
Realizing Consistent Event Ordering in Distributed Shared Memory Systems

Tobias Landes, J̈org Preißinger
Institut für Informatik

Technische Universität München
Germany

Abstract

A large number of tasks in distributed systems can
be traced down to the fundamental problem of attain-
ing a consistent global view on a distributed computa-
tion. Based on our previous theoretical work concerning
consistent event ordering in systems featuring both mes-
sage passing and distributed shared memory facilities, in
the paper at hand we discuss the more practical issues,
solutions, and results presenting themselves during the
process of actually realizing and implementing the con-
struction of consistent global views on such systems.

Keywords: distributed system, distributed shared mem-
ory, consistency, observation, implementation

1 Introduction

The transition from conventional, pseudo-parallel
systems to distributed systems is characterized by the
benefit of real parallelism on the one hand, and a signif-
icantly higher level of complexity on the other. While it
is relatively straightforward to determine the current sys-
tem state or the effects of the last operation in a pseudo-
parallel system, in a distributed system, because of real
parallelism, this is (in general) a non-trivial problem.

The lack of global time and the asynchronous paral-
lel execution of concurrent instructions in different pro-
cesses prevent the system’s current state from being char-
acterizable by a simple global glance on the execution.
However, many tasks in controlling and managing dis-
tributed systems need to establish a global system state,
e.g. monitoring, breakpointing, debugging, or automated
management.

So what we need is a consistent global view on the
system. “Consistent” means that what we see is a state
that is meaningful in the sense that it has, or could have,
occurred in the system execution, considering all the
causal dependencies among the states of the individual
execution activities. Such a consistent global view is
generally sufficient as a base for the tasks mentioned
above.

How to construct a consistent view on mere message
passing systems has already been examined by Lamport
and others [2, 3, 4]. In prior work [1] we have extended
these considerations to a system model featuring a dis-
tributed shared memory and thus created a formal base
for the implementation of these concepts. In the doc-
ument at hand we explain and discuss the proceedings,
problems, and practical experiences during the realiza-
tion. We are not aware of any related work present-
ing an actual realization of the construction of a consis-
tent global view on a system featuring distributed shared
memory.

This document is structured as follows. In section2
we briefly summarize the most relevant theoretical re-
sults of our previous work concerning consistent event
ordering in distributed shared memory systems [1]. Sec-
tion 3.1 generally describes the practical measures that
must be taken to gather all the relevant information. In
section3.2we briefly introduce the experimental system
which served as the base for our implementation. Sec-
tion 3.3 discusses how the consistent global view is to
be obtained. Section3.4 describes how the gathering of
information is done in our particular system, and section
3.5 discusses the resulting performance issues. Section
3.6illustrates the realization by means of an example ex-
ecution, and section4 summarizes the paper.

2 Consistent Event Ordering In Theory

Assembling a consistent view on a running system re-
quires the comprehension of all relevant computational
events and their mutual causal dependencies. This sec-
tion briefly summarizes the theoretical conditions for the
gathering of the required information, as we elaborated
in detail in [1]. The granularity of the events taken into
consideration generally depends on the application of the
consistent view to be generated, but should allow for cer-
tain events which are crucial to the tracing of the causal
dependencies among the events (i.e. send, receive, write,
and read events). In the next subsection a description of
our system model is given, along with all events of spe-
cial interest mentioned above.

2.1 System Model

In our system model, a distributed computation con-
sists of a finite setP = {p1, p2, . . . , pn} of n processes.
The processes communicate with each other in two ways.
First, they can communicate by sending and receiving
messages, which are only assumed to be delivered re-
liably and with a finite delay. The second way is es-
tablished by adistributed shared memory(DSM) which
allows for passive memory objects or addresses to be
shared among the processes through the basic operations
of reading and writing. We call systems with DSMdis-
tributed shared memory systems(DSMS).

Any processpi consists of a sequence ofevents Ei =
{e1

i ,e
2
i , . . .} which are totally ordered by an ordering re-

lation→ called theprogram order. Each event is atomic
on the chosen abstraction level and changes thestateof
the process.

2.2 Causal Dependencies

Of particular interest for considerations regarding the
global behaviour of systems with interacting processes
are events representing the sending or receiving of a mes-
sage, i.e.sendandreceive events. This is because these
events establish synchronization dependencies among
the processes and thus extend the local program order
to a partial global ordering of events. Lamport [2] called
this the “happened before” relation, and defined it as the
transitive closure of the program order and the natural
causal send-receive dependencies. In our model, due to
the presence of DSM, there exist even more events that,
in analogy to the send and receive events, establish de-
pendencies thus extending the “happened before” rela-
tion and reducing the number of consistent total event
orderings. These are theread andwrite events, which
describe reading or writing access to a shared memory
address. In [1] we therefore explained and defined the
DSMS causality relationas follows:

Definition 2.1. Let ER(x)a be the set of all read events
reading the valuea from locationx, let EW(x)a be the set
of all write events writinga to locationx. The DSMS
causality relation c⇒ is the smallest transitive order rela-
tion satisfying the following three conditions:1

(1) ∀ei ,ej ∈ E : if ei → ej , then ei
c⇒ ej .

(2) ∀ex
i ,e

y
j ∈ E : if ex

i is a send event andey
j is the receive

event of the same message, thenex
i

c⇒ ey
j .

(3) ∀e∈ ER(x)a one of the following cases must hold:

(i) ∃ew ∈ EW(x)a : (ew
c⇒∗

e) and
(∀ex ∈ EW(x) \{ew} : (ex

c⇒∗
ew) or (e�∗ ex)).

(ii) ∀ex ∈ EW(x) : (e c⇒∗
ex) and

∀er ∈ ER(x)b : case (i) must match, fora 6= b.

If ex
i

c⇒ ey
j , theney

j is regarded as beingcausally de-
pendenton ex

i , since it can only be executed if the ex-
ecution ofex

i has already been finished. Therefore,ex
i

1 ei �∗ ej is the common notation for a transitive path in� from ei to
ej .

can also be seen as apreconditionto ey
j . Intuitively, this

means for example that a message can not be received
before it has been sent (or, a memory value can not be
read before it has been written). Ifex

i 6
c⇒ ey

j andey
j 6

c⇒ ex
i ,

thenex
i andey

j are said to beconcurrent, and may be ex-
ecuted in parallel since none of them can causally affect
the other. We denote concurrency byex

i ‖ey
j . In [1] we

proved that any total event order respecting the DSMS
causality relation is consistent with the events’ causal de-
pendencies.

Since the constructive building of an event order re-
specting the above relation is np-complete, we defined
a restricted DSMS causality relationr⇒ based on write-
order and read-mapping as proposed by Gibbons and Ko-
rach [14]. The write-order is the total order of all write
events to the same memory location as occurred in an
observed system execution. Theread-mappingis a func-
tion that assigns to each read event the corresponding
write event as actually observed during execution. Read-
mapping and write-order enhance the general causality
relation by providing valuable information that allows to
construct a sequentially consistent total event order in
O(n log(n)).

Definition 2.2. Let �wo totally order all write events
EW(x) to the same location, respectively. Letfrm :
ER(x)a 7→ EW(x)a∪{⊥} be a read-mapping function that
maps every read event to its corresponding write event,
or to ⊥ if no write event accessed that location before.
The restricted DSMS causality relationr⇒ is the small-
est relation satisfying the following five conditions:
∀ei ,ej ∈ E : if ei → ej , then ei

r⇒ ej .
∀ex

i ,e
y
j ∈ E : if ex

i is a send event andey
j is the receive

event of the same message, thenex
i

r⇒ ey
j .

∀ei ,ej ∈ EW(x) : if ei �wo ej , then ei
r⇒ ej .

∀e∈ ER(x)a one of the following two cases must match:
(i) ∃ew ∈ EW(x)a : (frm(e) = ew) and (ew

r⇒ e)
and(∀ex ∈ EW(x) \{ew} :

if (ew �wo ex), then (e r⇒ ex)).
(ii) (frm(e) =⊥) and(∀ex ∈ EW(x) : e r⇒ ex).

∀ei ,ej ,ek ∈ E : if ei
r⇒ ej andej

r⇒ ek, then ei
r⇒ ek.

Note that the total event orders satisfying the re-
stricted DSMS causality relation are only a subset of all
possible consistent total orders, which is a drawback in
comparison to the DSMS causality relation (Definition
2.1). The benefit of the restricted relation is that it en-
ables us to construct a consistent total order efficiently,
because of additional information collected during sys-
tem execution. For more details on these topics, see [1].

2.3 Event Lattice

A suitable tool for the visualization of events and their
mutual dependencies as they occur in our system envi-
ronment (see next section) is anevent latticeas proposed
in [10]. The lattice structure originates from the nest-
ing of processes and the dependencies between the cre-
ation of a process through its “father” and its own start-
ing event (initialization). An analogous dependency is

established through the fact that the termination event
of a process has to occur before the destruction of the
process through its “father”. This synchronous termina-
tion concept establishes the complete nesting not only
in process creation but in the dependencies and informa-
tion flow as well, and distinguishes the event lattice from
other event graphs. Additionally we add to the lattice
the causal dependencies deriving from process coopera-
tion, as described in section2.2. An Example of an event
lattice will be explained in section3.6 and illustrated in
figure1.

3 Realizing a Consistent Event Ordering

Based on the formal definition concerning causal de-
pendencies and consistency given in section2, we now
describe problems, experiences, and solutions occurring
in the process of realization. Section3.1explains issues
and possible solutions which are independent of the spe-
cific system environment used for implementation. Then
we briefly describe MoDiS, our experimental system,
and its concepts as far as they are relevant for the work
presented in this paper. In the sections following there-
after we will discuss the actual realization and illustrate
the results by means of an example.

3.1 System Independent Realization Issues

Some general problems in tracing and recording the
events and dependencies described in section2 present
themselves independently of a given implementation en-
vironment. One fundamental problem is, of course, the
effect on system performance. This issue will be dis-
cussed in section3.5. In the following two subsections
we will point out the problems in dynamic process sys-
tems and in observing concurrent memory accesses.

3.1.1 Dynamic Process System.Our system model
assumes a finite set of processes as description of the
activities in a computation. In the literature concern-
ing consistent event ordering in message passing systems
this set of processes is always assumed as being constant
over time (e.g. in [2, 3, 4]), which in practice is actually
an exception. In our realization we therefore consider a
dynamically changing set of active processes as a sub-
set of all processes present in the system. This renders
usual mechanisms like vector clocks [5, 6, 7] unusable.
Landes [8] proposes an extension of vector clocks which
is meant to be suited for dynamic process systems and
could be used for our implementation. But even this so-
lution is not quite unproblematic. Let the system provide
a service that processes incoming requests by spawning
respective service processes. The set of active processes
at a given time should not be very high, but the overall
set of active and terminated processes would be poten-
tially unlimited, which requires explicit measures to pre-
vent the clock values to also grow unchecked. Landes
[8] gives an extensive discussion on this issue and states
that it is resolvable, but only with considerable effort. In

section3.3.1 we explain how this problem can, in our
specific application of constructing the event lattice, be
worked around by using direct event references.

3.1.2 Observing Memory Access. Recording the
events described in section2 and their mutual causal de-
pendencies is complicated especially by the presence of
a shared memory. In our system, the usual sending and
receiving of messages is already implemented, in suit-
able libraries which can easily be extended by record-
ing mechanisms. The same approach is used, in some
systems with low DSM usage, for the shared memory.
But in MoDiS, the shared memory access is partly based
on direct machine instructions. The distributed shared
memory is mapped directly into the virtual memory of
a process by using the page fault mechanism. There it
remains as long as it is valid. So, after the initial access,
any further access can not be distinguished from a local
memory access any more. Furthermore, it must be rec-
ognized whether an access is a reading or writing one,
given that these have different causal dependencies, as
explained in section2.2.

We examined several possible approaches to record-
ing DSM access events. One of these is based on appro-
priate hardware support. Standard ix86 computers fea-
ture hardware debug registers which are able to trigger
controlled exception handling whenever a memory ad-
dress is accessed. However, this feature is not sufficient
as a solution because there are only four such registers
each of which can monitor an address range of 4 Byte.
Clearly, this would cut down the DSM way too much.

Another approach can be derived from debugging
techniques, as they are used, for example, by the gdb
(GNU Project debugger). Software watchpoints can be
used to monitor memory access. However, this requires
the execution of a process in single step mode and drops
performance by factor 100, which is totally unaccept-
able, at least for our purpose.

The only really satisfying solution is modifying the
compiler. The drawback, regarding the transferability to
other systems and applications, is the necessity to re-
compile all applications for the distributed system us-
ing the modified compiler. With our experimental sys-
tem MoDiS, however, this is no problem at all, due to
the language based approach of the system itself. Dur-
ing the compiler analysis of the high-level programming
language, reading and writing memory references can
be additionally examined. At this point, the compiler
can generate additional code for memory access event
recording. So the analysis can be performed statically,
and only the necessary recording operations have to be
executed in runtime, which minimizes the performance
loss.

3.2 Implementation System: MoDiS

In this section we briefly describe a few relevant as-
pects of the experimental system MoDiS, which is the

basis and environment for our implementation of consis-
tent event recording.

MoDiS (Model orientedDistributedSystems, devel-
oped at the chair for operating systems and system archi-
tecture of the Munich Technical University) is best char-
acterized as a language-based top-down driven approach
to developing distributed systems. The instructions
defining the application are specified in the object-based
high-level programming language INSEL (In tegration
and Separation SupportingExperimental Language).
MoDiS pursues a single system approach: compiler, run-
time environment, DSM manager, and communicator are
part of the system, as is operating system functional-
ity. The gcc (GNU Compiler Collection) based compiler
gic (GNU INSEL compiler, [13]) transforms the abstract
specification into an executable program containing both
application and management components. All transfor-
mation mechanisms and all information gathered during
the transformation are part of the system. This concept
ensures high availability of information and thus sup-
ports automated management for application oriented us-
age of the distributed hardware resources.

A detailed explanation of the MoDiS concepts can
be found in [11] and [12]. Crucial to the work pre-
sented in this paper are the integrated INSEL compiler
gic, the communicator, and the DSM manager, as they
could be extended to suit our realization of consistent
event recording.

3.3 Constructing the Event Lattice

Our purpose is to gradually visualize the progress of
the computation in execution using an event lattice (see
2.3). During runtime, this lattice is generated step-by-
step from the recorded events. Therefore, the graph con-
sists of events that have already occurred and directed
edges between them. An edge from evente to event
e′ meanse r⇒ e′. To ensure the consistency of such a
partly constructed graphG one must be careful to only
add eventse′ to the graph whose dependencies are ful-
filled, i.e. every (transitive) predecessor event is already
part of the graph:e′ ∈ G only if ∀e|e r⇒ e′ : e∈ G. The
necessary edges have to be added accordingly.

3.3.1 Vector Clocks vs. Direct-Dependence.The
central task in constructing consistent views in dis-
tributed concurrent systems is to trace the causal de-
pendencies among the events, as specified by the rela-
tions given in section2.2. We consider two different
approaches to achieve this: The dependencies can be
traced implicitly using logical clocks, i.e. dynamic vec-
tor clocks as mentioned in section3.1.1, or explicitly by
direct references to causal predecessor events.

A logical clock adjusts the incrementing rules of the
clock value to the causal dependencies. Because, for ex-
ample, the receive event of a message is always depen-
dent on the send event of the same message, a vector time
value of the send event is piggybacked on each message
and the receive event is assigned a higher value. In this

way it is ensured that an order over the clock values im-
plicitly reflects the causal dependencies. An eventewith
a time value greater than that of an evente′ is causally de-
pendent one′ (see, for example, [4]). This logical time
can be used as base for the construction of the event lat-
tice. For each entryx in the vector time stamp of an event
e it has to be checked whether the event of the respective
process with the local time stampx is already part of the
graph. If this is the case for all vector entries,e can be
added to the graph.

The other option is to gradually record direct (non-
transitive) dependencies. If we assume that every event
e in the system has a unique identifierie, then we are
able to record with each event a list of its direct causal
predecessors. Since we assume a granularity such that
each event may send or receive at most one message, the
length of this list may only vary between 1 and 2. Lete
be a send event with identifierie. With the corresponding
receive evente′ we only have to record the identifierie in
order to be able to trace the direct dependence ofe′ one.
The unique event IDs can be realized as a combination of
a node identifier, a process identifier, and a process-local
event counter. The size in bytes of these event IDs may
vary with the size of the system but is constant in any
particular system. The event lattice construction based
on events marked in this way can be performed as fol-
lows: For each recorded evente it is checked whether all
the (1 or 2) entries in its direct dependency list reference
events that are already part of the graph. In this casee
can be added to the graph without harming consistency.
Otherwise the same check is performed recursively for
the list entries.

Comparing the two options one has to consider two
different aspects. First, the space needed for the event
recording and, second, the suitability for the construction
of the event lattice as our consistent view on the system.
The great advantage of vector clocks is the fact that each
time stamp contains information not only about direct
but also about indirect (transitive) dependencies. Given
two events and their time values one can easily and def-
initely decide whether they are concurrent or dependent
(and in which way). This is not possible with the direct-
dependence method. A path search has to be performed,
in both directions, to decide whether one can be reached
from the other or not. However, if the events are not to be
compared in general but to be used for the particular pur-
pose of constructing the event lattice during runtime (or
similar applications), then comparing arbitrary events is
not necessary and the great disadvantage opposite vector
clocks does not matter.

The space required to record direct dependencies is
constant, whereas vector time stamps grow with the
number of processes created in the system. A garbage
collection as proposed in [8] is expensive and reduces
the advantage of vector clocks as mentioned above,
since only events remain comparable between which no
garbage collection has been carried out.

For our purpose, which is to construct a gradually
growing event lattice representing the progress of the

computation, the direct-dependence method is clearly to
be preferred. We do not need the informational advan-
tage (transitivity) of the clock based approach and can
make use of the superior efficiency of tracing only direct
(non-transitive) dependencies.

3.4 Collecting Necessary Information

Prerequisite to the construction method explained
above are the events of the running system, marked with
the IDs of their direct causal predecessors. The follow-
ing section describe how to collect this information with
respect to the event dependencies as given in by the re-
stricted DSMS causality relation. All events relevant
for process synchronization are recorded, which are, in
MoDiS, creation and destruction of child processes, mes-
sage passing, and distributed shared memory access. De-
pendent on the specific use meant to be made of the gen-
erated event lattice, one could just as well design and im-
plement events of finer granularity. However, this would
induce considerably more effort since more events would
have to be recorded. For our purpose this would not be
justified.

3.4.1 Process Order. Process order is captured im-
plicitly for all recorded events, because the unique
event identifier contains, amongst others, a scalar event
counter on a per-process base (see3.3.1).

3.4.2 Message Passing System.Capturing the send-
receive dependency is implemented by piggybacking the
identifier ie of the send event on the message. The re-
ceiver registers the receive event along withie as one of
its two direct dependencies. Both of these measures can
be taken by the MoDiS communicator module. MoDiS
supports a special case of message passing, which is the
so-called operation oriented rendezvous concept. The
dependencies deriving from this concept are explained
by means of an example in section3.6.

3.4.3 Distributed Shared Memory. In section3.1we
explained why, at least for our purpose, the only reason-
able way to monitor memory access is to have the com-
piler produce additional code. The INSEL compiler gic
analyzes every memory access and generates code when
it detects access to DSM as occurring in INSEL instruc-
tions like, for example, variable assignments, composite
expressions, or function calls. The read-write dependen-
cies described in section2.2 are realized using system-
unique object identifiers. Each object in the DSM is
assigned such an ID, which is, in practice, the virtual
address in the shared address space along with a scalar
counter. Read and write access are recorded by the run-
time environment. The access event is marked with the
object ID and the incremented scalar time stamp of the
access. By means of mutual exclusion we ensure the
atomicity of the memory access and its recording. The
size of the memory objects depends on the memory im-
plementation and language concepts. In MoDiS there

are no integrated synchronization mechanisms for shared
memory objects (i.e. memory object access is interrupt-
ible), so we have to regard single memory addresses as
objects. In systems featuring access synchronization,
any number of memory references might be modeled as
a single access event, as long as they can be performed
atomically.

The recorded events are combined to the event lattice
as explained in section3.3. The following sections give
some performance considerations and an illustrating ex-
ample.

3.5 Performance

Monitoring a running system always induces some
amount of performance loss. This can generally be justi-
fied by (at least) two different arguments.

First, one can decide to use the system monitoring
only in debugging mode where the performance loss is
not relevant. However, as Schrödinger showed in quan-
tum physics by means of his famous thought experiment
with the cat [15], that an observed system may act dif-
ferently from an unobserved one. So it may be that not
all errors occurring in the productive system show in the
observed debugging mode (or vice versa).

Second, there are many applications in which perfor-
mance plays a minor role in comparison to other require-
ments, e.g. availability, security, or reliability. Not only
in systems controlling dangerous facilities can a system
fault be disastrous, but also in economical fields. Ob-
serving such systems can be a very reasonable measure
in fulfilling quality requirements, even at the expense of
system performance.

Processing the recorded events by constructing the
event lattice and using it for analysis and visualization
of the system’s execution can be done in a process ex-
ternal to the system on a machine which is not part of
the system, so it is of no relevance apart from a certain
increase in network load, which might suit a given appli-
cation better than increased system load. What remains
is the gathering of information which is actually signifi-
cant for the performance penalties.

In the cases of process creation and message passing
the recording of events and their IDs can be ignored,
given the very small overhead which is only a fraction
of the time needed to create a process or send a message
over a standard network.

The only really significant contribution to the over-
head arises from the memory observation. Every DSM
access requires between 4 and 6 additional memory ac-
cesses, and an increment instruction. A (very generous)
upper bound for the performance loss can therefore be
given as a factor of six as compared to the normal system
execution. However, as proven in practice, the behaviour
is significantly better than that because, first, only a part
of all program instructions are actually memory oper-
ations, and, second, only a part of all memory opera-
tions reference the DSM. In order to be able to describe
the performance penalties more precisely, measurements

ACTOR_INIT

DSM_WRITE

CORDER_CALLSEND

ACTOR_INIT

CORDER_CALLRECV

CORDER_EXEC

DSM_WRITE

CORDER_RETSEND

CORDER_RETRECV

DSM_READ

ACTOR_CREATE

ACTOR_TERM

ACTOR_JOIN

ACTOR_TERM

Figure 1: Constructed Event Lattice

and comparisons of representative applications with and
without observation will yet have to be performed.

3.6 Example

Figure 1 shows an event lattice of a simple MoDiS
system, constructed as described in this paper. The
events are visualized as squares, their mutual dependen-
cies as directed edges. Memory access events are colored
white, process creation and termination events grey, and
rendezvous events (a special case of message passing)
black.

The operation oriented rendezvous, called C-order, is
a message based process synchronization mechanism in
MoDiS. First, the caller has to execute a call event, which
is blocking. The callee has to perform an event for the re-
ceiving of the message. Then the callee executes the re-

quested function and returns the result to the caller, who
is then allowed to continue.

Figure 1 shows an initial process, who creates an-
other process just after its ownACTOR INIT event. The
first event of the new process is, again,ACTOR INIT , but
causally dependent on the father’sACTOR CREATE, the
dependencies resulting of process creation and termina-
tion are shown as dashed edges. The respective process
order, i.e. the concurrent execution threads are marked
as slightly thicker black edges. The father process writes
to the distributed shared memory and then synchronizes
with its child process using a C-order. The C-order
is initiated by an event calledCORDER CALLSEND, on
which the eventCORDER CALLRECV is dependent. Dur-
ing the execution of the called function the caller is
blocked, which is visible in the figure through the de-
pendencies of the eventCORDER RETRECV on both
CORDER CALLSEND and CORDER RETSEND. The C-
order dependencies are shown as thin black edges. The
function called in this rendezvous performs a write ac-
cess on the memory location that has previously been
accessed by the caller. The write-order dependencies
(see section2) are drawn as dotted edges. At the end the
father process captures its terminated child in the event
ACTOR JOIN and then terminates itself.

As can be observed, the event lattice constructed us-
ing the methods presented in this paper, clearly shows
all and causal dependencies (as demanded in section2).
Thus one can, for example, easily decide which events
are concurrent, and use this information for automated
system management, debugging or other purposes.

4 Conclusion

In this paper, we presented a realization of construct-
ing consistent views on distributed computations featur-
ing both message passing and DSM facilities. This re-
quires that events along with their mutual causal depen-
dencies as described by relations given in [1] be recorded
and processed. We examined different methods for cap-
turing memory access events and explained their respec-
tive issues. Furthermore we compared, with respect
to dynamic process systems, vector-based clocks and a
direct-dependence approach, discussing the advantages
and disadvantages of each.

The actual realization of the event recording and event
lattice construction have been explained in the context
of the experimental system MoDiS and illustrated by an
example.

The captured event lattices are the basis for two di-
rections in future research. On the one hand, we have
to further examine the event capturing itself with respect
to granularity and performance. On the other hand, it
must be explored in how far the view on system gained
through these methods is suited as a tool to analyze and
control distributed systems, in order to render them more
manageable, fault-free, and secure.

Acknowledgments

We thank Prof. Dr. Peter Paul Spies and Dr. Chris-
tian Rehn for their suggestions and valuable comments
in discussions on our work. Further we thank Sebastian
Haas for the practical work he did within the scope of his
diploma thesis [9].

References

[1] Jörg Preißinger and Tobias Landes. Fundamentals for
Consistent Event Ordering in Distributed Shared Mem-
ory Systems. In Hamid R. Arabnia, editor,Proceed-
ings of the International Conference on Parallel and
Distributed Processing Techniques and Applications,
PDPTA ’05, pages 890–896, Las Vegas, NV, 2005.

[2] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. InCommunications of
the ACM, 21(4), pages 558–565, July 1978.

[3] K. Mani Chandy, Leslie Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. In
ACM Transactions on Computer Systems, vol. 3, no. 1,
pages 63–75, February 1985.

[4] Özalp Babaŏglu, Keith Marzullo. Consistent Global
States of Distributed Systems: Fundamental Concepts
and Mechanisms. In Sape Mullender, editor,Distributed
Systems, chapter 5, pages 97–145. Addison Wesley, 2nd

edition, 1993.

[5] Friedemann Mattern. Virtual Time and Global States of
Distributed Systems. In M. Cosnard et al., editor,Pro-
ceedings of the Workshop on Parallel and Distributed
Algorithms, pages 215–226, Elsevier Science Publishers
B.V., North-Holland, 1989.

[6] Colin Fidge. Timestamps in Message-Passing Systems
that Preserve the Partial Ordering. InProceedings of
the 11th Australian Computer Science Conference, pages
55–66, February 1988.

[7] Colin Fidge. Logical Time in Distributed Computer Sys-
tems. InComputer, 24(8), pages 28–33, August 1991.

[8] Tobias Landes. Dynamic Vector Clocks for Consistent
Ordering of Events in Dynamic Distributed Applications.
Document submitted for publication to PDPTA ’06, writ-
ten 2005.

[9] Sebastian Haas. Erfassung konsistenter Sichten von
verteilten, nebenläufigen Systemen (german only).
Diploma Thesis, Technische Universität München, Insti-
tut für Informatik, 2005.

[10] Peter P. Spies. Ereignisverbände - ein flexibles Beschrei-
bungsinstrumentarium für die Entwicklung verteilter
Systeme (german only). InFBT’98-Fachgespr̈ach, Cot-
tbus, 1998.

[11] Peter P. Spies et al. Concepts for the construction
of distributed systems (german only). InSFB-Bericht
342/09/96 A TUM-I9618, technical report, Technische
Universiẗat München, 1996.

[12] C. Eckert and M. Pizka. Improving resource management
in distributed systems using language-level structuring
concepts. InJournal of Supercomputing, 13(1), pages
33–55, January 1999.

[13] Markus Pizka. Design and implementation of the
gnu insel-compiler (gic). InSFB-Bericht 342/09/97 A
TUM-I9713, technical report, Technische Universität
München, 1997.

[14] Phillip B. Gibbons and Ephraim Korach. Testing Shared
Memories. InSIAM J. Comput., vol. 26, no. 4, pages
1208–1244, 1997.

[15] E. Schr̈odinger. Die gegenẅartige Situation in der Quan-
tenmechanik. InNaturwissenschaften 23, pp. 807–812;
823–828; 844–849 (1935).

[16] Friedemann Mattern. Efficient Algorithms for Dis-
tributed Snapshots and Global Virtual Time Approxima-
tion. In Journal of Parallel and Distributed Computing,
18(4), pages 423–434, August 1993.

[17] Neeraj Mittal, Vijay K. Garg. On Detecting Global Pred-
icates in Distributed Computations. InProceedings of the
21st IEEE International Conference on Distributed Com-
puting Systems (ICDCS), pages 3–10, April 2001.

	Introduction
	Consistent Event Ordering In Theory
	System Model
	Causal Dependencies
	Event Lattice

	Realizing a Consistent Event Ordering
	System Independent Realization Issues
	Dynamic Process System
	Observing Memory Access

	Implementation System: MoDiS
	Constructing the Event Lattice
	Vector Clocks vs. Direct-Dependence

	Collecting Necessary Information
	Process Order
	Message Passing System
	Distributed Shared Memory

	Performance
	Example

	Conclusion
	Acknowledgments
	References

