Approaches to an adaptive Middleware for
Mobile Services

Ulrich Diimichen,

Abstract—Adaptive middleware and wireless net-
works are hot topics in many discussions today. Lit-
erature describes a lot of approaches which are based
upon existing middleware technologies by adding
functionalities for adaptive behavior. Disadvantage
of this proceeding is the resulting dependence upon
the interface provided by the underlying middleware.
This paper will describe a whole new approach for
adaptive middleware which is on the one hand able to
manage and organize a complex mobile wireless net-
work. On the other hand it interprets requirements
demanded from mobile services which are running on
top of it. These requirements are described within
a meta information base which comes along with a
mobile service. Using this additional information the
middleware adapts its behavior to optimize the per-
formance of the complete network. To understand the
behavior of the middleware this paper will first give a
short description of the structure of the middleware.
Subsequently it will classify four different abstraction
layers starting with a view onto the entire network
up to the fine-tuning mechanisms within the middle-
ware itself. Afterward it will describe in detail a set
the different adaption approaches within the four ab-
straction layers and show how these approaches are
integrated into the middleware.

Keywords: Adaptive middleware, Bluetooth Networks,
Meshnets, Mobile Services, BlueSpot System

1 Introduction

Interest in wireless networks has increased dramatically
in the last few years. But in contrast to wired net-
works, wireless networks need to be managed more elab-
orately. In many cases it is very useful to have a mid-
dleware which takes control over the connection man-
agement, fault management and communication manage-
ment. Most of today’s approaches concentrate on a sub-
set of topics to be determined in this environment. This
paper will take a closer look at the BlueSpot System[4],
which is a project that develops an adaptive middleware
to handle complete wireless network scenarios. The mid-
dleware is used to control wireless Meshnet infrastruc-
tures. There are mobile services on top of the middle-
ware, which are implemented in either native C code or

*Institut fiir Informatik, Technische Universitdt Miinchen, 85747
Garching, Germany, {duemiche, baumgaru}@in.tum.de

Uwe Baumgarten *

as Java MIDlets. The middleware itself is available for
different architectures, like Linux, Symbian OS or Win-
dows Mobile and for different devices like Smartphones
or PDAs. Built up in this manner, the BlueSpot Sys-
tem is used to demonstrate todays existing wireless net-
work management mechanisms and to check these mech-
anisms against each other. Additionally, because of the
well-defined interfaces the middleware provides, it is very
easy to integrate new concepts and to gain benchmark-
ing results which are comparable to existing ones, made
before with the BlueSpot System. The middleware is
build up modular, so that it can be extended or shifted
very easily. In contrast to other projects, the BlueSpot
System can be adapted to a very wide field of problem ar-
eas, without loosing exiting results from other use cases.
The underling network can be divided in communication
nodes. Each communication node is classified as either
an infrastructure node, which is helping to establish the
network or a client node, which is a user of the infras-
tructure. The used hardware for infrastructure nodes are
Gumstix!. While developing the system the main aspects
were self-configuration, self-healing and self-organization
of wireless networks with the ability to support nearly
every kind of mobile service. Services are equipped with
a meta information base, which describes the demands
the service makes on the middleware. The middleware
itself adapts to these demands by changing its behav-
ior dynamically. In the following this paper will have
a closer look at the architecture of the middleware and
the contained parameters of the meta information base
of a service. Afterward it will describe the application
range divided into different abstraction layers. These are
needed to consider different adaption behaviors. In the
next section this application range will be used to classify
different for one thing existing approaches, for another
thing new approaches. It will describe how the network
and the middleware adapt to an example parameter, a
mobile service demands. At the end the paper will give a
comparison of other approaches of adaptive middleware
and will point out the main differences.

IGumstix are XScale based embedded computers in the
size of a chewing gum stick. For additional informations see
http://www.gumstix.com/



2 Middlware description

The middleware consists of different layers. Figure 1
shows an overview of its structure. To be able to integrate

Mobile Services

Service Interface

Adaptive Behavior
Extensions

Network Adapter Interface

Bth Dev (W)LAN Dev

Figure 1: Middleware structure

different wireless network technologies, the BlueSpot Sys-
tem provides an interface, which enables the connection
to underlying network drivers. This interface is located
at the bottom of the stack and is called the Network
Adapter Interface. It is implemented by the different
available network adapters and connects them to the mid-
dleware. Support for Bluetooth and (W)LAN devices
is already implemented. The Network Adapter Interface
represents the consistent abstraction of any used network
technology, but the main used technology at the moment
is Bluetooth. Above the Network Adapter Interface is
the Network Abstraction Layer, which abstracts the used
communication technology to the rest of the middleware
stack. On this way the top adjacent layer does not need
to know anything about the kind of the underlying net-
work. Additionally all relevant network attributes are
collected to a defined set of parameters and are provided
to the upper layers of the stack. The Protocol Layer sits
on top of the Network Abstraction Layer. It handles
the forming of message headers for communication. Ad-
ditionally it is responsible for controlling available com-
munication partners detected by the network adapters.
To abstract communication from connections there is the
Session Layer above. As the name implies, it is responsi-
ble for session handling and end-to-end communication.
Especially using Bluetooth as underlying network tech-
nology, the Session Layer is very important. In this case
the communication is often disturbed because of lost con-
nections. After the reconnect, accomplished by the Pro-
tocol Layer, the connection is immediately assigned the
the still existing session again and communication can be
continued. This happens completely transparent to the
on top running mobile services. In order to be able to
dock mobile services to the middleware, there is the Ser-
vice Interface. Tt defines the entry point for the execution
of the services. Additionally it enables the management
of the mobile services with functions e.g. needed to start

or stop a service. As mentioned before, services can be
implemented either in native C code or as Java MIDlets.
Services implemented in native C are integrated via dy-
namic library linking whereas MIDlets are started in a
new process. In this case the data exchange between ser-
vice and middleware is done via socket communication.
This is necessary because Java Native Interfaces (JNI)
are not supported by Java MIDlets yet.

In general the are two ways to add adaptive behavior
to a software. One way is to directly insert the corre-
sponding code into the source code of it. This leads to a
mishmash of the software’s functionalities and adaptive
functionalities within the same source code, which affect
enormous the readability of it. The second approach is
to define interfaces within each software module. The
adaptive behavior is gained by implementing the inter-
face in a separate module and connecting this module
to the corresponding interfaces. This approach has the
big advantage, that the software’s functionalities and the
adaptive behavior are strictly separated from each other.
Additionally later it is easy to add further adaptive be-
havior without the need of editing the original code. A
disadvantage of this approach is, that in some cases it
is nearly impossible to separate the adaptive functional-
ities from the software’s ones. This is why within this
middleware both approaches are used. Whereby the sec-
ond was strictly preferred wherever it was possible. The
adaptive extensions for this middleware is implemented in
the adaption module beside the main stack. It includes
the defined interfaces for each layer. E.g. there is the
Protocol Interface, which enables the binding of differ-
ent replaceable wireless routing protocols to the Protocol
Layer. The classification of different adaptive extensions
assigned to the different middleware layers will be dis-
cussed in detail in section 5.

Each node of the network is equipped with the middle-
ware. As part of the self-configuration, every node auto-
matically tries at startup to connect to its neighbors to
build up a network. At the moment the topology of the
network is defined by a connection list which is given to
every node. This was necessary to handle the complex-
ity of the network construction, but the replacement of
this list and thus the atomization of network forming will
be part of future work. When a connection drops, the
concerned nodes automatically try to reconnect to each
other. After a defined time out without successful recon-
nection, the currently used routing protocol is notified
and has to build up a different communication path as
part of the self-healing behavior. Available services are
announced and distributed by the Service Discovery Ser-
vice (SDS), which is also used to find a communication
partner, equipped with the same mobile service within
the entire network. If a node does not provide a required
service, this service is sent by the SDS to this node auto-
matically. Afterward it is started immediately. The bina-
ries of the service are transmitted in form of a zip archive
which contains the several different binaries for the differ-



ent possible hardware architectures. To be able to run the
service on each node in the entire network it is necessary
to have the service in different versions. One the one hand
as Java version and on the other hand as precompiled bi-
naries. It is needful to have these binaries compiled for
each hardware platform. Within the zip archive there is
a folder for each supported hardware platform with the
corresponding binaries in it. Within the BlueSpot Sys-
tem this procedure is called service mobility. The service
mobility leads to an overhead of transferred data when
the service is delivered to an other node but this is the
only way to support all different devices. After the deliv-
ery the SDS searches the received zip archive an extracts
the preferred binaries. Subsequently it is able to start the
new service. With these efforts of self-management the
usability of the complete system is simplified enormously.

3 Meta information base

The meta information base (MIB) contains a set of pa-
rameters which are adjustable according to the require-
ments of the service. An example parameter described in
the meta information base is the minimum bandwidth the
service needs run properly. Beside the minimum band-
width there are several additional parameters supported
which will be described in the following. This is a list of
currently considered parameters:

e minimum bandwidth
e maximum bandwidth
e maximum allowed latency time
e priority of the service

e connection orientated or connection less service

e streaming or message based communication

preferred routing algorithm

In addition to the minimum bandwidth requirement, also
the maximum bandwidth, a service will use, is consid-
ered. This simplifies the arrangement of the available
throughput within a domain. A routing algorithm is able
to more easily plan the allocation of network resources,
if it has this information. Another main parameter is the
maximum allowed latency time. In case of a telephony
service a long latency time would cause bad speech qual-
ity because of long pauses while waiting for an answer of
the communication partner. The forth parameter is the
predefined priority for a service. This priority, which is
handled as an initial value, is used to determine which of
the competitive services will be preferred. There are two
approaches available for handling services priority. The
simple one uses the parameter from the meta information
base as a constant value. The second approach changes

this parameter by considering the bandwidth the service
has used within a defined time span. When it communi-
cated a lot of data, the service is downgraded and thus its
priority is decreased. In opposite, when the service has
used less bandwidth its priority is increased again. This
mechanism is useful to achieve a fair allocation of avail-
able bandwidth to services, where many services have to
share a connection with very less bandwidth in total. The
parameters described next are boolean values. The first
one determines if the communication occurs in connec-
tionless or connection orientated manner. This is used
to disable sending acknowledgment packets in order to
safe bandwidth and calculation time if a indication for
successful transmission of data is not needed. If the ser-
vice is set to streaming mode the middleware provides
memory space for buffering received packets. The last
parameter is a string value and names the routing algo-
rithm which fits best to the properties of the service. If
there are running more than one service, the used routing
algorithm is elected by the middleware. Before starting
a new service it sends a request to all already running
services in order to receive their preferred algorithm and
their priority value. These two values are used to cal-
culate a mean value for each routing algorithm over the
complete network. The one with the highest mean value
is chosen as the next algorithm.

4 Application range

To be able to describe the adaptive behavior of the sys-
tem, it is necessary to have a look at its application range.
Figure 2 shows the different abstraction layers that have
to be considered. On the right hand side there is the mo-
bile service with its MIB. Within it the service contains

Infrastructured Network Domain Service

| Node with Middleware

Figure 2: Application range

the demands the service makes to the network in order
to run properly. This makes the service to the point of
origin in order to observe the adaptive behavior of the
middleware. Before starting a service, the middleware
has to analyze the requirements of the service. When
the demands can’t be met by the middleware, it has to
free resources or to trigger a change of network behavior.
If so, neighbor nodes will get involved into the adaption
handling. All nodes of the network are grouped into dif-
ferent domains to simplify the network management. In
case of the BlueSpot System, the domain is equal to a
Bluetooth Piconet [2], while in other cases it may make



sense to group the nodes into a hierarchical or geograph-
ical order. Most of the time a domain is built up either
in a star layout or as a tree. As a result there is only one
path to a designated node. The connection to other do-
mains is done by bridging nodes. In case of the BlueSpot
System these nodes belong to two different Piconets and
hence form a Scatternet [3]. These nodes are called Slave-
Slave Nodes because they are slaves in both Piconets. As
part of the adaption handling, the middleware examine
the situation within the domain at first. If the demands
can’t be met it has to expand its activities over the bor-
ders of the domain, onto the entire network.

5 Adaptive Behavior

In the following, this paper will describe the adaptive ex-
tensions of the middleware. It will explain how the sys-
tem is able to react to demands described in the MIBs, i.e.
demands on bandwidth for communication. For this rea-
son it will consider the behavior of the system by means
of the abstraction layers described in the section above
in opposite direction. Additionally, it will point out the
special requirements to the middleware within its archi-
tecture.

5.1 Network

The most common way to handle QoS parameters is to
change the behavior of the network. This is achieved by
adjusting the parameters of the routing algorithm. E.g.
by replacing a reactive routing algorithm with a proac-
tive one, less control messages are caused and thus less
bandwidth is used?. In the case of the BlueSpot System
there are three different algorithms implemented at the
moment. The first is a simple flooding routing protocol
with duplicate detection. The second is a modified DSR?
protocol [5] which is an example for a reactive protocol.
The last one is a modified DSDV* routing protocol [9] as
an proactive protocol. Both protocols, the DSR and the
DSDV, has to be modified to fit to the requirements of
the BlueSpot System. If a node asks for an exchange of
the routing protocol and the rest of the BlueSpot Sys-
tem agrees, a broadcast message is sent by this node to
all other nodes of the entire network. Every node stops
its activities and performs the exchange. After the new
protocol has been started successfully, every node brings
up its connections to its neighbors again and continues
to communicate. The messages to be sent while the ex-
change were buffed and send after the successful recon-
nect.

If the exchange of the routing protocol does not free
enough bandwidth, the routing algorithm itself has to
react. Therefore it triggers a route search in oder to find

2Reactive algorithms fit better for scenarios in which clients
move in higher speed through the entire network. In this case it is
necessary that routing updates are made more frequently.

3Dynamic Source Routing

4Destination-Sequenced Distance-Vector

a new communication path as shown in figure 3. In this
example the Service S; on Node Src is communicating
with Node Dest via the nodes A; and As. After the
additional Service S5 has started its communication on
the same route, the available bandwidth is falling under
the required threshold quoted in the meta information
base of Service S7. Now the routing algorithm reacts by
changing the route to Node Dest via nodes By and Bs.
As a result, the network is more load-balanced and the
Service S obtains its needed bandwidth. If bandwidth
of the new path is still not enough the routing algorithm
bundles two different paths. So the evolving bandwidth is
calculated by adding the available bandwidth of the two
paths minus the bandwidth used for the required control-
ling messages.

The BlueSpot System provides three different ways for

—— original communication path of service S,
——» alternative path for service S;
—— communication path of service S,

Figure 3: Alternative path finding

different path routing. The first approach is the known
Best Effort proceeding first introduced by GEANTS.
Best Effort is not configurable and tries to find the best
load-balancing on its own. A second approach is the use
of priorities. Therefore we implemented a modified Diff-
Serv protocol [8] which supports four different measures
of quality, called quality classes. Each connection is as-
sociated to such a quality class and will be preferred by
a node if its class is higher than the class of an other
inbounding connection. The third approach is based on
resource reservation. This approach pick-ups the idea of
the IntServ proceeding [7]. It reserves bandwidth for ev-
ery connection. In opposite to the DiffServ a connection
is not associated to a quality class but gets a absolute
priority. This is the big advantage of resource reserva-
tion, because once a connection is established the system
is able to guarantee the requested resources. As a dis-
advantage the administration overhead for the resource
reservation is very high. Each node contained in a path
has to be informed to reserve the requested resources.
Whereas using the DiffServ protocol every node just has
to handle its own connection requests and there is no
need for it to know the other involved nodes of a commu-
nication path.

When a service indicates in his meta information base

5see http://www.geant.net



that it is running in connectionless mode, it does not need
the acknowledgments of arrived packets at the receiver
sideS. Thus again bandwidth can be saved by omitting
the ack packets.

Considering the middleware architecture, the involved
layers are the Protocol Layer and the Session Layer. The
latter has to handle the different path routing while the
Protocol Layer is responsible for the routing algorithm
exchange.

5.2 Domain

The contemplations done before are only valid if the com-
munication happens between different domains. Within
a domain the adaption occurs in a different way. Here it
is not possible to change communication paths because of
the described properties of a domain. So the middleware
reacts in two different ways. The first way is to move
a node from one domain into another one. This is only
possible if the concerned node is a client node and it is
within range of a second domain. In this case the middle-
ware on the client node initiates a handover to the new
infrastructure node in the second domain. Now the ser-
vice can use the available bandwidth in the new domain.
The handover is implemented in the Session Layer of the
middleware. The second way is to throttle the bandwidth
used by other services. Because of the underling Blue-
tooth technology a domain represents a Piconet which is
buildup in a star topology with the master in the center.
For this reason in most cases the master is the point of
origin for bandwidth throttling within a domain. The
BlueSpot middleware provides two different approaches
to support bandwidth throttling. The first approach is
the usage of a token. Each master of a Piconet com-
mands a token which it allot to the slaves in a predefined
order. This approach is similar to standard token routing
protocols, known from the network routing sector. The
second approach is a credit system. Each slave obtains
an predefined amount of credits which it can employ for
communication. If its credits are used up the slave is not
able to send data anymore. After a defined round time
or after all other slaves have used up their credits, ev-
ery slave obtains a new amount of credits and is able to
continue communication. Advantage of the credit system
is, that all nodes are allowed to communicate simultane-
ously. While using the token approach only one node a
time is able to send data. But the token approach needs
less overhead for managing the communication. Also fair-
ness is easier to handle. The credit system and the token
approach are implemented on hight of the Protocol Layer
within the adaption module.

6This may happen i.e. within a sensor network where a sensor
does not need to know if its sent information receives the listening
destination node

5.3 Node with middleware

Looking at a node, it is not possible to directly manage
bandwidth issues. Thus all approaches need to be in-
direct. A main starting point is the observation of the
CPU load. If the load is over a predefined threshold it is
predictably that the throughput of the network adapter
will drop. This high CPU load is avoided by the middle-
ware in two ways. At first it disables a running service
with low priority or it prevents the start of a new one. If
this approach does not succeed, the middleware tries to
swap services to other nodes. Therefore it is necessary
to determine if a service at all can be moved to another
node. In most cases this is only possible if the service is a
worker and does not need direct user interaction. In the
BlueSpot System this service mobility is implemented by
splitting the functionality of the service into two seper-
ated services: one which handles the interaction with the
user and another which is responsible for the whole work.
An implemented example within the BlueSpot project is
a service which steers a radio controlled (RC) miniature
car. As described before the service is divided into to
different services. One does the user interaction and en-
ables the user to choose a predefined route the car has
to drive. The other is calculating each track section. If
the car (itself a client to the network, but with very low
resources) comes within range of a node, the service run-
ning on it is already awaiting the connection. It imme-
diately takes over the steering of the car until the car
again leaves the range of its radio. While steering the
service duplicates itself onto the node which will control
the next track section. To simplify the positioning of the
car, every node knows its own coordinates and the top
velocity of the car. By knowing the start position of the
car and interpreting the steering commands the steering
service is able to calculate the position of the car at every
time. Of course this is not (and never will be) an exact
driving but it works still fine enough for demonstration
issues of service mobility. A second indicator to monitor
is the available memory. If the node runs out of mem-
ory the middleware falters. In this case it is not possible
anymore to guarantee any bandwidth value. These ap-
proaches are implemented in the Session Layer and the
Service Interface.

5.4 Service

Considering the situation on service level the application
of a service should be reviewed by the usage of a simula-
tor. Before the service is allowed to start running on the
real system, its processing is simulated within a testing
environment. To handle service testing and verification
the BlueSpot System is supplemented with an additional
network adapter. This adapter implements the binding
to a NS2 simulator”, which is able to simulate a com-

"For additional information about NS2 see the website

http://www.isi.edu/nsnam/ns/



plex network topology. The simulator runs through dif-
ferent programmed network situations which will cause
the middleware to react in order to fulfill the demands of
the service. If these testings showed positive, the service
is verified to run properly on the system. Otherwise the
implementation of the service has to be reviewed or the
middelware has to be added by extra functionality for the
requirements of the service.

6 Related Work

There is currently considerable ongoing research in the
area of adaptable middleware. Most approaches aim at
extending existent middleware technologies by own at-
tempts. [1] describes how to extend CORBA to gain bet-
ter network adaptivity for multimedia applications. The
approach is to obtain a look into black-box systems to
e.g. add special algorithms for different network bind-
ings. [11] extended CORBA for context-sensitive com-
munication in ubiquitous environments. This approach
aims at the special requirements within ad hoc networks
combined with the perception of context-sensitive sen-
sors. But both approaches have in common that they
use an existing CORBA implementation and thus are
not able to directly change the behavior of more than
one node in a network. Their point of view is to examine
only one node and to make the best efforts to optimize its
situation. The approach in this paper is to move beyond
the boundaries of one single node. The complete system
is involved into adaption behavior and hence there are
much more possibilities to meet the demands of a single
service.

Concerning the classification of the BlueSpot middleware,
[6] gives a detailed overview of different proceedings in
composing adaptive software. To classify the kind of
adaption it describes two different proceedings: the pa-
rameter adaption and the compositional adaption. The
first one focuses on a advancement of the performance
by changing predefined parameters. Like described in
section 5.2 bandwidth can be gained by increasing the
priority of a service. If the middleware triggers a rout-
ing protocol exchange, new code is loaded and thus new
algorithms are included into the middleware. This is
what [6] is calling compositional adaption. Further [6]
examines the different constituents of an adaptive mid-
dleware. This idea goes back to [10] which decomposes
a middleware into four layers: Host-infrastructure mid-
dleware, Distribution middleware, Common middleware
and Domain-specific middleware. [6] says, that these four
layers bridge the gap between an application program
and the underlying operating systems, network proto-
cols and hardware devices. The BlueSpot middleware
stack described in section 2 also fits into this decompo-
sition. The Network Adapter Interface and the Network
Adaption Layer represent the Host-interface middleware.
They hide the heterogeneity of the underlying network
devices. The Protocol Layer and the Session Layer fit to

both the Distribution middleware and the Common mid-
dleware. They handle fault tolerance as well as high-level
programming abstraction for enabling developers to write
distributed applications in a way similar to stand-alone
applications. The Service Interface implements parts of
the Distribution middleware as well as of the Domain-
specific middleware. Services are able to connect to the
middleware by implementing the interface the Service In-
terface provides. With the possibility to implement ser-
vices in both native C code and as Java MIDlets, each
service can be specialized to the demands made to the
service.

7 Future Work

The further activities at the BlueSpot project will be the
development of a monitoring tool. This tool will be used
to illustrate the behavior of the complete system by dint
of a graphical user interface (GUT). At the moment the
complete code is added by hooks which send UDP mas-
sages via a LAN device to a predefined destination ad-
dress. The monitor running on the destination device
will record all incoming messages and present them in the
GUI. It is necessary to use an extra LAN device for mon-
itoring to influence the systems performance as less as
possible. With the monitoring tool the adaptive behavior
of the middleware will be obvious. Additionally different
approaches i.e. the usage of different routing algorithms
can be easily compared to each other and new approaches
can be verified quickly. Supplementary it is necessary to
do more benchmarking on the complete system especially
to evaluate the different adaptive behavior efforts. These
benchmarks will be presented in future publications. The
only benchmarks which exists at the moment are values
about the throughput and the latency times of the under-
lying Bluetooth Scatternets with the use of the BlueSpot
Bluetooth device driver. However, these values are still
not comparable to other implementations, so they will
be also published after an exact verification in future. As
described in section 2 further work will be done to auto-
mate the network forming. A main task is, that all nodes
manage their connections on their own. The difficult in
this task is to build up the preferred domain based net-
work with the Slave-Slave nodes as bridges. E.g. a node
has to realize that it is a bridge between two domains
and has to turn itself into a special bridging mode. In
this mode no messages are reviewed but only forwarded
to the other domain to save resources and gain latency
time.

References

[1] G. Blair, G. Coulson, N. Davies, P. Robin, and
T. Fitzpatrick. Adaptive middleware for mobile mul-
timedia applications. In Proceedings of the IEEE Tth
International Workshop on Network and Operating



[7]

8]

System Support for Digital Audio and Video, 1997.,
pages 245-254. IEEE, IEEE, May 1997.

Bluetooth SIG. Bluetooth Core Specification v2.0 +
EDR - Piconets, chapter 4, pages 51-58. Bluetooth
SIG, November 2004.

Bluetooth SIG. Bluetooth Core Specification v2.0 +
EDR - Scatternet, chapter 8, pages 177-178. Blue-
tooth SIG, November 2004.

U. Diimichen and U. Baumgarten. BlueSpot Sys-
tem Infrastructure for Mobile Services. In Proceed-
ings of 49. Internationales Wissenschaftliches Kol-
loguium (IWK) Ilmenau, volume 1, pages 375-380.
Shaker Verlag, September 2004.

IETF MANET Working Group. The dynamic source
routing protocol for mobile ad hoc networks (dsr),
July 2004.

McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng,
and B.H.C. Composing adaptive software. Com-
puter, 37(7):56-64, 2004.

Network Working Group. Rfc 2210: The use of rsvp
with ietf integrated services, September 1997.

Network Working Group. Rfc2474: Definition of the
differentiated services field (ds field) in the ipv4 and
ipv6 headers, December 1998.

C. E. Perkins and P. Bhagwat. Highly dy-
namic destination-sequenced distance-vector routing
(dsdv) for mobile computers. In SIGCOMM 9.
ACM, August 1994.

D. C. Schmidt. Middleware for real-time and embed-
ded systems. Commun. ACM, 45(6):43-48, 2002.

S. S. Yau and F. Karim. An adaptive middleware
for context-sensitive communications for real-time
applications in ubiquitous computing environments.
Real-Time Systems, 26(1):29-61, January 2004.



