A Generalized Context-aware Architecture in
Heterogeneous Mobile Computing Environments

Robert Schmohl and Uwe Baumgarten
Department of Informatics
Technische Universitidt Miinchen
D-85475 Garching bei Miinchen, Germany
Email: schmohl@in.tum.de, baumgaru@in.tum.de

Abstract—The rapid development in the mobile computing
domain has significantly expedited the utilization of context-
aware systems. Present approaches utilizing awareness of context
specialize on their unique domain of employment. Although
similarities between those approaches exist, the correspondent
concepts and systems are vastly heterogeneous. Another aspect
of the rapid evolution of mobile computing is the emergence
of a highly heterogeneous spectrum of technologies. This issue
complicates the demand for interoperability, which is inherent in
mobile computing environments. However, as with context-aware
research, most of present approaches addressing heterogeneity
are specializing on solving the problem domain-specifically. In
this paper, we present a conceptualization on generalizing both
context-awareness and heterogeneity-handling in mobile comput-
ing environments. Concluding, we derive a general architecture,
which overcomes the heterogeneity issues present in both context-
awareness and interoperability domains.

I. INTRODUCTION

The rapid evolution of mobile computing has had a concur-
rent effect on related research domains such as context-aware
computing [1]. This has lead to a vast amount of experimental
systems being employed for a large spectrum of use cases.
Due to the individual focus of each approach on its target
domain, naturally, all of the approaches make the current state
of context-aware computing appear heterogeneous.

Furthermore, mobile computing is characterized by a
high level of heterogeneity itself, since standards for the
exchange of information (communication protocols, work-
flows,information display, etc.) are either not existent or not
necessarily commonly obeyed by device manufacturers, soft-
ware developers and network providers [1]. This aspect is
especially reflected by heterogeneous characteristics of mobile
devices, operating system, resources and network capabilities
[2].

Our goal is to overcome those heterogeneity issues in
the domain of context-aware computing. We have chosen to
address the problem with two different approaches:

o Generalizing context-aware systems: Our focus in this ap-
proach is set on identifying common concepts in context-
aware computing approaches, which allows us to devise
a general concept for context-aware system development.

o Generalizing heterogeneity-handling techniques: The
goal of mobile computing suggests including devices
spanning the entire hardware spectrum [3]. This require-
ment includes the appliance of various use cases, which

are usually handled individually. Hence, we focus on
identifying common heterogeneity-handling techniques to
derive a general architecture enabling general interoper-
ability.

Both approaches excel the effort to generalize the corre-
spondent sub-domains, which we consider relevant for our
objective. In this paper, we document both of the stated
approaches to inferentially derive a concept unifying both.

The rest of the paper is structured as follows: Section II
outlines the work of related research groups. In section III
we document our effort to unify various concepts excelling
awareness of context and depict a general architecture. Section
IV discusses techniques on handling heterogeneity aspects in
mobile computing deriving a generalization as well. Consec-
utively, we reason an abstract architectural concept enabling
context-awareness in heterogeneous environments in section
V. Section VI summarizes the work documented here and
gives an outlook on our future work.

II. RELATED WORK

Our research documented in this paper is based on the
research conducted by groups, which are active in the same do-
mains of context-awareness and heterogeneity-handling. The
authors of [4], [5] and [6] have conducted surveys in the
context-awareness domain, whereas the work documented in
[2] and [3] describes middleware approaches for this area of
research. The authors of [7] have reasoned a well formed
generic workflow for context-aware computing.

Regarding research focussing on heterogeneity-handling so-
lutions, we have identified two groups focussing on related
topics. The authors of [8] present a framework bridging the
communication between heterogeneous devices, whereas [9]
presents a system capable of integrating heterogeneous devices
dynamically and enabling interoperability between those.

III. A GENERIC CONTEXT-AWARE ARCHITECTURE

As stated in the introduction, this section summarizes our
previous work by shortly surveying the area of context-aware
computing and describing an abstract architecture, which
excels the common characteristics in context-aware computing
[10].

A. Context-aware Computing

Context-awareness is the ability of capturing and processing
contexts. Context comprises of contextual information which
may be retrieved from heterogeneous sources [4] and is defined
as any information to characterize situation of an entity (place,
person, object). Concluding, context is a set of the associated
situations and actions [7], [4] characterizing the physical
surrounding of a device and captured by sensors of the device
or the infrastructure.

Context is represented in context models. Those are so-
phisticated data structures, which are populated by abstracting
and representing contextual information for further processing.
Hence, context modeling is a technique focusing on how
to find and relate contextual information, that captures the
observation of certain worlds of interest [4]. Context can be
represented in various formats ranging from simple key-value-
models to graphical representations [5]. Out of those, current
research indicates, that ontologies are the most expressive
context representation models [2], [5]. Ontologies provide a
powerful paradigm for context modeling offering rich ex-
pressiveness and supporting the dynamic aspects of context
awareness. Ontologies represent concepts and relationships
between concepts, where abstractions from the real world
are usually mapped to concepts with relations interconnect-
ing those concepts according to their real-world equivalents’
relations.

The composition of context-aware systems is characterized
by a high degree of heterogeneity. However, all approaches
agree in decoupling context capturing and context processing
from application composition [7] by encapsulating the context
management logic into middlewares.

Architectures of context-aware systems are decomposed
into static and dynamic aspects. Static aspects describe the
components in use whilst the workflow of acquiring and
processing context depicts its dynamic facets. Both heavily
depend on the application domain of each individual system.

An analysis of the architectures of multiple context-aware
systems [10] identifies the following abstract components
shared by the majority of those approaches:

o Context sensors acquire raw contextual data by either
sensing the physical environment (hardware) or providing
data from other context sources (software) [11], [4]. The
primary task of both sensor types is the acquisition of raw
data for further refinement into contextual information.

o Context capturing interfaces refine the raw data acquired
by sensors, which is usually uncertain and difficult to
interpret by high-level components [5], into data struc-
tures, that are utilizable for higher application levels, thus
providing a proper interface for the sensed environments
[6].

o Context repositories store the current context utilizing
context models.

o Context reasoning components are responsible for in-
ferencing new context based on the current contextual
information in the context repository and new contextual

data acquired through the context capturing interface.
This process is put in practice by inference engines, that
work on the basis of rules [12], [11].

o Context APIs provide interfaces for context-aware appli-
cations to actually utilize contextual information [2].

The enumeration of components shows a flat snapshot of a
generic context-aware system. Those may be abstracted into a
hierarchy of layers, with each layer representing information
on a specific level of detail [7]:

e lexical level: Signals from sensors are abstracted into
basic context events.

o syntactical level: Context events are translated to atomic
context information, such as matching sensor data to real-
world-properties.

o reasoning level: Basic context information is refined and
organized, context information is fused into a reasonable
representation suitable for more sophisticated processing.

e planning level: Context is evaluated, changes in context
are detected, reactions to context changes are planned and
scheduled.

e interaction level: reactions to context changes are exe-
cuted in form of personal and collaborative interactions
with the user and other hosts

With the component representing rather static architectural
aspects, the workflow of capturing, storing and utilizing con-
textual information describes a dynamic aspect by extracting
the components’ tasks and putting those in sequence reason-
ably [7], [13], [2]:

1) Context sensing: Detection and representation of contex-
tual information [13] by acquiring raw sensor data and
refining them into data structures to provide a higher
level of context.

2) Context update and management: The refined and well
presented contextual information is fetched and merged
into the context repository. The overall context is up-
dated in the process.

3) Application of context: The most current contextual in-
formation is fetched from the context repository through
the context API to be used by the context-aware ap-
plication. Important aspects of context application are
adaptation to the current context, contextual resource
discovery and context augmentation.

B. A Generalized Architecture

In this section, we summarize the common characteristics
in context-aware computing and derive a general architecture
for context-aware systems.

Figure 1 visualizes this concept employing all of the relevant
components layered in levels of abstraction as discussed
earlier.

The core of each system excelling awareness of context is
the context model storing the current contextual information.
As we have stated earlier, ontologies are the first choice
made by most research groups due to their high degree of
expressiveness. Since the employment of ontologies requires

‘ Context Application ‘

Interaction Level
= T Context API
B \ : 3 _

3 | Inference Engine E Planning Level

S| |

£

c

2

bS] Reasoning Level

o

=

>

I b

g

(@] ‘ Context Capturing Interfack: Syntactical Level
“Actuatorsﬂ “Sensorﬂ “SW—SensorHs. . L exical Level

Fig. 1. General Architecture for context-aware Middleware

adequate hardware capabilities, one may be forced to fall back
on less demanding context models if the available hardware is
constrained.

The workflow of recognizing, updating and utilizing context
is strongly inspired by the procedure described previously.
Sensors (which may explicitly include software components
as well) acquire raw environmental data, which is refined by
the context capturing interface into contextual information.
The raw data is abstracted into discrete data structures so that
it can be processed further by software at all. The contextual
information is then committed to the context repository, which
is responsible for the persistent storage of the context using
an appropriate context model. The context repository controls
the access to the contextual data and therefore functions as
an interface to both the rest of the context-aware system and
any user applications utilizing the context. The manual of
altering the context is encoded into inference rules, which
are enforced by the inference engine. Both the rules and
contextual information are loaded by the inference engine,
which subsequently updates the context in the repository
according to the inference rules. Since we are dealing with
a distributed system, contextual updates may be propagated to
other nodes via the communication interface, which is attached
to the communication hardware. The inference engine may
also trigger any actuators, that are affected by the context
update. The context API provides access to the context for
user applications. It represents the architectural cut between
context management and context utilization, as we have argued
earlier [7]. The context API has direct access to the context
repository, meaning it reads the current context and commits
user updates into the context. The inference engine may also
notify user applications through the context API, if inferencing
new context requires it.

In summary, the context reasoned by this architecture re-
mains unchanged until it is altered by a contextual update,
which may originate from one of the following sources:

o Environment: Contextual information is gathered by the
Sensors.

o Inference Engine: New context is derived independently
by the inference engine using its appropriate rules.

e User: The user commits data to the context through the
context APL.

IV. THE HETEROGENEITY ISSUE

Another issue in the context-aware computing domain is the
impact of device heterogeneity, which hinders interoperability
among mobile devices. This section analyzes this issue and
derives an abstract heterogeneity-aware middleware.

A. Heterogeneity Abstraction

In mobile environments, the problem of heterogeneity con-
cerns a wide range of architectural domains. A simple cut
allows the abstraction of heterogeneity into 3 different views
[2]:

o Hardware heterogeneity: Hardware heterogeneity reflects
the presence of different devices with different capabili-
ties, as well as different network technologies integrating
those devices.

o Software heterogeneity: Software heterogeneity is char-
acterized by the presence of different applications and
operating systems.

e Architectural heterogeneity: This heterogeneity aspect
illustrates environments where network interconnections
do not share any common architectural characteristics.

B. Heterogeneity Handling

This section focusses on how to overcome the heterogeneity
issues in order to maximize interoperability. A key concept in
approaching the problem is the design of middleware solu-
tions, which are intended to make heterogeneity transparent.
In this section, we describe relevant approaching addressing
the issue.

1) Representation of Heterogeneous Data: Heterogeneity
defines itself by the presence of different capabilities in the
same domains. In order to accomplish interoperability among
heterogeneous devices, the first step is often to capture all of
their capabilities and structure them into suitable representa-
tions. Those device capability databases (DCDBs) serve as a
data basis for solutions adopting to device heterogeneity.

Whilst DCDBs enable uniform storage of heterogeneous
data, this principle can be applied analogously to facilitate
workflows of middlewares dealing with heterogeneous envi-
ronments. In that case, the middleware uses uniform interme-
diary representations of data [8], [14]. Such representation
represents a generalization of all supported communication
semantics from the heterogeneous spectrum. When commu-
nicating with heterogeneous partners the data is dynamically
adapted to the target’s specification at runtime using DCDBs
as described previously.

2) Common Interfaces: One of the most basic approaches
in enabling interoperability among mobile hosts is to iden-
tify their common interfaces and exploit them accordingly.
Those interfaces allow the devices to be very different by
hiding their individual heterogeneous characteristics behind
their commonly shared interface specification and thus making
themselves transparent to each other [9]. This principle is
applicable to both domains of hardware (common interfaces
such as 802.11) and software (common APIs, such as JI2ME).

3) Individual Adaptation: Direct communication among
two heterogeneous partners requires, that at least one of the
communication partners adapts to the other’s communication
technique. Extending this approach on a setting with devices
implementing numerous different communication techniques
and hence enabling uniform communication results in the
demand of general interoperability [8].

The following workflow enables this principle [14]:

1) As soon as the communication partner is identified, it
is evident which communication standard is needed.
Identification is conducted using a device detection
mechanism exploiting a device database, which also
contains the capabilities of the identified device.

2) Since the communication partner supports only one of
many communication standards, an intermediary layer is
inserted between the communicating entities for reasons
explained in section IV-B1. Incoming and outgoing com-
munication is translated to the intermediary representa-
tion first before being committed to the communication
partner or the adapting device.

C. A Generalized Architecture

After having presented techniques how to address hetero-
geneity aspects, which are present in mobile computing envi-
ronments, we can derive a general architecture implementing
those approaches as illustrated in figure 2.

’ Application Logic ‘

4 Application Layer

- e o - { Transparent Device Interface]
. S
i
! Intermediary Representation
) Adaptation Engine
Device | ||
Detector Translation Translation Translation
Adapter Adapter Adapter
T
} [Common Inteﬂace] [Common Inteﬂace] [Common Imerlace]
! L] L]
—_———— { Hardware Interfaces j]
1 Heterogeneity Layer

! i 1]

’ Communication Partner ‘

Fig. 2. General Architecture for heterogeneity-aware Middleware

The workflow to enable interoperability among heteroge-
neous devices and systems basically utilizes the techniques
depicted earlier in section IV-B. First, the device detector
identifies the partner device by matching the device’s iden-
tification attribute with the corresponding entry in the device
database. With this information available the middleware is

able to negotiate communication between the heterogeneous
device on the heterogeneity layer and the parent application
on the application layer, as illustrated in figure 2. On the top, it
provides a transparent device interface to applications, hiding
all heterogeneity issues from them. On the bottom, it utilizes
native hardware interfaces to connect to the communication
partner. The middleware decomposes into 2 layers:

e Device adaptation: We have labeled the core component
on this level the adaptation engine, which adapts all
communication to the heterogeneous device. Each of
its translation adapters is bound to a common interface
present on the deployment system. It utilizes the device
information from the device database to query informa-
tion on how to actually adapt the communication to the
partner device. For reasons of modularity, the translation
rules are kept separately and interpreted at runtime.
This approach allows the adaptation engine to handle
heterogeneous devices through the common interfaces
(bottom) and to provide a device-independent interface
to the representation layer (top).

e Data representation: This layer’s purpose is to make
all information send through the middleware uniform
and device-independent. It therefore uses an intermediate
representation format.

The architecture presented here allows transparent commu-
nication with heterogeneous devices. The application logic
depicted on top of the transparent device interface in figure 2
may be instantiated as applications in many domains, including
the following exemplary selection:

o Communication: Heterogeneous devices communicate
seamlessly with each other without caring for syntax,
semantics or protocols.

o Services: Services may be offered to a wide spectrum
of heterogeneous devices allowing service providers to
extend the range of their service, meaning the increase
of the amount of potential service users.

o Interoperability: Collaborative systems may include het-
erogeneous devices extending their range of potentially
reachable devices.

All of those and any other application cases may profit from
neglecting heterogeneity issues addressed by the middleware.

V. CONTEXT-AWARENESS IN HETEROGENEOUS
ENVIRONMENTS

After having identified common approaches in context-
aware computing and heterogeneity-handling in sections III
and IV, we aim at fusing the derived generalized architectures
together to a single concept. We have chosen to pursue a top-
down approach by first designing a high-level system sketch,
which we concretize subsequently.

From the scrutinized domains of context-aware computing
and heterogeneity-handling, we have learned, that concerned
architectures are layered providing distinct interfaces between
major layers. Those boundaries denote major abstraction cuts
and help us to eventually derive our concept. From both

domains, we have identified a total of 3 abstract interfaces,
which we consider crucial for the construction of a context-
aware and device-independent middleware:

e Context-API: providing access to the most current con-
textual information, hence offering an interface for appli-
cation utilizing context.

o Transparent Device Interface (TDI): enables device-
independency, thus leveraging heterogeneity-transparency
for all components accessing this interface.

e Hardware Interfaces: provide access to the hardware of
the system of deployment.

Further, we decompose our generic middleware concept
into two separate system parts handling context-awareness
and device-adaptation respectively. The combination of this
2-part system composition with the interface specification
allows us to outline a first architectural sketch. The context-
aware system part provides the contextual information through
the context API on the top and accesses the heterogeneous
environment via the TDI at the bottom. The latter is pro-
vided by the heterogeneity-aware middleware part, situated on
the lower level and handling device-dependent heterogeneity
issues utilizing the hardware interfaces. Hence, the TDI is
the architectural cut in the system between the part handling
device-dependencies (heterogeneity) on the bottom and en-
abling device-transparency at the top. Figure 3 depicts this
component composition embedded into the described interface
scheme.

Context Application

Context API

Context Aware Middleware

Transparent Device Interface

Heterogeneity-aware Middleware

Hardware Interfaces

Hardware / Network

Fig. 3. Middleware combination

This architectural draft allows us to concretize the two
individual middleware components in two steps:

1) First we replace the placeholders for context-awareness
and heterogeneity-handling with the corresponding gen-
eral architectures depicted in figures 1 and 2.

2) Then we project the layering depicted in section III-A
onto the architecture and extend it accordingly.

The resultant architecture is illustrated in figure 4. Both
the context-aware system part and the heterogeneity-handling
component group roughly function as described earlier in
sections III-B and IV-C.

In order to achieve seamless integration of both middleware
components, their merging into the final architecture has
yielded the following layering:

Application Level

’ Context Application ‘

Context API

Planning Level T — T T T/ 7 - 71‘

| Inferencing Th

| Rules II }
,,,,,,,,,,,,,,,,,,,, — e N S

| |

| |
Reasoning Level | l«—>| Reasoning Engine |

|

! [
,,,,,,,,,,,,,,,,,,,, O O S

| Intermediary |

|

Syntactical Level

Context |

Adaptation ’ Adaptation Engine ‘4—{ Device Detector }<
Rules
Common Interfaces

|
|
_ |
|
|

Lexical Level

Heterogeneity Level

Fig.

Context
Actuators m ’ Sensors m

Communication
Interface

4. General context-aware Middleware in heterogeneous Environments

Heterogeneity level: The lowest level denotes the hetero-
geneous environment of mobile devices, networks and
back-end systems. At this level, we also distinguish the
view on the local device and remote devices.

Lexical level: Since actuators and sensors of the context-
aware architecture are device-dependent, they have been
decoupled from its parent middleware and embedded into
the heterogeneity-handling part. They provide the system
with raw and highly heterogeneous data for further pro-
cessing.

Adaptation level: This level includes the adaptation en-
gine adapting all communication to each heterogeneous
target device. It works bidirectionally interpreting het-
erogeneous context data from the context sensors and
committing contextual updates from the inference engine
to the heterogeneous mobile environment.

Syntactical level: The transparent device interface (TDI)
hiding the heterogeneity from the rest of the system
(from upper side) is located on this level. The device-
independent, intermediary representation of the context,
which is used by the adaptation engine (as discussed in
section IV-C), is located just below this interface. The
context capturing interface on the upper side of the TDI
refines this raw context information into semantically
enriched context (as discussed in section III-B).
Reasoning level & planning level: As depicted in section
III-B, context is reasoned and stored in the context repos-
itory on the reasoning level whereas the inference engine
derives new context on the planning level. Contextual

updates are committed to the adapation engine to be
committed to local actuators or the network. The context
API provides device-transparent access to the current
context.

e Application level: Applications accessing the context
API may exploit heterogeneity-transparent contextual in-
formation and implement their own application-specific
business logic. This is the level where contextual inter-
action takes place and where context is augmented with
auxiliary information.

To complement our discussion, we observe uniform context
processing spanning from the syntactical level to the planning
layer. Therefore, it may be defined intermediate, since it is
not feasible for any application but the middleware discussed
here.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have surveyed approaches to implement
context-awareness and to handle heterogeneity in mobile com-
puting environments. We have identified common characteris-
tics in each domain and derived those to general architectures.
Finally, we have integrated both architectures proposing an
architectural concept for a middleware supporting context-
awareness in heterogeneous mobile computing environments.

The concept developed in this paper allows a broad look on
general mechanisms addressing heterogeneous context-aware
computing. It may serve as a base pattern for the development
of further systems aiming at specialized use cases in this
application domain. The concepts described here may then
be adjusted to serve the according use cases.

With the conceptualization presented here our next steps
encompass its refinement on lower design levels to analyze the
feasibility of our concept and to prepare the construction of a
prototype framework implementing this concept. This includes
(but is not limited to):

o Deployment issues of the middleware focussing on
whether to place it on mobile devices and/or or back-
end systems

o Evaluation of distinct domains of context-awareness, es-
pecially location and location-based services

« Identification of suitable device detection mechanisms in
heterogeneous environments, since heterogeneous devices
can hardly identify themselves in a common way

o Analysis of technologies suitable for the component of
the presented architecture to evaluate its interaction ca-
pabilities with regard to our architectural sketch

We are going to consider various target platforms to enable
general applicability of this framework. The platforms in ques-
tion are yet to be defined, but will likely include representatives
spread on a large number of mobile devices and back-end
systems.

REFERENCES

[1] Robert Schmohl and Uwe Baumgarten. Mobile services based on
client-server or p2p architectures facing issues of context-awareness
and heterogeneous environments. In PDPTA ’'07: Proceedings of the

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

[14]

2007 international conference on parallel and distributed processing
techniques and applications, pages 578-584. CSREA Press, 2007.
Ricardo Couto A. da Rocha and Markus Endler. Evolutionary and
efficient context management in heterogeneous environments. In MPAC
’05: Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing, pages 1-7, New York, NY, USA, 2005.
ACM Press.

Martin Modahl, Ilya Bagrak, Matthew Wolenetz, Phillip Hutto, and
Umakishore Ramachandran. Mediabroker: An architecture for pervasive
computing. percom, 00:253, 2004.

Christos B. Anagnostopoulos, Athanasios Tsounis, and Stathes Had-
jiefthymiades. Context awareness in mobile computing environments.
Wirel. Pers. Commun., 42(3):445-464, 2007.

Thomas Strang and Claudia Linnhoff-Popien. A context modeling
survey. In Proceedings of the Workshop on Advanced Context Mod-
elling, Reasoning and Management associated with the 6th International
Conference on Ubiquitous Computing (UbiComp), Nottingham., 2004.
Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-sensor
context-awareness in mobile devices and smart artifacts. Mob. Netw.
Appl., 7(5):341-351, 2002.

Eleni Christopoulou, Christos Goumopoulos, and Achilles Kameas.
An ontology-based context management and reasoning process for
ubicomp applications. In sOc-EUSAI ’05: Proceedings of the 2005 joint
conference on Smart objects and ambient intelligence, pages 265-270,
New York, NY, USA, 2005. ACM Press.

Jin Nakazawa, H. Tokuda, W.K. Edwards, and U. Ramachandran. A
bridging framework for universal interoperability in pervasive systems.
In Distributed Computing Systems, 2006. ICDCS 2006. 26th IEEE
International Conference on, pages 3-3, 2006.

Christian Bartelt, Thomas Fischer, Dirk Niebuhr, Andreas Rausch, Franz
Seidl, and Marcus Trapp. Dynamic integration of heterogeneous mobile
devices. In DEAS ’05: Proceedings of the 2005 workshop on Design
and evolution of autonomic application software, pages 1-7, New York,
NY, USA, 2005. ACM.

Robert Schmohl and Uwe Baumgarten. Context-aware computing: a sur-
vey preparing a generalized approach. In IMECS 2008: Proceedings of
the International MultiConference of Engineers and Computer Scientists
2008. International Association of Engineers, 2008.

Carsten Jacob, David Linner, Ilja Radusch, and Stephan Steglich.
Loosely coupled and context-aware service provision incorporating the
quality of rules. In ICOMP 07: Proceedings of the 2007 International
Conference on Internet Computing. CSREA Press, 2007.

Gregory Biegel and Vinny Cahill. A framework for developing mobile,
context-aware applications. percom, 00:361, 2004.

Teddy Mantoro and Chris Johnson. Location history in a low-cost
context awareness environment. In ACSW Frontiers '03: Proceedings
of the Australasian information security workshop conference on ACSW
frontiers 2003, pages 153—158, Darlinghurst, Australia, Australia, 2003.
Australian Computer Society, Inc.

Robert Schmohl, Uwe Baumgarten, and Lars Koethner. Content adapta-
tion for heterogeneous mobile devices using web-based mobile services.
In Proceedings of the 5th International Conference in Computing and
Multimedia (MoMM?2007), pages 77-86. Oesterreichische Computerge-
sellschaft, 2007.

