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Abstract

The engineering of automotive IT-systems is con-
fronted with the challenge of increasing complexity
which will no longer be manageable with the currently
used approaches of embedded systems development.
Heterogeneity and a variety of new types of applications
will even increase the problem in future. In this paper
we present a novel approach towards self-configuration
of vehicle systems. We describe the control loop and
outline how this enables autonomous management of
application software in embedded distributed systems.
We define the configuration problem as constraint sat-
isfaction problem (CSP) and present simulation results
of different algorithms. A mapping of algorithms to the
different configuration contexts of vehicles is given.

1 Introduction

Handling complexity has evolved to the main chal-
lenge for automotive IT-systems engineering. In cur-
rent upper class vehicles there are up to 70 hetero-
geneous embedded computers (ECU)1 which perform
different concurrent control, entertainment and assis-
tance tasks in the system. Innovative applications in
the automotive domain are driven by software, which
will reach a level of 90 percent in the next decade [6].
A lot of new applications like lane departure warning,
emergency braking or autonomous parking is going to
reach product quality soon. Even today premium cars
are equipped with more than 2,000 individual functions
which are implemented in software [2]. More function-
ality is about to come as driver assistance and driver
information systems have become a major differentiat-
ing factor for competitors.

Life-cycles become more and more important in ve-

1ECU - Embedded Control Unit

hicle environments since the different parts of an au-
tomobile have very different periods of product life.
They range from about 15 years for the complete car
over a few years for certain ECUs like navigation sys-
tems to just several weeks for short-lived applications
or security updates for software. As the automotive
market requires innovations in shorter cycles, new ap-
proaches like self-configuration have to be introduced
to the automotive world of networked control units.
Self-management technologies will definitely not reduce
complexity, but they have high potential to make han-
dling of complex systems easier and more predictable
for development, maintenance and usage.

The term self-configuration is used in this pa-
per to describe the continuous process of autonomously
determining and enforcing valid execution assignments
between software components and platforms, such that
the system goals in terms of available functionality are
met in the face of a changing system. Figure 2 depicts
the four steps of our configuration control loop which
take care that up to date software is running in the sys-
tem by comparing available applications with a desired
application policy.

In this paper we outline a novel approach towards
self-configuration for future automotive systems and
compare different configuration algorithms. In Section
2 we present our target scenario including an overview
of the self-knowledge and the system architecture for
self-configuration. The self-configuration control loop
is the topic of Section 3. We formulate the config-
uration problem as CSP2 in Section 4 which is used
for the configuration algorithms and their evaluation
in Section 5. We conclude in Section 7.

2CSP - Constraint Satisfaction Problem
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2 Target Scenario

As not only functionality but also cost is a driving
force in automotive engineering, current vehicle sys-
tems have been recognized to be much too error-prone
and complex due to their heterogeneity. Todays static
systems are ill-suited for management at runtime and
self-configuration. Hence effort is directed towards a
reduction of the number of different nodes and net-
works in the same system. Instead of ECUs in their
current, very specialized design there will be two dif-
ferent types of nodes in future vehicle systems. On one
side there will be light-weight sensors and actuators
that might even be combined with mechanical units
like electronic dampers. On the other side there will be
multiple nodes with higher capacity and computing re-
sources. These nodes are no longer used exclusively for
one specific purpose. Instead, they become multifunc-
tional platforms able to execute different applications
concurrently.

Infrastructural software enables life-cycle manage-
ment for these platforms and their applications. In our
target environment software is separated from hard-
ware by an abstraction layer. A small set of power-
ful platforms executes software components. The plat-
forms are nodes which execute infrastructure software
and are connected via a broadband network. Plat-
forms may provide different capabilities to the soft-
ware components running on them. Applications are
defined according to [3] as a sets of communicating
software components which provide coherent, user-
perceivable functionality. Software components can
be installed, removed or updated separately and have
functional requirements (FRs) and nonfunctional re-
quirements (NFRs) which are represented in the sys-
tems self-knowledge together with information about
the platforms in the system, their capabilities and net-
works between the platforms.

Functional requirements describe the communica-
tion input data of a component. FRs are modeled
as InPorts such that a configuration is only valid if a
suitable OutPort exists for each InPort in the system.
Nonfunctional requirements describe the dependencies
which components have on their executing platform.
As described in [3] NFRs can be used to capture re-
source requirements as well as arbitrary nonfunctional
dependencies. A configuration is only valid if the plat-
form which is assigned to a component provides suffi-
cient capabilities for each NFR of the components lo-
cated there.

The Configuration Problem is thus to determine a
valid assignment of platforms to components such that
both functional and nonfunctional requirements are

fulfilled.

2.1 Self-Knowledge

The system manager component in our architecture
in Figure 1 employs the concepts of functional, non-
functional requirements, as well as capabilities in or-
der to build up a model of the system [3]. All the
entities in the system like software components and
platforms are required to contain their own description
and have to make it available to the knowledge base.
The knowledge base represents and stores the systems
static self-knowledge. It collects the information about
applications and components on their installation and
removes the descriptions after uninstallation on the re-
moval of the applications from the component reposi-
tory. Analogously the knowledge base gathers the in-
formation about the available platforms at the time
they are first attached to the rest of the system and re-
moves their descriptions when platforms are no longer
available. This behavior enables evolution of the com-
plete system including dynamic change in the system’s
self-knowledge.

The web ontology language (OWL)[1] has been cho-
sen as a suitable format for encoding the descriptions
of platforms and components. From the three sub-
languages of OWL we used OWL DL (for Description
Logic) as OWL DL supports the maximum expressive-
ness while retaining computational completeness [7].
OWL DL contains certain expressions which are not
part of its lesser expressive brother OWL Lite. OWL is
based on the Resource Description Framework (RDF)
which provides an XML based format for data repre-
sentation. One main advantage of RDF-based descrip-
tion is the uniqueness of its classes and the relations
between them. The use of uniform resource identifiers
(URI) for all its constructs ensures uniqueness. In this
way it can be easily applied to the structures of vehicle
development since the different parts of vehicles may
be developed by different suppliers. Each supplier has
the opportunity to specify his modules separately from
the others. A few central definitions have to be made
however, for example for common channel names, mes-
sage types and names of capabilities and NFRs.

2.2 Architecture Overview

In this section we give a short overview of the archi-
tecture of the self-configuring aspects of our prototype
system. The aim of our research is to hide complexity
from the users of automotive computing systems but
also to ease the life of workshop personnel and devel-
opment engineers.

2



II
C

D
A

B

I

PlatformManager
PlatformManager

III
E

PlatformManager

Component 

Repository

PlatformManager

System 

Manager   

IV Knowledge

Base

Self-Configurator   

Figure 1. Architectural structure for self-
configuration

Therefore we are concerned with the processes of
installation, uninstallation and update of applications
or single software components. Additionally, we ad-
dress the evolution of such systems in terms of change
in the hardware configurations like adding or remov-
ing platforms or peripherial devices attached to plat-
forms. In our component-based system we have a sys-
tem manager component that provides the function-
ality to install, update or remove application software
on a system-wide basis. To accomplish this, the sys-
tem manager uses the knowledge base to remember the
systems self-knowledge. The component repository is
used to store all software components that have been
installed in the system. Additionally it caches those
components that could not be installed in the current
configuration. This centralized approach has been cho-
sen to ease development; eliminating single points fail-
ure will be a subsequent, future task.

Figure 1 gives a schematic overview that encom-
passes four platforms and the application components
A-E. Platform IV runs three components pivotal for
the self-configuring system, the fourth one, the com-
ponent repository is located on platform III. Even
though three of these components are located at the
same platform they could as well be distributed in the
system as they use the same publish/subscribe messag-
ing middleware [4] as all other application components.

The infrastructure of each platform contains a plat-
form manager component which enables and man-
ages local life-cycle processes like installation, removal,
starting or stopping of components. The platform
manager is also responsible for providing the platform
description information to the system manager to be
stored in the knowledge base. All platform managers
are governed by the system manager which controls
global life-cycle operations. The self-configurator uses
the management functionality which the system man-
ager provides to implement our self-configuring control
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Figure 2. Self-Configuring Control Loop

loop (Figure 2). For simplicity reasons other parts of
the infrastructure software and other hardware than
platforms and the network have been omitted in Fig-
ure 1.

3 Self-Configuring Control Loop

In this section we present an overview of the self-
configuration control loop and point out how the con-
figuration algorithms fit into phase four. For self-
configuration in vehicle systems we are concerned with
whether the correct and up-to-date versions of appli-
cations are installed in the system. Development and
maintenance of software may lead to updated and error
corrected versions of software components. The hard-
ware layout of the system may change due to adding
or removing platforms to and from the system. The
knowledge base forms the basis for reasoning in the
control loop. The information stored in the knowl-
edge base alone is not sufficient for the reasoning tasks
since additional information about newly available soft-
ware components and updates is needed. Hence the
self-configurator (Figure 1) periodically fetches XML-
encoded data about the availability of new software
versions from an Internet server. By comparing this
data with a goal policy (desired applications list) it
can determine which applications to update. In the
following we present the four phases:

Monitoring For self-configuration we assume that
successfully installed software components do not
change their state (installed / not installed) un-
less they are uninstalled or the platform that hosted
them disconnects from the system. So subject to
change is given by the release of newer versions of the
installed applications, by changing the desired applica-
tions list in the goals policy file, and by changing capa-
bilities of the system as a result of adding or removing
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platforms. The system manager gets informed by the
system managers and can figure out whether platforms
left or whether new platforms joined the system. So the
self-configurator can easily monitor the available capa-
bilities and can determine whether the current config-
uration is still valid. It furthermore checks whether all
elements in the set of current applications are installed
and whether there are applications installed that have
been removed from the desired applications list. The
self-configurator also checks whether new versions of
the currently installed applications are available. If one
of these conditions is true the analysis phase is started.

Analysis The analysis phase is closely coupled with
monitoring since some of the tasks done in the monitor-
ing phase already provide analysis results. For newer
versions of applications than the currently installed
ones we have to figure out what is new about them.
Applications are made up of software components, so
out-dating may be due to newer versions of one or more
software components. The result of the analysis phase
is a set of components to install and a set of compo-
nents to remove from the system.

Planning Planning the actions to reach the target
state where all necessary applications are installed in
their desired versions works hand in hand with the
analysis phase. The outcome of the planning phase is
a list of declarative instructions what to do next, like
”install component x to platform y”. The pro-
cess of creating these instructions is guided by a set
of principles. Each component can only be installed if:

• its non-functional requirements are fulfilled by its
destination platform

• its functional requirements are either fulfilled by
the current system or will be fulfilled after the cur-
rent installation process. This may happen when
two components in a publisher-subscriber relation-
ship are installed at the same time.

The planning phase is where the subsequently pre-
sented configuration algorithms come to work (Section
5). The algorithms have to find valid assignments and
to produce a plan of actions.

Execution Once the change actions have been
planned the system manager can execute the instruc-
tions in the previously arranged order. The system
manager handles components and instructions on a
generic level since there may be multiple different types
of platforms in a heterogeneous vehicle system. Plat-
forms and components are addressed via their RDF
identifiers as specified in the knowledge base.

4 The Configuration Problem as CSP

The configuration problem we described in Section
2 can be modeled as a constraint satisfaction problem
(CSP) as done in [8]. In the following we consider
the configuration problem mainly with the focus on
nonfunctional requirements. Consider variables in
the set KOMP = {k1, k2, ..., kk} which represent
software components and have to be assigned a value
from the set of platforms PLAT = {p1, p2, ..., pp}
such that the constraints in the set CS are fulfilled.
Each platform provides capabilities C = {c1, c2, ..., cc}
and each component requires a certain amount of
them. In order to formulate the nonfunctional re-
quirements as constraint NFRs ∈ CS we define the
function Ca

i (x) : N −→ N that returns the amount
of capability ci which is available at platform px.
Accordingly the function Cr

i (y) : N −→ N returns
the amount of capability ci which is required by
component ky. The constraints of the configuration
problem are given by the set CS that represents
the application requirements. Nonfunctional require-
ments are expressed by the predicate NFRs as follows:

∀i ∈ {1, 2, . . . , c}∧∀x ∈ {1, 2, . . . , p}∧∀y ∈ {1, 2, . . . , k}

NFRs = true ⇔
∑

ky=px

Cr
i (y) ≤ Ca

i (x) (1)

A configuration is only valid if the constraint NFRs
is true. A similar constraint can be formulated for for-
mulated for functional requirements.

5 Configuration Algorithms

In order to solve the configuration problem we in-
vestigated two different algorithms in a prototypical
implementation. We soon realized that the prototype
was much too small to gain significant results. Consider
that a system with 100 components and 10 platforms
already has 10100 possible configurations. We designed
a simulation environment which is able to simulate real-
life scenarios for installation and reconfiguration. As
the configuration problem is NP-hard we used heuris-
tics to gain sensible runtime behavior.

5.1 Backtracking Algorithms

Backtracking Algorithms [9] model the CSP as a
search tree where in each node of the tree a variable
y ∈ KOMP is assigned to a value x ∈ Plat such
that the constraints can be fulfilled. The algorithm
performs a depth-first search through the tree. If the
constraints cannot be fulfilled, the algorithm has to go
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back to the previous level (backtracking) and reassign
different values. The backtracking algorithm has found
a solution for the configuration problem if a leaf node
of the search tree is reached. In the worst case the
algorithm has to check all possible combinations (all
nodes of the tree). Thus a modified worst-fit heuristic,
developed in [5], has been conceived which chooses the
most constraining assignment first such that it leaves
as much freedom for the remaining assignments as pos-
sible.

5.2 Iterative Repair Algorithms

The second class of algorithms are iterative repair
algorithms [9] which try to solve the configuration
problem locally. These algorithms start with an
arbitrary assignment even if it is invalid in the sense of
the configuration problem. We used the min-conflict
heuristic which uses a greedy strategy, it tries to
minimize the number of conflicts locally and assumes
that this will also lead to a globally optimal solution.
The algorithm could be significantly improved by
including a local minima avoidance strategy.

6 Simulation of Configurations

Our simulation environment makes use of the same
architecture and knowledge representation with OWL
as our prototypical implementation. We were espe-
cially interested in reconfiguration scenarios where a
previously valid system becomes invalid and a new con-
figuration has to be found. Reconfigurations may hap-
pen at runtime of future vehicles due to updates or
new installation of applications and have tight real-
time constraints.

6.1 Simulation Setup

Figures 3 and 4 present an example for the simula-
tion setup. The numbers of platforms and components
are parameters for our simulation environment. The
simulation setup first creates the required number of
platforms which provide a certain amount of the capa-
bilities CPU, RAM and persistent memory.

The capabilities CPU rate, RAM size and persis-
tent memory for each platform are initialized with val-
ues scattered randomly around a certain expected value
such that each newly generated system has slightly dif-
ferent values.

In order to be able to implement a certain average
load threshold for all platforms we use the following

Load 
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Disposition Platforms Displacement 

Platform

a

a

b

b

c

c

Starter 

Component

Figure 3. Configuration test setup, step 1
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abc

c
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Figure 4. Configuration test setup, step 2

procedure: (1) assign components randomly to plat-
forms, (2) randomly distribute the available resources
(CPU, RAM, Memory) up to the desired load thresh-
old. This procedure results in a system with a valid
assignment for the disposition platforms and the aver-
age load is regarded while having different NFRs for
the different resources. For a complete test setup one
additional platform, the displacement platform, is cre-
ated afterwards. The displacement platform is assigned
to additional components. As depicted in Figure 3 the
number of components on the displacement platform
equals the number of previous platforms. The NFRs
for the components on the displacement platform are
arranged in a way that each component fits onto at
least one platform of the disposition platforms. So the
displacement platform could be completely cleared of
components so far. The sum of NFRs of these com-
ponents determines the size of the capabilities of the
displacement platform. Additionally one further com-
ponent is created which is be able to change its NFRs,
the starter component. Initially the starter component
has a zero consumption for its NFRs but this is changed
at the beginning of each simulation run, as in Figure
3.

To start a configuration we simply increase the re-
source NFRs of the starter component such that a cer-
tain number of components has to be removed from
the displacement platform. In the example in Figure
4 two components have to be removed. The number
of components to relocate can be specified as a further
parameter for each simulation run. As each component
from the displacement platform can be assigned a plat-
form of the disposition platforms it is guaranteed that
a valid assignment for all components exists.
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Figure 6. Quality of Solutions

6.2 Simulation Results

Some of the simulation results are displayed in the
figures 5 and 6.

Figure 5 depicts a comparison of the runtime be-
havior of the two algorithms depending on the number
of components involved, ranging from 50 to 190. The
presented values are average values over 100 simulation
runs each. The measurements confirmed our assump-
tion that the runtime of the worst-fit search grows with
the number of components while the min-conflict algo-
rithm works nearly independent from the problem size.
The results of worst-fit in the last four values are due
to the simulation setup and show how the worst-fit al-
gorithm works. With rising numbers of components
and a constant number of platforms the components
on the disposition platforms become smaller such that
the components on the displacement platform become
biggest in terms of resource usage at a certain point.
The worst fit algorithm assigns the biggest components

first and can thus find solutions quickly as it does not
need to perform a backtracking.

In Figure 6 we present the quality of the configu-
rations which were constructed by the two algorithms.
We measured the quality in the number of component
migrations needed more than the known solution de-
pending on the average platform load. We used a sce-
nario with 16 platforms and 116 components. Here the
differences between the two algorithms become obvi-
ous. As the min-conflict search is a backtracking al-
gorithm it reassigns all components to new platforms
which is often unnecessary and unwanted for a reconfig-
uration. The local-repair algorithm with min-conflict
heuristic is able to find solutions with a constantly bet-
ter quality as it leaves most of the available assignments
unaltered.

7 Conclusions

In our simulations we carried out multiple different
runs with the aim of determining ”the optimal” con-
figuration algorithm. From the simulation results we
conclude that the min-conflict algorithm is well suited
for dynamic reconfiguration contexts, its nearly con-
stant runtime behavior even with growing number of
components provides a good solution for time-critical
situations. Additionally, as the min-conflict algorithm
starts with a pre-assigned system, produces only few
change operations which fits well for reconfigurations.
In contrast the the backtracking can be used in clean
configuration contexts for setting up a new vehicle sys-
tem, as the worst-fit sometimes produced valid assign-
ments after a longer runtime when the min-conflict
search produced none in the same time.
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