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Abstract—This paper presents an embedded system platform
for investigating power management methods relevant to future
automotive systems. The platform is built around an ARM
Cortex A8 System on Chip (SoC). It allows for measuring the
power consumption of the SoC and its peripherals. The SoC
has a defined set of power states, namely frequency and voltage
operating points, as well as retention and off-modes. During
runtime, the power states are managed by a novel Linux-based
scheduler. It allows the execution of plans combining both timed
software and power state switches. The design is evaluated using
a single ECU and its local scheduling.

I. INTRODUCTION

Modern vehicles feature a lot of functions driven and
controlled by electronics. Having innovative functions well
integrated in a vehicle is a major selling point. This has lead
to an abundance of interconnected electronic control units
(ECUs) in luxury class vehicles. The process of engineering
the architecture of such complex systems is supported by using
test benches.

To this date, automotive test benches are mostly used for
investigating power net architectures. These test benches are
either used for investigating voltage stability in power nets
[1]-[3], or used for investigating power generation efficiency
in today’s cars [4]. Beside the efficiency of power generation,
the efficiency of ECUs becomes more and more important.
Any amount of saved energy leads to an increased range
and mileage for both electric and conventional vehicles. In
order to investigate automotive related power management
strategies in an academic environment, a test bench based upon
a flexible ECU platform interconnected with automotive buses
is essential.

This paper presents an embedded system platform which
resembles an ECU in the automotive domain. The platform
allows for testing different power management paradigms.
It runs Linux, thus it inherits all capabilities for traditional
desktop and embedded systems. The system is extended by
modifying the device drivers and the system scheduler, allow-
ing for a mixture of event triggered, and flexible time-triggered
operation modes including power state setting. Power states
are set for both for an ARM Cortex A8 based system on chip
(SoC), but also the peripherals.

The ECU features circuitry for powering attached sensors
and actuators as well as for measuring the consumption of the
different components. The platform thus combines hardware
and software features allowing to emulate different use case
scenarios of vehicular ECUs. Traditional ECUs for control-
ling the engine, chassis or driving assistance systems have
hard real-time properties. There are a large number of body
functions which are activated by the driver or passengers—these
functions have reaction time constraints which are less critical
than those essential for driving the car. More recently, vehicles
became equipped with entertainment systems, which are less
critical and could typically be emulated by unmodified Linux.

A. Power Management Paradigms

For the automotive view on power management, the stan-
dardization initiative AUTOSAR [5] has to be noted. The
initiative distinguishes three power management mechanisms:

e ECU degradation aims to allow for switching off subsys-
tems of an ECU. This approach is not yet accepted as a
standard but in draft status.

o Pretended Networking allows to turn off ECUs and
offload their communication to a dedicated hardware
unit [6]. Pretended networking is still in draft status.

e Partial Networking is a network centric approach which
is accepted as standard. It covers the explicit communi-
cation protocol for allowing to disable network packets,
shut down ECUs and whole bus systems [7].

Besides these AUTOSAR concepts, there exists a lot of re-
lated work in terms of system-level power management. Benini
et al. surveyed design techniques for system-level power man-
agement [8]. More recent work includes power-aware multi
core scheduling [9] and cyber-physical systems [10], [11].

B. Structure

The paper is structured as follows. Section II describes the
motherboard and circuitry relevant to emulating ECU func-
tionality. Section III lists the extensions to the Linux operating
system as a software platform which were implemented. For
allowing to emulate the functions with real-time properties,
the system scheduling was extended. The paper continues by
describing the test setup and results in sections IV and V.



TABLE I
POWER STATES OF THE OMAP-BASED ARM PLATFORM [13]

[ Power State [[ ARM MPU [[ ARM Core |
Cl WFI ON
C2 WEFI inactive
C3 CSWR inactive
C4 OFF inactive
C5 OSWR OSWR
C6 OFF OSWR
C7 OFF OFF

Finally, the paper concludes by reflecting on the contribution
and providing an outlook.

II. HARDWARE PLATFORM

The motherboard is a custom designed PCB featuring CAN-
Bus and Ethernet for automotive connectivity, power supply
and control of external sensors or actuators. The main SoC
is not directly mounted on the board. For simplicity reasons,
a module (called Gumstix Overo [12]) has to be plugged
in, which includes the SoC and all its necessary peripherals
like RAM or local power supply. The design includes a
flexible programmable gate array (FPGA) that can be used for
offloading hardware related tasks from the main CPU. This
allows for example to monitor or control analog values at a
high sampling rate of the integrated analog-digital and digital-
analog-converters. The whole design is depicted in figure 1.

A. Computational Sub-system

The main processor on the motherboard which is used
for simulating a generic ECU is represented by a Texas
Instruments OMAP 3503 processor [14]. This SoC is based
on an ARM Cortex-A8 based processor, capable of running at
frequencies of 600 MHz and below. The SoC is the small
sibling of the widely used OMAP3530, which features an
additional graphics accelerator and a discrete DSP core. For
simulating especially computational loads these feature were
not necessary. Overall the small variant is still powerful
enough to implement almost every common ECU task that
is present in an automotive environment.

B. Power Management Techniques

The chip supports three different types of power manage-
ment [15] of which two are actively used in this experiment:

o DVFS (Dynamic Voltage and Frequency Scaling),
o AVS (Adaptive Voltage Scaling), and
e DPS (Dynamic Power Switching).

The most common mechanism is DVFS, which allows
the scaling of the CPU frequency and its core voltage in
accordance to the current processing load. The second, but not
actively used technique is AVS, which allows to measure the
degradation of the silicon and to adjust the operating voltage
accordingly. Another possibility for power saving is DPS
(dynamic power switching) which allows to explicitly switch
off certain parts of the IC. The OMAP processor is divided
up into separate power domains, which can be controlled
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Fig. 1. Schematic Structure of the Custom Platform

independently. The SoC features approximately 10 of these
domains, depending of what is counted. The most important
ones (by the names used in the Linux kernel) are: CORE,
MPU, DSS, IVA, SGX, NEON. The SGX power domain is not
applicable for this IC, because it refers to the optional graphics
accelerator. NEON and IVA are multimedia subsystems and
DSS is the Display Subsystem. For this experiment the focus
is one the CORE and MPU domain. MPU is the actual ARM
processor, while CORE is the peripheral circuitry. Each power
domain can enter one of the following states:

e ON: All circuits are fully operational.

o WFI (Wait for Interrupt): Equals a halt command. The
logic is fully powered, but not actively working.

o« RET/CSWR (Closed Switch Retention): The logic is in
retention mode, but still powered

« RET/OSWR (Open Switch Retention): The logic is
switched off, but the state is preserved in dedicated static
RAM.

o OFF: The component is completely powered off

In the Linux kernel it is possible to refer to a combination of
these power domains as power states. The mapping is shown
in table I.

C. Peripheral Circuitry

The ARM SoC is paired with some generic peripherals
for interconnection with other ECUs. This includes an Eth-
ernet port and an SPI based CAN controller. Those two are
solely used by the ARM SoC. Furthermore, the motherboard
contains an analog-digital- and digital-analog-converter, as
well as some general purpose pins and a power MOSFET



IT Network

Wiring Harness

Fig. 2. Functional chain together with mapping onto system components.
Dashed lines indicate mapping to hardware. Taken from [11].

for switching external loads. For a flexible usage of these
components, they are all connected to the FPGA.

D. Measurement Circuitry

For evaluating the effect of the different power states
of the OMAP SoC, the motherboard provides an adequate
measurement circuit. The consumed energy can be evaluated
by measuring the current flow and multiplying it with the fixed
voltage. The current is determined with a shunt resistor in
series with the load. The voltage drop of the resistor is then
amplified and provided as an external measurement output.
Which can be evaluated by an oscilloscope or multimeter. To
allow further investigations of the power usage of the total
system it is possible to include the Ethernet and CAN-Bus
circuitry into the measurement.

The exact power consumption of the computational sub-
system cannot be precisely measured due to the usage of the
SoC as a module which includes its own power supply and
peripherals. The overhead can be approximated by a 15 %
efficiency loss of the switching supply and a static energy
consumption of about 100 mW for powering the on-module
peripherals.

III. SOFTWARE PLATFORM

The key contribution of this work is the extension of
the existing Linux paradigms; combining the scheduling of
software and power.

A. Actor-based Software

As a software development paradigm, real-time tasks are
assumed to be actor-oriented. Furthermore, the interdependen-
cies of the software blocks are assumed to be given by a graph
structure. Each software block has its own set of requirements.
Together, they provide the functionality itself. These functions
can span multiple ECUs, as depicted in figure 2.

How this software paradigm can work together with the
other components of the power management scheduling is
described subsequently.

B. Mainline Linux

Linux tasks are distinguished into three groups and priori-
tized from 1 to 130. Runnable tasks are being multiplexed in
a time-division manner to the computational resources. The
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Fig. 3. Fixed cycle scheduling as a power management plan, taken from [11].
« denotes the change of a power state, i.e. the system start-up itself. The
arcs are annotated with ac and ¢, which stands for after completion and
concurrently, respectively.

scheduling of this multiplex depends highly on the group
of tasks. Within groups, tasks with higher priority supersede
tasks with lower priority. For every priority, there is one linear
queue, from which runnable tasks are taken.

1) Idle Tasks: For each CPU core in the system, one idle
task exists. It is a distinguished, hardware dependent task
which calls up the CPU idle framework. It has the least
possible priority and only gets switched to, if no other task is
in a runnable state.

2) Completely Fair Tasks: The Linux default task group is
completely fair. Fair meaning the CPU time of tasks featuring
the same priority is kept in balance. This group can be used
to simulate tasks which are not highly critical in timing—e.g.
in-car entertainment.

3) Real-Time Tasks: In mainline Linux, real-time tasks are
catered to soft-real-time, meaning they are guaranteed to reach
a certain bandwidth, meaning CPU time per second. In order
to be able to emulate hard real-time tasks, extensions to the
system scheduler were implemented.

C. Power Management Scheduling

As an extension to the existing Linux scheduler, the de-
scription of the software timing relations as non-linear data
structures (so-called power management plans, defined in [11])
is allowed. Power management plans are graphs relating power
states with functional software units, and their timing relations.
Figure 3 depicts an exemplary plan which shows a strictly
cyclical schedule. The cycle is instantiated after establishing
the power state «, which is necessary to run the tasks.

Derived from the hardware platform properties, the imple-
mentation distinguishes the following power states:

(Qanyc), (@<c7)s (@<ce)s - - - (<cr)

for restricting the usable idle states as in table 1.
For the system under load, there are additionally the power
states

(04975mv), (041075mv), (al2OOmV)7 (041270mv)7 (041350mV)7

(a125MHz)7 (04250MHZ)7 (CVSOOMHz)y (QSSOMHZ)7 (a600MHz)7

which correspond to the operating points of the microprocessor
unit.
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Fig. 4. Power management plans for testing both the microprocessor unit

under load and idle. All supported operating points are cycled.

D. CPU idle framework

Essential to power management of the computing system is
the CPU idle framework. It is invoked from within the idle
task. It allows the so-called governor to select an idle state
of the hardware, which the idle driver actually sets. The idle
framework had to be adapted to the new scheduling paradigm.

1) CPU idle governor: The CPU idle governor selects and
reflects on the system status and the idle state to be chosen.
This is done on the basis of an estimate of the idle time. It is
calculated by the known next timer interrupt to occur in the
system and by a measured average interrupt frequency for in-
and output (I/O).

The power management mechanism restricts the available
idle states and thus helps to investigate the effects of different
idle state selections over time.

2) CPU idle driver: The CPU idle driver provides inter-
faces to query and describe possible hardware states. For the
hardware platform at hand, the driver implements the power
states listed in table I.

E. Device Drivers

For the CPU idle but also for CPU frequency adjustments,
hardware dependent device drivers must register with their re-
spective frameworks and configure the hardware as requested.
Furthermore, Linux drivers should allow the system to enter
different low idle states which involve reducing the power
consumption of the peripherals, like dropping connectivity or
configuring a communication hardware to do Wake-on-LAN.

IV. TEST SETUP

The test setup covers a single ECU and its computational
subsystem. All available load and idle operating points are cy-
cled and the power consumption measured. The measurement
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Fig. 5. Typical power consumption of MPU over frequency and supply
voltage. The lower surface depicts the consumption during C1, and the higher
surface the consumption during load.

was done using a multimeter and an Oscilloscope with USB
interface, for doing both a static and dynamic analysis.

The power management plans used during this experiment
are depicted in figure 4. To the left is the test case for
system load, and to the right the test case for the system idle
experiment.

1) System Load: In order to put load onto the system,
bc [16] was run to calculate thousands of digits of:

tan~!(1) = g ~ 0.7854.

During the calculation, all available combinations of mi-
croprocessor frequency and supply voltage are cycled. The
frequencies are held for 0.2 s each, while the voltages are held
for 1 s. In the end, every frequency and voltage combination
is established.

The system ends up in the highest operating mode with
600 MHz and 1350 mV supply, in which the calculation
finishes.

2) System Idle: For system idle testing, the Linux idle
governor is incrementally restricted in the idle state selection
phase. In the first second there is no restriction, to the
next second applies the same, allowing maximally C7. Each
following second, one more C state is marked as unavailable.
During the test setup, the ECU was connected to an internal
network and ran a set of other Linux background tasks, which
both induce system wake-ups during the system idle test case.

V. EXPERIMENT RESULTS
A. Static Results

Figure 5 depicts the static results which were gathered
reading a multimeter. It shows the typical power consumption
values of the computational subsystem over all possible fre-
quency and voltage combinations. The higher plane is for the
system during load, while the lower plane is during idle (C1).



The figure indicates, that with this piece of hardware, the
power loss increases almost linearly with the supply voltage
level.

B. Dynamic Results

The results for the system load test case are depicted in
figure 6. The spike at second 0.4 marks the start of the
experiment. The calculator is invoked and the first power
state combination is immediately activated. The graph is
divided into intervals of equal microprocessor supply voltage.
Within these intervals, the different operating frequencies are
cycled. After 5 seconds, the calculation finishes in the highest
operating point and drops to idle afterwards.

The results for the system idle test case are depicted
in figure 7. Figure 7a shows an oscillogram of the power
consumption of the computational subsystem. It can be seen,
that after a preparation phase, the average power consumption
is about the same level during the intervals Unconstrained Idle
to Max C4. This interval is characterized by decreasing spikes.
These spikes are partly induced by the overhead of saving and
restoring the registers to and from SRAM. The power state
transitions are the more costly, the deeper the idle state is. In
C2, the sporadic interrupts can be handled without incurring
large spikes.

Figure 7b shows the amount of time which the computa-
tional subsystem spent in the respective power states. The
numbers indicate, that during the idle test case, the system
was at most 0.5 % of the time busy and thus 99.5 %
idle. Furthermore, the bar chart shows, that besides C7, the
governor most often selects the deepest idle state it is allowed
to go.

VI. CONCLUSION AND OUTLOOK

In this paper, a platform for evaluating power management
mechanisms is presented. Measurement results for both load
and idle scenarios were presented. Future work is to combine
ECUs built upon this platform into a holistic test bench,
consisting of a real car body, the wiring harness, distributed
electronic loads and measurement equipment. The ECUs will
be interconnected via bus systems. Thereby, power manage-
ment mechanisms can be prototyped and evaluated in the
context of a complete car test bench setup.

In the complete car test bench, different distributed ap-
proaches to power management can be investigated. These
approaches should combine both coordinating energy efficient
measures but also reliability and operational safety of the
automotive system. Additionally, the effect of changing the
partitioning of software to hardware can be investigated.
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Fig. 6. Oscillogram of power consumption during system load. Low pass filter with 100 Hz. The intervals are tagged with the used supply voltage level.
Within each interval, all 5 frequency operating points were used.
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(a) Idle Measurements as in figure 4, low pass filter with 70 Hz. There is a significant change in power consumption from CI to C2, as well as a small one
in between C4 and C5-7.
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Fig. 7. The oscillogram indicates, that changing to the deeper idle states on this platform does not bring a lot of benefit. Additionally, the cost of waking
up and preparing for sleep is higher (more visible spikes).



