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Abstract

Through the advent of next generation sequencing methods, it has become feasi-
ble to fine-map causative genetic markers to interesting traits in large scale. Of
particular interest are point mutations that alter a single amino acid in a protein
(non-synonymous single nucleotide polymorphisms, nsSNPs). These single amino
acid exchanges potentially affect protein structure or function and could result in
genetic diseases. Despite all efforts, the vast majority of nsSNPs lacks experimental
verification of their possible disease phenotype.

In this work, we studied structural effects induced by amino acid changes and
their implications for protein function and disease. As a first step, we in-silico
altered amino acids in native protein sequences and monitored coarse-grained con-
sequences on predicted secondary structure and predicted protein disorder. Al-
though our results suggested that secondary structure is an intrinsic feature of
amino acid sequences, our mutation analysis revealed a highly dynamic picture in
the details: predicted helices, strands and short disorder continuously came and
went while long disorder completely disappeared in random sequences.

To predict effects in more detail, we proposed a novel structure-centric view of
effect. From protein structures, we compiled pairs of pentapeptides, each differing
in its two central amino acids. We distinguished pairs of two structurally similar
peptides from pairs of two dissimilar ones. This set served to induce a machine-
learning model trained on sequence-derived features and subjected to separate
structural neutral from effect pairs. Comprehensive validation revealed high pre-
dictive performance and suggested that local structural change upon single amino
acid change can be predicted from protein sequence.

We predicted structural and functional change in an extensive compilation of
effect and disease annotated nsSNPs. Our findings showed that, first, observed
effects in protein function, stability and disease were enriched in mutations with
strong predicted structural effect. Second, disease-related mutants displayed strong
predicted functional effect. This indicated that both effects raise the likelihood for
disease.

Motivated by these results, we combined predictions of structural and functional
effect to separate disease-related from neutral variants. Based on this analysis we
concluded that predicted functional impact alone sufficed to accurately predict
whether a nsSNP leads to disease or not.
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1 Introduction

Molecular evolution is considered as the driving motor for biological diversity. The
interplay of mutation and selective pressure continuously adapts life to an ever-
changing environment. The genetic makeup of each organism is the consequence of
an ongoing sampling process over genetic configurations. While mutations occur
by chance, selective pressure favors neutral or advantageous change over genotypes
leading to deleterious phenotypes. It is this genetic variation that leads to different
traits.

Most of the genetic variability in human is carried by single point mutations
(Collins et al., 1997, 1998). One of the greatest challenges in recent medicine and
bioinformatics is to answer the question as to how slight genotypic variations could
lead to different phenotypes. Of particular interest are traits pertaining to drug
sensitivity or raised susceptibility to genetic diseases (Chakravarti, 1998; Fernald
et al., 2011).

1.1 Sequence determines structure

The genome of an organism contains the blueprint for one of its essential functional
building blocks — proteins !. Their biosynthesis comprises a two-step enzymatic
process and resembles a subsequent information flow from DNA (deoxyribonucleic
acid) over mRNA (messenger ribonucleic acid) to protein (Crick, 1958, 1970).
Protein-essential information is organized in coding parts of genes. The genetic
code is universal to all organisms and combines three nucleotides to codons which
unambiguously map to the 20 amino acids (e.g. Alberts et al., 2002, chap. 6). The
mapping is redundant in that more than one codon can code for one particular
amino acid (e.g. proline is encoded by either one of the tri-nucleotides CCU, CCC,
CCA, CCG on mRNA level). The consecutive order of nucleotides within coding
regions defines the amino acid sequence of the polypeptide chain.

Amino acids consist of an amine-, a carboxyl-group and a variable side chain
attached to the central carbon atom. Depending on the side chain, amino acids
vary in their biochemical and physical properties, such as hydrophobicity, size
and polarity. Through specific chemical interactions which involve side chains and

! Another group of functional macromolecules appears to be that of non-coding RNAs, their
role is only now becoming understood (Mattick, 2009).



the peptide’s main chain, residues close or distant in sequence come into spatial
proximity. In this respect, a polypeptide chain could be seen as a sequence of these
basic characteristics, since it is those that determine the intricate details in mutual
interactions of residues but also the interplay with the solvent and bound ligands.
The linear polymer folds into its unique three-dimensional structure (Doolittle,
1981; Zuckerkandl and Pauling, 1965), and the particular sequence of amino acids
alone determines the structure of a protein (Anfinsen, 1973). It is this specific
fold that enables a protein to fulfill its distinct functional role in the cell. In a
nutshell, the primary sequence defines the structure which determines the protein’s
function.

The formation of secondary structure elements marks an essential prerequisite
towards a stable unique three-dimensional structure for 'well-ordered’ proteins. a-
helices and (-sheets are the major examples for these structural motifs. Others
are 310- and 7-helices. They denote the basic macromolecular building blocks in
proteins and are stabilized through hydrogen bonds (H-bonds) between carboxyl-
and amine-groups of the backbone (Branden and Tooze, 1999). In consequence,
the polarity contained within the backbone gets neutralized. In helices, H-bonds
are formed between residues close in sequence, i.e. between the ith residue and
residue 7« + 3, i + 4, ¢ + 5 in case of the 3;p-, a- and w-helix, respectively. A
B-sheet is stabilized through H-bonds between residues in extended parallel or
anti-parallel strands that could be far away in sequence. The lack of any of these
states is usually referred to as coil.

Essential to the folding process of proteins is the hydrophobic effect (Tanford,
1978). In soluble globular proteins, it is responsible for the segregation of non-
polar residues into the protein interior and of polar residues to the surface (Guy,
1985). As a consequence, polar water molecules are largely excluded from the
hydrophobic core while exposed side chains form favorable interactions with polar
molecules in the solvent.

The overall tertiary structure is determined by the assembly of secondary struc-
ture elements. Their spatial arrangement is maintained mainly through medium
and long range side chain contacts (rev. Chan and Dill, 1991; Dill et al., 1995).
The key role play interactions between side chains which stabilize the overall con-
formation partially through van der Waals forces between non-polar partners. Of
further importance are H-bonds existing between two side chains or a side chain
and the peptide backbone. Other stabilizing forces denote covalent disulphide
bonds formed between two cysteine residues and electrostatic interactions of ion-
ized groups. Especially the latter plays a dominant role for structure stability in
thermophilic organisms (Korndorfer et al., 1995; Perutz and Raidt, 1975; Taylor
and Vaisman, 2010; Vetriani et al., 1998; Yip et al., 1995).

Proteins can form multimeric complexes which are referred to as quaternary



structure. The interactions between monomers are stabilized through the same
atomic interactions as in secondary and tertiary structure. Complexes can occur
in different manifestations (rev. Ozbabacan et al., 2011). Homo-oligomers are
composed of identical polypeptide chains while hetero-oligomers are composed of
different ones. Obligate versus non-obligate interactions occur between monomers
that are unstable or stable in their unbound states. Depending on their lifetime,
complexes are classified into transient or permanent interactions.

Interactions between subunits occur through whole surface patches. These in-
terfaces differ from each other in their hydrophobicity depending on the kind of
interaction: Homodimers rarely function as monomers and their interaction sur-
faces are more hydrophobic than those of transient heterocomplexes which exhibit
more hydrophilic properties (Janin and Chothia, 1990; Janin et al., 1988; Jones and
Thornton, 1996). In fact, amino acid properties of interfaces differ from those of
the protein surface and furthermore appear to be even distinctive for each interface
type (Ofran and Rost, 2003).

Another aspect of protein structure pertains to the interplay between well-
ordered regions of regular secondary structure on one side and highly flexible and
unstructured regions on the other. These parts have been termed as intrinsi-
cally disordered or unstructured regions. Protein disorder refers to segments in
the polypeptide chain that do not adopt a well-defined three-dimensional struc-
ture in isolation. Residues in these regions rather exist in a variety of different
conformations over time without exhibiting an equilibrium state. Differences in
amino acid distributions between well-ordered and disordered regions imply that
certain amino acids promote disorder (Dunker et al., 2001). A significant feature
of disordered regions is a depletion in hydrophobic residues and an abundance of
parts that exhibit low sequence complexity (Romero et al., 2001). Proteins can
consist of disordered segments or can be disordered in total (Uversky et al., 2005).

Protein disorder plays a dominant role in binding ligands and can occur as
flexible domain linkers, in molten globule domains or in loopy protein ends and can
be substantial to protein function (Dyson and Wright, 2005). They also participate
in interfaces of protein complexes (Mészaros et al., 2007).

The discovery of protein disorder amended the dogma that sequence determines
structure determines function. The lack of a defined structure appears to be the key
for a variety of biological processes that involve cell cycle control, gene regulation
or signalling (Dunker et al., 2002; Vucetic et al., 2007). Its significance is only now
becoming understood. In-silico predictions in whole genomes suggested that more
than 30% of proteins in eukaryots contain regions that are devoid of well-ordered
structure (Dunker et al., 2000; Schlessinger et al., 2011). Protein disorder may
therefore contribute to the evolutionary means to transit from prokaryotic cells to
more enhanced eukaryotic life.
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1.2 Protein structure is conserved

Genes are exposed to evolutionary processes such as mutation under biological
constraints. Proteins observable in contemporary organisms sustained purifying
selection by retaining the individual’s fitness and reproductive success (Kimura,
1983). In this regard, molecular evolution could be seen as a mutagenesis trial
which generates new variants subjected to either fixation into population — or
rejection.

Proteins evolve under functional constraints. Since protein function is estab-
lished through protein structure, structure is also subjected to evolutionary selec-
tion. A particular condition crucial for the maintenance of globular proteins during
the course of evolution is the upkeep of the closely packed interior of the hydropho-
bic core. This inflicts constraints upon the occurrence of acceptable amino acid
substitutions within these regions: Change-in-bulkiness or hydrophobic-to-polar
mutations are less expected to be observed than in exposed regions with more
relaxed restraints (Franzosa and Xia, 2009). Consequentially, conservative amino
acid exchanges that maintain relevant biochemical properties in constrained re-
gions get enriched over time.

It has been long accepted that proteins sharing similar amino acid sequences
fold into similar structures (Zuckerkandl and Pauling, 1965; Doolittle, 1981). To
which extent could a sequence be changed until it looses its wild-type fold?

Relationships between sequence plasticity and structure maintenance have been
studied by the example of the hemoglobins. The globin fold (Fig. 1.1) is present in
virtually all three kingdoms of life and is encoded by orthologous genes. Indeed,
phylogenetic analysis suggests lineage from an ancient ancestral gene (Vinogradov
et al., 2007). Sequence divergence ranges from one mismatch between human
and gorilla (Goodman et al., 1983) to 19% sequence identity between human and
worm (Fig. 1.1A-C) to a level where homology could not be inferred from sequence.
Despite this variety in sequence, globins fold into the same structure.

Early work investigated the variance in axial ratios and other coarse-grained
structural features in crystals of hemoglobins (Reichert and Brown, 1909). Fur-
ther advances in high-resolution X-Ray crystallography led to structures at atomic
resolution and enabled detailed analyses of sequence variability in myoglobin and
hemoglobin structures (Kendrew et al., 1958; Perutz et al., 1960). Through struc-
tural analyses in globins from a wide range of species (Perutz et al., 1965; Lesk and
Chothia, 1980), the following sequence-structure relationships became evident: (i)
the structure’s interior displays high amount of sequence variability while being
restricted to non-polar residues, (ii) residues exposed to the surface are not sub-
jected to those restrictions and exhibit changes from polar to non-polar residues
and vice versa, (iii) mutations in buried residues are not constrained by size.

Analysis of these sequence constraints inflicted by the need of fold maintenance

11



HUMAN: 1 VLSPADKTNVKAAWGKVG--AHAGEYGAEAYERMFLSFPTTKTYFPHFDLSHGSAQVKGQGKKVADALTN

WORM : 1 GLSAAQRQVVASTWKDIAGSDNGAGVGKECFTKFLSAHHDMAAVFGFSGAS--DPGVADLGAKVLAQIGV
I
e ——————

I I

HUMAN: 69 AVAHVD---DMPNALSALSDLHAHK--LRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVS
WORM : 69 AVSHLGDEGKMVAEMKAVGVRHKGYGNKHIKAEYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADIS
I I ——

I
HUMAN: 134 TVLTSKYR
WORM : 139 GALISGLQ

|

Figure 1.1: Globin fold conserved. Ribbon plots of two globin domains from
(A) human (hemoglobin A, PDB 2W72A) and (B) marine worm (monomeric
hemoglobin, PDB 1JL6A) and (C) sequence alignment; equivalent helices in both
structures and their projection to sequence are represented in the same color;
porphyrin-ring and attached iron colored in blue and as red sphere, respectively;
identical residues in the alignment depicted in bold red. Despite a low sequence
identity of 18.9%, both proteins assume the same structural configuration (main
chain RMSD 1.63A), i.e. orientation and connectivity between seven helices and
maintenance of the heme binding pocket are conserved. Structures rendered with
Chimera (Pettersen et al., 2004), alignment calculated with FATCAT (Ye and
Godzik, 2003).

indicate that globins react on mutations in the hydrophobic core by rigid-body
shifts (Lesk and Chothia, 1980). These movements are dissipated to hinge regions
connecting helices while retaining the heme binding site which is crucial for globin
function. A lot of interacting side-chains involved in helix-helix interfaces appear
to have co-mutated, thus retaining the densely-packed environment essential for
structural integrity (Lesk and Chothia, 1980). Indeed, shifts in backbone (Alber
et al., 1988; Weaver et al., 1989) and side-chain movement (Eyal et al., 2003; Ponder
and Richards, 1987) seem to provide means to enable proteins to accommodate
for mutations while retaining their fold.

12



Surprisingly, structural restraints in partially and fully buried sites seem to
be even more relaxed than anticipated. Recent work indicates that up to four
hydrophobic-to-charged substitutions in mutual structural vicinity could be tol-
erated, provided that the backbone of the wild-type protein exhibited a certain
folding stability (Isom et al., 2010; Garcia-Seisdedos et al., 2012).

Do these observations merely fit to a select group of protein families or is the
high structural tolerance for sequential change the rule? What are the restraints
on sequence similarity? The increase in known structures at atomic resolution
in the Protein Data Bank (PDB, Berman et al., 2000) led to a gain in coverage
of distinct folds. Through this, it became possible to get deeper insight into
general aspects of the mapping between sequence and structure space by large-
scale pairwise structural comparisons.

Sequence identity between two naturally evolved proteins can go down to 35% to
infer a similar structure (Rost, 1999; Sander and Schneider, 1991). One exception
to this rule was found recently (Roessler et al., 2008).

The vast majority of similar structure pairs, however, appears to have on average
only ~10% of their sequence in common (Rost, 1997). Whether this observation
could be solely attributed to either convergent or divergent evolution remains to
be under speculation. A combination of both effects appears to be likely (Rost,
1997).

Apparently, protein sequences contain an intrinsic redundancy suggesting that
a protein fold does not strictly depend on a distinct amino acid sequence (Baase
et al., 1992). It is rather the pattern of biochemical properties conserved within a
protein that contributes to the overall structure and that needs to be maintained
throughout evolution (Bowie et al., 1990, 1991; Kamtekar et al., 1993; Shakhnovich
and Gutin, 1991). Substitutions that support the intricate atomic interactions cru-
cial for maintaining structure and function are tolerable. Evolution had enough
time to remove severely deleterious mutations from the pool of contemporary se-
quences. In this respect, the vast majority of mutations observable today are those
that posed least damage to protein structure.

In short, protein structure is more conserved than protein sequence.

1.3 Mutations in structural hotspots lead to
deleterious effects

Direct observation of structural effects due to amino acid exchanges is cumber-
some since each mutant protein must undergo the time consuming and challenging
crystallization process. The complexity further increases when a set of candidate
mutations are to be screened independently for their structural impacts. Despite
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these obstacles, the PDB (Berman et al., 2000) contains a few mutant structures
(Eyal et al., 2001) and structural effects occurring upon changing a single residue
have been observed. On the other hand, measuring changes in protein stability
provides an alternative to ascertain effects due to amino acid exchanges.

Examples of effects include polymerization of serine protease inhibitors (rev.
Gooptu and Lomas, 2009), the formation amyloid fibrils in p53 (Galea et al.,
2005), switching from mainly-beta to an all-alpha fold (Alexander et al., 2009), or
affecting the structural stability in general (Shirley et al., 1992; Betz, 1993).

Single point mutations that lead to a severe change in biophysical properties at
the mutated site could severely affect structure and stability. Important examples
are small-to-bulky mutations that could even have a influence beyond the local
structural neighborhood of the changed site (Alber and Matthews, 1987; Buckle
et al., 1996; Dao-pin et al., 1991; Eriksson et al., 1992; Liu et al., 2000; Sandberg
and Terwilliger, 1989; Xu et al., 1998) as well as changes of hydrophobicity in
solvent inaccessible sites (Matthews, 1993; Shortle et al., 1990).

Local structure in the vicinity of glycines could be especially susceptible to
mutations. With a single hydrogen atom as side chain, glycine is able to sample a
much larger space in backbone dihedral angles than other amino acids (Creighton,
1993), a feature that makes it abundant in reverse turns (Rose et al., 1985). These
sites are prone to certain mutations against bulky and less flexible residues (Pakula
et al., 1986).

Mutations that involve proline denote another class that could lead to signifi-
cant structural effects. Proline takes on a special position amongst the 20 amino
acids in that the terminal end of its side chain forms a cyclic structure through
a covalent bond with the amine-group. This has two implications. First, its ¢
dihedral angle is nearly rigid and is constrained to values around -60°. Second, the
lack of the hydrogen at the amine group results in the loss of an H-bond donor.
These effects are considered as reasons for the depletion of proline in a-helices
(Chou and Fasman, 1978; Richardson and Richardson, 1988; Schimmel and Flory,
1968). Structural impacts in a-helices induced by single amino acid exchanges
that introduced proline have been observed (Gray et al., 1996; Hecht et al., 1983;
Shortle and Lin, 1985). The reverse effect has been studied in T4 lysozyme where
the exchange of a wild type proline led to the extension of an a-helix (Alber et al.,
1988).

Since protein function is established through structure, function should not be
unaffected by certain conformational rearrangements. A severely changed or dis-
rupted function may furthermore lead to a disease phenotype. Characteristics of
function-critical sites are manifold and depend on the particular role a protein
plays in the cell. Sites that realize catalytic activity consist of only a small num-
ber of residues while the binding of large molecules such as DNA or other proteins

14



involves whole surface patches. Accordingly, a small structural effect may be suf-
ficient to reduce the binding affinity and in consequence disrupt function, while in
other cases larger structural rearrangements may be necessary.

Structural and functional impacts induced by disease-related amino acid ex-
changes have been studied in detail. For example, mutations in four active site
residues of glucose-6-phosphatase inactivate its enzymatic activity and cause glyco-
gen storage disease (Lei et al., 1993; Shieh et al., 2002). Several conformational
changes have been observed in DNA-binding regions of the tumor suppressor p53
which were induced by cancer-related mutations (Joerger et al., 2006). The re-
placement of a buried hydrophobic methionine by a positively charged arginine
results in a complete destabilization of a decarboxylase which leads to a skin-
related disease (porphyria cutanea tarda, Mendez et al. (1998)). Two disease-
related mutations in the copper-binding region in a superoxide dismutase result
in a significant activity decrease and promote the onset of familial amyotrophic
lateral sclerosis (Ferraroni et al., 1999; Ratovitski et al., 1999).

Comparisons with benign variants could provide insights into the significance of
structural regions and features that play a dominant role in disease development.
However, solved crystal structures of mutant proteins with an associated disease
are rare. Thus the protein diversity is low and conclusions drawn may not be
significant. Alternative protocols usually involve the mapping of mutant residues
onto known structures through a simple alignment between mutant sequence and
sequences of candidate structures. More sophisticated methods conduct an auto-
mated homology modeling of the wild type protein and perform a refinement of
the structural neighborhood after introducing the mutant side chain. These ap-
proaches allow for a broader coverage however at the cost of structural details and
accuracy.

Despite these deficiencies, interesting insights on coarse-grained level could be
gained. Investigations suggested that disease-related mutations occur more often
at solvent inaccessible positions (Sunyaev et al., 2000; Gong and Blundell, 2010;
Wang and Moult, 2001). Furthermore, they were shown to be enriched in /-
sheets (Ferrer-Costa et al., 2002; Gong and Blundell, 2010) and could lead to an
overpacking of the protein core or result more often in an H-bond loss (Gong and
Blundell, 2010; Wang and Moult, 2001). These rules may offer valuable means for
predicting the disease-relatedness of new discovered yet unannotated variants.

1.4 Effects of most variants unknown

During the past years, new high-throughput sequencing methods have led to a lit-
eral explosion of genomic data while significantly lowering the costs (rev. Kircher
and Kelso, 2010). International collaborative endeavors such as HapMap (Inter-
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national HapMap Consortium, 2003), the 1000 Genomes Project (1000 Genomes
Project Consortium, 2010) and dbSNP (Sherry et al., 2001) collect data on human
genetic variants in large scale.

The vast majority (~90%) of human sequence variants are single nucleotide
polymorphisms (SNPs) (Collins et al., 1998). Of particular interest are nsSNPs
(non-synonymous SNPs) since they alter an amino acid in the gene product and
could affect protein structure and function (Sunyaev et al., 2000) with further
consequences for disease (s. section 1.3).

However, phenotypic effects for the vast majority of human nsSNPs are not
known. Functional implications have been determined for only ~3% and ~4%
of all known nsSNPs are associated with a disease (Fig. 1.2). Genetic associa-
tion studies strive for finding causative variants by detecting significant genetic
differences between groups of disease affected and healthy individuals. However,
broad genetic variability within a group could complicate the delineation of disease-
related variants. Furthermore, genetic disorders are often complex in that they are
caused by variations in more than one gene, each with a small individual effect.
Environmental factors may play an additional role Collins et al. (1997, 1998).

Human nsSNPs
643,866

Functional Disease
effect association

Both
<1% (1,649)

Figure 1.2: Majority of human variants without annotation. Only a small
fraction of human nsSNPs has information on their functional impact (3%); 4% is
known to be disease-related and <1% have a functional and disease annotation.
(Figure adapted from Schaefer et al. (2012b).)

Hence, there is need for in-silico methods that determine the likelihood of effect
at high accuracy. Evolution provides the means to ascertain whether a mutation
is likely to be deleterious or not. On the one hand, variants leading to a severe or
lethal effect are unlikely to be passed to the offspring generation and therefore are
rarely observed. On the other hand, mutations in less constrained regions are evo-
lutionary more accepted since they pose little selective disadvantage and therefore
accumulate in the population. Evolutionary profiles obtained from sequence align-
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ments provide means to gauge sites that developed under structural or functional
constraints in homologous proteins.

Early in-silco methods were based solely on sequence profiles and predicted
whether a mutation is deleterious or not based on the mutant frequency at the
respective position of the profile (Ng and Henikoff, 2003; Sunyaev et al., 2001).
The inclusion of structural information or the use of machine learning algorithms
led to more sophisticated prediction methods (Bromberg and Rost, 2007; Bao
and Cui, 2005; Capriotti et al., 2006, 2005; Chasman and Adams, 2001; Krishnan
and Westhead, 2003; Saunders and Baker, 2002; Wang and Moult, 2001). Relevant
properties often include changes in biophysical properties such as hydrophobicity or
bulkiness, structural features such as secondary structure and disorder propensities
or solvent accessibility.

Different methods operate on different perceptions of phenotypic effect, such as
change in structure (Wang and Moult, 2001), stability (Capriotti et al., 2005),
function (Bromberg and Rost, 2007; Bao and Cui, 2005; Chasman and Adams,
2001) or pathogenicity (Capriotti et al., 2006). All have their weaknesses and
strengths when applied to different sets of mutations and their predictions on
the deleteriousness of a mutation might not be conclusive. Nonetheless, in-silico
methods trained on experimental data offer a first step in filling the annotation gap
of nsSNPs and provide means to prioritize further experimental investigation. The
combination of predictions might offer further insights into the molecular details
of disease mutations.

1.5 Thesis incentives and outline

The work at hand is structured as follows, sections and respective underlying
publications are highlighted.

The main objectives of this dissertation were two-fold. First, we developed
a machine-learning model aimed at predicting impacts on local protein structure
induced by a single amino acid exchange. Second, we showed that predicted effects
on structural and functional level were enriched in disease-associated mutations.
Based on these findings, we tested whether combined predictions of both effects
could lead to an accurate assessment on whether a point mutation induces disease
or not.

In a preliminary analysis, we mutated protein sequences to random-like strings
of amino acids and investigated changes in predicted secondary structure and pre-
dicted protein disorder (sections 2.1, 3.1, 3.2). Our analysis revealed a surprisingly
high robustness in content and length of secondary structure elements. We also
observed significant structural changes pertaining to switches between helices and
strands and the dis- and reappearance of disordered regions (Schaefer et al., 2010).
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Furthermore, we introduced a new concept of structural change that allowed for
the compilation of a large training set consisting of structural neutral and effect
cases. With these data at hand, we successfully induced a logistic regression-based
method to distinguish between structural neutral and non-neutral mutations solely
on sequence-based information (sections 2.2, 3.3, Schaefer and Rost (2012)).

In a comprehensive collection of disease-associated nsSNPs (section 2.3, Schaefer
et al. (2012b)), we predicted effects on structure and function. We observed that
strongly predicted effects on either structure or function were enriched in disease-
related variants. This led to the indication that severe impacts on molecular level
raise the likelihood for a mutation to be deleterious (sections 3.4, 3.5, Schaefer and
Rost (2012); Schaefer et al. (2012a)).

Motivated by these results, we tested both methods individually and in concert
with respect to their ability to distinguish between non-deleterious and disease-
related mutations. We found that predicted functional effect alone sufficed to
accurately predict a mutation to be deleterious or not (section 3.6, unpublished).
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2 Materials and Methods

2.1 Monitoring structural change under in-silico
mutation

Sequences from globular and disordered proteins

We studied the persistence of predicted secondary structure and predicted disor-
dered regions under sequence changes. For this purpose, we used two protein se-
quence databases as the basis for our analyses. The first set comprised sequences
of well-ordered globular proteins extracted from the Protein Data Bank (PDB,
Berman et al., 2000). We only considered proteins solved by X-Ray diffraction.
The second set consisted of sequences containing disordered regions taken from
the DisProt database (Vucetic et al., 2005) (version 4.9).

In general, sequence databases contain several kinds of bias. One can be at-
tributed to the over-representation of certain protein families. To ensure results
that were unbiased towards any redundancy that may have been inherent in our
initial sequence collections, we applied UniqueProt (Mika and Rost, 2003) and fil-
tered both sets at a homology threshold of an hssp value >10 (Rost, 1999; Sander
and Schneider, 1991). This specific value was chosen empirically and based on ex-
perience drawn from earlier investigations. It roughly corresponds to 30% pairwise
sequence identity for alignments longer than 250 residues. After this procedure,
the redundancy-reduced sets consisted of 1,369 protein sequences from the PDB
and 374 from DisProt.

Mutation protocol

We mutated each sequence in both redundancy-reduced sets step by step into
random-like strings of amino acids. At each new step, we arbitrarily picked 10% of
amino acids in the sequence from the previous step. Then, we mutated each cho-
sen amino acid X to amino acid Y with a particular substitution probability pxy.
We calculated pxy adhering to two alternative schemes. First, we used the substi-
tution matrix PAM120 (Dayhoff et al., 1978) and mutated according to PAM120
probabilities. Second, we interpreted the background amino acid distribution of
the respective underlying sequence database as substitution probabilities. For each
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native sequence and each substitution scheme, we created a 'mutation trajectory’
consisting of overall 69 of these single steps.

In addition, we used each of both redundancy-reduced sets as the basis for
creating a corresponding set of random amino acid sequences. We retained the
following characteristics of the original sets: (i) the amino acid composition, (ii)
the distribution of sequence lengths and (iii) the amount of sequences. The purpose
of these random sequences was to test whether we reached a state of convergence
during our in-silico mutation protocol, that is, to ensure that we eradicated any
‘memory’ contained within the native sequences.

Further sequence data used

Proteins in the PDB may not resemble the full universe of observable protein
families. One reason is the difficulty that lies in the crystallization process of
membrane-bound proteins (Carpenter et al., 2008) which makes them strongly
underrepresented in the PDB. Furthermore, some protein families may not be
represented at all. To overcome this problem and to reduce further bias, we used
an additional set of 33,812 protein sequences taken from RefSeq (Pruitt et al.,
2005). These sequences represented the entire human proteome.

We compared results from our in-silico mutation procedure to naturally evolved
homologous proteins taken from the HSSP database (Homology-derived Secondary
Structure of Proteins, Sander and Schneider, 1991). For each of the 1,369 sequences
in the redundancy reduced set of globular proteins, we randomly extracted ten
of their homologs from HSSP such that we evenly covered the whole range of
available sequence diversity. In addition, we monitored the sequence identity for
each homologous pair.

Determining secondary structure and disordered regions

For each native PDB sequence and every mutated sequence along the mutation
trajectory, we predicted the secondary structure content through PROFsec (Rost,
2005). We run predictions in ’sequence-mode’, that is, we did not compile sequence
profiles as input but rather presented the raw sequence to the method. We were ex-
plicitly interested observing effects based on small sequence changes, which would
have been obscured by the use of profiles otherwise. This procedure resulted in a
reduced accuracy of ~68% Q3 (percentage of correctly predicted residues in one
of the three states helix, strand, other) compared to the mode using evolutionary
profiles (~72% Q3) (Rost, 1996, 2005).

In addition to predictions, we determined the observed secondary structure in
native PDB sequences as calculated by DSSP (Kabsch and Sander, 1983). We
converted the initial eight DSSP states into three, representing helix, strand and
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other (Rost and Sander, 1993; Rost, 1996; Andersen et al., 2002). In each mutation
step (i.e. after changing 10% of the sequence), we monitored the sequence identity
compared to the native sequence, the relative content of residues predicted in the
states helix and strand, and the segment length of predicted helices and strands.

For each native and mutated sequence derived from the DisProt set, we predicted
short and long disordered regions through TUPred (Dosztanyi et al., 2005a,b). The
method accepted as input the raw protein sequence and provided three modes
optimized to predict either long or short disordered regions or residues in globular
domains. We chose the former two options to predict long and short disorder,
respectively. For each mutation step, we monitored sequence identity compared
to the native sequence, the relative content of residues predicted in short and long
disorder, and the segment length of these regions.

2.2 Learning the structural effect upon a single
residue exchange

2.2.1 Pairs of pentamers

One major incentive of this thesis was the development of a machine-learning based
method to predict the local structural effect that occurs upon the exchange of a
single amino acid. To this end, we created a training set consisting of pairs of
pentapeptides by adhering to the following protocol.

Based on 146,296 protein chains taken from the PDB (Berman et al., 2000) (July
2010), we created two separate sequence sets, both redundancy-reduced to different
levels of sequence identity. The first set (referred to as ’cdhit98’) resulted from
a sequence clustering at 98% identity threshold using CD-HIT (Li and Godzik,
2006) and reduced the original set to 24,890 sequences. The second set (hval0’)
consisted of 3,767 chains resulting from filtering at an hssp value >0 (Mika and
Rost, 2003; Rost, 1999; Sander and Schneider, 1991). This level of redundancy
corresponds to ~20% maximal pairwise sequence identity for an alignment length
of over 250 residues.

We sampled overlapping fragments of five consecutive residues (pentamers) from
each protein chain in both sets and paired each pentamer from the first set ("cd-
hit98’) with each of the second set ("hval0’). We considered pairs that (i) only
contained standard residues, (ii) had no gaps in their backbone (i.e. chain breaks
with peptide bond length >2.5A (Kabsch and Sander, 1983)) in either pentamer,
(iii) contained no alternative sets of atomic coordinates, (iv) originated from pro-
teins with over 30% pairwise sequence identity, and (v) differed only in their central
amino acid. This procedure resulted in 35,533 pairs of pentamers.

Our objective was to evaluate a possible conformational change caused by the
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central mismatch residue. We did not know beforehand about the most effective
way to capture a structural effect nor its extent. A commonly used metric to
ascertain the similarity of two protein structures is the root mean square displace-
ment (RMSD) determined after optimal superposition of both structures (Kabsch,
1976, 1978). We calculated the backbone RMSD over all C,, atoms (McLachlan
algorithm (McLachlan, 1982), as implemented in the program ProFit !).

The range of observed RMSD values started at values close to zero (structural
very similar) and was not bound by an upper limit (large values translate to struc-
tural very dissimilar). We mapped large values to a positive class (structural effect)
and small values to a negative class (structural neutral). The RMSD thresholds
were chosen such that we obtained even amounts between effect and neutral pairs.
The specific cutoffs were <0.2A for the negative and >0.4A for the positive class.
These thresholds assigned 13,675 pentamer pairs to the negative class and 12,046
to the positive class. All pairs in between this range were discarded. For each neu-
tral and effect pair we randomly designated one fragment as 'wild type’ fragment
and the central mismatch residue of the other fragment as the mutant amino acid.

2.2.2 Constructing a ground set of features

We did not know beforehand which features were significant for the task at hand.
Therefore, we adhered to common practice in the field and created an excessive
baseline set of potential features which we subjected to a forward selection proce-
dure afterwards (s. section 2.2.4). Based on knowledge gained during the develop-
ment of a similar method (Bromberg and Rost, 2007), we extracted all sequence-
based features from PredictProtein (Rost et al., 2004). This method constitutes
a wrapper that combines several independent methods for predicting structural
and functional features, each operating on protein sequences. During our fea-
ture constructing process, we distinguished between three conceptually different
classes of features: global features describing the global characteristics of the pro-
tein sequence in its whole, local features describing one particular pentamer and its
immediate sequence neighborhood, and difference features that explicitly described
sequence-derived aspects by which wild type and mutant amino acid differed.

Global features

The sequence length was encoded by four distinct values, each representing a
certain length interval (1-60, 61-120, 121-180, >180 consecutive residues). The
specific value that represented the length was set to 0.5, values below and above
were set to 1 and 0, respectively. We represented the relative frequency of standard

thttp://www.bioinf.org.uk /software/profit/
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amino acids by 20 values. Three further values encoded the relative content in
predicted helix, strand and loop states and additional three values encoded the
relative content in predicted buried, intermediate and exposed residues (Rost,
1996, 2005).

Local features

We tested several sequence windows (1, 5, 9, 13, 17, 21) of consecutive residues
in the wild type fragment, each centered around the position of change exchange.
All feature values were normalized to fit the interval [0,1].

Basic features we considered were six different biochemical and structural prop-
erties of standard amino acids: mass, volume (Zamyatnin, 1972), hydrophobicity
(Kyte and Doolittle, 1982), C-beta branching (Betts and Russell, 2003), helix
breaker (only proline) and electric charge of side chain.

We extracted evolutionary profiles from PSI-BLAST (Altschul et al., 1997) runs
(options: -j 3 b 3000 —e 1 ~h le-3) against a redundancy-reduced sequence
database consisting of UniProt (Bairoch et al., 2005) and PDB (Berman et al.,
2000). Of interest were the position specific scoring matrices (PSSMs), relative
amino acid frequencies and the information content per alignment position. As an
alternative to PSSM, we also applied the PSIC method (position-specific indepen-
dent counts, Sunyaev et al., 1999), which has been already used elsewhere with
success (Bromberg and Rost, 2007; Sunyaev et al., 2001).

We considered the following predicted structural and functional features to be
important for our setting: secondary structure (Rost and Sander, 1993, 1994) and
solvent accessibility (Rost and Sander, 1994; Rost, 1996, 2005), protein flexibility
(Schlessinger et al., 2006), protein disorder predicted through IUPred (Dosztanyi
et al., 2005a) and MD (Schlessinger et al., 2007b,a, 2009), protein-protein inter-
action sites (Ofran and Rost, 2003, 2007b,a) and DNA-binding residues (Ofran
et al., 2007).

The majority of these methods returned a discrete prediction, denoting the
particular state of a residue (e.g. disordered or not). We represented two-state
predictions (disorder, protein and DNA interaction) and three-states predictions
(secondary structure states helix, strand, other and solvent accessibility states
buried, intermediate, exposed) through combinations of 1 (presence of a state) and
0 (absence of a state). In addition, we augmented these discrete predictions with
their raw scores, reflecting the strength and reliability of the prediction. Protein
flexibility was predicted as a numerical value only.

Furthermore, we incorporated information about the position of change relative
to a protein domain in our feature set. For instance, a hydrophobic-to-polar ex-
change may lead to a significant structural effect through rearrangements in the
structural neighborhood when occurring within the hydrophobic core of a domain.
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Whereas the effect in a flexible surface loop may be less pronounced. We used four
different pieces of information derived from sequence alignments against the Pfam-
A database (Finn et al., 2010) and produced by HMMERS3 (Finn et al., 2011): the
information about whether the residue change occurred inside a domain, the evo-
lutionary conservation of that position within the domain alignment, how well the
residue fitted into the alignment position and the posterior probability of that
match.

Difference features

We anticipated that a structural difference in a pair of pentamers may be induced
by the underlying characteristics of the differing central amino acids. Hence, we
incorporated several such properties into our baseline feature set. A particular fea-
ture difference was encoded through its absolute value and sign, reflecting strength
and direction of change.

The following properties were encoded in that respect: Change in any of the
six biochemical amino acid propensities, difference in conservation scores (PSSM,
relative frequency, PSIC), change in IUPred predictions for both short and long
disorder, change in predicted secondary structure and solvent accessibility. For
the latter two we ran PROFphd on raw sequence rather than sequence profile.
Although this mode resulted in reduced prediction performance, it allowed us to
observe an actual difference in the prediction outcome, which would have been
disguised by the use of sequence alignments otherwise (s. also section 2.1).

2.2.3 Machine-learning algorithm

We chose to apply a logistic regression based approach to our problem. Logistic
regression is a parameter-free method that could lead to similar predictive power as
support vector machines while being significantly faster during model building and
testing (Fan et al., 2008). We adhered to an implementation realized within the
LIBLINEAR package (L2-regularized logistic regression, dual) (Fan et al., 2008).

2.2.4 Selecting most predictive features

Irrelevant features often lead to raised computational cost and could even deterio-
rate predictive performance of the classifier (Guyon and Elisseeff, 2003). Therefore,
we concentrated the testing and training of our classifier on the most significant
features.

A straightforward procedure is the forward feature selection in a wrapper ap-
proach. Here, in an iterative process the feature set is gradually built up by adding
single features that maximally raise the predictive performance of an underlying
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machine-learning model (Guyon and Elisseeff, 2003). However, it is imperative to
conduct this selection and subsequent assessment of the classifier’s generalization
ability on two distinct datasets. The objective is to prevent an overly optimistic
performance estimation (Smialowski et al., 2010). In addition, we took further
precautions and ensured that no sequence homology existed between any subset
used during feature selection and performance assessment (s. below).

We separated one fifth from set of pentamer pairs (s. section 2.2.1) by maintain-
ing an even distribution between structural neutral and non-neutral pairs. Further-
more, we ensured that the pairs were derived from sequences without significant
sequence homology (based on an e-value > 1073) to sequences in the remaining
four fifth of pairs. The resulting 5,125 instances comprised 2,243 structural ef-
fect and 2,882 neutral pairs. These were further separated into ten subsets; class
distribution and sequence dissimilarity (e-value > 1073) between all ten sets were
maintained. We used nine such sets for training a logistic regression model and
tested its performance on the remainder. We rotated ten times over all sets such
that each instance served once during testing and training.

Before each new rotation, a set of features for training and testing the model
was determined by the following iterative protocol. We started with one feature
and established its predictive performance during one complete rotation as ex-
plained above. We did that for all global and difference features as well as every
combination between local features and window lengths. We measured feature
performance by means of average AUC (area under the receiver-operator curve)
derived from rotating ten times over the testing folds. The best performing fea-
ture was automatically included for the subsequent evaluation of the remaining
features. We stopped this forward selection after no further increase in average
AUC>0.001 was observed.

2.2.5 Estimating predictive performance

The remaining four fifth of pentamers that had not been used during feature selec-
tion (overall 20,596) were divided into ten subsets respecting the same conditions
as explained above. We conducted a 10-fold cross validation similar to that during
feature selection. Using the most predictive features, we trained a logistic regres-
sion model on nine tenth of data and tested its performance on the remaining one
tenth. We rotated ten times such that each instance served once during testing
and training. After each round of testing, we monitored the following performance
measures.

We used TP (true positives) to denote pairs that were correctly predicted
to change structure (positive) and F'P (false positives) to refer to neutral pairs
wrongly predicted as change. Similarly, TN (true negatives) described the cor-
rectly predicted neutral pairs (i.e. no structural change) and F'N (false negatives)
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were structure-changing pairs incorrectly predicted as being neutral.

Our logistic regression model yielded a probability p for an instance to be struc-
turally non-neutral rather than a discrete class label. In consequence, the partic-
ular values for the four measures depended on the specific probability threshold
chosen to define the decision boundary between the two classes (i.e. effect ver-
sus neutral). By iterating over the whole range of possible cutoffs, we obtained a
ROC-curve (Receiver Operating Characteristic) determined by pairs of True Pos-
itive Rate (T'PR) and corresponding False Positive Rate (FPR). In a similar way,
we created a ROC-like space of accuracy-coverage pairs for each of the two classes.

These measures are defined as follows:

TP
TPR= ——
i TP+ FN
FP
FPR—FN+TN

The two measures AUC (area under the ROC-curve) and Q2 (two-state ac-
curacy), both averaged over ten rounds of training and testing, served as single
performance estimators.

TP+ TN

QQ:TP+FP+TN+FN

Finally, we monitored class-specific values for Accuracygy e, i.e. the accuracy
for the class ’structural change’, Accuracyyeurar (accuracy for the class neutral’),
Coveragegyreet (coverage for class ‘change’) and Coverageneyira (coverage neu-

tral) defined by:

TP
Accuracygyfect = TP+ FP
TP
COU@TageEffect = m
) TN
CCUTACYNeutral = TN + FN
. TN
OVETragenNeutral = TN + FP

2.3 Collecting annotated single amino acid
exchanges

A variety of public databases exist that contain information about genetic variants
and their mappings onto mRNA or protein sequences. However, the sole knowledge
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of genetic variation without effect annotation is hardly useful. Some attempts
exist to unify and combine interesting annotation (Bairoch et al., 2005; Kawabata
et al., 1999; Sherry et al., 2001). Nonetheless, significant pieces of information
still remain scattered across the universe of available mutant collections. Another
problem relates to the mapping of point mutations to different protein identifiers
although they reference the same sequence.

We developed a database based on a comprehensive table schema with the in-
centive to store and update relevant information on nsSNPs, their observed and
predicted (Bromberg and Rost, 2007; Ng and Henikoff, 2001) effects as well as pos-
sible disease consequences. We collected data on protein sequences, single amino
acid exchanges and associated consequences from four major sources of genetic
variation:

(i) Swiss-Prot (Boeckmann et al., 2003) denotes the central database for protein
sequences and a variety of manual and reviewed annotations. Swiss-Prot is aug-
mented by SwissVar (Yip et al., 2008), both providing in their entirety information
on natural variants and artificially created mutants, annotated with functional ef-
fects, the structural environment as well as disease consequences.

(ii) The Protein Mutant Database (PMD, Kawabata et al., 1999) stores func-
tional annotation on amino acid exchanges extracted from scientific publications.

(iii) The largest collection of several kinds of genetic variation (such as indels,
copy number variations, SNPs) constitutes the Single Nucleotide Polymorphism
database (AbSNP, Sherry et al., 2001). Disease associated variants - in particular
nsSNPs - contain references to OMIM (Online Mendelian Inheritance in Man,
Amberger et al., 2009), a knowledge base of human genetic diseases.

(iv) A comprehensive collection of human genetic variation is provided by the
1000Genomes Project (1IKG, 1000 Genomes Project Consortium, 2010). Although
1KG does not provide functional or disease annotations, we were interested in
the frequencies with which nsSNPs occur in the human population. We mapped
genomic nsSNPs onto protein sequences obtained from RefSeq (Pruitt et al., 2005)
through ANNOVAR (Wang et al., 2010).

Irrespective of the original database, we treated two protein sequences as identi-
cal if the only difference was either a single residue exchange anywhere in sequence
or a missing methionine residue at the beginning of either sequence. We repre-
sented each wild type sequence as its md5 checksum (as described e.g. in Smith
et al., 2005). This allowed us to unambiguously and efficiently correlate mutations
originating from different sources but referencing the same canonical sequence.

For each point mutation, we assigned functional effect annotations (taken from
Swiss-Prot, SwissVar, PMD) and disease consequences (SwissVar, PMD, OMIM),
if available. Overall, we collected 1,362,793 unique single amino acid exchanges
in 158,004 protein sequences coming from 2,684 organisms. The top five contrib-
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utors were human, mouse, rice, cow and rat. Human nsSNPs accounted for 47%
(643,866) of all mutants, out of which 3-4% were either functionally annotated
(21,132) or had an associated disease (27,509). Less than 1% (1,649) contained
information on both.

2.3.1 Method evaluation data

Based on this comprehensive collection of annotated variants and further external
data, we compiled different sets:

Effect on function. The first set denoted the training set of SNAP (Bromberg
and Rost, 2007). It consisted of a collection of point mutants out of which 39,397
were annotated as having an effect on protein function and 40,756 were annotated
as functionally neutral. These mutations have been observed in 6,133 proteins.

Effect on stability. The second set comprised 1,297 single amino acid exchanges
in 47 proteins (Capriotti et al., 2005; Kumar et al., 2006). Each mutant was ex-
perimentally annotated with respect to its effect on protein stability expressed as
a change in Gibbs free energy AAG. Overall 647 mutations were considered as
changing stability significantly (non-neutral) that led to a AAG < -1 kcal/mol
(stabilizing effect) or >1 kcal/mol (destabilizing effect). The remaining 650 mu-
tations exhibited values within the + 1 kcal/mol range and were assigned to the
neutral class, that is, they did not change stability significantly.

Effect on disease. The third set consisted of 26,367 disease-annotated and 40,756
non-deleterious variants observed in overall 7,486 proteins.

2.3.2 Disease-related and functional-effect mutations

We created five different subsets of nsSNPs: (i) Set of disease-related + observed ef-
fect mutations: We collected 1,105 nsSNPs (from 217 proteins) that were annotated
to be both disease-causing and functionally non-neutral. (ii) Set of disease-related
mutations: We obtained 26,404 nsSNPs in 3,419 proteins that had an disease-
association but no functional effect. (iii) Set of observed effect mutations: We
collected 36,317 mutants in 3,790 proteins with functional effect but no disease
association. (iv) Set of mutations with unknown disease relation: We extracted
251,414 variants in 28,913 proteins without known disease associations. (v) Set of
random mutations: We randomly selected one mutation in each of the 28,913 pro-
teins from the set of mutants of unknown disease relation such that the mutated
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position was maximally distant from any other mutation observed in the given
protein.

2.4 Predicting functional effects in disease-related
mutations

We studied correlations between functional effects and disease. For that purpose,
we used SNAP (Bromberg and Rost, 2007) and predicted the functional impact
in five different data sets of nsSNPs (s. section 2.3.2). SNAP provides binary
classifications (functional effect versus neutral) and a raw prediction score that
offers a more elaborate view on the prediction outcome. Scores range from -100
(strongly predicted as neutral) to 100 (strongly predicted to change function);
the distance from the binary decision boundary (0) measures the reliability of the
effect. Essentially, stronger predictions are also more reliable, i.e. the higher the
score, the more likely the mutation impacts function (Bromberg and Rost, 2007,
2008; Bromberg et al., 2009). For a small data set, SNAP scores were shown to
correlate with the severity of change; i.e. high (positive) SNAP scores relate to
more severe functional effects (Bromberg and Rost, 2007, 2008; Bromberg et al.,
2009).

For many prediction methods developed in our group (protein-protein bind-
ing (Ofran and Rost, 2003, 2007b,a), protein-DNA binding (Ofran et al., 2007),
backbone flexibility (Schlessinger et al., 2006)), the strength of an effect correlated
with prediction strength, e.g. ISIS predicted binding hot spots stronger than other
residues involved in the interaction (Ofran and Rost, 2007b). Although we never
used the strength of an effect to train our methods, this correlation appears in-
tuitive: stronger effects are more consistent and therefore become stronger carved
into the machine-learning model.

2.5 Depicting results through box plots

Throughout our data analyses, we used box plots (Tukey, 1977; McGill et al.,
1978) for a comprehensive representation of results. Box plots provide means to
condense interesting pieces of information in a distribution of observations to a
single graphical element. This makes it possible to compare the basic statistical
behavior of multiple sets of data points originating from different experiments.
Box plots extend the common representation of a distribution through an average
value and its spread, usually given by the standard error around the mean.

Here, a distribution is depicted by its basic characteristics, that is, its first three
quartiles that build up the box. The lower and upper edges of the box depict the
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first and third quartile of the data, respectively. The length of a box is referred
to as the interquartile range of the distribution. It covers half of the observations
such that one fourth of the remaining data lies beyond either end of the box. The
bold bar inside the box represents the median, i.e. the second quartile. Dashed
lines reach to the most extreme data point which is no more than 1.5 times the
interquartile range away from the upper or lower box edge.
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3 Results and Discussion

3.1 Secondary structure sustains random evolution

We monitored the behavior of predicted secondary structure under in-silico mu-
tation (s. section 2.1). Our analysis revealed an unexpected high robustness of
secondary structure content and segment lengths towards our mutation protocol.
More specifically, with ongoing sequence divergence, the averages in content and
length of predicted helices and strands stayed at an overall constant level. Even
at low levels of sequence identity, helix content remained at ~30% and helix length
at ~10 residues (corresponding to 2-3 helix turns) (Fig. 3.1A,B: green box plots).

For predicted strands, we observed the same trend. In sequences similar to
random, average strand content was at ~20% while strand length remained at a
level of around five residues (Fig. 3.1C,D: green box plots). These values were
nearly identical to those found in native sequences.

The stability in average content and segment length was independent of the
chosen mutation scheme (background versus PAM120), although we observed an
insignificant decrease in helix content and length during mutation according to
PAM (Fig. 3.1AB: yellow box plots). Identical levels of distributions between
very low sequence identity and random sequences (Fig. 3.1A-D: two rightmost
green box plots) suggested that we mutated long enough to loose any 'memory’
from native sequences.

We also addressed two potential deficits in our experimental setup. First, since
no structural information of random amino acid sequences exists in large scale,
we were forced to base our investigations on predictions instead of observations.
However, our predictions may have been prone to mistakes, especially due to the
circumstance that we explicitly had to use PROFsec in sequence-mode. The only
place where we were able to shed light on whether our findings were in fact pre-
diction artifacts was before we started the in-silico mutation. In native PDB se-
quences we compared secondary structure predictions with observations (derived
from DSSP, s. section 2.1). For both, our content and length distributions were
indeed the same, except for an insignificant over-prediction of strand length (Fig.
3.1A-D: light and dark gray bars). This result suggested that errors in predictions
did not matter for our coarse-grained measures of change.

Second, our findings may have been biased by either under-representation or
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Figure 3.1: Secondary structure content and length stable. We moni-
tored change in content and length distributions of predicted helix (A,B) and
strand (C,D) during mutation. Box plots denote spread in distributions (section
2.5). Green and yellow bars depict mutation according to background amino acid
composition and PAMI120, respectively. Dark and light gray box plots denote
observations and predictions in native sequences, blue bars predictions in human
proteome. Right-most green bars (labeled 'Comp’) represent predictions in ran-
dom sequences. Overall, neither the length nor the content of regular secondary
structure appears to differ between native and random. (Adapted from Schaefer
et al. (2010))

complete absence of certain protein families in the underlying sequence database
(PDB). To resolve this potential shortcoming, we furthermore compared predic-
tions between wild-type sequences and proteins representing an entire proteome.
Our results suggested, that neither content nor length of both helices and strands
differed between two sequence sets, in fact distributions were virtually identical
(Fig. 3.1A-D: blue vs. light gray box plots). Based on this, we concluded that
potential bias did not affect our findings.

Overall, we observed a surprisingly high robustness of secondary structure against
mutations by our coarse-grained measures, that is, the constant upkeep of its con-
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Figure 3.2: Secondary structure diverges linearly to sequence changes.
We monitored change in secondary structure (Q3) dependent on sequential change
(pairwise sequence identity). During our in-silico mutation (A, yellow and green
box plots, s. section 2.5), secondary structure diverged linearly to an random level
of ~33% Q3, while pairs of naturally evolved homologues (B, gray box plots)
showed less divergence in secondary structure: At 30% sequence identity, natural
homologues still showed a Q3 ~63% while random mutants reached ~45%. This
difference can be attributed to the enrichment of structural neutral mutations
under evolutionary constraints. (Adapted from Schaefer et al. (2010))

tent and length. Earlier studies showed that with increasing divergence of two nat-
urally evolved protein sequences their 3D structures (Abagyan and Batalov, 1997;
Chung and Subbiah, 1996; Sander and Schneider, 1991) and secondary structure
in particular (Rost et al., 1994, 1997) also become increasingly different.

Our analysis revealed a similar result for the artificially created mutant se-
quences. During the course of the in-silico mutation, we monitored the difference
of predicted secondary structure between native and diverging sequences in terms
of Q3 measure (fraction of residues identical in either one of three states helix,
strand, other between wild type and mutant sequence). The rate at which sec-
ondary structure changed was nearly linear to changes in sequence (Fig. 3.2A).
In random-like sequences, we observed an average Q3 of ~33% which resembles
the probability of picking a particular state (of either helix, strand or other) at
random. Put differently, while sequences diverged to random levels so did their
secondary structure. This behavior was independent of the mutation scheme (Fig.
3.2A, PAM120 vs. background).

To relate this finding to naturally evolved homolgues, we conducted this analysis
also on protein pairs at different levels of sequence identity, taken from the HSSP
database (Sander and Schneider, 1991). The rate at which secondary structure
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diverged was less pronounced as compared to our in-silico mutation (Fig. 3.2B,
gray vs. yellow/green box plots), which confirms the expected: The exposure
of naturally evolved proteins to selective pressure - which was not built in our
mutational model - led to an enrichment of neutral mutations with respect to
structural change.

Overall we found that neither the content nor the length of predicted secondary
structure differed between native proteins and random amino acid sequences. This
suggested that the formation of secondary structure is a property that is inherent
to amino acid sequences and that its upkeep during evolution might not be too
challenging. This finding may contribute to the perception that protein structure
is quite robust against sequence changes and that a variety of sequences fold into
the same structure (section 1.2).

Nonetheless, despite this high robustness of content and length, the specific
secondary structure states in highly diverged sequences did not resemble those in
native proteins. Both circumstances, the constance in content and length plus a
Q3 of 33%, suggested a rather random-like concatenation of secondary structure
segments in random amino acid sequences.

3.2 Structural effects are in the details

Helices become strands and vice versa

Our analysis showed that the formation of secondary structure is not an exclusive
property of naturally evolved proteins. It rather appears to be intrinsic to any
(random) amino acid sequence. Nonetheless, as sequences diverged from their
native state during our mutation protocol so did their secondary structure.

To investigate change in detail, we analyzed structural effects in mutation trajec-
tories of four proteins representing the four main SCOP (Structural Classification
of Proteins, Murzin et al., 1995) classes (Fig. 3.3). Two major observations stood
out.

First, regions containing regular secondary structure elements constantly tran-
sited from one state to the other, that is, helices suddenly became strands and vice
versa. This behavior occurred more often than transitions from helix to coil or
strand to coil. Second, while the ends of these regions continuously shortened and
extended, their core regions remained overall robust. This led to the upkeep of
stable blocks consisting of interchanging regular secondary structure throughout
the 69 mutation steps. Nonetheless, in the end almost no native helix or strand
withstood our mutation protocol.

Our observations of the dynamics during in-silico mutation substantiated the
previous findings in that secondary structure changes with ongoing sequence di-
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Figure 3.3: Secondary structure states switch back and forth. We picked
one representative for each of the major four SCOP classes (Murzin et al., 1995).
(A-D) We depicted each protein through its ribbon plot and mutation trajectory,
consisting of the native sequence on top and 69 mutated sequences with ongoing
levels of divergence below. Sequences were mutated according to PAM120. Green
and red regions in ribbon plots and trajectories denote strand and helix regions,
respectively. Two observations stand out. Secondary structural elements flip back
and forth during our mutation protocol, while blocks of regular structure remain
quite robust. Structures were rendered with Chimera (Pettersen et al., 2004).
(Adapted from Schaefer et al. (2010))

vergence. Small sequential changes could lead to local conformational impacts in-
duced by interchanging secondary structure elements. Recent experimental work
revealed a much more dramatic change upon a single point mutation between two
structural distinct classes (mainly alpha to mainly beta) (Alexander et al., 2009).

Short disorder comes and goes, long disorder goes

We subjected predicted disorder to a similar analysis to investigate its resilience
against our mutation protocol. Protein disorder displays two different occurrences,
that is, very short and very long regions (Dosztanyi et al., 2005b; Liu et al., 2002;
Obradovic et al., 2005; Schlessinger et al., 2009). A common practice in the field
is to apply strict length thresholds to distinguish between both, although these
are not biophysically substantiated. They rather strive to exclude the ambiguous
region in between that resembles characteristics of both regimes. We adhered
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to these conventions and considered regions below eight consecutive disordered
residues as short disorder and regions above 30 consecutive disordered residues as
long disorder.
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Figure 3.4: Long disorder disappears, short disorder fluctuates. The top
row shows the behavior of long disorder under random mutation, the bottom row
that of short disorder. Predictions for long disorder (A1) drastically diverge (mea-
sured by identity in predicted long disorder between native and mutated sequence,
y-axis) from native states with ongoing mutation (x-axis); predicted short disorder
(B1) diverges more slowly. (A2, B2) Dark and light gray box plots compare dis-
order content in observations with that in predictions; rightmost green box plots
denote distributions in random sequences (labeled ’'Comp’) and ensure convergence
during mutation. (A2) While content in predicted long disorder tends to disap-
pear upon mutation, (B2) that of short disorder remains constant. (A3, B3)
Mutation trajectories in a representative example (DisProt identifier DP 00006)
with predicted long (A3) and short (B3) disorder show the wild type sequence on
top followed by 69 mutants according to PAM120. Apparently, long disordered re-
gions disappear while short disorder re-/disappears. (Adapted from Schaefer et al.
(2010))

For short disorder, we observed a similar picture as for secondary structure, that
is, both its average content and length remained stable during the mutation pro-
tocol (Fig. 3.4B2,B3 for content; length distributions not shown here, s. Schaefer
et al. (2010)) while it gradually diverged from the native states, as measured by
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Q2 (Fig. 3.4B1). More specifically, we observed ~5% of predicted short disorder
in native sequences which slightly increased to ~6% in random sequences.

Long disorder exhibited a different behavior: it tended to disappear upon our
in-silico mutation protocol (Fig. 3.4A1-A3). Its content decreased from ~18%
down to 2-9%, depending on the mutation scheme (Fig. 3.4A2, yellow vs. green
box plots). The disappearance of long disorder was more pronounced in muta-
tion according to PAM120 than to background. Since PAM substitutions were
expected to 'push’ disordered proteins to an amino acid composition resembling
that in ordered proteins, this was not unexpected. The analysis of the mutation
trajectories of two representatives confirmed our findings. Long disordered regions
vanished after half of the mutation procedure (Fig. 3.4A3), while for short disorder
we observed a constant dis- and reappearance (Fig. 3.4B3), which was specifically
apparent at both protein termini.

The loss of disorder induced by little sequence variations may have further phe-
notypic consequences. Disordered regions play an essential role in protein function
(Dunker et al., 2002; Dyson and Wright, 2005; Vucetic et al., 2007). Recent work
suggested that point mutations in disordered regions are often linked with disease
(Hu et al., 2011; Ye et al., 2007) and that the transition to well-ordered structure
may be reason for this effect (Vacic and lIakoucheva, 2012).

Our analyses showed that the content of short disordered regions in disordered
proteins remained stable. In that respect, it acted similarly to secondary structure
(Fig. 3.3). Another aspect of short disorder became apparent: Short disorder often
was predicted at both protein termini (Fig. 3.4B3), a feature especially observed
in loopy ends of globular proteins due to their lack regular secondary structure in
these regions (Liu et al., 2002). On the other hand, the volatility of long disorder to
random mutation makes this feature in disordered proteins a feature not intrinsic
to amino acid sequences. It is therefore likely that long disorder needs to be
actively maintained during evolution by selection against mutations disrupting it.

3.3 Structural change predictable from sequence

Our coarse-grained analyses of structural change under in-silico mutation showed:
Changing the amino acids in 10% of a sequence could lead to local effects pertain-
ing to switches between different secondary structure states and the formation or
disappearance of disordered regions. These measures of structural impact upon
sequence change however were rather coarse grained. Furthermore, our analysis
did not link one particular amino acid change with its individual effect it has on
structure.

The implications of single amino acid exchanges on protein structure have been
studied before. Early investigations on 83 X-ray mutant structures in the PDB
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(Berman et al., 2000) led to a set of predictive rules based on position-dependent
rotamers (De Filippis et al., 1994). The lack of structural variety contained in
that small set of proteins however makes it unclear how well such a method would
perform in the diversity of structures in the contemporary PDB.

Therefore, we approached the objective of predicting structural change upon
a point mutation differently. We compiled a set of pairs consisting of two struc-
turally superimposed pentapeptides. Each pair had two different amino acids in its
center while the flanking regions were identical in sequence. In addition, each such
pair was labeled either structural neutral or mon-neutral and had an associated
ground set of sequence derived features. To ensure a realistic performance assess-
ment, we conducted a feature selection procedure and the subsequent performance
estimation on two separate subsets of pentamer pairs (s. section 2.2).

Three features most predictive

During our forward selection procedure (s. section 2.2.4), we found the follow-
ing three most informative features: difference in PSIC values between native
and mutant residue, predicted three-states secondary structure (raw values from
PROFsec, window around mutant w=17) and BLAST information per position
(w=21). These properties already raised the predictive performance of our model
on the holdout set to an AUC of ~0.82.

Six further features were added to the list until no performance gain of AAUC
> 0.001 was observed. The following properties raised the overall performance
only marginally by 0.02: predicted residue flexibility (raw output from PFOFbval,
w=21), differences in PSSM and predicted secondary structure between native
and mutant residue, HMMER scores for fitting amino acids into a PFam domain
alignment (w=13), predicted protein-protein interaction sites (raw values from
ISIS, w=13) and the amino acid volume (w=5).

All features led to an average AUC of ~0.84 during 10-fold cross validation on
the holdout set. Due to the specific encoding of these properties, the overall feature
space contained 147 numerical feature values.

Model predicts structural change accurately

We assessed the predictive performance of our logistic regression model during a 10-
fold cross validation, conducted on pentamer pairs not used during feature selection
(s. section 2.2.4). The model returned a probability estimate p for structural
change. By applying the default cutoff of 0.5, an amino acid change was assigned
a binary prediction of either structural change (p > 0.5) or neutral (p < 0.5). By
iterating over all such probability thresholds, we established a ROC curve (Fig.
3.5A) and accuracy-vs-coverage plots (Fig. 3.5B) (s. section 2.2.5).
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Figure 3.5: Structural effect predictable from sequence. Different perfor-
mance statistics conducted during a 10-fold cross validation on a separate set not
used during feature selection. (A) The ROC-curve of our method (solid line) sug-
gested an overall AUC ~0.8 compared to an AUC of 0.5 for random predictions
(dashed line). (B-D) Good discrimination between the two classes structural
change and neutral; separate accuracy-vs-coverage plots (B) revealed similar per-
formances for change (light blue) and neutral (dark blue) predictions. (C) Box
plots (section 2.5) of method scores demonstrated high separation between two
classes, i.e. higher scores (>0.5, dashed horizontal line) were more prevalent in
effect predictions (light blue), lower scores (<0.5) more prevalent in neutral (dark
blue); (D) at default threshold of 0.5 the method predicted ~69% of structural
change predictions were correct (true positives), while only ~23% of structural
neutral were predicted falsely (false positives). (Adapted from Schaefer and Rost
(2012))
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The final model reached an average AUC of ~0.8 and an overall two-state ac-
curacy Qo of ~72% after applying the default threshold of 0.5. These measures
reflected the overall performance without revealing separate class behaviors. The
accuracy-vs-coverage plots (Fig. 3.5B) revealed that ~52% of neutral and effect
predictions reached an accuracy of ~80%. For higher accuracy, the correct predic-
tions were dominated by predictions of change. This high performance was also
evident in a high separation of prediction scores p between both classes: Larger
scores (p > 0.5) were much more abundant in the class change while small scores
(p < 0.5) were dominant in the neutral class (Fig. 3.5C). At the default threshold
of 0.5, ~69% of structural change instances were predicted as such, while only
~23% of structural neutral were predicted as change (Fig. 3.5D).

These results suggested that sequence-derived information sufficed to predict
structural change upon single amino exchange in pentamers. This was especially
remarkable due to the circumstance that structural conformations of pentapeptides
crucially depend on their specific structural neighborhood (Cerpa et al., 1996;
Fliess et al., 2002; Kabsch and Sander, 1984). Explicit knowledge about that,
however, was not included in our input features.

3.4 Observed effects enriched in predicted structural
effect

Strictly speaking, our method learned how to separate to different populations of
peptide pairs that consisted either of two structurally similar pentamers or of two
structurally dissimilar ones. We expressed structural dissimilarity in terms of a
conformational shift between both peptide backbones, measured by RMSD over
C, atoms (s. section 2.2.1). The underlying motivation however was to predict
structural effects induced by single amino acid exchanges in proteins and to use
this knowledge to gain deeper insights into other biologically relevant effects.
The specific molecular details inherent in a structure determine other aspects
such as the stability or the function of a protein. Changes in structure, e.g. by
exchanging an amino acid for another, could lead to further consequences pertain-
ing to stability and function with possible consequences on even phenotypic level
such as a raised susceptibility to disease (Wang and Moult, 2003, 2001; Gong and
Blundell, 2010; Stitziel et al., 2003; Sunyaev et al., 2000; Talavera et al., 2010).
However, these implications are not strict or do not apply in both directions.
On the one hand, it is evident that mutations leading to effects on stability or
function are expected to be enriched in those that severely alter structure. On the
other hand, the absence of a structural effect measured in terms of a backbone
shift does not necessarily imply an unaltered function. For example, changing the
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intricate details of hydrogen bonds donors and acceptors in active sites through
different side chain conformations may inactivate enzymatic function but leave the
backbone rather unaltered. Nonetheless, strong structural effects are expected to
raise the likelihood for other effects.

If the method had learned important aspects about structural change beyond the
originally posed task, it should contain an intrinsic ability to reveal an enrichment
of experimentally observed effects in strong predicted structural effect. We tested
this hypothesis on three different sets of annotated single amino acid exchanges.
The first set contained mutations that do or do not alter protein stability, the
second set comprised functionally neutral and non-neutral polymorphisms and the
third set consisted of nsSNPs that had either a disease annotation or were non-
deleterious (s. section 2.3.1).

We monitored the fractions of observed effect mutants in those that had a pre-
dicted structural effect and compared these to the background distributions found
in the datasets. We defined predicted structural effect at two different probability
thresholds as returned by our method. First, we considered each prediction at the
default cutoff of p > 0.5 as structural effect and second, we used a higher threshold
of p > 0.9 reflecting strong structural effect.

One major result stood out. Compared to the background, mutations with an
observed effect on any of the three were enriched in those that were predicted to
have an effect on structure (Fig. 3.6). Furthermore, the observed accumulation
increased with the severity of the predicted effect. We observed the most pro-
nounced signal in disease-annotated mutants: their fraction increased from 39% in
background over 48% in structural effect to 68% in strong structural effect which
translated into an overall enrichment of 29% (Fig. 3.6: three rightmost bars).
Functional effect exhibited a similar strong increase in enrichment of overall 26%
from background (49%) to strong structural effect (75%) (Fig. 3.6: middle bars).
The accumulation of stability-changing mutants was least pronounced with 14%
(Fig. 3.6: leftmost bars) and little significant due small sample sizes.

These findings strongly suggested that our method not only succeeded in sepa-
rating structural neutral from non-neutral pentamer pairs. More importantly, they
also showed that our rather artificial definition of effect captured indeed impor-
tant aspects of structural change upon point mutation. Nonetheless, a significant
fraction in strongly predicted structural effect mutations did not exhibit a disease
consequence (i.e. 32%) or a functional effect (25%). Since it is not clear whether
those are truly neutral or not yet experimentally annotated as non-neutral, we had
no means to attribute this discrepancy to either a true signal or to deficiencies in
our methodology.
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Figure 3.6: Mutations predicted to affect structure are often linked with
disease and change in function. We considered mutations predicted as chang-
ing structure moderately (p > 0.5) and severely (p > 0.9). Mutations having an
observed effect on stability (left), function (middle) and disease (right) occurred
more often than expected from background (brown bars). Their enrichment in-
creased with increasing severity in predicted structural effect mutants (green and
blue bars). This suggests that strong structural impact upon single amino acid
exchange increases the likelihood of other effects such as disease.

3.5 Disease strongly correlated with predicted
functional effect

We established that disease-related mutations occur more often in mutations that
are predicted to severely alter structure. We tested a similar hypothesis for
function-changing mutations and asked whether a strong functional effect is corre-
lated with disease. We predicted the functional severity through SNAP (Bromberg
and Rost, 2007) of 26,404 mutations with disease relation but no observed effect
and compared them with 251,414 variants that had no disease annotation (s. sec-
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tion 2.3.2).

The predictions differed greatly between both sets in two respects. First, SNAP
predicted much more disease-related mutations to change function than mutations
with unknown disease relation. More specifically, at the default threshold of 0,
SNAP revealed ~86% of disease-related variants as functionally non-neutral while
only ~51% in the set of unknown disease relation were predicted to change func-
tion (Fig. 3.7A,B: black dashed vs. green curve). Second, functional change was
predicted to be stronger in disease-related mutants than in unknown disease mu-
tations. This finding was reflected by a more pronounced shift of SNAP scores
towards larger values in disease related mutations. About 47% of these variants
exhibited scores of more than 40 compared to only 12% of mutations with unknown
disease relation at that score (Fig. 3.7A).

The magnitude of predicted effects in disease-related mutants became even more
pronounced through a comparison with functional predictions in variants with an
observed effect but without known disease association (s. section 2.3.2). These
mutations constituted the functional non-neutral part of the data used to train
SNAP. As any other machine learning based method, SNAP performs significantly
better on its own training set than on data that did not participate during its
optimization. As a result, scores in this set are expected to be biased towards
‘more effect’ compared to predictions in any other set of effect mutations not used
for training.

We observed a quite different outcome. Only 40% of the training set was pre-
dicted at scores >40 which was 7% less compared to disease related mutants (Fig.
3.7B: dashed black vs. red curve). For variants annotated to be disease-related and
having an observed effect, SNAP revealed the highest effect on function: At the
default threshold, about 90% were predicted to have a functional impact (more
than 4% than in disease related) and ~53% had scores higher than 40, i.e. 6% more
than in disease related mutations (Fig. 3.7B: solid black curve). This suggested
that disease-related mutations alter protein function more severely than any other
mutation with an observed effect.

In this context, we also addressed the question of how many potential disease as-
sociations are yet undiscovered. A considerable amount of variants with unknown
disease relation was predicted to have a slight (51%) or severe effect (12%, SNAP
score >40). We considered the amount of effect predictions in random mutations
that occurred maximally distant to any observed mutation (s. section 2.3.2) as
background. This enabled us to estimate an upper bound of undiscovered associ-
ations in this set. SNAP predicted 7% of random mutations as severely changing
function (Fig. 3.7B: blue curve). Comparing this fraction of high impact mutants
to the one predicted in variants without disease annotations suggests that 7% -
14% still remain to be experimentally annotated as severely altering function and
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Figure 3.7: Disease-related mutations predicted to severely alter pro-
tein function. We predicted the severity of functional impact in five different
sets of point mutations using SNAP: disease related + observed effect, disease re-
lated (without observed effect), observed effect (without known disease relation),
unknown disease relation and random mutations. (A) Box plots (s. section 2.5)
depict the distributions of SNAP scores in all five sets, the distance from 0 denotes
the severity of effect; the fraction of mutants above the default threshold of 0 are
predicted as non-neutral, above 40 as high impact mutations. Disease causing
mutations contained the highest fractions of functional non-neutral variants (90%
and 86%, two left box plots), while impact predictions dominated observed effect
mutants even less (76%, middle box plot). Predicted effect in random mutations
(44%, rightmost box plot) provided an upper bound for effect variants in those
with unknown disease relation (51%). (B) Cumulative predicted severity; points
on a curve correspond to fractions (y-axis) of mutations with severity (x-axis) >
that score. Disease causing variants (black solid and dashed curve above all oth-
ers) were predicted to have the most severe impact on protein function. (Adapted
from Schaefer et al. (2012a))

thus as candidates for disease causing variants.

Through predictions of functional effects in mutations with and without disease
relation, we correlated severe impact on protein function with disease. Put differ-
ently, if a mutation leads to a disease then a strong functional change may play a
major role in explaining its reason. Despite the abundance of high impact muta-
tions in disease causing variants, we observed nonetheless a pronounced overlap of
score distributions between disease related, unknown disease relation and random
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mutations (Fig. 3.7A). Thus our investigation did not shed light on the reverse,
i.e. whether a strong functional change implies disease.

3.6 Functional change predicts disease accurately

Our findings so far led to the following key indication: Disease mutations are
enriched in predicted effects on either structure or function (sections 3.4 and 3.5).
These findings suggested that a strong molecular impact on protein level appears
to raise the likelihood for disease, as also reported by others (Gong and Blundell,
2010; Stitziel et al., 2003; Sunyaev et al., 2000; Talavera et al., 2010; Wang and
Moult, 2003, 2001). Ultimately this raised the following question: Could the
knowledge contained in methods that predict different effects on molecular level
be combined to predict disease at higher confidence than each method could do
on its own?

To investigate this question, we predicted structural and functional effects in
disease related and non-deleterious mutations (s. section 2.3.1) through the new
method developed here and SNAP, respectively.

At the default threshold of p > 0.5, the new method predicted ~81% of disease-
related mutations as affecting structure while ~57% of non-deleterious mutations
were predicted as such (Fig. 3.8A: fractions above 0.5 of two leftmost box plots).
Strong structural effect (p > 0.9) was predicted for ~22% of disease-related and
~7% for non-deleterious variants. These results confirmed our previous findings
in that predicted structural effect is enriched in disease associated mutations (s.
section 3.4). However, our method predicted a significant amount of strong struc-
tural effect in non-deleterious mutations and, vice versa, a significant amount of
disease-related mutations were predicted as structurally neutral (Fig. 3.8A: strong
overlap of two leftmost box plots).

Furthermore, we assessed the predictive performance in detail and separately
for disease-related and neutral mutations through ROC-like curves. This approach
allowed us to monitor accuracy-coverage pairs independent from a default decision
threshold by iterating over the whole range of prediction scores (s. section 2.2.5).
First, we observed that at the default cutoff of p > 0.5, the accuracy for neutral
predictions was as high as ~78% but only 42% of non-deleterious mutants achieved
that level of accuracy (Fig. 3.8B: solid and dashed green curves). The observed
accuracy for disease predictions at that cutoff was only ~47% and more than 80%
reached that performance level (Fig. 3.8B: solid and dashed brown curves). For
very strong predictions, i.e. at a threshold of p > 0.88, the method achieved a
balanced accuracy of 66% for both classes (Fig. 3.8B: arrow). However, only
24% of disease-related but >90% of neutral mutations were predicted with that
level of accuracy. Our analysis showed that no threshold existed to achieve a
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high performance for predicting a large amount of disease and neutral mutations
correctly. Structural effect as predicted by our method did not suffice to clearly
separate disease from neutral.

We observed a different behavior in predicted functional effect. At the default
threshold of 0, SNAP predicted 85% of disease-related mutations as functional
non-neutral but only 20% in non-deleterious variants (Fig. 3.8A: fractions above
0 of two rightmost box plots). At a cutoff of 40, 46% of disease-related mutations
were predicted as strongly altering function while only 4% of non-deleterious were
predicted as such. The overlap between both distributions of predicted functional
severities was by far less significant compared to the predictions of structural
change (Fig. 3.8A).

We conducted the same detailed performance analysis detached from a specific
SNAP score threshold as in predictions of structural change. At the default thresh-
old of 0, SNAP predicted 80% of non-deleterious with an accuracy of ~90% and
~85% of disease-related mutations with an accuracy of 73% (Fig. 3.8C: dashed and
solid green curves). We observed a balanced accuracy of 81% at a cutoff of 22. At
this threshold, 90% of non-deleterious and 70% of disease-related mutations were
predicted having that performance (Fig. 3.8C: arrow).

Apparently, functional change as predicted by SNAP led to far better criterion to
separate disease-associated from non-deleterious variants than predicted structural
effect. This finding however has to be taken with a certain grain of salt. Part of
the disease-related mutations with an additional observed effect as well as the non-
deleterious variants took part in SNAP’s training (section 2.3.1). The accuracies
reported here should therefore be considered as biased towards better performance.
However, this positive effect was marginal as SNAP performed only slightly worse
during its cross validation (~80% accuracy/coverage for both neutral/non-neutral
at SNAP score 0 (Bromberg and Rost, 2007)).

Could the combined prediction of both effects increase the performance of dis-
ease prediction? This should have turned out to be the case, if our new method
contained knowledge about protein structure relevant for predicting disease which,
in addition, was orthogonal to the information about function intrinsic in SNAP.
To test this hypothesis, we considered a prediction as deleterious if SNAP returned
a score of 22 (i.e. the threshold SNAP performed best at distinguishing disease from
neutral, s. above) and the new method predicted a structural effect. We again iter-
ated over the whole range of prediction scores for structural change and monitored
pairs of accuracy and coverage for disease and non-deleterious predictions.

The accuracy of disease predictions did hardly increase over the entire spectrum
of structural change cutoffs (Fig. 3.8D: brown solid curve). Only at thresholds
p > 0.9 the accuracy started to raise above 80%, however only for <20% of disease-
related mutations (Fig. 3.8D: arrow). We observed a similar performance in SNAP-
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only predictions at scores >22 but with a much higher coverage of ~60% (Fig. 3.8C:
solid/dashed brown curves at regions right of arrow). For non-deleterious variants,
the observation was similar: At a cutoff > 0.9, >90% of neutral mutations reached
an accuracy of 65%. However, SNAP alone topped this performance again: At
scores >22, it predicted >90% non-deleterious variants with an accuracy of 80%
(Fig. 3.8C: solid/dashed green curves at regions right of arrow).

Our analysis showed that the combination of predicted effects in both structure
and function did not raise the performance to predict disease. Despite our finding
that strong structural change is enriched in disease variants, our method predicted
a significant amount of structural change in non-deleterious mutations and a lot
of disease mutations as structurally neutral.

Our investigations did not address the question whether anything is special
about these outliers in a biological sense. It also could very well be the case that
our definition of structural change did not capture essential knowledge about the
intricate details in protein structure that, when being changed upon mutation, lead
to disease. Thus, further investigations will have assess the capabilities of other
potential measures for structural impact. Possible candidates could be changes in
H-bond donors/acceptors (s. section 1.3 and Gong and Blundell (2010); Wang and
Moult (2001)) or side chain torsion angles.

The information alone that a mutation triggers functional change apparently
sufficed to predict disease at high accuracy. In the chain of causal relationships
that connects basic molecular effects on its one end and phenotypic changes on its
other, protein function appears to play a role as key link.
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Figure 3.8: Functional change alone predicts disease accurately. We pre-
dicted structural and functional change in disease-related and non-deleterious mu-
tations through the method developed in this thesis and SNAP, respectively. (A)
Box plots (section 2.5) show distributions of method scores for predicted struc-
tural (new method, left pane) and functional effect (SNAP, right pane) separately
for disease (brown) and neutral (green) mutations. Strong structural and func-
tional effect is predicted more often in disease-related than in neutral mutations.
Predicted functional effect separates disease-related better from neutral mutations
than predicted structural effect (little vs. much overlap between brown and green
box plots). (B-D) ROC-like curves depict accuracy-coverage pairs (section 2.2.5)
sampled at different prediction cutoffs of SNAP and the new method. Our new
method achieved the best performance at distinguishing disease-related from neu-
tral mutations for p>0.88 (B, arrow), but only few disease-related mutations were
predicted at that cutoff. SNAP performed better, i.e. at a cutoff of 22 the majority
of disease-related and neutral mutations were predicted at high accuracy (C, ar-
row). We combined both methods by considering a deleterious prediction as both
functional (SNAP score >22) and structural non-neutral (sampled over entire cut-
off range); the overall performance did not profit, i.e. for very few disease-related
mutations, we observed a slight increase in accuracy for deleterious predictions at
very strongly predicted structural change (D, arrow).
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4 Conclusion

The scope of this thesis was the prediction of structural effects that occur upon
a residue exchange in proteins. Of particular interest was the question whether a
mutation predicted to impact protein structure was likely to be involved in disease
development. In other words, could the knowledge about a structural change aid
in predicting disease?

In a first assessment, we perceived structural change in a rather coarse-grained
way. Specifically, we tackled the question as to how predicted secondary structure
and protein disorder changed under random mutations. Ultimately, this also shed
light on how easy it is for evolution to maintain these structural features. Our
findings clearly suggested two different implications. First, neither the content
nor the length of helices and strands changed significantly with ongoing sequence
divergence. In stark contrast, long disorder was disrupted during random muta-
tion and disappeared in random sequences. Hence, it appeared very likely that
the formation of well-ordered secondary structure is intrinsic to any amino acid
sequence. The upkeep of long disordered regions over the course of evolution ap-
pears to be more challenging. Second, despite the high robustness in content and
length, we observed ongoing transitions between helices and strands as well as
a continual coming and going of short disordered regions. We found that small
sequence changes affected local structure significantly.

In a next step, we introduced a finer-grained definition of structural effect in-
duced by a single residue exchange. We perceived structural change as strongly
displaced backbones of two protein fragments which differed only in their central
amino acid. We attributed structural impact to the residue exchange. This ap-
proach allowed for the compilation of a large dataset and the successful training of
a machine-learning method. Its objective was to separate structural neutral from
non-neutral fragments based on sequence-derived features.

Through predicting structural effects of mutations that exhibited observed ef-
fects, we were able to show that the new method captured important biological
aspects beyond our rather artificial definition of change: We established that ef-
fects on protein stability and function were enriched in mutations predicted to have
a strong structural effect. Even more importantly, we related a strong structural
effect to an increased likelihood of a mutation to be disease-related. Similarly, we
found that a method trained to predict functional effect clearly identified disease-
related mutations as severely altering protein function.
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Our findings indicated that methods trained to predict molecular effects could
provide a valuable step towards predicting the deleteriousness of point mutations.
We tested this hypothesis and used predictions of structural and functional effects
on their own and in combination to distinguish disease-related from non-deleterious
variants. The outcome was clear in that predicted functional method alone sufficed
to accurately predict disease.

Future investigations will have to relate this result either to a weakness in our
definition of change or to molecular details that make disease-related but otherwise
structural neutral mutations special.
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Protein secondary structure appears to be robust
under in silico evolution while protein disorder
appears not to be

The mutation of single amino acids in proteins often impacts protein function
and structure. Those exceptional mutations that have no negative effect sustain
evolutionary pressure.

In this publication, we studied a particular aspect of robustness with respect
to mutations, namely regular protein secondary structure (helices and sheets) and
natively unstructured or intrinsically disordered regions (often observed in non-
regular secondary structure). Is the formation of regular secondary structure an
intrinsic feature of amino acid sequences, or is it a feature that is easily lost upon
mutation and is maintained by evolution against the odds? Similarly, is disorder
an intrinsic sequence feature or is it difficult to maintain?

To tackle these questions, we in-silico mutated native protein sequences gradu-
ally into random sequence-like ensembles and monitored the change in predicted
secondary structure through PROFsec (Rost and Sander, 1993) and disorder through
[UPred (Dosztanyi et al., 2005a,b), MD (Schlessinger et al., 2009) and VSL2
(Obradovic et al., 2005; Peng et al., 2006).

We established that by our coarse-grained measures for change, predictions and
observations were indeed similar for the native sequences. The strings of secondary
structure (three states) and disorder (two states) began to differ from the native
one at a rate roughly linearly proportional to the change in sequence. Surprisingly,
neither the content in regular secondary structure nor the length distribution of
helices and strands changed substantially; instead, helices and strands were lost
and created at similar rates. Regions with long disorder (>30 consecutive residues)
behaved very differently: they just disappeared during our in silico mutations.

Our findings suggest that the ability to form regular secondary structure is an
intrinsic feature of amino acid sequences from well-ordered proteins, while the abil-
ity to form disordered regions is significantly less an intrinsic feature of proteins
with disordered regions. Put differently: helices and strands are easy to maintain
by evolution, whereas disordered regions are difficult to maintain. Mutations that
are neutral with respect to disorder are therefore extremely unlikely.

The study design and methodology were conceived by myself and Burkhard Rost.
I carried out necessary background research. The programming was performed
by me with the help of Avner Schlessinger. All calculations were done by myself
with the help of Burkhard Rost. The resulting data were analyzed and interpreted
by myself and Burkhard Rost. The manuscript was drafted by myself, Avner
Schlessinger and Burkhard Rost.
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SNPdbe: Constructing an nsSNP functional impacts
database

Many existing databases annotate experimentally characterized single nucleotide
polymorphisms (SNPs; most prominently dbSNP (Sherry et al., 2001)). Each
non-synonymous SNP (nsSNP) changes one amino acid in the gene product. This
change can either affect protein function or be neutral in that respect. Most
polymorphisms lack experimental annotation of their functional impact.

In this publication, we introduced SNPdbe — SNP database of effects, with
predictions of computationally annotated functional impacts of SNPs. Database
entries were derived from nsSNPs in dbSNP, and variants reported in Swiss-Prot
(Bairoch et al., 2005), SwissVar (Yip et al., 2008), 1000 Genomes Project (1000
Genomes Project Consortium, 2010) and PMD (Kawabata et al., 1999). nsSNPs
come from more than 2600 organisms; “human” being the most prevalent. The im-
pact of each nsSNP on protein function was predicted using the SNAP (Bromberg
and Rost, 2007) and SIFT (Ng and Henikoff, 2003, 2001) algorithms and aug-
mented with experimentally derived function/structure information and disease
associations from PMD, SwissVar and OMIM (Amberger et al., 2009). SNPdbe is
consistently updated and easily augmented with new sources of information.

The database is available as a MySQL dump and via a web front-end that allows
searching using any combination of organism names, sequences and mutation IDs.

The methodology was conceived by myself and Yana Bromberg. I carried out
necessary background research. The programming, data collection and database
development were performed by myself. The web frontend was programmed by Al-
ice Meier under my supervision. The manuscript was drafted by myself, Burkhard
Rost and Yana Bromberg.
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Predict impact of single amino acid change upon
protein structure

Changing a single amino acid in a protein potentially affects protein structure,
function and phenotype such as disease. In this publication, we proposed a di-
rect method that predicts the impact of single amino changes upon local protein
structure. We compiled a data collection out of the PDB (Berman et al., 2000)
consisting of structurally superimposed protein fragment pairs of five consecutive
residues. Each such pentamer pair had the following properties: Both peptides
shared identical flanking regions in sequence but had one mismatch position in
their center. We inferred the structural effect imposed by the central mismatch by
measuring the root mean square displacement (RMSD) between two fragments.
We defined pairs having a RMSD < 0.2A as structurally neutral and > 0.4A
as structurally non-neutral. We applied logistic regression (Fan et al., 2008) to
machine-learn the effects of mismatches on local structure.

We established a seemingly rather high overall performance (AUC>0.79, two-
state accuracy 72.6%). Despite this success, our method largely failed to discrim-
inate between the effects of changes upon stability and function. Nonetheless,
mutants for which our method predicted a change of structure were also enriched
in terms of disrupting stability and function.

Our definition for structural change enabled the application of machine-learning
to distinguish structural neutral from non-neutral. But we failed in the next step,
namely to use predicted local structural changes to infer the impact of a mutation
upon protein stability and/or function. This might be due to our particular defi-
nition of structural change.

The study design and methodology were conceived by myself and Burkhard Rost.
I carried out necessary background research. The programming was performed by
me. All calculations were done by myself with the help of Burkhard Rost. The
resulting data were analyzed and interpreted by myself and Burkhard Rost. The
manuscript was drafted by myself and Burkhard Rost.
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Disease-related mutations predicted to impact
protein function

Genomic point mutations that alter the protein sequence (non-synonymous single
nucleotide polymorphisms, nsSNPs) are of distinct interest: they could influence
the phenotype by, e.g., causing disease. However, few are annotated with function
and even fewer map to diseases. What are the underlying molecular mechanisms
that make one mutation functional neutral, deleterious or even disease causing?

In this publication, we studied the relationship between functional change upon
point mutation and disease. We used disease-annotated variants from SwissVar
(Yip et al., 2008), OMIM (Amberger et al., 2009) and PMD (Kawabata et al.,
1999) and variants not linked to disease and predicted their functional impact
using SNAP (Bromberg and Rost, 2007) and SIFT (Ng and Henikoff, 2003, 2001)
algorithms.

Mutations predicted to effect protein function were more abundant in disease-
causing variants than mutations predicted to be neutral. Even more surprising, we
found that the predictions of mutations that effect function were much stronger for
nsSNPs annotated to cause disease than for other data sets annotating functional
change. Our findings suggest that for the majority of disease mutants loss-of-
function is an essential disease-causing factor. Conversely, we confirmed that not
all mutations predicted to change function are related to disease and that some
mutations predicted to be neutral are annotated as related to disease. Hence, a
clear one-to-one relation between function and disease remains elusive.

The study design and methodology were conceived by myself and Burkhard Rost. [
carried out necessary background research. The programming and data collection
were mainly performed by me with the help of Dominik Achten. All calculations
were done mainly by myself with the help of Burkhard Rost. The resulting data
were analyzed and interpreted by myself, Yana Bromberg and Burkhard Rost. The
manuscript was drafted by myself, Yana Bromberg and Burkhard Rost.
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ABSTRACT

Motivation: The mutation of amino acids often impacts protein
function and structure. Mutations without negative effect sustain
evolutionary pressure. We study a particular aspect of structural
robustness with respect to mutations: regular protein secondary
structure and natively unstructured (intrinsically disordered) regions.
Is the formation of regular secondary structure an intrinsic feature of
amino acid sequences, or is it a feature that is lost upon mutation and
is maintained by evolution against the odds? Similarly, is disorder an
intrinsic sequence feature or is it difficult to maintain? To tackle these
questions, we in silico mutated native protein sequences into random
sequence-like ensembles and monitored the change in predicted
secondary structure and disorder.

Results: We established that by our coarse-grained measures
for change, predictions and observations were similar, suggesting
that our results were not biased by prediction mistakes. Changes
in secondary structure and disorder predictions were linearly
proportional to the change in sequence. Surprisingly, neither the
content nor the length distribution for the predicted secondary
structure changed substantially. Regions with long disorder behaved
differently in that significantly fewer such regions were predicted after
a few mutation steps. Our findings suggest that the formation of
regular secondary structure is an intrinsic feature of random amino
acid sequences, while the formation of long-disordered regions is not
an intrinsic feature of proteins with disordered regions. Put differently,
helices and strands appear to be maintained easily by evolution,
whereas maintaining disordered regions appears difficult. Neutral
mutations with respect to disorder are therefore very unlikely.
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1 INTRODUCTION

Random, undirected mutation is a major driving force for change
in nature. In the protein universe, selection is realized through
function: mutations leading to loss of function are rarely observed.
As protein structure determines protein function, it is also subjected
to evolutionary selection. Most problematic single nucleotide
polymorphisms (SNP) that alter the amino acid sequence (non-
synonymous SNPs) appear to impact the stability of protein structure
(Yue et al., 2005; Yue et al., 2006).

Helices and strands constitute the major macromolecular building
blocks of all ‘well-ordered’ proteins (Benner et al., 1997; Kabsch
and Sander, 1983; Levitt and Chothia, 1976; Morea et al., 1998;
Pauling and Corey, 1951a; Pauling and Corey, 1951b). The particular
3D structure of a protein is assumed to correspond to the global
minimum free energy and hence defines the unique fold of an amino
acid polymer (Anfinsen and Scheraga, 1975; Dill, 1993; Karplus
and Petsko, 1990; Levitt and Warshel, 1975; Liwo et al., 1999;
Reva et al., 1995; Sippl, 1993). Another essential feature of protein
structure is the unique interplay between well-ordered and flexible
regions (Alexov and Gunner, 1997; Cavasotto and Abagyan, 2004;
Claussen et al., 2001; Daniel et al., 2003; Gu et al., 2006; Morea
et al., 2000; Radivojac et al., 2004; Schlessinger et al., 2006). One
particular aspect of this interplay is that between what we may
loosely refer to as ‘order’ and ‘disorder’ (Dunker and Obradovic,
2001; Dunker et al., 2008; Radivojac et al., 2004; Uversky, 2003).

Many proteins have regions that remain ‘unstructured’ unless
bound to a substrate: they do not adopt a unique stable conformation
in isolation. Such regions are also referred to as intrinsically
disordered or simply as disordered. Our operational definition for
this vague term is: we consider as disorder whatever is predicted as
such. Proteins with long-disorder regions have unique biophysical
traits that enable the binding to different substrates, often at different
cellular conditions (Wright and Dyson, 2009). Very long regions
without regular secondary structure (loosely referred to as ‘loops’)
may resemble disorder (Liu et al., 2002); nevertheless, we can
clearly distinguish between disorder-like and well-structured loops
(Schlessinger et al., 2007a; Schlessinger et al., 2009). Disorder is
an important ‘building block’ for the increase in complexity in the
evolution from unicellular prokaryotes to multi-cellular eukaryotes.
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Our two hypotheses were: (i) we assumed that regular secondary
structure is difficult to maintain evolutionarily, i.e. single residue
mutations are likely to impact helices and strands and that we would
lose regular secondary structure and transit into ‘loopy’ polypeptide
chains with increasing random mutations away from the native state.
(i) We assumed, furthermore, that disordered regions provide a
means to become robust against mutations because most mutations
would rather increase than decrease disorder by increasing the non-
regular secondary structure. Here, we present results that falsify both
hypotheses as clearly as possible without investing tens of millions
of dollars.

2 METHODS
2.1 Datasets

We used protein sequences from two databases for the in silico mutation.
First, we assessed the robustness of secondary structure through globular
proteins from the Protein Data Bank (PDB) (Berman et al., 2000). Secondly,
we assessed the robustness of disordered regions through proteins from
DisProt (Vucetic et al., 2005) (version 4.9). We applied UniqueProt (Mika
and Rost, 2003) to reduce the redundancy in both sets filtering at a sequence
similarity threshold of HVAL >10 (Rost, 1999; Sander and Schneider,
1991) (this corresponds to ~30% pairwise sequence identity—PIDE—for
alignments over 250 residues). The redundancy-reduced sets comprised 1369
(PDB) and 374 (DisProt) proteins.

For each of the two datasets (PDB and DisProt), we also created
random sequences that had the same amino acid composition, same length
distribution and same number of sequences as the natives. The random sets
served as convergence control: if we mutate enough to ‘lose all memory’
(convergence), the random sets will not differ from the mutated sets.

To shed light on potential biases from the chosen databases,
we additionally predicted the secondary structure in 33812 proteins,
representing the entire human proteome as taken from RefSeq 2006.

Finally, we sub-sampled a set of sequences from the PDB set with the
same size, amino acid and length distribution as that of the DisProt set to
examine the ability of ordered proteins to retain or lose their ordered state.

2.2 Mutation protocol

‘We gradually mutated native protein sequences into quasi-random strings of
amino acids by the following iterative procedure.

2.2.1 One mutation step It consisted of two moves: (i) select a particular
residue position, i.e. site in the sequence to mutate, and (ii) mutate the amino
acid X at that position with amino acid Y with the probability pxy (X=Y).
For technical reasons (lack of CPU because after each step we have to apply
several prediction methods), we repeat these two moves N/10 times (N
number of residues in the protein). Effectively, we thereby touch 10% of
all residues in one mutation step.

2.2.2  Sixty-nine mutation steps We carried out 69 mutation steps (with
69xN/10 mutations) for each protein. Any other, sufficiently large, number
would have worked. We chose 69 because we had reached convergence in
all the cases that we looked at in detail after 65 steps.

Effectively, we applied a Markovian-like model for evolution, i.e.
assuming that each residue mutates independently of all others and that the
mutation depends only on the amino acid type. We applied three alternative
substitution schemes: (i) we mutated according to the PAM120 probability
(Dayhoff, 1978). (ii) PAM120 is valid for great evolutionary distance. In
order to also cover closer relations, we also implemented BLOSUMG62
(Henikoff and Henikoff, 1992). (iii) Finally, we took the underlying amino
acid distribution in the database (PDB, DisProt—ordered/disordered regions
in DisProt not distinguished) as substitution probabilities. Note that for the

most PAM120 and BLOSUMG62 mutations, the most likely ‘mutation step’
was the maintenance of the current amino acid as the diagonals are typically
highest in these matrices. We did not consider mutations that led to insertions
or deletions. BLOSUMG62 and PAM120 behaved identically with respect
to our results. For readability, we confined the BLOSUMG62 results to the
Supplementary Material.

2.2.3 Single trajectory versus ensemble The ‘mutation path’ for each
native sequence constitutes a single unique trajectory in the space of all
possible mutations. We created five different such single paths (five different
mutants) in order to investigate the divergence from the native of an
ensemble of evolutionary paths. From these five, we compiled a consensus
by per-residue averaging over each of the five predictions (secondary
structure/disorder). Note that by default, we reported the results for single
trajectories and added the ensemble comparison only where explicitly stated.

2.3 Secondary structure

‘We predicted secondary structure through PROFsec (Rost, 2005). Secondary
structure prediction methods improve when using evolutionary information
(Liu and Rost, 2001; Rost, 1996; Rost and Sander, 1993). Without this
information, PROFsec reaches a sustained single-sequence level of ~68%
three-state per-residue accuracy (Qj is the percentage of residues predicted
correctly in one of the three states helix, strand and other). We had to use this
single-sequence mode to monitor the effect of point mutations. Prediction
mistakes might invalidate the generality of our findings. One way in which we
addressed this concern was by monitoring the parameters that we plotted for
our mutants also for the experimental observations from the native proteins
as taken from DSSP (Kabsch and Sander, 1983) with the usual conversion
of eight into three ‘states’ (Andersen et al., 2002; Rost, 1996; Rost and
Sander, 1993). For each mutation step (i.e. after each step of 10% change),
we monitored the sequence similarity compared with the native sequence,
the relative content of residues predicted in helix and strand and the average
length of predicted helices and strands.

2.4 Disordered regions

We predicted disordered regions by three methods: IUPred (Dosztanyi
et al., 2005), MD (Schlessinger et al., 2009) and VSL2 (Obradovic et al.,
2005; Peng et al., 2006) and compared the predictions to the experimental
annotations in DisProt. IUPred has three options (long, short and glob);
we chose short for short and long for long disorder. MD (Meta Disorder
predictor) combines independent methods through machine learning. We
used it without alignments. VSL2 is a collection of eight methods. We used
the VSL2B variant that uses only single sequences as input.

The three methods focus on different aspects of disorder and have different
strengths and weaknesses. We did not combine methods and, for simplicity,
focused only on IUPred. The results from the other methods that were crucial
to rule out method-specific findings are given in the Supplementary Material.
We chose IUPred because it is accurate, fast and set up to work only with
single sequences.

For each mutation step (i.e. after each step of 10% change), we monitored
sequence similarity to native, the relative content of residues predicted in
short/long-disordered regions and the length of the regions (SOM).

2.5 Box plots to present results

Box plots (McGill et al., 1978; Tukey, 1977) present our results concisely.
The lower and upper box edges depict the first and third quartile, respectively.
The length of a box is the interquartile range of the distribution. The bold
bar inside the box represents the median, while dashed lines reach to the
most extreme data point that is no more than 1.5 times the interquartile
range away from the upper or lower box edge. Average (mean) values are
connected through solid lines and intersect with box plots.

Median and mean are related to the protein level, i.e. summarize the
specific feature of all sequences that fall within the same interval of PIDE.
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3 RESULTS AND DISCUSSION

3.1 Secondary structure surprisingly robust

Comparisons of pairs of evolutionarily related protein structures
reveal two major results (Abagyan and Batalov, 1997; Chothia
and Lesk, 1986; Chung and Subbiah, 1996; Sander and Schneider,
1991): first, the less similar their sequences, the less similar their 3D
structures [as well as their secondary structures (Rost ef al., 1994;
Rost et al., 1997)]; and second, the transition from the regime of
‘similar structure’ to ‘non-similar structure’ is highly non-linear and
characterized by sigmoids indicative of phase transitions in physics.
Our mutation protocol yielded a very different outcome.

Secondary structure diverged to almost random levels over the
course of our mutation protocol. We compared this divergence to
what is observed between naturally occurring homologues. Towards
this end, we used the HSSP database (Sander and Schneider,
1991) and compared homologues at the corresponding levels of
PIDE (Supplementary Fig. SOM_5). The change of secondary
structure on random mutation was much more dramatic than that
for homologous proteins (Fig. 1A), e.g. at 30%, PIDE natural
homologues still had levels of Q3 ~63%, while the random mutants
reached Q3 ~45% (Supplementary Fig. SOM_5). This result is not
surprising: evolution feels the pressure to enrich neutral mutations,
i.e. those that do not alter structure, while no such incentive was
built into our in silico mutation protocol. Nevertheless, secondary
structure was surprisingly robust under mutation. The consensus
over ensembles of five different mutation trajectories (Fig. 1C and D)
diverged much more dramatically from wild type than any single
mutant (Fig. 1A and B).

Another important difference between our in silico mutation and
natural evolution pertained to the shape of the transition: instead of
a sigmoidal phase transition, we observed an almost linear transition
from native wild-type to almost random mutant. This was true for
both the single trajectory (Fig. 1A) and the ensemble (Fig. 1C),
although the signal was clearer for the ensemble.

We observed that some regions did not alter secondary structure
even at the end of our protocol at which the mutant was as similar
to the wild type as to any other sequence in our dataset (Fig. 1B).
For the ensemble, in contrast, the consensus secondary structure had
changed almost completely from the native (Fig. 1D). Nevertheless,
the Q3 levels converged to the same level in both cases.

3.2 Helix and strand intrinsic to random sequences

Our most surprising finding was that neither the overall content
(Fig. 2A and B) nor the length (Fig. 2C and D) of predicted
helices and strands was altered during the course of our mutation
protocol. The average helix content remained ~30%, whereas
the average strand content around 20%; the average helix was
about 10 residues long (2-3 helix turns), and the average strand
extended over about five residues. In other words, regular secondary
structure was predicted to be robust under extreme mutation. In this
respect, we observed no significant difference between choosing
mutations according to the background distribution and PAM120,
although the latter tends to follow the evolutionarily more accepted
mutations (mutations according to BLOSUMG62 gave similar results
Supplementary Fig. SOM_6).

After the 69 mutation steps (Section 2), we reached a
point at which the mutant was as similar to the native as to
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Fig. 1. Secondary structure changes proportional to sequence. (A and C)
For decreasing pairwise percentage sequence identity (x-axis, PIDE), we
monitored the similarity between secondary structure predictions (Qs, i.e.
percentage of residues identical in one of the three states helix, strand and
other) for native and for mutant (yellow: mutations according to PAM120,
green: according to background distribution, Section 2). (A and B) show
results for a single trajectory, (C and D) the consensus over an ensemble of
five trajectories (Section 2). Box plots reflect the range of the distribution
(Section 2); median values are marked by horizontal bars and mean values
are connected by dotted lines. For instance, at ~90% pairwise sequence
identity, ~88% of the residues are predicted in the same secondary structure
as the native; for the ensemble, this value is slightly higher (leftmost bars
in A and C). The curves converge nearly linearly towards values ~35%
corresponding to random. (B and D) For one particular example (PDB
identifier 1a2s chain A), we display the actual secondary structure predictions
for each mutant: native on top; each row marks one of the 69 mutation
steps (Section 2); mutation by PAM120. The top (B) is for one single
mutation trajectory, the bottom (D) for an ensemble of five trajectories. One
observation stands out and is representative for all such plots that we looked
at: blocks of regular secondary appear to be more robust under mutation
than the actual type of secondary structure, i.e. helices flip to strands and
vice versa and this happens more often than the transitions helix— other and
strand— other. Borders are much more ‘fluid’ for the ensemble (D) than for
a single mutation trajectory (B).

any other sequence. This was reflected by the similarity in the
prediction of helix/strand content/length between the final mutant
and randomly created sequences (Fig. 2: two rightmost bars almost
identical).

Our results were based on predictions rather than on observations.
Prediction methods make mistakes. One might hypothesize that
rather than shedding light on protein features, our results are
caused by those prediction mistakes. As no large-scale experiments
establish structure for random sequences, we cannot refute this view.
However, we could provide evidence that prediction mistakes might
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Fig. 2. Content and length of regular secondary structure unchanged. Box
plots and coloring as in Figure 1. Change of regular secondary structure on
mutation given by the composition of predicted helix (A) and strand (B),
as well as the average lengths of predicted helices (C) and strands (D).
The second and third bar on the left in (A) and (B) compare predictions
(light gray) with observations (taken from DSSP, dark gray) for the PDB
dataset; the first bar on the left in (A) and (B) indicates the degree to which
the predictions differ for the PDB dataset (dark gray) and for a set of all
human proteins (light blue). The right-most green bars mark the predictions
for randomly assembled sequences (Section 2, labeled as ‘Comp’). Overall,
neither the length nor the content of regular secondary structure appears to
differ between native and random.

not matter for the aspects of structure that we monitored. In fact, by
the measures that we used to report our results, predictions and
observations were almost identical (Fig. 2: left gray bars in each
panel). The precise levels of helix/strand content and length differed
indeed more between different datasets (PDB subset versus entire
set of human proteins) than between observation and prediction for
any set for which we have experimental information. In other words,
prediction mistakes appeared not to matter for all the proteins for
which we could verify this statement.

Our findings that random and wild-type sequences were predicted
to have similar content of regular secondary structure along with
the observation that mistakes in predicting this were negligible
suggest that the formation of helices and strands is an intrinsic
feature of amino acid sequences. Neither helices nor strands
were predicted to be significantly shortened during our drastic
in silico mutation protocol. Note that this is not a consequence
of the fact that PROFsec is trained to predict a particular
length distribution, because predicted length distributions deviate
substantially between all-helical and coiled-coil proteins. The
maintenance of such regular secondary structure elements would
then appear to come at seemingly low costs, i.e. mutations that
are neutral with respect to structure might be more likely than
might have been anticipated. Finally, we verified that the reliability

of the predictions did not change during mutation (Supplementary
Fig. SOM_10).

3.3 Long regions of disorder sensitive, short not

Arguably, there are two different regimes of disorder (Dosztinyi
et al., 2005; Liu et al., 2002; Obradovic et al., 2005; Peng et al.,
2006; Schlessinger et al., 2007b; Schlessinger et al., 2009): very
short and very long regions. No threshold distinguishes between
these two regimes in a biophysically meaningful way.

In particular, there likely exists an intermediate range that might
belong to both regimes. Here, we followed the typical ‘convention’
in the field and defined as short disorder regions with eight or less
consecutive residues and as long disorder regions with 30 or more
consecutive residues. Thereby, we ignored the uncertain regime in
between these two extremes. In order to establish that our results
did not crucially depend on the particular threshold, we also tested
other thresholds for long disorder, namely 20, 40 and 50. We found
that the trend of loss during in silico mutation is independent of the
chosen cut-off and is even clearer for larger thresholds (40 and 50)
(Supplementary Fig. SOM_09).

First, we observed that regions of short disorder behaved like
regular secondary structure in that their content (Fig. 3B, D and F;
Supplementary Fig. SOM_2D and E) and length (Supplementary
Fig. SOM_2A-C) did not alter on mutation. In stark contrast
was the result for long regions with predicted disorder gradually
diminished over the course of our mutation protocol (Fig. 3A,
C and E; by definition a prediction of 29 disordered residues
for some mutant implies that for that mutant the long disordered
region seemingly ‘disappeared’, e.g. Fig. 3E middle; Supplementary
Fig. SOM_1). The loss on mutation was much more dramatic
for mutations according to PAM120 (yellow in Fig. 3C) than for
those according to the background distribution (green in Fig. 3C).
This is understandable because disordered regions are abundant in
polar residues, and these are more likely to be chosen if mutation
probability is ‘skewed’ toward this abundance. Put differently,
PAM120-driven mutations drifted toward sequences that resembled
regular well-structured proteins and as such had no disorder,
while background-driven mutations yielded sequences that were as
abundant in disorder as the native wild types and therefore had many
long regions with predicted disorder.

The actual numbers in terms of content of predicted long disorder
decreased from ~18% for the native to ~9% for the final mutant
by using the background mutation protocol (Fig. 3C, green). This
reflected the fact that a considerable fraction of the residues in
our DisProt dataset was polar: for mutations according to PAM120
(Fig. 3C, yellow) or BLOSUMG62 (Supplementary Fig. SOM_7), the
content dropped to 0. However, at this level of mutations, almost no
single residue predicted as long disorder in the native was predicted
as disorder in the mutant (Fig. 3A). For some, this might appear to
PAM120.

Studies of particular mutation paths revealed that long disorder
might just appear to vanish suddenly (Fig. 3E). This was partially
a threshold issue: assume a region with 35 consecutive ‘disordered’
residues and assume the mutant loses three on each side (six in
total); we will no longer consider this as long disorder (35-6 <30).
This also explains how additional mutations may recover the long
disorder (Fig. 3E: after solid block of red bars, suddenly one mutant
has disorder again as seen by a single bar below this block).
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Fig. 3. Predicted long disorder changes rapidly. Panels on the left show
results for long regions of disorder (30 or more consecutive residues), those
on the right for short regions (less than eight). The top panels (A and B)
demonstrate how much the predictions of disorder changed over the course of
mutations (y-axis: residues predicted identical as disorder between native and
mutant as percentage of disorder predicted in native). Disorder predictions
differ much more rapidly from native than do secondary structure predictions,
and much more for long (A) than for short (B) disorder. The relative content
of residues in predicted long (C) and short (D) disordered regions diverge
differentially. The first two box plots for (C) depict the observed (dark gray)
and predicted (light gray) disordered content in native sequences. Right box
plots in both (C) and (D) show the disordered situation in the artificially
created dataset sequences (Section 2, labeled as ‘Comp’). For a representative
example (DisProt identifier: DP 00006), the IUPred predictions for long
(E) and short (F) disorder are shown for each mutant: native on top; each
row marks 1 of the 69 PAM120 mutation steps (Section 2). Red lines
mark predictions that fall into the threshold category ((30 or more/less than
eight). Long disordered regions disappear (E) while especially short disorder
remains at both termini, while re- and disappearing in the middle region
during mutation (F).

Another observation reflects one of the important aspects when
studying short disorder: a considerable fraction of the short disorder
is predicted (and observed) near the protein termini (Fig. 3F).
Short disorder ‘comes and goes’ during mutation (middle region in
Fig. 3F). Although this effect is biologically relevant and dominates
the study of disorder in otherwise well-ordered proteins (Bordoli
et al.,2007; Jin and Dunbrack, 2005), it again underlines the problem
of not differentiating between long and short disorder.

Our analyses of regular secondary structure and disorder are based
on very different datasets. PDB is biased in many ways (Liu and
Rost, 2001), one of those pertains to disorder (Liu and Deber, 1999;
Peng et al., 2004). One reason simply is that proteins with disordered
regions pose extreme challenges to structure determination (Burley
et al., 2008; Dunker et al., 2008; Graslund et al., 2008; Liu et al.,
2004; Nair et al., 2009; Romier et al., 2006). To address this
difference, we predicted disorder also for the dataset of well-ordered
proteins from the PDB. As expected, the level of both long and
short disorder for both of those was very low (Supplementary
Figs SOM_3 and 4); given the lack of disorder in these proteins,
we could therefore not observe any significant difference between
close-to-zero in the wild type and close-to-zero in the mutants.

IUPred is arguably one of the best disorder prediction methods
(Bordoli et al., 2007; Le Gall et al., 2007; Schlessinger et al., 2007b;
Schlessinger et al., 2009; Shimizu et al., 2007); however, it is still
only one of many and it has specific strengths and weaknesses.
Therefore, we also predicted disorder with two other state-of-the-art
prediction methods, namely VSL2 (Obradovic et al., 2005; Peng
et al., 2006) and MD (Schlessinger et al., 2009). Although the
predictions for those two differed slightly from those for IUPred,
by the measures we reported here, they revealed exactly the same
trend: while predicted long disorder disappeared on mutation, the
content and length distribution of predicted short disorder remained
largely unaffected by the mutation.

We addressed the impact of incorrect predictions by randomly
introducing errors. At any significant error rate, long disorder
disappeared in the native. This highlights the high prediction
accuracy of today’s methods. For short disorder, the added error
did not alter the content over the course of our mutation protocol
(Supplementary Fig. SOM_8).

As short and long disorders have different physical traits, we need
length thresholds. However, we can drop these thresholds while
monitoring the disappearance of disorder. Toward this end, we began
with all native regions longer than N (chosen in steps of between
20 and 50), and monitored the percentage of disorder predicted
after mutation irrespective of the length of the predicted regions.
We found that long disordered regions indeed get decomposed into
shorter ones and that disorder disappears throughout (Supplementary
Figs SOM_11 and 12).

4 CONCLUSIONS

We addressed the general question whether or not well-ordered
regular secondary structure and disordered regions sustain random
mutations. Is it likely or unlikely that any mutation affects this
particular coarse-grained feature of protein structure (and through
it’s function)? Do random sequences have different content in
secondary structure and disorder than native proteins that have
evolved to satisfy many constraints? Our analysis clearly suggests
two different answers for regular secondary structure and long
disorder. On the one hand, the maintenance of regular secondary
structure might not be too challenging because its formation appears
to be an intrinsic feature of random sequences. It, therefore, appears
surprisingly likely to transit from helix to strand and back. In fact,
this is exactly what we dynamically observed during the course
of our mutations (Fig. 4). On the other hand, regions of long
disorder do not appear to be robust under mutation. Random changes
likely disrupt this feature that thereby appears volatile and unique.
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native, degree of mutation decreases downwards; mutations according to PAM120, Section 2). The sequence runs from the most N-terminal residues (labeled
‘1”) to the most C-terminal ones. Note that although we show only single trajectories, rather than ensemble averages here, almost no helix or strand withstands

the mutation protocol to the end.

This has important impact on how we picture the role of long
disorder in proteins: it is not ‘easy’ to acquire. Prokaryotes have
only ~10-25% of the disorder observed in multi-cellular eukaryotes
(Dunker et al., 2008; Ekman et al., 2005; Liu et al., 2002; Oldfield
et al., 2005; Romero et al., 2004; Schlessinger et al., 2009; Ward
et al., 2004). Our observation of how volatile long disorder is
provides another evidence for the importance of this feature for the
transition from prokaryotes to eukaryotes.

Many SNPs that alter the protein sequence (nsSNPs) appear to be
deleterious. Is this a bias in the experimental technique (more likely
to be observed/reported if deleterious), or is it a genuine feature of
proteins imposed by the sensitivity of protein structure to mutations?
Although our work neither addresses nor answers this question, the
surprising robustness of regular secondary structure might support
the view that protein structure is more flexible and adaptable than
the intricate details of the concert of interacting residues in protein
3D structures might suggest.
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Short description of Supporting Online Material (SOM)

The Supporting Online Material is not essential to support any of the major results
and points of our manuscript. Instead, we provide additional data to support some
of the minor. Most SOM data pertains to disorder predictions.

Fig. SOM_1 establishes that three different disorder prediction methods (IUPred,
MD, VSL) give similar results and shows the overall content in disorder and the
average length of disordered regions throughout the mutation protocol.
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Fig. SOM_2 convenes the same message as Fig. SOM_1 but for short disorder.

Fig. SOM_3 and Fig. SOM_4: While Fig. SOM_1 and Fig. SOM_2 show the “in
silico evolution” for proteins with disordered regions (taken from DisProt), Fig.
SOM_3 and Fig. SOM_4 give the same data for proteins that are largely well-
ordered in the sense that they yielded high-resolution experimental structures that
have been deposited in the PDB.

Fig. SOM_5 depicts the differences in secondary structure predictions between
naturally evolved homologues as taken from the HSSP database. These results
are important in light of those presented in the main paper (Figs. 1-2) by showing
how different the behavior is for divergence under evolutionary constraints
(homologues: observed only what maintains function/structure) and divergence
under random mutations.

Fig. SOM_6 and SOM_7 compare the impact of both PAM120 and BLOSUM®62
mutations on variation in secondary structure and disorder.

Fig. SOM_8 shows the impact of randomly introduced errors in disorder
predictions, i.e. the upkeep of short disorder during in-silico mutation even under
high prediction error rates.

Fig. SOM_9 depicts that the general trend of long disorder, i.e. its loss, during in-
silico mutation seems independent of the chosen cutoff.

Fig. SOM_10 shows that PROFsec’s reliability stays quite constant during mutating
away from the native state.

Fig. SOM_11 and SOM_12 show the behavior of ‘raw’ disorder without any length
cutoff being applied.
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Fig. SOM_1:

A. DisProt — long disorder (IUPred) B. DisProt - long disorder (MD) C. DisProt — long disorder (VSL)
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Fig. SOM_1: Mutation of long disorder in DisProt. (A-C) The average length of long
disordered regions (=30 residues) in DisProt proteins is decreasing over the course of our
in silico mutation protocol (background green, PAM120 yellow, s. Methods) under all three
disorder predictors. First two box plots (Methods) compare observation (dark gray) with
prediction (light gray) in native protein sequences. The right-most green bars represent the
randomly assembled sequences (Methods). (D+E) Content of long disorder drops in both
mutation schemes (green, yellow lines), while the effect is more dramatic with MD (D)
compared to VSL (E). Note that the situation with IUPred is shown in the original paper
(Fig. 3A).
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A. DisProt — short disorder (IUPred)
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B. DisProt — short disorder (MD)
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Fig. SOM_2: Mutation of short disorder in DisProt.
SOM_1. Difference: here we look only at short disorder (= 8 consecutive residues). (A-C)
The average length of short disordered regions (<8 residues) in DisProt proteins stays at
nearly constant level for all three predictors. DisProt mainly contains long disorder hence
the short bars around zero for observations (dark gray). (D+E) Content of short disorder
also stays nearly constant for both MD (D) and VSL (E) predictions (IUPred in the original
paper Fig. 3B).
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Fig. SOM_3:

A. PDB - long disorder (IUPred) B. PDB - long disorder (MD) C. PDB - long disorder (VSL)
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Fig. SOM_3: Mutation of long disorder in PDB. Coloring and labels as in Fig. SOM_1.
Difference: here we look long disorder for proteins from the PDB. (A-C) Average length of
long disorder in PDB stays at zero (degenerated box plots; higher mean values due to
outliers) for both IUPred (A) and MD (B) while VSL (C) shows slightly elevated mean
levels; PAM120 mutation increases the length. (D-F) Content of long disorder also stays at
zero level for IUPred (D) and MD (E) while VSL (F) shows elevated levels.
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Fig. SOM_4:

A. PDB - short disorder (IUPred)

B. PDB - short disorder (MD)
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Fig. SOM_4: Mutation of short disorder in PDB. Coloring and labels as in Fig. SOM_1.
Difference: here we look only at short disorder (< 8 consecutive residues) for proteins from
the PDB. Average length (A-C) and content (D-F) of short disorder in PDB stays on
constant level for all three predictors and are comparable to those in DisProt.
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Fig. SOM_5: Change of predicted secondary structure in HSSP homologues vs.
random mutations. Native sequences were sampled as subset of our PDB set (main text
for more details; note that sampling was imposed by CPU constraints), their homologues
were taken from the HSSP database (grey box plots). At a level roughly corresponding to
30% pairwise sequence identity (corresponding to the minimum threshold for sequence
homology as defined by HSSP), an average Q3 value of ~63% is reached. This is in
contrast to the lower Q3 of ~45% during in silico mutation (yellow and green box plots, also
s. Fig. 1A, both PAM and Background, main text) at this level of sequence identity. This
may be due to the fact that naturally evolved homologs underwent natural selection,
aiming at the upkeep of already established stable folds resulting in an overall lower rate of
change in secondary structure.
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Fig. SOM_6: Secondary structure predictions compared between BLOSUM62 and
PAM120 mutations. Q3 levels in both mutation schemes are nearly identical (A). The

only major difference is for very high levels of divergence in terms of helices: while the

content and length of predicted helices between the native and the final mutant after 69

steps according to BLOSUM are almost identical (B and D), while for PAM120 mutations

there appears a slight, albeit statistically insignificant difference, B+D). The overall major
result, namely that regular secondary structure is an essential feature of random
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Fig. SOM_7:

sequences is valid equally for mutation according to BLOSUM62 and according to
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PAM120.
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BLOSUM62 and PAM120 mutation. Overall, both BLOSUM62 and PAM120 mutations

seem to behave equally for the features of interest, i.e. content of long (A) and short (B)
disorder as well as the lengths of long (C) and short (D) disordered regions. BLOSUM62

seems to work slightly against the upkeep of long and short disordered regions when

Fig. SOM_7: Comparison of behavior of disorder in DisProt proteins during
compared to PAM120.
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Fig. SOM_8:
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Fig. SOM_8: Simulation of errors in disorder predictions. Errors were inserted
randomly into predictions (IUPred) of native sequences of disordered proteins to
demonstrate the impact of false predictions. An error constitutes a switch from predicted
disorder to order state and vice versa on a per-residue basis. The amount of errors was
gradually increased beginning with 20% to 80% (steps of 20%) of residues. Obviously,
long disorder (i.e. =30 consecutive residues) nearly completely disappears (A-D), since
hitting a (disordered) residue in such a region (switching it to ordered state, and thus
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disrupting the long region into shorter regions) is very likely using an error rate of 20% (A)
or more (B-D). On the other hand, using this error scheme, short disorder (i.e. <8
consecutive residues) gets enriched (E-G, 20%-60%) due to the disruption of long disorder
and the (undirected) insertion of new disordered residues. Reaching 80% error rate (H),
the overall level decreases again, since a situation is approached where the predictions
are completely reversed (at 100% error rate). Although very simple, this error scheme
shows that even with high error rates the basic trend of upkeep in short disorder during in-
silico mutation stays.
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Fig. SOM_9:
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Fig. SOM_9: Different thresholds for definition of long disorder. Coloring and labels
as in Fig. SOM_01. Long disorder was investigated in disordered proteins (DisProt
dataset) for three different cutoffs (=20, 40, 50 consecutive residues). Disorder predictions
taken from IUPred. The general behavior of disorder content (A-C) and length (D-F) during
in-silico mutation seems to be independent of the here chosen thresholds: Both features
obviously get reduced during both mutation schemes (see Methods), while this trend is
clearer for higher thresholds (B,C for content; E,F for length) where long disorder

disappears nearly completely.
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Fig. SOM_10:
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Fig. SOM_10: PROFsec reliability relative to level of divergence. PROFsec’s reliability
index (RI, values 0-9) indicates the safety of its three-state prediction (helix, strand, loop)
on a per-residue basis (0: lowest, 9 highest safety), and is investigated here on different
levels of divergence from the native state. The overall (all three states taken together) Rl
(A) seems to be relatively constant, which is also true for strand (C) and loop (D) regions,
while a slightly more dominant decrease for helix regions (B) is visible (mean decrease
from Rl ~5 to ~4). Note that all Rl levels are relatively low due to the circumstance of not
taking sequence profiles into account for predictions (see methods). Overall it could be
stated that PROFsec predictions do not loose their reliability significantly while moving
away from the native state into the realm of artificially created sequences.
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Fig.SOM_11:

A. IUPred — short option B. IUPred — long option
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Fig. SOM_11: Behavior of unfiltered disorder during mutation. Disorder predictions
are here considered in their raw aspect, i.e. without applying any cutoff to filter out
short/long disordered regions. Hence, we present results of IlUPred predictions with either
short (A,C,E) or long (B,D,F) option being applied. The average length of disordered
regions (A,B) and the content in disorder (C,D) get reduced for both mutation schemes
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(PAM120: yellow box plots, Background: green box plots) and options, while this trend is
more dominant for length compared to content. Since both features stay quite constant for
very short regions (s. Fig. 3D, SOM_2A), this suggests that the here observed effect of
decrease is mainly caused by longer regions. To illustrate the change of disorder, the
mutation trajectories for a representative example (DisProt identifier: DP 00006) are shown
for both IUPred options (E short, F long).
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Fig.SOM_12:
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Fig. SOM_12: Decomposition of native long disordered regions. The average length
of disorder (without considering any length cutoff) which originates from natively long
disordered regions (=20 consecutive residues) gets clearly reduced during in-silico
mutation (PAM120 yellow, Background green boxplots). Regions in native sequences
show a mean length of ~50-60 consecutive residues. The length of regions that result from
decay of the original one drops down to ~5 residues at very high divergence. This sheds
light on behavior that is else obfuscated by the application of a minimum cutoff for the
definition of long disorder.
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ABSTRACT

Summary: Many existing databases annotate experimentally
characterized single nucleotide polymorphisms (SNPs). Each non-
synonymous SNP (nsSNP) changes one amino acid in the gene
product (single amino acid substitution;SAAS). This change can
either affect protein function or be neutral in that respect. Most
polymorphisms lack experimental annotation of their functional
impact. Here, we introduce SNPdbe—SNP database of effects,
with predictions of computationally annotated functional impacts
of SNPs. Database entries represent nsSNPs in dbSNP and
1000 Genomes collection, as well as variants from UniProt and
PMD. SAASs come from >2600 organisms; ‘human’ being the
most prevalent. The impact of each SAAS on protein function is
predicted using the SNAP and SIFT algorithms and augmented with
experimentally derived function/structure information and disease
associations from PMD, OMIM and UniProt. SNPdbe is consistently
updated and easily augmented with new sources of information.
The database is available as an MySQL dump and via a web front
end that allows searches with any combination of organism names,
sequences and mutation IDs.

Availability: http://www.rostlab.org/services/snpdbe

Contact: schaefer@rostlab.org; snpdbe@rostlab.org
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1 INTRODUCTION

Resources like dbSNP (Sherry ef al., 2001) and UniProt (Bairoch
et al., 2005) contain many experimentally determined nsSNPs,
but few of these are annotated with respect to function. Some
databases [e.g. PMD (Kawabata et al., 1999)] contain experimental
annotations of functional effects of mutants. However, these are
sparsely populated and do not directly link to dbSNP or UniProt.
For the vast majority of mutations lacking experimental annotation,
we can gauge functional impact only via in silico analysis.

Proper use of computational methods requires specific skills
and resources generally inaccessible to medical researchers or
experimental biologists. To help, we created an MySQL database
readily usable by non-experts. We collected SAASs from PMD,
dbSNP, 1000 Genomes (1000_Genomes_Project_Consortium,
2010) and UniProt ‘variant’s and ‘mutant’s. We also store ‘conflict’
records to illustrate how sequencing discrepancies may lead to
differing interpretations of the functional significance of a given

*To whom correspondence should be addressed.

sequence position. For each SAAS we predict the functional effect
using SNAP (Bromberg and Rost, 2007) and SIFT (Ng and Henikoff,
2001). Where available, predictions are augmented by experimental
annotations and associated human diseases. We also compute
evolutionary conservation of the mutant positions. A web interface
provides convenient access to underlying data via organism,
sequence and mutation ID queries.

2 DATA SETUP AND RETRIEVAL

Database: SNPdbe mutation data comes from dbSNP, UniProt, 1IKG
and PMD (Fig. 1A). UniProt and PMD store protein sequences
explicitly, while dbSNP links to RefSeq (Pruitt ez al., 2007). dbSNP
collects 1KG variants with a time delay, so for SNPdbe we mapped
all 1KG nsSNPs to RefSeq using Annovar (Wang et al., 2010). We
keep only one version of redundant protein sequences, referenced
by md5 checksums irrespective of origin. Redundancy is assessed
at full-sequence identity (maximum one substitution per sequence)
over the entire sequence (+/— leading Met residue). This allows
correlating mutations from different sources referencing the same
sequence. We currently store 1362793 unique SAASs in 158 004
proteins from 2684 organisms covering all kingdoms of life; the
top five contributors are human, mouse, rice, cow and rat. For
each SAAS we provide the following information: (i) SNAP and
SIFT binary predictions of functional effects (neutral/non-neutral).
(i) Evolutionary conservation information from PSIC (Sunyaev
et al., 1999), PSI-Blast (Altschul ez al., 1997) PSSMs and frequency
scores from runs against PDB (Berman ef al., 2000) and UniProt.
(iii) Functional effects from PMD and UniProt. For human SAASs,
disease associations are also available from PMD, UniProt and
OMIM (Amberger et al., 2009) (Fig. 1B). (iv) dbSNP evidence
and average heterozygosity, and (iv) interesting functional/structural
features (UniProt) at the mutation site. Data are stored in an MySQL
database and are downloadable as a dump file.

Web interface: The database is web-accessible allowing
gene/protein ID/name, disease, sequence (or its md5 hash) and
mutant-based queries. Some queries (e.g. md5, gene ID) are
exact. Sequence queries are BLAST similarity based. Keyword
searches (e.g. disease) are ‘loose’, i.e. matched to corresponding
free text fields. The results page lists all SAASs found within the
specified sequence and their functional effect predictions, wild-
type/mutant conservation scores, information on disease (human
only), experimentally derived functional/structural consequences,
changes in position biochemical properties, per-variant validation
status and average heterozygosity. This information is also

© The Author(s) 2012. Published by Oxford University Press.
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41,735 (3%)

643,866
(100%)

dbSNP+1KG
1,101,151 (81%)

unctional

Disease
effect iati

UP & PMD
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dbSNP+1KG & PMD PMD & UP
2,672 (<1%) 2,237 (<1%)

1,649°(<1%)
Fig. 1. Venn diagrams describing the overlap of (A) all SNPdbe component
databases and (B) functional and disease annotations of human SAASs.
Note that <1% of human SAASs have both functional effect and disease
annotations.

accessible via single/batch mutation queries with dbSNP rsids, PMD
or SwissVar IDs or SAASs in the XposY format (and associated
sequence). The user can (i) restrict queries to specific organisms or
protein keywords; and (ii) search for mutants in similar sequences.
Query results may be sorted by different attributes and downloaded
in CSV format. Linkouts to referenced web resources are available.

Example: dbSNP rsid 104894374 describes the mutation R157W
in the RDHS gene. This mutation is associated with eye disease,
Fundus albipunctatus (OMIM 601617.0008). Both SNAP and SIFT
predict this substitution to be non-neutral. Indeed, it results in loss
of activity in the gene product (PMD A010122). By combining
mutation disease associations and their functional effects new
inferences can be made about molecular functions altered in disease.

3 CONCLUSION

SNPdbe is designed to fill the annotation gap left by the high cost of
experimental testing for functional significance of protein variants.
It joins related bits of knowledge, currently distributed throughout
various databases, into a consistent, easily accessible and updatable
resource. The major features distinguishing SNPdbe from other
databases are: (i) the inclusion of a much wider array of organisms
and data sources; and (ii) the explicit differentiation between
functional/structural effects and disease associations. Furthermore,
unlike SNPdbe, existing resources (i) lack experimental annotation
of functional/structural changes or offer only single tool (e.g.
SIFT) predictions (Mooney and Altman, 2003; Thorn et al., 2010),
(i) are limited to naturally occurring variants (Chelala et al.,
2009), (iii) are not consistently updated (Jegga et al., 2007; Wang
et al., 2006) or (iv) do not offer pre-computed effects on a large
scale (Reva et al., 2011; Wang et al., 2010). SNPdbe’s database
schema and management scripts are designed to easily handle the
addition of new sequences and SAASs and the integration of new
predictors and sources of experimental data. Monthly updates are
planned. Information about current versions of included databases
and statistics is available from SNPdbe website. Our ultimate goal

is to make SNPdbe a toolbox for biologists and medical researchers
dealing with mutation data. Computationally acquired predictions
and annotations found in SNPdbe will help design and prioritize
further experimental research.
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Abstract

Background: Amino acid point mutations (nsSNPs) may change protein structure and function. However, no
method directly predicts the impact of mutations on structure. Here, we compare pairs of pentamers (five
consecutive residues) that locally change protein three-dimensional structure (3D, RMSD>04A) to those that do
not alter structure (RMSD<0.2A). Mutations that alter structure locally can be distinguished from those that do not
through a machine-learning (logistic regression) method.

Results: The method achieved a rather high overall performance (AUC>0.79, two-state accuracy >72%). This
discriminative power was particularly unexpected given the enormous structural variability of pentamers. Mutants
for which our method predicted a change of structure were also enriched in terms of disrupting stability and
function. Although distinguishing change and no change in structure, the new method overall failed to distinguish
between mutants with and without effect on stability or function.

Conclusions: Local structural change can be predicted. Future work will have to establish how useful this new
perspective on predicting the effect of nsSNPs will be in combination with other methods.

Background

Protein structures very robust under sequence change
Evolution creates the specific protein landscape that we
observe today. Mutations are random but selection is the
driving force that shapes the observable protein variety by
favoring those deviations that maintain or improve pheno-
type. This constrained sampling process explains the
sequence diversity compatible with a given protein three-
dimensional (3D) structure: over 50-80% of all residues can
be changed without altering structure significantly [1-3].

Local structure change can impact phenotype

Although many different sequences map to similar struc-
tures, point mutants can change structure dramatically
[4-6]. Some of the intricate details of 3D structures are
crucial for function. Therefore, such local conformational
changes may impact protein function and may cause

* Correspondence: schaefer@rostlab.org

"TUM, Bioinformatics - 112, Informatik, Boltzmannstr. 3, 85748 Garching,
Germany
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disease. Usually, this is more likely for structure changes
connected to binding sites. For instance, the disruption
of hydrophobic interactions, or the introduction of
charged residues into buried sites, or mutations that
break beta-sheets often impact phenotype severely and
raise the susceptibility for disease [7-9]. Using 83 X-ray
mutant structures from 13 classes of proteins, an early
work pioneered the prediction of local structural changes
by expert rules operating on position-dependent rota-
mers [10]. It is unclear, how well such an approach
would cope with the protein variety found in the current
PDB [11]. Thus, we followed a different approach. We
compiled a set of structurally superimposed pairs of pro-
tein fragments with identical sequence except for one
central residue mismatch, and applied machine-learning
to predict structural change from sequence.

Methods

Central pentamer data

We extracted 146,296 protein chains from X-Ray struc-
tures in the Protein Data Bank (PDB, July 2010) [11].

© 2012 Schaefer and Rost; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Then we applied two techniques for redundancy reduc-
tion. The first set (dubbed “cdhit98”) contained 24,890
chains; it resulted from clustering with CD-HIT [12] to a
level at which no pair had over 98% percentage sequence
identity. The second set (dubbed “hval0”) contained
3,767 chains; it resulted from filtering at HVAL>0
[2,3,13] (corresponding to ~20% maximal pairwise
sequence identity for alignments over 250 residues). We
chopped each chain in each set into all overlapping frag-
ments of five consecutive residues (pentamers), remov-
ing: (i) pentamers with chain breaks (peptide bond length
>2.5A, as defined in DSSP [14]), (ii) pentamers with non-
standard amino acids, and (iii) all but the first set of
atomic coordinates for residues with alternative locations.
Each pentamer from the first set (cdhit98) was paired
with each pentamer from the second set (hval0).

We selected pairs of pentamers that differed only in the
central amino acid, and that originated from proteins with
over 30% overall percentage pairwise sequence identity.
We also filtered out pairs for which either fragment was
already in a much larger fragment that fulfilled the above
criteria. This procedure yielded 35,533 pentamer pairs. For
each pair, we calculated the root mean square displace-
ment (RMSD) over all C-alpha atoms after optimal super-
position of the two pentamer backbones (McLachlan
algorithm [15] as implemented in ProFit [16]). To turn the
continuous RMSD differences into a binary problem
(mutant changes structure or not), we had to decide what
constitutes a structural effect and what is neutral in that
sense. In lack of a scientifically meaningful definition for
structural change of pentamers, we chose thresholds that
appeared reasonable given the observed distributions and
that separated all pentamer pairs into an even amount of
structurally neutrals and non-neutrals. We defined RMSD
values <0.2A as structurally neutral and values >0.4A as
structurally non-neutral, i.e. as structural change; we
ignored all pairs in between these two. These particular
thresholds assigned 12,046 pentamer pairs to the class of
“structural change” and 13,675 to the class “neutral”. For
each such pair we randomly designated one fragment as
wild type fragment and the central mismatch residue of
the other fragment as the mutant amino acid.

Additional functional data

For comparison, we also used two data sets that had been
used previously (Additional file 1). The first set com-
prised 12,461 functionally neutral and 35,585 functional
effect mutants from 3,444 proteins [17,18]. The second
consisted of 657 mutants having an effect on protein sta-
bility and 652 mutants with no effect on stability covered
by 47 proteins [19,20]. Mutations leading to a change in
the Gibbs free energy (AAG) < -1 kcal/mol or >1 kcal/
mol were considered as non-neutral (i.e. both stabilizing
and destabilizing mutations were taken as assays of
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change); all other mutations were treated as neutral (i.e.
no effect).

Additional prediction methods

Various methods predict other aspects of the impact for
amino acid changes, e.g. effects on protein function or
stability. In particular, we applied SNAP [17] and I-
Mutant3 [21] to test their discriminative power on our
data sets. Both methods return raw numerical scores
reflecting direction and reliability of the prediction.
SNAP values range from -100 (neutral for function) to
100 (change of function). The distance of the actual pre-
diction to the decision boundary (0) reflects the reliability
of the prediction and the severity of the predicted effect
(large distance = high reliability and severity [17]). I-
Mutant3 predicts the AAG value upon mutation. We
adhered to the same decision cutoffs as mentioned above
to define neutral and non-neutral.

Prediction method: basics

We applied logistic regression to learn the structural
change upon amino acid change. Logistic regression is a
parameter-free machine-learning algorithm; we adhered to
an implementation offered by the LIBLINEAR package
(L2-regularized logistic regression, dual) [22].

Many protein features may be relevant for the given pre-
diction task. Our feature construction procedure adhered
to a protocol established during the development of SNAP
[17]. All features were derived from protein sequence
alone and were extracted from PredictProtein [23], a
wrapper that combines a large number of independent
prediction methods. We used three conceptually different
types of features: (1) global features describing the global
characteristics of a protein, (2) local features describing
one particular pentamer and its immediate sequence
neighborhood, and (3) difference features that explicitly
describe sequence-derived aspects by which wild type and
mutant amino acid differ.

(1) Global features: We represented sequence length as
four different values each representing a length interval (1-
60, 61-120, 121-180, 181-240 consecutive residues). The
bin that represented the sequence length was set to 0.5,
bins below were assigned to 1, bins above to 0. Amino
acid composition was encoded by 20 values representing
relative frequencies of standard amino acids. We predicted
secondary structure and solvent accessibility using
PROFphd [24,25]. Three values represented the relative
content of residues in predicted helix, strand and loop
conformation and, similarly, three values were used to
encode the relative content of predicted buried, intermedi-
ate and exposed residues.

(2) Local features: We used features that described the
local sequence neighborhood of the amino acid change.
We considered window lengths of 1 (position of change
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only), 5,9, 13, 17 and 21 consecutive residues centered
on the position of change. Values were normalized to the
interval [0, 1]. The biochemical characteristics of an
amino acid influence the local structural conformation.
We considered six different structural and biochemical
propensities: mass, volume [26], hydrophobicity [27],
C-beta branching [28], helix breaker (only proline) and
electric charge of side chain. Evolutionary information
contained in sequence profiles is a valuable source to
obtain knowledge about which amino acids are compati-
ble with a specific region in the protein. While some resi-
dues are tolerated others could disrupt structure. We
used position specific scoring matrices (PSSMs), relative
amino acid frequencies and the information content per
alignment position taken from PSI-BLAST [29] runs
(options: -j 3 —b 3000 —e 1 —h le-3) against a sequence
database consisting of UniProt [30] and PDB [11].
Sequences were redundancy-reduced to a level where no
protein pair had more than 80% sequence identity [12].
Furthermore, we took position-specific independent
counts (PSIC [31]) and adhered to a protocol necessary
for sequence extraction and generation of multiple align-
ment as described elsewhere [17]. In addition, we used
the following predicted structural and functional features:
secondary structure [32,33] and solvent accessibility
[24,25,32], protein flexibility [34], protein disorder
[35-38], protein-protein interaction hotspots [39-41] and
DNA-binding residues [42]. Most prediction methods
used to generate features returned both a discrete predic-
tion and a score reflecting the strength and reliability of
the prediction. We incorporated both outputs in our fea-
ture set. Two-state predictions (disorder, protein and
DNA interaction) were encoded as two mutually exclu-
sive combinations of 1 and 0, each representing the pre-
sence (1) and absence (0) of a state (e.g. disorder vs. no
disorder). Three-state predictions (secondary structure
elements helix, strand, other and solvent accessibility
states buried, intermediate, exposed) were handled simi-
larly. Flexibility was predicted as a numerical value only.
We considered information about the location of the site
of change in the sequence relative to a protein domain as
an important feature. For example, a hydrophobic-to-
polar exchange within the core of a domain may have a
more severe impact on local structure than a change that
happens in a surface loop. We extracted relevant per-
residue information out of the protein family database
Pfam-A [43] using the output from HMMER3 [44]. Of
specific interest was the information about whether the
residue resided in a domain, the conservation of that
position within the domain alignment, how well the resi-
due fitted into the alignment position and the posterior
probability of that match.

(3) Difference features: Of particular interest were fea-
tures that captured the difference in characteristics
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between the two differing central amino acids in a pair of
pentamers. We represented the difference of a particular
property separately by its absolute and its sign, encoded
as 0 (negative) or 1 (positive). The following properties
were encoded in that respect: Change in any of the six
amino acid propensities, difference in conservation scores
(PSSM, relative frequency, PSIC), change in IUPred pre-
dictions for both short and long disorder, change in pre-
dicted secondary structure and solvent accessibility. For
the latter two we ran PROFphd on raw sequence rather
than sequence profile. Although this mode resulted in
reduced prediction performance, it allowed us to observe
an actual difference in the prediction outcome, which
would have been disguised by the use of sequence align-
ments otherwise.

Prediction method: feature selection

We concentrated the training of our model only on the
most predictive sequence features. Toward this end, we
considered one fifth of the pentamer pairs (2,243 structu-
rally non-neutral, 2,882 neutral) and ensured that those
pairs were derived from proteins without significant
sequence similarity (EVAL>10-3) to any protein in the
remaining four fifth of the data. Those 5,125 instances
were further partitioned into ten subsets. Nine such sets
participated in training a logistic regression model, while
its performance was tested on the remainder. We rotated
ten times over all sets such that each instance served once
during testing and training and guaranteed that no signifi-
cant sequence similarity existed between train and test
folds (EVAL>10-3). Before each new rotation, a set of fea-
tures for training and testing the model was determined
by the following iterative protocol. We started with one
feature and established its predictive performance during
one complete rotation as explained above. We did that for
all global and difference features as well as every combina-
tion between local features and window lengths. We mea-
sured feature performance by means of average AUC (area
under the receiver-operator curve) derived from rotating
ten times over the testing folds. The best performing fea-
ture was automatically included for the subsequent evalua-
tion of the remaining features. We stopped this forward
selection after no further increase in average AUC>0.001
was observed.

Performance estimates

We assessed performance only on the test sets (as
described above). In lack of a biological intuition for how
to measure the success of our prediction method, we fell
back to standard measures. Following the typical acro-
nyms, we used TP (true positives) to denote pairs correctly
predicted to change structure (positive) and FP (false posi-
tives) are neutral pairs predicted as change. In analogy,
TN (true negatives) describes correctly predicted neutral
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pairs (no change) and FN (false negatives) are structure-
changing pairs incorrectly predicted as being neutral.
With these, we compiled ROC (Receiver Operating Char-
acteristic) plots, as well as the True Positive Rate (TPR),
and the corresponding False Positive Rate (FPR) defined
by:

TPR = TP / (TP + FN) FPR=FP /(EN+TN) (1)

The area under the ROC-curve (AUC) averaged over ten
rounds of training and testing served as a single perfor-
mance estimator. We also employed the overall two-state
accuracy, often referred to as the Q, measure. Finally, we
monitored class-specific values for AccuracyC, i.e. the
accuracy for the class “structural change”, AccuracyN
(accuracy for the class “neutral”), CoverageC (coverage for
class “change”) and CoverageN (coverage neutral) defined
by:

Q, =(TP +TN) /(TP + FP + TN + FN) ()

AccuracyC = TP / (TP + FP)
AccuracyN = TN / (TN + FN)

CoverageC = TP / (TP + FN)
CoverageN = TN / (TN + FP)

Our logistic regression model yielded a probability for
an instance to be structurally non-neutral rather than a
discrete class label. By iterating over different probability
thresholds, we sampled a ROC-like space of Accuracy-
Coverage pairs for each of the two classes.

Box plots

We presented distributions through box plots. The lower
and upper box edges depict the first and third quartile,
respectively. The length of a box is the interquartile range
of the distribution. The bold bar inside the box represents
the median, while dashed lines reach to the most extreme
data point that is no more than 1.5 times the interquartile
range away from the upper or lower box edge. It is worth
noticing that per definition the box covers half of the
distribution.

Results and discussion

Fitting parameters to observations easily ends in the trap
of over-optimization [45]. We have addressed this issue in
two ways (Methods). Firstly, we carefully applied standard
cross-validation techniques. This included setting penta-
mer pairs aside that were used only for feature selection,
ascertaining minimal sequence similarity between cross-
validation sets, and avoiding to over-sample the data set.
Secondly, we compared the final method on completely
different data sets.

Evolutionary and structural features most predictive
Our forward selection scheme (Methods) yielded the fol-
lowing features as most informative (Fig. 1): difference
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in PSIC between “native” and “mutant”, predicted sec-
ondary structure (w=17), BLAST information for each
residue (w=21), residue flexibility (w=21), difference in
PSSM and predicted secondary structure between
“native” and “mutant”, HMMER scores for fitting amino
acids into a PFam domain alignment (w=13), predicted
protein-protein interaction hotspots (w=13), and finally
the amino acid volume (w=5). Due to the specific
encoding of those properties (Methods), the overall fea-
ture space covered 147 numerical feature values.

Three features dominate, most features unstable

For the final assessment of our method, we applied full
cross-validation. However, in this paragraph, focus is on
assessing the relative contribution of input features.
Toward this end, we only used one fifth of the data as
one attempt to avoid over-fitting. The numbers are,
therefore, only relevant in a relative way.

The success of the method was dominated by the first
three features, as indicated by the steepest ascent in aver-
age AUC (Fig. 1, first three box plots and solid line).
Already the very first property alone (difference in PSIC
values between wild type and mutant residue) gave an
AUC of almost 0.72 (compared to the random value of
0.5). With the third feature (BLAST information per posi-
tion, w=21), the discrimination reached an AUC of
almost 0.82, close to the performance maximum. The
inclusion of the last feature (residue volume) gave an
AUC of ~0.84 (Fig. 1, last box plot). Thus, the most infor-
mative feature increased the AUC by 0.2, the last six
together by only one tenth of this.

The per-feature performance varied strongly in their
AUC distributions (Fig. 1, long box plots). While this var-
iance was most pronounced for the first feature (PSIC
difference), the trend continued throughout the feature
selection (decrease in variability easily explained by the
decreasing performance). In the performance plateau
regime, features were no longer distinguishable by the
distributions of their ten AUC values (Fig. 1, nearly com-
plete box plot overlap after the third feature). Neverthe-
less, we stopped the feature selection when the
performance did not improve more than AUC>10-3.
This early stop was implemented as another safeguard
against over-fitting.

Sequence-based prediction of structural impact successful
All performance measures reported in following were
compiled from a 10-fold cross validation (Methods). The
logistic regression model estimates the probability for
structural change. Through a simple threshold, this prob-
ability gives a binary prediction (e.g. change>0.5, neu-
tral<0.5) with an overall two-state per-residue accuracy
Q,>72%. However, we also established ROC-curves and
accuracy-coverage plots by dialing through the whole
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Figure 1 Structural and evolutionary features most predictive. Input features according to their cumulative contribution to performance
measured by AUC, i.e. the area under the ROC curve (AUC* indicates that these values refer to results for a subset of the full cross-validation
set). Our forward feature selection scheme suggested that three features raised performance above 0.8: evolutionary information (PSIC [31] diff),
predicted secondary structure (from PROFsec [32,33]) around mutant (mutant position + 8, i.e. 17 input units), and the PSI-BLAST information per
residue for 21 consecutive residues. Additional six features only marginally increase performance up to mean AUC* ~0.84: predicted flexibility
(PROFbval, w=21), difference in both PSI-BLAST PSSM (PSSM diff) and predicted secondary structure scores (PFOFsec diff), the fit of change
position into a PFam domain (PFam fit, w=13), scores for predicted protein-protein interaction hotspots (ISIS, w=13) and residue volumes
(VOLUME, w=5). High variability in AUC* distributions (long box plots, strong overlap between box plots) indicates instability in selected features.

spectrum of probability values (Fig. 2A). The final model
reached an overall AUC of ~0.8.

Both above measures assess overall performance with-
out explicitly revealing per-class (change/neutral) levels.
We investigated pairs of coverage/accuracy values
sampled at different probability thresholds. More than
half of neutral and non-neutral predictions (52%)
reached around 80% accuracy (Fig. 2B); for higher accu-
racy, the correct predictions were dominated by predic-
tions of effect.

These results suggested that sequence suffices to pre-
dict the impact of point mutations upon structure
through machine learning. This is particularly remark-
able in light of the fact that pentamer conformations
depend crucially on their structural environment outside

the windows that we have considered as input features
in our prediction method [46-48].

Structural effect predictions enriched in functional impact
Our explicit objective was to predict the impact of single
point mutations upon local structure. The implicit
objective was to also develop a new perspective that aids
in the prediction of how mutations affect function.
While it is clear that the subset of all mutations that
locally change structure will be enriched in mutations
that also affect function, the inverse is not true: muta-
tions that do not change structure may or may not
change function, i.e. will not be enriched in “functionally
neutral”. If our prediction method captured important
aspects of structural change, at best its prediction of
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structural impact will be enriched in those with func-
tional impact.

We tested this alternative perspective on performance
in two ways. On the one hand, we used a data set distin-
guishing amino acid mutations (nsSNPs) that impact
function from those that do not. On the other hand, we
used a data set of mutants that do and do not impact
protein stability. Two results stood out from this analysis.
First, mutations predicted to affect structure were
enriched in those that also affect function (Fig. 3, ascend-
ing dashed curve). Second, the enrichment was propor-
tional to the severity of predicted structural change:
starting at over 76% to values over 81% at a probability
>0.9 (Fig. 3). We observed a similar trend for the stability
data: enrichment in predicted structural effect mutations
was 8-13 percentage points above random (random: 50%,
enrichment: 58%-63%, Fig. 3). Due to little sample size,
the stability enrichment was less significant than that for
functional impact.

The above results strongly suggested that our method
captured important information beyond its explicit train-
ing task. The enrichment over the background might not
seem particularly strong (for function: background about
74% vs. 81% predicted, for stability: background 50% vs.
63% predicted). However, it remains unclear what to
compare this enrichment with: some mutations affect
structure but not function. So what would the enrich-
ment become if we had the complete experimental infor-
mation correlating all possible assays for structure and
function change? Does our method pick up a significant
fraction of the possible signal? We have no means of
answering this question. However, our prediction method
undoubtedly captured a signal pointing into the expected

direction: The increasing severity of structural effect
upon amino acid change is linked with an accumulation
of mutants having an effect on protein function or stabi-
lity, and this achievement was truly “novel” and it pro-
vides information that seems orthogonal to what any
other method could have provided.

Signal for the reverse: predicted functional impact more
pronounced in structural change
In the previous paragraph, we established that our struc-
ture impact predictions capture some signal of functional
change. What about the opposite, i.e. to which extent do
methods that aim at predicting impact on function (e.g.
SNAP [17]) and on stability (e.g. [-Mutant3 [21]) correctly
capture the impact of mutations upon structure? First, we
provided the “background” by the application of our struc-
tural effect method (Fig. 4A+D; data for cross-validation).
Both SNAP (Fig. 4B+E) and I-Mutant3 (Fig. 4C+F) failed
to separate mutations with and without impact on struc-
ture. SNAP at least was able to observe some signal: very
few mutations with impact on structure were predicted at
scores corresponding to predictions of strong effect upon
function. At the default probability threshold of 0.5 our
method correctly predicted 69% of all effect (Fig. 4D left
dark blue bar), and 76% of all the neutral pentamers
(Fig. 4D, right light blue). The corresponding numbers
were 39% functional effect in structural effect / 88% func-
tional neutral in neutral for SNAP (Fig. 4E), and 33% effect
on stability in structural effect / 72% no effect on stability
in neutral for I-Mutant3 (Fig. 4F).

One conclusion from applying SNAP and I-Mutant3 to
our data is that only our method succeeded in managing
the task that we had set. One possible explanation is that
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our task is incorrectly formulated, i.e. our data set of pen-
tamers with and without local structural change is wrong.
Imagine, we assigned labels to pentamers randomly. Then
SNAP and I-Mutant3 would fail. If the labels had truly
been random, our own method would fail, too. Assume
they are not random but biophysically meaningless (e.g.
mutations to aromatic amino acids cause change, all
others are neutral). If this assumption were fully true, our
method would not have picked up a signal in the other
data sets that we tested (Fig. 3). Furthermore, if our data
set were fully non-sense, SNAP could not have picked up
a weak signal. The fact that [-Mutant3 does not pick up a
signal may point to the difference between local changes —
as targeted here — and global changes — as targeted by
I-Mutant3.

All the above considerations support the view that our
definition of local structural change captures an impor-
tant feature of the response of proteins to amino acid

changes, and that the method introduced here succeeds
at solving the task that we posed.

Conclusions

How do point mutations change the life of a protein?
Here, we introduced three new views toward tackling this
question. Firstly, we introduced a different perspective of
change. Structural effect by our definition is perceived as
two protein fragments having a significant dissimilarity in
backbone conformation. Secondly, we created a new data-
set that allowed us to successfully train a machine-learning
model with the incentive to separate structural neutral
from non-neutral fragments. Thirdly, we established that
both our method and definition of structural change also
capture to some extent the impact of change on protein
function. It remains to be investigated in more detail how
exactly the new method can help in annotating the impact
of amino acid changes and nsSNPs.
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Figure 4 Correlation between structure and function not picked up by other methods. We applied three prediction methods to our
dataset of structural effect: (A, D) the new method introduced here, (B, E) SNAP [17] predicting impact on function, and (C, F) I-Mutant3 [21]
predicting the impact on stability. In lack of a better alternative, we chose the default threshold for each method (horizontal dashed lines) to
distinguish neutral from effect. The method introduced here that is specialized to separate structural effect from neutral performs best at this
task (A: little overlap between boxes; note: data in cross-validation mode of our method). The distributions from SNAP (functional effect
prediction) and |-Mutant3 (stability prediction) both do not capture the structure signal.
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Abstract

not linked to disease.

Background: Non-synonymous single nucleotide polymorphisms (nsSNPs) alter the protein sequence and can
cause disease. The impact has been described by reliable experiments for relatively few mutations. Here, we study
predictions for functional impact of disease-annotated mutations from OMIM, PMD and Swiss-Prot and of variants

Results: Most disease-causing mutations were predicted to impact protein function. More surprisingly, the raw
predictions scores for disease-causing mutations were higher than the scores for the function-altering data set
originally used for developing the prediction method (here SNAP). We might expect that diseases are caused by
change-of-function mutations. However, it is surprising how well prediction methods developed for different
purposes identify this link. Conversely, our predictions suggest that the set of nsSNPs not currently linked to
diseases contains very few strong disease associations to be discovered.

Conclusions: Firstly, annotations of disease-causing nsSNPs are on average so reliable that they can be used as
proxies for functional impact. Secondly, disease-causing nsSNPs can be identified very well by methods that predict
the impact of mutations on protein function. This implies that the existing prediction methods provide a very
good means of choosing a set of suspect SNPs relevant for disease.

Background

Evolution leads to genetic diversity

The selection of survival under changing conditions
guides the cell’s genetic makeup (“genotype”) that is
dynamically fit for retaining important cellular functions
(“phenotype”). Today’s genetic landscape represents the
current state of a sampling process that continuously
creates new phenotypes. This process yields genetic var-
iation across and within species. In human, single
nucleotide polymorphisms (SNPs) are essential for
genetic diversity [1,2]. Non-synonymous SNPs (nsSNPs)
alter the amino acid sequence. Some of these mutations
affect protein structure and/or function and could
increase susceptibility to disease.
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Munich, Germany
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Do disease-causing mutations impact protein function?
Disease-causing mutations occur often inside the protein
(buried) and at hydrogen-bonding residues [3-5]. Protein
function is often associated with evolutionarily conserved
residues [4,6-9]. Most known disease-related nsSNPs in
proteins of known 3D (three-dimensional) structure
appear to affect structurally important residues and sites
relevant for function [4]. For instance, disease-associated
mutations can affect protein interactions [10]. In protein
kinases, they have been shown to cluster into the function-
ally important catalytic core [11,12]. The above trends
confirm the expectation that mutations cause disease
because they damage important proteins.

Experts have established the above trends by laboriously
inspecting small sets of well-curated proteins. Could less
well-versed experts with better algorithms have established
valid trends about disease-causing mutations for large data
set by automatically extracting data set of disease-related
mutations and their predicted functional effects? At

© 2012 Schaefer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Schaefer et al. BMC Genomics 2012, 13(Suppl 4):S11
http://www.biomedcentral.com/1471-2164/13/S4/511

OMIM'’s infancy, a few years ago, we failed to accomplish
this; i.e. observed trends did not differ much from random.
This has changed. Here, we provide data that strongly sug-
gest an affirmative answer to the question and demon-
strate that we have a large repository of disease-causing
mutations. To pick the most important practical result of
our work: today’s disease-causing mutations can serve as
an excellent proxy for “change of function”.

Methods

Data sets

We used SNPdbe [13] as the underlying source for amino
acid substitutions, functional effect annotations and dis-
ease relations. This comprehensive new resource inte-
grates variants from dbSNP [14], Swiss-Prot [15], PMD
[16], and OMIM [17] and annotations of functional effects
(from Swiss-Prot and PMD) and disease (from SwissVar
[18], PMD and OMIM). The term ‘genetic disease’ is
rather heterogeneous, covering Mendelian, monogenic dis-
orders and polygenic diseases, exhibiting more complex
genotypic patterns. Here, we do not differentiate between
the different disease-types. Instead we aim at analyzing all
disease-causing mutations.

We created the following five subsets from SNPdbe
(Additional file 2). (1) Set of disease-related + observed
effect mutations: We collected 1,105 human nsSNPs
(from 217 proteins) that were annotated to be both dis-
ease-causing and functionally non-neutral. (2) Set of dis-
ease-related mutations: We obtained a set of amino acid
substitutions in human proteins with disease-association.
We extracted 26,404 mutations (3,419 proteins) with dis-
ease annotations but no annotated functional effect. (3)
Set of observed effect mutations: We collected 36,317
mutants in 3,790 proteins with experimentally observed
effect. We excluded mutations with disease associations.
This set constitutes a part of the “functional effects” sets
annotated in PMD; it served as the positive training set
for SNAP [19]. Note that after our filtering the resulting
set of mutations with observed effect and the set of dis-
ease-related mutants did NOT overlap. (4) Set of muta-
tions with unknown disease relation: We extracted
251,414 variants (28,913 proteins) without known disease
associations. (5) Set of random mutations: We randomly
selected one mutation in each of the 28,913 proteins
from the set of mutants of unknown disease relation such
that the mutated position was maximally distant from
any other mutation observed in the given protein.

Prediction of effect

For the vast majority of point mutants (single amino acid
changes or nsSNPs) in human, the impact on protein
function remains unknown. For all mutations in the
above four data sets (disease-causing, disease-relation
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unknown, observed function-changing, and random), we
predicted their effects on function with SNAP [19] and
SIFT [20]. Both methods provide binary classifications
(effect/neutral) along with a more detailed score. SNAP
scores range from -100 (strongly predicted as neutral) to
100 (strongly predicted to change function); the distance
from the binary decision boundary (0) measures the relia-
bility of the effect. Essentially, stronger predictions are
also more reliable, i.e. the higher the score, the more
likely the mutation impacts function [19,21,22]. For a
small data set, we previously established that SNAP
scores correlate with the severity of change; i.e. high
(positive) SNAP scores relate to more severe functional
effects [19,21,22].

SIFT [20] scores range from O to 1 and aim at charac-
terizing the normalized probability of tolerable amino
acid substitution. Values <0.05 imply prediction of func-
tional change; all other values are considered neutral. As
with many other prediction methods, the distance to the
decision boundary (0.05) reflects the reliability of a parti-
cular prediction [23]. For many prediction methods
developed in our group (protein-protein binding [24-26],
protein-DNA binding [27], backbone flexibility [28]), the
strength of an effect correlated with prediction strength,
e.g. ISIS predicted binding hot spots stronger than other
residues involved in the interaction [26]. Although we
never used the strength of an effect to train our methods,
this correlation is intuitive: stronger effects are more con-
sistent and therefore become stronger carved into the
machine-learning model. Similarly, SIFT scores could be
used to prioritize amino acid substitutions [23]. In this
perspective, we consider the distance from the default
decision boundary (0.05) as the magnitude of the effect.

SNAP and SIFT aspire to solve the same problem with
different means. SNAP was trained on literature-derived
[16] mutants that are either functionally similar to the
wild-type (neutral) or alter function (effect) in either direc-
tion (decrease and increase of function). SIFT on the other
hand infers probabilities of functional change from residue
conservation in alignments of evolutionarily related pro-
teins. While SNAP operates on an experimentally substan-
tiated definition of change, SIFT uses conservation scores
of amino acids as a proxy for functional change. Although
both methods largely capture the underlying biological
meaning of functional change, their predictions disagree
often. Thus, the methods are likely orthogonal, picking up
different aspects of protein function.

In addition, we applied PhD-SNP [29] to predict
whether mutations in all five sets are disease-causing or
neutral. PhD-SNP offers several modes striking different
balances between runtime and performance. We used
the most accurate mode that uses both sequence and
evolutionary profiles.
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Box plots

We represented our resulting distributions using box
plots [30,31]. The lower and upper box edges depict the
first and third quartiles of the distributions, respectively.
The length of the box is the interquartile range of the
distribution. The bold bar inside the box represents the
median, while dashed lines reach to the most extreme
data points, that are no more than 1.5 times the inter-
quartile range away from the upper or lower box edge.
Note that each box covers half the distribution.

Results and discussion

Disease-causing mutations strongly predicted to change
protein function

We applied SNAP and SIFT to the 26,404 annotated
disease related mutants (Methods). At the default
threshold, SNAP predicted over 86% of the disease
related mutations to impact function (Fig. 1A, B, 2) and
SIFT ~59% (Fig. 2, Additional file 1). SNAP predictions
were very strong: about half of the effect predictions
had levels of severity of >40 (Fig. 1B, dashed black
curve).

In our experience, SNAP scores >40 are exceptional
when applying the method to new data. To clarify this
point, the observed effect mutations were the very same
data set that trained SNAP. We ascertained that this set
had no overlap with the disease related mutations (Meth-
ods). Usually, machine-learning methods perform much
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better on the training than on the testing set. This also
holds for SNAP; hence, the distribution of SNAP scores
for the training set of observed effect mutants is expected
to be closer to ‘more effect’ than for any other data set.
We observed the opposite (Fig. 1B: red vs. dashed black
lines): effect predictions were stronger for the disease
related mutations than for our observed effect training
set, e.g. while just over 40% of the training set reached a
score >40, 47% of the disease related mutations did. A
difference of seven percentage points might not be per-
ceived as high, but the effect is significantly higher for
comparison to testing on the training set. SIFT overall
also predicted the disease related mutations stronger
than the observed effect data, but the difference was not
significant (Additional file 1).

Do disease-related mutations with an observed effect
alter function even more? We analyzed the predicted func-
tional effect of disease-associated mutations with observed
effect (disease-related+observed effect). About 90% were
predicted to impact function (4% more than for disease
related), while over 53% had SNAP scores higher than 40
(6% more than for disease related; Fig. 1A, B solid black
line, Fig. 2). SIFT showed a similar trend: 66% in the set of
disease related+observed effect compared to 59% in disease
related mutations (Fig. 2, Additional file 1). This suggests
that the most reliable source of impact mutations is by
connecting disease relations and independent experimen-
tal observations.
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Figure 1 Disease-causing mutations have highest scores SNAP predicted the impact of function for five different data sets of point
mutations: disease related + observed effect and disease related mutants, mutations with observed effect, unknown disease relation, and random
mutations. For each set we display the predicted functional severity of mutations. (A) Scores above zero (horizontal line) correspond to effect,
scores below to neutral, the distance from 0 correlates to severity; lower/upper bound and bar in the box represent the lower/upper quartile
and median. 90% of disease related+observed effect and over 86% of the disease related mutations were predicted to effect function, compared to
only 51% in mutations of unknown disease relation. Effect predictions dominated the observed effect mutants less (76%) than the disease related
mutants (86%). The effect in random mutations (44%) provided an upper bound for effect mutations in proven non-disease related variants. (B)
Cumulative distributions of predicted functional severity; points on a curve correspond to fractions (y-axis) of mutations with SNAP scores (x-axis)
> this value. The vertical line separates neutral from effect. Disease-causing mutations were predicted to be most severe (black solid and dashed
lines above all others). These results suggest that change in function may explain most disease-related mutations.
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Figure 2 Effect most prevalent in disease mutants For each set
we show the fraction of mutants with predicted effect (SNAP, SIFT:
functional effect, PhD-SNP: disease). Disease predictions taken from
PhD-SNP (light blue bars) confirm the major observation found in
functional predictions (black+dark blue bars): observed effect mutants
have high impact on disease. More than 64% of these are predicted
to be disease-causing while only 27% of mutations of unknown
disease relation are predicted to cause disease.

As negative control, the predictions differed greatly for
the 251,414 mutants with unknown disease relation.
First, only about 51% of those were predicted to have an
effect by SNAP (Fig. 1A, B, 2), and only 39% by SIFT
(Fig. 2, Additional file 1). Second, only 12% of those had
a SNAP score larger than 40 (Fig. 1B, dashed green
curve).

Many mutations with unknown effect predicted to alter
function

SNAP and SIFT predicted much more effect for disease
related mutations than in mutants with unknown disease
relation. Still, many of those mutations were predicted
to change protein function. However, much fewer
mutants with unknown disease relation were predicted
to significantly change function than the disease related
mutations (Fig. 1B: strong effect for 14% of mutants
unknown disease relation - dashed green line - vs. 48%
of disease related mutations - dashed black line). Com-
paring the prediction trends between the two data sets
suggests that the mutations of unknown disease relation
will never become a ‘disease-rich’ set (i.e. through newly
discovered disease associations). Random mutations
were even less often predicted to have strong effect
(~7%, Fig. 1B, dashed blue line). This result suggests
that many experimental annotations of ‘functional
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impact’ remain to be determined/observed for the set of
mutations with unknown disease relation (roughly > 7%-
14%).

Same trend found in predicted disease mutations

If disease related can serve as a good proxy for (strong)
functional impact, then a method trained to predict dis-
ease-causing mutations should reveal the reverse and
thus confirm the same: predicted disease is expected to
be enriched in observed effect compared to mutations of
unknown disease relation. We analyzed the fraction of
predicted disease by applying PhD-SNP (Methods) to
our five data sets. PhD-SNP predicted >64% of the
observed effect mutations as disease related (Fig. 2),
while only 26% of mutations with unknown disease rela-
tion were predicted to be disease associated. Further-
more, we confirmed the other observations already
found in functional impact predictions: Random muta-
tions appear to have the lowest impact on disease (only
22%, Fig. 2).

PhD-SNP predicted both disease-related sets to con-
tain most disease mutants (86% in disease related
+observed effect and 74% in disease related, Fig. 2). This
was expected due to the important overlap between our
data and the training set of PhD-SNP [29]. Nonetheless,
the increase in predicted-disease mutations of 12% once
again suggested that observed effect mutants play a
major role in disease.

Our findings show that if a mutation leads to disease
then a change in function plays a major role in explain-
ing the cause (59%-86%). This finding cannot be
inverted due to the overlap of score distributions of dis-
ease related mutants and mutants with unknown disease
annotation (Fig. 1A, Additional file 1); i.e. strong effect
on function does not imply disease.

Our comparison between mutations annotated as dis-
ease related and those experimentally annotated function
changing (observed effect) does not imply that there is
anything special about disease-causing mutations.
Instead, our findings highlight differences in the severity
of functional effect. That is, on average, assuming that a
disease causing mutation has a functional effect is more
reliable than experimentally evaluating functional change.

Conclusions
We compared disease-associated single point mutations
(nsSNPs) predicted to change protein function with
those of unknown disease-association. Implicitly, we
tested the reliability of annotations that link mutations
to disease and the extent to which predictions of func-
tional effect overlap with disease causation.

As opposed to other studies addressing this question
[3-6,10-12], we used predictions of functional effect to
determine the fraction of deleterious point mutations in
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two different populations of human variants: disease
related (or disease-causing) mutations and mutations
without any knowledge of phenotypic effect. The major
findings were: (1) annotations of disease-causation pro-
vide a good approximation of functional effect. (2)
Methods developed to predict the impact of mutations
onto protein function clearly identify disease-causing
mutations as those that change function. In other
words, their predictions provide a valuable first step
towards the study of the molecular impact of disease.
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