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Summary

In panel studies binary outcome measures together with time stationary and
time varying explanatory variables are collected over time on the same indi-
vidual. Therefore, a regression analysis for this type of data must allow for the
correlation among the outcomes of an individual. The multivariate probit model
of Ashford and Sowden (1970) was the first regression model for multivariate bi-
nary responses. However, a likelihood analysis of the multivariate probit model
with general correlation structure for higher dimensions is intractable due to the
maximization over high dimensional integrals thus severely restricting ist appli-
cability so far. Czado (1996) developed a Markov Chain Monte Carlo (MCMC)
algorithm to overcome this difficulty. In this paper we present an application
of this algorithm to unemployment data from the Panel Study of Income Dy-
namics involving 11 waves of the panel study. In addition we adapt Bayesian
model checking techniques based on the posterior predictive distribution (see for
example Gelman et al. (1996)) for the multivariate probit model. These help to
identify mean and correlation specification which fit the data well.
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1 Introduction

Short time series of binary outcomes in the presence of covariate infor-
mation are often observed in panel studies such as the well known Panel
Study of Income Dynamics (PSID) conducted at the Survey Research
Center, Institute of Social Research, University of Michigian, U.S.A. The
primary interest in such studies is often the assessment of covariate ef-
fects. For this purpose, population averaged or marginal approaches are
preferred over transitional or cluster specific approaches (for a review see
Pendergast et al. (1996) and Ashby et al. (1992)) The reason for this
preference is the ability to interpret the covariate effects unconditionally.
For this reason we will not consider lagged response values as covariates
in the mean specification in this paper. This excludes models proposed
by Heckman and Borjas (1980).

Since the binary outcome is collected over time on the same individual,
the binary outcomes are correlated. One naive approach is to ignore this
correlation and conduct univariate standard analyses such as the probit or
logistic regression. It has been noted by Liang and Zeger (1986, Theorem
1) that even though parameter estimates from univariate analyses ignor-
ing the correlation remain consistent but they are inefficient when the
correlation is large (see also Spiess et al. (1996)). This loss in efficiency
might lead to overestimating the strength of covariate effects. Liang and
Zeger (1986) proposed the use of generalized estimating equations (GEE)
instead, which have been extended and used extensively (for example Lip-
sitz et al. (1991), Liang et al. (1992), Carey et al. (1993), Fitzmaurice
and Lipsitz (1995) and Lipsitz et al. (1995), Spiess and Hamerle (1996)).
Loss of efficiency also occurs in GEE models with estimated association
parameters when time varying covariates are present (Fitzmaurice et al.
(1993)). GEE models with estimated association parameters are called
GEE2.

More recently, a preference for likelihood based methods for marginal
models over the non likelihood based GEE method has been expressed
(see for example the comments to Liang et al. (1992)). The earliest
likelihood based model for correlated binary regression has been devel-
oped long before GEE’s by Ashford and Sowden (1970). See for example
Amemiya (1986) for a discussion of this approach in econometrics. In the
special case of exchangeable correlation or equicorrelation an approximate
maximum likelihood analysis has been tractable even in high dimensions
(see Ochi and Prentice (1984)), but an exact maximum likelihood analy-
sis of the multivariate probit model has been intractable for dimensions



higher than three (see Anderson and Pemberton (1985)). In contrast to
GEE models the multivariate probit model is likelihood based.

More recently, two different likelihood based models have been proposed.
Both use odds ratios as measures of association between discrete variables.
The one model developed by Molenberghs and Lesaffre (1994) is based
on marginal odds ratios using a multivariate extension to the bivariate
Plackett distribution (Plackett (1965)) for the construction of the joint
likelihood. The other model put forward by Fitzmaurice and Laird (1993)
for binary time series is formulated in terms of conditional odds ratios
assuming a quadratic exponential model for the joint likelihood (Cox
(1972), Zhao and Prentice (1990)). The extension of this approach to the
ordinal response has been considered by Heagerty and Zeger (1996) and
Heumann (1996). It should be noted that these likelihood based models
are not easily formulated and while more general require the specification
of higher order association parameters in contrast to the multivariate
probit model.

Markov Chain Monte Carlo (MCMC) methods have been used very suc-
cessfully for the analysis of many previously intractable problems (for
example see Besag et al. (1995) and the many references cited therein)
and have become a standard tool for statistical model analysts (see the
recent books of Gelman et al. (1995), Gelfand and Smith (1995) and
Gilks et al. (1996)). In this paper we present the results of a multivariate
probit analysis using MCMC methods for a dataset studying the unem-
ployment dynamics of a group of individuals followed for 11 years, thus
demonstrating the tractability of the multivariate probit analysis with
general correlation structure in high dimensions.

For the analysis of panel data with discrete response a more restricted
alternative to the multivariate probit model are panel probit models al-
lowing for a subject specific random effect (Hsiao (1986), Baltagi (1996)).
These models are not marginal models and are only comparable to multi-
variate probit models with exchangeable correlation. Further, these panel
probit models with random effect remain tractable in high dimensions
since maximization over high dimensional integrals can be reduced to
maximization over one dimensional integrals, where Gaussian quadrature
can be applied in this situation (see Butler and Moffit (1982)). Another
nonlikelihood based alternative for this situation which avoids numeri-
cal integration is to use a minimum-distance estimator (see Chamberlain

(1984)).

The paper is organized as follows. In Section 2 details on the unemploy-
ment data and the results of an initial explanatory analysis are presented.



In Section 3, the multivariate probit model and its analysis based on
MCMC methods are introduced. The results and their interpretation for
the unemployment data are given in Section 4. Model checking for the
multivariate probit model based on the posterior predictive distribution
is developed and discussed in Section 5.

2  Description of the Unemployment Data

This section provides details and some results of an explanatory data anal-
ysis of the unemployment data analyzed later. The data collected is part
of the Panel Study of Income Dynamics (PSID) conducted at the Survey
Research Center, Institute of Social Research, University of Michigian,
U.S.A. (http://www.umich.edu/~psid/). This panel study emphasizes
the dynamic aspects of economic and demographic behavior.

We are interested in investigating the unemployment dynamics of individ-
uals who were initially unemployed but remained available to the labor
market during the whole study period. We excluded individuals who re-
tired or became permanently disabled during the study period as well as
individuals who became house keepers and students at any time period
during the course of study. In 1981, 837 individuals interviewed for the
PSID reported that they were looking for work. Of these 837 individuals,
166 remained available to the labor market until 1992. In addition to the
11 measurements of the yearly employment status (1 = working, 0 = look-
ing for work or temporarily laid off), the gender (1 = male, 0 = female),
the age in 1981 in years and the number of actual grades of schooling
completed in 1981 were reported. This last measurement will be taken as
an indicator of the level of education of an individual. Primary interest is
the modeling of the time dependency of the unemployment dynamics for
this group of individuals while adjusting for gender, education and age. In
this paper the probability of being unemployed is investigated while the
duration of unemployment could also be studied (see for example Niesing
et al. (1994)). We will now present the results of an explanatory data
analysis to help us formulate reasonable marginal models and models for
the association present among the responses. To assess the effect of time
for the marginal model, Figure 2.1 plots the proportion of unemployed
individuals for each year from 1982 to 1992. It clearly shows a nonlinear
time trend. We are interested in formulating a model which allows for
probit margins. The probit scale, i.e. ®~!(p) where ® is the standard
normal cdf, is therefore the appropriate scale to assess the effects of the



proportion
0.25 0.30 0.35

0.20

0.15

0.10

1982 1984 1986 1988 1990 1992
Year

Figure 2.1: Proportion of Unemployment over Time.

covariates. We use 3 age groups (19-25 years, 26-35 years and older than
36 years) to estimate the probit of being unemployed. Similarly we used
three education categories (less than 12 years of schooling, 12 years of
schooling and more than 12 years of schooling). The estimated probits of
being unemployed for each year of each of the covariates are plotted in
Figure 2.2. The effect of gender seems to be smaller than the effects of age
and education since the lines for age and education are further apart than
the lines for gender. Since the lines are somewhat parallel for all panels,
interaction between the time stationary covariates gender, age in 1981
and education level in 1981, and the time effect seem to be not present in
this data set. We used standard univariate probit analysis ignoring the
dependence among responses from the same subject to screen for interac-
tion effects among time stationary covariates. This is reasonable since in
general the presence of correlation will reduce the significance of effects.
The results of this approach show the presence of an interaction effect
between age and education, while other interactions are insignificant.
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Figure 2.2: Empirical Probits over Time classified by Gender, Age and
Education, respectively.

82 83 84 85 86 87 88 89 90 91
83 | 6.82
84 | 4.59 10.38
8 | 3.07 4.83 6.98
86 | 3.76  3.53 3.93 14.55
871227 3.00 483 393 740
88 | 2.11 411 256 517 3.27 9.06
89 | 3.80 3.8 6.79 436 3.26 3.78 6.50
90 | 2.10 489 488 288 4.40 486 5.62 1248
91| .70 212 197 339 101 139 3.13 381 3.90
92 | 151 387 246 222 111 3.65 213 558 467 7.9

Table 2.1 : Estimated Odds of being Unemployed between Pairs of Years

We turn now to the effects of correlation among the responses. The
estimated ratio between the odds of being unemployed in year ¢ and the
odds of being unemployed in year j for 4,7 = 1982, ---,1992 are presented



in Table 2.1. This shows that there is some tendency that the associations
between the responses decrease as the difference in years increases.

3 Multivariate Probit Model for Short Binary
Time Series

In this section, the multivariate probit model for binary time series will be
formulated and its analysis using MCMC methods are presented. We will
assume that the binary time series is completely observed. Approaches
on how to handle the case where responses are missing are discussed in
Czado (1996).

3.1 Model Formulation

To formulate a Bayesian approach, we need to specify the joint distribu-
tion of the binary response vector. For this, let Y; = (y;1,- -+, i)t the
binary response vector with binary response, y; = 1 or 0, observed at
time t and marginal probabilities 7;; = P(y; = 1) for ¢ = 1,---,n and
t=1,---,T. We assume, that the response vectors Y; are independently
observed. For each response component y;;, we have covariate information
collected in the vector (zj1,- -, Zip) available. Some of these covariates
might be time stationary. For example, if the jth covariate is time sta-
tionary, we have z;1; = --- = x;7j. We consider now marginal models of
the following form

i = ®(nir) where ni(8) = Bor + Brezinn + - - + BpTitp (1)

and ®(-) denotes the standard normal distribution function. This formu-
lation is the most general, since it allows for both time varying regression
parameters (3;; as well as time varying covariates. Time stationary regres-
sion parameters can be achieved by requiring 3;; = --- = Bjr = ;. For
the unemployment data, the models considered will include time varying
covariates but only time stationary regression parameters are used.

To give the complete specification of the joint distribution, we introduce
independent latent random vectors Z; = (Zj1,- -+, Zjr) which are jointly
normally distributed with mean vector

w(B) = —mi(B) = (=nir(B), -+, —mir(B))’ (2)



and covariance matrix ¥; with unit diagonal entries. The dependence
between the binary outcomes y;; is modeled indirectly through the de-
pendence structure among the latent variables Z;;. For this, we assume
that

Yy =1 <= Z;; < 0.

It is easy to see that this equivalence is consistent with the marginal spec-
ification given in (1). Note that the latent variable Z;; can be interpreted
as an unobservable threshold for the response y;;.

Joint probabilities can now be determined by the joint distribution of Z;.
For example

P(yﬂ:l,"',yiT:l):P(Zﬂ<0,“‘,ZiT<O)
0 0

:/ / (B, %4, Z;)dZ; - - - dZr, (3)
—00 —00

where

(8.0 2) = Gycrrarserars expl—5 2= m(B)'S, (Z = ()}

Other joint probabilities can be defined similarly. Equation (3) demon-
strates why a straight forward likelihood analysis of the multivariate pro-
bit model is intractable. If one is interested in achieving logistic margins,
one can, as suggested by Cessie and Houwelingen (1994), set u(8) to

u(p) = (~o 1 (—22mB)_)

o1 =xpmr(B)
Tt o @) e

’ 1+ exp(nir(B))

in (2).

The specification of the dependence structure ¥; allows for a wide range
of association models. We present now some possibilities:

(i) Covariate independence: ¥; = X

(ii) Serial correlation pattern with covariate independence:
Cor(Zis, Zit) = p‘s_t|.

(iii) Exchangeable correlation pattern with covariate independence:
Cor(Zis, Zit) = p-

Pattern (ii) has been used by Fitzmaurice and Lipsitz (1995) for odds
ratios. It is also appropriate, when the binary responses are measured at
unequally spaced time points.



Since the covariance matrix >; has unit diagonal entries, >J; is the corre-
lation matrix of the latent vector Z;, therefore the (s,t)th element of ¥;,
denoted by p;st, is restricted to the interval [-1,1]. It is easier to consider
a transformation of p;s to the real line for incorporating covariate depen-
dence of the correlation structure. Cessie and Houwelingen (1994) used
the following one-to-one transformation

I+ Pist
1- Pist

)-

Tist — IOg(
A regression model for 7;,; can now be assumed, for example
Tist = Qlst0 + O55151‘/Via (5)

where W; is an appropriate covariate. Additional covariates for the asso-
ciation structure can be incorporated in the same way. Marginal param-
eters as defined in (2) or (4) will be denoted by 3, while the association
parameters defined in (5) will be denoted by a. Since the covariance
matrices 3; depend on «, we will denote them with ¥;(c).

3.2 Bayesian Inference using Monte Carlo Markov Chain
Methods

For the Bayesian analysis, we assume that the response Y; given the
regression parameters § and the association parameters « follow the
multivariate probit model as specified in (1),(2) and (5). A model for
logistic margins is achieved by using (4) instead of (2). The prior in-
formation about (8, ) is summarized in a joint density of the form
(B, a) = m(8) x m(e). Noninformative and multivariate normal priors
can be used.

MCMC methods allow to draw a sample from the posterior distribution
[B,a, Z|Y], where Z = (Zy,--+,Z,)t and Y = (Y1,---,Y,)t. Here, [u|w]
denotes the conditional distribution of u given w. A Metropolis within
Gibbs approach (Miiller (1994)) is now taken, since the conditional dis-
tributions [Z;|Y;, B, a] and [B|a, Z,Y ]| are known when (2) holds, while
[@|B,Z,Y] and [B|a, Z,Y] are known only up to a normalizing constant
when (4) holds, thus requiring a Metropolis-Hastings step. The reader
unfamilar with MCMC methods can consult Gilks et al. (1996) for an
introduction to the Gibbs sampler and the Metropolis Hastings algorithm.

It is easy to see that, [Z;|Y;, B, ] is a truncated multivariate normal dis-
tribution with mean vector p(3) and covariance matrix ¥;(«) truncated



to the rectangular area given by [log(1 — yi1), —log(yi1)] X -+ X [log(1 —
yir), —log(yir)]. Note, that n;(8) and ¥;(a) are determined by f and
a, respectively. For the generation of truncated multivariate random
variables, we followed the approach of Robert (1995) (see also Geweke
(1991)). It is MCMC based and uses a Gibbs sampling scheme to simu-
late from univariate truncated conditionals. An accept-reject algorithm
for the tails of the univariate truncated normals is then utilised. This is a
different approach as the one proposed in Czado (1996), which resulted in
highly biased association estimates in simulations, when high correlations
were present.

We derive now the conditional distribution [3|a, Z, Y] when mean specifi-
cation (2) holds. First note that [B|a, Z,Y| = [B|a, Z] since Z determines
Y. But finding [B|a, Z] is now equivalent to finding the posterior distri-
bution of the regression parameters in a linear regression model (see for
example Lee (1997)). It is multivariate normal with mean vector —X 3,
where X is a block diagonal matrix with ith block given by

L 211 -+ Titp
L2y -+ Tirp

and block diagonal covariance matrix ¥(«) with ith block given by ¥;(a).

In the case of a multivariate normal prior for 8 with mean vector 3, and

covariance matrix X, it is straight forward to determine that [3|Z, a] is
again multivariate normal with mean vector

—(Z,'+ X'S(@) X)) N(Z, 8, + X' (e) 1 2) (6)
and covariance matrix
(3, + XS (e)™r X)) (7)

For a flat prior the terms involving the prior parameters 3, and X, vanish.

For the case of logistic margins (4), [B|a, Z,Y] is only known up to a
normalizing constant, thus requiring a Metropolis-Hastings Update. Since

exp(z) | _ \/27rz
l+exp(z)” 4

oY

we approximate the distribution of Z; by a multivariate normal with mean

o

vector —%m(ﬁ). Therefore we choose as proposal distribution for g a



multivariate normal cdf with mean and covariance given by (6) and (7),
respectively, where the design matrix X is changed to @X .

For updating the association parameters «, we also require a Metropolis-
Hastings update. Here, the density of [a|f8, Z,Y] is proportional to the
density of [Z|«, B] considered as function of a. A normal proposal density
with same mode as [@|8, Z,Y ] and a user controlled covariance matrix is
used for the corresponding Metropolis-Hastings step.

Using the above conditionals, an approximate sample from the posterior
can be drawn and point and interval estimates of the parameters can be
calculated using this sample. It should be noted that the algorithm can
also be used for data with varying cluster sizes. This approach was first
suggested by Czado (1996).

4 Multivariate Regression Analysis of the Un-
employment Data

Using the findings of the explanatory analysis we fitted the following mean
specifications for the multivariate probit model ((1), (2) and (5)):

nit(B) = Bo + PrAge; + BEducation; + B3Gender; + 54 Time,
+ﬁ5Time? + fsEducation*Age;, (8)

where Time is coded as 0 to 10 for 1982 to 1992. This mean specification
takes into effect that the explanatory analysis indicates a quadratic time
effect and an interaction effect between education level and age. For a
second mean specification we allowed individual year effects. For this we
defined the following dummy indicators

It — lif yearist
"] 0 otherwise

for ¢ = 1983, ---,1992. Using this we investigated also the following mean
specification

nit(B) = Bo + Pr1Age; + foEducation; + B3Gender;
+5411983; + - - - £1311992; + Bi14Education*Age;. (9)

We would like to note that the nonlinear time effect could also be modelled
by semiparametric approaches. Nonparametric smoothing methods as



studied by Rice and Silverman (1991) or additive models as proposed by
Hastie and Tibsherani (1990) could possibly be adopted to this situation.
However, we feel that the binary time series involved are too short to
warrant such modelling in this situation.

For the association models we studied the serial (see (ii)) and exchange-
able (see (iii)) correlation. Finally we assumed a flat prior for both the
mean and association parameters. 2000 iterations of the Markov Chain
Sampler described in Section 3.2 were run for mean specification (8) and
(9), respectively. We monitored the convergence of the sampler using the
diagnostic measures implemented in the Splus library coda() of Best et al
(1995) and described in more detail in Cowles and Carlin (1995). They
show a very small burn in effect (< 10 iterations). A slower mixing of
the chains especially for the estimation of p was observed (lag 1 autocor-
relations for p > .8 for all models). Therefore subsampling of every 5th
iteration after first 50 iterations were discarded was applied. The results
are presented in Table 4.1 and 4.3. The tables give the posterior mean
estimates and a 95% Bayes credible interval based on estimates of the
2.5% and 97.5% quantiles. For comparison we present the corresponding
results of GEE analyses for the exchangeable correlation. For the GEE
analysis the robust estimates of the regression parameters were used for
the interval estimate. The GEE2 analysis was performed using the Gauss
program of Y.Qu (see Qu et al. 1995).

Serial Correlation Exchangeable Correlation
Estimate 95% Bayes CI | Estimate 95% Bayes CI

lower upper lower upper

limit limit limit limit

Intercept -2.760 -3.840 -1.780 -2.660 -3.810 -1.470
Age 0.066  0.038  0.097 0.063  0.028 0.093
Education 0.217 0.131  0.311 0.208  0.106 0.306
Gender -0.074 -0.188  0.036 -0.065 -0.163 0.053
Time 0.219 0.172 0.268 0.215 0.173 0.256
Time? -0.015 -0.019 -0.010 -0.014 -0.018 -0.010
Education*Age -0.004 -0.007 -0.002 -0.004 -0.007 -0.001
p 0.649 0.578 0.717 0.384 0.284 0471

Table 4.1: Mean and Association Parameter Estimates fitting the
Multivariate Probit Model for the Unemployment Data based on Mean
Specification with Quadratic Time Effect (see (8))

From the results of the multivariate probit analyses we see strong evidence
for a nonlinear time trend, since the interval estimate for the quadratic



time effect does not include zero. The year specific mean formulation (9)
allows us to assess the effects of individual years separately. In general,
one can say that the chances of employment increases until about 1989,
while they drop in 1990, recover in 1991 and drop again in 1992 to 1986 /87
levels for the study population.

As expected the effects of age and education are positive thus showing
that employment chances improve over age and education level, however
there is some evidence of an interaction between education level and age,
thus decreasing the chances of getting employed for well educated older
individuals. To see this effect, Figure 4.1 gives the contour lines of the
fitted odds of being employed for several years based on the model (8)
with exchangeable correlation structure. For models with no interaction
the contour levels would have been parallel lines.
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Figure 4.1: Contour Lines for the fitted Odds of being Employed as a
Function of Age and Gender for the Quadratic Time Effects Model with
Exchangeable Correlation.

Turning now to the effect of gender on unemployment, all analyses show
that there is no significant effect of gender for the study population. Note



that this does not mean that there is no effect of gender in general. Recall
that housekeepers were removed from the study and women are likely
to represent the majority of this group. However no gender differences
were detected among this group of unemployed individuals who stayed
available to the labor market during the whole study period.

Exchangeable Correlation Structure
GEE GEE2
Estimate 95% Robust CI | Estimate 95% CI
lower  upper lower upper
limit limit limit limit
Intercept -3.340 -5.940 -0.740 -3.151 -5.728 -0.574
Age 0.080 0.015 0.146 0.076  0.011 0.141
Education 0.268  0.047 0.490 0.253 0.033 0472
Gender -0.077  -0.335 0.182 -0.090 -0.346  0.165
Time 0.213 0.133 0.293 0.212  0.133  0.292
Time? -0.014 -0.022  -0.006 -0.014 -0.022 -0.006
Education*Age -0.005 -0.011 0.000 -0.005 -0.011 0.001
p 0.202 - - 0.397 0.313 0.480

Table 4.2: Mean and Association Parameter Estimates using the GEE
Approach for the Unemployment Data based on Mean Specification
with Quadratic Time Effect (see (8))

We are also aware that the results presented are based on a very limited
set of economic determinants. Further, the number of observations are
quite small, thus a sample selection bias cannot be excluded. Therefore
the interpretation of these results has to proceed with caution.

With regard to the correlation among the response variables, the results
for the multivariate probit analysis with exchangeable correlation struc-
ture shows moderate correlation, while with serial correlation structure
the correlation is even larger. The association parameter estimate for the
GEE2 approach is of the same magnitude as the one from the multivari-
ate probit, while the GEE approach gives much lower estimates. This is
also an indication that the original GEE approach is inefficient for the
estimation of the association parameters.

The results for the two different correlation structures differ little with re-
spect to the estimated mean parameters and their interval estimates, thus
indicating some measure of robustness with regard to the specification of
the correlation structure.



Comparing the results of the multivariate probit models to the corre-
sponding ones of the GEE models, one sees very little difference between
the estimated parameter values. The GEE interval estimates are much
wider than the multivariate probit ones, which is to be expected since the
GEE ones are robust with regard to the misspecification of the working
correlation, while the Bayes interval estimates assume that the correla-
tion among the latent variables is correctly specified. The length of the
GEE2 interval estimates are somewhat lower than the ones for the GEE
approach, but still much larger than the ones from the multivariate probit
analysis. Even though the GEE analysis gives similar results, we remind
the reader that the GEE approach does not fully specify a statistical
model, while the multivariate probit does.

Finally we compare our results to the ones achieved assuming indepen-
dence among the response variables (see Table 4.5). We observe that the
regression parameter estimates are of the magnitude than the ones from
the multivariate probit analysis. In this example we do not observe an
overestimating of the strength of covariate effects, when the correlation
is ignored, since interval estimates are of comparable lengths.

Serial Correlation Exchangeable Correlation
Estimate 95% Bayes CI | Estimate 95% Bayes CI

lower upper lower upper

limit limit limit limit

Intercept -2.710 -3.980 -1.500 -2.680 -3.860 -1.550
Age 0.066 0.034 0.102 0.064 0.034 0.101
Education 0.213 0.109 0.320 0.210  0.117 0.311
Gender -0.073 -0.174  0.034 -0.060 -0.171 0.042
11983 0.133 0.009 0.258 0.140 -0.006 0.270
11984 0.408 0.258 0.558 0.413  0.250 0.557
11985 0.535 0375 0.703 0.540  0.392 0.695
11986 0.624 0.462 0.776 0.617  0.477 0.756
11987 0.567 0.410 0.706 0.565 0.414 0.715
11988 0.782 0.601 0.942 0.798  0.649 0.959
11989 0.869 0.720 1.040 0.895 0.728 1.070
11990 0.752  0.579 0.913 0.745  0.577 0.918
11991 1.020 0.835 1.210 1.010 0.824 1.220
11992 0.641 0.496 0.810 0.642  0.490 0.790
Education*Age -0.004 -0.007 -0.001 -0.004 -0.007 -0.001
p 0.663 0.605 0.725 0.404 0.321 0.491

Table 4.3: Mean and Association Parameter Estimates of the
Multivariate Probit Model for the Unemployment Data based on Mean
Specification with Year Specific Time Effects (see (9))



Exchangeable Correlation Structure
GEE GEE2
Estimate 95% Robust CI | Estimate 95% CI

lower  upper lower upper

limit limit limit limit
Intercept -3.469 -6.046 -0.890 -3.168 -5.749 -0.586
Age 0.085 0.021 0.150 0.077  0.012 0.142
Education 0.280 0.060  0.500 0.255 0.036 0475
Gender -0.077 -0.336  0.180 -0.090 -0.347  0.166
11983 0.133 -0.083  0.350 0.133 -0.082 0.348
11984 0.413 0.172 0.650 0.409 0.169 0.649
11985 0.529 0.264  0.790 0.529 0.266  0.791
11986 0.618 0.354  0.881 0.617 0.356  0.879
11987 0.571  0.295 0.847 0.571  0.297 0.845
11988 0.789  0.493 1.090 0.790 0.496 1.084
11989 0.883  0.597 1.170 0.880 0.596 1.163
11990 0.737  0.447 1.030 0.738 0.449 1.026
11991 1.023 0.671 1.380 1.030  0.680 1.380
11992 0.631 0336  0.926 0.636 0.342  0.929
Education*Age -0.006 -0.011  -0.000 -0.005 -0.011  0.001
p 0.202 - - 0.401 0.48 0.317

Table 4.4: Mean and Association Parameter Estimates using the GEE
Approach for the Unemployment Data based on Mean Specification
with Year Specific Time Effects (see (9))

5 Model Checking and Discussion

The application presented in the last section demonstrates that MCMC
methods can be used to achieve a tractable analysis of the multivariate
probit model. This allows us to fit models with a wide range of mean
and association parameter specifications. Therefore, it is important to be
able to check the fit of a particular model to the data. In the context
of the unemployment data we are interested in assessing and comparing
the fit of the two mean specifications (year specific or quadratic time
effect) as well as the two association structure specifications (serial or
exchangeable correlation). For this we discuss now how a Bayesian test
of model fit based on the posterior predictive distribution can be used
in the context of the multivariate probit model. The use of posterior
predictive distributions for model checking was first proposed and applied
by Guttman (1967) and Rubin (1981, 1984). An introduction and general



discussion of this method is given by Gelman and Meng in Gilks et al.
(1996, Chapter 11) and Gelman et al. (1996).

Quadratic Time Effect
Estimate 95% CI

lower limit upper limit
Intercept -2.834 -4.229 -1.439
Age 0.067 0.030 0.104
Education 0.229 0.110 0.348
Gender -0.101 -0.243 0.040
Time 0.213 0.136 0.289
Time? -0.014 -0.021 -0.006
Education*Age -0.004 -0.008 -0.001

Year Specific Time Effect
Estimate 95% CI

lower limit upper limit
Intercept -2.815 -4.218 -1.413
Age 0.067 0.030 0.104
Education 0.228 0.109 0.348
Gender -0.101 -0.243 0.040
11983 0.133 -0.147 0.412
11984 0.411 0.123 0.699
11985 0.528 0.235 0.821
11986 0.617 0.319 0.914
11987 0.569 0.274 0.865
11988 0.788 0.479 1.096
11989 0.881 0.565 1.198
11990 0.735 0.430 1.040
11991 1.022 0.692 1.352
11992 0.631 0.332 0.930
Education*Age -0.004 -0.008 -0.001

Table 4.3: Mean Parameter Estimates for the Unemployment Data
assuming Independence among the Responses

For posterior predictive model checking we require the specification of
a discrepancy measure, which in contrast to classical test statistics can
depend on unknown model parameters in addition to the observed data.
The discrepancy measure is chosen to assess the fit of the model with
regard to particular aspects of the data. Following Gilks (1996, p. 190),



let Y be the observed data and 6 the vector of unknown model param-
eters. From the Markov Chain simulation we obtained draws 61,---,0r
from the posterior. We now simulate R hypothetical replications of the
data denoted by Y, .- Y%, where Y]” is drawn from the sampling
distribution of Y given the simulated parameter 6,.

The hypothetical replications should look similar to the observed data
Y, when the model is fitting the data. Since the discrepancy measure
D(Y,0) will have an extreme value if the data is in conflict with the
chosen model, the proportion of cases where the simulated discrepancy
measure D(Y, P 6,) exceeds the realized value D(Y,6,), estimates the
p-value of this Bayesian model test.

If the formulated model provides a good fit to the particular aspect of
the data as measured by D(Y,0), we expect that half of the points in a
scatter plot of D(Y,0,) versus D(Y, P, 6,) are falling above the 45° line
and half falling below, i.e. a estimated p-value of .5 indicates no lack of
fit.

For the unemployment data we are primarily concerned about the marginal
fit, which can be measured by a x? discrepancy statistic

Al Yir — mig)*
2(Y,B) = T
’ ; tz:; Tt 1 - 7th)
where m;; = ®(n;:(8)). If we are also interested in assessing jointly the
fit of the regression parameters as well as the association parameter, the
Mahalanobis discrepancy measure might be used:

N

i=1
where Y; = (Y;1, -+, Yir)t and m; = (m;1, - -+, mir). Here Sy (8, p) denotes
the variance covariance matrix of the random vector Y;. In particular we
have

Yy (B,p)u = mit(1 — mi) and Xy, (B, p)is = P(Yie = 1, Y5 = 1) — mymis.

Table 5.1 gives the estimated p-values for the two discrepancy mea-
sures for all models considered. With regard to the x? discrepancy the
quadratic time specification(8) is sufficient. The serial correlation struc-
ture for the year specific time specification (9) is less appropriate. When
one is interested in jointly assessing the fit of the mean specification and
correlation structure, the quadratic time specification (8) with exchange-
able correlation is preferred over all other models considered.



Quadratic Time Effects | Year Specific Time Effects

Exchangeable | Serial | Exchangeable Serial
D, (Y, B) 417 438 413 .338

Dy (Y, B, p) .446 .338 .359 237

Table 5.1: Estimated p-values of the posterior predictive model checking

To gain more insight into the behavior of these model diagnostics we
present the results of a small simulation study. Here 100 data sets were
generated according to a multivariate probit model with either serial or
exchangeable correlation. As mean specification we used

nit(B) = Bo + Brx; + Pot for i =1,---,100 and t = 1,---, 5.

The covariate x; is chosen to be equally spaced between -1 and 1. 500
iterations of the MCMC algorithm for each data set were run and the
reported estimates are based on the last 200 iterations. Table 5.2 presents
parameter and p-value estimates together with their standard errors given
below.

True Fitted /3 Q 50 ﬂl 52 DX2 Dy
Corr. | Corr.
Serial | Serial | 0.7881 | 2.187 | -1.031 | 1.046 | 0.5138 | 0.470 | 0.456
0.0055 | 0.030 | 0.018 | 0.019 | 0.0061 | 0.014 | 0.014
Ex. Serial | 0.8271 | 2.444 | -1.022 | 1.023 | 0.5119 | 0.462 | 0.375
0.0055 | 0.037 | 0.018 | 0.021 | 0.0061 | 0.015 | 0.016
Ex. Ex. 0.7894 | 2.206 | -1.023 | 1.021 | 0.5123 | 0.483 | 0.452
0.0058 | 0.032 | 0.015 | 0.020 | 0.0051 | 0.016 | 0.015
Serial Ex. 0.7175 | 1.871 | -1.014 | 1.009 | 0.5036 | 0.503 | 0.550
0.0081 | 0.036 | 0.020 | 0.019 | 0.0062 | 0.017 | 0.019

Table 5.2: Multivariate probit estimates, standard errors and model
diagnostics based on 100 simulations (True parameter values:
p=.8a= 1og(}—f§) =2.197,60 = —1,8, = 1,8, = .5)

The correct correlation structure is not essential for the estimation of
the regression parameter estimates. This is shown by the unbiasedness
of the regression parameter estimates as well as that the estimated p-
values corresponding to the x? discrepancy D,(Y, B) are close to .5 for
all models fitted.

With regard to the estimation of the correlation the correct correlation
structure of course matters. It is interesting to note that the bias in p is



larger when the parameters are estimated using an exchangeable corre-
lation structure when the true correlation struction is serial compared to
the case where the true and fitted correlation structure are interchanged.
This effect is also noticable for the estimated p-values of the Mahalanobis
distance Dy (Y, B,p). Further Dy (Y, B, p) is futher away from .5 for
the incorrectly fitted model. This shows that Dj/(Y, B, p) is effective in
assessing the correct correlation structure.

In summary, this shows that the analysis of the multivariate probit model
using MCMC methods not only allows for a tractable analysis but also
allows for model checking of specified aspects of the data.

In discussing the applicability of the multivariate probit analysis using
MCMC, we would like to mention that published applications using the
likelihood approaches based on the odds ratio (Fitzmaurice and Laird
(1993) and Molenberghs and Lesaffre (1994)) involve at most 4 time
points.

Recently some progress has been made for the calculation of rectangle
normal probabilities (see (3)) in Hajivassiliou et al. (1996). They com-
pare different simulation methods for calculating these probabilities and
conclude that the Geweke-Hajivassiliou-Keane (GHK) simulator performs
best (see also Geweke et al. (1995)). The GHK simulator also uses a
successive generation scheme as used by Czado (1996). It would be in-
teresting to compare the performance of the MCMC algorithm to the
performance of the likelihood analysis using the GHK simulator.

We close by mentioning that for longer binary time series dynamic state
space models (see Fahrmeir and Tutz (1994, Chapter 8)) are useful.
MCMC methods applied to these models were developed by Carlin et
al. (1992). However, Carter and Kohn (1994) and Fruehwirth-Schnatter
(1994) observe bad mixing and slow convergence behavior if state param-
eters are not updated in a single step. Recently, a Metropolis-Hastings
algorithm based on conditional prior proposals is suggested by Knorr-
Held (1996) exhibiting good mixing and convergence properties. These
problems were not encountered for the multivariate probit model.
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