
Heterogeneity in mobile computing environmens
Robert Schmohl, Uwe Baumgarten

Technische Universität München, Department of Informatics, 85748 Germany
schmohl@in.tum.de, baumgaru@in.tum.de

Abstract The rapid evolution of mobile computing has
spawned a very heterogeneous spectrum of technologies af-
fecting both devices and system in the mobile computing do-
main. Since mobile computing emphasizes the ubiquitous
use of interconnected systems the enabling of interoperabil-
ity remains a significant requirement, which is considerably
complicated by the impact of heterogeneity. In response, re-
search has quickly addressed the issue and elaborated diverse
solutions to the problem. This paper surveys the different ap-
proaches and extracts the key concepts in handling different
heterogeneity aspects. We summarize those concepts by ab-
stracting a general approach on heterogeneity-handling.

Keywords: mobile computing, heterogeneity, middleware

1 Introduction
Mobile computing is characterized by a high level of het-
erogeneity, since there are only a few standards, that are
commonly obeyed by the device manufacturers, software
developers and network providers [1]. This aspect is
especially reflected by heterogeneous characteristics of
mobile devices, operating system, resources and network
capabilities [2].

The goal of mobile computing suggests including de-
vices spanning the entire hardware spectrum [3]. This ar-
gumentation includes the appliance of various use cases,
including both the pervasive access to mobile services
and ubiquitous communication between mobile hosts
[1, 4]. Hence, those application cases can be reduced
to the basic demand of communication among heteroge-
neous devices in heterogeneous environment. This state-
ment can be refined as follows:

• Communication among mobile devices: This basic
use case depicts the communication of at least 2 mo-
bile hosts, both capable of roaming in correspondent
networks and enabling the mobile devices’ users to
exploit this communication link.

• Communication with back-end systems: In this case,
the user employs his mobile device to connect to
a network’s back-end system. This activity usually
triggers a specific workflow on the back-end, e.g. a
mobile service delivering a specific response to the
requesting user.

Many research groups agree in handling heterogene-
ity by employing middleware solutions [2, 3, 5, 4]. The

common idea behind those approaches is to position the
middleware layer between the application layer at the top
and the heterogeneous environment at the bottom as dis-
played in figure 1. Hence, transparent access is provided
to the heterogeneous environment by masking the under-
laying heterogeneity.

Middleware

Applications

Hardware Software OS Network

Application Layer

Middleware Layer

Heterogeneity Layer

...

...

Figure 1: Middleware approaches

The rest of the paper is structured as follows: section
2 decomposes the heterogeneity issue. Section 3 intro-
duces the key concepts to address the heterogeneity as-
pects abstracted in section 2. Subsequently, architectural
realization issues are discussed in section 4 before we
conclude the paper in section 5 presenting an abstraction
of general approach for handling heterogeneity in mobile
computing.

2 Heterogeneity Abstraction
In mobile environments, the problem of heterogeneity
concerns a wide range of architectural domains. A sim-
ple cut allows the abstraction of heterogeneity into 3 dif-
ferent views [2]:

• Hardware heterogeneity: Hardware heterogeneity
reflects the presence of different devices with dif-
ferent capabilities, as well as different network tech-
nologies integrating those devices.

• Software heterogeneity: Software heterogeneity is
characterized by the presence of different applica-
tions and operating systems.

• Architectural heterogeneity: This heterogeneity as-
pect illustrates environments where network inter-
connections do not share any common architectural
characteristics.

All of those heterogeneity aspects address the prob-
lems arising from the endeavor to achieve interoperabil-
ity among different devices and systems. Interoperability



may be decomposed into the following communication
models:

• Direct communication: Mobile devices communi-
cate directly with each other. Heterogeneity has
a direct impact here, since communication among
mobile devices must be based on commonly shared
standards.

• Brokered communication: The communication link
between devices is established by some sort of cen-
tralized instance. The challenge here is to make the
server being able to address a heterogeneous mass
of devices.

• Unidirectional workflow activation: A mobile user
may trigger a specific workflow on a server by con-
tacting it unidirectionally. In this case, the demand
for support of heterogeneous callers applies again.

• Service provision: A mobile user employs his de-
vice to use services provided by a server by request-
ing the service and getting an appropriate response
subsequently. Technically speaking, this applica-
tion case describes an extension of the previously
described universal workflow activation adding a re-
sponse after completion of the workflow, so that the
service is described by the delivery of responses fol-
lowing client requests. Again, the server must be
able to deal with heterogeneous sets of devices.

2.1 Hardware Heterogeneity
Hardware heterogeneity simply reflects different physi-
cal implementations of the mobile devices’ underlaying
technologies. Based on that, different capabilities of the
particular devices can be derived. Those capabilities al-
low the heterogeneous set of devices to be structured ac-
cordingly.

Those capabilities may be categorized under consider-
ation of the following aspects of hardware heterogeneity,
which are of particular interest in mobile environments:

• Communication interfaces: Those are the physi-
cal components, that connect the device with its
surrounding, i.e. enabling access to the network
[6, 7, 3]. E.g., prominent network technologies
are GSM, 3G-networks, satellite phone networks,
802.11,Bluetooth, etc.

• UI capabilities: User interfaces differ widely
among mobile devices concerning both input (key-
pad, microphones, etc.) and output (displays, speak-
ers, etc.) capabilities. Since this aspect concerns the
interaction with the user, it aims at providing con-
tent to the user and gathering his commands, which
can both be device-specific [8].

• Performance: Mobile devices are equipped with
performance-constrained hardware due to limita-
tions in the power supply and the available space.

Although those restrictions apply to most of the mo-
bile device spectrum, the level of restriction differs
significantly. The reduction of performance espe-
cially concerns capabilities of computation, com-
munication and storage [9].

2.2 Software Heterogeneity
Software heterogeneity concerns the set of software pay-
loads on mobile devices. It can be decomposed into 4
categories:

• Operating systems: There are numerous operating
systems running on mobile devices. They all han-
dle their particular systems tasks differently creating
a high degree of heterogeneity on the level of OS-
internal architectures. Furthermore, some operat-
ing systems provide common native APIs for third-
party applications to run on them. Prominent repre-
sentatives of such systems are SymbianOS [10] and
Windows Mobile [11].

• Middleware APIs: Some operating systems provide
common non-operating-system APIs for third-party
applications. Those APIs are designed to supple-
ment the operating system, hence they are shielded
from the operating system’s core functions making
them less powerful than an operating system’s na-
tive API (if existent). A prominent example for such
a middleware API is J2ME [12].

• Applications: This abstraction criterion describes
the mass of applications available for APIs provided
by operating systems and middlwares as stated
above.

• Application domains: Applications can further be
categorized by application domains (e.g. context
awareness, mobile billing, etc.). Even though ap-
plication domains differ among each other, software
belonging to a particular domain often shares com-
mon principles.

2.3 Architectural Heterogeneity
Architectural heterogeneity addresses differences in any
aspects focussing the architectural design of mobile com-
puting systems, of which the following seem to matter
most:

• Network topology: A network’s static and dynamic
settings can both differ greatly. Although the static
architecture can only differ among complete net-
works, this aspect is relevant when mobile devices
roam between such different networks. Dynami-
cally changing network topologies even concern de-
vices roaming across one network. Those issues
particularly raise availability issues and imply ac-
cordingly working hand-over techniques [13].



• Services: Heterogeneity of services is reflected by
the existence of a large spectrum of diverse ser-
vices, which can be utilized by mobile devices. It
especially concerns the services’ protocols specify-
ing access and result delivery [1].

3 Heterogeneity Handling
This section focusses on how to overcome the hetero-
geneity issues as decomposed in section 2 in order to
maximize interoperability. As stated earlier, a key con-
cept in approaching the problem is the design of mid-
dleware solutions, which are intended to make hetero-
geneity transparent. The following subsection discuss
various concepts addressing this issue. First, techniques
of abstracting heterogeneous data into proper represen-
tations are discussed. Subsequently, this information is
employed to evaluate diverse operational techniques of
overcoming the problems caused by heterogeneity. It is
further to be noted, that all of these concepts presented in
this section are not necessarily disjoint.

3.1 Representation of Heterogeneous Data
Capabilities Heterogeneity defines itself by the pres-
ence of different capabilities in the same domains. In or-
der to accomplish interoperability among heterogeneous
devices, the first step is often to capture all of their capa-
bilities and structure them into suitable representations.
Those representations serve as a data basis for solutions
adopting to the device heterogeneity.

There are plenty of representation techniques avail-
able, which are suitable for implementing such a repre-
sentations. 2 examples are given below:

• Device capability databases: A DCDB stores the
devices’ capabilities and provides them to the sys-
tem, which is communicating with the devices [8,
4]. It especially applies for understanding the de-
vices’ requests and providing according content to
them. DCDBs are normally implemented as rela-
tional databases or using XML. A very neat example
for the latter case is the open source project WURFL
[14].

• Ontologies: A more sophisticated way of storing
data is the employment of ontologies. Ontologies
allow the representation of data as an interrelated
set of concepts [15]. E.g., Christopoulou et al. [6]
employ ontologies to describe the characteristics of
heterogeneous devices. Just like the DCDBs, those
ontologies solely focus on characteristics, which
differ among the devices in question.

DCDBs and ontologies serve the same purpose,
whereas ontologies may be regarded as a sophisticated
refinement of DCDBs. Since both are storing informa-
tion about devices, they will both be referred as device
databases from now on.

Intermediary Representations The capability repre-
sentation techniques stated previously have shown an ap-
proach how to reduce a heterogeneous spectrum of data
to uniform representations, hence allowing uniform stor-
age of heterogeneous data. Analogously, this principle
can be applied to facilitate workflows of middlewares
dealing with heterogeneous environments. In that case,
the middleware uses uniform representations of data to
allow communication between heterogeneous mobile de-
vices among each other and any back-end system be-
hind the middleware. Such representation represents a
generalization of all supported communication semantics
from the heterogeneous spectrum. It may be called in-
termediary since it is not feasible for neither any of the
devices nor the middlware’s back-end services. When
communicating with either of those the data is dynami-
cally adapted to the target’s specification at runtime using
DCDBs as described previously. Concluding, interme-
diary representations introduce an interoperability layer
in the middleware enabling heterogeneous communica-
tion through a generalizing approach, such as illustrated
in figure 2 (it is to be noted, that the middleware is not
necessarily physically decoupled from the mobile device;
possible deployment option middlewares are discussed
later on).

Mobile 
Device

Mobile 
Device

Intermediary Representation

Backend

Heterogeneity Layer

Middleware Layer

Adaptation

Adaptation Adaptation

Application Layer

Figure 2: Intermediary Layer

In summary, an intermediary representation allows the
middleware to utilize heterogeneity aspects uniformly at
runtime. This concept can be particularly exploited for
the following application domains:

• Inter-device communication: Intermediary repre-
sentation can be used to represent all aspects rele-
vant for the communication between devices, which
differ in characteristics, protocols, etc. [4].

• Content provision: The utilization of intermedi-
ary representations can facilitate the provision of
content to a heterogeneous spectrum of devices
by first generating device-independent intermediary
content, which is subsequently adapted to the re-
ceiving device [8]. This approach emphasizes the
entire spectrum of defining content (structure, con-
tent, style, etc.).

3.2 Exploiting common Interfaces
One of the most basic approaches in enabling interop-
erability among mobile hosts is to identify their com-
mon interfaces and exploit them accordingly. Those in-



terfaces allow the devices to be very different by hid-
ing their individual heterogeneous characteristics behind
their commonly shared interface specification and thus
making themselves transparent to each other [7].

This thought is projectable on both heterogeneity do-
mains of hardware and software, as depicted in section 2.
Regarding heterogeneous hardware, this simply means
that all devices communicate via the same technology
and/or via the same protocols. E.g., devices from a
large spectrum reaching from desktop computers to small
handhelds may communicate wirelessly via 802.11 al-
though being very different individually. The same prin-
ciple applies for software heterogeneity, where the uti-
lization of common APIs marks the correspondent ap-
proach. E.g., J2ME [12] or the Series60 API [16] provide
uniform and widely spread interfaces for applications.

However, refinement of the common interface prin-
ciple allows yet more sophisticated solutions. Common
APIs on mobile devices provide a sort of gateway to the
devices’ heterogeneous subsystems to deploy more func-
tionality. In this case, the common API is used to de-
ploy and utilize device-specific implementations on any
target device and to provide universal communication to
the network [5].

In particular, an installation package, which compli-
ant to the common API is prepared. It consists of a de-
vice independent part bound to the API and the device-
specific implementations of all target devices. Once the
installation package is deployed on the target device and
executed on the upon the common API the installation
routine detects the device and subsequently selects and
installs the appropriate device-specific implementation.
The resultant operation consists of accessing the device’s
core functions through the device-specific part and en-
abling communication to the environment through the
device-independent routine.

3.3 Individual Adaptation
Direct communication among two heterogeneous part-
ners requires, that at least one of the communication part-
ners adapts to the other’s communication technique. This
may include direct inter-device communication as well as
communication between a device and a server. Extend-
ing this approach on a setting with devices implementing
numerous different communication techniques and hence
enabling uniform communication results in the demand
of general interoperability [4].

Apart from the necessity of using commonly shared
hardware technology, which comes along with the direct
communication approach, the concept of adapting com-
munication to the current partner dynamically may han-
dle heterogeneity issues in both hardware and software,
as depicted in section 2. The following workflow enables
this principle [8]:

1. As soon as the communication partner is identi-
fied, it is evident which communication standard is
needed. Identification is conducted using a device

detection mechanism exploiting a device database,
which also contains the capabilities of the identified
device. Section 3.1 has discussed such data stor-
ages.

2. Since the communication partner supports only one
of many communication standards, an intermediary
layer is inserted between the communicating enti-
ties for reasons explained in section 3.1. Incom-
ing and outgoing communication is translated to the
intermediary representation first before being com-
mitted to the communication partner or the adapting
device (its back-end). The intermediary layer allows
swift and scalable adaptation to any communication
technique necessary.

The application cases of this principle, which is illus-
trated in figure 3, are various. The approach can be pro-
jected onto the client-server paradigm, so that a server
adapts to a heterogeneous set of mobile devices, that im-
plement heterogeneous communication techniques [8, 4].
An implementation based on a P2P architecture is imag-
inable, too, but raises question about facing the peers’
low capabilities concerning computation and storage,
with are both required for the adaptation process.

Communication Partner

Intermediary Representation

Backend Business Logic

Heterogeneity Layer

Middleware
Device Adaptation Layer

Device 
Detection Adapt Communication

Middleware Backend Layer

Device 
Database

Application Layer

Figure 3: Individual Adaptation to Communication Part-
ner

3.4 Bridges
The basic thought in the approach discussed in this sec-
tion is the insertion of an entity between at least 2 hetero-
geneous systems or devices enabling the communication
between those. This concept may be allegorically related
to bridges, since they are intended to connect possibly
totally different domains. Since the concept is very basic
in nature, numerous instantiations are imaginable. The
following discussion categorizes the general application
cases into hardware and software bridges.

Hardware bridges: Those are dedicated stand-alone
hardware devices negotiating the communication be-
tween heterogeneous communication partners. Those
bridging devices provide interfaces for each of the sup-
ported heterogeneous domains. As an example, consider
a laptop as a bridging device for heterogeneous sensors
[7, 17]. It is to be assumed, that those sensors may
be connected to the laptop through its various interfaces



(e.g. USB, PCMCIA, serial port, etc.). The laptop cap-
tures the sensory data, refines them into an appropriate
format and commits them to the system’s back-end wire-
lessly via 802.11, thus bridging data transmission from
heterogeneous sources to a commonly communicating
consumers.

Software bridges: Such as hardware bridges provide
interoperability between different hardware domains,
software bridges enable the communication between dif-
ferent systems on the software level analogously. For this
purpose, consider a bridging framework, as described
by Nakazawa et al. [4]. Several levels are important
on the abstraction layer dealing with software bridg-
ing: Transport-level bridging involving the translation of
protocols and data types inherent in the systems to be
bridged, service-level bridging including the discovery
of new devices in bridged systems and offering appropri-
ate services to them (out of heterogeneous services), and
device-level bridging handling and translating different
device semantics (such as roles and compatibility).

Since all of the bridging levels discussed here are
characterized by heterogeneous communication they are
eligible for the adaptation mechanism discussed in sec-
tion 3.3. They need information about how to adapt the
communication to the correspondent device, requiring
some sort of capability databases. Also, the translation
of protocols, data types, services and device semantics
requires individual handling for each bridged system. In
order not implement a translation technique for each pair
of systems, an intermediary representation of informa-
tion on each bridging level may greatly reduce the trans-
lation complexity.

3.5 Mobile Agents
The discussion so far has focussed on the heterogeneity
aspects concerning mobile devices’ hardware and soft-
ware (as depicted in section 2). A suitable way of ad-
dressing the remaining aspect of architectural hetero-
geneity is the employment of mobile agents. Those au-
tonomous programs usually run on back-end systems
(not on mobile devices) and may be used to individu-
ally address any arising heterogeneity issue. For exam-
ple, consider a set of heterogeneous services, which are
accessible by mobile devices. Mobile agents can be em-
ployed to handle service request for such devices by im-
plementing the following workflow [18, 19]: The mobile
agent provides a uniform interface for mobile devices
and accepts the their service requests. Subsequently, the
agent queries the appropriate service and waits for its re-
sult delivery. This is the phase where the adaptation to
the heterogeneous mass of service is applied. Finally, the
results are returned to the requesting device.

Since the adaptation to the heterogeneous service in-
terfaces is handled by the mobile agent, mobile devices
are provided transparent access to a set of heterogeneous
services, thus successfully hiding the service heterogene-
ity from them.

4 Architectural Issues
After having decomposed the heterogeneity issue in mo-
bile computing and having presented approaches to ad-
dress those in the precedent sections 2 and 3 this section
deals with aspects of realizing those approaches.

4.1 Communication Models and Middle-
ware Application

The actual instantiation of the heterogeneity-adressing
concepts are dependent on each individual application
case. However, most application cases can be projected
onto the 4 communication models depicted in section 2
(direct communication, brokered communication, unidi-
rectional workflow activation and service provision). The
realization approaches of heterogeneity-handling mid-
dleware can roughly be mapped onto those 4 communi-
cation principles. They are outlined consecutively group-
ing the communication models into the generic commu-
nication paradigms of client-server and peer-to-peer.

Client-server Model Communication takes place be-
tween a mobile device denoting the client, and a server
in the back-end. The heterogeneity-aware middleware
may be deployed on the client [7], the server [8] or both
[5] depending on the particular use cases. Those can be
grouped by the communication models as follows:

• Unidirectional workflow activation: Since the com-
munication flow is unidirectional in this case, the
server simply needs to offer a set of common inter-
faces, which clients access to trigger workflows on
the server. Individual adaptation to the clients’ pro-
tocols is rudimentary and is limited to understand-
ing the clients’ invocations.

• Service provision: Since the communication is bidi-
rectional, device detection occurs so that the server
is able to respond accordingly to the client. Sub-
sequently, the requested service is performed by
the server’s application back-end and the results
are committed to the middleware where they are
stored in an intermediary format. Since the device
is known, the middleware now adapts the service’s
results to the client’s specification and returns them
to the requesting device. Hence, individual adapta-
tion must not only be used to understand the client’s
requests, but also to tailor device-specific responses,
as illustrated earlier in figure 3.

The communication models discussed here emphasize
the deployment of the heterogeneity-aware middleware
on the server only. However, special use cases may re-
quire to deploy parts of the middlewre onto the clients
as well. Regarding this context it is to be noted that de-
coupling the middleware from the client potentially in-
creases the range of the correspondent application since
there is no need to deploy any middleware components
on the devices [8].



Peer-to-Peer Model This communication paradigm
emphasizes inter-device communication without strong
centralized instances.

• Direct communication: Pure P2P networks are char-
acterized by the absence of centralized components.
Middleware enabling interoperability among het-
erogeneous peers is hence deployed on the peers
themselves. Basically, this implies that communi-
cation partners always have to agree on common
protocols prior to communicating with each other.
With the exception of the underlaying hardware re-
quirments, the communication protocols are usu-
ally provided or complemented by the middleware.
Hence individual adaptation and thus the use of in-
termediate representations are unnecessary since the
middleware is the same on each client. Furthermore,
middleware on mobile peers has a strong emphasis
on the presence of common interfaces and on the
adherence of hardware restrictions, which are nor-
mally existent on mobile peers (e.g. computation,
communication, storage) [9].

• Brokered communication: Those brokers allow
inter-device communication enabled by a central-
ized component, usually seen in hybrid P2P net-
works. The server-resident middleware negotiates
the communication between heterogeneous partners
[4] as it has been described in the software-bridging
concept in section 3.4. Hence, device detection,
common interfaces and indivdual adaptation are of
significant importance.

4.2 Components
The discussion about approaches to face the heterogene-
ity issues allows the identification of several components
relevant to each heterogeneity-aware middleware [8, 4]:

• Device database: A database storing all available
information about devices, especially including de-
vice capabilities and semantics.

• Device detector: A component dedicated to the
identification of devices communicating with the
middleware. It usually uses the device database for
this purpose by matching the identification attribute
with the corresponding entry in the database.

• Intermediary storage: The intermediate space is
used for the device-independent representation of
information.

• Translation adapters: Those components trans-
late device-specific information to the device-
independent intermediary representation and vice
versa. Abstractly speaking, there is an adapter for
each device group sharing common capabilities.

• Common interfaces: Middlewares offer a set of in-
terfaces, which are commonly accessed by the het-
erogeneous communication partners. They are a

simple approach to leverage transparent access on
heterogeneous technology.

4.3 Workflow
From the discussion of the heterogeneity handling strate-
gies in section 2 and the derived generic components
from the previous section 4.2, the following generic
workflow can be conceptualized for a heterogeneity-
aware system:

1. Device detection: The first step consist of identify-
ing the heterogeneous communication partners, i.e.
detecting the devices used. This is done by match-
ing the devices’ identification attribute with the cor-
responding entry in the device database.

2. Interface selection: With the device capabilities
known, its interfaces are known as well. Hence, the
next step consists of selecting the proper interface
for the initiation of the logical communication link.

3. Device-specific translation: The device-specific
output is translated to the system’s device-
independent intermediary representation and vice
versa by using the corresponding translation
adapters device-specifically. This translation occurs
either unidirectionally or in both directions depend-
ing on the communication models depicted in sec-
tion 2. E.g., for service provision only intermedi-
ary content is adapted to the target’s specifications
whereas direct and brokered communication require
translations both to and from intermediary represen-
tations.

5 Conclusion
In this paper, we have presented and evaluated tech-
niques how to address heterogeneity aspects, which are
present in mobile computing environments. From those
approaches, we can derive a general architecture imple-
menting those approaches as illustrated in figure 4.

Adaptation Engine

Communication Partner

Intermediary Representation

Application Logic

Heterogeneity Layer

 Middleware Device Adaptation Layer

Device 
Detector

Middleware Representation Layer

Device 
Database

Application Layer

Translation 
Adapter

Translation 
Adapter

Translation 
Adapter ...

Common Interface ...Common Interface Common Interface

Translation 
Rules

Transparent Device Interface

Hardware Interfaces

Representation 
Rules

Figure 4: General Architecture for heterogeneity-aware
Middleware

The workflow to enable interoperability among het-
erogeneous devices and systems is basically inspired by
the steps depicted earlier in section 4.3. First, the device



detector identifies the partner device by matching the de-
vice’s identification attribute with the corresponding en-
try in the device database. With this information avail-
able the middleware is able to negotiate communication
between the heterogeneous device on the heterogeneity
layer and the parent application on the application layer.
On the top, it provides a transparent device interface to
applications, hiding all heterogeneity issues from them.
On the bottom, it utilizes native hardware interfaces to
connect to the communication partner. The middleware
decomposes into 2 layers:

• Device adaptation: We have labeled the core com-
ponent on this level the adaptation engine, which
adapts all communication to the heterogeneous de-
vice. Each of its translation adapters is bound to a
common interface present on the deployment sys-
tem. It utilizes the device information from the de-
vice database to query information on how to actu-
ally adapt the communication to the partner device.
For reasons of modularity, the translation rules are
kept separately and interpreted at runtime. This ap-
proach allows the adaptation engine to handle het-
erogeneous devices through the common interfaces
(bottom) and to provide a device-independent inter-
face to the representation layer (top).

• Data representation: This layer’s purpose is to
make all information send through the middleware
uniform and device-independent. It therefore uses
an intermediate representation format.

The architecture presented here allows communica-
tion with heterogeneous devices. The application logic
on top of the transparent interface may be instantiated
as applications in many domains, including communica-
tion, services and interoperability. All of the application
cases may profit from neglecting heterogeneity issues ad-
dressed by the middleware.

References
[1] Robert Schmohl and Uwe Baumgarten. Mobile ser-

vices based on client-server or p2p architectures
facing issues of context-awareness and heteroge-
neous environments. In PDPTA ’07, pages 578–
584. CSREA Press, 2007.

[2] Ricardo Couto A. da Rocha and Markus Endler.
Evolutionary and efficient context management in
heterogeneous environments. In MPAC ’05, pages
1–7, New York, NY, USA, 2005. ACM Press.

[3] Martin Modahl, Ilya Bagrak, Matthew Wolenetz,
Phillip Hutto, and Umakishore Ramachandran. Me-
diabroker: An architecture for pervasive comput-
ing. percom, 00:253, 2004.

[4] Jin Nakazawa, H. Tokuda, W.K. Edwards, and
U. Ramachandran. A bridging framework for uni-
versal interoperability in pervasive systems. In
ICDCS 2006, pages 3–3, 2006.

[5] Ellick Chan, Jim Bresler, Jalal Al-Muhtadi, and
Roy Campbell. Gaia microserver: An extendable
mobile middleware platform. percom, 00:309–313,
2005.

[6] Eleni Christopoulou and Achilles Kameas. Gas on-
tology: An ontology for collaboration among ubiq-
uitous computing devices. International Journal
of Human-Computer Studies, 62(5):664–685, May
2005.

[7] Christian Bartelt, Thomas Fischer, Dirk Niebuhr,
Andreas Rausch, Franz Seidl, and Marcus Trapp.
Dynamic integration of heterogeneous mobile de-
vices. In DEAS ’05, pages 1–7, New York, NY,
USA, 2005. ACM.

[8] Robert Schmohl, Uwe Baumgarten, and Lars
Koethner. Content adaptation for heterogeneous
mobile devices using web-based mobile services. In
MoMM2007, pages 77–86. Oesterreichische Com-
putergesellschaft, 2007.

[9] Roy Want and Trevor Pering. System challenges
for ubiquitous & pervasive computing. In ICSE ’05,
pages 9–14, 2005.

[10] Symbian developer network.
http://developer.symbian.com/.

[11] Microsoft windows mobile.
http://www.microsoft.com/windowsmobile/.

[12] The java me platform. http://java.sun.com/javame/.

[13] Marcello Cinque, Domenico Cotroneo, and Stefano
Russo. Achieving all the time, everywhere access
in next-generation mobile networks. SIGMOBILE
Mob. Comput. Commun. Rev., 9(2):29–39, 2005.

[14] Luca Passani and Andrea Trasatti. Wireless univer-
sal ressource file. http://wurfl.sourceforge.net.

[15] Thomas Strang and Claudia Linnhoff-Popien. A
context modeling survey. In UbiComp 2004, 2004.

[16] Series 60 platform for symbianos.
http://www.forum.nokia.com/s60.

[17] Olga Volgin, Wanda Hung, Chris Vakili, Jason
Flinn, and Kang G. Shin. Context-aware metadata
creation in a heterogeneous mobile environment. In
NOSSDAV ’05, pages 75–80, New York, NY, USA,
2005. ACM.

[18] V. Baousis, E. Zavitsanos, V. Spiliopoulos, S. Had-
jiefthymiades, L. Merakos, and G. Veronis. Wire-
less web services using mobile agents and ontolo-
gies. In 2006 ACS/IEEE International Conference
on Pervasive Services, pages 69–77, 2006.

[19] Iulian Radu and Son T. Vuong. Nemos: Mobile-
agent based service architecture for lightweight de-
vices. In SWWS ’07, 2007.


	Introduction
	Heterogeneity Abstraction
	Hardware Heterogeneity
	Software Heterogeneity
	Architectural Heterogeneity

	Heterogeneity Handling
	Representation of Heterogeneous Data
	Exploiting common Interfaces
	Individual Adaptation
	Bridges
	Mobile Agents

	Architectural Issues
	Communication Models and Middleware Application
	Components
	Workflow

	Conclusion

