
Embedded Java – too fat and too slow?

Abstract
In software developer communities it is one of the most often discussed questions: “Is Java
really to fat and too slow?”. For embedded devices this discussion is usually held very lively
but largely without objective arguments. In this article we will first have a little look at the
main reasons for using Embedded Java. After a brief introduction to the J2ME we present the
“Embedded  Java  Assessment  Suite”  EJAS  which  was  developed  at  3SOFT  GmbH  in
Erlangen. The results of some of the benchmarks may be quite astonishing when we have a
look at a Java vs. C comparison of the Quicksort algorithm. After a glimpse at the structure of
a JVM, its footprint and startup time, we conclude with the presentation of some coding and
design guidelines for Embedded Java.

1. Why Embedded Java
In embedded environments  we usually have  very restricted  resources  concerning memory
consumption,  CPU  performance  and  battery  lifetime.  Additionally  there  are  often  other
restrictions like real time requirements. Considering this restricted environment one would
normally not say that Java is the optimal language for programming such systems. But Java
has a lot of features that make it very attractive:

• Technology:
o JVM / platform independence
o Security (features / API)
o Dynamic
o Memory Management (GC)

• Language:
o Simple (similar to C / C++)
o Object oriented
o Elegant
o Well known

• Project:
o Time to market
o SW quality
o Development costs

So to choose whether or not to use Embedded Java is a very difficult trade off process. To
ease this process a little bit we provide some fact and benchmark results later on.

2. J2ME
Since the normal desktop Java Runtime environment is much too big for embedded devices
Sun Microsystems provides a version of Java, which has been scaled down to the needs of
small devices.
The  Java  2  Micro  Edition  –  J2ME  is  intended  to  be  appropriate  for  different  kinds  of
embedded  Devices,  hence  it  is  divided  into  two  Configurations.  Configurations  are  the
fundamental  components  of  the  runtime  environment.  They  are  composed  of  a  virtual
machine and a minimal set of class libraries that enable them to provide the base functionality
for  a  particular  range  of  devices  that  share  similar  characteristics,  such  as  network



connectivity  and  memory footprint.  Currently,  two  J2ME  configurations  are  defined:  the
Connected  Limited  Device  Configuration (CLDC) and  the  Connected Device  Configuration
(CDC).

• CLDC

CLDC  is  the  smaller  of  the  two  configurations;  designed  for  the  devices  with
intermittent network connections, slow processors and limited memory – devices such
as mobile phones, two-way pagers and PDAs. These devices typically have either 16-
or 32-bit CPUs, and a minimum of 128 KB to 512 KB of memory available for the
Java platform implementation and associated applications.

• CDC

CDC is designed for devices that have more memory, faster processors and greater
network  bandwidth,  such  as  TV  set-top  boxes,  residential  gateways,  in-vehicle
telematics systems and high-end PDAs. The CDC includes a full-featured Java virtual
machine, and a much larger subset of the J2SE platform (81 classes for the CLDC 1.1
while 305 classes for the CDC 1.0) than the CLDC. As a result, most CDC-targeted
devices have 32-bit CPUs and a minimum of 2 MB of memory available for the Java
platform and associated applications.

Figure 1 The Java Platforms

The  configurations  serve  the  basic  operations.  However,  to  provide  a  complete  runtime
environment, to further define the application life cycle model,  the user interface, and the
access to device specific properties, configurations must be combined with a set of higher-
level APIs, or profiles. From the Figure 1 we can see that there are four profiles available in



J2ME:  the  Mobile  Information  Device  Profile (MIDP),  the  Foundation  Profile (FP),  the
Personal Basis Profile (PBP) and the Personal Profile (PP).

3. Java VM
Without knowledge about the runtime environment of Java programs it is not possible to
argue why Java may be slow and what can be done to improve its performance.

3.1 Architecture of the JVM
All  JVMs  on  the  market  have  to  obey  the  rules  given  in  the  Java  Virtual  Machine
Specification [JVM_SPEC] from Sun Microsystems. But the JVM spec leaves a lot of room
for optimizations as we experienced in the last years with the upcoming technology of Just In
Time Compilation. Where the first JVMs just interpreted the compiled byte codes of Java class
files the JIT-VMs transparently compile frequently used parts of the code and executes them
natively.

The JVM defines various runtime data areas for the execution of a program. The life cycle and
usage of these areas differs, the JVM level (created on JVM start-up and destroyed on JVM
exit) and the thread level (created at the same time as the thread and destroyed on thread exit).

PC Register
Since Java has built in support for multithreading it provides one program counter for each
thread.

JVM Stacks
Each Java virtual machine thread has a private Java virtual machine stack, created at the same
time as the thread. A Java virtual machine stack stores frames. JVM stacks are analogous to
the stack of a conventional language such as C: it holds local variables and partial results, and
plays a part in method invocation and return. Frames may be heap allocated and the memory
for a Java virtual machine stack does not need to be contiguous.

Heap
The heap memory of a JVM is shared among all threads. The heaps life cycle is JVM level; it
is used to allocate memory for Java objects and arrays. The memory of the heap is reclaimed
by the Garbage Collector GC.

Method Area
The method area is  also shared among all  threads in a JVM. It is used to store per-class
structures such as the runtime constant pool, the code for methods and constructors. Although
the method area is logically a part of the heap, how to implement the location of it or the
policies  used  to  manage  compiled  code  is  up  to  VM  vendor  and  leaves  space  for
optimizations.



Figure 2 JVM Structure

3.2 Startup time and runtime
The startup process of a Java Virtual Machine is dominated by three major tasks before the
main() method of the Java program is invoked. The  main() method drives all  further
execution.

Loading
If there is no class (native or byte code) in the JVM present, it uses a Class Loader to load the
desired class.

Linking
Before a class can be executed it has to be linked. Linking is the process of taking a class or
interface and combining it into the runtime state of the Java virtual machine so that it can be
executed. The linking process has three phases: 1. Verification to ensure the programs binary
representation is structurally legal. 2. Preparation to create static fields and initialize them. 3.
Resolution to dynamically determine the concrete value of symbolic references in the runtime
constant pool.

Initializing
The classes’ static initializers and the initializers  for static fields declared in the class are
executed.

Of course all the work done at the startup time of a JVM and at each time a class is loaded
dynamically costs some time. And of course this is one reason why Java is widely considered
to be slow. The startup time for the JVM itself also depends on what features shall be used.
The usage of a JIT compiler does not only have memory cost but also slow down the time
until the first command of the main method can be processed. But there are techniques to



reduce the consumed startup time. With an appropriate JVM some of the described tasks can
be done at compile time:

• Pre linking: saves some time of the linking process
• Pre verification: no code verification has to be done at startup
• Ahead of time compilation: reduces the time consumed by the JIT compiler
• …

3.3 Footprint
The memory footprint of Java runtime environment depends of course on the numbers of class
libraries and features supported by the environment

Item Used Memory

Java Class Libraries
Configuration + Profile
   (platform abstraction 
   + helper classes)

iPAQ e.g.
J9 CLDC/MIDP
2MB

JVM
.JIT / HotSpot / Interpretation
 Class Loading
 Memory Management
 Object Creation
 Array Handling
 Synchronization / Threading
 Exception Handling
 Casting / Reflection

iPAQ e.g. 
J9 VM
325KB CLDC
+1MB JIT, +50KB JNI

Table 1 Example footprint of J9 on an IPAQ

To reduce the memory footprint of a runtime environments there are several possibilities. One
is to remove all not used classes and methods from the libraries and the code itself. This can
be done by “stripping” tools automatically. Of course dynamic class loading is very hard with
that because not all methods defined in an interface may be present at runtime.

4. EJAS – Embedded Java Assessment Suite
The EJAS project was started to serve the following aims:

• Performance benchmarking
• Acquire know how for optimization
• Measurements of memory consumption
• Functionality checks

The architecture of EJAS makes use of the  Plug-In Pattern and the  External Configuration
Pattern. The assessment suite has a “core” part, which is always the same regardless of the
current runtime environment. The used assessments can be plugged into the core and can be
configured using an external configuration file. The output of the assessments can be received
through various Outputter objects, as there is no command line interface on most embedded
devices. Therefore EJAS is very flexible and can easily be adapted to serve newly developed
benchmarks or unforeseen environments.



Figure 3 EJAS Architecture

In EJAS the  “time  per  constant  work”  type of  benchmark  is  used.  That  means  the  time
consumed for performing a certain work is measured on different platforms. 
Other possibilities for benchmarks would be “work per constant time”. This type is rather
difficult  to use for objective measurements because a second thread is  needed to stop the
working thread after the constant time has past by. This stopwatch thread of course influences
the measurement result. A third kind of benchmark is to measure the time consumed by a
certain feature like synchronized code in  Figure 4. One could obtain the time spent for the
marked feature (synchronized block) by first quantifying the time needed for the green part
and afterwards subtracting the time consumed for the same loop without the synchronized
block.

Figure 4 Simplified benchmark code

The benchmarks executed with the assessment suite can be classified in three kinds:
• Low level  operations (operators,  array handling,  assignments,  casting,  I/O,  loops,

Math operations, method calls, thread handling)
• Algorithms ( Triple-DES, FFT, RSA, matrix multiplication, sorting)
• Domain Applications (Address book, games, calendar)



The result of the benchmarks on the three different platforms for the EJAS benchmark for
low-level operations can be found in Table 2. But always be careful to use the results of one
test for a general statement, which JVM is the fastest. Usually the assessment result is very
dependent on the hardware, the OS, VM version and operations carried out.
The benchmark results are the higher the better.

System-Type Hardware EJAS Benchmark
(low-level op‘s)

Desktop PC
Pentium 3, 32 bit, 650 MHz,
512 MB RAM, 5400 rpm HD,
Windows XP, J9 JVM, J2SE

JDK 1.3.01:
11.342.000
J9 5.1:
77.880.417

iPAQ
H3900, Intel PXA250, 32-bit,
400 MHz, 64 MB DRAM, 32
MB Flash, Windows CE, J9 JVM

912.875

P800
ARM9, 32 bit, 156 MHz, 12
MB RAM, KVM (?) JVM
integrated in Symbian OS 7.0,
CLDC 1.0 / MIDP 1.0

309.126

Table 2 Benchmark Results for low-level operations

4.1 Java vs. C
For the Java vs. C comparison an algorithmic problem has been chosen. 1.2 million random
integer numbers had to be sorted using a quick sort algorithm. The source code of the C and
the Java Program are very similar except for the file IO part of course. Here the results are
also very depended on the used JVM.
The following results in Table 3 are represented in milliseconds used for reading the numbers
from a text file and afterwards sorting them on a Desktop PC (P4 1,6 GHz, Win XP SP1). In
order to reflect the performance effects of just in time compilation the test has been done five
times. The C benchmark has been compiled with Microsoft Visual C++ 6.0 compiler with
standard optimization options enabled.

Round C JDK 1.4.2 IBM J9 5.1
File IO Algorithm File IO Algorithm File IO Algorithm

1 141 422 375 547 328 750
2 344 485 313 453
3 344 485 297 438
4 344 562 266 469
5 328 500 281 406

Table 3 Results Java vs. C: Quicksort

The results of the Java versus C benchmark are displayed in Table 3. It is obvious that in the
first round the J9 takes some extra time compared with the Sun JVM to do some optimization
that improves the sorting later on. Comparing the fastest Java round with 406 milliseconds
with the usual C result of 422 one can see that doing pure algorithmic work without IO is not
really slower in Java, sometimes even faster.
Also obvious is that File IO in Java is about two times slower than in C with the tested JVMs.



5. Assessment results

 5.1 Guidelines for Embedded Java
As a first conclusion from the assessments made with Java on different platforms we would
like to present some guidelines for the usage of specific features of the Java programming
language and runtime environment presented in the following table.

Feature Direction 

Classes associations &
hierarchies

Use it – but prevent dynamic method dispatching if optimization is
necessary

Interfaces Use it – optimize away if optimization is necessary for non-hot-spot
JNI Use it if necessary or if tests say its worth it:

Down-calls (J to C) are much faster than up-calls (C to J)

Long names Use it – prevent dynamic method dispatching

Objects Optimize here, use as few as possible

Method calls /
granularity

Use it – optimize if necessary

Reflection Use it only if necessary

Table 4 Feature guidelines for embedded Java

5.2 Benchmark results
Afterwards we present the results of some measurements made on a Win XP system with a P4
1,6 GHz processor. To have a comparison all benchmarks have been carried out on the JVM
delivered with the Sun JDK 1.4.2 and on the J9 5.1 from IBM. In the following tables there is
a column for the used JVM, one column for the ratio: (time with feature) / (time without
feature) and one for TF the time consumed one execution of the feature. Also the clock cycles
of the CPU consumed for one execution of the feature are displayed. The clock cycles and TF

are average values of about 109 executions.
Please always keep in mind that the presented values have only example character. These
results do not allow a generalized statement like “This JVM is faster than that.”; they are only
spot checks.

Assessment results for exceptions:
Exceptions are an error-handling feature of Java. In theory the usage of exceptions should
only consume time in the error case, which means catching an exception. In reality each try-
catch clause costs time. Exceptions can gainfully be used for error handling where exceptions
should be thrown only in “bad paths”. Assessment results can be found in the following table:

Feature JVM Ratio TF Clock cycles used for the feature

Exceptions (good path) J9 3,98 4,21ns 6 cycles
Exceptions (good path) Sun 9,81 34,38ns 55 cycles

Table 5 Assessment results exceptions



Assessment results for synchronization
Synchronization is a built in Java feature for mutual exclusion of threads in a multithreaded
environment.  Synchronization  is  done via  the  keyword  synchronized.  The  results  are
displayed in Table 6.

Feature JVM Ratio TF Clock cycles used for the feature

Synchronization J9 11,5 18,125ns 30 cycles
Synchronization Sun 5,6 29,093ns 46 cycles

Table 6 Assessment results for synchronization

Assessment results for type casting
Type conversion in Java is done by using the so-called cast-operator  (Type). The cost of
casting one object to another type is represented in Table 7.

Feature JVM Ratio TF Clock cycles used for the feature

Casting J9 1,112 0,406ns 1,6 cycles
Casting Sun 1,42 1,640ns 2,6 cycles

Table 7 Assessment results for casting

Assessment results for array handling
Using arrays in Java is always linked to creating new objects on the heap memory, as all
arrays are objects in Java. The main direction here is to use arrays but to prevent polymorphic
array objects. See results in Table 8.

Feature JVM Ratio TF Clock cycles used for the feature

Array access (int) J9 3,2 1ns 0,6 cycles
Array access (int) Sun 1,02 0,62ns 1,5 cycles
Array access (Object) J9 1,32 6,56ns 10,4 cycles
Array access (Object) Sun 1,6 37,5ns 60 cycles

Table 8 Assessment results for array handling

Accessing the elements of an array using a for-loop is very often used in Java programs. The
following code snippet displays a common for-loop (see code 1):

Code 1 Code 2 (manually optimized)

for (int i = 0; i<array.length; i++)
{

doWork();
}

int l = array.length;
for (int i = 0; i<l; i++) {

doWork();
}

In may Java performance guidelines we find the advice to improve the performance of for-
loops in the way shown on the right side (see Code 2). But whether or not this is really an
improvement for a specific  JVM can be found out  by a benchmark.  In  Table 9 the time
consumed for loops accessing arrays with 10 million elements are displayed. We can see that
that  the hand-optimized  code (code 2)  has  nearly equal  time consumption on both JVMs
whereas the “normal” code (code 1) has different results. The J9 behaves like expected and is
a bit slower with the not optimized code (code1). The Sun JVM seems to have some special
optimization for these loops, which causes it to perform better than the optimized code.



Feature JVM Time (code 1)
(109  elements)

Time (code2)
(109  elements)

Optimized for-loop J9 250ms 203ms
Optimized for-loop Sun 188ms 203ms

Table 9 Assessment results for-loop optimization

6. Conclusion
Using the  Embedded  Java  Assessment  Suite  EJAS has  produced  interesting  results.  It  is
possible with this suite to judge the performance and memory consumption of language and
JVM features on specific platforms. With some of the benchmark results we saw that Java
reaches about the same performance as C in algorithmic tasks like sorting where no Java
native interfaces have to be used. Another very important aspect of the overall results of the
benchmarks  is  that  an  optimized  JVM  is  one  of  the  most  important  ingredients  for  an
Embedded Java system with good performance.
As a summarized result of our assessments we can say that all JVMs have great performance
differences depending on the platform they are running on. So for projects using embedded
Java we have two advices:

• It is a good idea to do some performance before choosing a platform and a JVM. 

• Tailor your assessments to the needs of your project to gain significant results.

• After  the  platform  decision  is  made:  provide  programming  guidelines  to  your
developers based on assessments carried out on the selected platform with the selected
JVM.
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