Burn In) and current test flow.

 Get basic knowledge about system of automotive

microcontrollers, TC1797/TC1767, TC1787 … at least for

MBIST+ / test access and access to memories through JTAG

and system (mapping).

 Comprehensive investigations about test algorithms,

address algorithms, backgrounds, SRAM scrambling

involvement, system scrambling involvement.

 Analysis of environmental conditions (temperature,

supply voltage) and other parameters (programmable self

timings, weak write driver, digital margin mode) of SRAM

and ROM.

 Setup exhaustive test plan for TC1797/TC1767 and TC1787.

 Setup database and visualization in html for tracking test

results of exhaustive tests.

 Create test setup for application in test flow using MBIST+

and drive implementation of these tests in test and IBIS

flow.

 Accumulate results in a database.

 Map possible technological causes with observation

findings.

 Evaluate results for most efficient algorithms and test

conditions.

 Apply learning from 130nm technology (C11) to 90nm

technology (L90) as there are more degrees of freedom in

test generation in L90.

 Influence future direction of MBIST+ design with learning

outcome.

 Minimize test time vs. effectiveness for C11 and L90 test

flow using all parameters available.

6 Introduction

Not all of these items could be completed during the

project as for some reasons concerning the productive test

flow, the test setup for L90 could not be achieved completely

and the number of devices that could be tested for L90 was not

enough for meaningful and comparable statistics. Hence the

investigations of the project are focused on the results of C11

testing.

However, during the project new aspects came into

account and new ideas for analyses have been developed. So,

the relation of faults and test algorithms has been analyzed

and the distribution of different fault models within the tested

memories was estimated based on the obtained test results.

Also, variations of fault manifestation during Burn-In became

visible and have been analyzed in more detail.

The major outcomes of the project are:

 Comprehensive literature survey on memory testing, test

algorithms and memory faults.

 Development of a suitable test strategy and setup and

implementation of test to obtain productive memory test

results.

 Analysis of effectiveness of memory test algorithms.

 Estimation of fault distribution after wafer test.

 Test set optimization.

 Analysis of variation of fault manifestation during Burn-

In.

1 . 4 S e m i c o n d u c t o r M e m o r i e s

Semiconductor memories are very important storage

elements in electronic devices. This project is entirely related

to embedded SRAMs of microcontroller devices. As a short

introduction to memory technology, this chapter gives an

overview about the basic technological background of

1.4 Semiconductor Memories 7

semiconductor memories and Static Random Access

Memories (SRAMs) in particular.

1.4.1 Memory Technology

Memories are part of most electronic devices to store

program information or data. Usually the information is

represented by ones and zeros, i.e. high and low potential in

the electrical model. The simplest form of a block diagram for

a memory is shown in Fig. 1.1 [1].

Figure 1.1. Block diagram of a memory

The basic components of a memory are the memory cell

array itself which contains the actual information and

peripheral logic address decoder, write drivers and sense

amplifiers. The address decoder is necessary to access the

Column Address Decoder

R
o
w

 A
d
d
re

s
s
 D

e
c
o
d
e
rs

Address
Latch

Data I/O
Register

Memory Array

Address

Sense Amplifier

Write
Driver

Data read/write

8 Introduction

single memory cells and write driver and sense amplifier

enable to write to and read data from the memory.

The types of semiconductor memories can be

distinguished by their storage method, the form factor and the

technology [10]. Basically volatile and non-volatile storage

methods are common. Volatile means the stored information

needs to be refreshed or supply voltage needs to be kept in

order to keep the data, while non-volatile storage elements

also keep the information without permanent supply voltage.

A non-complete diagram of different and most common

memory types is shown in Fig. 1.2.

Figure 1.2. Types of semiconductor memories

Depending on the desired application for a memory,

factors like density, power consumption and performance

have to be taken into consideration. In [10], these factors are

compared and shown in a triangle. Following to [10], Fig. 1.3

shows a few types of semiconductor memories where they are

placed concerning their main properties: performance, power

and density. ROM has the lowest power consumption of the

Semiconductor Memories

volatile non-volatile

Flash ROM EEPROM SRAM DRAM

SDRAM

DDR

1.4 Semiconductor Memories 9

compared types. DRAM only needs low space as the density

is very high but the power consumption is very high at the

same time. SRAM has a good balanced ratio of power

consumption, density and performance.

Figure 1.3. Properties of different types of memories

1.4.2 Static Random Access Memories

Static random access memories (SRAMs) are the

“workhorses of memories” [10]. Besides DRAMs, SRAMs are

often used in systems on a chip (SoCs) if high speed memories

are needed, such as caches in microprocessors [10].

SRAMs are, as the name suggests, static. In contrast to

DRAMs, static RAMs need no refreshment of the data, but

retain their state until it is overwritten as long as power is

supplied (volatile memory). SRAM cells can enter two

different stable states which represent logical values ‘0’ and

High Density

High
Performance

Low
Power

SRAM

DRAM

ROM

Flash

10 Introduction

‘1’. Once the cell is in one state, it remains stable in it [2].

Basically a SRAM cell consists of two inverters that are fed

back and thus stabilize themselves. The electrical model of a

6-transistor SRAM cell is shown in Fig. 1.4. It consists of four

transistors forming the two inverters and two gate transistors

that enable the cell to access the bit-lines (BL and inverted bit-

line BL) if the word-line (WL) is activated.

Figure 1.4. 6-Transistor SRAM cell

In a memory the cells are arranged in a regular array,

where the single cells are accessed via word-line (horizontal

address) and bit-lines (vertical address). Fig. 1.1 shows the

memory array connected to address decoder, write driver and

sense amplifier. A schematic of a regular SRAM array is

shown in Fig. 1.5. A single cell can be accessed by accessing a

specific word-line and bit-line. When addressing a word-line,

all cells in the row are accessed. The desired cell is then

selected by addressing the corresponding bit-line. Hence, one

cell is uniquely identified by its horizontal and vertical

address.

Note that logical and physical cell addresses usually are

not the same. Due to mirroring and scrambling, the physical

BL
__
BL

WL

VCC

VSS

BL
__
BL

WL

VCC

VSS

1.4 Semiconductor Memories 11

and logical layout of a cell array may differ extremely from

each other. In Fig. 1.5 the SRAM cells are mirrored about the

x- and y-axis. A mirroring about the x-axis facilitates the use

of common power supply for two adjacent rows. Mirroring

about the y-axis enables an optimized bit-line layout [10].

Furthermore, mirroring facilitates sharing isolation and

power supply for adjacent rows or columns.

On the one hand mirroring and scrambling is necessary

because of layout considerations, and on the other hand it also

may reduce interferences between adjacent cells due to

compensating capacitive influence of bit- and word-lines.

Figure 1.5. SRAM cell array

BL BL BL BL BL BL BL

WL

WL

WL

WL

BL

C ha pte r 2

M e mo r y Fa ul t s

Memory faults often cause failing electronic devices.

Wrong information stored or read from memories cause faulty

behavior of the whole system. Actually physical defects cause

the faults in a memory, but the defects are normally not visible

to the outside. Only the faulty behavior is recognizable as

functional fault.

In this chapter a short introduction to memory faults and

the definition of fault primitives and functional fault models

is given. Fault primitives and functional fault models are base

for a targeted memory test development.

14 Memory Faults

2 . 1 D e f i n i t i o n s

The concepts of fault primitives and functional fault

models are described in [2] and [11]. Accordingly, the

following definitions apply.

Fault primitives (FPs) describe the sensitizing operation

sequence (SOS) and the corresponding faulty behavior of a

certain fault. The SOS is a sequence of operations applied to

the memory that results in faulty behavior. A fault primitive

is denoted as <S/F/R>. S describes the SOS that sensitizes the

fault; F describes the fault, i.e. the value or faulty behavior of

the memory cell (e.g. the cell flips). R describes the logic

output value of a read operation [2].

The concept of FPs allows to create the set of functional

fault models (FFMs), which are defined as a non-empty set of

fault primitives that inherit the properties of the FPs [2].

Both, FPs and FFMs, describe the faulty behavior of a memory

cell and do not describe physical defects. Defects are the

physical reason for a fault and, depending on technology,

memory type, and other hardware reasons, there may be

different types of defects that cause specific FPs.

2 . 2 C l a s s i f i c a t i o n o f M e m o r y F a u l t s

Based on the SOS and faulty behavior, the FPs and FFMs

can be classified according to [2]:

1. the number of sequential operation in the SOS, into

static and dynamic faults.

2. the way of manifestation, into simple and linked faults.

3. the number of different cells involved, into single-cell

and multi-cell (coupling faults and neighborhood

pattern sensitivity faults).

2.2 Classification of Memory Faults 15

These classifications are independent of each other, as the

factors of the SOS are independent. The classification of FFMs

[2, 1] is summarized in Fig. 2.1.

Figure 2.1. Classification of functional fault models

Additional to memory cell array faults, Fig. 2.1 also shows

address decoder faults and peripheral faults.

2.2.1 Static versus Dynamic Faults

Fault primitives can be divided into static and dynamic

fault depending on the number of sequentially performed

operation (#O) in a SOS [2].

Static FPs are always sensitized by the state of the cell (i.e.

no operation) or at most one operation, i.e. #O ≤ 1. Dynamic

faults are sensitized by more than one operation in the SOS,

i.e. #O > 1.

Memory Faults

Memory Cell Array Faults

Single-Cell Faults

Address Decoder Faults Peripheral Faults

Coupling Faults

State Fault (SF)
Transition Faults (TF)
Write Destructive Fault (WDF)
Read Destructive Fault (RDF)
Deceptive RDF (DRDF)
Random RDF (RRDF)
Incorrect Read Fault (IRF)
Random Read Fault (RRF)
Undefined State Fault (USF)
Undefined Write Fault (UWF)
Undefined Read Fault (URF)
Stuck-At Fault (SAF)
No Access Fault (NAF)
Data Retention Faults (DRF)

State CF (CFst)
Undefined State CF (CFus)
Disturb CF (CFds)
Undefined Disturb CF (CFud)
Idempotent CF (CFid)
Inversion CF (CFin)
Transition CF (CFtr)
Write Destructive CF (CFwd)
Read Destructive CF (CFrd)
Deceptive CFrd (CFdrd)
Random CFdr (CFrrd)
Incorrect Read CF (CFir)
Radom Read CF (CFrr)
Undefined Write CF (CFuw)
Undefined Read CF (CFur)

AFna
An address does not access its cell.
AFmc
One address accesses multiple cells.
AFma
A cell is accessed by multiple addresses.
AFoc
A cell is accessed by multiple addresses and
an address additionally accesses other cells.

Slow Write Driver Fault (SWDF)
Slow Sense Amplifier Fault (SSAF)
Slow Precharge Circuit Fault (SPRF)
Bit Line Imbalance Fault (BLIF)

static

linked

dynamic

simple

inter-word intra-word

Neighborhood Pattern Sensitivity Faults

(NPSF)

16 Memory Faults

2.2.2 Simple versus Linked Faults

Fault primitives can manifest themselves as simple or

linked faults. A simple fault cannot influence the behavior of

another one, whereas linked faults (LFs) can influence the

behavior of other faults and masking can occur [1, 2, 3]. The

types of linked faults are illustrated in Fig. 2.2 [3, 12]

Figure 2.2. Linked memory faults

Depending on the number of faults involved, linked faults

are divided into one-cell (LF1), two-cell (LF2) or three-cell

(LF3) linked faults. The cells involved into a LF are called

aggressor cell (a-cell) or victim-cell (v-cell), where an SOS on

the a-cell causes a fault in the v-cell. I.e. the state or an

operation on the aggressor causes a faulty behavior in the v-

cell. Except for LF1, at least two a-cells are involved into a LF,

but always only one cell is the v-cell. With LF2, the v-cell is the

second a-cell at the same time and influences itself, where

with LF3, there are two different a-cells beside the v-cell.

For all types of linked faults, there are two FPs that

influence the behavior of the v-cell in such a way, that the

second FP may mask the fault of the first FP. Masking means

the second fault on the same cell reverses the effect of the first

fault. For example: an operation on an aggressor a-cell causes

the v-cell to flip and a second operation on another a-cell

LF

LF1 LF2 LF3

LF2aa LF2av LF2va

v

FP1 FP2

v a

FP1 FP2

v a

FP2 FP1

v a

FP1

FP2

v a a

FP2 FP1

2.2 Classification of Memory Faults 17

causes the v-cell to flip back (LF3), then the fault on the v-cell

is masked. LF2s can furthermore be divided depending on

which cell (a- or v-cell) the first and second FP appears into

LF2aa, LF2av and LF2va. At a LF2aa linked fault, both FPs are

coming from the a-cell, where at a LF2av linked faults, the first

FP comes from the a-cell and the second FP comes from the v-

cell, and vice versa at a LF2va linked fault.

2.2.3 Single-cell versus Coupling Faults

Depending on the number of cells accessed during a SOS,

the faults can be divided into single-cell and multi-cell faults

(coupling faults). A single-cell fault occurs if only a single cell

is involved into the SOS, whereas a coupling fault occurs if

two or more cells are involved into the SOS. So, if a fault

appears in the same cell, which the SOS is applied to, it is

called single-cell fault; while, if the cell that sensitizes the fault

is different from that where the fault appears, it is called a

coupling fault.

In Fig. 2.1 also neighborhood pattern sensitivity faults

(NPSFs) are listed which are a special type of coupling faults,

where the states of the cells in the neighborhood of the victim

cell influence the faulty behavior of the victim cell.

2.2.4 Address Decoder Faults

Address decoder faults (AFs) are caused by defects in the

address decoder or in bit-lines and word-lines. There are four

types of faults that concern the accessibility of memory cells

[1]. In Fig 2.3, the four types of address decoder faults are

illustrated.

18 Memory Faults

 No Access address fault (AFna): No cell is accessed with a

certain address. Address Ax does not access cell Cx.

 Multiple cell address fault (AFmc): One address accesses

multiple cells. Address Ay accesses cells Cx and Cy.

 Multiple address fault (AFma): One cell is accessed by two

addresses. Addresses Ax and Ay access cell Cx.

 Other cells address fault (AFoc): A certain address accesses

multiple cells and one cell is accessed by multiple

addresses. Address Ax and Ay access cell Cx, and Address

Ay accesses cells Cx and Cy.

Figure 2.3. Address decoder faults

2.2.5 Peripheral Faults

Peripheral faults are caused by defects of peripheral read

and write logic of the memory. Peripheral faults are [13]:

 Slow Write Driver Fault (SWDF)

 Slow Sense Amplifier Fault (SSAF)

 Slow Pre-charge Circuit Fault (SPRF)

 Bit-Line Imbalance Fault (BLIF)

Peripheral faults are not taken into account in the scope of

this project.

AFna AFmc AFma AFoc

Ax

Ax

Ay

Cx

Cx

Cy

Ax

Ay

Cx

Cy

Ax

Ay

Cx

Cy

2.3 Fault Primitives and Functional Fault Models 19

2 . 3 F a u l t P r i m i t i v e s a n d F u n c t i o n a l

F a u l t M o d e l s

The topics of fault primitives and functional fault models

are completely considered and described by Said Hamdioui

in [2]. To introduce the faults in this work, Tables 2.1 and 2.2

summarize single-cell and coupling faults. A detailed

description and explanation of these types of faults can be

found in [2].

The nomenclature of single-cell FPs is <S/F/R>, where S is

the state or operation sensitizing the fault. E.g. 0r0 means that

the cell is in state ‘0’ and a read operation is performed, where

‘0’ is the expected value, or 0w1 means that the cell is in state

‘0’ and a write 1 operation is performed. F denotes the faulty

value of the failing cell, and R describes the logic output value

of a read operation.

Table 2.1. Single-cell FPs and FFMs

FFM FPs

1 SF <1/0/->, <0/1/->

2 TF <0w1/0/->, <1w0/1/->

3 WDF <0w0/1/->, <1w1/0/->

4 RDF <0r0/1/1>, <1r1/0/0>

5 DRDF <0r0/1/0>, <1r1/0/1>

6 RRDF <0r0/1/?>, <1r1/0/?>

7 IRF <0r0/0/1>, <1r1/1/0>

8 RRF <0r0/0/?>, <1r1/1/?>

9 USF <1/?/->, <0/?/->

10 UWF <0w0/?/->, <0w1/?/->, <1w0/?/->, <1w1/?/->

11 URF <0r0/?/0>, <0r0/?/1>, <0r0/?/?>, <1r1/?/1>, <1r1/?/0>, <1r1/?/?>

12 SAF <1/0/->, <0w1/0/->, <1w1/0/->, <0/1/->, <1w0/1->, <0w0/1/->

13 NAF <0w1/0/->, <1w0/1/->, <0r0/0/?>, <1r1/1/?>

14 DRF <0T/1/->, <1T/0/->, <0T/?/->, <1T/?/->

20 Memory Faults

Table 2.1 summarizes 14 functional fault models and 28

fault primitives for single-cell faults. These FFMs and FPs are

defined in detail in [2] and can be summarized as follows.

 State Faults (SF): The value of the cell flips without any

sensitizing operation and depends on the initial state of the

cell.

 Transition Faults (TF): The cell fails to flip when it is written

with the opposite value. I.e. transition ‘0’  ‘1’ or ‘1’  ‘0’.

 Write Destructive Fault (WDF): A non-transition write

operation (0w0 or 1w1) causes a transition.

 Read Destructive Fault (RDF): A read operation causes the

cell to flip and the incorrect value is returned to the output.

 Deceptive Read Destructive Fault (DRDF): A read operation

causes the cell to change its value, however the correct

output is returned.

 Random Read Destructive Faults (RRDF): A read operation

flips the cell and a random logic value is returned to the

output.

 Incorrect Read Fault (IRF): A read operation returns the

incorrect value to the output; however the stored value in

the cell remains correct.

 Random Read Fault (RRF): A read operation returns a

random logic value to the output while the stored value

remains correct.

 Undefined State Fault (USF): Without any sensitizing

operation, the logic value of a cell flips into an undefined

state.

 Undefined Write Fault (UWF): An undefined state of the cell

is causes by a write operation.

 Undefined Read Fault (URF): The cell is brought into an

undefined state by a read operation.

 Stuck-At Fault (SAF): The cell remains stuck at a value for

any operation.

 No Access Fault (NAF): The cell cannot be accessed. A write

operation cannot change the value of the cell and a read

2.3 Fault Primitives and Functional Fault Models 21

operation returns a random value. A NAF needs not to be

caused by the address decoder, but can also be caused by

an open word-line.

 Data Retention Fault (DRF): The value of a cell changes after

a certain time T without accessing the cell. (E.g. <0T/1/->

denotes that the initial state of the cell is ‘0’ and flips to ‘1’

after a time T.)

For two-cell FPs, the nomenclature looks like <Sa;Sv/F/R>,

where Sa is the state of sensitizing operation of the aggressor

cell and Sv is state of sensitizing operation of the victim cell. F

and R are the same as for single-cell FPs.

Table 2.2. Two-cell FPs and FFMs

FFM FPs

1 CFst <0;0/1/->, <0;1/0/->, <1;0/1/->, <1;1/0/->

2 CFus <0;0/?/->, <0;1/?/->, <1;0/?/->, <1;1/?/->

3 CFds <xwy;0/1/->, <xwy;1/0/->, <rx;0/1/->, <rx;1/0/->

4 CFud <xwy;0/?/->, <xwy;1/?/->, <rx;0/?/->, <rx;1/?/->

5 CFid <0w1;0/1/->, <0w1;1/0/->, <1w0;0/1/->, <1w0;1/0/->

6 CFin {<0w1;0/1/->, <0w1;1/0/->}, {<1w0;0/1/->, <1w0;1/0/->}

7 CFtr <0;0w1/0/->, <1;0w1/0/->, <0;1w0/1/->, <1;1w0/1/->

8 CFwd <0;0w0/1/->, <1;0w0/1/->, <0;1w1/0/->, <1;1w1/0/->

9 CFrd <0;0r0/1/1>, <1;0r0/1/1>, <0;1r1/0/0>, <1;1r1/0/0>

10 CFdrd <0;0r0/1/0>, <1;0r0/1/0>, <0;1r1/0/1>, <1;1r1/0/1>

11 CFrrd <0;0r0/1/?>, <1;0r0/1/?>, <0;1r1/0/?>, <1;1r1/0/?>

12 CFir <0;0r0/0/1>, <1;0r0/0/1>, <0;1r1/1/0>, <1;1r1/1/0>

13 CFrr <0;0r0/0/?>, <1;0r0/0/?>, <0;1r1/1/?>, <1;1r1/1/?>

14 CFuw <x;0w0/?/->, <x;0w1/?/->, <x;1w0/?/->, <x;1w1/?/->

15 CFur
<x;0r0/?/0>, <x;0r0/?/1>, <x;0r0/?/?>,
<x;1r1/?/0>, <x;1r1/?/1>, <x;1r1/?/?>

Table 2.2 summarizes the set of FFMs and FPs for coupling

faults. A detailed definition can be found in [2]. The following

items are a short summary.

22 Memory Faults

 State coupling fault (CFst): The v-cell is forced into a given

logic state if the a-cell is in a given logic state without

performing any operation on the v-cell or a-cell.

 Undefined State coupling fault (CFus): The state of the v-cell

is undefined while the a-cell is in a given logic state

without performing any operation on the v-cell or a-cell.

 Disturb coupling fault (CFds): Any operation performed on

the a-cell causes the v-cell to flip.

 Undefined Disturb coupling fault (CFud): Any operation

performed on the a-cell forces the v-cell into an undefined

state.

 Idempotent coupling fault (CFid): A transition write

operation on the a-cell causes the v-cell to flip.

 Inversion coupling fault (CFin): A transition write operation

on the a-cell inverts the logic value of the v-cell. CFin

consists of two pairs of FPs that have to be present

simultaneously. (Denoted by { and } in the notation of the

FPs.)

 Transition coupling fault (CFtr): A given logic value in the a-

cell causes a failing transition write operation performed

on the v-cell.

 Write Destructive coupling fault (CFwd): A given logic state

of the a-cell causes a transition in the v-cell although a non-

transition write operation is performed on the v-cell.

 Read Destructive coupling fault (CFrd): If the a-cell is in a

given state, a read operation on the v-cell changes its value

and returns the incorrect value to the output.

 Deceptive Read Destructive coupling fault (CFdrd): If the a-cell

is in a given state, a read operation on the v-cell changes

its value and the correct value is returned to the output.

 Random Read Destructive coupling fault (CFrrd): If the a-cell

is in a given state, a read operation on the v-cell changes

the value in the v-cell and a random value is returned to

the output.

2.3 Fault Primitives and Functional Fault Models 23

 Incorrect Read coupling fault (CFir): If the a-cell is in a given

state, a read operation on the v-cell returns the incorrect

value to the output.

 Random Read coupling fault (CFrr): If the a-cell is in a given

state, a read operation on the v-cell returns a random value

to the output while the value of the v-cell remains correct.

 Undefined Write coupling fault (CFuw): A write operation on

the v-cell forces it into an undefined state, while the a-cell

is in a given state.

 Undefined Read coupling fault (CFur): A read operation on

the v-cell forces it into an undefined state, while the a-cell

is in a given state. The value returned to the output can be

correct, incorrect or random.

C ha pte r 3

M e mo r y Te s t Alg o r i thms

Testing memories in order to detect all different fault

primitives, tests are used that perform a specific algorithmic

sequence of read and write operation, i.e. a specific sensitizing

operation sequence. During algorithmic memory testing the

test sequence is applied sequentially to all addresses of a

memory and hence, the whole memory is tested evenly.

In this chapter, the definition and structure of memory test

algorithms are explained and algorithmic and environmental

test parameters are described that are used in combination

with memory test algorithms to improve the performance of

the tests.

26 Memory Test Algorithms

3 . 1 N o m e n c l a t u r e

The sensitizing operation sequence (SOS), i.e. the sequence

of read and write operation that activates and detects the fault,

has to be defined for algorithmic memory testing. Therefore

an open notation for memory tests [14] has been developed

that describes the SOSs and their usage in march elements of

test algorithms.

Test algorithms consist of a sequence of march elements.

The read and write operation of one march element are

sequentially applied to one memory cell before moving to the

next address, and one march element is applied to all

addresses of a memory before moving to the next march

element. For evaluating march algorithms, single march

elements can be identified by numbering Mn. The numbering

of march elements starts at n = 0; i.e. the first march element of

an algorithm is M0.

A test algorithm is delimited by curly brackets { and }, and

each march element is delimited by parentheses (and). March

elements are separated by a semicolon and the single read and

write operation within a march element are separated by

comas. An , , or  prior to the march elements denotes the

addressing direction up (lowest address to highest), down

(highest address to lowest) or arbitrary, respectively. An

operation applied to a cell can be a ‘w0’ (write ‘0’), ‘r0’ (read

‘0’), ‘w1’ or ‘r1’. A D in the notation for March G denotes delay

time between two march elements. D depends on factors like

technology and clock frequency and is in a range of µs to

seconds. For all tests in the frame of this work, D is set to

100ms.

The biggest part of this work refers to this nomenclature;

for the use of other complex and more-dimensional test

algorithms, additional symbols and nomenclature may be

used. A list of additional symbols is provided in Table 3.1.

3.2 Test Algorithms 27

Table 3.1 Symbols and Nomenclature

Symbol Meaning

 address increment

 address decrement

 don’t care address direction

 address increment along main diagonal

 N-E-S-W addressing around base cell

 N-NE-E-SE-S-SW-W-NW addressing around base cell

D delay time for detecting data retention faults

b apply to base cell

-b apply to all cells except the base cell

Rep
apply the operation k times to n-cells with a distance of 2k
to the N, E, S & W of the b-cell

R-b address row of base cell

C-b address column of base cell

x fast-x addressing (fast-row)

y fast-y addressing (fast-column)

3 . 2 T e s t A l g o r i t h m s

During development and definition of new fault

primitives and functional fault models, the space of

corresponding memory test algorithms also grows.

Depending on the SOS, one or more faults models can be

detected. In the beginning of the development of test

algorithms during 1970’s and 1980’s, only few simple fault

models like single-cell and static faults have been defined and

hence also a few and simple test algorithms have been used.

For example SCAN [1], MATS [1, 15, 16], March A [1, 17],

March B [1, 17] or Algorithm B [18] are such traditional test

algorithms. With the occurrence and definition of new and

complex faults like linked and dynamic faults, new and

specific test algorithms are needed. Based on the definition of

specific FFMs, algorithms like March U [4], March LR [19],

March RAW [20] or March AB1 [8] have been developed.

Much has been published on memory test algorithms, and

a widespread literature survey has been done to provide a

comprehensive list of test algorithms to select a subset of

algorithms for the study. As a result of the literature survey, a

28 Memory Test Algorithms

list of 51 memory test algorithms could be determined which

is provided in Table 3.2. The table also includes algorithms

that have been developed with respect to the properties of

MBISTPLUS (e.g. hammering or random algorithms). These

algorithms are Hammer5R, Hammer5W and Ham_Walk.

MBISTPLUS is the embedded self-test used at Infineon and

will be described in chapter 4.2.

Hammering means that the same read or write operation

is repeatedly and sequentially performed during one march

element. E.g. for Ham5R there are five sequential read

operations in a march element (… (w0, r0, r0, r0, r0, r0) …).

3.2 Test Algorithms 29

Table 3.2. Memory test algorithms

Algorithm Sequence Reference

1. SCAN {(w0);(r0);(w1);(r1)} [1, 21]

2. SCAN+ {(w0);(r0);(w1);(r1);(w0);(r0);(w1);(r1)}

3. MATS {(w0);(r0,w1);(r1)} [1]

4. MATS+ {(w0);(r0,w1);(r1,w0)} [1, 16, 21]

5. MATS++ {(w0);(r0,w1);(r1,w0,r0)} [1, 16, 22]

6. March C- {(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0);(r0)} [1, 21, 22]

7. March C-- {(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0)} [21, 22]

8. March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} [1, 17]

9. March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} [1, 17, 21]

10. Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} [18, 22]

11. March C+ {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0); (r0)} [1]

12. PMOVI {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0)} [22, 23]

13. March 1/0 {(w0);(r0,w1,r1);(r1,w0,r0);(w1);(r1,w0,r0); (r0,w1,r1)} [24, 25]

14. March TP {(w0);(r0,w1);(r1,w0);(r0,w1,r1);(r1,w0,r0)} [22]

15. March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0)} [4]

16. March X {(w0);(r0,w1);(r1,w0);(r0)} [1]

17. March Y {(w0);(r0,w1,r1);(r1,w0,r0);(r0)} [1]

18. March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} [19]

19. March LA
{(w0);(r0,w1,w0,w1,r1);(r1,w0,w1,w0,r0);(r0,w1,w0,w1,r1);
 (r1,w0,w1,w0,r0);(r0)}

[26]

20. March RAW
{(w0);(r0,w0,r0,r0,w1,r1);(r1,w1,r1,r1,w0,r0);(r0,w0,r0,r0,w1,r1);
 (r1,w1,r1,r1,w0,r0);(r0)}

[20, 7]

21.
March
RAW1

{(w0);(w0,r0);(r0);(w1,r1);(r1);(w1,r1);(r1);(w0,r0);(r0)} [20, 7]

22. March AB
{(w1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);
 (r0,w1,r1,w1,r1);(r1)}

[8, 27]

23. March AB1 {(w0);(w1,r1,w1,r1,r1);(w0,r0,w0,r0,r0)} [8]

24. March BDN
{(w0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);
 (r1,w0,r0,w0,r0);(r0)}

[28]

25. March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} [29]

26. March SR+ {(w0);(r0,r0,w1,r1,r1,w0,r0); (r0);(w1);(r1,r1,w0,r0,r0,w1,r1);(r1)} [2, 29]

27.
March
SRD+

{(w0);(r0,r0,w1,r1,r1,w0,r0);D;
(r0);(w1);(r1,r1,w0,r0,r0,w1,r1);D;(r1)}

[2]

28. March SS
{(w0);(r0,r0,w0,r0,w1);(r1,r1,w1,r1,w0);(r0,r0,w0,r0,w1);
 (r1,r1,w1,r1,w0);(r0)}

[9]

29. March SL
{(w0);(r0,r0,w1,w1,r1,r1,w0,w0,r0,w1);(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0);
 (r0,r0,w1,w1,r1,r1,w0,w0,r0,w1);(r1,r1,w0,w0,r0,r0,w1,w1,r1,w0)}

[30]

30. March G
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0);
 D;(r0,w1,r1);D;(r1,w0,r0)}

[31]

31. GAL5R {(w0);b(w1b,(r0,r1b),w0b);(w1);b(w0b,(r1,r0b),w1b)} [21]

32. GAL9R {(w0);b(w1b,(r0,r1b),w0b);(w1);b(w0b,(r1,r0b),w1b)} [21]

33. GAL5W {(w0);b(w1b,(w0,r1b),w0b);(w1);b(w0b,(w1,r0b),w1b)} [21]

34. GAL9W {(w0);b(w1b,(w0,r1b),w0b);(w1);b(w0b,(w1,r0b),w1b)} [21]

35. Walking 1/0 {(w0);b(w1b,-b(r0),r1b,w0b);(w1);b(w0b,-b(r1),r0b,w1b)} [1]

36. Butterfly {(w0);b(w1b,Rep((r0),r1b),w0b);(w1);b(w0b,,Rep((r1),r0b),w1b)} [21]

37. GALPAT {(w0);b(w1b,-b(r0,r1b),w0b);(w1);b(w0b,-b(r1,r0b),w1b)} [1]

38. GALRow {(w0);b(w1b,R-b(r0,r1b),w0b);(w1);b(w0b,R-b(r1,r0b),w1b)} [1, 21]

39. GALCol {(w0);b(w1b,C-b(r0,r1b),w0b);(w1);b(w0b,C-b(r1,r0b),w1b)} [1, 21]

40. BLIF {(w0);x(w1,r1,w0);(w1);x(w0,r0,w1)} [22]

41. HamW16 {(w0);(r0,w116,r1);(r1,w016,r0);(r0,w116,r1);(r1,w016,r0)} [22]

42. HamR16 {(w0);(r0,w1,r116,r1);(r1,w0,r016,r0);(r0,w1,r116,r1);(r1,w0,r016,r0)} [22]

43. HamR28 {(w0);(w1,w0,r028);(w0,w1,r128);(w1,w0,r028); (w0,w1,r128)} [32]

44. Ham_Max {(w14,w04,r028);(w04,w14,r128)} [32]

45. Hammer_L {(w08);(r028);(w18);(r128)} [32]

46. Hammer
{(w0);(w1b

1000,R-b(r0),r1b,C-b(r0),r1b,w0b);(w1);
 (w0b

1000,R-b(r1),r0b,C-b(r1),r0b,w1b)}
[22]

47. HamW {(w0);(w1b
16,C-b(r0),w0b);(w1);(w0b

16,C-b(r1),w1b)} [22]

48. Ham5R {(w0);(w1,r15);(w0,r05);(w1,r15);(w0,r05)} [32]

49. Ham5W {(w0);(w05,r0);(w15,r1);(w05,r0);(w15,r1)} [32]

50. Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)}

51. Random {?(w?,r?)} [32]

30 Memory Test Algorithms

Note that the list of memory test algorithms cannot be

assumed to be complete; however the most common

algorithms are included.

Two types of test algorithms can be distinguished

concerning addressing sequence: one-dimensional and more-

dimensional algorithms. One-dimensional algorithms access

one cell after another (marching algorithms), while more-

dimensional algorithms are hopping through the cell array

(galloping pattern), e.g. GALPAT. Marching algorithms are

predominantly data oriented test pattern, and galloping

patterns are primarily address oriented [10]. A galloping

pattern performs a typical “ping-pong action” between one

base cell and each other cell. More-dimensional algorithms are

complex and more difficult to realize as often two nested

address counters are needed, but the expected fault coverage

of those pattern is expected to be very high [10]. In scope of

this analysis, only one-dimensional algorithms could be taken

into account, as the embedded BIST which is used for the

study only supported one-dimensional march tests.

Figure 3.1. Addressing of one- and more-dimensional test algorithms

The examples given in Fig. 3.1 are showing a one-

dimensional and a more-dimensional addressing sequence.

The one-dimensional algorithm accesses one cell after the

other, the more-dimensional example shows a GALPAT test

linear non-linear

C D E F

8 9 A B

4 5 6 7

0 1 2 3

C D E F

8 9 A B

4 5 6 7

0 1 2 3

3.3 Algorithmic Test Parameters 31

algorithm with cell 5 as base cell. At first the base cell is

accessed by a write or read operation always prior to any

other cell. The addressing sequence in this example is:

“505152… …5F5”. Two independent,

nested addressing sequences are used that make GALPAT

complex. GALPAT is a 2-dimensional test algorithm.

The sequence of one- or more-dimensional addressing is

given by the algorithm itself and is part of the SOS.

3 . 3 A l g o r i t h m i c T e s t P a r a m e t e r s

Additional to the SOS of memory test algorithms,

additional algorithmic test parameters are used to influence

the test performance and improve the detectability of faults

[5]. Algorithmic Test Parameters are directly linked to the

performance of test algorithms. They influence the addressing

and test data of the algorithm. These parameters are:

 address direction

 addressing mode

 data background

All of these algorithmic parameters can be combined

independently of each other.

3.3.1 Address Direction

The address direction denotes the order of incrementing

and decrementing the row and column address. Either the

row address or column address can be incremented

(decremented) first. Hence, there are two types of address

direction.

32 Memory Test Algorithms

Fast-x addressing increments (decrements) the row

address first [33]. Fast-x is also known as fast-row because the

row address changes faster than the column address.

Fast-y addressing increments (decrements) the column

address first. It is also named fast-column because each step

goes to the next column [33].

In Fig.3.2 ,the address directions of fast-x and fast-y are

illustrated at a 4x4 memory array with addresses 0 to F.

Figure 3.2. Addressing directions

3.3.2 Addressing Mode

The addressing mode defines the counting sequence of

addressing the memory cells. Addressing modes are:

 linear

 2i (power of i)

 Grey code

 address complement

The addressing sequences of different addressing modes

are illustrated in Fig. 3.3. The physical address layout for each

example corresponds to the linear addressing mode. The

numbering of the cell is showing the sequence.

C D E F

8 9 A B

4 5 6 7

0 1 2 3

C D E F

8 9 A B

4 5 6 7

0 1 2 3

fast-x (fast-row) fast-y (fast-column)

3.3 Algorithmic Test Parameters 33

Figure 3.3. Address modes

Linear addressing accesses the memory cells along a row

or column linearly one after another. This addressing mode is

easy to realize and often used. The more complex addressing

modes change the order of accessing the cells in specific ways.

Power of i (POI, 2i) addressing [34, 35] accesses the 2nd (21),

4th (22), 8th (23) … cell next, depending on i. In Fig. 3.3, 2i

addressing is illustrated for i = 1. With POI, the position of the

least significant bit (LSB) of the address can be varied. The

exponent i denotes the position of the LSB in the address.

Grey code addressing uses the sequence of Grey to access

the cells [36]. One property of Grey addressing is a Hamming

distance of one; that means that only one bit of the address

changes from one step to the next. Hence, this mode could be

useful for testing on address decoder faults in asynchronous

SRAMs. To achieve this, each single address bit needs to be

checked separately to meet the internal timing constraints of

the memory.

In contrast to Grey, address complement [34, 35] has the

maximum hamming distance. With each step, all bits of the

address are changed and additionally incremented

(decremented) in each second step. So, each address is

followed by its one’s complement. The sequence for address

complement shown in Fig. 3.3 is: 0  F  1  E  ….

C D E F

8 9 A B

4 5 6 7

0 1 2 3

C D

E F

8 9

A B

4 5

6 7

0 1

2 3

linear

C D E F

8 9 A B

4 5 6 7

0 1 2 3

C

D

E

F

8

9

A

B

4

5

6

7

0

1

2

3

2
i
 (power of i) Grey-code address complement

34 Memory Test Algorithms

3.3.3 Data Background

The data background describes the pattern that inverts or

non-inverts the data written to the memory. It can be

described as a mask laying on the memory array. Data

backgrounds are [21, 24, 36]:

 solid

 row-stripe

 column-stripe

 checkerboard

The illustration in Fig. 3.4 shows the pattern of non-

inverted (‘0’) and inverted (‘1’) data for these four data

backgrounds.

Figure 3.4. Data background patterns

These four data backgrounds are most regular and most

common. However, any other pattern would also be possible.

Due to a hardware bug in our tested memories, column-stripe

and checkerboard could not be realized accurately. The

background we used as column-stripe and checkerboard

always combines two columns. The patterns are illustrated in

Fig. 3.5.

solid row-stripe column-stripe checkerboard

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1

0 0 0 0

1 1 1 1 0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0 0

0 0

1 1

1 1

0 0

0 0

1 1

1 1

3.4 Environmental Parameters 35

Figure 3.5. Buggy background patterns

3 . 4 E n v i r o n m e n t a l P a r a m e t e r s

Additional to algorithmic parameters, environmental test

parameters are influencing the test performance [37] and are

used as stress parameters for the test. These parameters are

given by the test environment and are:

 temperature

 supply voltage

 clock frequency

The environmental parameters are independent of the test

algorithm and also of algorithmic parameters. They are also

called non-algorithmic parameters. It depends on the test

environment, which of the non-algorithmic stress parameters

can be applied to the test. In the scope of this work, variations

of temperature and supply voltage are taken into account. The

frequency is not varied, but the tests are always performed at

highest speed.

column-stripe checkerboard

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

C ha pte r 4

Tes t E nv ir o nme nt a nd Se tup

The study is completely done during full productive

memory testing. In this chapter, the basic techniques, software

and hardware for memory testing are described. In particular

the properties of the Infineon MBIST and the test strategy as a

result of these properties are explained. Furthermore, the

existing productive memory test flow is described where the

study tests are included, and the way of data acquisition is

explained as part of the test strategy.

38 Test Environment and Setup

4 . 1 M e m o r y T e s t i n g

Two methods are well known for memory testing: MSIST

(Memory Software-Implemented Self-Test, software based)

and MBIST (Memory Built-In Self-Test, hardware based). Both

are commonly used for productive memory tests and both

have their specific advantages and disadvantages.

4.1.1 MSIST

In a software based memory test solution, a memory test

program is executed via CPU [10] and the test patterns are

written to the memory under test (MUT). The advantages of

the so called Memory Software-Implemented Self-Test

(MSIST) are high flexibility concerning test pattern update

and easy implementation, as no additional logic is needed.

However, the MUT needs to be accessible via CPU. Especially

in large and complex SoCs smaller memories are eclipsed by

logic and hence are not testable via MSIST. The program

memory is also hardly testable in this way, because the read

access may be limited and the write access may even be

impossible. In contrast, the data memory is usually freely

accessible by write and read operations.

A block diagram of a DUT containing several SRAMs is

shown in Fig. 4.1. The test program is stored in a ROM and

executed by the CPU on the SRAMs. Smaller SRAMs may not

be accessible via CPU.

4.1 Memory Testing 39

Figure 4.1. DUT block diagram using MSIST

4.1.2 MBIST

The hardware based Memory Built-In Self-Test (MBIST) is

realized as an additional logic attached to each memory block,

which controls the algorithmic test sequences on the memory

cells. A MBIST can be implemented in different ways: micro-

coded BIST or finite state machine BIST [10]. The BIST used

for this study is a finite state machine (FSM) BIST. It basically

consists of several registers and one or more finite state

machines. Via the registers, the MBIST is configurable, while

the test sequence is performed by the FSM. The advantages of

MBIST are direct access to memories without CPU usage and

the possibility of full speed testing. Also, even small memories

that are not directly accessible via CPU can be tested via

MBIST. A block diagram showing a device using MBISTs is

given in Fig. 4.2.

CPU

ROM

SRAM

SRAM

SRAM

SRAM

40 Test Environment and Setup

Figure 4.2. DUT block diagram using MBIST

Fig. 4.2 shows a device under test (DUT) with several

SRAMs and MBISTs connected. One MBIST is attached to each

SRAM, and the MBISTs are connected to the outside of the

DUT to configure the test parameters and read the test results.

The CPU is not in use for MBIST testing.

4 . 2 M B I S T P L U S

At Infineon a proprietary design of MBIST called

MBISTPLUS [32, 38] (previous: MBIST+) is used for

automotive microcontroller devices. MBISTPLUS is a

configurable BIST that is able to perform predefined tests but

also allows to program own algorithmic march tests and select

a couple of algorithmic test parameters. Registers are available

to configure the test settings and to store the test results.

CPU

SRAM

SRAM

MBIST

M
B

IS
T

M

B
IS

T

M
B

IS
T

SRAM

SRAM

MBIST
Interface

4.2 MBISTPLUS 41

If no own parameters are set, the standard setting (RESET

configuration) automatically performs the following tests:

 SCAN, linear, fast-y, row-stripe

 SCAN, linear, fast-y, column-stripe

 SCAN, linear, fast-y, solid

 SCAN, linear, fast-y, checkerboard

 March C+, linear, fast-y, solid

However, the tests of the RESET configuration are only a

very small part of potentially possible tests. In the scope of this

project, two generations of MBISTPLUS have been taken into

account: MBISTPLUS V3.0 and MBISTPLUS V4.2. Both

versions have been analyzed concerning their properties and

potentially possible tests prior to implementing a study test

set. These properties of MBISTPLUS are summarized in

table 4.1.

Table 4.1. Properties of MBISTPLUS

Parameters MBISTPLUS V3.0 MBISTPLUS V4.2

Algorithms one-dimensional, marching
(lengths of ME ≤ 6)

one-dimensional, marching
(lengths of MEs ≤ 6)
GAL5R, GAL9R, Hammer,
Random

Addressing Mode linear linear, 2i, Grey-Code,
Address Complement

Address Direction fast-x, fast-y fast-x, fast-y

Data Background solid, row-stripe, column-
stripe, checkerboard

solid, row-stripe, column-
stripe, checkerboard

Self Timing read timing, write timing,
weak write driver

Both versions of MBISTPLUS are able to perform one-

dimensional marching algorithms where the length of single

march elements is restricted to at most six operations.

Furthermore, address directions fast-x and fast-y, as well as

four data backgrounds solid, row-stripe, column-stripe and

42 Test Environment and Setup

checkerboard are supported. While MBISTPLUS V3.0 only

supports linear addressing, MBISTPLUS V4.2 additionally

contains the addressing modes POI, Grey-code and address

complement. MBISTPLUS V4.2 also allows to perform

predefined 2-dimensional algorithms GAL5R and GAL9R,

and has special registers to configure explicit hammering and

random tests.

As only one-dimensional march algorithms are supported

as self configurable test algorithms, the possible number of

different algorithms is restricted by this fact. Hence, a

selection of 30 algorithms that can be used with MBISTPLUS

is given in Table 4.2.

Table 4.2. Memory test algorithms

Algorithm Sequence

1 SCAN {(w0);(r0);(w1);(r1)}

2 SCAN+ {(w0);(r0);(w1);(r1);(w0);(r0);(w1);(r1)}

3 MATS {(w0);(r0,w1);(r1)}

4 MATS+ {(w0);(r0,w1);(r1,w0)}

5 MATS++ {(w0);(r0,w1);(r1,w0,r0)}

6 March C- {(w0);(r0,w1);(r1,w0);(r0,w1);(r1,w0);(r0)}

7 March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)}

8 March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)}

9 Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)}

10 March C+ {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0); (r0)}

11 PMOVI {(w0);(r0,w1,r1);(r1,w0,r0);(r0,w1,r1);(r1,w0,r0)}

12 March 1/0 {(w0);(r0,w1,r1);(r1,w0,r0);(w1);(r1,w0,r0); (r0,w1,r1)}

13 March TP {(w0);(r0,w1);(r1,w0);(r0,w1,r1);(r1,w0,r0)}

14 March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0)}

15 March X {(w0);(r0,w1);(r1,w0);(r0)}

16 March Y {(w0);(r0,w1,r1);(r1,w0,r0);(r0)}

17 March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)}

18 March LA
{(w0);(r0,w1,w0,w1,r1);(r1,w0,w1,w0,r0);(r0,w1,w0,w1,r1);
 (r1,w0,w1,w0,r0);(r0)}

19 March RAW
{(w0);(r0,w0,r0,r0,w1,r1);(r1,w1,r1,r1,w0,r0);(r0,w0,r0,r0,w1,r1);
 (r1,w1,r1,r1,w0,r0);(r0)}

20 March RAW1 {(w0);(w0,r0);(r0);(w1,r1);(r1);(w1,r1);(r1);(w0,r0);(r0)}

21 March AB
{(w1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);
 (r0,w1,r1,w1,r1);(r1)}

22 March AB1 {(w0);(w1,r1,w1,r1,r1);(w0,r0,w0,r0,r0)}

23 March BDN
{(w0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);
 (r1,w0,r0,w0,r0);(r0)}

24 March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)}

25 March SS
{(w0);(r0,r0,w0,r0,w1);(r1,r1,w1,r1,w0);(r0,r0,w0,r0,w1);
 (r1,r1,w1,r1,w0);(r0)}

4.2 MBISTPLUS 43

Table 4.2. Memory test algorithms (cont.)

Algorithm Sequence

26 BLIF {(w0);x(w1,r1,w0);(w1);x(w0,r0,w1)}

27 Ham5R {(w0);(w1,r15);(w0,r05);(w1,r15);(w0,r05)}

28 Ham5W {(w0);(w05,r0);(w15,r1);(w05,r0);(w15,r1)}

29 March G
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0);
 D;(r0,w1,r1);D;(r1,w0,r0)}

30 Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)}

With the selection of test algorithms and the properties of

MBISTPLUS, a specific number of different tests can be

combined and executed by the two version of MBISTPLUS

used in this project. To estimate the quality of MBISTPLUS,

the potential of each version of MBISTPLUS is analyzed.

4.2.1 Potential of MBISTPLUS V3.0

With 30 algorithms of Table 4.2, and the properties listed

in Table 4.1, the following parameters can be configured in

MBISTPLUS V3.0:

 30 one-dimensional test algorithms

 1 addressing mode

 2 addressing directions

 4 data backgrounds

Hence, the total number of possibly configurable tests is:

 24042130  (1)

Any of these possible tests could be combined to a test set.

If any combination is considered, the maximum number of

possible test sets is:

 2402 (7210) (2)

44 Test Environment and Setup

Even though only four parameters are configurable in

MBISTPLUS V3.0, an enormous number of possible tests and

test sets are possible. This shows that the RESET configuration

which is used by default is not even close to the potential of

the MBIST.

4.2.2 Potential of MBISTPLUS V4.2

With MBISTPLUS V4.2 even more parameters can be

configured than in MBISTPLUS V3.0. Especially the

configurable self timing enables an immense number of

additional possibilities. The self timing parameters read

timing, write timing and weak write driver are configurable

by a 14-bit register. The setting influences the timing in such

way, that read and write switching times are shifted and

corner cases become faulty. With 14 bit, a number of 214 self

timing settings are possible. Hence, the parameters of

MBISTPLUS V4.2 are:

 30 one-dimensional test algorithms

 4 addressing modes

 2 address directions

 4 data backgrounds

 214 self timing configurations

 4 additional sequencer tests (GAL5R, GAL9R, Hammer,

Random)

The possible number of configurable tests is

   157286444242430 14  (3)

and the theoretical possible number of test sets is

 215728644 (4)

4.3 Burn-In 45

Both, the number of possible tests and test sets far exceed

the possibilities of productive memory testing.

4 . 3 B u r n - I n

Burn-In [39] is part of quality assurance of memory devices

to detect latent faulty devices that would fail in long-term

usage. In Fig. 4.3 the well known bathtub curve [40] and its

three phases of life time (infant mortality, useful life time, and

wear-out) is shown.

Figure 4.3. Bathtub curve

Aim of Burn-In is to keep the phase of early failures as

short as possible, and delay the wear-out phase as much as

possible to extend the phase of useful life time that has the

minimum failure rate. During Burn-In the devices are exposed

to high voltage and temperature stresses that cause artificial

aging [1, 41]. Aging causes slowing down switching

operations of transistors in the SRAM cell. Latent faults may

be caused by weak transistors or marginal values of resistance

F
a
ilu

re
 R

a
te

Life Time

early

failures

useful
life

time

wear-out

46 Test Environment and Setup

within a memory cell, causing setup and hold time violations

[1]. Latent faults occur sporadically and need to be stabilized

in order to be detected safely.

Faults that become detectable due to Burn-In are often

caused by sensitive design or process variation [2]. Latent

faults become detectable early and can be sorted out. Hence,

the detection of latent faults then decreases the phase of early

failures and delays the wear-out phase at the same time.

However, the delay of wear-out is less important as the

economical lifetime of an electronic device is often shorter [1].

In Fig. 4.3, the bathtub curve is shown, and the effects of Burn-

In (broken line) are illustrated.

4 . 4 T e s t S t r a t e g y

The objectives of the project are to analyze the effectiveness

of memory test algorithms and test set optimization. That

means to combine effective test algorithms into test sets, such

that the number of detected faults is as high as possible while

test time is as low as possible at the same time.

The main strategy of the project is to use statistical analysis

of productive test results to achieve knowledge about the

faults that occur. In contrast to previous studies, the fault

models are unknown in productive testing and the simple fail

information of which algorithm detected a fault and which

did not combined with the information about algorithmic and

environmental test parameters is used to analyze the faulty

behavior and to conclude possible functional fault models.

The test algorithms for the study have to be placed into the

productive test flow of memories and the results have to be

stored and provided for the analysis. In order to achieve a

meaningful outcome of the study, the number of test results

has to be representative. Hence, a large number of different

test algorithms should be performed over a long period of

productive testing to gather a sufficient number of test results.

4.5 Test Setup 47

Both, tests and data acquisition needed to be inserted into the

industrial, full productive test flow.

The test strategy of the study is based on the so called

“Kitchen-Sink-Principle” [6]. Any test should be applied to

achieve the maximum number of test results; i.e. it is taken

anything but the kitchen sink as the starting point of the

analysis. Due to the fact that the maximal number of tests is

applied at once, any analysis is possible. The application of a

reduced set or independent sets would mean that not all

relationships could be analyzed.

It is necessary to apply as many algorithms as possible to

as many devices and memories as possible to achieve a

meaningful statistical basis. In difference to theory, the fault

models that appear during testing are unknown, and so the

selection of efficient algorithms cannot be based on theoretical

relations between fault models and test algorithms. This study

used the experimental results as starting point to analyze the

efficiency of test algorithms and to draw conclusions on

possible fault models from the statistical analysis.

4 . 5 T e s t S e t u p

To achieve a sufficient number of test results for a

meaningful statistical analysis, a study test set was placed into

the productive test flow for embedded memories of

microcontroller devices. For this analysis, a product was

chosen that has been in full production, because a high

throughput and hence a large number of test results could be

expected.

48 Test Environment and Setup

4.5.1 Tested Devices and Memories

For the study, Infineon TC1797 automotive

microcontroller devices have been used. The TC1797

controller is a 32-bit microcontroller of 130 nm technology

which contains MBISTPLUS V3.0. For all tests, the maximum

frequency of 180MHz was used. The productive throughput

of those devices has been high enough to obtain enough test

results. During the time, the test data have been gathered,

hundreds of thousands of devices have been tested.

Each TC1797 controller contains thirteen embedded

SRAMs of different size that were accessible via MBIST. The

memories are sized between 1.38kB and 128kB and the total

size of the tested memories is 261.56KB per device. Because of

their size, instruction memory (PMI, 40kB) and data memory

(DMI, 128kB) are most important for the study. A block

diagram [42] of TC1797 is shown in Fig. 4.4.

Figure 4.4. TC1797 block diagram

4.5 Test Setup 49

From the data given above, the necessary test time can be

calculated according to formula (5), where memory_size (n) is

261.56kB, frequency (f) is 180MHz and test_length and

delay_time (D) depend on the test set. This is the pure test time

without any time for setup, configuration of MBISTPLUS or

read and storing time.

 TT=
test_length∙memory_size

frequency
+ delay_time (5)

4.5.2 Study Test Set

According to the properties and possibilities of

MBISTPLUS V3.0, a large study test set was combined of test

algorithms and algorithmic test parameters. The conditions of

the study test set are summarized in Table 4.3.

Table 4.3. Study test set

Algorithm
Test
Length

Algorithmic Parameter

fast-x (fx) fast-y (fy)

so rs cs cb so rs cs cb

1 SCAN 4n + + + + + + + +

2 SCAN+ 8n + + + + + + + +

3 MATS 4n + + + + + + + +

4 MATS+ 5n + + + + + + + +

5 MATS++ 6n + + + + + + + +

6 March C- 10n + + + + + + + +

7 March A 15n + + + + + + + +

8 March B 17n + + + + + + + +

9 Algorithm B 17n + + + + + + + +

10 March C+ 14n + + + + + + + +

11 PMOVI 13n + + + + + + + +

12 March 1/0 14n + + + + + + + +

13 March TP 11n + + + + + + + +

14 March U 14n + + + + + + + +

15 March X 6n + + + + + + + +

50 Test Environment and Setup

Table 4.3. Study test set (cont.)

Algorithm
Test
Length

Algorithmic Parameter

fast-x (fx) fast-y (fy)

so rs cs cb so rs cs cb

16 March Y 8n + + + + + + + +

17 March LR 14n + + + + + + + +

18 March LA 22n + + + + + + + +

19 March RAW 26n + + + + + + + +

20 March RAW1 13n + + + + + + + +

21 March AB 22n + + + + + + + +

22 March AB1 11n + + + + + + + +

23 March BDN 22n + + + + + + + +

24 March SR 14n + + + + + + + +

25 March SS 22n + + + + + + + +

26 BLIF 8n + + + + - - - -

27 Ham5R 25n + - - - + - - -

28 Ham5W 25n + - - - + - - -

29 March G 23n+2D + + + + + + + +

30 Ham_Walk 15n + + + + + + + +

A ‘+’ denotes that the algorithm was combined with the

corresponding parameters, while a ‘-‘ denotes that the

corresponding parameter was not applied. The algorithmic

parameters are address direction (fast-x and fast-y), and four

data backgrounds solid (so), row-stripe (rs), column-stripe (cs)

and checkerboard (cb). The test length is the number of

operation per algorithms and hence denotes the duration of a

test in n.

Algorithm BLIF (#26) is only executed with fast-x

addressing as it is especially designed for bit-line imbalance

faults, and the two hammer tests Ham5R and Ham5W (#27

and #28) are only executed with solid data background.

In total, 224 different tests are performed by the study test

set with a total length of 16D
f

n
3092 (test_length = 3092,

delay_time = 16D with D = 100ms)). The test time for each

cycle of the whole test set applied to all memories is then:

4.5 Test Setup 51

 2.75s100ms16
180MHz

32kB

81024
261.56kB

TTcycle 






3092

 (6)

Note that the memories are accessed wordwise, so, 32Bits

are always accessed in parallel and the memory size that is

used for calculating the test time is converted.

4.5.3 Test Environment

Embedded memories of a product are tested several times

at different stages of production. One of these tests is the so

called IBIS (Interconnect Built-In Self-Test) flow [43]. The IBIS

flow is placed after wafer test and packaging (see Fig. 4.5).

That means that only devices that already have passed wafer

testing appear in this study. And the faults that can be

detected either slipped wafer testing or came into existence

after wafer test or packaging.

IBIS is an innovative test solution that integrates test and

Burn-In in one system [44]. The DUTs are placed on a Burn-In

board which is put into a Burn-In oven for a period of 12

hours. Via the Burn-In board, the DUTs are connected to the

outside and hence are controllable and testable.

Figure 4.5. Memory test flow

Wafer Test

Packaging

IBIS Flow

Bin Bin

pass

fail
fail

pass

52 Test Environment and Setup

4.5.4 Test Flow

The study test set was integrated into the IBIS flow and is

performed seven times during the IBIS flow at different

environmental conditions before and after Burn-In and high

voltage stress [45]. The IBIS flow is part of the productive test

plan and had to be taken as given for the project. The relevant

part of the test flow is shown in Fig. 4.6. Each block of tests is

identified by a test number (TN), where the same set of tests

was applied, however at different environmental test

conditions. The test numbers and corresponding

environmental conditions temperature and supply voltage are

given in Table 4.4 and Fig. 4.7.

Figure 4.6. Test flow

TN 1522
+125 °C, 1.35 V

TN 1622
+125 °C, 1.80 V

HV Stress & Burn-In

TN 6531
+145 °C, 1.35 V

TN 6631
+145 °C, 1.80 V

TN 4441
+25 °C, 1.30 V

TN 4541
+25 °C, 1.80 V

TN 3741
-40 °C, 1.30 V

TN 3841
-40 °C, 1.50 V

TN 3941
-40 °C, 1.80 V

A

A

4.5 Test Setup 53

Table 4.4. Test numbers and environmental conditions

Test Number Temperature Voltage

3741 -40°C 1.30V

3841 -40°C 1.50V

3941 -40°C 1.80V

4441 +25°C 1.30V

4541 +25°C 1.80V

1522 +125°C 1.35V

1622 +125°C 1.80V

6531 +145°C 1.35V

6631 +145°C 1.80V

Figure 4.7 Test numbers and environmental conditions

There are only two tests cycles performed before Burn-In

(TN 1522 and TN 1622), all other tests are performed after

Burn-In.

The fact that the test set is performed repeatedly at

different environmental conditions before and after Burn-In,

allows to analyze the influence of those conditions on the test

results. The test number is used to identify the different test

conditions.

145°C

125°C

25°C

-40°C

1.30V 1.35V 1.50V 1.80V

T

V

TN 6531 TN 6631

TN 1522 TN 1622

TN 4541

TN 3941 TN 3841 TN 3741

TN 4441

54 Test Environment and Setup

An important note is that all the tests of the study were

included into the IBIS flow. That means that all faults that are

recognized in this study are either affected by Burn-In or the

high voltage stress during the test flow, or have slipped

through wafer test.

4.5.5 Data Acquisition

IBIS flow as well as MBISTPLUS has not been designed for

such a large data analysis as in this project. So, the

comprehensive test result data have to be buffered several

times. During the tests, the fail information of each single test

algorithm that is executed is stored as a fail bit in a register of

MBISTPLUS. To clear the register for the next cycle, all fail bits

of the previous cycle have to be buffered on the device. For

this purpose a previously tested and fault free memory was

used. After all tests are finished, the whole buffered fail

information is readout by the IBIS system and the raw data are

written to a test result file (TRF). However, the information of

the TRF is highly compressed.

For further analysis, the information has to be reprocessed

and the test data are written to a SQL database for more

comfortable handling. The SQL database then contains all fail

information in combination with any information about test

parameters (test number, environmental parameters and

algorithmic parameters). Thus, each fault can exactly be

identified and related to the conditions it occurred.

In Fig. 4.8, the process of testing and data acquisition is

illustrated as a block diagram.

4.5 Test Setup 55

Figure 4.8. IBIS flow and data acquisition

The analysis of the test results is done by pure data mining

of the information in the SQL database. Due to the detailed

storage of data, the information can be combined to any query

on relationship of algorithm, faults and parameters. The

database does not contain any false positive results. False

positive results could be caused by communication errors or

test program errors that cause the test to fail, even though no

memory error occurred. The pre-processing of the data

ensures that only true faults (i.e. only fails caused by memory

faults) are entered into the database.

IBIS Flow

Burn-In

&
Test

MUT / DUT

TRF

Test Control
MBIST Configuration

Database

C ha pte r 5

Fa ul t C o ve rag e of Te s t Alg o r i thms

In productive memory testing the efficiency of test

algorithms is essential. The productive test time has to be kept

short and the fault coverage has to be as high as possible at the

same time. Hence, the selection of tests for a productive test

set highly depends on the efficiency of test algorithms and test

sets.

In this chapter the performance of single algorithms, based

on their fault coverage at different environmental conditions,

and on the other hand also the efficiency of combinations of

two algorithms is analyzed. Both results are used to classify

the algorithms with similar properties concerning the

coverage of specific fault models, and to estimate the

distribution of those fault models within the test results.

58 Fault Coverage of Test Algorithms

5 . 1 D e f i n i t i o n s

In this section, terms that are used for the analysis will be

explained.

5.1.1 Fault Coverage

The fault coverage (FC) of a test or algorithm is the number

of faults detected, related to the total number of faults. The

fault coverage is then given as a percentage. The FC shows the

amount of faults that a specific test or algorithm detects, and

allows comparing the efficiency of single tests to each other.

The higher the FC of a test or algorithm is, the more efficient

it is.

The following aspects are considered for the analysis:

 fault coverage at specific environmental conditions

 fault coverage of single test algorithms (at constant

environmental conditions)

5.1.2 Test

A test is defined as the combination of test algorithm (see.

chapter 3.2), algorithmic (chapter 3.3) and environmental test

parameters (chapter 3.4), where the environmental test

parameters are given as test number (see Table 4.4). These are

the minimum requirements to perform a memory test.

5.1.3 Test Set

A test set is a sequence of two or more tests performed as

a group.

5.2 Fault Coverage at Different Environmental Conditions 59

5 . 2 F a u l t C o v e r a g e a t D i f f e r e n t

E n v i r o n m e n t a l C o n d i t i o n s

The fault coverage of the test varies with environmental

test conditions. In this analysis, the effects of temperature and

supply voltage are analyzed. The different conditions can be

identified by the test number. According to Table 4.4 and Fig.

4.7, for each test number (i.e. for each combination of

temperature and supply voltage), the number of detected

faults is determined; and also the number of faults that are

exclusively detected at these test conditions. Hence, the fault

coverage could be determined for each combination of

environmental test conditions.

5.2.1 Test Results

The results of this analysis are given in Table 5.1. In total,

2712 faults are analyzed. This is the maximum number of

faults detected by all tests. So, for the following analysis, it is

assumed that 2712 faults refer to 100% fault coverage,

although there may be additional faults that could not be

detected by any test of the set. For each test number, and

hence, environmental test condition and cumulated over all

test algorithms, the number of faults (# of faults) is determined

and also the number of those faults that are detected

exclusively (# of faults excl.), i.e. only with these test

conditions. Additional to test numbers, the environmental

parameters supply voltage (V) and temperature (T), and also

FC for each TN are included in Table 5.1.

60 Fault Coverage of Test Algorithms

Table 5.1. Fault coverage per test number

 before BI after Burn-In

TN 1522 1622 6531 6631 3741 3841 3941 4441 4541

V 1.35 1.80 1.35 1.80 1.30 1.50 1.80 1.30 1.80

T +125 +125 +145 +145 -40 -40 -40 +25 +25

of faults 617 56 2439 175 237 70 46 165 25

of faults
(excl.)

4 1 811 48 37 0 12 3 0

FC (total) 22,60% 2,03% 60,03% 4,68% 7,37% 2,58% 1,25% 5,97% 0,92%

FC (excl.) 0,15% 0,04% 29,90% 1,77% 1,36% 0,00% 0,44% 0,11% 0,00%

The fault coverage is graphically shown in Fig. 5.1, and the

ratio of fault coverage and exclusive faults is given in Fig. 5.2.

For both diagrams, 100% refers to the total number of 2712

faults.

Figure 5.1. Fault coverage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

F
a
u

lt
 C

o
v
e
ra

g
e

1.30 (1.35) V 1.50 V 1.80 V

-40 °C

+25 °C

+125 °C

+145°C

Voltage

Temperature

5.2 Fault Coverage at Different Environmental Conditions 61

Figure 5.2. Fault coverage and exclusive faults

Fig. 5.2 shows the total fault coverage for each test number

and the part of faults that are detected exclusively as hachured

area.

5.2.2 Data Evaluation

The highest fault coverage can be observed at TN6531

(1.35V / +145°C). 2439 of 2712 faults are detected (89,9%), while

the fault coverage of all other test number is significantly

lower. The coverage of TN1522, which takes place at nearly

the same environmental conditions (1,35V / +125°C) is only at

23%. In this case, the effect of Burn-In becomes visible that

increases the fault coverage comparing the results of TN1522

before and TN6531 after Burn-In. For the same reason, the

number of exclusive faults is highest at TN6531. However, the

artificial aging dependent effects of Burn-In on the fault

coverage will be analyzed and described in more detail in

Chapter 8.

Here, the effects of temperature and supply voltage are of

interest. Comparing the results shown in Fig. 5.1, one can see

that the fault coverage increases with increasing temperature

and decreasing supply voltage. However, the effect is much

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

TN1522 TN1622 TN6531 TN6631 TN3741 TN3841 TN3941 TN4441 TN4541

F
a
u

lt
 C

o
v
e
ra

g
e

Tests after Burn-InTests before Burn-In

62 Fault Coverage of Test Algorithms

more pronounced with increasing temperature. Both causes a

relatively higher fault coverage in the corner of low supply

voltage and high temperature, and a low fault coverage in the

corner of high supply voltage and low temperature. These

corner cases are also called “slow corner” and “fast corner”

respectively, because “cell delay increases with decreasing

voltage and increasing temperature” [46]. This is because the

environmental conditions temperature and voltage influence

the timing of transistors [41]. The increase of fault coverage in

the slow corner is much more pronounced, while the effect of

the fast corner is hardly visible. The voltage dependent effect

could be expected as similar results have been shown in

previous investigations [33].

An interesting fact is that, concerning the tests performed

at low supply voltage, the fault coverage decreases with

decreasing temperature as expected, but increases again a

little at lowest temperature (supply voltage: 1.30V,

temperature: -40°C).

In conclusion, the effects of temperature variation during

tests are significantly recognizable, while the effects of supply

voltage variation are lower in comparison. Nevertheless, both

causes an increase of fault coverage in the slow corner, which

means that the highest fault coverage is recognized at

maximum temperature (+145°C) and low supply voltage

(1.35V). High temperature testing is very effective to detect

many faults and even exclusive faults. Nevertheless, at room

and low temperature also exclusive faults are detected, so that

testing at different environmental conditions is not avoidable.

5.3 Fault Coverage of Test Algorithms 63

5 . 3 F a u l t C o v e r a g e o f T e s t A l g o r i t h m s

Each test algorithm is able to detect a couple of functional

fault models. The number of faults that is detected by an

algorithm denotes its fault coverage. In this section the fault

coverage of the single algorithms within the study test set are

analyzed and the effectiveness of these algorithms is

evaluated.

Due to the fact, that the test set is performed seven times

at different environmental conditions, there are also seven

different test results for the fault coverage of the test

algorithms. The results of TN6531 are most meaningful; first,

because this test gives the most results (2439 faults) and

second, the test is performed after Burn-In and thus also

includes the effects of Burn-In.

So, the results of TN6531 will be evaluated in this chapter,

and the results of all other tests are included in Appendix A.

5.3.1 Test Results

The number of faults for the 30 algorithms within the study

test set and additionally for RESET configuration at TN6531 is

given in Table 5.2. The total number of faults at this test is

2439. The column ‘exclusive’ gives the number of faults

uniquely detected with the particular algorithm. The fault

coverage is summarized in Fig. 5.3, where 100% refers to 2439

faults.

64 Fault Coverage of Test Algorithms

Table 5.2. Fault coverage of algorithms

Algorithm |F| FC
exclusive

faults

Total 2439 100%

SCAN 684 28,0% 0

SCAN+ 727 29,8% 0

MATS 937 38,4% 0

MATS+ 1047 42,9% 0

MATS++ 1037 42,5% 0

March C- 1092 44,8% 0

March A 1109 45,5% 0

March B 1148 47,1% 1

Algorithm B 1908 78,2% 0

March C+ 1074 44,0% 0

PMOVI 1093 44,8% 0

March 1/0 1083 44,4% 0

March TP 1110 45,5% 0

March U 1909 78,3% 1

March X 1067 43,7% 0

March Y 1056 43,3% 0

March LR 1921 78,8% 1

March LA 1414 58,0% 1

March RAW 1563 64,1% 4

March RAW1 1020 41,8% 0

March AB 1402 57,5% 0

March AB1 792 32,5% 5

March BDN 1429 58,6% 0

March SR 1898 77,8% 0

March SS 1115 45,7% 0

BLIF 1047 42,9% 0

Ham5R 783 32,1% 10

Ham5W 473 19,4% 0

March G 1232 50,5% 4

Ham_Walk 2063 84,6% 22

RESET 540 22,1% 0

5.3 Fault Coverage of Test Algorithms 65

Figure 5.3. Fault coverage of algorithms

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SCAN

SCAN+

MATS

MATS+

MATS++

March C-

March A

March B

Algorithm B

March C+

PMOVI

March 1/0

March TP

March U

March X

March Y

March LR

March LA

March RAW

March RAW1

March AB

March AB1

March BDN

March SR

March SS

BLIF

Ham5R

Ham5W

March G

Ham_Walk

RESET

Fault Coverage

66 Fault Coverage of Test Algorithms

5.3.2 Evaluation of Fault Coverage

Fig. 5.3 clearly shows that none of the algorithms is able to

detect all faults. The highest fault coverage is reached with

Algorithm Ham_Walk at about 83%. Four other algorithms,

Algorithm B, March LR, March U and March SR, are also

outstanding and similar in their fault coverage with about

79%. Apparently these five algorithms seem to cover a couple

of different fault models that appear frequently in the tested

memories.

Traditional test algorithms (SCAN trough March Y) show

much lower fault coverage in the range of 28% to 47%. Here,

fewer different fault models are covered. Other recent

algorithms like March RAW, March AB or March DN,

which have been developed with regard to dynamic fault

models [20, 8, 28] are showing a higher fault coverage of

nearly 60%. However, the relationship of algorithms and

related fault models becomes not clear from this analysis. An

estimation of the functional fault models that occur will be

given in the following sections.

Comparing the fault coverage of the single test algorithms

with the result of RESET (standard configuration of

MBISTPLUS, see Chapter 4.2) shows two big issues. The fault

coverage of the RESET configuration is 22%, although the

same tests have already been performed during wafer test. So,

the faults that are detected in this analysis slipped through

wafer testing (if detected before Burn-In) or occurred due to

Burn-In. The expected result of RESET at that time in the test

flow should be zero. Hence, these faults are either caused by

the packaging process or by differences in the environmental

parameters of the test. However, the occurrence of faults with

RESET shows that the RESET configuration is far from the

necessary test configuration for sufficient fault coverage.

Many more faults could be detected with a more efficient

combination of test algorithms.

5.3 Fault Coverage of Test Algorithms 67

This evaluation is done for TN6531, i.e. at environmental

conditions high temperature and low voltage. For all other test

numbers, the results are summarized in Appendix A.

A similar distribution of fault coverage over the test

algorithms can be observed for each test number. Especially

dynamic fault related algorithms are showing high fault

coverage independently of environmental conditions.

Particularly at TN3841 (nominal voltage and low

temperature), these outstanding algorithms are clearly visible

as traditional algorithms are showing an extremely low fault

coverage. As the voltage is at nominal value for these tests, the

effect seems highly temperature dependent. For the other test

series at low temperature (TN3741 at low voltage and TN3941

at high voltage), the fault coverage of traditional algorithms is

much higher. However, the distribution of fault coverage of

test algorithms is not significantly changed due to

environmental conditions. Hence, similar test sets should be

distributed for all environmental test conditions.

The analysis of the faults coverage of single test algorithms

shows how effective an algorithm is independently from

others. This is not yet sufficient to create an efficient set of

tests, as for example two good performing tests could cover

the same faults and would not improve the overall fault

coverage. Therefore the effectiveness of pairs of algorithms is

analyzed later in this chapter.

5.3.3 Unique Faults

Besides the total fault coverage of test algorithms, special

attention should be paid to unique faults. Unique faults are

exclusively detected by only one test algorithm. The coverage

of unique faults is listed in Table 5.2 as exclusive faults per

algorithm. The most exclusive faults are detected by

Ham_Walk (22 unique faults) followed by Ham5R (10 unique

faults). In these cases, obviously fault models appear that are

68 Fault Coverage of Test Algorithms

very special and can only be detected by special SOSs of

specific test algorithms. Ham5R is the only algorithm

containing five consecutive read operations in a march

element. For the unique faults, this specific hammering

sequence seems to be the crucial SOS that causes the cell to flip

[47]. For algorithm Ham_Walk the following considerations

have been done to describe reasons for the detection of unique

faults. Ham_Walk is the only algorithm in the set that contains

read-after-read back-to-back operations:

 … (r0,…, r0) …

 and (7)

 … (r1,…, r1) …

That means the last operation on one cell is read ‘0’ (resp.

read ‘1’), which is immediately followed again by read ’0’

(read ‘1’) as first operation on the next cell. This SOS is very

effective in detecting dynamic and timing related faults such

as some address decoder delay faults, slow sense amplifier

faults and slow pre-charge circuits. A specific explanation is

not possible at that point because additionally to the SOS,

algorithmic parameters are playing an important role.

Especially the data background would be of special interest,

but an detailed analysis of single devices would have been

necessary to determine the exact circumstances.

As this is characteristic for Ham_Walk in the set of

algorithms, it can be assumed that the 22 unique faults

detected by Ham_Walk are related to one of these fault

models. However, from the test database, no physical defects

could be analyzed. For a closer evaluation and confirmation

of specific fault models, the corresponding faulty devices

needed to be analyzed in detail.

Also, the other unique faults seem to be related to dynamic

faults. The specific SOS of Ham5R is a five times sequential

read operation. This explicit hammering on one cell seems to

activate and detect unique dynamic faults. The consecutive

5.4 Influence of Algorithmic Test Parameters 69

access to one cell causes the cell to flip after a certain number

of operations [47]. Each read operation decreases the charge

of the memory cell until the cell flips after a certain number of

sequential reads as the cell has no time to recover. The

algorithms March RAW (4 unique faults) and March AB1 (5

unique faults) are also developed with scope on dynamic

faults [20, 8]. The importance of dynamic faults in new SRAM

technologies and the properties of March RAW, based on

experimental test results, have already been shown in [48].

These algorithms are also accessing one cell sequentially

without changing its value, however read and write

operations are mixed. In these cases the sequentially and

repeated access may cause the cell to flip as recovery time is

too low.

The single unique faults of March B, March U, March LR

and March LA could not be allocated to a specific SOS or

specific fault model without a closer analysis of single

memories.

5 . 4 I n f l u e n c e o f A l g o r i t h m i c T e s t

P a r a m e t e r s

The use of different algorithmic test parameters has an

influence on the fault coverage of each test algorithm. In Table

4.3 the combinations of algorithmic parameters are listed for

all algorithms. Except for BLIF, Ham5R and Ham5W, the

algorithms are used with eight different combinations of

algorithmic parameters: address directions fast-x (fx) and fast-

y (fy) with data backgrounds solid (so), row-stripe (rs),

column-stripe (cs) and checkerboard (cb).

The fault coverage of the test algorithms, subdivided into

the results for each combination of algorithmic parameters, is

given in Table 5.3. The results are graphically summarized in

Fig 5.4. It was not possible to split up the results for each

70 Fault Coverage of Test Algorithms

combination of environmental parameters, as the analysis tool

did not support to distinguish between too many test

parameters at once. So, the results of all test numbers are

cumulated and 100% FC refers to 2712 faults.

Table 5.3. Fault coverage of algorithmic test parameters

Algorithm Algorithmic Test Parameters

 fx_so fx_rs fx_cs fx_cb fy_so fy_rs fy_cs fy_cb

SCAN 12% 15% 21% 25% 11% 11% 24% 23%

SCAN+ 14% 16% 23% 27% 13% 13% 26% 26%

MATS 16% 15% 35% 26% 14% 14% 30% 24%

MATS+ 19% 15% 35% 25% 17% 15% 31% 25%

MATS++ 18% 14% 35% 25% 17% 15% 33% 25%

March C- 23% 19% 39% 29% 21% 19% 36% 30%

March A 22% 19% 39% 30% 21% 19% 38% 31%

March B 19% 20% 39% 32% 22% 18% 40% 31%

Algorithm B 23% 20% 69% 32% 21% 20% 69% 32%

March C+ 24% 20% 38% 30% 22% 20% 37% 31%

PMOVI 23% 20% 39% 30% 21% 20% 37% 31%

March 1/0 23% 19% 38% 29% 22% 19% 36% 30%

March TP 22% 19% 41% 30% 20% 18% 37% 31%

March U 24% 21% 69% 32% 23% 21% 69% 34%

March X 20% 16% 36% 26% 17% 17% 31% 26%

March Y 20% 16% 36% 27% 19% 17% 35% 27%

March LR 20% 21% 70% 33% 20% 21% 71% 34%

March LA 35% 29% 47% 39% 33% 28% 46% 40%

March RAW 40% 32% 50% 42% 38% 31% 50% 43%

March RAW1 20% 17% 33% 29% 18% 15% 34% 28%

March AB 34% 28% 47% 39% 32% 28% 45% 39%

March AB1 29% 21% 8% 8% 26% 21% 8% 8%

March BDN 35% 29% 47% 39% 32% 28% 47% 39%

March SR 19% 20% 68% 33% 20% 20% 69% 33%

March SS 24% 21% 39% 30% 23% 20% 38% 13%

BLIF 2% 1% 40% 4% - - - -

Ham5R 36% - - - 33% - - -

Ham5W 23% - - - 20% - - -

March G 29% 25% 45% 37% 27% 24% 44% 37%

Ham_Walk 23% 27% 71% 33% 23% 27% 69% 33%

5.4 Influence of Algorithmic Test Parameters 71

Figure 5.4. Fault coverage of algorithmic parameters

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SCAN

SCAN+

MATS

MATS+

MATS++

March C-

March A

March B

Algorithm B

March C+

PMOVI

March 1/0

March TP

March U

March X

March Y

March LR

March LA

March RAW

March RAW1

March AB

March AB1

March BDN

March SR

March SS

BLIF

Ham5R

Ham5W

March G

Ham_Walk

Fault Coverage

fx_so fx_rs fx_cs fx_cb fy_so fy_rs fy_cs fy_cb

72 Fault Coverage of Test Algorithms

Fig. 5.4 shows the fault coverage for each combination of

test algorithm and algorithmic parameters. The fault coverage

of Algorithm B, March U, March LR, March SR and

Ham_Walk with column-stripe data background,

independently of address directions fast-x and fast-y, is most

outstanding, but not with any other combination of

algorithmic parameters. The fault coverage of these tests is

nearly at 70%, while the other combinations of algorithmic

parameters only show a fault coverage of about 20% to 30%. It

is also remarkable that only these five algorithms are best with

only one type of data background. Obviously column-stripe

data background is most effective, but only for those

algorithms. Algorithm B, March U, March LR, March SR and

Ham_Walk are of similar structure and of similar fault

coverage. These algorithms contain specific march sequences

to detect coupling or linked faults (see Chapter 6.4.2).

Apparently, column-stripe data background supports the

properties of these algorithms. Due to the constant pattern

along one column, and so along the bit-lines, it is likely to

assume that these faults are caused by bit-line fails, e.g.

crosstalk. For a closer determination, the statistical analysis is

not sufficient. A more detailed analysis of single devices could

determine the fault in more detail. A similar outstanding

effect of one specific data background cannot be observed

with any other test algorithm.

In general, the most effective data backgrounds are

column-stripe and checkerboard for all algorithms, except

March AB1. Here, solid and row-stripe data background are

more effective; however, the overall fault coverage of

March AB1 is relatively low. Unfortunately, this effect cannot

be explained with the test results of this project. A more

detailed analysis or simulation that also considers the memory

structure and layout would have been necessary for an

explanation.

The difference in the usage of fast-x and fast-y is less

significant than that of different data backgrounds.

5.5 Summary and Conclusions 73

Comparing the results in Table 5.3, the fault coverage is little

higher with fast-x addressing, but it cannot be said to be much

more efficient.

As seen with March AB1, the effects of environmental test

parameters are highly dependent on the memory structure

and layout. Scrambling and mirroring may cause the

differences in the results. So, the results of this analysis can

only be related to those products that have been tested and

cannot be generalized. For a general statement about the

effectiveness of environmental test parameters, a more

comprehensive analysis should be done on different products

and memories of different structure and layout. However, as

a result of this analysis, the most effective data backgrounds

are column-stripe and checkerboard. For these data

backgrounds, the background pattern alternates with each

column. It is assumed that crosstalk between adjacent cells is

then stronger and the different charges influence each other,

so that more faults become visible with column-stripe and

checkerboard data background.

5 . 5 S u m m a r y a n d C o n c l u s i o n s

The test algorithms have been evaluated separately, and

the effectiveness of each algorithm is determined by its fault

coverage. The more faults are detected by an algorithm, i.e.

the higher its fault coverage, the more effective it is.

Additionally, the influence of algorithmic test parameters

addressing mode and data background is analyzed and

effective test parameters are determined.

A few test algorithms are outstanding regarding fault

coverage: Algorithm B, March U, March LR, March SR and

Ham_Walk are those algorithms with highest fault coverage

and so are most effective. Considering algorithmic test

parameters, especially the five algorithms mentioned above,

the best results are achieved with column-stripe or

74 Fault Coverage of Test Algorithms

checkerboard data background independently of the

addressing mode. For very simple tests that only use one test

algorithm (e.g. for startup tests), one of these algorithms is

recommended.

C ha pte r 6

E f f i c ie nc y of Tes t Alg o r i thms

The efficiency of single test algorithms is not a sufficient

base to create an efficient set of tests. The combination of

algorithms needs to be analyzed separately. Two algorithms

could be efficient on their own, but a combination of both

algorithms does not improve the overall efficiency, if both

algorithms detect the same faults.

Hence, the algorithms of the study test set are compared to

each other and the efficiency and similarity of these pairs is

determined. A method is described, that allows to classify

similar algorithms based on their algorithmic structure and on

the results of the analysis on efficiency, and a simple way is

defined to find small and efficient test sets on base of statistical

test results. As an outcome of this analysis and the

classification of algorithms and faults, the distribution of fault

models within the test results of this study is determined.

76 Efficiency of Test Algorithms

6 . 1 D e f i n i t i o n s

To compare the efficiency of test algorithms, the theory of

sets is used to describe the relation of number of faults, union,

intersection and subsets of faults. Therefore, the set of faults

detected by an algorithm is defined as F and the elements of

this set are the single faults. For example, set FU contains all

faults detected by algorithm March U.

Two basic methods are used to compare the faults detected

by two test algorithms: the ratio of intersection to union as

degree for efficiency, and the consideration of subsets of faults

as description of complete or partial coverage.

Both are used to describe the efficiency of pairs of

algorithms and to classify algorithms with similar properties

into sets based on statistical data analysis.

6.1.1 Union and Intersection

To define the efficiency of a pair of algorithms, it needs to

be determined how many faults are detected twice and how

many faults are detected newly by each algorithm. The theory

of sets is used to determine union and intersection from the

number of faults |F|, which is the cardinality of F. The union

is the combined number of fault detected by two algorithms,

and the intersection is the part of faults detected twice by both

algorithms. If the number of faults of two algorithms “1” and

“2” are |F1| and |F2|, intersection (I) and union (U) are

defined as (see also Fig. 6.1):

21 FFI  (8)

21 FFU  (9)

6.1 Definitions 77

Figure 6.1. Union and intersection

Efficiency means that as many faults as possible should be

detected but the number of faults detected twice should be at

minimum. So, a pair of algorithms is said to be efficient if the

intersection is low but the union is high at the same time. A

comparison of intersection and union is needed to describe the

efficiency, and so, the ratio of intersection to union is taken as

a degree for efficiency. This quotient is called quotient of

efficiency QEff and is defined as:

U

I
QEff  (10)

QEff is then within the range of 0 to 1. Small intersection

and large union means that few faults are detected twice, but

the overall fault coverage is high. For this case, QEff goes to

zero. This combination of algorithms is efficient for a test set,

as due to the effort of a second algorithm (additional test time)

the total fault coverage increases.

If the intersection is large and approaches the union, QEff

goes to one. The combination of algorithms is inefficient

Union

U = F1F2

F2

F1

Intersection

I = F1F2

78 Efficiency of Test Algorithms

because the additional effort of a second algorithm would

hardly improve the total fault coverage, but a lot of faults are

detected twice. These two cases are illustrated in Fig. 6.2.

Figure 6.2. Efficiency of pairs of algorithms

QEff as defined in (10) is only correct if F1 and F2 are of same

cardinality. If the fault coverage is very different, the value QEff

would be falsified. To correct this, the cardinalities |F1| and

|F2| are taken into account as correction factor for QEff. QEff is

then defined as:

2

1
Eff

F

F

U

I
Q  (11)

where |F1| > |F2|.

Hence, for each pair of algorithms QEff can be determined

and the efficiency of the algorithms can be stated. In the

following sections, QEff is calculated for each pair of

algorithms and listed in a table. For better perceptibility, the

values of QEff are represented by different background colors.

This color key is given in Fig 6.3.

QEff → 0
efficient combination

QEff → 1
inefficient combination

6.1 Definitions 79

Figure 6.3. Color key

There is a continuous color scale from red (QEff  1) to

green (QEff  0), where yellow denotes QEff = 0.75, and three

special cases that are illustrated in Fig. 6.4.

If no overlapping of the two sets of faults occurs, i.e. if the

intersection is zero, then QEff is zero. This case would be most

efficient. In contrast, if the sets of faults are totally

overlapping, QEff is one. In this case the faults detected by one

algorithm are covered by the other set of faults, while the

cardinality may be both, different (|F1| < |F2|) or the sets are

even the same (F1# = F2). These cases would be most inefficient.

Figure 6.4. Special cases of union and intersection

QEff  1 QEff  0 QEff = 0.75

QEff = 1 and |F1| < |F2|

QEff = 1 and F1 = F2

QEff = 0

QEff = 0
|I| = 0

|U| = |F1| + |F2|

QEff = 1
I = F1
U = F2

QEff = 1
I = U = F1 = F2

80 Efficiency of Test Algorithms

The color helps to evaluate the results quickly and easily,

and to get a pretty good impression which combinations are

efficient and which are not.

6.1.2 Subsets and Coverage

For a more precise classification of algorithms, QEff on its

own is not sufficient enough. It needs to be considered if the

fault coverage of one algorithm is a subset of another one, or

if it is the same. For both cases, QEff  1, or even QEff = 1, the

number of faults detected by both algorithms is compared and

the following cases are distinguished.

The number of faults of the first algorithm |F1| is lower

than that of the second one |F2|, i.e. |F1| < |F2|. If so, F1 is a

proper subset of F2, if QEff = 1 (F1  F2), and approximately a

subset of F2, if QEff  1 (F1 ~ F2).

If F1 = F2 for QEff = 1, and F1 ≈ F2, if QEff  1, then the sets are

the same resp. approximately the same, and so are the

properties of algorithms one and two. These four cases are

illustrated in Fig. 6.5.

6.2 Evaluation Method 81

Figure 6.5. Subsets of fault coverage

Based on these definitions of efficiency and the subsets of

fault coverage, the test results could be evaluated.

6 . 2 E v a l u a t i o n M e t h o d

The analysis of QEff and sets and subsets of faults is used to

derive efficient pairs of test algorithms for memory test sets.

At first, QEff is calculated for each pair of algorithms and the

results are listed. As different background colors are used to

represent QEff, a quick and easy analysis of the table can be

done, and efficient pairs can easily be identified. This method

is easy and allows establishing small test sets of two

algorithms in a very simple way. For comprehensive test sets

containing more algorithms, the analysis of only QEff is not

sufficient. To achieve the comparison of more algorithms, they

are grouped into sets with similar properties, where different

QEff = 1

21 F F 

QEff = 1

F1 = F2

QEff  1

21 F F ~

QEff  1

F1 ≈ F2

82 Efficiency of Test Algorithms

functional fault models are allocated to each group. This

classification and allocation is done by analyzing QEff and

subsets of fault coverage within the test results on the one

hand, and by analyzing characteristic sequences of march

elements and allocated fault models on the other hand. So,

two independent ways are used, statistical data mining, and

deterministic analysis of march elements and test algorithms.

The combination of both allows to select efficient

combinations of test algorithms which are able to detect as

many different faults as possible but avoid redundant testing

by avoiding similar test algorithms at the same time.

6 . 3 E f f i c i e n t P a i r s o f A l g o r i t h m s

All algorithms in this study are compared with each other

pairwise and QEff is derived to determine efficient

combinations. This method is suitable for a direct comparison

of two algorithms based on statistical data analysis without

further knowledge about properties of test algorithms.

Furthermore this way is sufficient to find a set of two efficient

algorithms. This section summarizes the test results and

shows how to evaluate these data.

6.3.1 Test Results

Due to the fact that at TN6531 most faults are detected and

hence, the statistical analysis is most meaningful, the test

results of TN6531 are presented in this section.

For each pair of algorithms the test results are taken and

number of faults |F|, intersection |I| and union |U| are

determined. The results are listed in Table 6.1.

6.3 Efficient Pairs of Algorithms 83

Table 6.1. Effectiveness of pairs of algorithms

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

6
8
4

6
6
1

6
5
1

6
5
9

6
5
6

6
7
9

6
8
0

6
8
2

6
7
9

6
7
1

6
6
3

6
6
5

6
7
3

6
8
1

6
6
1

6
5
8

6
8
0

6
7
8

6
7
2

6
6
3

6
7
0

2
5
9

6
7
9

6
8
0

6
7
9

2
0

2
5
8

1
3

6
8
4

6
8
0

S

C
N

7
5
0

7
2
7

6
7
8

6
8
5

6
8
3

7
1
6

7
1
9

7
1
9

7
1
6

7
0
0

6
9
8

6
9
5

7
1
2

7
1
6

6
9
0

6
8
0

7
1
8

7
1
3

7
0
1

6
9
6

7
1
0

2
5
8

7
1
1

7
1
9

7
0
7

1
8

2
5
8

1
2

7
2
7

7
1
7

S

C
N

P

9
7
0

9
8
6

9
3
7

8
8
5

8
9
0

9
0
0

9
0
6

9
1
5

9
2
6

8
8
1

8
8
5

8
8
4

9
0
6

9
2
4

8
7
9

8
7
2

9
1
6

8
9
7

8
8
8

8
5
9

8
8
9

2
8
0

9
0
4

9
1
4

8
8
8

2
1
2

2
7
3

2
6

9
2
8

9
2
8

M

T
S

1
0
7
2

1
0
8
9

1
0
9
9

1
0
4
7

9
8
3

9
9
2

1
0
0
0

1
0
0
6

1
0
2
7

9
7
8

9
7
1

9
8
3

9
9
0

1
0
3
2

9
9
0

9
7
2

1
0
2
8

9
9
9

9
9
4

9
3
3

9
8
8

3
6
1

1
0
0
4

1
0
1
9

9
8
5

3
0
3

3
5
4

8
6

1
0
2
6

1
0
3
3

M

T
S

P

1
0
6
5

1
0
8
1

1
0
8
4

1
1
0
1

1
0
3
7

9
8
9

1
0
0
2

1
0
0
2

1
0
2
2

9
7
6

9
6
9

9
8
2

9
9
0

1
0
2
0

9
7
7

9
7
6

1
0
1
6

1
0
0
1

9
9
6

9
4
3

9
9
0

3
5
2

1
0
0
0

1
0
1
1

9
8
7

2
9
8

3
4
6

8
5

1
0
2
2

1
0
2
6

M

T
S

P
P

1
0
9
7

1
1
0
3

1
1
2
9

1
1
4
7

1
1
4
0

1
0
9
2

1
0
3
2

1
0
4
4

1
0
7
1

1
0
1
5

1
0
1
5

1
0
1
8

1
0
2
9

1
0
7
0

1
0
0
0

9
8
0

1
0
6
6

1
0
4
4

1
0
3
0

9
6
4

1
0
3
4

3
6
7

1
0
4
5

1
0
5
9

1
0
3
3

3
0
7

3
6
9

1
0
0

1
0
7
7

1
0
7
3

C

M

1
1
1
3

1
1
1
7

1
1
4
0

1
1
5
6

1
1
4
4

1
1
6
9

1
1
0
9

1
0
6
9

1
0
8
8

1
0
1
5

1
0
1
7

1
0
1
7

1
0
4
5

1
0
8
3

1
0
1
1

1
0
0
0

1
0
8
2

1
0
5
3

1
0
3
6

9
7
9

1
0
4
0

3
6
5

1
0
5
7

1
0
8
0

1
0
2
9

3
1
0

3
5
5

8
8

1
0
9
4

1
0
8
6

A

1
1
5
0

1
1
5
6

1
1
7
0

1
1
8
9

1
1
8
3

1
1
9
6

1
1
8
8

1
1
4
8

1
1
1
6

1
0
2
9

1
0
3
2

1
0
3
0

1
0
5
2

1
1
1
1

1
0
2
6

1
0
1
2

1
1
1
2

1
0
6
9

1
0
5
9

9
9
0

1
0
5
7

3
7
1

1
0
7
8

1
1
0
9

1
0
4
9

3
3
5

3
6
5

9
3

1
1
1
7

1
1
1
5

B

1
9
1
3

1
9
1
9

1
9
1
9

1
9
2
8

1
9
2
3

1
9
2
9

1
9
2
9

1
9
4
0

1
9
0
8

1
0
6
5

1
0
6
6

1
0
6
7

1
0
8
1

1
8
3
4

1
0
4
6

1
0
3
8

1
8
4
2

1
1
8
7

1
2
1
5

1
0
0
5

1
1
8
2

4
9
0

1
1
9
3

1
8
1
8

1
0
8
7

1
0
0
3

4
6
5

1
7
8

1
1
7
1

1
8
6
8

A

lg
B

1
0
8
7

1
1
0
1

1
1
3
0

1
1
4
3

1
1
3
5

1
1
5
1

1
1
6
8

1
1
9
3

1
9
1
7

1
0
7
4

1
0
1
5

1
0
2
0

1
0
1
9

1
0
6
6

9
8
7

9
9
4

1
0
6
1

1
0
4
0

1
0
3
4

9
6
5

1
0
3
6

3
7
4

1
0
5
1

1
0
6
0

1
0
3
4

3
2
8

3
7
4

1
0
3

1
0
5
7

1
0
6
7

C

P

1
1
1
4

1
1
2
2

1
1
4
5

1
1
6
9

1
1
6
1

1
1
7
0

1
1
8
5

1
2
0
9

1
9
3
5

1
1
5
2

1
0
9
3

1
0
2
0

1
0
2
2

1
0
6
6

9
8
1

9
8
3

1
0
6
9

1
0
3
9

1
0
3
1

9
6
1

1
0
3
0

3
7
4

1
0
4
8

1
0
6
6

1
0
2
9

3
3
4

3
7
4

1
0
4

1
0
6
5

1
0
7
1

P
M

O
V

I

1
1
0
2

1
1
1
5

1
1
3
6

1
1
4
7

1
1
3
8

1
1
5
7

1
1
7
5

1
2
0
1

1
9
2
4

1
1
3
7

1
1
5
6

1
0
8
3

1
0
2
1

1
0
6
5

9
8
4

9
9
7

1
0
6
5

1
0
4
4

1
0
4
2

9
5
8

1
0
4
1

3
7
5

1
0
4
8

1
0
6
3

1
0
3
3

3
3
1

3
7
3

1
0
4

1
0
6
1

1
0
6
8

1
/0

1
1
2
1

1
1
2
5

1
1
4
1

1
1
6
7

1
1
5
7

1
1
7
3

1
1
7
4

1
2
0
6

1
9
3
7

1
1
6
5

1
1
8
1

1
1
7
2

1
1
1
0

1
0
8
1

9
9
6

9
8
5

1
0
8
2

1
0
4
9

1
0
4
4

9
6
6

1
0
3
8

3
6
2

1
0
5
9

1
0
7
5

1
0
2
9

3
2
2

3
6
1

9
6

1
0
8
6

1
0
8
7

T
P

1
9
1
2

1
9
2
0

1
9
2
2

1
9
2
4

1
9
2
6

1
9
3
1

1
9
3
5

1
9
4
6

1
9
8
3

1
9
1
7

1
9
3
6

1
9
2
7

1
9
3
8

1
9
0
9

1
0
5
1

1
0
3
7

1
8
4
2

1
1
8
7

1
2
1
4

1
0
0
8

1
1
8
2

4
9
3

1
2
0
3

1
8
2
4

1
0
9
0

1
0
0
8

4
6
6

1
8
0

1
1
6
9

1
8
7
5

U

1
0
9
0

1
1
0
4

1
1
2
5

1
1
2
4

1
1
2
7

1
1
5
9

1
1
6
5

1
1
8
9

1
9
2
9

1
1
5
4

1
1
7
9

1
1
6
6

1
1
8
1

1
9
2
5

1
0
6
7

9
7
8

1
0
3
8

1
0
0
4

1
0
0
6

9
5
5

1
0
1
0

3
7
2

1
0
2
2

1
0
3
3

1
0
0
1

3
0
7

3
6
3

8
8

1
0
4
4

1
0
4
8

X

1
0
8
2

1
1
0
3

1
1
2
1

1
1
3
1

1
1
1
7

1
1
6
8

1
1
6
5

1
1
9
2

1
9
2
6

1
1
3
6

1
1
6
6

1
1
4
2

1
1
8
1

1
9
2
8

1
1
4
5

1
0
5
6

1
0
3
5

1
0
0
7

1
0
1
1

9
5
1

1
0
0
2

3
7
1

1
0
2
1

1
0
2
8

9
9
9

3
1
7

3
6
2

9
3

1
0
3
4

1
0
3
7

Y

1
9
2
5

1
9
3
0

1
9
4
2

1
9
4
0

1
9
4
2

1
9
4
7

1
9
4
8

1
9
5
7

1
9
8
7

1
9
3
4

1
9
4
5

1
9
3
9

1
9
4
9

1
9
8
8

1
9
5
0

1
9
4
2

1
9
2
1

1
1
8
4

1
2
1
6

1
0
0
6

1
1
7
9

4
9
1

1
2
0
1

1
8
2
7

1
0
9
5

1
0
1
8

4
6
7

1
8
1

1
1
6
8

1
8
8
0

L
R

1
4
2
0

1
4
2
8

1
4
5
4

1
4
6
2

1
4
5
0

1
4
6
2

1
4
7
0

1
4
9
3

2
1
3
5

1
4
4
8

1
4
6
8

1
4
5
3

1
4
7
5

2
1
3
6

1
4
7
7

1
4
6
3

2
1
5
1

1
4
1
4

1
3
4
4

9
8
3

1
3
3
4

6
2
6

1
3
5
5

1
1
8
9

1
0
6
9

4
1
7

5
9
9

3
2
5

1
1
0
3

1
2
4
6

L
A

1
5
7
5

1
5
8
9

1
6
1
2

1
6
1
6

1
6
0
4

1
6
2
5

1
6
3
6

1
6
5
2

2
2
5
6

1
6
0
3

1
6
2
5

1
6
0
4

1
6
2
9

2
2
5
8

1
6
2
4

1
6
0
8

2
2
6
8

1
6
3
3

1
5
6
3

9
7
9

1
3
3
1

7
4
3

1
3
5
0

1
2
1
5

1
0
7
2

4
6
2

7
3
1

4
4
9

1
0
9
7

1
2
7
9

R

A
W

1
0
4
1

1
0
5
1

1
0
9
8

1
1
3
4

1
1
1
4

1
1
4
8

1
1
5
0

1
1
7
8

1
9
2
3

1
1
2
9

1
1
5
2

1
1
4
5

1
1
6
4

1
9
2
1

1
1
3
2

1
1
2
5

1
9
3
5

1
4
5
1

1
6
0
4

1
0
2
0

9
8
7

3
6
1

9
9
7

1
0
0
3

9
8
1

2
8
3

3
5
0

8
2

1
0
0
7

1
0
1
2

R

A
W

1

1
4
1
6

1
4
1
9

1
4
5
0

1
4
6
1

1
4
4
9

1
4
6
0

1
4
7
1

1
4
9
3

2
1
2
8

1
4
4
0

1
4
6
5

1
4
4
4

1
4
7
4

2
1
2
9

1
4
5
9

1
4
5
6

2
1
4
4

1
4
8
2

1
6
3
4

1
4
3
5

1
4
0
2

6
2
8

1
3
4
8

1
1
8
3

1
0
6
2

4
2
4

5
9
5

3
1
7

1
1
0
3

1
2
4
6

A

B

1
2
1
7

1
2
6
1

1
4
4
9

1
4
7
8

1
4
7
7

1
5
1
7

1
5
3
6

1
5
6
9

2
2
1
0

1
4
9
2

1
5
1
1

1
5
0
0

1
5
4
0

2
2
0
8

1
4
8
7

1
4
7
7

2
2
2
2

1
5
8
0

1
6
1
2

1
4
5
1

1
5
6
6

7
9
2

6
3
2

4
9
8

3
8
6

2
4
0

6
3
9

4
0
7

3
8
8

5
4
6

A

B
1

1
4
3
4

1
4
4
5

1
4
6
2

1
4
7
2

1
4
6
6

1
4
7
6

1
4
8
1

1
4
9
9

2
1
4
4

1
4
5
2

1
4
7
4

1
4
6
4

1
4
8
0

2
1
3
5

1
4
7
4

1
4
6
4

2
1
4
9

1
4
8
8

1
6
4
2

1
4
5
2

1
4
8
3

1
5
8
9

1
4
2
9

1
1
9
9

1
0
7
7

4
2
7

6
0
2

3
2
5

1
1
1
0

1
2
6
1

B

D
N

1
9
0
2

1
9
0
6

1
9
2
1

1
9
2
6

1
9
2
4

1
9
3
1

1
9
2
7

1
9
3
7

1
9
8
8

1
9
1
2

1
9
2
5

1
9
1
8

1
9
3
3

1
9
8
3

1
9
3
2

1
9
2
6

1
9
9
2

2
1
2
3

2
2
4
6

1
9
1
5

2
1
1
7

2
1
9
2

2
1
2
8

1
8
9
8

1
0
8
5

9
9
9

4
6
9

1
8
4

1
1
6
7

1
8
5
1

S

R

1
1
2
0

1
1
3
5

1
1
6
4

1
1
7
7

1
1
6
5

1
1
7
4

1
1
9
5

1
2
1
4

1
9
3
6

1
1
5
5

1
1
7
9

1
1
6
5

1
1
9
6

1
9
3
4

1
1
8
1

1
1
7
2

1
9
4
1

1
4
6
0

1
6
0
6

1
1
5
4

1
4
5
5

1
5
2
1

1
4
6
7

1
9
2
8

1
1
1
5

3
4
9

3
8
9

1
1
5

1
0
8
1

1
0
9
6

S

S

1
7
1
1

1
7
5
6

1
7
7
2

1
7
9
1

1
7
8
6

1
8
3
2

1
8
4
6

1
8
6
0

1
9
5
2

1
7
9
3

1
8
0
6

1
7
9
9

1
8
3
5

1
9
4
8

1
8
0
7

1
7
8
6

1
9
5
0

2
0
4
4

2
1
4
8

1
7
8
4

2
0
2
5

1
5
9
9

2
0
4
9

1
9
4
6

1
8
1
3

1
0
4
7

2
1
8

1
7
9

3
7
4

1
0
2
7

B

L
IF

1
2
0
9

1
2
5
2

1
4
4
7

1
4
7
6

1
4
7
4

1
5
0
6

1
5
3
7

1
5
6
6

2
2
2
6

1
4
8
3

1
5
0
2

1
4
9
3

1
5
3
2

2
2
2
6

1
4
8
7

1
4
7
7

2
2
3
7

1
5
9
8

1
6
1
5

1
4
5
3

1
5
9
0

9
3
6

1
6
1
0

2
2
1
2

1
5
0
9

1
6
1
2

7
8
3

4
5
8

3
8
3

5
0
0

H

a
m

5
R

1
1
4
4

1
1
8
8

1
3
8
4

1
4
3
4

1
4
2
5

1
4
6
5

1
4
9
4

1
5
2
8

2
2
0
3

1
4
4
4

1
4
6
2

1
4
5
2

1
4
8
7

2
2
0
2

1
4
5
2

1
4
3
6

2
2
1
3

1
5
6
2

1
5
8
7

1
4
1
1

1
5
5
8

8
5
8

1
5
7
7

2
1
8
7

1
4
7
3

1
3
4
1

7
9
8

4
7
3

1
0
8

2
1
2

H

a
m

5
W

1
2
3
2

1
2
3
2

1
2
4
1

1
2
5
3

1
2
4
7

1
2
4
7

1
2
4
7

1
2
6
3

1
9
6
9

1
2
4
9

1
2
6
0

1
2
5
4

1
2
5
6

1
9
7
2

1
2
5
5

1
2
5
4

1
9
8
5

1
5
4
3

1
6
9
8

1
2
4
5

1
5
3
1

1
6
3
6

1
5
5
1

1
9
6
3

1
2
6
6

1
9
0
5

1
6
3
2

1
5
9
7

1
2
3
2

1
1
8
7

G

2
0
6
7

2
0
7
3

2
0
7
2

2
0
7
7

2
0
7
4

2
0
8
2

2
0
8
6

2
0
9
6

2
1
0
3

2
0
7
0

2
0
8
5

2
0
7
8

2
0
8
6

2
0
9
7

2
0
8
2

2
0
8
2

2
1
0
4

2
2
3
1

2
3
4
7

2
0
7
1

2
2
1
9

2
3
0
9

2
2
3
1

2
1
1
0

2
0
8
2

2
0
8
3

2
3
4
6

2
3
2
4

2
1
0
8

2
0
6
3

H

a
m

W
k

84 Efficiency of Test Algorithms

The algorithms of the study test set are listed horizontally

and vertically. The main diagonal contains the number of

faults covered by each algorithm (see also Table 5.2). For each

pair, the intersection is entered above the main diagonal and

the union below.

QEff is calculated for each pair of algorithms according to

formula (11) and is represented as background color

according to the key in Fig 6.3. An uncolored table containing

the values of QEff,, as well as the results for test numbers

during the study are provided in Appendix A.2.

6.3.2 Data Evaluation

With help of Table 6.1, a quick and easy overview is

possible to estimate the effectiveness of pairs of algorithms.

One algorithm can easily be compared to each other by

evaluating the results of one column or row. Each entry in the

table that is marked red or orange denotes a inefficient pair of

algorithms, where yellow and green entries are related to

efficient combinations of algorithms.

Examples of an efficient and an inefficient combination

based on March U are given in Fig. 6.6. March U is compared

to Ham5R on the one hand and to March SR on the other hand.

Figure 6.6. Efficient and inefficient algorithms

For March U combined with Ham5R, the following values

are determined from table 6.1:

March U

Ham5R

March U

March SR

6.3 Efficient Pairs of Algorithms 85

 Fault coverage of March U: |FU| = 1909

 Fault coverage of Ham5R: |F5R| = 783

 Intersection: |I| = 466

 Union: |U| = 2226

QEff for the combination of March U and Ham5R then is:

 51.0
783

1909

2226

466


U

5R

Eff
F

F

U

I
(U,5R)Q (12)

For the combination of March U and March SR, the

following values are determined:

 Fault coverage of March U: |FU| = 1909

 Fault coverage of March SR: |FSR| = 1898

 Intersection: |I| = 1824

 Union: |U| = 1934

QEff for the combination March U with March SR is:

 0.93
1898

1909

1934

1824

F

F

U

I
SR)(U,Q

U

SR
Eff  (13)

The values of QEff are represented in Fig. 5.3 as green

background color for the combination of March U and

Ham5R, and as orange background for March U and

March SR.

Likewise, QEff is derived for each pair of algorithms, and

interpreted as color in Table 6.1. But more than the single

values, the table gives an overview of the efficiency of the

algorithms. The algorithms can be characterized by analyzing

Table 6.1 column by column. Each column represents one

algorithm. If the entries in one column are predominantly

orange or red (e.g. Algorithm B or March U), these algorithms

86 Efficiency of Test Algorithms

are covering most of the other algorithms or are covered by

other algorithms (e.g. SCAN or MATS). In those cases, the

values of union and intersection have to be considered. So, if

algorithms are covering others, they can be assumed to be

more effective than other algorithms. On the other hand, if a

column is predominantly green, the algorithm detects

additional other faults than the remaining algorithms. These

algorithms seem to be March AB1, BLIF, Ham5R and Ham5W.

However, these algorithms are also covered by other ones.

E.g. the column of March AB1 is predominantly green, but the

faults detected by March AB1 are nearly completely covered

by March RAW, which covers 94% of the faults of March AB1

(743 faults of 792). Anyway, this knowledge about coverage is

very helpful for the estimation of faults. A special case occurs

with March G and SCAN resp. SCAN+. Here, March G

completely covers the other algorithms. A combination of

these algorithms in a test set would be useless, as neither

SCAN nor SCAN+ would improve the total fault coverage of

the test set.

Deriving QEff and analyzing the results of Table 6.1 does

not yet consider the coverage of specific fault models. Only

the pure ratio of union, intersection and fault coverage is

taken into account to determine efficient combinations of

algorithms and to provide a base for the further analysis and

classification of test algorithms and functional faults.

However, for simple test sets containing two test algorithms,

the method by comparing QEff for each pair of algorithms in

the study may be sufficient if irredundant testing is desired,

and a quick method should be used to define a simple test set.

6 . 4 C l a s s i f i c a t i o n o f A l g o r i t h m s

The analysis of pairs of algorithms has shown that there

are pairs of algorithms where the set of faults detected by one

algorithm covers that of another algorithm completely or

6.4 Classification of Algorithms 87

partially. Using such a pair of algorithms together in one test

set means redundant testing as one algorithm may replace the

other one, and so unnecessary additional test time would be

needed. This is inefficient in productive memory testing.

Hence, test algorithms with similar fault coverage or similar

properties should be avoided. Therefore the algorithms of this

study are analyzed on their structure and fault coverage and

are classified into groups. Each group of algorithms is then

allocated to a specific group of functional fault models.

The classification is done in two independent ways.

Algorithms of similar structure containing characteristic

march elements can be grouped and allocated to

corresponding sets of functional faults. The information about

characteristic march elements and corresponding functional

fault is taken from literature where march algorithms are

described in detail. On the other hand, the statistical analysis

of test data is taken to group algorithms based on similar fault

coverage and the coverage of subsets of faults.

6.4.1 Similar Fault Coverage and Subsets

For the analysis of similar fault coverage and subsets of

faults, the results of the statistical analysis of productive test

data are taken into account. The structure or structural

properties of march elements are not of interest, but only the

experimental test results are considered. As the test results of

TN6531 are most meaningful, the results of Table 6.1 are taken

for this analysis.

Algorithm , March U, March LR, March SR and

Ham_Walk form a set of similar algorithms. For each pair of

algorithms in this set QEff is derived and entered in Table 6.2

together with |F| of each algorithm on the main diagonal.

88 Efficiency of Test Algorithms

Table 6.2. Fault coverage and QEff

 Alg. B March U March LR March SR Ham_Walk

Algorithm B 1908 0.925 0.933 0.919 0.960

March U 1909 0.932 0.925 0.966

March LR 1921 0.928 0.960

March SR 1898 0.954

Ham_Walk 2063

The number of faults detected by these algorithms is

approximately the same, except for Ham_Walk, where

|FHam_Walk| is bigger than that of the other algorithms.

However, QEff  1 for each pair and is approximately the

same. This means that Ham_Walk covers the other algorithms

in this set:

 |FAlgB| ≈ |FU| ≈ |FLR| ≈ |FSR| (14)

and

 {FAlgB, FU, FLR, FSR} ~ FHam_Walk (15)

These relationships are summarized in Fig 6.7. The Venn

diagrams show the proportion of union and intersection

related to March LR. Any other combination of these

algorithms results in a similar Venn diagram.

Figure 6.7. Venn diagrams I

Algorithm B


March LR

March U


March LR

March SR


March LR

March LR


Ham_Walk

QEff = 0.933 QEff = 0.932 QEff = 0.928 QEff = 0.960
|FAlgB| = 1908
|FLR | = 1921

|I| = 1842
|U| = 1987

|FU | = 1909
|FLR | = 1921

|I| = 1842
|U| = 1988

|FSR| = 1898
|FLR | = 1921

|I| = 1827
|U| = 1992

|FLR | = 1921
|FHamWalk| = 2063

|I| = 1880
|U| = 2104

6.4 Classification of Algorithms 89

The comparison of March LR and Ham_Walk is of special

interest. As described above, the structure of these algorithms

is almost the same. The main difference is given by the RARwa

sequence of Ham_Walk. It should be expected, that March LR

is completely covered by Ham_Walk. However, this is not the

case. A couple of 41 faults are still detected by March LR but

not by Ham_Walk. The reason for that cannot be explained on

base of statistical data analysis. These faults needed to be

analyzed explicitly to exclude variation of operation

conditions (e.g. minimal temperature variance) during the

tests. On the other hand, the faults that are additionally

detected by Ham_Walk can almost certainly be assumed to be

detected by the RARwa sequence. However, any influence by

the test process itself can also not be excluded.

SCAN and SCAN+ are the only algorithms in this analysis,

where the faults are completely covered by March G. The set

of faults detected by SCAN and SCAN+ are even a proper

subset of the faults detected by March G (see Fig. 6.8).

 FSCAN  FG and FSCAN+  FG (16)

Figure 6.8. Venn diagrams II

SCAN


SCAN+

SCAN


March G

SCAN+


March G

xQEff = 0.937 QEff = 1.000 QEff = 1.000
|FSCAN| = 684
|FSCAN+| = 727

|I| = 661
|U| = 750

|FSCAN| = 684
|FG| = 1232

|I| = 684
|U| = 1232

|FSCAN+| = 727
|FG| = 1232

|I| = 727
|U| = 1232

90 Efficiency of Test Algorithms

Although the structure of SCAN is a proper subset of

SCAN+ (see Table 3.2), FSCAN is not a proper subset of FSCAN+.

So there are faults that are detected by SCAN but not by

SCAN+. This is remarkable, as it should be expected that, from

their structure, SCAN+ completely covers SCAN. However, it

cannot be explained, as the statistical analysis is not sufficient

to explain the behavior of single faults. A more

comprehensive analysis of such faulty devices would be

necessary to identify the fault model behind this effect, and to

analyze if such a faulty behavior is repeatable or if it depends

on environmental disturb factors (e.g. variations of

environmental test parameters).

The following results apply for hammering algorithm

Ham5R and Ham5W. Both, Ham5R and Ham5W detect

approximately a subset of those faults detected by

March RAW (see Fig. 6.9).

 FHam5W ~ FHam5R (17)

 {FHam5W, FHam5R} ~ FRAW (18)

Ham5R and March RAW are also compared to Ham_Walk

and it shows up, that there are many faults that are not

detected by Ham_Walk. Obviously there are fault models that

cannot be detected by Ham_Walk but well by March RAW

and Ham5R (Fig. 6.9).

6.4 Classification of Algorithms 91

Figure 6.9. Venn diagrams III

A few algorithms are developed especially for dynamic

faults. In the study test set, these are March RAW,

March RAW1, March AB, March AB1 and March BDN. The

statistical analysis shows that March RAW, March AB and

March BDN are very similar (Fig. 6.10). From [8] and [28] this

could be expected as March AB and March BDN are

developed to detect the same set of dynamic faults as

March RAW. The productive test results confirm this

assumption. So is:

 FAB ≈ FBDN ≈ FRAW (19)

Ham5R


Ham5W

Ham5R


March RAW

Ham5R


Ham_Walk

March RAW


Ham_Walk

QEff = 0.950 QEff = 0.904 QEff = 0.562 QEff = 0.719

|FHam5R| = 783
|FHam5W| = 473

|I| = 458

|U| = 798

|FHam5R| = 783
|FRAW| = 1563

|I| = 731

|U| = 1615

|FHam5R| = 783
|FHamWalk| = 2063

|I| = 500

|U| = 2346

|FRAW| = 1563
|FHamWalk| = 2063

|I| = 1279

|U| = 2347

92 Efficiency of Test Algorithms

Figure 6.10. Venn diagrams IV

Furthermore is:

 FRAW1 ~ FRAW (20)

and

 FAB1 ~ FAB (21)

The fault coverage of March RAW1 is a subset of

March RAW and the March AB1 is a subset of March AB1 (see

Fig. 6.11). It is known from [7] and [8] respectively, that

March RAW1 and March AB1 are related to single-cell

dynamic faults, whereas March RAW and March AB are also

related to two-cell dynamic faults. Hence, the set of faults

allocated to March RAW1 and March AB1 is a subset of the set

of faults allocated to March RAW and March AB. The

assumption that March RAW1 and March AB1 are covered by

March RAW and March AB can so be shown by the

experimental results (Fig. 6.11).

However, the assumption that March AB1 reaches the

same results as March RAW1 [8] cannot be confirmed. The

Venn diagram in Fig. 6.11 shows that the two algorithms are

very different in their fault coverage, and QEff = 0.320 also

shows low similarity. But March AB1 is nevertheless covered

by March RAW. So the set of faults detected by March AB1 is

March AB


March RAW

March BDN


March RAW

March AB


March BDN

QEff = 0.908 QEff = 0.899 QEff = 0.926

|FAB| = 1402
|FRAW| = 1563

|I| = 1331
|U| = 1634

|FBDN| = 1429
|FRAW| = 1563

|I| = 1350
|U| = 1642

|FAB| = 1402
|FBDN| = 1429

|I| = 1348
|U| = 1483

6.4 Classification of Algorithms 93

still a subset of dynamic faults, but March AB1 cannot be used

to replace March RAW1.

Figure 6.11. Venn diagrams V

Another very interesting comparison is the intersection of

SCAN and Ham5W. With QEff = 0.016, this is obviously one of

the most efficient combinations within the test results of this

study. The sets of faults detected by these algorithms are

nearly not overlapping. So, the performance is completely

different, which is important to know as a criterion for

exclusion for the classification of algorithms and allocation of

functional fault models. For an overall test performance,

SCAN and Ham5W seem not to play an important role, as

both are almost covered by March RAW. And March RAW

even covers the combination of both algorithms (see Fig. 6.12).

March RAW1


March RAW

March AB1


March AB

March AB1


March RAW1

March AB1


March RAW

QEff = 0.935 QEff = 0.710 QEff = 0.320 QEff = 0.910
|FRAW1| = 1020
|FRAW| = 1563

|I| = 979
|U| = 1604

|FAB1| = 792
|FAB| = 1402

|I| = 628
|U| = 1566

|FAB1| = 792
|FRAW1| = 1020

|I| = 361
|U| = 1451

|FAB1| = 792
|FRAW| = 1563

|I| = 743
|U| = 1612

94 Efficiency of Test Algorithms

Figure 6.12. Venn diagrams VI

The biggest part of algorithms has a fault coverage which

is approximately a subset of that of Algorithm B, March U,

March LR, March SR or Ham_Walk. The algorithms which are

covered by this set are: SCAN, SCAN+, MATS, MATS+,

MATS++, March A, March B, March C-, March C+, PMOVI,

March 1/0, March TP, March X, March Y, March SS and BLIF.

Furthermore, |FSCAN| and |FSCAN+| are relatively low and is

approximately covered by the other algorithms in this list.

Some algorithms show up to be important in classification

as they stand out in their performance. These algorithms are

March RAW, Ham_Walk, Ham5R and March G. For test set

development, these algorithms are of special interest and

seem to be indispensable.

6.4.2 Characteristic March Elements

In [4, 19], conditions are described that characterize

specific sequences of march elements that are allocated to

specific fault models. Some of these conditions are used to

identify similar test algorithms and to classify them. The

indications of these conditions “5”, “5S”, “6”, “6S” and “6SD”

are taken from [4] and [19].

SCAN


Ham5W

SCAN


March RAW

March RAW


Ham5W

March RAW
SCAN

Ham5W

QEff = 0.016 QEff = 0.975 QEff = 0.935

|FSCAN| = 684
|FHam5W| = 473

|I| = 13
|U| = 1144

|FSCAN| = 684
|FRAW| = 1563

|I| = 672
|U| = 1575

|FHam5W| = 473
|FRAW| = 1563

|I| = 449
|U| = 1587

6.4 Classification of Algorithms 95

Condition 5S is to detect all simple coupling faults [4] in

SRAM memories and requires one of the following sequences

of march elements:

   

   



,xrxw,wx,,,xr

and

rx,;wx,,xw,rx,

;



 (22)

or

   

   



,xrxw,wx,,,xr

and

rx,;wx,,xw,rx,

;



 (23)

where  0,1x .

This sequence is performed exactly only by March LR. So,

according to this condition, only March LR is able to detect all

simple coupling faults. However, a couple of algorithms show

the sequences in a slightly modified form. For example there

is an additional read operation at the end of the first march

element, the up/down-direction is different, or the second part

of the sequence is missing. These algorithms are at least

similar to March LR concerning this characteristic march

sequence, but would not detect all simple coupling faults. In

Table 6.3 algorithms are listed, and the characteristic march

elements are marked. It is also listed which algorithm requires

the condition totally by “5S”, if up/down-direction are

inverted by “(5S)”, or if the read-write-sequence is incomplete

by “((5S))”.

96 Efficiency of Test Algorithms

Table 6.3. March algorithms for simple coupling faults

Algorithm Sequence Cond.

March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} 5S

March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} ((5S))

March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1):(r1,w0,w1,w0);(r0,w1,w0)} ((5S))

Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} ((5S))

March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,);(r0,w1,r1,w0);(r0)} (5S)

March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} (5S)

March G
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0);
 D;(r0,w1,r1);D;(r1,w0,r0)}

((5S))

Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)} 5S

For March A, March B and Algorithm B, the second part of

the sequence is incomplete and the up/down-direction is

changed. For Algorithm B, March U, March SR and March G,

the sequences are complete but the up/down-direction is

changed, and for March G, the second part of march elements

is interrupted by a delay time D.

Ham_Walk meets the requirement that both parts of the

sequence are performed in up-direction. However, there is an

additional read operation at the end of march elements M2

and M4.

Conditions for detecting linked faults are described in [19].

The space of linked faults is complex and factors like address

order and sets of simple coupling faults which are linked to

each other are playing an important role in detecting linked

faults, three conditions are defined. Condition 6, conditions 6S

and condition 6SD are detecting linked faults, where

condition 6SD is the most comprehensive one and covers

conditions 6S and 6, where condition 6S already covers

condition 6. The following sequences of march elements are

defined for condition 6SD.

   

   



,xrxw,rx,wx,,xr

and

rx,;wx,,xr,xwrx,





;

 (24)

or

6.4 Classification of Algorithms 97

   

   



,xrxw,rx,wx,,xr

and

rx,;wx,,xr,xwrx,





;

 (25)

Condition 6S is developed from condition 6 by adding a

second march element to the sequences, and condition 6SD is

developed from condition 6S by adding a read operation. The

structure of conditions 6 and 6S are given below.

Conditions 6:

   

   

xw,wx,,xr and wx,,xwrx,

or

xw,wx,,xr and wx,,xwrx,









 (26)

Conditions 6S:

       

       

xrxw,wx,,xr and rx;wx,,xwrx,

or

xrxw,wx,,xr and rx;wx,,xwrx,





;

;





 (27)

An important characteristic of these conditions is that all

march elements in one sequence are performed either in up or

down direction. The direction must not change; otherwise

some linked fault may be masked and undetected.

Condition 6SD is exactly used by March LR. There are also

a couple of other algorithms which are very similar to these

conditions, but do not exactly meet the requirements, i.e. the

up/down-direction changes during a characteristic sequence.

So these algorithms would detect some linked faults but with

exceptions. In Table 6.4 the algorithms are listed and the

characteristic sequences are highlighted. If the up-down-

direction of a condition is incorrect, the condition is given in

brackets.

98 Efficiency of Test Algorithms

Table 6.4. March algorithms for linked faults

Algorithm Sequence Cond.

March LR {(w0);(r0,w1);(r1,w0,r0,w1);(r1,w0);(r0,w1,r1,w0);(r0)} 6SD

March A {(w0);(r0,w1,w0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0)} (6)

March B {(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1):(r1,w0,w1,w0);(r0,w1,w0)} (6)

Algorithm B {(w0);(r0,w1,w0,w1);(r1,w0,r0,w1);(r1,w0,w1,w0);(r0,w1,r1,w0)} (6S)

March U {(w0);(r0,w1,r1,w0);(r0,w1);(r1,w0,);(r0,w1,r1,w0);(r0)} (6SD)

March SR {(w0);(r0,w1,r1,w0);(r0,r0);(w1);(r1,w0,r0,w1);(r1,r1)} (6SD)

March G
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0);
 D;(r0,w1,r1);D;(r1,w0,r0)}

(6)

Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)} 6SD

March A, March B and Algorithm B nearly meet the

requirements of condition 6, however the addressing direction

changes during the sequence. The same occurs at March U,

March SR and March G, where the sequences nearly meets the

requirements of condition 6S. March G has also an additional

delay time within the sequence. Ham_Walk is closest to

condition 6SD, but there is an additional read operation

within the sequence.

Another class of algorithms is related to dynamic faults.

These algorithms are previously described in literature

[20, 27, 28]. A characteristic sequence performed by those

algorithms is:

   

   



,xrxr,xw,

and

rx,;rxwx,,

;

 (28)

Additionally to these sequences, delay time between

march elements enables detecting faults, and also traditional

test algorithms are able to detect a reduced set of dynamic

faults [7]. All algorithms that can be allocated to detect

dynamic faults are listed in Table 6.5.

6.4 Classification of Algorithms 99

Table 6.5. March algorithms for dynamic faults

Algorithm Sequence

March RAW
{(w0);(r0,w0,r0,r0,w1,r1);(r1,w1,r1,r1,w0,r0);(r0,w0,r0,r0,w1,r1)
 (r1,w1,r1,r1,w0,r0)(r0)}

March RAW1 {(w0);(w0,r0);(r0);(w1,r1);(r1);(w1);(w1,r1);(w0);(w0,r0)}

March AB
{(w1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);(r1,w0,r0,w0,r0);
 (r0,w1,r1,w1,r1);(r1)}

March AB1 {(w0);(w1,r1,w1,r1,r1);(w0,r0,w0,r0,r0)}

March BDN
{(w0);(r0,w1,r1.w1,r1);(r1,w0,r0,w0,r0);(r0,w1,r1,w1,r1);
 (r1,w0,r0,w0,r0);(r0)}

March LA
{(w0);(r0,w1,w0,w1,r1);(r1,w0,w1,w0,r0);(r0,w1,w0,w1,r1);
 (r1,w0,w1,w0,r0)(r0)}

Ham_Walk {(w1);(w0);(r0,w1,r1,w0,r0);(r0,w1);(r1,w0,r0,w1,r1);(r1)}

March G
{(w0);(r0,w1,r1,w0,r0,w1);(r1,w0,w1);(r1,w0,w1,w0);(r0,w1,w0);
 D;(r0,w1,r1);D;(r1,w0,r0)}

The most important algorithms for detecting dynamic

faults in this list are March RAW, March AB, March AB1,

March BDN and March G. These algorithms have been

developed to predominantly detect dynamic faults. The

characteristic march sequence is also included in algorithms

March LA and Ham_Walk. The set of dynamic faults is not

restricted to the algorithms in this list. Other algorithms like

March C-, March , PMOVI, March U, March SR or March LR

partially detect dynamic faults as well [7]. Ham_Walk is the

only algorithm which contains a characteristic, walking read-

after-read (RaRwa) operation in march elements M2 and M4.

Walking means that after applying the march sequence to the

cell, it is in the same state as before.

  rx,rx, (29)

Apart from this and an additional initializing write

operation, Ham_Walk is the same as March LR. This RARwa

operation is very effective to detect dynamic faults and timing

related faults like some address decoder delay faults, slow

sense amplifier and slow pre-charge circuit faults. Hence,

Ham_Walk should be included to the set of algorithms

detecting these dynamic faults.

100 Efficiency of Test Algorithms

Besides the pure analysis of characteristic march elements,

algorithms are already described in literature and related to

specific FFMs [1]. The allocation is summarized in Table 6.6.

Table 6.6. Fault model coverage of traditional march tests

Algorithm Fault Models

MATS some AF, SAF

MATS+ AF, SAF

MATS+ AF, SAF, TF

MATS++ AF, SAF, TF

March X AF, SAF, TF, CFin

March C- AF, SAF, TF, CFin, CFid

March A AF, SAF, TF, CFin, linked CFid

March Y AF, SAF, CFin, TF linked with CFin

March B AF, SAF, CFin, linked CFid, TF linked with CFin

6.4.3 Grouping and Classification

The grouping and classification of march test algorithms is

based on similar characteristics on one hand – derived from

literature research, and on statistical determination on the

other hand – derived from the statistical analysis. At the same

time, the groups of algorithms are allocated to sets of

functional fault models, which are predominantly detected by

those algorithms. For the analysis in this section, the space of

functional faults is limited to the following four supersets:

 simple, static single cell faults (SSs),

 simple, static coupling faults (CFs),

 linked faults (LFs), and

 dynamic faults (DFs).

Five sets of algorithms could be determined and allocated

to functional fault models. These sets are listed in Table 6.7.

6.4 Classification of Algorithms 101

Table 6.7. Sets of algorithms and functional faults

 Set of Algorithms Set of FFMs

Set I SCAN, SCAN+ simple static single-cell faults

Set II

MATS, MATS+, MATS++, March X,
March Y, PMOVI, March 1/0, March C-,
March C+, March TP, March A,
March B, March SS, BLIF

simple static single-cell faults
some simple CFs

Set III Algorithm B, March U, March SR
simple static single-cell faults
most simple CFs
some linked faults

Set IV March LA, March LR, Ham_Walk

simple static single-cell faults
all simple CFs
linked faults
some dynamic faults

Set V
March RAW, March RAW1, March AB,
March AB1, March BDN, Ham5R,
Ham5W, March G

simple static single-cell faults
simple static coupling
some linked faults
dynamic faults

Each of the sets is allocated to a certain number of

functional fault models which are predominantly detected,

but not limited to those functional faults. E.g., as described in

[7], algorithms of sets II, III and IV also detect dynamic faults,

however only partially.

This classification of algorithms and fault models is base

for efficient selection of test sets, as similar algorithms can be

avoided, and so redundant testing. From the above findings

about similar characteristics and fault coverage of test

algorithms, the following conclusions can be drawn:

 Set I and II are covered by set III.

 March LR is similar to set III.

 March RAW covers other algorithms detecting dynamic

faults.

 Ham_Walk is the only algorithm which contains a

characteristic read-after-read operation and detects many

unique faults.

Hence, a test set which is able to detect many different

faults and is irredundant would consist of March LR,

March RAW and Ham_Walk. This combination of algorithms

would be expected to be most efficient.

102 Efficiency of Test Algorithms

6.4.4 Consistencies and Inconsistencies

Two independent ways have been used to classify the test

algorithms. So, there may be differences in the results between

the expected results based the analysis of march sequences

and characteristic march elements, and the results of the

empirical analysis of fault coverage and union and

intersection. In this section, consistencies and inconsistencies

between the two approaches are shown.

The structure of Algorithm B, March U, March LR and

March SR are similar (see Table 6.3) and so are their test results

(see Fig. 6.7). The expectation to have a similar performance

and fault coverage due to the similar structure of those

algorithms could successfully be shown by the experimental

results. It is remarkable that Algorithm B shows a similar

performance as recent algorithms although Algorithm B [18]

has been developed long before functional fault models and

fault primitives have systematically been developed which

are base for the development of recent algorithms like

March LR and March SR.

March AB and March AB1 have been designed to cover the

same set of dynamic faults as March RAW and March RAW1

[8]. So, the performance and fault coverage of those

algorithms has been compared and it could be shown that the

performance of March RAW and March AB is very similar.

The biggest part of faults is detected by both algorithms

equally (see Fig. 6.10). However, the results of the comparison

of March RAW1 and March AB1 are different. There is not a

high similarity in their overall performance and fault

coverage. So, according to [8], if the set of dynamic faults

detected by both algorithms is the same, there are also many

faults detected by March RAW1 or March AB1 individually.

This means that March AB1 cannot replace March RAW1 or

vice versa to detect more than only single-cell dynamic faults.

6.5 Estimation of Fault Distribution 103

The most obvious inconsistency between theory and

practice becomes visible at the comparison of SCAN and

SCAN+. Due to the fact that the structure of SCAN is even a

proper subset of that of SCAN+, it should be expected that also

the set of faults detected by SCAN is a proper subset of set of

faults detected by SCAN+. However, there are faults that are

detected by SCAN but not by SCAN+ (see Fig. 6.8). This is

highly remarkable but unfortunately cannot be explained

with the methods used in this project. A specific analysis of

single faulty devices that show the explained behavior would

be necessary and may help to find the reasons for that faults

that are detected only by SCAN.

6 . 5 E s t i m a t i o n o f F a u l t D i s t r i b u t i o n

To estimate the distribution of different fault models

within the test results, a classification of algorithms and

corresponding faults models is necessary. Afterwards, the

results can be analyzed and the distribution of faults can be

estimated.

The sets of functional fault models from I to V differ in only

one additional FFM from one set to the next. So, the fault

estimation is done by evaluating the difference in the fault

coverage from one set to the next. Beginning with the set of all

faults, those faults are determined that are only detected by

the algorithms of set I. Now the number of simple static

single-cell faults is known. This set is now subtracted from the

total set of faults, and the remaining set of faults is now

without simple static single-cell faults. By repeated

subtraction of one set after the other, the distribution of the

four supersets of FFMs can be estimated within the test results

[49].

Let Set 0 be the set of all algorithms (i.e. set I through V of

Table 6.6) and let F0 be the whole set of faults models, then F0

contains 100% of faults.

104 Efficiency of Test Algorithms

Starting with set 0 and F0, set I is subtracted from set 0, and

at the same time the set of static simple single-cell faults (SSs)

is subtracted from F0. The remaining set of faults is then FI,

which contains any faults but no static simple single-cell

faults.

 0 – I  FI = F0 - {SS} (30)

In general, the formula to derive the cardinality of each

type of functional fault models is:

 |{FFM}| = |Fn| - |Fn+1| (31)

And so, the cardinality of SS is:

 |{SS}| = |F0| - |FI| (32)

Hence, the quantity of simple static single-cell faults could

be determined. Based on the productive test results, the

following values could be derived:

 |F0|= 2439 and |FI| = 1610

 |{SS}| = |F0| - |FI| = 829 (33)

That means that 1610 of 2439 faults that have been

detected, are simple static single cell faults, which are 34% of

all faults. This process is repeated for all supersets of

functional fault models until set V to estimate the whole fault

distribution.

In the way described above, the cardinality of FFMs for

each set has been determined for TN6531. After repeated

subtraction, the following values have been derived: for each

set: |Fn| and |{FFM}|. The calculations are given in Appendix

B and the results are summarized in Table 6.8.

6.5 Estimation of Fault Distribution 105

Table 6.8. Determination of fault distribution

N |Fn| |{FFM}| Percentage

0 2439

I 1610  |{SS}| = 829  34%

II 1073  |{some CF}| = 537  22%

III 390  |{remaining CF}| = 683  28%

IV 171  |{LF}| = 219  9%

V 0  |{DF}| = 171  7%

According to (31), the cardinality and distribution of FFMs

is as given in Table 6.9 and illustrated in Fig. 6.13.

Table 6.9. Fault distribution

FFMs Percentage

simple static single cell faults (SS) 34%

some coupling faults (CF) 22%

remaining coupling faults (CF) 28%

linked faults (LF) 9%

dynamic faults (DF) 7%

Figure 6.13. Fault distribution

The results are for TN6531, i.e. for 2439 faults in total and

a test that took place after Burn-In. 34% of the faults are

linked faults

9%

dynamic faults

7%

remaining

simple static

coupling faults

28%
some simple

static coupling

faults

22%

simple static

single-cell

faults

34%

106 Efficiency of Test Algorithms

assumed to be simple static single-cell faults and 50% (22%

and 28%) of the faults are assumed to be simple static coupling

faults. At least 9% are linked and 7% are dynamic faults.

This estimation of fault distribution is hardly comparable

to any other results. On the one hand, no comparable results

of a similar research are available, and on the other hand, the

results are related to only one product and only one series of

tests. Anyhow, the enormous number of simple faults is

impressing due to the fact that the test was performed after

wafer test. Obviously a lot of fault slipped through wafer test

or occurred later due to Burn-In, although due to the previous

wafer test it should be expected that most of the simple faults

have already been detected, as during wafer testing, the

RESET configuration of MBISTPLUS, which contains the

algorithms SCAN and March C+, should have detected many

simple static single-cell faults.

6 . 6 S u m m a r y a n d C o n c l u s i o n s

An effective combination of memory test algorithms is

essential for productive memory test sets. Redundant testing

should be avoided and a maximum of fault coverage should

be achieved. So, the algorithms used in this study are analyzed

on efficient combinations. To determine the efficiency of pairs

of test algorithms, a factor QEff is derived, which is a degree for

efficiency of a combination of two test algorithms. A

comparison of QEff for each combination of test algorithms has

been done and efficient and inefficient combinations could be

determined.

The analysis of QEff, as well as a deterministic analysis of

the structure of march elements and test algorithms is used to

classify similar test algorithms. Characteristic march

sequences that are allocated to specific fault models have been

identified and corresponding test algorithms are grouped into

sets. Especially march sequences related to simple coupling

6.6 Summary and Conclusions 107

faults, linked faults and dynamic faults are of special interest.

In addition to this deterministic method, the analysis of QEff,

and sub- and supersets of fault coverage is used to establish

sets of similar algorithms. Algorithms with similar fault

coverage are allocated to similar properties, and so to different

functional fault models. Five sets of algorithms are defined

which are allocated to specific sets of functional faults. Four

algorithms seem to be of special interest for test sets:

March RAW, March G, Ham5R and Ham_Walk. These

algorithms are remarkable during the analysis of sub- and

supersets. Obviously these algorithms are playing an

important role for efficient test set generation. However, an

optimization that leads to the minimal set of test algorithms is

not possible with the previous method. The formal

optimization and results of test set minimization will be

presented in the following chapter.

Based on this classification, the selection of algorithms for

test sets can be efficient, as the use of similar algorithms, and

so, redundant testing, can be avoided.

As an application of classifying test algorithms, the

distribution of faults within the test results of this project is

estimated. Due to the repeated subtraction, the number of

faults that are detected by a class of algorithms could be

determined, and the functional fault modes could be

allocated. It was determined that about one third of faults are

simple static single cell faults, and half of the faults are simple

static coupling faults. The remaining faults are either linked or

dynamic faults.

C ha pte r 7

Tes t Se t O pt imiz a t io n

Test set optimization means that the selection of tests for a

productive memory test set should fulfill two requirements at

the same time: maximum fault coverage and minimum test

time. This means that from the whole set of test algorithms a

minimal subset of algorithms is needed, which is able to detect

all faults but the test effort should be as short as possible. That

means that for production, the set of algorithms should be at

a minimum. Therefore a formal optimization is needed, based

on productive test results to determine the set of essential test

algorithms.

In this chapter, the formal optimization and the set of

essential algorithms as a result of the optimization are

presented. Furthermore, based on the set of essential

algorithms, a function of fault coverage over test length is

derived that, depending on a desired yield, allows selecting

test algorithms and estimating the minimal necessary test

length.

110 Test Set Optimization

7 . 1 F o r m a l O p t i m i z a t i o n

The maximum fault coverage is surely achieved with the

maximum set of algorithms. This means the whole study test

set is applied to the memories. Then it can be assumed that the

maximum of faults is detected. Now, optimization means to

minimize the set of algorithms but keep the maximum fault

coverage. The minimization is achieved with help of the well

known ESPRESSO minimization algorithm [50] – [54].

ESPRESSO is a heuristic logic minimization algorithm

developed to optimize digital logic gate circuits. However, the

memory test results can be stated in such a way that

ESPRESSO can be applied to optimize the memory test set. A

brief description of ESPRESSO is given in Appendix C.

7 . 2 T e s t D a t a P r e p a r a t i o n

The memory test results have to be prepared to be

processed with ESPRESSO. Therefore a system is assumed

representing the algorithms as inputs and the faults detected

by a test as outputs (Fig. 7.1). The number of inputs to the

system is m, the number of outputs is n.

Figure 7.1. System representing algorithms and faults

The number of algorithms for each test is given by the

study test set (Table 4.3). So, in this study, m is 30, and the

algorithms (Aj) are indicated by their numbering given in

Algorithms Faults

m n

System

7.2 Test Data Preparation 111

Table 4.3; e.g. SCAN is represented by A1. The number of

faults varies with the tests performed at different test

numbers; e.g. n is 2439 for TN6531 (see Table 5.1).

The behavior of the system can be determined from the test

results and is represented as a truth table. The format of this

table is shown in Table 7.1.

Table 7.1. Algorithm-Fault truth table

Fail # Fail

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

… … …

M
a

rc
h

 G

H
a
m

_
W

k

i Fi A1 A2 A3 A4 … Aj … A29 A30

1 1 - - 1 - … … … - -

2 1 1 1 1 1 … … … 1 1

3 1 - - 1 1 … … … 1 1

4 1 1 1 1 1 … … … 1 1

5 1 - - - 1 … … … 1 1

… … … … … … … … … … …

n … … … … … … … … … …

Each fault Fi (1 ≤ i ≤ n) is represented by one row of the

table. A fault Fi is deemed to be detected, if at least one

algorithm Aj (1 ≤ j ≤ 30) detected it. So, for each fault Fi is: if

one of the inputs Aj is true, Fi is true.

 302921 AAAAAF ji   (34)

Note that Table 7.1 is only an excerpt of the whole

representation of test results and explains the data

representation. An ‘1’ denotes that an algorithm has detected

a fault (i.e. input Aj is true), and ‘-’ denotes that an algorithm

Aj did not detect the fault; i.e. input Aj is ‘Don’t Care’. For all

entries in the table, the output Fi is always true, as of course

faults that are listed have to be detected first. As shown in (34),

the test results for each fault Fi are represented as disjunction

112 Test Set Optimization

of the inputs. Hence, the whole truth table representing the

test results is given in conjunctive normal form (CNF). For the

optimal test set, all faults F1 … Fn have to be detected, that

means the faults the fault information is conjunct.

 nni FFFFF  121  (35)

To be used with ESPRESSO software [52], the input format

of the truth table has to be given in disjunctive normal form

(DNF). The conversion from CNF to DNF is simply a

conversion of all input and output values from ‘1’ to ‘0’, resp.

‘0’ to ‘1’; don’t care values (‘-‘) remain.

The input and output format for the software processing

of the test results is explained in Appendix C.

7 . 3 T e s t R e s u l t s

For each test number, the memory test data have been

prepared for ESPRESSO and an input file was created. After

minimization, the essential algorithms could be selected from

the ESPRESSO output data.

Moreover, the sequence of the essential algorithms could

be ordered in such a way, that a “function” could be derived

that represents the fault coverage as a function of test length.

This ordering is interesting if a desired yield should be

reached at productive testing. Depending on the results of the

“function” a specific subset of essential algorithms could be

selected, which is sufficient to reach a desired yield.

7.3.1 Essential Algorithms

The set of essential algorithms is the minimum necessary

set of algorithms to achieve full fault coverage. The essential

7.3 Test Results 113

algorithms are the immediate result of the ESPRESSO

minimization. The most representative test results are again

the results of TN6531. Hence, these results are covered in this

section. The results of all other test numbers are given in

Appendix D.

The input table of the test results for TN6531 is a truth table

containing 2439 rows - one for each fault. The output file for

TN6531 is short enough and is given in Fig. 7.2.

Figure 7.2. ESPRESSO output file of TN6531

The output table of ESPRESSO consists of four rows. So,

there are four equivalent sets of essential algorithms.

Exemplarily the fourth results (marked in Fig. 7.2) is

evaluated. The choice of a set of essential algorithm depends

on criteria like the number or complexity of test algorithms.

The more different algorithms are used, the more additional

time is needed for configuration. Due to a minimal number of

algorithms, this configuration time can be minimized. Also, if

March G can be avoided in a test set, the test time can be kept

very low as no additional delay time between march elements

is necessary. Findings for effectiveness of pairs of algorithms

are playing also a role in the choice of a set of essential

algorithms (see Chapter 6). All these factors have been taken

into account for the selection of sets of essential algorithms for

all test numbers. The results for each test at different test

numbers that are given in Appendix D follow these criteria

.i 30

.o 1

.p 4

-------1-----1--1111-1---11-11 1

-------1-----11-111--1---11-11 1

-------1-----1--1111-1-1--1-11 1

-------1-----11-111--1-1--1-11 1

.e

114 Test Set Optimization

and only one possible set of essential algorithms is evaluated

per test number.

Each ‘1’ in the output table shown in Fig. 7.2 denotes an

essential algorithm. According to position j, algorithm Aj is

essential. Eleven algorithms are forming the set of essential

algorithms, which is highlighted in Table 7.2.

Table 7.2. Essential algorithms for TN6531

Aj Algorithm Test Length

A8 March B 17n

A14 March U 14n

A15 March X 6n

A17 March LR 14n

A18 March LA 22n

A19 March RAW 26n

A22 March AB1 11n

A24 March SR 14n

A27 Ham5R 25n

A29 March G 24n + 2D

A30 Ham_Walk 15n

March LR, March RAW and Ham_Walk have already been

determined as efficient test algorithms. The results of

classifying algorithms presented in Chapter 6 show that due

to statistical analysis, these algorithms are of high interest for

efficient test sets. This finding is now confirmed by

determining these algorithms as essential.

In the same manner as presented for TN6531, the test

results of each test number have been optimized, and for each

test number not only one set of essential algorithms was

derived, but several sets of essential algorithms are possible.

The length of the set derived for TN6531 is 187n + 2D. This

is the minimum test length to achieve full fault coverage with

a set of eleven test algorithms. So, in this example optimal test

set means the use of eleven algorithms with a minimal

7.3 Test Results 115

necessary test length of 187n + 2D. The test time for this set of

essential algorithms is then (see formula 5):

 269.6ms100ms2
180MHz

32kB

81024
261.56kB

TT6531 






187
 (36)

7.3.2 Fault Coverage related to Test Length

Not only 100% fault coverage at minimal test length is

necessary in productive memory testing, also less fault

coverage may be acceptable if products are not highly safety

critical or error correction is used. An important question was:

“Can fault coverage be derived from test length and vice

versa?”

To answer this question, the essential algorithms can be

taken and ordered in such way that the fault coverage (FC) is

interpreted as function of the test length (TL).

  TLFC f (37)

Of course this is not a mathematical function, as there is no

rule that enables to derive the fault coverage from the test

length. However, the results of the memory tests can be taken

to illustrate the fault coverage over test length. For the

allocation, the set of essential algorithms is taken, as this set is

the minimum to achieve 100% fault coverage. The ordering of

essential algorithms follows the weighting:

1. maximum increase of fault coverage (maximum ∆FC)

2. minimum increase of test length (minimum ∆TL)

Hence, the first algorithm to be taken is the one with

highest fault coverage, second, the one which increases the

total fault coverage of the set most. If two or more algorithms

are equivalent concerning ∆FC, the shortest one is taken. If

116 Test Set Optimization

two or more algorithms are of same length, the selection is

arbitrary. According to the set of essential algorithms at

TN6531 and the productive test results, the following data

could be derived and listed in Table 7.3. Note that in this case,

for ∆FC, the absolute number of difference of faults is given

instead of a percentage, as the comparison of these values is

easier than that of percentage.

Table 7.3. Fault coverage over test length

Algorithm ∆FC ∆TL FC TL

1 Ham_Walk 2063 15n 84.58% 15n

2 March RAW 284 26n 96.23% 41n

3 Ham5R 36 25n 97.70% 66n

4 March G 30 23n+2D 98.93% 89n+2D

5 March AB1 13 11n 99.47% 100n+2D

6 March LR 5 14n 99.67% 114n+2D

7 March X 3 6n 99.79% 120n+2D

8 March LA 2 22n 99.88% 142n+2D

9 March U 1 14n 99.92% 156n+2D

10 March B 1 14n 99.96% 170n+2D

11 March SR 1 17n 100% 187n+2D

The results of Table 7.3 are illustrated in Fig 7.3. The fault

coverage is plotted against test length.

7.3 Test Results 117

Figure 7.3. Fault coverage over test length

Note that the graphical illustration in Fig. 7.3 depends on

discrete values at discrete test length. The single points are

only connected to a continuous graph to point out the trend of

fault coverage over test length.

The weighted sequence of essential algorithms allows a

selection of a subset to achieve a desired yield. One can see

that the fault coverage increases very fast already at low test

length. After applying three algorithms (Ham_Walk,

March RAW and Ham5R) with length of 66n, a fault coverage

of already 97.7% is reached.

The test time for this reduced set of essential algorithms is:

 ms2
180MHz

32kB

81024
261.56kB

TT ed6531_reduc 6.4

66






 (38)

In contrast, the effort for 100% fault coverage is relatively

high (11 algorithms and 269.6ms test time). With increasing

test length the increase of additionally covered faults (∆FC)

decreases dramatically. Each of the last three algorithms in

this ordering detects only one additional fault. These seem to

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160 180

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

118 Test Set Optimization

be the most interesting faults as they are uniquely detected

and are of special interest for a specific fault analysis.

Depending on the requirements on safety of products and

hence on the specification of the productive test flow a 100%

fault coverage may not be necessary. Remaining faults could

be detected and corrected during operation by ECC methods.

It turns out that very high fault coverage is already

achieved with relatively low effort. Although the essential set

consists of eleven test algorithms, a few of them are sufficient

to reach a rather high yield.

For all other test number, the same analysis is done and

can be found in Appendix D. Especially algorithms

March RAW, Ham_Walk and Ham5R are most important for

all tests. At least one of these algorithms appears for each test

number, and furthermore these algorithms are on top of the

list of essential algorithms, and hence, are most important for

high fault coverage. This is a highly remarkable fact, as these

algorithms already have been identified as outstanding

during analysis of sub- and supersets in Chapter 6. The

assumption that these algorithms are important in test set

generation is confirmed by the results in this chapter.

So, independent of environmental test conditions, three

algorithms could be identified that appear in each set of

essential algorithms and that are most important for a high

fault coverage of the optimal test set.

This analysis and especially the ordering of test algorithms

are interesting for tests with highly restricted test time.

Depending on the test length, the expected yield can be

estimated, and vice versa. A selection of test algorithms can

now be done with respect to both, test length and desired

yield. Depending on the properties and objectives of a specific

test, an optimal proportion of test length and fault coverage

can be selected.

7.4 Summary and Conclusions 119

7 . 4 S u m m a r y a n d C o n c l u s i o n s

From the whole set of test and fail data, the essential test

algorithms are determined that represent a set of test

algorithms to achieve full fault coverage at a minimum test

effort at the same time. By treating the test results as the

representation of a logic system that uses the test algorithms

as inputs and the fail information as output, the heuristic logic

minimization algorithm ESPRESSO could be used to optimize

the test set and to derive the essential algorithms. For all test

conditions, more than one possible set of essential test

algorithms has been derived. To choose which solution to use,

criteria like test length, no delay time or effective pairs of

algorithms within the set are relevant. For all test numbers,

the most important algorithms are March RAW, Ham5W and

Ham_Walk.

The essential algorithms of a test could also be ordered in

such a way that the fault coverage could be represented as a

“function” of test length. This is a necessary requirement to

select algorithms for a productive memory test set. If a specific

yield is desired, the necessary number of test algorithms can

be kept to a minimum and so the test time can be shortened.

Exactly those three algorithms that are most essential

(March RAW, Ham5R and Ham_Walk) are sufficient to

achieve about 98% fault coverage for TN6531, and for all test

numbers, at least one of the algorithms March RAW, Ham5R

or Ham_Walk is included in the set of essential algorithms,

however, mainly all of them. Furthermore, these algorithms

are most important for the optimal test sets, as, if the

algorithms are ordered, these algorithms are on top of the list

detecting the major part of faults and hence improve the total

fault coverage best. These algorithms are exactly those that

have also been identified as important and outstanding

during the analysis of sub- and supersets in the previous

chapter.

120 Test Set Optimization

Depending on the position of a test stage within the whole

productive test flow, this might me sufficient as the remaining

faults are covered by a later test in the flow or are treated by

ECC methods. By ordering the algorithms the function relates

test length and fault coverage, and depending on a desired

yield, the necessary set of algorithms can be picked.

C ha pte r 8

Va r ia t io n of Fa ul t M a nifes ta t io n

Memory faults vary during life time. Previous

investigations on embedded memories of single devices at

Infineon have shown that the behavior of some faults is

strange. Some faults only appear at certain circumstances, e.g.

only during functional use of the device. However, these

faults cannot be reproduced by any test during

comprehensive investigations.

This is a reason to carry out an analysis on the behavior

and variation of faults [55, 56]. The test setup, which is used in

this project, enables the analysis of fault variation during

Burn-In and to analyze the behavior of faults before and after

stresses. In this chapter the variation of fault manifestation

during Burn-In is analyzed, and productive test results are

presented that show this fault variation.

122 Variation of Fault Manifestation

8 . 1 S e t u p a n d E n v i r o n m e n t

To obtain comparable test results and to see the effects of

Burn-In, the environmental test conditions before and after

Burn-In stress should be the same. The environmental test

conditions are defined by the productive test flow, and there

are two tests before and after Burn-In with similar

environmental test conditions: TN1522, TN1622 and TN6531

and TN6631. From the total test flow (Fig. 4.6), the relevant

part is shown in Fig 8.1.

Figure 8.1. Test flow surrounding Burn-In

Two pairs of test are compared: one with low and one with

high supply voltage. The results of TN1522 are compared to

those of TN6531, and the results of TN1622 are compared to

TN6631. The difference of temperature before and after Burn-

In could not be avoided due to the predefined test flow.

Hence, an influence of temperature variation can not entirely

be excluded. However, these are the only tests for a

comparison, and the difference in temperature is acceptable.

145°C

125°C

Test Flow

TN1522 TN1622

TN6531 TN6631
High Voltage Stress

&
Burn-In

low voltage tests

high voltage tests

8.2 Increase of Fault Coverage 123

The analysis is done for low voltage and high voltage test

results separately in order to recognize if the supply voltage

has additional effects during Burn-In. The high voltage stress

and Burn-In is performed at a temperature of 125°C, and the

duration of Burn-In is 12 hours in this study.

Two kinds of test results are analyzed [55, 56]:

 Increase of fault coverage due to Burn-In.

 Variation of faulty behavior due to Burn-In.

Both data are examined for low and high voltage tests

separately.

8 . 2 I n c r e a s e o f F a u l t C o v e r a g e

The test results for low voltage (TN1522 and TN6531) and

high voltage (TN1622 and TN6631) are summarized in

Table 8.1.

Table 8.1. Fault coverage during Burn-In

 Test Number # of Faults

low
voltage

1522 (before BI) 617

6531 (after BI) 2439

1522  6531 585

1522  6531 2471

high
voltage

1622 (before BI) 56

6631 (after BI) 175

1622  6631 43

1622  6631 188

The results show the number of faults detected before and

after Burn-In, as well as intersection and union of these sets.

The distribution of faults before and after Burn-In is

illustrated in Fig 8.2 for low voltage (TN1522 and TN6531),

and in Fig 8.3. for high voltage (TN1622 and TN6631).

124 Variation of Fault Manifestation

Figure 8.2. Fault distribution at low voltage

The comparison of fault coverage before and after Burn-In

in Fig 8.2. shows impressively a four-times-increase from 617

before to 2439 faults after Burn-In. 1854 faults have not been

detected before Burn-In, and 585 faults are detected before

and after Burn-In equally. A very small part of 32 faults only

occurs before Burn-In. These faults are healed due to stress

and are no longer detectable afterwards. This effect could not

be analyzed in more detail, as the test data in this project are

not detailed enough for a specific faults analysis.

The high increase of faults could be expected. The

characteristic of Burn-In is artificial aging, which is designed

to activate latent faults that would appear during the course

of life time of a product (see Bathtub-curve in Fig. 4.3) [41, 57].

After all, about 75% (1854 of 2471) of the faults that are treated

in this analysis are only detected due to Burn-In and high

voltage stress. With regard to these results, the effect of Burn-

In is enormous and cannot be ignored for productive memory

testing – especially for highly safety critical products.

Likewise, the results for high voltage are shown in Fig 8.3.

TN6531:
2439 faults

TN1522:
617 faults

585 faults

1854 faults after
Burn-In only

32 faults before
Burn-In only

8.3 Variation of Fault Behavior 125

Figure 8.3. Fault distribution at high voltage

The same effects as with low supply voltage could be

recognized at high voltage tests, even though the total number

of faults is much lower. Hence, the results are less

representative, but here also, the number of faults increases

from 56 faults before to 175 faults after Burn-In. This is a more

than three-times-increase. However, on base of 188 faults no

meaningful and representative statistical analysis would be

reasonable.

8 . 3 V a r i a t i o n o f F a u l t B e h a v i o r

The results for low and high voltage tests show that the

major part of Pre-Burn-In faults remains during Burn-In.

These faults are of special interest concerning the variation of

faulty behavior. In the following sections, it will be shown that

Burn-In influences the manifestation of these faults, i.e. the

fault model representing the fault changes due to stress, and

the same fault shows up with a different behavior.

TN6631:
175 faults

TN1622:
56 faults

43 faults

132 faults after
Burn-In only

13 faults before
Burn-In only

126 Variation of Fault Manifestation

8.3.1 Data Evaluation Technique

From the pure test results, the faulty behavior, i.e. the fault

model, cannot be identified. But with help of the results for

classification of algorithms and faults, presented in Chapter 6,

the appearance of specific fault models can be estimated based

on the fault coverage of specific test algorithms. This

classification is used to distinguish between three kinds of

faults:

 static faults

 coupling faults

 dynamic faults

To achieve the differentiation, three test algorithms are

chosen that mainly detect the three types of faults. The

algorithms are March C-, March LR and March RAW. The

allocation of these algorithms and corresponding faults

models are given in Table 8.2.

Table 8.2. Algorithm-fault-allocation

Algorithm predominantly corresponding fault models

March C- static faults

March LR
static faults
coupling faults

March RAW
static faults
coupling faults
dynamic faults

The basic fault model is determined by analyzing the

coverage of a fault. Dynamic faults are only covered by

March RAW, coupling faults are additionally covered by

March LR, and static faults are covered by any of the three test

algorithms. Hence, if a fault is only detected by March RAW,

it can be assumed to be dynamic. If a fault is detected by

March LR and March RAW, but not by March C- it is assumed

8.3 Variation of Fault Behavior 127

to be coupling. And if a fault is detected by all three test

algorithms, it is assumed to be static. Likewise to the

classification of faults and algorithms, the distribution of

faults is determined by repeated subtraction of sets of faults.

This analysis is done only for those faults that are

remaining after Burn-In, i.e. that have been present before and

still appear after Burn-In. These faults are represented by the

intersection in Figs. 8.2 and 8.3. For the low voltage test series,

these are 585 faults, for high voltage tests there are 43 faults.

8.3.2 Test Results

For low voltage tests, the following distribution of fault

models could be determined before and after Burn-In.

Table 8.3. Fault model distribution at low voltage

Fault Model
before Burn-In after Burn-In

|F| percentage |F| percentage

static faults 126 52,0% 233 31,8%

coupling faults 155 26,5% 166 28,4%

dynamic faults 304 21,5% 186 39,8%

Total 585 100% 585 100%

The results for the low voltage test, i.e. at TN1522 before

and at TN6531 after Burn-In, show that the distribution of

static, coupling and linked faults varies before and after Burn-

In. From totally 585 faults, 126 faults are static before Burn-In

and 233 faults are static after Burn-In. To the same extent the

number of dynamic faults decreases from 304 before to 186

faults afterwards. The number of coupling faults remains

roughly at 155 resp. 166 faults. Due to the detailed information

gathered during the tests, the faults could explicitly be

identified, and the results before and after Burn-In refer

exactly to the same set of faults.

128 Variation of Fault Manifestation

Figure 8.4. Fault model distribution a low voltage

The high voltage stress and Burn-In between the two tests

influences some faults to change their appearance from

dynamic to static. Dynamic means, the faults are latent before,

and static means they are stable after Burn-In. The stress due

to Burn-In causes these latent faults to manifest. This variation

in faulty behavior is observable for about 20% of faults at low

voltage test.

The distribution of faults at high voltage test, i.e. at TN1622

before and TN6631 after Burn-In is similar to those of low

voltage. Table 8.4 summarizes the results for high voltage.

Table 8.4. Fault model distribution at high voltage

Fault Model
before Burn-In after Burn-In

|F| percentage |F| percentage

static faults 18 44,1% 24 32,6%

coupling faults 6 14,0% 5 11,6%

dynamic faults 19 41,9% 14 55,8%

Total 43 100% 100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

before Burn-In after Burn-In

F
a

u
lt

s

static coupling dynamic

26.5%

21.5%

52.0%

28.4%

39.8%

31.8%

8.3 Variation of Fault Behavior 129

The variation of dynamic and static faults at high supply

voltage is similar to that at low voltage. However the total

number of faults in the analysis for high voltage is much

lower. So, the results are less representative, but a variation is

nevertheless observable. The results of Table 8.4 are illustrated

in Fig 8.5.

Figure 8.5. Fault model distribution at high voltage

This finding shows that not only new faults appear after

Burn-In, but also existing faults vary their behavior. This is

important if different test sets should be used before (e.g. at

wafer test) and after Burn-In.

Also the quality of dynamic faults can be rated. The faults

that have changed their behavior from dynamic into static are

less stable than others. So the physical defects that cause these

faults are possibly different from that of stable dynamic faults.

A closer analysis of the physical defects could answer the

question on reasons for the fault variation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

before Burn-In after Burn-In

F
a

u
lt

s

static coupling dynamic

14.0%

41.9%

44.1% 11.6%

55.8%

32.6%

130 Variation of Fault Manifestation

8 . 4 S u m m a r y a n d C o n c l u s i o n s

Burn-In is a process of quality assurance during memory

testing. Artificial aging due to high temperature and high

voltage stress makes latent faults to become visible and

influences their faulty behavior. Full test sets haven been

performed at comparable environmental conditions before

and after Burn-In stress, and the test results have been

compared. Both, for lowered and raised supply voltage, the

number of detectable faults increased during Burn-In. The

number of faults increases by a factor of about four at low

voltage, and about three at high voltage. Without Burn-In

these additional faults would have remained undetected.

Especially for highly safety critical products – as used in this

project – Burn-In is indispensable to ensure memory quality.

Besides the increase of detectable faults, also the

manifestation of some faults have been present before Burn-

In and are still observable after Burn-In could be observed.

Based on classification of faults and memory test algorithms,

those faults that have been present before and after Burn-In

have been analyzed on their behavior. Static, coupling and

dynamic faults have been distinguished and the analysis has

shown that faults that have been dynamic before Burn-In

became static afterwards. About 20% faults are affected at

lowered supply voltage and about 10% at increased supply

voltage. This shows that faults are variable. The behavior of

one fault is not fixed but it may change under environmental

conditions and so, also the detectability varies. As the effort to

detect dynamic faults is normally higher as they are latent,

static faults are much easier to detect. This finding may

influence the selection of test sets for different environmental

conditions and for different stages in the test flow (before and

after Burn-In), as different types of faults appear.

C ha pte r 9

Pe r s pe c t ive s

After all, basics on memory test, algorithms and faults, test

setup and data acquisition, the analysis on effectiveness of test

algorithms, test set optimization and fault analysis during

Burn-In, this chapter is dedicated to future work. Not all

questions could be answered in this work and many more

questions arose during the project.

One intention of the project was to run the memory tests

on products of different technology, 130nm and 90nm

Unfortunately, this could not be realized in the timeframe of

this project, as the data acquisition using MBISTPLUS V4.2 is

much more complex than originally supposed, and the

existing test programs could not handle the enormous number

of test data. Moreover the throughput of 90nm products was

not yet high enough to obtain enough test results for a

statistical analysis. So, a future task should be to repeat the

statistical analysis with an extended test set on 90nm products

using MBISTPLUS V4.2., and the following analyses should

be done:

 Comparing the test results of different technologies

(130nm and 90nm), and analyze the impact of

technological differences on fault coverage and failure

classes [58]; especially the development of dynamic faults

as a results of shrinking technology.

132 Perspectives

 Analyze the test results of additional test algorithms

performed with MBISTPLUS V4.2.; especially the fault

coverage of complex test algorithms GAL5 and GAL9.

 Analyze the impact of additional addressing modes.

 Analyze the impact of self timing parameters read timing,

write timing and weak write driver, and determine the

optimal setting of these parameters for optimal yield.

All these analyses need the same background of a high

amount of test results that guarantee a meaningful statistical

analysis. With respect to dynamic faults, the influence of

different delay time used with March G could also be

analyzed. March G could be used with different settings of

delay time and the variation of fault coverage could be

observed. If there is a variation, it clearly depends on the

variation of delay time. The faults that are only related to

delay time are data retention faults and for the detection of

these faults, the optimal setting of delay time could be

determined.

The results of this project are based on a large number of

test data. However, the density of details in these data suffers

from this fact. For a more detailed analysis, the productive test

flow is inappropriate. Instead, single devices could be picked

from the flow and analyzed manually. In this case, the

classification of fault models and test algorithms could be

more accurate, as single faulty read operations could be

identified, and so the corresponding fault primitives.

This project provides a large number of productive test

results, which allow determining if a fault is detected by a

certain test algorithm or not. This information could also be

used for automatic test generation. In [8, 27, 28], the test

algorithms are generated based on simulation results. The use

of real test results may improve the automated test generation

and so would increase the effectiveness of test algorithms. A

Perspectives 133

future project could bring these two things together and

would allow generating memory test algorithms based on

real, productive test data.

Picking defect devices from the productive test flow means

very high effort and is nearly impossible as the fail analysis

could only take place after a certain number of devices has

been tested to achieve a statistical meaningful number. So,

effects that occur only with a few devices do not become

visible immediately. Such faults could be single unique faults

that occur only with some algorithms or faults that can only

be detected by special and specific algorithms. However, such

devices should be picked and analyzed in more detail for a

more precise fault analysis. The results of this work help to

identify such typical faults and the circumstances that make

these faults detectable. If a comprehensive test set is used

during ramp-up to optimize the selection of test algorithms

and conditions, also an automated fault analysis could be

added. Devices that contain unique faults or faults that occur

only with specific test conditions and algorithms could be

marked separately and picked. So the findings of a previous

statistical analysis could be used to identify noticeable faults

and to take them for a detailed analysis. If this process is done

repeatedly, a database would grow that allows on-line

automated fault analysis, also during productive testing, if

single devices cannot be picked from the test flow.

References 135

R e fe re nce s

1 van de Goor, A.J., 1998. Testing Semiconductor Memories: theory and practice. ComTex

Publishing, Gouda, The Netherlands

2 Hamdioui, S., 2004. Testing static random access memories: Defects, fault models and test

patterns. Kluwer Academic Publishers, Dordrecht, The Netherlands

3 Hamdioui, S., Al-Ars, Z., van de Goor, A.J., Rodgers, M., 2004. Linked Faults in

Random Access Memories: Concept, Fault Models, Test Algorithms and Industrial

Results. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

23(5), pp. 737-757

4 van de Goor, A.J., Gaydadjiev, G.N., 1997. March U: a test for unlinked memory

faults. In Proc.: Circuits, Devices and Systems. pp. 155-160

5 Hamdioui, S., van de Goor, A.J., Reyes, J.D., Rodgers, M., 2006. Memory Test

Experiment: Industrial Results and Data. Computers and Digital Techniques. 153(1), pp.

1-8

6 Al-Ars, Z., Hamdioui, S., Gaydadjiev, G.N., Vissiliadis. S., 2008. Test Set Development

for Cache Memories in Modern Microprocessors. IEEE Transactions on VLSI Systems,

16(6). pp. 725-732

7 Hamdioui, S., Al-Ars, Z., van de Goor, A.J., 2002. Testing Static and Dynamic Faults

in Random Access Memories. In Proc.: 20th IEEE VLSI Test Symposium. pp. 395-400

8 Benso, A., Bosio, A., Di Carlo, S., Di Natale, G., Prinetto, P., 2005. March AB, March

AB1: New March Tests for Unlinked Dynamic Memory Faults. In Proc.: IEEE

International Test Conference. pp. 834-841

9 Hamdioui, S., van de Goor, A.J., Rodgers, M., 2002. March SS: A Test for All Static

Simple RAM Faults. In Proc.: Int. Memory Technology, Design and Testing. pp. 95-100

10 Adams, R.D., 2003. High Performance Memory Testing: Design Principles, Fault Modeling

and Self-Test. Kluwer Academic Publishers, Dordrecht, The Netherlands

11 van de Goor, A.J., Al-Ars Z., 2000. Functional Memory Faults: A Formal Notation and

a Taxonomy. In Proc.: 18th IEEE VLSI Test Symposium. pp. 281-289

12 Al-Ars, Z., Hamdioui, S., van de Goor, A.J., 2003. A fault primitive based analysis of

linked faults in RAMs. Records of IEEE Int. Workshop on Memory Technology, Design and

Testing. pp. 33-39

13 van de Goor, A.J., Hamdioui, S., Wadsworth, R., 2004. Detecting Faults in the

Peripheral Circuits and an Evaluation of SRAM Tests. In Proc.: IEEE International Test

Conference. pp. 114-123

14 Offerman, A., van de Goor, A.J., 1997. An open notation for Memory Tests. In Proc.:

Int. Workshop on Memory Technology, Design and Testing. pp. 71-78

15 Knaizuk, J., Hartmann, C.R.P., 1977. An Optimal Algorithm for Testing Stuck-At

Faults in Random Access Memories. IEEE Transactions on Computers, C-26(11).

pp. 1141-1144

16 Nair, R., 1979. Comments on ‘An Optimal Algorithm for Testing Stuck-At Faults in

Random Access Memories’. IEEE Transactions on Computers, C-28(3). pp. 258-261

136 References

17 Suk, D.S., Reddy, S.M., 1981. A March Test for Functional Fault in Semiconductor

Random Access Memories. IEEE Transactions on Computers, C-30(12). pp. 982-985

18 Marinescu, M., 1982. Simple and Efficient Algorithms for Functional RAM Testing.

IEEE International Test Conference. pp. 236-239

19 van de Goor, A.J., Gaydadjiev, G.N., Yarmolik, V.N., Mikitjuk, V.G., 1996. March LR:

A Test for Realistic Linked Faults. In Proc.: 14th VLSI Test Symposium. pp. 272-280

20 Hamdioui, S., Al-Ars, Z., van de Goor, A.J., Rodgers, M., 2003. Dynamic Faults in

Random-Access Memories: Concept, Fault Models and Tests. Journal of Electronic

Testing: Theory and Applications. vol. 19(2), pp. 195-205

21 van de Goor, A.J., 2008. Testing Memories: Fault Models, Algorithms, Tests and Industrial

Results. Unpublished

22 van de Goor, A.J., 2008. Testing Memories: New Fault Models, Tests, DFT, BIST, BISR,

Industrial Results; Flash Memories and Soft Errors. Unpublished

23 de Jonge, J.H., Smeulders, A.J., 1976. Moving inversions test pattern in thorough, yet

speedy. Computer design. pp. 169-173

24 Schanstra, I., van de Goor, A.J., 1999. Industrial Evaluation of Stress Combinations for

March Tests Applied to SRAMs. In Proc.: IEEE International Test Conference. pp. 983-

992

25 Breuer, M.A., Friedman, A.D., 1976. Diagnosis and reliable design of digital systems.

Computer Sciences Press Inc., CA, USA

26 van de Goor, A.J., Gaydadjiev, G.N., Yarmolik, V.N., Mikitjuk, V.G., 1997. March LA:

A Test for Linked Memory Faults. In Proc.: IEEE European Design and Test Conference.

p. 627

27 Bosio, A., Di Carlo, S., Di Natale, G., Prinetto, P., 2007. March AB, a state-of-the-art

march test for realistic static linked faults and dynamic faults in SRAMs. IEEE

Computer & Digital Techniques. 1(3), pp. 237-245

28 Bosio, A., Di Natale, G., 2008. March Test BDN: A new March Test for Dynamic Faults.

IEEE Int. Conference on Automation, Quality and Testing, Robotics. vol. 1, pp. 85-89

29 Hamdioui, S., van de Goor, A.J., 2000. An Experimental Analysis of Spot Defects in

SRAMs: Realistic Fault Models and Tests. In Proc.: 9th Asian Test Symposium. pp.

131-138

30 Hamdioui, S., Al-Ars, Z., van de Goor, A.J., Rodgers, M., 2003. March SL: A Test for

All Static Linked Memory Faults. In Proc.: 12th Asian Test Symposium. pp. 372-377

31 van de Goor, A.J., 1993. Using March Tests to Test SRAMs. IEEE Design & Test of

Computers. 10(1), pp. 8-14

32 MBIST+ Generic Module – Internal Target Specification V3.0, Infineon Technologies AG

– internal document

33 Hamdioui, S., Al-Ars, Z., van de Goor, A.J., Wadsworth, R., 2005. Impact of Stresses

on the Fault Coverage of Memroy Tests. In Proc.: IEEE Int. Workshop on Memory

Technology, Design and Testing. pp. 103-108

34 Hamdioui, S., Al-Ars, Z., van de Goor, A.J., 2006. Opens and Delay Faults in CMOS

RAM Address Decoders. IEEE Transactions on Computers. 55(12), pp. 1630-1639

35 van de Goor, A.J., Hamdioui, S., Al-Ars, Z., 2004. Tests for Address Decoder Faults in

RAMs due to Inter-gate Opens. In Proc.: 9th IEEE European Test Symposium. pp. 49-54

References 137

36 van de Goor, A.J., Schanstra, I., 2002. Address and Data Scrambling: Causes and

Impact on Memroy Tests. In Proc.:1st Int. Workshop on Electronic Design, Test and

Applications. pp. 128-136

37 Majhi, A., Azimane, M., Gronthoud, G., Lousberg, M., Eichenberger, S., Bowen, F.,

2005. Memory Testing Improvements through Different Stress Conditions. In Proc.:

31st European Solid-State Circuits Conference. pp. 299-302

38 MBISTPLUS Generic Module – Internal Target Specification V4.2, Infineon

Technologies AG – internal document

39 Vollertsen, R.P., 1999. Burn-In. In Proc.: IEEE Int. Integrated Reliability Workshop.

pp. 167-173

40 Cockburn, B.F., 1994. Tutorial on Semiconductor Memory Testing. Journal of Electronic

Testing: Theory and Applications. 5(4), pp. 321-336

41 Lorenz, D., Barke, M., Schlichmann, U., 2010. Aging analysis at gate and macro cell

level. In Proc.: IEEE Int. Conference on Computer Aided Design. pp. 77-84

42 Infineon Technologies AG, 2009. TC1797 32-Bit Single-Chip Micorcontroller Data

Sheet, V1.2 2009-09

43 Design for Analysis Specification AudoMax, Infineon Technologies AG – internal

document

44 Kuhn, H., 2010. “Innovative Testlösungen für Automotive Halbleiter”. presented at 4.

GMM/Gi/ITG-Fachtagung ‚Zuverlässigkeit und Entwurf’, 13.9.-15.9.2010, Wildbad Kreuth,

Germany

45 M1747 IBIS Flow for V1010u2 Productive Testplan, Infineon Technologies AG – internal

document

46 Dasdan, A., Hom, I., 2006. Handling Inverted Temperature Dependence in Static

Timing Analysis. ACM Transactions on Design Automation of Electronic Systems. 11(2),

pp. 306-324

47 Sharifkhani, M., Jahinuzzaman, S.M., Sachdev, M., 2006. Dynamic Data Stability in

SRAM Cells and its Implications on Data Stability Tests. In Proc.: IEEE Int. Workshop

on Memory Technology, Design and Testing. pp. 68-74

48 Hamdioui, S., Wadsworth, R., Reyes, J.D., van de Goor, A.J., 2003. Importance of

Dynamic Faults for New SRAM Technologies. In Proc.: 8th IEEE European Test

Workshop. pp. 29-34

49 Linder, M., Eder, A., Oberländer, K., Huch, M., 2011. Effectiveness of Memory Test

Algorithms and Fault Distribution in SRAMs. paper presented at ETS’11. 23.5.-27.5.2011

, Trondheim, Norway

50 Brayton, R.K., Hachtel, G.D., McMullen, C.T., Sangiovanni-Vincentelli. A.L., 1984.

Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publshers, Boston,

USA

51 De Micheli, G., 1994. Synthesis and optimization of digital circuits. McGraw-Hill, New

York, USA

52 Logic Friday, Free Software for boolean logic optimization, analysis, and synthesis. accessed

02/09/2010, http://www.sontrak.com/download/espresso.zip

53 Valparaiso Univerity. ESPRESSO: Logic Minimization Software. accessed: 02/09/2010,

http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html

http://www.sontrak.com/download/espresso.zip
http://diamond.gem.valpo.edu/~dhart/ece110/espresso/tutorial.html

138 References

54 Chiusano, S., A short introduction to Espresso. accessed: 03/09/2010,

http://www.uic.edu/classes/ece/ece465/06/tools/A%20short%20introduction%20to%

20Espresso.pdf

55 Linder, M., Eder, A., Oberländer, K., Huch, M., 2011. Variations of Fault

Manifestation during Burn-In: A case Study on Industrial SRAM Test Results. In

Proc.: 17th IEEE International On-Line Testing Symposium. 13. - 15.7.2011, Athens,

Greece. pp. 246-249

56 Linder, M., Eder, A., Oberländer K., Huch, M., 2011. Memory testing during Burn-In:

Test Strategy and Experimental Results. 23. GI/GMM/ITG-Workshop ‘Test methoden

und Zuverlässigkeit von Schaltungen und Systemen’. 27.2. - 1.3.2011, Passau, Germany.

pp. 13-17

57 Wang, L., Ye, Q., Wong, R., Liehr, M., 2007. Product Burn-in Stress Impacts on SRAM

Array Performance. In Proc.: 45th IEEE Int. Reliability Physics Symposium.

pp. 666-667

58 Chen, Q., Mahmoodi, H., Bhunia, S., Roy, K., 2005. Modeling and Testing of SRAM

for New Failure Mechanisms due to Process Variations in Nanoscale CMOS. In Proc.:

23rd IEEE VLSI Test Symposium. pp. 292-297

http://www.uic.edu/classes/ece/ece465/06/tools/A%20short%20introduction%20to%20Espresso.pdf
http://www.uic.edu/classes/ece/ece465/06/tools/A%20short%20introduction%20to%20Espresso.pdf

Additional Literature 139

Addi t io na l L i te ra ture

59 Abadir, S.M., Reghbati, H.K., 1983. Functional Testing of Semiconductor Random

Access Memories. ACM Computing Surveys. 15(3), pp. 175-198

60 Al-Ars, Z., Herzog, M., Schanstra, I., van de Goor, A.J., 2004. Influence of Bit Line

Twisting on the Faulty Behavior of DRAMs. Records of IEEE Int. Workshop on Memory

Technology, Design and Testing. pp. 32-37

61 Al-Ars, Z., van de Goor, A.J., 2004. Soft Faults and the Importance of Stresses in

Memory Testing. In Proc.: Design, Automation and Test in Europe. vol. 2, pp. 1084-1089

62 Amerasekera, E.A., Najm, F.N., 1997. Failure Mechanisms in Semiconductor Devices.

John Wiley & Sons, Chichester, England

63 Benso, A., Bosio, A., Di Carlo, S., Di Natale, G., Prinetto, P., 2006. A 22n March Test

for Realistic Static Linked Faults in SRAMs. In Proc.: 11th IEEE European Test

Symposium. pp. 49-54

64 Borri, S., Hage-Hassan, M., Girard, P., Pravossoudovitch, S., Virazel, A., 2003. Defect-

Oriented Dynamic Fault Modes for Embedded SRAMs. In Proc.: 8th IEEE European Test

Workshop. pp. 23-28

65 David, R., Fuentes, A., Courtois, B., 1989. Random Pattern Testing Versus

Deterministic Testing of RAM’s. IEEE Transactions on Computers. 38(5), pp. 637-650

66 Dekker, R., Beenker, F., Thijssen, L, 1988. Fault Modeling and Test Algorithm

Development for Static Random Access Memories. In Proc.: IEEE International Test

Conference. pp. 343-352

67 Dekker, R., Beenker, F., Thijssen, L., 1990. A Realistic Fault Model and Test

Algorithms for Random Access Memories. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems. 9(6), pp. 567-572

68 Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A., Borri, S., Hage-Hassan, M.,

2005. Efficient March Test Procedure for Dynamic Read Destructive Fault Detection

in SRAM Memories. Journal of Electronic Testing: Theory and Applications. 21(5),

pp. 551-561

69 Dilillo, L., Girard, P., Pravossoudovitch, S., Virazel, A., Hage-Hassan, M.B., 2005. Data

Retention Faults in SRAM Memories: Analysis and Detection Procedures. In Proc.:

23rd IEEE VLSI Test Symposium. pp. 183-188

70 Eder, A., 1998. Embedded Memories in a 32 bit High Performance Microcontroller. In

Proc.: IEEE Symposium on IC/Package Design Integration. pp. 4-8

71 Franklin, M., Saluja, K.K., 1990. Built-In Self-Testing of Random-Access Memories.

IEEE Computer. 23(10), pp. 45-56

72 Gupta, A., 2009. Semiconductor Memory Testing: Fault Models and Test Considerations for

High Performance Embedded SRAM’s. VDM Verlag Dr. Müller, Saarbrücken, Germany

73 Hamdioui, S., Gaydadjiev, G.N., van de Goor, A.J., 2004. The State-of-the-art and

Future Trends in Testing Embedded Memories. Records of IEEE Int. Workshop on

Memory Technology, Design and Testing. pp. 54-59

140 Additional Literature

74 Hamdioui, S., Wadsworth, R., Reyes, J.D., van de Goor, A.J., 2004. Memory Faults

Modeling Trends: A Case Study. Journal of Electronic Testing: Theory and Applications.

20(3), pp. 245-255

75 Hamdioui, S., van de Goor, A.J., 2002. Efficient Tests for Realistic Faults in Dual-Port

SRAMs. IEEE Transactions on Computers. 51(5), pp. 460-473

76 Hamdioui, S., van de Goor, A.J., Rodgers, M., 2003. Detecting Intra-Word Faults in

Word-Oriented Memories. In Proc.: 21st IEEE VLSI Test Symposium. pp. 241-247

77 Harutunyan, G., Vardanian, V.A., Zorian, Y., 2006. Minimal March Tests for Dynamic

Faults in Random Access Memories. In Proc.: 11th European Test Symposium. pp. 43-48

78 Hirabayashi, O., Suzuki, A., Yabe, T., Kawasumi, A., Takeyama, Y., Kushida, K.,

Tohata, A., Otsuka, N., 2002. DFT Techniques for Wafer-Level At-Speed Testing of

High-Speed SRAMs., In Proc.: IEEE International Test Conference. pp. 164-169

79 Huang, R.F., Chou, Y.F., Wu, C.W., 2003. Defect Oriented Fault Analysis for SRAM.

In Proc.: 12th IEEE Asian Test Symposium. pp. 256-261

80 Jee, A., 2002., Defect-Oriented Analysis of Memory BIST Tests. In Proc.: 8th IEEE On-

Line Testing Workshop. pp. 201-205

81 Jee, A., Colburn, J.E., Irrinki, V.S., Puri, M., 2000. Optimizing Memory Tests by

Analyzing Defect Coverage. Records of IEEE Int. Workshop on Memory Technology,

Design and Testing. pp. 20-25

82 Kim, V.K., Chen, T., 1999. On Comparing Functional Fault Coverage and Defect

Coverage for Memory Testing. IEEE Transaction on Computer-Aided Design of Integrated

Circuits and Systems. 18(11), pp. 1676-1683

83 Knaizuk, J., Harmann, C.R.P., 1977. An Algorithm for Testing Random Access

Memories. IEEE Transactions on Computers. C-26(4), pp. 414-416

84 Linder, M., Eder, A., Oberländer, K., Huch, M., Resch, G., 2010. Analysis on

Effectiveness of SRAM Test Algorithms and Test Statistics on Industrial Data. 4.

GMM/GI/ITG‐Fachtagung ‘Zuverlässigkeit und Entwurf’.,13.-.15.9.2010, Wildbad

Kreuth, Germany. pp. 49‐50

85 Mazumder, P., Patel, J.H., 1989. An Efficient Built-In Self Testing for Random-Access

Memory. IEEE Transactions on Industrial Electronics. 36(2), pp. 246-453

86 Mikitjuk, V.G., Yarmolik, V.N., van de Goor, A.J., 1996. RAM Testing Algorithms for

Detection Multiple Linked Faults. In Proc.: European Design and Test Conference.

pp. 435-439

87 Mrozek, I., Yarmolik, V.N., 2008. MATS+ transparent memory test for pattern

sensitive fault detection. IEEE 15th Conference on Mixed Design of Integrated Circuits and

Systems. pp. 493-498

88 Mrozek, I., Yarmolik, V.N., 2008. Optimal Backgrounds Selection for Multi Run

Memory Testing. Computer Information Systems and Industrial Management Applications.

pp. 155-156

89 Naik, S., Agricola, F., Maly, W., 1993. Fault Analysis of High-Density CMOS SRAMs.

IEEE Desing & Test of Computers. 10(2), pp. 13-23

90 Nair, R., Thatte, S.M., Abraham, J.A., 1978. Efficient Algorithms for Testing

Semiconductor Random-Access Memories. IEEE Transactions on Computers. C-27(6),

pp. 572-576

Additional Literature 141

91 Rajsuman, R., 1991. New Algorithm for Testing Random Access Memories. Electronics

Letters. 27(7), pp. 574-575

92 Riedel, M., Rajski., 1995. Fault Coverage Analysis of RAM Test Algorithms. In Proc.:

13th IEEE VLSI Test Symposium. pp. 227-234

93 Sarma, D., Papachristou, C.A., Saifuddin, F.T., 1982. Fault coverage of pattern-

sensitive fault-detection algorithms for semiconductor memories. Electronics Letters.

18(22), pp. 950-951

94 Tsai, P.C., Wang S.J., Chang, F.M., 2005. FSM-Based Programmable Memory BIST

with Macro Command. IEEE Int. Workshop on Memory Technology, Design and Testing.

pp. 72-77

95 Tseng, C.W., Mitra, S., Davidson, S., McCluskey, E.J., 2001. An Evaluation of Pseudo

Ranodm Testing for Detecting Real Defects. In Proc.: 19th IEEE VLSI Test Symposium.

pp. 404-409

96 van de Goor, A.J., 2004. An Industrial Evaluation of DRAM Tests. IEEE Design & Test

of Computers. 21(5), pp. 430-440

97 van de Goor, A.J., Gaydadjiev, G.N., 1997. An Analysis of (Linked) Address Decoder

Faults. In Proc.: IEEE Int. Workshop on Memory Technology, Design and Testing. pp. 13-

20

98 van de Goor, A.J., Hamdioui, S., Al-Ars, Z., 2004. The Effectiveness of Scan Test and

its new Variants. Records of IEEE Int. Workshop on Memory Technology, Design and

Testing. pp. 26-31

99 van de Goor, A.J., Lin, M., 1997. The Implementation of Pseudo-Random Memory

Tests on Commercial Memory Testers. In Proc.: IEEE International Test Conference. pp.

226-235

100 van de Goor, A.J., Tlili, I.B.S., 1997. Disturb Neighborhood Pattern Sensitivity Fault.

In Proc.: 15th IEEE VLSI Test Symposium. pp. 37-45

101 van de Goor, A.J., Tlili, I.B.S., 1998. March Tests for Word-Oriented Memories. In

Proc.: Design and Test in Europe. pp. 501-508

102 van de Goor, A.J., Tlili, I.B.S., 2003. A Systematic Method for Modifying March Tests

for Bit-Oriented Memories into Tests for Word-Oriented Memories. IEEE Transactions

on Computers. 52(10), pp. 1320-1331

103 van de Goor, A.J., Tlili, I.B.S., Hamdioui, S., 1998. Converting March Tests for Bit-

Oriented Memories into Test for Word-Oriented Memories. Records of IEEE Int.

Workshop on Memory Technology, Design and Testing. pp. 46-52

104 Veenstra, P.K., Beenker, F.P.M., Koomen, J.J.M., 1988. Testing of random access

memories: theory and practice. Electronic Circuits & Systems. 135(1), pp. 24-28

105 Wang, B., Yang, J., Ivanov, A., 2003. Reducing Test Time of Embedded SRAMs.

Records of IEEE Int. Workshop on Memory Technology, Design and Testing. pp. 52-57

106 Wang, C.W., Wu, C.F., Li, J.F., Wu, C.W., Teng, T., Chiu, K., Lin, H.P., 2000. A Built-

In Self-Test and Self-Diagnosis Scheme for Embedded SRAM. In Proc.: 9th IEEE Asian

Test Symposium. pp. 45-50

107 Wu, C.F., Huang, C.T., Cheng, K.L., Wu, C.W., 2000. Simulation-Based Test

Algorithm Generation for Random Access Memories. In Proc.: 18th IEEE VLSI Test

Symposium. pp. 291-296

142 Additional Literature

108 Zarrineh, K., Deo, A.P., Adams, R.D., 2000. Defect Analysis and Realistic Fault Model

Extensions for Static Random Access Memories. Records of IEEE Int. Workshop on

Memory Technology, Design and Testing. pp. 119-124

109 Zarrineh, K., Upadhyaya, S.J., 1999. On Programmable Memory Built-In Self Test

Architectures. In Proc.: Design, Automation and Test in Europe. pp. 708-713

Appendix A 143

Appe ndix A

Addi t io na l R e s ul t s o f C hapte r 6

This chapter contains additional tables and figures that

show the test results for the fault coverage of test algorithms

for each test, and the tables that summarize the test results for

efficiency of pairs of algorithms.

A . 1 F a u l t C o v e r a g e o f A l g o r i t h m s

This section contains the test results of all tests for all of the

seven test number in the study. The total fault coverage and

number of exclusive faults for each algorithm in the study test

set is listed and additionally, the fault coverage is shown

graphically. 100% always refers to the total number of faults

detected at the respective test number.

The results of TN1522 and TN1622 are of special interest as

these tests are performed before Burn-In. Hence, the expected

fault coverage of RESET was zero. Nevertheless, RESET

detects 33 faults at TN1522 and 11 faults at TN 1622 although

the RESET configuration already ran at wafer test. It has to be

assumed that these faults are caused by the packaging process

or due to handling between wafer and Burn-In test.

144 Appendix A

TN1522 (1.35V / +125°C)

Table A.1. Fault coverage at TN1522

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 617 March Y 130 21% 0

SCAN 50 8% 0 March LR 286 46% 0

SCAN+ 59 10% 0 March LA 319 52% 0

MATS 83 13% 0 March RAW 447 72% 1

MATS+ 112 18% 0 March RAW1 101 16% 0

MATS++ 108 18% 0 March AB 297 48% 0

March C- 116 19% 0 March AB1 341 55% 3

March A 120 19% 0 March BDN 318 52% 0

March B 130 21% 0 March SR 276 45% 0

Algorithm B 289 47% 0 March SS 134 22% 0

March C+ 124 20% 0 BLIF 204 33% 0

PMOVI 127 21% 0 Ham5R 346 56% 5

March 1/0 120 19% 0 Ham5W 298 48% 2

March TP 121 20% 0 March G 163 29% 0

March U 280 45% 0 Ham_Walk 384 62% 2

March X 110 18% 0 RESET 33 5% 0

Figure A.1. Fault coverage at TN1522

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix A 145

TN1622 (1.80V / +125°C)

Table A.2. Fault coverage at TN1622

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 56 March Y 24 43% 0

SCAN 18 32% 0 March LR 30 54% 0

SCAN+ 17 30% 0 March LA 29 52% 0

MATS 21 38% 0 March RAW 46 82% 0

MATS+ 21 38% 0 March RAW1 22 39% 0

MATS++ 24 43% 0 March AB 27 48% 0

March C- 23 41% 0 March AB1 24 43% 1

March A 25 45% 0 March BDN 27 48% 0

March B 26 46% 0 March SR 29 52% 0

Algorithm B 32 57% 0 March SS 26 46% 0

March C+ 26 46% 0 BLIF 12 21% 0

PMOVI 27 48% 0 Ham5R 25 45% 0

March 1/0 24 43% 0 Ham5W 23 41% 0

March TP 28 50% 0 March G 28 50% 0

March U 31 55% 0 Ham_Walk 33 59% 0

March X 23 41% 0 RESET 11 20% 0

Figure A.2. Fault coverage at TN1622

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

146 Appendix A

TN6531 (1.35V / +145°C)

Table A.3. Fault coverage at TN6531

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 2439 March Y 1056 43% 0

SCAN 684 28% 0 March LR 1921 49% 1

SCAN+ 727 30% 0 March LA 1414 58% 1

MATS 937 38% 0 March RAW 1563 64% 4

MATS+ 1047 43% 0 March RAW1 1020 42% 0

MATS++ 1037 43% 0 March AB 1402 57% 0

March C- 1092 45% 0 March AB1 792 32% 5

March A 1109 45% 0 March BDN 1429 59% 0

March B 1148 47% 1 March SR 1898 78% 0

Algorithm B 1908 78% 0 March SS 1115 46% 0

March C+ 1074 44% 0 BLIF 1047 43% 0

PMOVI 1093 45% 0 Ham5R 783 32% 10

March 1/0 1083 44% 0 Ham5W 473 19% 0

March TP 1110 46% 0 March G 1232 51% 4

March U 1909 78% 1 Ham_Walk 2063 85% 22

March X 1067 44% 0 RESET 540 22% 0

Figure A.3. Fault coverage at TN6531

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix A 147

TN6631 (1.80V / +145°C)

Table A.4. Fault coverage at TN6631

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 175 March Y 116 66% 0

SCAN 83 47% 0 March LR 128 73% 0

SCAN+ 94 54% 0 March LA 126 72% 0

MATS 99 57% 0 March RAW 153 87% 0

MATS+ 103 59% 0 March RAW1 113 65% 0

MATS++ 99 57% 0 March AB 121 69% 0

March C- 114 65% 0 March AB1 72 41% 0

March A 109 62% 0 March BDN 120 69% 0

March B 110 63% 0 March SR 122 70% 0

Algorithm B 123 70% 0 March SS 115 66% 0

March C+ 123 70% 0 BLIF 29 17% 0

PMOVI 120 49% 0 Ham5R 82 47% 0

March 1/0 114 45% 0 Ham5W 41 23% 0

March TP 116 44% 0 March G 120 69% 2

March U 123 70% 0 Ham_Walk 128 73% 0

March X 104 59% 0 RESET 70 40% 0

Figure A.4. Fault coverage at TN6631

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

148 Appendix A

TN3741 (1.30V / -40°C)

Table A.5. Fault coverage at TN3741

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 237 March Y 124 52% 0

SCAN 79 33% 0 March LR 113 48% 0

SCAN+ 98 41% 0 March LA 165 70% 0

MATS 82 35% 0 March RAW 199 84% 0

MATS+ 105 44% 0 March RAW1 130 55% 1

MATS++ 107 45% 0 March AB 184 78% 0

March C- 109 46% 0 March AB1 166 70% 3

March A 111 47% 0 March BDN 186 78% 2

March B 125 53% 0 March SR 113 48% 1

Algorithm B 124 52% 1 March SS 145 61% 0

March C+ 134 57% 0 BLIF 68 29% 0

PMOVI 131 55% 0 Ham5R 163 69% 2

March 1/0 127 54% 0 Ham5W 113 48% 0

March TP 130 55% 1 March G 159 67% 1

March U 125 53% 0 Ham_Walk 154 65% 1

March X 103 43% 0 RESET 99 42% 0

Figure A.5. Fault coverage at TN3741

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix A 149

TN3841 (1.50V / -40°C)

Table A.6. Fault coverage at TN3841

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 70 March Y 17 24% 0

SCAN 10 14% 0 March LR 13 19% 0

SCAN+ 13 19% 0 March LA 56 80% 0

MATS 10 14% 0 March RAW 62 89% 0

MATS+ 13 19% 0 March RAW1 14 20% 0

MATS++ 16 23% 0 March AB 56 80% 0

March C- 13 19% 0 March AB1 60 86% 2

March A 11 16% 0 March BDN 53 76% 0

March B 15 21% 0 March SR 15 21% 0

Algorithm B 14 20% 0 March SS 19 27% 0

March C+ 14 20% 0 BLIF 9 13% 0

PMOVI 16 23% 0 Ham5R 58 83% 0

March 1/0 18 26% 0 Ham5W 50 71% 0

March TP 13 19% 0 March G 17 24% 0

March U 14 20% 0 Ham_Walk 41 59% 0

March X 12 17% 0 RESET 10 14% 0

Figure A.6. Fault coverage at TN3841

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

150 Appendix A

TN3941 (1.80V / -40°C)

Table A.7. Fault coverage at TN3941

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 46 March Y 19 41% 0

SCAN 21 46% 0 March LR 21 46% 0

SCAN+ 20 43% 0 March LA 36 78% 0

MATS 20 43% 0 March RAW 37 80% 0

MATS+ 20 43% 0 March RAW1 21 46% 0

MATS++ 19 41% 0 March AB 37 80% 0

March C- 20 43% 0 March AB1 37 80% 0

March A 20 43% 0 March BDN 35 76% 0

March B 22 48% 0 March SR 22 48% 0

Algorithm B 20 43% 0 March SS 22 48% 0

March C+ 22 48% 0 BLIF 19 41% 0

PMOVI 22 48% 0 Ham5R 40 87% 0

March 1/0 21 46% 0 Ham5W 32 70% 0

March TP 20 43% 0 March G 23 50% 0

March U 22 48% 0 Ham_Walk 28 61% 0

March X 20 43% 0 RESET 20 43% 0

Figure A.7. Fault coverage at TN3941

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix A 151

TN4441 (1.30V / +25°C)

Table A.8. Fault coverage at TN4441

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 165 March Y 51 31% 0

SCAN 34 21% 0 March LR 55 33% 0

SCAN+ 36 22% 0 March LA 118 72% 0

MATS 31 19% 0 March RAW 139 84% 1

MATS+ 44 27% 0 March RAW1 54 33% 0

MATS++ 50 30% 0 March AB 123 75% 0

March C- 51 31% 0 March AB1 118 72% 0

March A 49 30% 0 March BDN 120 73% 0

March B 51 31% 0 March SR 53 32% 0

Algorithm B 56 34% 0 March SS 63 38% 0

March C+ 56 34% 0 BLIF 24 15% 0

PMOVI 57 35% 0 Ham5R 130 79% 0

March 1/0 58 35% 0 Ham5W 98 59% 0

March TP 49 30% 0 March G 63 38% 0

March U 61 37% 0 Ham_Walk 95 58% 2

March X 44 27% 0 RESET 40 24% 0

Figure A.8. Fault coverage at TN4441

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

152 Appendix A

TN4541 (1.80V / +25°C)

Table A.9. Fault coverage at TN4541

Algorithm |F| FC excl. Algorithm |F| FC excl.

Total 25 March Y 5 20% 0

SCAN 7 28% 0 March LR 8 32% 0

SCAN+ 7 28% 0 March LA 19 76% 0

MATS 4 16% 0 March RAW 21 84% 0

MATS+ 4 16% 0 March RAW1 5 20% 0

MATS++ 6 24% 0 March AB 17 68% 0

March C- 6 24% 0 March AB1 17 68% 0

March A 7 28% 0 March BDN 14 56% 0

March B 7 28% 0 March SR 8 32% 0

Algorithm B 7 28% 0 March SS 8 32% 0

March C+ 8 32% 0 BLIF 3 12% 0

PMOVI 6 24% 0 Ham5R 18 72% 0

March 1/0 7 28% 0 Ham5W 18 72% 0

March TP 7 28% 0 March G 8 32% 0

March U 9 26% 0 Ham_Walk 10 40% 0

March X 5 20% 0 RESET 6 24% 0

Figure A.9. Fault coverage at TN4541

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S
C

A
N

S
C

A
N

+

M
A

T
S

M
A

T
S

+

M
A

T
S

+
+

M
a
rc

h
 C

-

M
a
rc

h
 A

M
a
rc

h
 B

A
lg

o
ri
th

m
 B

M
a
rc

h
 C

+

P
M

O
V

I

M
a
rc

h
 1

/0

M
a
rc

h
 T

P

M
a
rc

h
 U

M
a
rc

h
 X

M
a
rc

h
 Y

M
a
rc

h
 L

R

M
a
rc

h
 L

A

M
a
rc

h
 R

A
W

M
a
rc

h
 R

A
W

1

M
a
rc

h
 A

B

M
a
rc

h
 A

B
1

M
a
rc

h
 B

D
N

M
a
rc

h
 S

R

M
a
rc

h
 S

S

B
L
IF

H
a
m

5
R

H
a
m

5
W

M
a
rc

h
 G

H
a
m

_
W

a
lk

R
E

S
E

T

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix A 153

A . 2 E f f e c t i v e n e s s o f P a i r s o f

A l g o r i t h m s

In this section, the test results of the analysis for

effectiveness of pairs of algorithms are given for all seven tests

during the study. For each test number, a table is derived that

contains fault coverage, union and intersection. The colors

represent QEff as defined in section Chapter 6 (see Fig. 6.3).

154 Appendix A

TN6531 (uncolored, values of QEff)

Table A.10. Values of QEff at TN6531

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

6
8
4

0
,9

3
7

0
,9

1
9

0
,9

4
1

0
,9

3
4

0
,9

8
8

0
,9

9
1

0
,9

9
5

0
,9

9
0

0
,9

6
9

0
,9

5
1

0
,9

5
5

0
,9

7
4

0
,9

9
4

0
,9

4
6

0
,9

3
9

0
,9

9
2

0
,9

8
7

0
,9

7
5

0
,9

5
0

0
,9

7
0

0
,2

4
6

0
,9

8
9

0
,9

9
2

0
,9

8
8

0
,0

1
8

0
,2

4
4

0
,0

1
6

1
,0

0
0

0
,9

9
2

S

C
N

7
2
7

0
,8

8
6

0
,9

0
6

0
,9

0
1

0
,9

7
5

0
,9

8
2

0
,9

8
2

0
,9

7
9

0
,9

3
9

0
,9

3
5

0
,9

2
9

0
,9

6
6

0
,9

7
9

0
,9

1
7

0
,8

9
5

0
,9

8
3

0
,9

7
1

0
,9

4
8

0
,9

2
9

0
,9

6
5

0
,2

2
3

0
,9

6
7

0
,9

8
5

0
,9

5
5

0
,0

1
5

0
,2

2
2

0
,0

1
6

1
,0

0
0

0
,9

8
1

S

C
N

P

9
3
7

0
,9

0
0

0
,9

0
9

0
,9

2
9

0
,9

4
1

0
,9

5
8

0
,9

8
3

0
,8

9
4

0
,9

0
2

0
,8

9
9

0
,9

4
1

0
,9

7
9

0
,8

9
0

0
,8

7
7

0
,9

6
7

0
,9

3
1

0
,9

1
9

0
,8

5
2

0
,9

1
7

0
,2

2
9

0
,9

4
3

0
,9

6
4

0
,9

0
8

0
,1

3
4

0
,2

2
6

0
,0

3
7

0
,9

8
3

0
,9

8
6

M

T
S

1
0
4
7

0
,9

0
1

0
,9

0
2

0
,9

1
6

0
,9

2
8

0
,9

7
1

0
,8

7
8

0
,8

6
7

0
,8

8
6

0
,8

9
9

0
,9

7
8

0
,8

9
8

0
,8

6
7

0
,9

7
2

0
,9

2
3

0
,9

1
8

0
,8

4
5

0
,9

0
6

0
,3

2
3

0
,9

3
1

0
,9

5
9

0
,8

9
1

0
,1

6
9

0
,3

2
1

0
,1

3
3

0
,9

6
4

0
,9

8
0

M

T
S

P

1
0
3
7

0
,9

1
4

0
,9

3
7

0
,9

3
8

0
,9

7
8

0
,8

9
1

0
,8

8
0

0
,9

0
1

0
,9

1
6

0
,9

7
5

0
,8

9
2

0
,8

9
0

0
,9

6
9

0
,9

4
1

0
,9

3
6

0
,8

6
1

0
,9

2
4

0
,3

1
2

0
,9

4
0

0
,9

6
2

0
,9

1
1

0
,1

6
8

0
,3

1
1

0
,1

3
1

0
,9

7
4

0
,9

8
4

M

T
S

P
P

1
0
9
2

0
,8

9
7

0
,9

1
8

0
,9

7
0

0
,8

9
7

0
,8

6
8

0
,8

8
7

0
,8

9
2

0
,9

6
9

0
,8

8
3

0
,8

6
8

0
,9

6
3

0
,9

2
5

0
,9

0
7

0
,8

9
9

0
,9

0
9

0
,3

3
4

0
,9

2
6

0
,9

5
3

0
,8

9
8

0
,1

7
5

0
,3

4
2

0
,1

5
8

0
,9

7
4

0
,9

7
4

C

M

1
1
0
9

0
,9

3
1

0
,9

7
0

0
,8

9
7

0
,8

7
1

0
,8

8
6

0
,8

9
1

0
,9

6
3

0
,9

0
2

0
,9

0
1

0
,9

6
2

0
,9

1
3

0
,8

9
2

0
,9

2
6

0
,8

9
4

0
,3

3
3

0
,9

2
0

0
,9

5
9

0
,8

6
6

0
,1

7
8

0
,3

2
7

0
,1

3
8

0
,9

7
5

0
,9

6
8

A

1
1
4
8

0
,9

5
6

0
,9

2
2

0
,8

9
7

0
,9

0
9

0
,9

0
2

0
,9

4
9

0
,9

2
8

0
,9

2
3

0
,9

5
1

0
,8

8
2

0
,8

7
3

0
,9

4
6

0
,8

6
5

0
,3

4
3

0
,8

9
5

0
,9

4
7

0
,8

9
0

0
,1

9
7

0
,3

4
2

0
,1

4
8

0
,9

4
9

0
,9

5
6

B

1
9
0
8

0
,9

8
7

0
,9

6
2

0
,9

7
7

0
,9

5
9

0
,9

2
5

0
,9

7
0

0
,9

7
4

0
,9

3
3

0
,7

5
0

0
,6

5
7

0
,9

7
8

0
,7

5
6

0
,5

3
4

0
,7

4
3

0
,9

1
9

0
,9

6
1

0
,9

3
6

0
,5

0
9

0
,3

2
6

0
,9

2
1

0
,9

6
0

A

lg
B

1
0
7
4

0
,8

9
7

0
,9

0
5

0
,9

0
4

0
,9

8
8

0
,8

6
1

0
,8

9
0

0
,9

8
1

0
,9

4
6

0
,9

3
9

0
,9

0
0

0
,9

3
9

0
,3

4
0

0
,9

6
3

0
,9

8
0

0
,9

2
9

0
,1

8
8

0
,3

4
6

0
,1

6
2

0
,9

7
1

0
,9

9
0

C

P

1
0
9
3

0
,8

9
1

0
,8

7
9

0
,9

6
2

0
,8

5
2

0
,8

7
3

0
,9

6
6

0
,9

1
6

0
,9

0
7

0
,8

9
4

0
,9

0
2

0
,3

4
2

0
,9

3
0

0
,9

6
2

0
,8

9
0

0
,1

9
3

0
,3

4
8

0
,1

6
4

0
,9

5
3

0
,9

7
0

P
M

O
V

I

1
0
8
3

0
,8

9
3

0
,9

7
4

0
,8

5
7

0
,8

9
5

0
,9

7
4

0
,9

3
8

0
,9

3
8

0
,8

8
8

0
,9

3
3

0
,3

4
2

0
,9

4
5

0
,9

7
1

0
,9

1
3

0
,1

9
0

0
,3

4
6

0
,1

6
4

0
,9

6
2

0
,9

7
9

1
/0

1
1
1
0

0
,9

5
9

0
,8

7
7

0
,8

7
7

0
,9

6
1

0
,9

0
6

0
,9

0
2

0
,9

0
3

0
,8

8
9

0
,3

2
9

0
,9

2
1

0
,9

5
1

0
,8

6
4

0
,1

8
6

0
,3

3
4

0
,1

5
2

0
,9

6
0

0
,9

6
8

T
P

1
9
0
9

0
,9

7
7

0
,9

7
2

0
,9

3
2

0
,7

5
0

0
,6

5
7

0
,9

8
2

0
,7

5
6

0
,5

3
8

0
,7

5
3

0
,9

2
5

0
,9

6
5

0
,9

4
3

0
,5

1
0

0
,3

3
0

0
,9

1
9

0
,9

6
6

U

1
0
6
7

0
,8

6
3

0
,9

5
8

0
,9

0
1

0
,9

0
7

0
,8

8
3

0
,9

1
0

0
,3

3
7

0
,9

2
9

0
,9

5
1

0
,8

8
6

0
,1

7
3

0
,3

3
3

0
,1

3
7

0
,9

6
1

0
,9

7
3

X

1
0
5
6

0
,9

7
0

0
,9

2
2

0
,9

3
1

0
,8

7
5

0
,9

1
4

0
,3

3
5

0
,9

4
4

0
,9

5
9

0
,9

0
0

0
,1

7
9

0
,3

3
1

0
,1

4
5

0
,9

6
2

0
,9

7
3

Y

1
9
2
1

0
,7

4
8

0
,6

5
9

0
,9

7
9

0
,7

5
3

0
,5

3
6

0
,7

5
1

0
,9

2
8

0
,9

7
2

0
,9

5
8

0
,5

1
2

0
,3

3
2

0
,9

1
7

0
,9

6
0

L
R

1
4
1
4

0
,9

1
0

0
,9

3
9

0
,9

0
8

0
,7

0
7

0
,9

2
0

0
,7

5
2

0
,9

2
9

0
,2

7
6

0
,6

7
7

0
,6

2
2

0
,8

2
0

0
,8

1
5

L
A

1
5
6
3

0
,9

3
5

0
,9

0
8

0
,9

1
0

0
,8

9
9

0
,6

5
7

0
,9

3
6

0
,3

2
1

0
,9

0
4

0
,9

3
5

0
,8

2
0

0
,7

1
9

R

A
W

1
0
2
0

0
,9

4
5

0
,3

2
0

0
,9

6
2

0
,9

7
5

0
,9

2
9

0
,1

6
3

0
,3

1
4

0
,1

2
5

0
,9

7
7

0
,9

8
8

R

A
W

1

1
4
0
2

0
,7

1
0

0
,9

2
6

0
,7

5
7

0
,9

1
8

0
,2

8
0

0
,6

7
0

0
,6

0
3

0
,8

2
0

0
,8

2
6

A

B

7
9
2

0
,7

1
8

0
,5

4
4

0
,3

5
7

0
,1

9
8

0
,6

9
1

0
,7

9
4

0
,3

6
9

0
,6

1
6

A

B
1

1
4
2
9

0
,7

4
8

0
,9

4
1

0
,2

8
4

0
,6

8
2

0
,6

2
3

0
,8

3
0

0
,8

1
6

B

D
N

1
8
9
8

0
,9

5
8

0
,9

3
1

0
,5

1
4

0
,3

3
8

0
,9

1
6

0
,9

5
4

S

R

1
1
1
5

0
,2

0
5

0
,3

6
7

0
,1

8
4

0
,9

4
3

0
,9

7
4

S

S

1
0
4
7

0
,1

8
1

0
,2

9
5

0
,2

3
1

0
,9

7
1

B

L
IF

7
8
3

0
,9

5
0

0
,3

6
9

0
,5

6
2

H

a
m

5
R

4
7
3

0
,1

7
6

0
,3

9
8

H

a
m

5
W

1
2
3
2

0
,9

4
3

G

2
0
6
3

H

a
m

W
k

Appendix A 155

TN1522 (1.35V / +125°C)

Table A.11. Union and intersection at TN1522

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

5
0

4
4

4
3

4
6

4
6

4
7

4
7

4
7

4
8

4
8

4
5

4
8

4
6

4
8

4
4

4
7

5
0

4
9

4
9

4
6

4
7

1
1

4
9

4
9

4
7

4
1
3

4
5
0

4
8

S

C
N

6
5

5
9

4
6

4
8

4
6

5
2

5
4

5
3

5
5

5
2

5
1

4
7

5
2

5
5

5
0

4
9

5
3

5
5

5
3

5
0

5
0

1
2

5
2

5
6

5
0

7
1
3

4
5
7

5
4

S

C
N

P

9
0

9
6

8
3

7
8

7
3

7
8

7
6

7
7

8
2

7
4

7
6

7
3

7
8

8
2

7
0

7
4

8
2

7
9

7
8

6
7

7
7

1
6

7
8

8
2

7
5

3
6

1
8

9
8
2

8
2

M

T
S

1
1
6

1
2
3

1
1
7

1
1
2

9
0

9
5

9
6

9
7

1
1
1

9
3

9
6

9
5

9
2

1
0
9

9
3

1
0
4

1
1
2

9
8

1
0
3

8
2

9
6

3
4

1
0
3

1
1
0

9
7

5
8

3
3

1
7

1
0
8

1
0
8

M

T
S

P

1
1
2

1
2
1

1
1
8

1
3
0

1
0
8

8
8

9
4

9
5

1
0
4

8
9

9
2

8
9

9
1

1
0
5

8
8

9
5

1
0
3

9
7

1
0
0

8
2

9
2

2
9

9
6

1
0
3

9
4

5
3

3
1

1
6

1
0
1

1
0
5

M

T
S

P
P

1
1
9

1
2
3

1
2
1

1
3
3

1
3
6

1
1
6

1
0
1

1
0
1

1
1
3

9
9

1
0
0

9
8

1
0
1

1
1
4

9
5

9
9

1
1
4

1
0
3

1
0
6

8
8

9
8

3
7

1
0
5

1
1
5

1
0
0

5
8

3
5

2
0

1
1
3

1
1
1

C

M

1
2
3

1
2
5

1
2
7

1
3
6

1
3
4

1
3
5

1
2
0

1
1
2

1
1
9

9
6

1
0
2

9
4

1
0
1

1
1
3

9
6

1
0
3

1
1
4

1
0
6

1
0
8

9
0

1
0
2

3
4

1
0
7

1
1
7

1
0
3

5
5

3
5

1
8

1
1
6

1
1
2

A

1
3
3

1
3
6

1
3
6

1
4
5

1
4
3

1
4
5

1
3
8

1
3
0

1
2
7

1
0
2

1
0
5

9
9

1
0
4

1
2
3

9
5

1
0
7

1
2
4

1
1
0

1
1
7

9
2

1
0
6

3
6

1
1
3

1
2
6

1
1
0

6
2

3
5

2
0

1
2
6

1
2
3

B

2
9
1

2
9
3

2
9
0

2
9
0

2
9
3

2
9
2

2
9
0

2
9
2

2
8
9

1
1
7

1
2
2

1
1
6

1
1
8

2
6
3

1
0
7

1
2
6

2
6
9

1
4
9

1
6
8

1
0
0

1
3
9

7
9

1
5
4

2
6
2

1
2
5

1
9
4

8
0

5
2

1
5
6

2
7
4

A

lg
B

1
2
6

1
3
1

1
3
3

1
4
3

1
4
3

1
4
1

1
4
8

1
5
2

2
9
6

1
2
4

1
0
5

1
0
2

1
0
3

1
1
9

9
0

1
0
6

1
1
8

1
0
7

1
1
4

8
8

1
0
6

3
6

1
0
8

1
2
0

1
0
6

5
9

3
9

2
4

1
1
5

1
1
5

C

P

1
3
2

1
3
5

1
3
4

1
4
3

1
4
3

1
4
3

1
4
5

1
5
2

2
9
4

1
4
6

1
2
7

1
0
7

9
9

1
2
1

9
4

1
0
9

1
2
3

1
1
6

1
1
8

8
9

1
0
9

4
5

1
1
3

1
2
4

1
0
8

6
9

4
6

2
7

1
2
0

1
2
1

P
M

O
V

I

1
2
2

1
3
2

1
3
0

1
3
7

1
3
9

1
3
8

1
4
6

1
5
1

2
9
3

1
4
2

1
4
0

1
2
0

9
7

1
1
7

8
8

1
0
6

1
1
8

1
1
0

1
1
3

8
7

1
0
5

4
3

1
1
2

1
1
7

1
0
6

6
6

4
4

2
6

1
1
4

1
1
7

1
/0

1
2
5

1
2
8

1
2
6

1
4
1

1
3
8

1
3
6

1
4
0

1
4
7

2
9
2

1
4
2

1
4
9

1
4
4

1
2
1

1
1
7

9
4

1
0
0

1
1
5

1
0
7

1
1
1

8
6

1
0
4

3
5

1
0
6

1
1
8

1
0
2

5
8

3
4

2
2

1
1
0

1
1
5

T
P

2
8
2

2
8
4

2
8
1

2
8
3

2
8
3

2
8
2

2
8
7

2
8
7

3
0
6

2
8
5

2
8
6

2
8
3

2
8
4

2
8
0

1
0
8

1
2
4

2
6
0

1
4
9

1
6
8

1
0
0

1
4
1

8
0

1
5
5

2
5
8

1
2
6

1
8
7

8
0

5
4

1
4
7

2
7
0

U

1
1
6

1
1
9

1
2
3

1
2
9

1
3
0

1
3
1

1
3
4

1
4
5

2
9
2

1
4
4

1
4
3

1
4
2

1
3
7

2
8
2

1
1
0

9
8

1
0
7

9
8

9
7

8
5

9
0

3
7

1
0
1

1
0
9

9
4

5
7

3
9

2
0

1
0
2

1
0
6

X

1
3
3

1
4
0

1
3
9

1
3
8

1
4
3

1
4
7

1
4
7

1
5
3

2
9
3

1
4
8

1
4
8

1
4
4

1
5
1

2
8
6

1
4
2

1
3
0

1
2
6

1
1
0

1
2
0

9
1

1
0
7

3
9

1
1
8

1
2
7

1
0
8

7
0

4
0

2
2

1
2
3

1
2
2

Y

2
8
6

2
9
2

2
8
7

2
8
6

2
9
1

2
8
8

2
9
2

2
9
2

3
0
6

2
9
2

2
9
0

2
8
8

2
9
2

3
0
6

2
8
9

2
9
0

2
8
6

1
4
5

1
6
4

9
7

1
3
9

7
7

1
5
3

2
6
1

1
2
7

1
9
5

7
8

4
9

1
5
1

2
7
3

L
R

3
2
0

3
2
3

3
2
3

3
3
3

3
3
0

3
3
2

3
3
3

3
3
9

4
5
9

3
3
6

3
3
0

3
2
9

3
3
3

4
5
0

3
3
1

3
3
9

4
6
0

3
1
9

2
9
6

9
1

2
7
9

2
1
7

2
8
7

1
4
5

1
1
2

8
4

2
0
2

1
7
9

1
2
6

2
3
4

L
A

4
4
8

4
5
3

4
5
2

4
5
6

4
5
5

4
5
7

4
5
9

4
6
0

5
6
8

4
5
7

4
5
6

4
5
4

4
5
7

5
5
9

4
6
0

4
5
7

5
6
9

4
7
0

4
4
7

9
2

2
8
5

3
2
1

3
0
0

1
6
1

1
2
1

1
0
3

3
1
9

2
8
5

1
3
4

2
5
1

R

A
W

1
0
5

1
1
0

1
1
7

1
3
1

1
2
7

1
2
9

1
3
1

1
3
9

2
9
0

1
3
7

1
3
9

1
3
4

1
3
6

2
8
1

1
2
6

1
4
0

2
9
0

3
2
9

4
5
6

1
0
1

8
6

3
0

9
4

9
9

8
9

4
6

3
1

1
7

9
9

9
8

R

A
W

1

3
0
0

3
0
6

3
0
3

3
1
3

3
1
3

3
1
5

3
1
5

3
2
1

4
4
7

3
1
5

3
1
5

3
1
2

3
1
4

4
3
6

3
1
7

3
2
0

4
4
4

3
3
7

4
5
9

3
1
2

2
9
7

2
0
6

2
8
3

1
3
7

1
0
9

8
1

1
9
1

1
7
3

1
1
9

2
2
0

A

B

3
8
0

3
8
8

4
0
8

4
1
9

4
2
0

4
2
0

4
2
7

4
3
5

5
5
1

4
2
9

4
2
3

4
1
8

4
2
7

5
4
1

4
1
4

4
3
2

5
5
0

4
4
3

4
6
7

4
1
2

4
3
2

3
4
1

2
1
7

7
4

4
1

6
7

2
9
9

2
6
6

4
9

1
6
3

A

B
1

3
1
9

3
2
5

3
2
3

3
2
7

3
3
0

3
2
9

3
3
1

3
3
5

4
5
3

3
3
4

3
3
2

3
2
6

3
3
3

4
4
3

3
2
7

3
3
0

4
5
1

3
5
0

4
6
5

3
2
5

3
3
2

4
4
2

3
1
8

1
5
3

1
1
5

9
2

2
0
1

1
7
7

1
2
9

2
3
5

B

D
N

2
7
7

2
7
9

2
7
7

2
7
8

2
8
1

2
7
7

2
7
9

2
8
0

3
0
3

2
8
0

2
7
9

2
7
9

2
7
9

2
9
8

2
7
7

2
7
9

3
0
1

4
5
0

5
6
2

2
7
8

4
3
6

5
4
3

4
4
1

2
7
6

1
2
7

1
8
8

7
5

4
7

1
5
3

2
6
2

S

R

1
3
7

1
4
3

1
4
2

1
4
9

1
4
8

1
5
0

1
5
1

1
5
4

2
9
8

1
5
2

1
5
3

1
4
8

1
5
3

2
8
8

1
5
0

1
5
6

2
9
3

3
4
1

4
6
0

1
4
6

3
2
2

4
3
4

3
3
7

2
8
3

1
3
4

6
8

4
4

2
6

1
2
3

1
2
4

S

S

2
5
0

2
5
6

2
5
1

2
5
8

2
5
9

2
6
2

2
6
9

2
7
2

2
9
9

2
6
9

2
6
2

2
5
8

2
6
7

2
9
7

2
5
7

2
6
4

2
9
5

4
3
9

5
4
8

2
5
9

4
2
0

4
7
8

4
3
0

2
9
2

2
7
0

2
0
4

6
7

4
9

8
6

1
9
8

B

L
IF

3
8
3

3
9
2

4
1
1

4
2
5

4
2
3

4
2
7

4
3
1

4
4
1

5
5
5

4
3
1

4
2
7

4
2
2

4
3
3

5
4
6

4
1
7

4
3
6

5
5
4

4
6
3

4
7
4

4
1
6

4
5
2

3
8
8

4
6
3

5
4
7

4
3
6

4
8
3

3
4
6

2
8
7

4
8

1
4
4

H

a
m

5
R

3
4
4

3
5
3

3
7
2

3
9
3

3
9
0

3
9
4

4
0
0

4
0
8

5
3
5

3
9
8

3
9
8

3
9
2

3
9
7

5
2
4

3
8
8

4
0
6

5
3
5

4
3
8

4
6
0

3
8
2

4
2
2

3
7
3

4
3
9

5
2
7

4
0
6

4
5
3

3
5
7

2
9
8

2
6

1
1
6

H

a
m

5
W

1
6
3

1
6
5

1
6
4

1
6
7

1
7
0

1
6
6

1
6
7

1
6
7

2
9
6

1
7
2

1
7
0

1
6
9

1
7
4

2
9
6

1
7
1

1
7
0

2
9
8

3
5
6

4
7
6

1
6
5

3
4
1

4
5
5

3
5
2

2
8
6

1
7
4

2
8
1

4
6
1

4
3
5

1
6
3

1
4
9

G

3
8
6

3
8
9

3
8
5

3
8
8

3
8
7

3
8
9

3
9
2

3
9
1

3
9
9

3
9
3

3
9
0

3
8
7

3
9
0

3
9
4

3
8
8

3
9
2

3
9
7

4
6
9

5
8
0

3
8
7

4
6
1

5
6
2

4
6
7

3
9
8

3
9
4

3
9
0

5
8
6

5
6
6

3
9
8

3
8
4

H

a
m

W
k

156 Appendix A

TN1622 (1.80V / +125°C)

Table A.12. Union and intersection at TN1622

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

1
8

1
5

1
6

1
4

1
7

1
7

1
7

1
7

1
7

1
8

1
8

1
6

1
8

1
8

1
5

1
5

1
7

1
7

1
7

1
6

1
7

7
1
7

1
7

1
8

4
6

4
1
8

1
8

S

C
N

2
0

1
7

1
6

1
4

1
6

1
6

1
6

1
7

1
7

1
6

1
6

1
5

1
7

1
7

1
6

1
5

1
7

1
7

1
6

1
6

1
6

6
1
6

1
7

1
6

4
6

4
1
7

1
7

S

C
N

P

2
3

2
2

2
1

1
9

2
1

2
0

1
9

2
0

2
0

2
1

2
1

2
0

2
1

2
0

1
9

2
0

2
0

2
1

2
1

1
9

2
1

6
2
1

2
0

2
0

6
7

5
2
1

2
0

M

T
S

2
5

2
4

2
3

2
1

2
0

2
0

2
0

2
0

2
0

2
1

2
1

2
1

2
1

2
0

2
0

2
1

2
0

2
1

2
1

1
9

2
1

7
2
1

2
0

2
0

7
8

6
2
1

2
0

M

T
S

P

2
5

2
5

2
4

2
5

2
4

2
2

2
1

2
3

2
3

2
3

2
4

2
2

2
4

2
3

2
0

2
2

2
2

2
3

2
4

2
0

2
4

7
2
4

2
2

2
3

6
7

5
2
4

2
3

M

T
S

P
P

2
4

2
4

2
4

2
4

2
5

2
3

2
2

2
3

2
3

2
3

2
3

2
2

2
3

2
3

2
1

2
1

2
2

2
2

2
3

2
0

2
3

8
2
3

2
3

2
2

7
8

6
2
3

2
3

C

M

2
6

2
6

2
7

2
6

2
8

2
6

2
5

2
4

2
4

2
3

2
3

2
2

2
4

2
5

2
2

2
1

2
4

2
4

2
3

2
0

2
3

8
2
3

2
4

2
3

7
8

6
2
5

2
5

A

2
7

2
6

2
7

2
7

2
7

2
6

2
7

2
6

2
6

2
3

2
4

2
2

2
5

2
6

2
2

2
2

2
5

2
5

2
5

2
1

2
5

8
2
5

2
5

2
4

7
8

6
2
6

2
6

B

3
3

3
2

3
3

3
3

3
3

3
2

3
3

3
2

3
2

2
4

2
5

2
3

2
6

3
0

2
3

2
3

2
9

2
5

2
7

2
1

2
5

9
2
5

2
9

2
4

1
2

9
7

2
6

3
1

A

lg
B

2
6

2
7

2
6

2
6

2
7

2
6

2
8

2
9

3
4

2
6

2
5

2
4

2
5

2
5

2
1

2
2

2
4

2
4

2
4

2
1

2
4

8
2
4

2
4

2
4

8
8

6
2
5

2
5

C

P

2
7

2
8

2
7

2
7

2
7

2
7

2
9

2
9

3
4

2
8

2
7

2
3

2
7

2
6

2
1

2
4

2
5

2
5

2
6

2
1

2
5

8
2
5

2
4

2
5

8
8

6
2
6

2
6

P
M

O
V

I

2
6

2
6

2
5

2
4

2
6

2
5

2
7

2
8

3
3

2
6

2
8

2
4

2
3

2
3

2
1

2
2

2
2

2
2

2
3

2
0

2
3

8
2
3

2
3

2
2

8
8

6
2
3

2
3

1
/0

2
8

2
8

2
8

2
8

2
8

2
8

2
9

2
9

3
4

2
9

2
8

2
9

2
8

2
7

2
2

2
4

2
6

2
6

2
6

2
2

2
5

8
2
5

2
5

2
5

8
8

6
2
7

2
7

T
P

3
1

3
1

3
2

3
2

3
2

3
1

3
1

3
1

3
3

3
2

3
2

3
2

3
2

3
1

2
3

2
3

3
0

2
6

2
6

2
1

2
5

8
2
5

2
9

2
5

1
1

8
6

2
7

3
1

U

2
6

2
4

2
5

2
4

2
7

2
5

2
6

2
7

3
2

2
8

2
9

2
6

2
9

3
1

2
3

2
1

2
3

2
2

2
1

1
9

2
1

7
2
1

2
3

2
0

8
8

6
2
2

2
3

X

2
7

2
6

2
5

2
4

2
6

2
6

2
8

2
8

3
3

2
8

2
7

2
6

2
8

3
2

2
6

2
4

2
3

2
3

2
4

1
9

2
3

7
2
3

2
2

2
2

8
8

6
2
3

2
3

Y

3
1

3
0

3
1

3
1

3
2

3
1

3
1

3
1

3
3

3
2

3
2

3
2

3
2

3
1

3
0

3
1

3
0

2
6

2
5

2
0

2
4

7
2
4

2
8

2
4

1
1

8
6

2
6

3
0

L
R

3
0

2
9

2
9

2
9

3
0

3
0

3
0

3
0

3
6

3
1

3
1

3
1

3
1

3
4

3
0

3
0

3
3

2
9

2
6

2
1

2
6

8
2
6

2
4

2
5

7
9

7
2
7

2
7

L
A

4
7

4
7

4
6

4
6

4
6

4
6

4
8

4
7

5
1

4
8

4
7

4
7

4
8

5
1

4
8

4
6

5
1

4
9

4
6

2
1

2
7

2
1

2
7

2
5

2
5

8
2
5

2
1

2
6

2
6

R

A
W

2
4

2
3

2
4

2
4

2
6

2
5

2
7

2
7

3
3

2
7

2
8

2
6

2
8

3
2

2
6

2
7

3
2

3
0

4
7

2
2

2
1

8
2
1

2
1

2
1

7
8

6
2
2

2
1

R

A
W

1

2
8

2
8

2
7

2
7

2
7

2
7

2
9

2
8

3
4

2
9

2
9

2
8

3
0

3
3

2
9

2
8

3
3

3
0

4
6

2
8

2
7

9
2
7

2
4

2
5

7
9

7
2
6

2
5

A

B

3
5

3
5

3
9

3
8

4
1

3
9

4
1

4
2

4
7

4
2

4
3

4
0

4
4

4
7

4
0

4
1

4
7

4
5

4
9

3
8

4
2

2
4

9
8

8
5

1
7

1
7

8
8

A

B
1

2
8

2
8

2
7

2
7

2
7

2
7

2
9

2
8

3
4

2
9

2
9

2
8

3
0

3
3

2
9

2
8

3
3

3
0

4
6

2
8

2
7

4
2

2
7

2
4

2
5

7
9

7
2
6

2
5

B

D
N

3
0

2
9

3
0

3
0

3
1

2
9

3
0

3
0

3
2

3
1

3
2

3
0

3
2

3
1

2
9

3
1

3
1

3
4

5
0

3
0

3
2

4
5

3
2

2
9

2
3

1
1

8
6

2
5

2
9

S

R

2
6

2
7

2
7

2
7

2
7

2
7

2
8

2
8

3
4

2
8

2
8

2
8

2
9

3
2

2
9

2
8

3
2

3
0

4
7

2
7

2
8

4
2

2
8

3
2

2
6

7
8

6
2
6

2
5

S

S

2
6

2
5

2
7

2
6

3
0

2
8

3
0

3
1

3
2

3
0

3
1

2
8

3
2

3
2

2
7

2
8

3
1

3
4

5
0

2
7

3
2

3
1

3
2

3
0

3
1

1
2

6
6

7
1
2

B

L
IF

3
7

3
6

3
9

3
8

4
2

4
0

4
2

4
3

4
8

4
3

4
4

4
1

4
5

4
8

4
0

4
1

4
7

4
5

4
6

3
9

4
3

3
2

4
3

4
6

4
3

3
1

2
5

2
0

8
8

H

a
m

5
R

3
7

3
6

3
9

3
8

4
2

4
0

4
2

4
3

4
8

4
3

4
4

4
1

4
5

4
8

4
0

4
1

4
7

4
5

4
8

3
9

4
3

3
0

4
3

4
6

4
3

2
9

2
8

2
3

6
6

H

a
m

5
W

2
8

2
8

2
8

2
8

2
8

2
8

2
8

2
8

3
4

2
9

2
9

2
9

2
9

3
2

2
9

2
9

3
2

3
0

4
8

2
8

2
9

4
4

2
9

3
2

2
8

3
3

4
5

4
5

2
8

2
7

G

3
3

3
3

3
4

3
4

3
4

3
3

3
3

3
3

3
4

3
4

3
4

3
4

3
4

3
3

3
3

3
4

3
3

3
5

5
3

3
4

3
5

4
9

3
5

3
3

3
4

3
3

5
0

5
0

3
4

3
3

H

a
m

W
k

Appendix A 157

TN6531 (1.35V / +145°C)

Table A.13. Union and intersection at TN6531

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

6
8
4

6
6
1

6
5
1

6
5
9

6
5
6

6
7
9

6
8
0

6
8
2

6
7
9

6
7
1

6
6
3

6
6
5

6
7
3

6
8
1

6
6
1

6
5
8

6
8
0

6
7
8

6
7
2

6
6
3

6
7
0

2
5
9

6
7
9

6
8
0

6
7
9

2
0

2
5
8

1
3

6
8
4

6
8
0

S

C
N

7
5
0

7
2
7

6
7
8

6
8
5

6
8
3

7
1
6

7
1
9

7
1
9

7
1
6

7
0
0

6
9
8

6
9
5

7
1
2

7
1
6

6
9
0

6
8
0

7
1
8

7
1
3

7
0
1

6
9
6

7
1
0

2
5
8

7
1
1

7
1
9

7
0
7

1
8

2
5
8

1
2

7
2
7

7
1
7

S

C
N

P

9
7
0

9
8
6

9
3
7

8
8
5

8
9
0

9
0
0

9
0
6

9
1
5

9
2
6

8
8
1

8
8
5

8
8
4

9
0
6

9
2
4

8
7
9

8
7
2

9
1
6

8
9
7

8
8
8

8
5
9

8
8
9

2
8
0

9
0
4

9
1
4

8
8
8

2
1
2

2
7
3

2
6

9
2
8

9
2
8

M

T
S

1
0
7
2

1
0
8
9

1
0
9
9

1
0
4
7

9
8
3

9
9
2

1
0
0
0

1
0
0
6

1
0
2
7

9
7
8

9
7
1

9
8
3

9
9
0

1
0
3
2

9
9
0

9
7
2

1
0
2
8

9
9
9

9
9
4

9
3
3

9
8
8

3
6
1

1
0
0
4

1
0
1
9

9
8
5

3
0
3

3
5
4

8
6

1
0
2
6

1
0
3
3

M

T
S

P

1
0
6
5

1
0
8
1

1
0
8
4

1
1
0
1

1
0
3
7

9
8
9

1
0
0
2

1
0
0
2

1
0
2
2

9
7
6

9
6
9

9
8
2

9
9
0

1
0
2
0

9
7
7

9
7
6

1
0
1
6

1
0
0
1

9
9
6

9
4
3

9
9
0

3
5
2

1
0
0
0

1
0
1
1

9
8
7

2
9
8

3
4
6

8
5

1
0
2
2

1
0
2
6

M

T
S

P
P

1
0
9
7

1
1
0
3

1
1
2
9

1
1
4
7

1
1
4
0

1
0
9
2

1
0
3
2

1
0
4
4

1
0
7
1

1
0
1
5

1
0
1
5

1
0
1
8

1
0
2
9

1
0
7
0

1
0
0
0

9
8
0

1
0
6
6

1
0
4
4

1
0
3
0

9
6
4

1
0
3
4

3
6
7

1
0
4
5

1
0
5
9

1
0
3
3

3
0
7

3
6
9

1
0
0

1
0
7
7

1
0
7
3

C

M

1
1
1
3

1
1
1
7

1
1
4
0

1
1
5
6

1
1
4
4

1
1
6
9

1
1
0
9

1
0
6
9

1
0
8
8

1
0
1
5

1
0
1
7

1
0
1
7

1
0
4
5

1
0
8
3

1
0
1
1

1
0
0
0

1
0
8
2

1
0
5
3

1
0
3
6

9
7
9

1
0
4
0

3
6
5

1
0
5
7

1
0
8
0

1
0
2
9

3
1
0

3
5
5

8
8

1
0
9
4

1
0
8
6

A

1
1
5
0

1
1
5
6

1
1
7
0

1
1
8
9

1
1
8
3

1
1
9
6

1
1
8
8

1
1
4
8

1
1
1
6

1
0
2
9

1
0
3
2

1
0
3
0

1
0
5
2

1
1
1
1

1
0
2
6

1
0
1
2

1
1
1
2

1
0
6
9

1
0
5
9

9
9
0

1
0
5
7

3
7
1

1
0
7
8

1
1
0
9

1
0
4
9

3
3
5

3
6
5

9
3

1
1
1
7

1
1
1
5

B

1
9
1
3

1
9
1
9

1
9
1
9

1
9
2
8

1
9
2
3

1
9
2
9

1
9
2
9

1
9
4
0

1
9
0
8

1
0
6
5

1
0
6
6

1
0
6
7

1
0
8
1

1
8
3
4

1
0
4
6

1
0
3
8

1
8
4
2

1
1
8
7

1
2
1
5

1
0
0
5

1
1
8
2

4
9
0

1
1
9
3

1
8
1
8

1
0
8
7

1
0
0
3

4
6
5

1
7
8

1
1
7
1

1
8
6
8

A

lg
B

1
0
8
7

1
1
0
1

1
1
3
0

1
1
4
3

1
1
3
5

1
1
5
1

1
1
6
8

1
1
9
3

1
9
1
7

1
0
7
4

1
0
1
5

1
0
2
0

1
0
1
9

1
0
6
6

9
8
7

9
9
4

1
0
6
1

1
0
4
0

1
0
3
4

9
6
5

1
0
3
6

3
7
4

1
0
5
1

1
0
6
0

1
0
3
4

3
2
8

3
7
4

1
0
3

1
0
5
7

1
0
6
7

C

P

1
1
1
4

1
1
2
2

1
1
4
5

1
1
6
9

1
1
6
1

1
1
7
0

1
1
8
5

1
2
0
9

1
9
3
5

1
1
5
2

1
0
9
3

1
0
2
0

1
0
2
2

1
0
6
6

9
8
1

9
8
3

1
0
6
9

1
0
3
9

1
0
3
1

9
6
1

1
0
3
0

3
7
4

1
0
4
8

1
0
6
6

1
0
2
9

3
3
4

3
7
4

1
0
4

1
0
6
5

1
0
7
1

P
M

O
V

I

1
1
0
2

1
1
1
5

1
1
3
6

1
1
4
7

1
1
3
8

1
1
5
7

1
1
7
5

1
2
0
1

1
9
2
4

1
1
3
7

1
1
5
6

1
0
8
3

1
0
2
1

1
0
6
5

9
8
4

9
9
7

1
0
6
5

1
0
4
4

1
0
4
2

9
5
8

1
0
4
1

3
7
5

1
0
4
8

1
0
6
3

1
0
3
3

3
3
1

3
7
3

1
0
4

1
0
6
1

1
0
6
8

1
/0

1
1
2
1

1
1
2
5

1
1
4
1

1
1
6
7

1
1
5
7

1
1
7
3

1
1
7
4

1
2
0
6

1
9
3
7

1
1
6
5

1
1
8
1

1
1
7
2

1
1
1
0

1
0
8
1

9
9
6

9
8
5

1
0
8
2

1
0
4
9

1
0
4
4

9
6
6

1
0
3
8

3
6
2

1
0
5
9

1
0
7
5

1
0
2
9

3
2
2

3
6
1

9
6

1
0
8
6

1
0
8
7

T
P

1
9
1
2

1
9
2
0

1
9
2
2

1
9
2
4

1
9
2
6

1
9
3
1

1
9
3
5

1
9
4
6

1
9
8
3

1
9
1
7

1
9
3
6

1
9
2
7

1
9
3
8

1
9
0
9

1
0
5
1

1
0
3
7

1
8
4
2

1
1
8
7

1
2
1
4

1
0
0
8

1
1
8
2

4
9
3

1
2
0
3

1
8
2
4

1
0
9
0

1
0
0
8

4
6
6

1
8
0

1
1
6
9

1
8
7
5

U

1
0
9
0

1
1
0
4

1
1
2
5

1
1
2
4

1
1
2
7

1
1
5
9

1
1
6
5

1
1
8
9

1
9
2
9

1
1
5
4

1
1
7
9

1
1
6
6

1
1
8
1

1
9
2
5

1
0
6
7

9
7
8

1
0
3
8

1
0
0
4

1
0
0
6

9
5
5

1
0
1
0

3
7
2

1
0
2
2

1
0
3
3

1
0
0
1

3
0
7

3
6
3

8
8

1
0
4
4

1
0
4
8

X

1
0
8
2

1
1
0
3

1
1
2
1

1
1
3
1

1
1
1
7

1
1
6
8

1
1
6
5

1
1
9
2

1
9
2
6

1
1
3
6

1
1
6
6

1
1
4
2

1
1
8
1

1
9
2
8

1
1
4
5

1
0
5
6

1
0
3
5

1
0
0
7

1
0
1
1

9
5
1

1
0
0
2

3
7
1

1
0
2
1

1
0
2
8

9
9
9

3
1
7

3
6
2

9
3

1
0
3
4

1
0
3
7

Y

1
9
2
5

1
9
3
0

1
9
4
2

1
9
4
0

1
9
4
2

1
9
4
7

1
9
4
8

1
9
5
7

1
9
8
7

1
9
3
4

1
9
4
5

1
9
3
9

1
9
4
9

1
9
8
8

1
9
5
0

1
9
4
2

1
9
2
1

1
1
8
4

1
2
1
6

1
0
0
6

1
1
7
9

4
9
1

1
2
0
1

1
8
2
7

1
0
9
5

1
0
1
8

4
6
7

1
8
1

1
1
6
8

1
8
8
0

L
R

1
4
2
0

1
4
2
8

1
4
5
4

1
4
6
2

1
4
5
0

1
4
6
2

1
4
7
0

1
4
9
3

2
1
3
5

1
4
4
8

1
4
6
8

1
4
5
3

1
4
7
5

2
1
3
6

1
4
7
7

1
4
6
3

2
1
5
1

1
4
1
4

1
3
4
4

9
8
3

1
3
3
4

6
2
6

1
3
5
5

1
1
8
9

1
0
6
9

4
1
7

5
9
9

3
2
5

1
1
0
3

1
2
4
6

L
A

1
5
7
5

1
5
8
9

1
6
1
2

1
6
1
6

1
6
0
4

1
6
2
5

1
6
3
6

1
6
5
2

2
2
5
6

1
6
0
3

1
6
2
5

1
6
0
4

1
6
2
9

2
2
5
8

1
6
2
4

1
6
0
8

2
2
6
8

1
6
3
3

1
5
6
3

9
7
9

1
3
3
1

7
4
3

1
3
5
0

1
2
1
5

1
0
7
2

4
6
2

7
3
1

4
4
9

1
0
9
7

1
2
7
9

R

A
W

1
0
4
1

1
0
5
1

1
0
9
8

1
1
3
4

1
1
1
4

1
1
4
8

1
1
5
0

1
1
7
8

1
9
2
3

1
1
2
9

1
1
5
2

1
1
4
5

1
1
6
4

1
9
2
1

1
1
3
2

1
1
2
5

1
9
3
5

1
4
5
1

1
6
0
4

1
0
2
0

9
8
7

3
6
1

9
9
7

1
0
0
3

9
8
1

2
8
3

3
5
0

8
2

1
0
0
7

1
0
1
2

R

A
W

1

1
4
1
6

1
4
1
9

1
4
5
0

1
4
6
1

1
4
4
9

1
4
6
0

1
4
7
1

1
4
9
3

2
1
2
8

1
4
4
0

1
4
6
5

1
4
4
4

1
4
7
4

2
1
2
9

1
4
5
9

1
4
5
6

2
1
4
4

1
4
8
2

1
6
3
4

1
4
3
5

1
4
0
2

6
2
8

1
3
4
8

1
1
8
3

1
0
6
2

4
2
4

5
9
5

3
1
7

1
1
0
3

1
2
4
6

A

B

1
2
1
7

1
2
6
1

1
4
4
9

1
4
7
8

1
4
7
7

1
5
1
7

1
5
3
6

1
5
6
9

2
2
1
0

1
4
9
2

1
5
1
1

1
5
0
0

1
5
4
0

2
2
0
8

1
4
8
7

1
4
7
7

2
2
2
2

1
5
8
0

1
6
1
2

1
4
5
1

1
5
6
6

7
9
2

6
3
2

4
9
8

3
8
6

2
4
0

6
3
9

4
0
7

3
8
8

5
4
6

A

B
1

1
4
3
4

1
4
4
5

1
4
6
2

1
4
7
2

1
4
6
6

1
4
7
6

1
4
8
1

1
4
9
9

2
1
4
4

1
4
5
2

1
4
7
4

1
4
6
4

1
4
8
0

2
1
3
5

1
4
7
4

1
4
6
4

2
1
4
9

1
4
8
8

1
6
4
2

1
4
5
2

1
4
8
3

1
5
8
9

1
4
2
9

1
1
9
9

1
0
7
7

4
2
7

6
0
2

3
2
5

1
1
1
0

1
2
6
1

B

D
N

1
9
0
2

1
9
0
6

1
9
2
1

1
9
2
6

1
9
2
4

1
9
3
1

1
9
2
7

1
9
3
7

1
9
8
8

1
9
1
2

1
9
2
5

1
9
1
8

1
9
3
3

1
9
8
3

1
9
3
2

1
9
2
6

1
9
9
2

2
1
2
3

2
2
4
6

1
9
1
5

2
1
1
7

2
1
9
2

2
1
2
8

1
8
9
8

1
0
8
5

9
9
9

4
6
9

1
8
4

1
1
6
7

1
8
5
1

S

R

1
1
2
0

1
1
3
5

1
1
6
4

1
1
7
7

1
1
6
5

1
1
7
4

1
1
9
5

1
2
1
4

1
9
3
6

1
1
5
5

1
1
7
9

1
1
6
5

1
1
9
6

1
9
3
4

1
1
8
1

1
1
7
2

1
9
4
1

1
4
6
0

1
6
0
6

1
1
5
4

1
4
5
5

1
5
2
1

1
4
6
7

1
9
2
8

1
1
1
5

3
4
9

3
8
9

1
1
5

1
0
8
1

1
0
9
6

S

S

1
7
1
1

1
7
5
6

1
7
7
2

1
7
9
1

1
7
8
6

1
8
3
2

1
8
4
6

1
8
6
0

1
9
5
2

1
7
9
3

1
8
0
6

1
7
9
9

1
8
3
5

1
9
4
8

1
8
0
7

1
7
8
6

1
9
5
0

2
0
4
4

2
1
4
8

1
7
8
4

2
0
2
5

1
5
9
9

2
0
4
9

1
9
4
6

1
8
1
3

1
0
4
7

2
1
8

1
7
9

3
7
4

1
0
2
7

B

L
IF

1
2
0
9

1
2
5
2

1
4
4
7

1
4
7
6

1
4
7
4

1
5
0
6

1
5
3
7

1
5
6
6

2
2
2
6

1
4
8
3

1
5
0
2

1
4
9
3

1
5
3
2

2
2
2
6

1
4
8
7

1
4
7
7

2
2
3
7

1
5
9
8

1
6
1
5

1
4
5
3

1
5
9
0

9
3
6

1
6
1
0

2
2
1
2

1
5
0
9

1
6
1
2

7
8
3

4
5
8

3
8
3

5
0
0

H

a
m

5
R

1
1
4
4

1
1
8
8

1
3
8
4

1
4
3
4

1
4
2
5

1
4
6
5

1
4
9
4

1
5
2
8

2
2
0
3

1
4
4
4

1
4
6
2

1
4
5
2

1
4
8
7

2
2
0
2

1
4
5
2

1
4
3
6

2
2
1
3

1
5
6
2

1
5
8
7

1
4
1
1

1
5
5
8

8
5
8

1
5
7
7

2
1
8
7

1
4
7
3

1
3
4
1

7
9
8

4
7
3

1
0
8

2
1
2

H

a
m

5
W

1
2
3
2

1
2
3
2

1
2
4
1

1
2
5
3

1
2
4
7

1
2
4
7

1
2
4
7

1
2
6
3

1
9
6
9

1
2
4
9

1
2
6
0

1
2
5
4

1
2
5
6

1
9
7
2

1
2
5
5

1
2
5
4

1
9
8
5

1
5
4
3

1
6
9
8

1
2
4
5

1
5
3
1

1
6
3
6

1
5
5
1

1
9
6
3

1
2
6
6

1
9
0
5

1
6
3
2

1
5
9
7

1
2
3
2

1
1
8
7

G

2
0
6
7

2
0
7
3

2
0
7
2

2
0
7
7

2
0
7
4

2
0
8
2

2
0
8
6

2
0
9
6

2
1
0
3

2
0
7
0

2
0
8
5

2
0
7
8

2
0
8
6

2
0
9
7

2
0
8
2

2
0
8
2

2
1
0
4

2
2
3
1

2
3
4
7

2
0
7
1

2
2
1
9

2
3
0
9

2
2
3
1

2
1
1
0

2
0
8
2

2
0
8
3

2
3
4
6

2
3
2
4

2
1
0
8

2
0
6
3

H

a
m

W
k

158 Appendix A

TN6631 (1.80V / +145°C)

Table A.14. Union and intersection at TN6631

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

8
3

7
7

8
0

7
9

7
4

8
2

8
0

8
0

7
9

8
2

8
3

8
2

8
2

8
0

7
4

8
0

8
2

8
3

8
2

8
2

8
2

4
2

8
2

7
9

8
3

1
1

4
6

9
7
8

8
2

S

C
N

1
0
0

9
4

8
5

8
3

8
2

8
8

8
7

8
7

9
0

9
2

9
0

8
9

9
1

9
0

8
3

8
9

9
3

9
2

9
1

9
0

9
2

4
4

9
0

8
8

9
0

1
0

4
7

8
9
0

8
9

S

C
N

P

1
0
2

1
0
8

9
9

9
2

8
9

9
6

9
4

9
5

9
5

9
8

9
8

9
8

9
7

9
6

9
1

9
6

9
8

9
9

9
9

9
7

9
9

4
3

9
9

9
5

9
7

1
7

5
0

1
1

9
5

9
7

M

T
S

1
0
7

1
1
4

1
1
0

1
0
3

9
5

9
8

9
8

9
6

9
9

1
0
1

1
0
1

9
8

9
7

9
9

9
5

1
0
1

9
9

9
7

1
0
0

9
7

9
8

4
5

9
7

9
7

9
7

2
0

5
2

1
3

9
7

1
0
2

M

T
S

P

1
0
8

1
1
1

1
0
9

1
0
7

9
9

9
6

9
5

9
4

9
8

9
9

9
8

9
7

9
6

9
7

9
3

9
8

9
6

9
6

9
7

9
3

9
7

4
5

9
6

9
5

9
6

1
9

5
1

1
3

9
6

9
5

M

T
S

P
P

1
1
5

1
2
0

1
1
7

1
1
9

1
1
7

1
1
4

1
0
3

1
0
3

1
0
7

1
1
1

1
0
9

1
0
8

1
0
9

1
0
6

1
0
0

1
0
5

1
0
6

1
1
1

1
1
1

1
0
7

1
0
9

4
9

1
0
9

1
0
3

1
0
8

2
1

5
3

1
4

1
0
5

1
0
5

C

M

1
1
2

1
1
6

1
1
4

1
1
4

1
1
3

1
2
0

1
0
9

1
0
4

1
0
6

1
0
5

1
0
5

1
0
3

1
0
3

1
0
6

9
8

1
0
3

1
0
4

1
0
5

1
0
4

1
0
2

1
0
3

4
5

1
0
3

1
0
4

1
0
2

1
9

5
1

1
3

1
0
6

1
0
5

A

1
1
3

1
1
7

1
1
4

1
1
7

1
1
5

1
2
1

1
1
5

1
1
0

1
0
7

1
0
9

1
0
6

1
0
3

1
0
5

1
0
5

9
9

1
0
6

1
0
7

1
0
8

1
0
8

1
0
5

1
0
6

4
5

1
0
6

1
0
4

1
0
4

1
9

5
0

1
3

1
0
5

1
0
2

B

1
2
7

1
2
7

1
2
7

1
2
7

1
2
4

1
3
0

1
2
6

1
2
6

1
2
3

1
1
4

1
0
9

1
0
8

1
0
9

1
1
6

1
0
1

1
0
8

1
1
6

1
1
0

1
1
4

1
0
5

1
0
9

5
1

1
0
8

1
1
4

1
0
6

2
9

5
4

1
6

1
1
0

1
1
6

A

lg
B

1
2
4

1
2
5

1
2
4

1
2
5

1
2
3

1
2
6

1
2
7

1
2
4

1
3
2

1
2
3

1
1
7

1
1
2

1
1
3

1
1
3

1
0
3

1
1
3

1
1
5

1
1
7

1
2
0

1
1
1

1
1
6

5
0

1
1
6

1
1
2

1
1
3

2
2

5
4

1
4

1
1
1

1
1
1

C

P

1
2
0

1
2
4

1
2
1

1
2
2

1
2
1

1
2
5

1
2
4

1
2
4

1
3
4

1
2
6

1
2
0

1
1
1

1
1
1

1
1
2

9
9

1
1
0

1
1
3

1
1
5

1
1
7

1
0
9

1
1
5

4
9

1
1
5

1
1
1

1
1
4

2
2

5
4

1
4

1
0
7

1
1
1

P
M

O
V

I

1
1
5

1
1
9

1
1
5

1
1
9

1
1
6

1
2
0

1
2
0

1
2
1

1
2
9

1
2
5

1
2
3

1
1
4

1
1
0

1
0
9

9
9

1
0
6

1
0
7

1
1
1

1
1
1

1
0
7

1
1
2

4
9

1
0
9

1
0
6

1
0
8

2
1

5
3

1
4

1
0
8

1
0
8

1
/0

1
1
7

1
1
9

1
1
8

1
2
2

1
1
9

1
2
1

1
2
2

1
2
1

1
3
0

1
2
6

1
2
5

1
2
0

1
1
6

1
0
9

9
9

1
0
6

1
1
1

1
1
4

1
1
2

1
0
8

1
1
2

4
9

1
1
0

1
0
6

1
0
9

2
1

5
3

1
4

1
0
9

1
0
7

T
P

1
2
6

1
2
7

1
2
6

1
2
7

1
2
5

1
3
1

1
2
6

1
2
8

1
3
0

1
3
3

1
3
1

1
2
8

1
3
0

1
2
3

1
0
0

1
0
6

1
1
5

1
1
2

1
1
5

1
0
5

1
0
9

5
2

1
0
9

1
1
9

1
0
7

2
7

5
5

1
6

1
1
3

1
1
6

U

1
1
3

1
1
5

1
1
2

1
1
2

1
1
0

1
1
8

1
1
5

1
1
5

1
2
6

1
2
4

1
2
5

1
1
9

1
2
1

1
2
7

1
0
4

1
0
1

9
8

9
9

1
0
1

1
0
0

9
9

4
6

9
9

9
9

9
7

1
9

5
0

1
3

1
0
2

9
7

X

1
1
9

1
2
1

1
1
9

1
1
8

1
1
7

1
2
5

1
2
2

1
2
0

1
3
1

1
2
6

1
2
6

1
2
4

1
2
6

1
3
3

1
1
9

1
1
6

1
0
9

1
1
2

1
1
3

1
0
6

1
1
1

4
7

1
1
0

1
0
4

1
0
7

2
0

5
2

1
3

1
0
6

1
0
6

Y

1
2
9

1
2
9

1
2
9

1
3
2

1
3
1

1
3
6

1
3
3

1
3
1

1
3
5

1
3
6

1
3
5

1
3
5

1
3
3

1
3
6

1
3
4

1
3
5

1
2
8

1
1
4

1
1
6

1
0
7

1
1
2

5
0

1
1
3

1
1
5

1
1
2

2
8

5
6

1
6

1
1
1

1
1
7

L
R

1
2
6

1
2
8

1
2
6

1
3
2

1
2
9

1
2
9

1
3
0

1
2
8

1
3
9

1
3
2

1
3
1

1
2
9

1
2
8

1
3
7

1
3
1

1
3
0

1
4
0

1
2
6

1
2
2

1
1
0

1
1
8

5
2

1
1
7

1
0
9

1
1
3

2
1

5
6

1
6

1
1
1

1
1
1

L
A

1
5
4

1
5
6

1
5
3

1
5
6

1
5
5

1
5
6

1
5
8

1
5
5

1
6
2

1
5
6

1
5
6

1
5
6

1
5
7

1
6
1

1
5
6

1
5
6

1
6
5

1
5
7

1
5
3

1
1
3

1
2
0

7
0

1
1
8

1
1
5

1
1
3

2
5

8
0

3
9

1
1
0

1
1
5

R

A
W

1
1
4

1
1
7

1
1
5

1
1
9

1
1
9

1
2
0

1
2
0

1
1
8

1
3
1

1
2
5

1
2
4

1
2
0

1
2
1

1
3
1

1
1
7

1
2
3

1
3
4

1
2
9

1
5
3

1
1
3

1
1
1

4
8

1
0
9

1
0
5

1
0
7

2
0

5
3

1
4

1
0
6

1
0
6

R

A
W

1

1
2
2

1
2
3

1
2
1

1
2
6

1
2
3

1
2
6

1
2
7

1
2
5

1
3
5

1
2
8

1
2
6

1
2
3

1
2
5

1
3
5

1
2
6

1
2
6

1
3
7

1
2
9

1
5
4

1
2
3

1
2
1

5
1

1
1
6

1
0
8

1
1
2

2
1

5
5

1
6

1
0
9

1
1
0

A

B

1
1
3

1
2
2

1
2
8

1
3
0

1
2
6

1
3
7

1
3
6

1
3
7

1
4
4

1
4
5

1
4
3

1
3
7

1
3
9

1
4
3

1
3
0

1
4
1

1
5
0

1
4
6

1
5
5

1
3
7

1
4
2

7
2

5
1

5
1

4
8

1
7

5
5

3
0

4
8

5
2

A

B
1

1
2
1

1
2
4

1
2
0

1
2
6

1
2
3

1
2
5

1
2
6

1
2
4

1
3
5

1
2
7

1
2
5

1
2
5

1
2
6

1
3
4

1
2
5

1
2
6

1
3
5

1
2
9

1
5
5

1
2
4

1
2
5

1
4
1

1
2
0

1
0
8

1
1
2

2
2

5
5

1
5

1
0
7

1
0
9

B

D
N

1
2
6

1
2
8

1
2
6

1
2
8

1
2
6

1
3
3

1
2
7

1
2
8

1
3
1

1
3
3

1
3
1

1
3
0

1
3
2

1
2
6

1
2
7

1
3
4

1
3
5

1
3
9

1
6
0

1
3
0

1
3
5

1
4
3

1
3
4

1
2
2

1
0
6

2
7

5
5

1
6

1
1
1

1
1
6

S

R

1
1
5

1
1
9

1
1
7

1
2
1

1
1
8

1
2
1

1
2
2

1
2
1

1
3
2

1
2
5

1
2
1

1
2
1

1
2
2

1
3
1

1
2
2

1
2
4

1
3
1

1
2
8

1
5
5

1
2
1

1
2
4

1
3
9

1
2
3

1
3
1

1
1
5

2
1

5
3

1
4

1
0
4

1
0
6

S

S

1
0
1

1
1
3

1
1
1

1
1
2

1
0
9

1
2
2

1
1
9

1
2
0

1
2
3

1
3
0

1
2
7

1
2
2

1
2
4

1
2
5

1
1
4

1
2
5

1
2
9

1
3
4

1
5
7

1
2
2

1
2
9

8
4

1
2
7

1
2
4

1
2
3

2
9

1
6

1
6

2
1

2
9

B

L
IF

1
1
9

1
2
9

1
3
1

1
3
3

1
3
0

1
4
3

1
4
0

1
4
2

1
5
1

1
5
1

1
4
8

1
4
3

1
4
5

1
5
0

1
3
6

1
4
6

1
5
4

1
5
2

1
5
5

1
4
2

1
4
8

9
9

1
4
7

1
4
9

1
4
4

9
5

8
2

4
0

5
3

5
6

H

a
m

5
R

1
1
5

1
2
7

1
2
9

1
3
1

1
2
7

1
4
1

1
3
7

1
3
8

1
4
8

1
5
0

1
4
7

1
4
1

1
4
3

1
4
8

1
3
2

1
4
4

1
5
3

1
5
1

1
5
5

1
4
0

1
4
6

8
3

1
4
6

1
4
7

1
4
2

5
4

8
3

4
1

1
4

1
6

H

a
m

5
W

1
2
5

1
2
4

1
2
4

1
2
6

1
2
3

1
2
9

1
2
3

1
2
5

1
3
3

1
3
2

1
3
3

1
2
6

1
2
7

1
3
0

1
2
2

1
3
0

1
3
7

1
3
5

1
6
3

1
2
7

1
3
2

1
4
4

1
3
3

1
3
1

1
3
1

1
2
8

1
4
9

1
4
7

1
2
0

1
0
9

G

1
2
9

1
3
3

1
3
0

1
2
9

1
3
2

1
3
7

1
3
2

1
3
6

1
3
5

1
4
0

1
3
7

1
3
4

1
3
7

1
3
5

1
3
5

1
3
8

1
3
9

1
4
3

1
6
6

1
3
5

1
3
9

1
4
8

1
3
9

1
3
4

1
3
7

1
2
8

1
5
4

1
5
3

1
3
9

1
2
8

H

a
m

W
k

Appendix A 159

TN3741 (1.30V / -40°C)

Table A.15. Union and intersection at TN3741

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

7
9

7
4

6
5

7
0

7
3

6
9

7
3

7
6

7
4

7
6

7
6

7
6

7
6

7
7

7
2

7
5

7
0

7
5

7
8

7
4

7
5

7
1

7
6

7
2

7
8

5
5

7
0

6
3

7
8

7
6

S

C
N

1
0
3

9
8

7
4

8
3

8
1

8
4

8
3

8
9

8
5

9
0

9
1

8
8

9
0

9
0

8
0

8
9

8
2

9
0

9
7

9
2

9
2

8
7

9
3

8
5

9
4

5
9

8
5

6
4

9
7

9
0

S

C
N

P

9
6

1
0
6

8
2

7
2

7
7

7
4

7
3

7
5

7
6

7
5

8
0

7
8

7
7

7
8

7
5

7
8

7
3

7
9

8
1

7
9

7
8

6
9

7
7

7
4

7
9

5
3

7
0

5
5

8
2

7
9

M

T
S

1
1
4

1
2
0

1
1
5

1
0
5

8
8

8
8

8
7

9
3

9
3

9
6

9
6

9
5

9
6

9
7

9
0

9
4

8
3

9
4

1
0
3

9
6

9
9

8
9

9
9

8
9

1
0
2

6
2

8
7

6
4

1
0
2

9
2

M

T
S

P

1
1
3

1
2
4

1
1
2

1
2
4

1
0
7

9
0

8
7

9
4

9
7

9
6

1
0
0

9
9

9
8

9
6

9
3

1
0
0

8
7

9
8

1
0
4

1
0
0

9
7

8
9

9
7

8
7

1
0
1

6
1

9
2

6
7

1
0
6

9
3

M

T
S

P
P

1
1
9

1
2
3

1
1
7

1
2
6

1
2
6

1
0
9

8
8

9
0

9
4

9
8

9
8

9
5

9
6

9
0

8
6

9
5

8
9

9
6

1
0
6

9
7

1
0
1

9
2

1
0
3

9
0

1
0
4

5
9

9
1

6
8

1
0
5

9
4

C

M

1
1
7

1
2
6

1
2
0

1
2
9

1
3
1

1
3
2

1
1
1

1
0
2

9
8

1
0
1

1
0
3

9
7

1
0
1

9
4

8
6

9
8

9
2

1
0
1

1
0
7

9
8

1
0
3

9
3

1
0
4

9
2

1
0
7

5
9

8
8

6
6

1
0
9

9
5

A

1
2
8

1
3
4

1
3
2

1
3
7

1
3
8

1
4
4

1
3
4

1
2
5

1
0
4

1
0
7

1
1
0

1
0
2

1
1
0

1
0
5

9
2

1
0
7

9
5

1
1
1

1
2
0

1
0
8

1
1
3

9
8

1
1
2

9
5

1
1
9

6
2

9
8

7
0

1
1
9

9
9

B

1
2
9

1
3
7

1
3
0

1
3
6

1
3
4

1
3
9

1
3
7

1
4
5

1
2
4

1
1
1

1
0
7

1
0
7

1
0
6

1
0
4

9
3

1
0
5

9
5

1
0
9

1
1
8

1
0
4

1
1
3

9
8

1
1
4

9
8

1
1
4

6
4

9
4

7
0

1
2
0

1
0
2

A

lg
B

1
3
7

1
4
2

1
4
1

1
4
3

1
4
5

1
4
5

1
4
4

1
5
2

1
4
7

1
3
4

1
1
3

1
1
5

1
1
4

1
1
1

9
3

1
0
8

9
7

1
1
0

1
2
9

1
0
9

1
2
2

1
0
2

1
2
2

1
0
0

1
2
3

6
2

1
0
1

7
3

1
2
8

1
0
9

C

P

1
3
4

1
3
8

1
3
3

1
4
0

1
3
8

1
4
2

1
3
9

1
4
6

1
4
8

1
5
2

1
3
1

1
1
0

1
1
6

1
0
5

9
5

1
1
2

1
0
1

1
1
4

1
2
8

1
1
3

1
1
6

1
0
4

1
2
3

1
0
2

1
2
0

6
3

1
0
4

7
3

1
2
4

1
0
9

P
M

O
V

I

1
3
0

1
3
7

1
3
1

1
3
7

1
3
5

1
4
1

1
4
1

1
5
0

1
4
4

1
4
6

1
4
8

1
2
7

1
0
7

1
0
3

9
2

1
0
7

9
3

1
0
5

1
2
0

1
0
7

1
1
4

1
0
0

1
1
3

9
6

1
1
5

6
5

9
7

7
0

1
2
0

1
0
2

1
/0

1
3
3

1
3
8

1
3
5

1
3
9

1
3
9

1
4
3

1
4
0

1
4
5

1
4
8

1
5
0

1
4
5

1
5
0

1
3
0

1
0
8

9
4

1
1
2

9
9

1
1
2

1
2
3

1
0
8

1
1
7

1
0
1

1
1
8

1
0
1

1
2
1

6
3

1
0
2

7
0

1
2
4

1
0
5

T
P

1
2
7

1
3
3

1
2
9

1
3
3

1
3
6

1
4
4

1
4
2

1
4
5

1
4
5

1
4
8

1
5
1

1
4
9

1
4
7

1
2
5

9
7

1
0
4

9
3

1
0
9

1
2
1

1
0
4

1
1
4

9
7

1
1
4

9
8

1
1
5

6
4

9
5

6
9

1
1
7

1
0
4

U

1
1
0

1
2
1

1
1
0

1
1
8

1
1
7

1
2
6

1
2
8

1
3
6

1
3
4

1
4
4

1
3
9

1
3
8

1
3
9

1
3
1

1
0
3

9
7

8
6

9
5

1
0
0

9
8

9
5

8
8

9
5

8
5

9
8

5
8

9
0

6
9

1
0
1

9
1

X

1
2
8

1
3
3

1
2
8

1
3
5

1
3
1

1
3
8

1
3
7

1
4
2

1
4
3

1
5
0

1
4
3

1
4
4

1
4
2

1
4
5

1
3
0

1
2
4

9
8

1
0
6

1
1
7

1
1
1

1
1
2

9
7

1
1
3

9
7

1
1
6

6
1

1
0
0

7
1

1
2
0

1
0
3

Y

1
2
2

1
2
9

1
2
2

1
3
5

1
3
3

1
3
3

1
3
2

1
4
3

1
4
2

1
5
0

1
4
3

1
4
7

1
4
4

1
4
5

1
3
0

1
3
9

1
1
3

9
7

1
0
7

9
8

1
0
1

8
5

1
0
3

9
0

9
9

5
9

8
6

6
5

1
0
4

9
4

L
R

1
6
9

1
7
3

1
6
8

1
7
6

1
7
4

1
7
8

1
7
5

1
7
9

1
8
0

1
8
9

1
8
2

1
8
7

1
8
3

1
8
1

1
7
3

1
8
3

1
8
1

1
6
5

1
5
9

1
1
0

1
4
9

1
3
1

1
5
3

1
0
1

1
2
0

6
5

1
3
5

1
0
2

1
2
4

1
3
1

L
A

2
0
0

2
0
0

2
0
0

2
0
1

2
0
2

2
0
2

2
0
3

2
0
4

2
0
5

2
0
4

2
0
2

2
0
6

2
0
6

2
0
3

2
0
2

2
0
6

2
0
5

2
0
5

1
9
9

1
2
0

1
7
2

1
5
1

1
7
5

1
0
9

1
3
9

6
5

1
4
7

1
1
0

1
4
5

1
4
7

R

A
W

1
3
5

1
3
6

1
3
3

1
3
9

1
3
7

1
4
2

1
4
3

1
4
7

1
5
0

1
5
5

1
4
8

1
5
0

1
5
2

1
5
1

1
3
5

1
4
3

1
4
5

1
8
5

2
0
9

1
3
0

1
1
3

1
0
4

1
1
7

1
0
0

1
1
6

6
3

1
0
7

7
5

1
2
4

1
0
3

R

A
W

1

1
8
8

1
9
0

1
8
8

1
9
0

1
9
4

1
9
2

1
9
2

1
9
6

1
9
5

1
9
6

1
9
9

1
9
7

1
9
7

1
9
5

1
9
2

1
9
6

1
9
6

2
0
0

2
1
1

2
0
1

1
8
4

1
4
6

1
7
0

1
0
0

1
2
8

6
5

1
3
9

1
0
9

1
3
3

1
4
1

A

B

1
7
4

1
7
7

1
7
9

1
8
2

1
8
4

1
8
3

1
8
4

1
9
3

1
9
2

1
9
8

1
9
3

1
9
3

1
9
5

1
9
4

1
8
1

1
9
3

1
9
4

2
0
0

2
1
4

1
9
2

2
0
4

1
6
6

1
4
6

9
0

1
1
4

6
2

1
4
6

1
0
9

1
1
8

1
2
4

A

B
1

1
8
9

1
9
1

1
9
1

1
9
2

1
9
6

1
9
2

1
9
3

1
9
9

1
9
6

1
9
8

1
9
4

2
0
0

1
9
8

1
9
7

1
9
4

1
9
7

1
9
6

1
9
8

2
1
0

1
9
9

2
0
0

2
0
6

1
8
6

1
0
3

1
3
0

6
7

1
4
2

1
0
9

1
3
7

1
3
8

B

D
N

1
2
0

1
2
6

1
2
1

1
2
9

1
3
3

1
3
2

1
3
2

1
4
3

1
3
9

1
4
7

1
4
2

1
4
4

1
4
2

1
4
0

1
3
1

1
4
0

1
3
6

1
7
7

2
0
3

1
4
3

1
9
7

1
8
9

1
9
6

1
1
3

1
0
9

6
1

9
2

6
8

1
0
7

9
8

S

R

1
4
6

1
4
9

1
4
8

1
4
8

1
5
1

1
5
0

1
4
9

1
5
1

1
5
5

1
5
6

1
5
6

1
5
7

1
5
4

1
5
5

1
5
0

1
5
3

1
5
9

1
9
0

2
0
5

1
5
9

2
0
1

1
9
7

2
0
1

1
4
9

1
4
5

6
4

1
1
0

7
5

1
3
7

1
1
1

S

S

9
2

1
0
7

9
7

1
1
1

1
1
4

1
1
8

1
2
0

1
3
1

1
2
8

1
4
0

1
3
6

1
3
0

1
3
5

1
2
9

1
1
3

1
3
1

1
2
2

1
6
8

2
0
2

1
3
5

1
8
7

1
7
2

1
8
7

1
2
0

1
4
9

6
8

6
3

5
2

6
6

6
0

B

L
IF

1
7
2

1
7
6

1
7
5

1
8
1

1
7
8

1
8
1

1
8
6

1
9
0

1
9
3

1
9
6

1
9
0

1
9
3

1
9
1

1
9
3

1
7
6

1
8
7

1
9
0

1
9
3

2
1
5

1
8
6

2
0
8

1
8
3

2
0
7

1
8
4

1
9
8

1
6
8

1
6
3

1
1
2

1
1
4

1
2
1

H

a
m

5
R

1
2
9

1
4
7

1
4
0

1
5
4

1
5
3

1
5
4

1
5
8

1
6
8

1
6
7

1
7
4

1
7
1

1
7
0

1
7
3

1
6
9

1
4
7

1
6
6

1
6
1

1
7
6

2
0
2

1
6
8

1
8
8

1
7
0

1
9
0

1
5
8

1
8
3

1
2
9

1
6
4

1
1
3

7
5

9
9

H

a
m

5
W

1
6
0

1
6
0

1
5
9

1
6
2

1
6
0

1
6
3

1
6
1

1
6
5

1
6
3

1
6
5

1
6
6

1
6
6

1
6
5

1
6
7

1
6
1

1
6
3

1
6
8

2
0
0

2
1
3

1
6
5

2
1
0

2
0
7

2
0
8

1
6
5

1
6
7

1
6
1

2
0
8

1
9
7

1
5
9

1
1
7

G

1
5
7

1
6
2

1
5
7

1
6
7

1
6
8

1
6
9

1
7
0

1
8
0

1
7
6

1
7
9

1
7
6

1
7
9

1
7
9

1
7
5

1
6
6

1
7
5

1
7
3

1
8
8

2
0
6

1
8
1

1
9
7

1
9
6

2
0
2

1
6
9

1
8
8

1
6
2

1
9
6

1
6
8

1
9
6

1
5
4

H

a
m

W
k

160 Appendix A

TN3841 (1.50V / -40°C)

Table A.16. Union and intersection at TN3841

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

9
9

9
1
0

1
0

8
9

9
1
0

1
0

S

C
N

1
3

1
3

1
0

1
0

1
1

1
1

1
0

1
1

1
1

1
0

1
1

1
2

1
0

1
1

1
1

1
1

1
1

1
2

1
1

1
1

1
0

9
1
0

1
2

1
2

9
1
0

9
1
1

1
1

S

C
N

P

1
0

1
3

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

9
9

9
1
0

1
0

8
9

9
1
0

1
0

M

T
S

1
3

1
6

1
3

1
3

1
3

1
2

1
1

1
2

1
1

1
2

1
2

1
3

1
2

1
2

1
1

1
3

1
1

1
2

1
2

1
2

1
2

1
1

1
1

1
2

1
3

8
1
2

1
1

1
2

1
1

M

T
S

P

1
6

1
8

1
6

1
6

1
6

1
3

1
1

1
4

1
3

1
3

1
4

1
6

1
3

1
4

1
2

1
6

1
3

1
4

1
5

1
4

1
4

1
2

1
3

1
4

1
6

9
1
3

1
1

1
5

1
2

M

T
S

P
P

1
3

1
5

1
3

1
4

1
6

1
3

1
1

1
3

1
2

1
2

1
3

1
3

1
2

1
3

1
2

1
3

1
2

1
3

1
3

1
3

1
2

1
0

1
2

1
2

1
3

9
1
2

1
1

1
3

1
2

C

M

1
1

1
4

1
1

1
3

1
6

1
3

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
0

9
1
0

1
1

1
1

8
1
0

1
0

1
1

1
1

A

1
5

1
7

1
5

1
6

1
7

1
5

1
5

1
5

1
2

1
4

1
5

1
4

1
3

1
4

1
2

1
4

1
3

1
4

1
5

1
3

1
4

1
0

1
4

1
3

1
5

9
1
2

1
1

1
5

1
2

B

1
4

1
6

1
4

1
6

1
7

1
5

1
4

1
7

1
4

1
1

1
2

1
3

1
1

1
2

1
1

1
4

1
2

1
4

1
4

1
3

1
2

1
1

1
2

1
2

1
3

9
1
2

1
1

1
4

1
3

A

lg
B

1
4

1
7

1
4

1
5

1
7

1
5

1
4

1
5

1
7

1
4

1
4

1
3

1
3

1
3

1
1

1
3

1
2

1
3

1
4

1
2

1
3

1
0

1
3

1
2

1
4

8
1
1

1
1

1
4

1
1

C

P

1
6

1
8

1
6

1
7

1
8

1
6

1
6

1
6

1
8

1
6

1
6

1
5

1
3

1
4

1
2

1
4

1
3

1
5

1
6

1
3

1
5

1
0

1
5

1
3

1
5

9
1
2

1
1

1
5

1
2

P
M

O
V

I

1
8

1
9

1
8

1
8

1
8

1
8

1
8

1
9

1
9

1
9

1
9

1
8

1
3

1
4

1
2

1
6

1
3

1
5

1
6

1
4

1
5

1
2

1
4

1
5

1
6

9
1
3

1
1

1
5

1
2

1
/0

1
3

1
6

1
3

1
4

1
6

1
4

1
3

1
5

1
6

1
4

1
6

1
8

1
3

1
3

1
1

1
3

1
2

1
2

1
3

1
2

1
2

1
0

1
2

1
2

1
3

8
1
1

1
1

1
3

1
1

T
P

1
4

1
6

1
4

1
5

1
6

1
4

1
4

1
5

1
6

1
5

1
6

1
8

1
4

1
4

1
2

1
4

1
3

1
3

1
4

1
3

1
3

1
0

1
3

1
3

1
4

9
1
2

1
1

1
4

1
2

U

1
2

1
4

1
2

1
4

1
6

1
3

1
3

1
5

1
5

1
5

1
6

1
8

1
4

1
4

1
2

1
2

1
1

1
2

1
2

1
2

1
1

1
0

1
1

1
1

1
2

9
1
1

1
0

1
2

1
1

X

1
7

1
9

1
7

1
7

1
7

1
7

1
7

1
8

1
7

1
8

1
9

1
9

1
7

1
7

1
7

1
7

1
3

1
5

1
6

1
4

1
5

1
3

1
4

1
4

1
6

9
1
4

1
2

1
6

1
3

Y

1
3

1
5

1
3

1
5

1
6

1
4

1
3

1
5

1
5

1
5

1
6

1
8

1
4

1
4

1
4

1
7

1
3

1
2

1
3

1
2

1
2

9
1
2

1
3

1
3

9
1
1

1
0

1
3

1
2

L
R

5
6

5
7

5
6

5
7

5
8

5
6

5
6

5
7

5
6

5
7

5
7

5
9

5
7

5
7

5
6

5
8

5
7

5
6

5
5

1
4

5
2

5
0

5
2

1
2

1
7

9
5
1

4
8

1
6

4
0

L
A

6
2

6
4

6
2

6
3

6
3

6
2

6
2

6
2

6
2

6
2

6
2

6
4

6
2

6
2

6
2

6
3

6
2

6
3

6
2

1
4

5
5

5
5

5
3

1
3

1
7

9
5
5

4
9

1
7

4
1

R

A
W

1
4

1
6

1
4

1
5

1
6

1
4

1
4

1
6

1
5

1
6

1
7

1
8

1
5

1
5

1
4

1
7

1
5

5
6

6
2

1
4

1
2

1
1

1
2

1
2

1
4

9
1
2

1
1

1
4

1
2

R

A
W

1

5
7

5
9

5
7

5
7

5
8

5
7

5
7

5
7

5
8

5
7

5
7

5
9

5
7

5
7

5
7

5
8

5
7

6
0

6
3

5
8

5
6

5
0

5
3

1
3

1
6

9
5
2

4
8

1
5

4
0

A

B

6
1

6
4

6
1

6
2

6
4

6
3

6
2

6
5

6
3

6
4

6
6

6
6

6
3

6
4

6
2

6
4

6
4

6
6

6
7

6
3

6
6

6
0

4
8

1
0

1
3

8
5
6

4
9

1
2

3
8

A

B
1

5
4

5
6

5
4

5
5

5
6

5
4

5
4

5
4

5
5

5
4

5
4

5
7

5
4

5
4

5
4

5
6

5
4

5
7

6
2

5
5

5
6

6
5

5
3

1
2

1
5

9
5
0

4
8

1
5

3
9

B

D
N

1
5

1
6

1
5

1
6

1
7

1
6

1
5

1
7

1
7

1
7

1
8

1
8

1
6

1
6

1
6

1
8

1
5

5
9

6
4

1
7

5
8

6
5

5
6

1
5

1
4

9
1
2

1
0

1
3

1
2

S

R

1
9

2
0

1
9

1
9

1
9

1
9

1
9

1
9

2
0

1
9

2
0

2
1

1
9

1
9

1
9

2
0

1
9

5
8

6
4

1
9

5
9

6
6

5
7

2
0

1
9

9
1
4

1
2

1
6

1
3

S

S

1
1

1
3

1
1

1
4

1
6

1
3

1
2

1
5

1
4

1
5

1
6

1
8

1
4

1
4

1
2

1
7

1
3

5
6

6
2

1
4

5
6

6
1

5
3

1
5

1
9

9
9

8
9

9

B

L
IF

5
9

6
1

5
9

5
9

6
1

5
9

5
9

6
1

6
0

6
1

6
2

6
3

6
0

6
0

5
9

6
1

6
0

6
3

6
5

6
0

6
2

6
2

6
1

6
1

6
3

5
8

5
8

5
0

1
3

4
0

H

a
m

5
R

5
1

5
4

5
1

5
2

5
5

5
2

5
1

5
4

5
3

5
3

5
5

5
7

5
2

5
3

5
2

5
5

5
3

5
8

6
3

5
3

5
8

6
1

5
5

5
5

5
7

5
1

5
8

5
0

1
2

3
8

H

a
m

5
W

1
7

1
9

1
7

1
8

1
8

1
7

1
7

1
7

1
7

1
7

1
8

2
0

1
7

1
7

1
7

1
8

1
7

5
7

6
2

1
7

5
8

6
5

5
5

1
9

2
0

1
7

6
2

5
5

1
7

1
3

G

4
1

4
3

4
1

4
3

4
5

4
2

4
1

4
4

4
2

4
4

4
5

4
7

4
3

4
3

4
2

4
5

4
2

5
7

6
2

4
3

5
7

6
3

5
5

4
4

4
7

4
1

5
9

5
3

4
5

4
1

H

a
m

W
k

Appendix A 161

TN3941 (1.80V / -40°C)

Table A.17. Union and intersection at TN3941

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

2
1

2
0

2
0

1
9

1
9

2
0

2
0

2
0

2
0

2
1

2
1

2
0

2
0

2
0

1
9

1
9

2
0

2
1

2
0

2
0

2
1

2
0

2
0

2
1

2
0

1
9

1
9

1
6

2
1

2
1

S

C
N

2
1

2
0

2
0

1
9

1
9

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

1
9

1
9

2
0

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
0

S

C
N

P

2
1

2
0

2
0

1
9

1
9

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

1
9

1
9

2
0

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
0

M

T
S

2
2

2
1

2
1

2
0

1
9

1
9

1
9

1
9

1
9

1
9

1
9

2
0

1
9

1
9

2
0

1
9

1
9

2
0

2
0

2
0

2
0

2
0

2
0

1
9

2
0

1
8

1
9

1
7

1
9

1
9

M

T
S

P

2
1

2
0

2
0

2
0

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
8

1
8

1
6

1
9

1
9

M

T
S

P
P

2
1

2
0

2
0

2
1

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

1
9

1
9

2
0

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
0

C

M

2
1

2
0

2
0

2
1

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

2
0

1
9

1
9

2
0

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
0

A

2
3

2
2

2
2

2
3

2
2

2
2

2
2

2
2

2
0

2
0

2
0

2
0

2
0

2
2

1
9

1
9

2
1

2
0

2
0

1
9

2
1

2
0

2
1

2
1

2
0

1
9

1
9

1
6

2
1

2
2

B

2
1

2
0

2
0

2
1

2
0

2
0

2
0

2
2

2
0

2
0

2
0

2
0

2
0

2
0

1
9

1
9

2
0

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
0

A

lg
B

2
2

2
2

2
2

2
3

2
2

2
2

2
2

2
4

2
2

2
2

2
2

2
0

2
0

2
0

1
9

1
9

2
0

2
2

2
1

2
0

2
1

2
0

2
0

2
1

2
1

1
9

1
9

1
6

2
2

2
1

C

P

2
2

2
2

2
2

2
3

2
2

2
2

2
2

2
4

2
2

2
2

2
2

2
0

2
0

2
0

1
9

1
9

2
0

2
2

2
1

2
0

2
1

2
0

2
0

2
1

2
1

1
9

1
9

1
6

2
2

2
1

P
M

O
V

I

2
2

2
1

2
1

2
1

2
1

2
1

2
1

2
3

2
1

2
3

2
3

2
1

2
0

2
0

2
0

1
9

2
0

2
1

2
1

2
0

2
1

2
1

2
1

2
0

2
1

1
9

2
0

1
7

2
0

2
0

1
/0

2
1

2
0

2
0

2
1

2
0

2
0

2
0

2
2

2
0

2
2

2
2

2
1

2
0

2
0

1
9

1
9

2
0

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
0

T
P

2
3

2
2

2
2

2
3

2
2

2
2

2
2

2
2

2
2

2
4

2
4

2
3

2
2

2
2

1
9

1
9

2
1

2
0

2
0

1
9

2
1

2
0

2
1

2
1

2
0

1
9

1
9

1
6

2
1

2
2

U

2
2

2
1

2
1

2
0

2
0

2
1

2
1

2
3

2
1

2
3

2
3

2
1

2
1

2
3

2
0

1
9

1
9

2
0

2
0

2
0

2
0

2
0

2
0

1
9

2
0

1
8

1
9

1
7

1
9

1
9

X

2
1

2
0

2
0

2
0

1
9

2
0

2
0

2
2

2
0

2
2

2
2

2
1

2
0

2
2

2
0

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
8

1
8

1
6

1
9

1
9

Y

2
2

2
1

2
1

2
2

2
1

2
1

2
1

2
2

2
1

2
3

2
3

2
2

2
1

2
2

2
2

2
1

2
1

2
0

2
0

1
9

2
0

2
0

2
0

2
0

2
0

1
9

1
9

1
6

2
0

2
1

L
R

3
6

3
6

3
6

3
6

3
6

3
6

3
6

3
8

3
6

3
6

3
6

3
6

3
6

3
8

3
6

3
6

3
7

3
6

3
5

2
1

3
4

2
9

3
3

2
1

2
2

1
9

3
3

2
8

2
2

2
6

L
A

3
8

3
7

3
7

3
7

3
7

3
7

3
7

3
9

3
7

3
8

3
8

3
7

3
7

3
9

3
7

3
7

3
8

3
8

3
7

2
0

3
3

3
1

3
3

2
0

2
2

1
9

3
5

3
0

2
1

2
5

R

A
W

2
2

2
2

2
2

2
1

2
1

2
2

2
2

2
4

2
2

2
3

2
3

2
2

2
2

2
4

2
1

2
1

2
3

3
6

3
8

2
1

2
1

2
0

2
0

2
0

2
0

1
8

1
9

1
7

2
0

2
0

R

A
W

1

3
7

3
7

3
7

3
7

3
7

3
7

3
7

3
8

3
7

3
8

3
8

3
7

3
7

3
8

3
7

3
7

3
8

3
9

4
1

3
7

3
7

3
0

3
4

2
2

2
1

1
9

3
4

2
7

2
2

2
7

A

B

3
8

3
7

3
7

3
7

3
7

3
7

3
7

3
9

3
7

3
9

3
9

3
7

3
7

3
9

3
7

3
7

3
8

4
4

4
3

3
8

4
4

3
7

2
9

2
0

2
1

1
9

3
5

2
8

2
0

2
4

A

B
1

3
6

3
5

3
5

3
5

3
5

3
5

3
5

3
6

3
5

3
7

3
7

3
5

3
5

3
6

3
5

3
5

3
6

3
8

3
9

3
6

3
8

4
3

3
5

2
1

2
1

1
9

3
3

2
7

2
1

2
6

B

D
N

2
2

2
2

2
2

2
3

2
2

2
2

2
2

2
3

2
2

2
3

2
3

2
3

2
2

2
3

2
3

2
2

2
3

3
7

3
9

2
3

3
7

3
9

3
6

2
2

2
0

1
9

1
9

1
6

2
2

2
2

S

R

2
3

2
2

2
2

2
2

2
2

2
2

2
2

2
4

2
2

2
3

2
3

2
2

2
2

2
4

2
2

2
2

2
3

3
6

3
7

2
3

3
8

3
8

3
6

2
4

2
2

1
9

2
0

1
7

2
1

2
0

S

S

2
1

2
0

2
0

2
1

2
0

2
0

2
0

2
2

2
0

2
2

2
2

2
1

2
0

2
2

2
1

2
0

2
1

3
6

3
7

2
2

3
7

3
7

3
5

2
2

2
2

1
9

1
9

1
6

1
9

1
9

B

L
IF

4
2

4
1

4
1

4
1

4
1

4
1

4
1

4
3

4
1

4
3

4
3

4
1

4
1

4
3

4
1

4
1

4
2

4
3

4
2

4
2

4
3

4
2

4
2

4
3

4
2

4
0

4
0

3
1

1
9

2
4

H

a
m

5
R

3
7

3
6

3
6

3
5

3
5

3
6

3
6

3
8

3
6

3
8

3
8

3
6

3
6

3
8

3
5

3
5

3
7

4
0

3
9

3
6

4
2

4
1

4
0

3
8

3
7

3
5

4
1

3
2

1
6

2
0

H

a
m

5
W

2
3

2
3

2
3

2
4

2
3

2
3

2
3

2
4

2
3

2
3

2
3

2
4

2
3

2
4

2
4

2
3

2
4

3
7

3
9

2
4

3
8

4
0

3
7

2
3

2
4

2
3

4
4

3
9

2
3

2
2

G

2
8

2
8

2
8

2
9

2
8

2
8

2
8

2
8

2
8

2
9

2
9

2
9

2
8

2
8

2
9

2
8

2
8

3
8

4
0

2
9

3
8

4
1

3
7

2
8

3
0

2
8

4
4

4
0

2
9

2
8

H

a
m

W
k

162 Appendix A

TN4441 (1.30V / +25°C)

Table A.18. Union and intersection at TN4441

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

3
4

2
5

2
5

2
5

2
8

2
7

2
7

3
2

2
8

3
1

3
0

2
9

2
7

3
2

2
6

2
8

3
0

3
0

3
3

3
0

3
2

3
0

3
0

3
2

3
1

1
3

3
0

2
2

3
0

2
6

S

C
N

4
5

3
6

3
0

2
9

3
3

3
2

3
2

3
6

3
3

3
4

3
4

3
2

3
1

3
4

2
8

3
2

3
4

3
5

3
5

3
5

3
5

3
1

3
5

3
5

3
4

2
0

3
2

2
5

3
6

3
4

S

C
N

P

4
0

3
7

3
1

2
6

2
9

2
8

3
1

3
1

3
0

3
1

3
1

2
8

2
8

3
1

2
5

2
9

3
0

3
1

3
1

3
0

3
1

2
7

3
1

3
1

3
1

1
7

2
8

2
4

3
1

3
1

M

T
S

5
3

5
1

4
9

4
4

3
5

3
5

3
3

3
5

3
7

3
7

3
6

3
8

3
3

3
7

3
3

3
7

3
5

3
9

4
0

3
7

3
8

3
4

4
0

3
5

3
9

1
9

3
7

3
0

3
8

3
4

M

T
S

P

5
6

5
3

5
2

5
9

5
0

3
9

4
0

4
0

4
3

4
4

4
4

4
2

3
8

4
0

3
5

4
0

4
1

4
4

4
8

4
0

4
8

4
0

4
5

4
1

4
4

2
0

4
1

3
1

4
4

3
8

M

T
S

P
P

5
8

5
5

5
4

6
0

6
2

5
1

3
9

3
9

3
9

4
1

3
8

3
8

3
9

4
1

3
7

3
9

4
0

4
3

4
4

4
1

4
5

4
1

4
3

3
8

4
3

2
1

4
0

3
1

4
5

3
9

C

M

5
6

5
3

4
9

6
0

5
9

6
1

4
9

3
8

4
3

4
4

4
3

3
8

3
6

4
3

3
6

3
9

4
0

4
5

4
7

3
9

4
6

3
9

4
5

4
0

4
5

2
1

3
9

3
1

4
5

3
7

A

5
3

5
1

5
1

6
0

6
1

6
3

6
2

5
1

4
3

4
5

4
5

4
3

4
1

4
6

3
6

4
3

4
4

4
6

4
9

4
7

4
8

4
2

4
4

4
5

4
3

2
1

4
5

3
2

4
8

4
0

B

6
2

5
9

5
7

6
3

6
3

6
8

6
2

6
4

5
6

4
7

4
7

4
6

4
0

4
4

3
9

4
3

4
2

4
9

5
1

4
3

5
1

4
3

5
0

4
2

4
8

2
2

4
8

3
3

4
8

4
0

A

lg
B

5
9

5
8

5
6

6
3

6
2

6
6

6
1

6
2

6
5

5
6

4
7

4
5

4
1

4
4

3
7

4
6

4
4

5
0

5
4

4
4

5
2

4
7

4
9

4
2

4
9

2
1

4
6

3
3

4
9

4
2

C

P

6
1

5
9

5
7

6
5

6
3

7
0

6
3

6
3

6
6

6
6

5
7

4
7

4
3

4
6

3
9

4
5

4
5

5
3

5
5

4
5

5
1

4
6

5
3

4
5

5
1

2
3

4
9

3
7

5
0

3
9

P
M

O
V

I

6
3

6
2

6
1

6
4

6
6

7
1

6
9

6
6

6
8

6
9

6
8

5
8

4
1

4
2

3
9

4
2

4
3

5
2

5
6

4
5

5
2

4
7

4
9

4
0

4
8

2
2

5
2

3
5

4
7

4
0

1
/0

5
6

5
4

5
2

6
0

6
1

6
1

6
2

5
9

6
5

6
4

6
3

6
6

4
9

4
1

3
5

4
1

4
3

4
3

4
6

4
0

4
5

3
9

4
2

4
1

4
2

2
0

4
0

3
1

4
2

3
6

T
P

6
3

6
3

6
1

6
8

7
1

7
1

6
7

6
6

7
3

7
3

7
2

7
7

6
9

6
1

3
6

4
3

4
5

4
9

5
5

4
4

5
0

4
5

5
0

4
8

4
8

2
0

4
6

3
4

4
8

4
2

U

5
2

5
2

5
0

5
5

5
9

5
8

5
7

5
9

6
1

6
3

6
2

6
3

5
8

6
9

4
4

3
6

3
5

4
0

4
2

3
9

4
1

3
8

4
0

3
3

4
0

2
0

4
0

2
9

4
2

3
3

X

5
7

5
5

5
3

5
8

6
1

6
3

6
1

5
9

6
4

6
1

6
3

6
7

5
9

6
9

5
9

5
1

4
2

4
9

4
8

4
2

4
9

4
4

4
7

4
0

4
4

2
0

4
5

3
5

4
5

3
9

Y

5
9

5
7

5
6

6
4

6
4

6
6

6
4

6
2

6
9

6
7

6
7

7
0

6
1

7
1

6
4

6
4

5
5

5
0

4
9

4
4

4
6

3
9

4
5

4
6

4
4

2
0

4
1

3
0

4
7

4
3

L
R

1
2
2

1
1
9

1
1
8

1
2
3

1
2
4

1
2
6

1
2
2

1
2
3

1
2
5

1
2
4

1
2
2

1
2
4

1
2
4

1
3
0

1
2
2

1
2
0

1
2
3

1
1
8

1
1
2

4
8

1
0
7

9
9

1
0
4

4
6

5
4

2
2

1
0
4

8
6

5
3

8
6

L
A

1
4
0

1
4
0

1
3
9

1
4
3

1
4
1

1
4
6

1
4
1

1
4
1

1
4
4

1
4
1

1
4
1

1
4
1

1
4
2

1
4
5

1
4
1

1
4
2

1
4
5

1
4
5

1
3
9

4
9

1
1
8

1
1
1

1
1
2

4
8

5
8

2
4

1
1
9

9
6

5
5

8
6

R

A
W

5
8

5
5

5
5

6
1

6
4

6
4

6
4

5
8

6
7

6
6

6
6

6
7

6
3

7
1

5
9

6
3

6
5

1
2
4

1
4
4

5
4

4
9

4
5

4
5

4
3

4
4

2
2

4
6

3
4

5
0

4
1

R

A
W

1

1
2
5

1
2
4

1
2
3

1
2
9

1
2
5

1
2
9

1
2
6

1
2
6

1
2
8

1
2
7

1
2
9

1
2
9

1
2
7

1
3
4

1
2
6

1
2
5

1
3
2

1
3
4

1
4
4

1
2
8

1
2
3

1
0
6

1
0
7

4
6

5
6

2
2

1
0
9

9
0

5
2

8
4

A

B

1
2
2

1
2
3

1
2
2

1
2
8

1
2
8

1
2
8

1
2
8

1
2
7

1
3
1

1
2
7

1
2
9

1
2
9

1
2
8

1
3
4

1
2
4

1
2
5

1
3
4

1
3
7

1
4
6

1
2
7

1
3
5

1
1
8

1
0
2

4
0

5
1

2
3

1
1
3

9
2

4
8

8
0

A

B
1

1
2
4

1
2
1

1
2
0

1
2
4

1
2
5

1
2
8

1
2
4

1
2
7

1
2
6

1
2
7

1
2
4

1
2
9

1
2
7

1
3
1

1
2
4

1
2
4

1
3
0

1
3
4

1
4
7

1
2
9

1
3
6

1
3
6

1
2
0

4
6

5
3

2
3

1
0
8

8
7

5
1

8
5

B

D
N

5
5

5
4

5
3

6
2

6
2

6
6

6
2

5
9

6
7

6
7

6
5

7
1

6
1

6
6

6
4

6
4

6
2

1
2
5

1
4
4

6
4

1
3
0

1
3
1

1
2
7

5
3

4
3

2
1

4
1

3
2

4
6

4
1

S

R

6
6

6
5

6
3

6
8

6
9

7
1

6
7

7
1

7
1

7
0

6
9

7
3

7
0

7
6

6
7

7
0

7
4

1
2
7

1
4
4

7
3

1
3
0

1
3
0

1
3
0

7
3

6
3

2
3

4
9

3
8

4
9

4
2

S

S

4
5

4
0

3
8

4
9

5
4

5
4

5
2

5
4

5
8

5
9

5
8

6
0

5
3

6
5

4
8

5
5

5
9

1
2
0

1
3
9

5
6

1
2
5

1
1
9

1
2
1

5
6

6
4

2
4

2
4

2
1

2
3

2
1

B

L
IF

1
3
4

1
3
4

1
3
3

1
3
7

1
3
9

1
4
1

1
4
0

1
3
6

1
3
8

1
4
0

1
3
8

1
3
6

1
3
9

1
4
5

1
3
4

1
3
6

1
4
4

1
4
4

1
5
0

1
3
8

1
4
4

1
3
5

1
4
2

1
4
2

1
4
4

1
3
0

1
3
0

9
6

5
0

8
0

H

a
m

5
R

1
1
0

1
0
9

1
0
5

1
1
2

1
1
7

1
1
8

1
1
6

1
1
7

1
2
1

1
2
1

1
1
8

1
2
1

1
1
6

1
2
5

1
1
3

1
1
4

1
2
3

1
3
0

1
4
1

1
1
8

1
3
1

1
2
4

1
3
1

1
1
9

1
2
3

1
0
1

1
3
2

9
8

3
4

7
1

H

a
m

5
W

6
7

6
3

6
3

6
9

6
9

6
9

6
7

6
6

7
1

7
0

7
0

7
4

7
0

7
6

6
5

6
9

7
1

1
2
8

1
4
7

6
7

1
3
4

1
3
3

1
3
2

7
0

7
7

6
4

1
4
3

1
2
7

6
3

4
5

G

1
0
3

9
7

9
5

1
0
5

1
0
7

1
0
7

1
0
7

1
0
6

1
1
1

1
0
9

1
1
3

1
1
3

1
0
8

1
1
4

1
0
6

1
0
7

1
0
7

1
2
7

1
4
8

1
0
8

1
3
4

1
3
3

1
3
0

1
0
7

1
1
6

9
8

1
4
5

1
2
2

1
1
3

9
5

H

a
m

W
k

Appendix A 163

TN4541 (1.80V / +25°C)

Table A.19. Union and intersection at TN4541

SCN

SCNP

MTS

MTSP

 MTSPP

 CM

 A

 B

 AlgB

 CP

 PMOVI

 1/0

 TP

 U

 X

 Y

 LR

 LA

 RAW

 RAW1

 AB

 AB1

 BDN

 SR

 SS

 BLIF

 Ham5R

 Ham5W

 G

 HamWk

7
6

4
4

6
6

6
6

6
7

6
6

6
7

5
5

6
7

7
5

7
5

7
6

7
3

4
4

6
6

S

C
N

8
7

4
4

5
6

7
7

7
7

6
7

7
7

5
5

7
7

7
4

7
4

7
7

7
3

5
4

6
7

S

C
N

P

7
7

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

4
4

M

T
S

7
7

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

4
4

M

T
S

P

7
8

6
6

6
5

5
5

5
6

5
5

5
6

5
5

5
6

6
5

6
5

6
5

6
3

3
3

5
5

M

T
S

P
P

7
7

6
6

7
6

6
6

6
6

6
6

6
6

5
5

6
6

6
4

6
4

6
6

6
3

4
4

5
6

C

M

8
7

7
7

8
7

7
7

7
7

6
7

7
7

5
5

7
7

7
4

7
4

7
7

7
3

5
4

6
7

A

8
7

7
7

8
7

7
7

7
7

6
7

7
7

5
5

7
7

7
4

7
4

7
7

7
3

5
4

6
7

B

8
7

7
7

8
7

7
7

7
7

6
7

7
7

5
5

7
7

7
4

7
4

7
7

7
3

5
4

6
7

A

lg
B

8
8

8
8

8
8

8
8

8
8

6
7

7
8

5
5

7
8

8
5

8
5

8
7

8
3

5
4

7
7

C

P

7
7

6
6

7
6

7
7

7
8

6
6

6
6

5
5

6
6

6
4

6
4

6
6

6
3

4
4

5
6

P
M

O
V

I

8
7

7
7

8
7

7
7

7
8

7
7

7
7

5
5

7
7

7
4

7
4

7
7

7
3

5
4

6
7

1
/0

8
7

7
7

8
7

7
7

7
8

7
7

7
7

5
5

7
7

7
4

7
4

7
7

7
3

5
4

6
7

T
P

9
9

9
9

9
9

9
9

9
9

9
9

9
9

5
5

8
9

8
5

8
5

8
8

8
3

5
4

8
8

U

7
7

5
5

6
6

7
7

7
8

6
7

7
9

5
5

5
5

5
4

5
4

5
5

5
3

3
3

4
5

X

7
7

5
5

6
6

7
7

7
8

6
7

7
9

5
5

5
5

5
4

5
4

5
5

5
3

3
3

4
5

Y

9
8

8
8

9
8

8
8

8
9

8
8

8
9

8
8

8
8

7
4

7
4

7
8

7
3

5
4

7
8

L
R

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
7

5
1
7

1
2

1
4

8
8

3
1
4

1
3

8
1
0

L
A

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
2

2
1

2
1

2
2

2
3

2
1

5
1
7

1
5

1
4

7
8

3
1
7

1
6

7
9

R

A
W

7
8

5
5

6
7

8
8

8
8

7
8

8
9

6
6

9
1
9

2
1

5
5

5
5

4
5

3
3

3
5

4

R

A
W

1

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
8

1
7

1
7

1
8

1
9

2
1

1
7

1
7

1
1

1
4

7
8

3
1
4

1
3

7
9

A

B

1
9

2
0

1
7

1
7

1
8

1
9

2
0

2
0

2
0

2
0

1
9

2
0

2
0

2
1

1
8

1
8

2
1

2
4

2
3

1
7

2
3

1
7

9
4

5
3

1
2

1
3

5
6

A

B
1

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
5

1
4

1
4

1
5

1
9

2
1

1
4

1
7

2
2

1
4

7
8

3
1
1

1
0

7
9

B

D
N

9
8

8
8

9
8

8
8

8
9

8
8

8
9

8
8

8
1
9

2
2

9
1
8

2
1

1
5

8
7

3
5

4
7

8

S

R

8
8

8
8

8
8

8
8

8
8

8
8

8
9

8
8

9
1
9

2
1

8
1
7

2
0

1
4

9
8

3
5

4
7

7

S

S

7
7

4
4

6
6

7
7

7
8

6
7

7
9

5
5

8
1
9

2
1

5
1
7

1
7

1
4

8
8

3
3

3
3

3

B

L
IF

2
1

2
0

1
9

1
9

2
1

2
0

2
0

2
0

2
0

2
1

2
0

2
0

2
0

2
2

2
0

2
0

2
1

2
3

2
2

2
0

2
1

2
3

2
1

2
1

2
1

1
8

1
8

1
7

5
7

H

a
m

5
R

2
1

2
1

1
9

1
9

2
1

2
0

2
1

2
1

2
1

2
2

2
0

2
1

2
1

2
3

2
0

2
0

2
2

2
4

2
3

2
0

2
2

2
2

2
2

2
2

2
2

1
8

1
9

1
8

4
6

H

a
m

5
W

9
9

8
8

9
9

9
9

9
9

9
9

9
9

9
9

9
1
9

2
2

8
1
8

2
0

1
5

9
9

8
2
1

2
2

8
7

G

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
1

1
0

1
0

1
0

1
9

2
2

1
1

1
8

2
1

1
5

1
0

1
1

1
0

2
1

2
2

1
1

1
0

H

a
m

W
k

Appendix B 165

Appe ndix B

C a lc ula t io n o f Fa ul t D is t r ibut io n

From the data based, the following values for the

cardinality of sets have been determined:

|F0| = 2439

|F1| = 1610

|F2| = 1073

|F3| = 390

|F4| = 171

|F5| = 0

So is for the number of different faults per fault modes:

 |{SS}| = |F0| - |F1| = 2439 – 1610 = 829 (39)

 |{some CF}| = |F1| - |F2| = 1610 - 1073 = 537 (40)

 |{remaining CF}| = |F3| - |F1| = 1073 – 390 = 683 (41)

 |{LF}| = |F3| - |F4| = 390 – 171 = 219 (42)

 |{DF}| = |F4| - |F5| = 171 – 0 = 171 (43)

Appendix C 167

Appe ndix C

E SP R E SSO Alg o r i thm a nd

So f tw ar e

C . 1 E S P R E S S O H e u r i s t i c A l g o r i t h m

ESPRESSO is a heuristic logic minimization algorithm

developed for the optimization of digital logic gate circuits.

ESPRESSO was developed early 1980s at IBM by Robert K.

Brayton [50].

Classical minimization methods are the use of Karnaugh-

Maps or the Quine-McCluskey Algorithm. However, the use

of a Karnough map is reasonable for small systems with few

inputs, and if the minimization could be done manually. For

large systems with many inputs, Quine-McCluskey would be

feasible but ESPRESSO is much more efficient due to

computation time.

The ESPRESSO is a relatively complex algorithm that

maps the truth table of a system into a geometrical

representation of n-dimensional hyper cubes, where n is the

number of inputs to the system. Three sets of input values are

distinguished:

 The On-Set, where the output is TRUE

 the Off-Set, where the output is FALSE, and

 the DC-Set, where the output is don’t care.

Seven basic routines are involved into ESPRESSO-II

minimization [50, 51]: COMPLEMEN, EXPAND,

ESSENTIAL_PRIMES, IRREDUNDANT_COVER, REDUCE,

LAST_GASP, MAKE_SPARES.

168 Appendix C

The ESPRESSO algorithm will not be explained in this

work. For the computation of the optimal test sets, ESPRESSO

was used in the software package “Logic Friday” from [52].

C . 2 E S P R E S S O S o f t w a r e

To compute the optimal test sets, ESPRESSO was used

from the “Logic Friday” software package [52]. This section

briefly describes the input and output format [53, 54] for the

data.

Figure C.1. Input and output file to ESPRESSO

Figure C.1. shows the input (left) and output file of

ESPRESSO, where

 .i 30 specifies the number of input variables.

 .o 1 specifies the number of output variables.

 .type r specifies the OFF-Set as input.

 .p 4 specifies the number of results

 .e denotes the end of the file.

.i 30

.o 1

.type r

--------0----0--0-0--0-00000-0 0

000000000000000000000-000---00 0

--0000000000000000000-0000--00 0

-----------------00-000---00-- 0

0000000000000000000000000-0-00 0

--0000000000000000000-0000--00 0

--------0----0--0------0-0---0 0

------------------0--0--0-00-- 0

---000000000000000000-0000--00 0

--------0----0--0------0-0--00 0

--------0-------0------------0 0

---000000000000000000000000000 0

---00---0--0-0-00-0----0-0--00 0

--00000000-0000000000-0-0---00 0

--0000000000000000000-0000--00 0

--------0-------0------0-0---0 0

--------0----0--0------000---0 0

-------------0---------------- 0

----------------0------------0 0

--------0----0--0------0-0--00 0

000000000000000000000-0 0

00---000000000--0000

 ----0----0--

.i 30

.o 1

.p 4

-------1-----1--1111-1---11-11 1

-------1-----11-111--1---11-11 1

-------1-----1--1111-1-1--1-11 1

-------1-----11-111--1-1--1-11 1

.e

Appendix C 169

Both, input and output are text files. The input file contains

the truth table to be minimized, the output file the minimized

function. The 30 inputs are separated by a ‘space’ from the

output. The sequence of inputs represents the sequence of

algorithms A1 trough A30 as given in table 4.2. The truth table

is in disjunctive normal form (DNF).

The output file also contains the result of the minimization

as truth table with inputs and output space-separated. A ‘1’

denotes that the corresponding algorithm Am is essential. If

the table consists of more than one row, the solutions are

equivalent.

Appendix D 171

Appe ndix D

Addi t io na l R e s ul t s o f C hapte r 7

For all test numbers the essential algorithms are

determined and the relation of FC and TL is done. It is

remarkable that for any test condition, at least one of the

algorithms March RAW, Ham5R or Ham_Walk is essential

and occurs on top of the list of weighted algorithms.

Hence, for productive testing, a combination of these

algorithms works well with any environmental test condition.

172 Appendix D

TN1522 (1.35V / +125°C)

Table D.1. Fault coverage over test length at TN1522

Algorithm ∆FC ∆TL FC TL

1 March RAW 447 26n 72.45% 26n

2 Ham_Walk 133 15n 94.00% 41n

3 Ham5R 20 25n 97.24% 66n

4 March LA 5 22n 98.06% 88n

5 March U 3 14n 98.54% 102n

6 March AB1 3 11n 99.03% 113n

7 March SS 3 22n 99.51% 135n

8 Ham5W 2 25n 99.84% 160n

9 March A 1 15n 100% 175n

Figure D.1. Fault coverage over test length at TN1522

 ms
180MHz

32kB

81024
261,56kB1

TT1522 1.65

75






 (44)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix D 173

TN1622 (1.80V / +125°C)

Table D.2. Fault coverage over test length at TN1622

Algorithm ∆FC ∆TL FC TL

1 March RAW 46 26n 82.14% 46n

2 Ham_Walk 7 15n 94.64% 41n

3 March AB1 3 11n 100% 52n

Figure D.2. Fault coverage over test length at TN1622

 ms
180MHz

32kB

81024
261,56kB

TT1622 3.19

52






 (45)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

174 Appendix D

TN6531 (1.35V / +140°C)

Table D.3. Fault coverage over test length at TN6531

Algorithm ∆FC ∆TL FC TL

1 Ham_Walk 2063 15n 84.58% 15n

2 March RAW 284 26n 96.23% 41n

3 Ham5R 36 25n 97.70% 66n

4 March G 30 23n+2D 98.93% 89n+2D

5 March AB1 13 11n 99.47% 100+2D

6 March LR 5 14n 99.67% 114+2D

7 March X 3 6n 99.79% 120+2D

8 March LA 2 22n 99.88% 142+2D

9 March U 1 14n 99.92% 156+2D

10 March B 1 14n 99.96% 170+2D

11 March SR 1 17n 100% 187+2D

Figure D.3. Fault coverage over test length at TN6531

msms

180MHz
32kB

81024
261,56kB71

TT6531 6.2691002

8







 (46)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160 180

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix D 175

TN6631 (1.80V / +140°C)

Table D.4. Fault coverage over test length at TN6631

Algorithm ∆FC ∆TL FC TL

1 March RAW 153 26n 87.43% 26n

2 Ham_Walk 13 15n 94.86% 41n

3 March G 5 23n+2D 97.71% 64n+2D

4 March AB1 2 11n 98.86% 75n+2D

5 March LR 2 14n 100% 89n+2D

Figure D.4. Fault coverage over test length at TN6631

 msms
180MHz

32kB

81024
261,56kB89

TT6631 1.2331002 




 (47)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

176 Appendix D

TN3741 (1.30V / -40°C)

Table D.5. Fault coverage over test length at TN3741

Algorithm ∆FC ∆TL FC TL

1 March RAW 199 26n 83.97% 26n

2 Ham5R 16 25n 90.72% 51n

3 March AB 7 22n 93.67% 73n

4 March AB1 4 11n 95.36% 84n

5 March SR 3 14n 96.62% 98n

6 March RAW1 2 13n 97.47% 111n

7 March BDN 2 22n 98.31% 133n

8 March TP 1 11n 98.73% 144n

9 Ham_Walk 1 15n 99.16% 159n

10 Algorithm B 1 17n 99.58% 176n

11 March G 1 23n+2D 100% 199n+2D

Figure D.5. Fault coverage over test length at TN3741

msms

180MHz
32kB

81024
261,56kB199

TT3741 0.2741002 





 (48)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100 120 140 160 180

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix D 177

TN3841 (1.50V / -40°C)

Table D.6. Fault coverage over test length at TN3841

Algorithm ∆FC ∆TL FC TL

1 March RAW 62 26n 89.86% 26n

2 March AB1 5 11n 97.10% 37n

3 SCAN+ 2 8n 100% 45n

Figure D.6. Fault coverage over test length at TN3841

 ms
180MHz

32kB

81024
261,56kB4

TT3841 7.16

5






 (49)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

178 Appendix D

TN3941 (1.80V / -40°C)

Table D.7. Fault coverage over test length at TN3941

Algorithm ∆FC ∆TL FC TL

1 Ham5R 40 25n 86.96% 25n

2 Ham_Walk 3 15n 93.48% 40n

3 March RAW 2 26n 97.83% 66n

4 Ham5W 1 25n 100% 91n

Figure D.7. Fault coverage over test length at TN3941

 ms
180MHz

32kB

81024
261,56kB91

TT3941 9.33




 (50)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

Appendix D 179

TN4441 (1.30V / +25°C)

Table D.8. Fault coverage over test length at TN4441

Algorithm ∆FC ∆TL FC TL

1 March RAW 139 26n 84.76% 26n

2 Ham5R 11 25n 91.46% 51n

3 Ham_Walk 7 15n 95.73% 66n

4 March C- 4 10n 98.17% 76n

5 MATS+ 2 5n 99.39% 81n

6 MATS++ 1 6n 100% 87n

Figure D.8. Fault coverage over test length at TN4441

 ms
180MHz

32kB

81024
261,56kB87

TT4441 4.32




 (51)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

180 Appendix D

TN4541 (1.80V / +25°C)

Table D.9. Fault coverage over test length at TN4541

Algorithm ∆FC ∆TL FC TL

1 Ham5R 18 25n 72.00% 25n

2 March AB1 5 11n 92.00% 36n

3 March SR 2 14n 100% 50n

Figure D.9. Fault coverage over test length at TN4541

 ms
180MHz

32kB

81024
261,56kB50

TT4541 6.18




 (52)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40 45 50

Test Length

F
a
u

lt
 C

o
v
e
ra

g
e

	Chapter 1 Introduction
	1.1 Previous Work
	1.2 Motivation
	1.3 Planned Work and Project Outline
	1.4 Semiconductor Memories
	1.4.1 Memory Technology
	1.4.2 Static Random Access Memories

	Chapter 2 Memory Faults
	2.1 Definitions
	2.2 Classification of Memory Faults
	2.2.1 Static versus Dynamic Faults
	2.2.2 Simple versus Linked Faults
	2.2.3 Single-cell versus Coupling Faults
	2.2.4 Address Decoder Faults
	2.2.5 Peripheral Faults

	2.3 Fault Primitives and Functional Fault Models

	Chapter 3 Memory Test Algorithms
	3.1 Nomenclature
	3.2 Test Algorithms
	3.3 Algorithmic Test Parameters
	3.3.1 Address Direction
	3.3.2 Addressing Mode
	3.3.3 Data Background

	3.4 Environmental Parameters

	Chapter 4 Test Environment and Setup
	4.1 Memory Testing
	4.1.1 MSIST
	4.1.2 MBIST

	4.2 MBISTPLUS
	4.2.1 Potential of MBISTPLUS V3.0
	4.2.2 Potential of MBISTPLUS V4.2

	4.3 Burn-In
	4.4 Test Strategy
	4.5 Test Setup
	4.5.1 Tested Devices and Memories
	4.5.2 Study Test Set
	4.5.3 Test Environment
	4.5.4 Test Flow
	4.5.5 Data Acquisition

	Chapter 5 Fault Coverage of Test Algorithms
	5.1 Definitions
	5.1.1 Fault Coverage
	5.1.2 Test
	5.1.3 Test Set

	5.2 Fault Coverage at Different Environmental Conditions
	5.2.1 Test Results
	5.2.2 Data Evaluation

	5.3 Fault Coverage of Test Algorithms
	5.3.1 Test Results
	5.3.2 Evaluation of Fault Coverage
	5.3.3 Unique Faults

	5.4 Influence of Algorithmic Test Parameters
	5.5 Summary and Conclusions

	Chapter 6 Efficiency of Test Algorithms
	6.1 Definitions
	6.1.1 Union and Intersection
	6.1.2 Subsets and Coverage

	6.2 Evaluation Method
	6.3 Efficient Pairs of Algorithms
	6.3.1 Test Results
	6.3.2 Data Evaluation

	6.4 Classification of Algorithms
	6.4.1 Similar Fault Coverage and Subsets
	6.4.2 Characteristic March Elements
	6.4.3 Grouping and Classification
	6.4.4 Consistencies and Inconsistencies

	6.5 Estimation of Fault Distribution
	6.6 Summary and Conclusions

	Chapter 7 Test Set Optimization
	7.1 Formal Optimization
	7.2 Test Data Preparation
	7.3 Test Results
	7.3.1 Essential Algorithms
	7.3.2 Fault Coverage related to Test Length

	7.4 Summary and Conclusions

	Chapter 8 Variation of Fault Manifestation
	8.1 Setup and Environment
	8.2 Increase of Fault Coverage
	8.3 Variation of Fault Behavior
	8.3.1 Data Evaluation Technique
	8.3.2 Test Results

	8.4 Summary and Conclusions

	Chapter 9 Perspectives
	References
	Additional Literature
	Appendix A Additional Results of Chapter 6
	A.1 Fault Coverage of Algorithms
	A.2 Effectiveness of Pairs of Algorithms

	Appendix B Calculation of Fault Distribution
	Appendix C ESPRESSO Algorithm and Software
	C.1 ESPRESSO Heuristic Algorithm
	C.2 ESPRESSO Software

	Appendix D Additional Results of Chapter 7

