
A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROLMILAN BORKOVEC, AMITES DASGUPTA, SIDNEY RESNICK, AND GENNADY SAMORODNITSKYAbstract. We model behavior of a TCP-like source transmitting over a single channel toa server that processes work at constant rate r. Transmission by the source follows an on/o�mechanism.When the overall load in the system is below a critical constant , transmission ratesincrease linearly but when the load exceeds , then transmission rates decrease geometricallyfast. We study the system by means of an embedded Markov chain which gives the bu�er contentat the start of transmissions. Attention is paid to the time necessary to transmit a �le of sizeL and both the tail behavior and expectation of the distribution of �le transmission time areconsidered. 1. IntroductionRecent experimental work has shown that tra�c carried in high-speed networks, for example,Local Area Networks (LAN) [34], Wide Area Networks (WAN) [22] and Variable-Bit-Rate Video(VAR Video) [4], has features like long-range dependence and self-similarity which are strikinglydi�erent from those of traditional voice tra�c. Such observations have helped stimulate interestin the modeling and statistical analysis of tra�c in modern data networks.Modern data networks are robust and scalable and force congestion to stay with the end user.One of the networking features responsible for these good properties is the protocol TCP ([16]).TCP is the abbreviation for Transport Control Protocol and is responsible for controlling therate of packet transmission by a sender and verifying the correct delivery of data packets to adestination. TCP adds support to detect error or lost packets and to trigger retransmission untilthe data is correctly and completely received. TCP controls transmission rates and roughlyspeaking can be thought to allow transmission rates to linearly increase until packet loss isdetected by a lack of an acknowledgment at which time the rate of successive transmissions ishalved until an acknowledgment comes back.Our goal is to �nd a modest setting in which the e�ect of a TCP-like control can be mathemat-ically studied. In particular, since TCP is a decentralized mechanism for controlling transmissionrates, we are interested in seeing the e�ect of the control on a user who transmits a �le. One ofthe interesting conclusions of our study is that the speci�c manner in which geometric decreaseoccurs does not a�ect the asymptotic form of the distribution of the time to transmit a �le.Natural models for high-speed network tra�c include uid queues fed by on/o� sources withheavy-tailed on- and/or o�-periods. Such models o�er some mathematical tractability and anexplanation of observed long range dependence in the packet count per unit time data. There isa large body of recent literature which uses such models for modeling network tra�c. See, forexample, [1, 6, 14, 28, 9, 17, 29, 34, 35, 15, 36] and the references therein.The basic uid model, which we call the classical on/o� model, consists of a single idealizedsource feeding a server. The single channel of this model alternates between an on state, in1991 Mathematics Subject Classi�cation. Primary 60K25; secondary 90B15.Key words and phrases. bu�er, control level, ergodicity, exponential tail, uid queue model, heavy tails, longrange dependence, network tra�c, on/o� model, stationarity, subexponential distribution, TCP. .Milan Borkovec was supported by a Swiss SNSF grant. Both he and Amites Dasgupta gratefully acknowledgethe hospitality of the School of Operations Research and Industrial Engineering of Cornell University where thebulk of this work took place. Sidney Resnick and Gennady Samorodnitsky were supported by NSF Grant 0071073at Cornell University. 1



2 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYwhich the source transmits data at a constant rate, and an o� state in which the source does nottransmit. Durations of on and o� periods are independent; on times are identically distributed,and so are o� times. Experimental evidence ([8] or [35]) suggests that on and o� periods arewell modeled by heavy tailed distributions, i.e. distributions of the formP (X > x) = x��`(x) x > 0;where 1 < � < 2 and `(x) is a slowly varying function; that is,limt!1 `(tx)`(t) = 1; 8 x > 0:It is now well known that heavy tails for the on periods in the on/o� model induce long rangedependence in the transmission rate process.The single channel model cannot of course model all the interactions occurring in an extensivenetwork but allows mathematical tractability and gives an indication of local behavior in anetwork. Natural performance measures which have been considered to date include the bu�ercontent process and the activity periods when the bu�er content is in the stable state. We refer,for instance, to [6], [7], [24] and references therein.Many theoretical models assume in�nite bu�er capacity for simplicity. The in�nite capacityassumption is tolerated because one can choose a high threshold (the overow level) and thenmake the assumption that when bu�er content reaches this level, excess arriving work gets lost.The probability that this happens is the so-called loss probability or loss fraction. Some resultson time to bu�er overow in such models with heavy tailed on periods are given in [12], [14],[23] and [36]. In [36] the inuence of heavy-tailed input on loss fraction and mean bu�er contentfor particular uid queueing models is investigated.In this paper, we present a single channel on/o� model with TCP-like control mechanismwhich is designed to make bu�er overow extremely unlikely. The proposed model is in thespirit of the congestion avoidance achieved by TCP; see e.g. [19],[20] and [33]. The controlmechanism presented in this article ensures that the bu�er content process is controlled above ahigh threshold. In contrast to the result in the classical on/o�model that heavy-tailed on periodsleads to a heavy-tailed stationary distribution of the content process, here, the stationary contentprocess distribution always has an exponential tail, no matter how heavy is the input tail.Here is an informal description of our on/o� model with control. Let fLng be an iid sequenceof non-negative random variables representing successive job sizes or �le sizes needing to betransmitted by the source. Following transmissions there are o� periods where no work is trans-mitted and the lengths of these o� periods is represented by iid random variables fYng. Duringan on period, if the bu�er content is less than a threshold , the transmission rate linearlyincreases like 1+�t (t � 0, � � 0). If the bu�er content exceeds  during an on period, then thetransmission rate decreases exponentially fast like the function e�dt, (t � 0 and d > 0). There isa constant service rate r, so that whenever the system is nonempty, work leaves the system atrate r. We assume r 2 (0; 1) in order that the empty bu�er content increases immediately whenload starts to be transmitted. The condition r 2 (0; 1) ensures in particular that the state 0 ofthe content process is not absorbing in the case � = 0. The classical on/o� model is included inthis model by choosing  = 1 and � = 0. Therefore, the on/o� model proposed in this papercan be considered as an extension of the classical one and we refer to it as the generalized on/o�model.In studying the generalized on/o� model we use techniques from the theory of Markov chainsin discrete time with state space [0;1) ([18] or [30]). Renewal considerations come from aparticular Markov chain fXng representing bu�er content when a new transmission begins.The paper is organized as follows. In Section 2 we construct the generalized on/o� modelwith TCP-like control and show some basic properties. The model is built by �rst de�ningthe cumulative input function and the transmission times for a �le starting from an arbitrary



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 3bu�er content state. We also de�ne the discrete-time Markov chain fXng representing bu�ercontent at the start of a new transmission. Stability questions phrased in terms of the stationarydistribution of this chain are discussed in Section 3. Under appropriate conditions on L andY , we show stationarity of fXng and hence of the bu�er content. Moreover, we prove that thestationary distribution of the bu�er content is light-tailed. Unlike the classical on/o� modelwithout control, the transmission time of a �le of length L is likely to be longer than L andSection 4 provides some quanti�cation of the increase in transmission time. Several numericalresults conclude this article.There is a mushrooming literature on the inuence of TCP in the data network literatureand as a sample, we cite the following in addition to references already mentioned. Gilbert et al[11] study global synchronization of multiplexed tra�c from TCP sources in a simpli�ed modelwithout queuing. The purpose of the paper is to gain understanding of how the TCP inducedtendency towards oscillation and synchronization a�ect bottleneck links. Altman et al [2] studythroughput (that is, the time average of the input rate process) of a TCP source transmittingan in�nite �le assuming packet losses occur at times constituting a stationary ergodic sequence.Padhye et al [21] also seek an analytic expression for throughput of a TCP source sending anin�nite amount of data. Their answer is a function of the round trip time (the time until anacknowledgment from the destination is received for a transmitted packet) and loss rates. Theyassume that the events [packets lost in \round" i], i � 1, are independent events and use renewalreward techniques for calculating throughput. A survey of methods of controlling communicationnetworks is given by Srikant [27]. 2. The modelIn what follows we formally construct our single channel on/o� model which we alreadyintroduced loosely in the introduction. The construction is basically realized in four steps.Cumulative input function Ix(t). We �rst model cumulative input by a sender transmittingan in�nite �le and commencing transmission when bu�er content is x. This cumulative inputt-time units from the beginning of the transmission is denoted by Ix(t). We let Ix(�) dependcrucially on x and the control level  > 0. In particular, dIx(t)=dt should decrease exponentiallyof the form e�dt, d > 0, for small t and x >  and increase linearly with 1 +�t, � > 0, for t � 0and x < .Assume �rst x � . Begin by de�ning t0(x) to be the amount of time necessary for bu�ercontent to go from x to  or more formallyt0(x) := inffu > 0 : x+ Z u0 e�dwdw � ru = g= inffu > 0 : x+ d�1(1� e�du)� ru = g ; d > 0:(2.1)If the �le size is in�nite, then at time t0(x) the transmission rate is reset back to 1 again andtransmission continues at an exponentially decreasing rate. This procedure is repeated at timest0(x) + n t0(); n = 1; 2; ::: .For x < , let t(x) be the amount of time required for bu�er content to move from x to , i.e.t(x) = inffu > 0 : x+ Z u0 (1 + �s)ds� ru = g= inffu > 0 : x+ u+ 12�u2 � ru = g(2.2) =(1� r)��1 ��1 +p1 + 2�( � x)(1� r)�2� ; � � 0 :



4 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYIf t < t(x), then the cumulative input rate isIx(t) = Z t0 (1 + �u)du = t+ 12�t2:At time t(x), the input rate 1 + �t(x) starts to decrease exponentially and is of the form(1 + �t(x))e�d(�)until t(x) + t�(x); where t�(x) is the time needed for bu�er content, starting from , to againhit  when initial input rate is 1 + �t(x). More precisely,t�(x) = inffu > 0 :  + (1 + �t(x))Z u0 e�dwdw � ru = g= inffu > 0 : (1 + �t(x))(1� e�du)=d� ru = 0g :At time t(x) + t�(x), we assume the input rate is reset back to 1 again and we are back in theframework of x �  discussed at the beginning.Having this construction in mind, we derive next the precise formula for the cumulative inputfunction and some properties of associated auxiliary functions. Suppose again �rst that x � .From the de�nition of t0(x) in (2.1) we haved�1(1� e�dt0(x))� rt0(x) =  � x � 0:(2.3)In [0; t0(x)], the sender transmits therefored�1(1� e�dt0(x)) =  � x+ rt0(x)(2.4)units of work. Since at time t0(x) the transmission rate is put back to 1 and transmission goeson at an exponentially decreasing rate, we thus have fort 2 [t0(x) + nt0(); t0(x) + (n+ 1)t0(x)) =: Jn(x); n = 0; 1; 2; :::(2.5)Ix(t) is the work inputted in [0; t0(x)] plus the work inputted in (t0(x); t] orIx(t) = ( � x+ rt0(x)) + nrt0() + d�1 �1� e�d(t�(t0(x)+nt0()))� :To summarize, the cumulative input function for x �  is de�ned asIx(t) = (d�1(1� e�dt); 0 � t < t0(x); � x+ rt0(x) + nrt0() + d�1(1� e�d(t�nt0()�t0(x))); t 2 Jn(x);(2.6)where Jn(x) is de�ned in (2.5) and with similar considerations for x < ,Ix(t) = 8>>><>>>:t+ �t2=2; 0 � t < t(x);t(x) + �t(x)2=2 + (1 + �t(x))d�1(1� e�d(t�t(x))); t(x) � t < t(x) + t�(x);t(x) + �t(x)2=2 + rt�(x) + nrt0() t(x) + t�(x) + nt0() � t+d�1(1� e�d(t�t(x)�t�(x)�nt0())); < t(x) + t�(x) + (n+ 1)t0();(2.7)where n = 0; 1; 2; : : : :Note that t(x) is strictly decreasing in x <  and thatlimx" t(x) = 0:Extending the de�nitions of t(x) and t�(x) to  by continuity produces t�() = t0(). Further-more, if a transmission starts at , the transmission rate at time t0() is expf�dt0()g, whereasif a transmission starts at x < , then when the bu�er content moves to  and then returns to, the input rate is (1 + �t(x)) expf�dt�(x)g:



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 5The next lemma gives some insight into the discontinuity of the input rate at time t(x) +t�(x); x 2 [0; ) and t0(x); x � , respectively, i.e. at the time when the content process hits thethreshold  for the �rst time from above and the input rate becomes 1 again. It is clear that theinput rate always has a positive jump at the end of each cycle. The lemma shows that the sizeof the jump depends crucially on the initial state x.Lemma 2.1. (a) Let x 2 [0; ) and ix(t(x) + t�(x)) = dIx(t)=dt jt=t(x)+t�(x) be the input rateat t(x) + t�(x). Then, ix(t(x) + t�(x)) = (1 + �t(x))e�dt�(x) and ix(t(x) + t�(x)) is strictlymonotone increasing in x, i.e. for every 0 � x1 < x2 < ix1(t(x1) + t�(x1)) < ix2(t(x2) + t�(x2)) :In particular, for every x 2 [0; )ix (t(x) + t�(x)) < limy" iy�t(y) + t�(y)� = e�dt0() < 1 :(b) Let x �  and ix�t0(x)� = dIx(t)=dt jt=t0(x) be the input rate at t0(x). Then, ix�t0(x)� =e�dt0(x) and ix�t0(x)� is strictly monotone decreasing in x; that is, for every  � x1 � x2ix1(t0(x1)) > ix2(t0(x2)) :In particular, for every x � ix(t0(x)) < limy# iy�t0(y)� = e�dt0() < 1 :Proof. Here, we prove only statement (a). (b) follows immediately from the fact that t0(x) isstrictly monotone increasing in x for x � .Let 0 � x1 < x2 <  be arbitrary. Clearly, t�(x2) < t�(x1). This follows from the de�nitionof t�(x) and the fact that t(�) is strictly decreasing in [0; ). The content process started at anyx <  has at time t(x) + t�(x) the rateix(t(x) + t�(x)) = (1 + �t(x))e�dt�(x);(2.8)Consider the content process started at x1. At time t(x1) + t�(x2) < t(x1) + t�(x1), the contentprocess is in state + (1 + �t(x1)) 1� e�dt�(x2)d � rt�(x2) =  + (1 + �t(x1)) r1 + �t(x2)t�(x2)� rt�(x2)=  + rt�(x2)�1 + �t(x1)1 + �t(x2) � 1� > :(2.9)The input rate at t(x1) + t�(x2) is (1 + �t(x1))e�dt�(x2) and the extra time t� needed for thisrate to decrease to (1 + �t(x2)) e�dt�(x2) satis�es�1 + �t(x1)�e�d(t�(x2)+t�) = �1 + �t(x2)�e�dt�(x2)so that t� := 1d log 1 + �t(x1)1 + �t(x2) :(2.10)In what follows we show that at the time t(x1) + t�(x2) + t� the content process started atx1 is still above , i.e. t(x1) + t�(x2) + t� < t(x1) + t�(x1) and thus ix1(t(x1) + t�(x1)) <ix1(t(x1) + t�(x2) + t�) = ix2(t(x2) + t�(x2)).



6 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYNote that because of (2.8) and (2.10), the extra input from t(x1)+t�(x2) to t(x1)+t�(x2)+t�is (1 + �t(x1)) e�dt�(x2) Z t�0 e�dudu = (1 + �t(x1)) e�dt�(x2)d�1 �1� e� log 1+�t(x1)=1+�t(x2)�= (1 + �t(x1)) e�dt�(x2)d�1�1� 1 + �t(x2)1 + �t(x1)�= e�dt�(x2)� (t(x1)� t(x2))d :(2.11)But, (1 + �t(x2)) 1� e�dt�(x2)d = rt�(x2)or equivalently e�dt�(x2) = 1� rdt�(x2)(1 + �t(x2)) :(2.12)Therefore, by (2.11) and (2.12), the extra input is� (t(x1)� t(x2))d �1� rdt�(x2)(1 + �t(x2))� = � (t(x1)� t(x2))d ��1 + �t(x1)1 + �t(x2) � 1� rt�(x2) :(2.13)From (2.9) and (2.13), we conclude that the bu�er state at time t(x1) + t�(x2) + t� is + rt�(x2)�1 + �t(x1)1 + �t(x2) � 1�+ � (t(x1)� t(x2))d � �1 + �t(x1)1 + �t(x2) � 1� rt�(x2)� r t�=  + � (t(x1)� t(x2))d � r t� :(2.14)Note now that� (t(x1)� t(x2))d = (1 + �t(x2))d�1�1 + �t(x1)1 + �t(x2) � 1�� d�1�1 + �t(x1)1 + �t(x2) � 1� > 1d log 1 + �t(x1)1 + �t(x2) > rd log 1 + �t(x1)1 + �t(x2) = r t� :(2.15)Therefore, by the time t(x1)+ t�(x2)+ t� the state of the system is still above  and so the timet(x1) + t�(x1) has not been reached.Transmission duration �(x; l). The de�nition of the cumulative input function Ix(�) givenabove assumed transmission of a �le of in�nite size. When transmission of a �le of size l com-mences with initial bu�er content equal to x, the time necessary for transmitting the whole �leis �(x; l) = infft > 0 : Ix(t) = lg =: I x (l)(2.16)where I x (�) is the inverse of the continuous strictly increasing function Ix(�). Due to (2.6) and(2.7) �(x; l) can be expressed more explicitly. For x �  we have�(x; l) = (�d�1 log(1� dl); l �  � x+ rt0(x);t0(x) + I  (l �  + x� rt0(x))g; otherwise.(2.17)



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 7and for x < �(x; l) = 8>>><>>>:��1(�1 +p1 + 2�l); l � t(x) + �t2(x)=2;t(x)� d�1 log �1� (1 + �t(x))�1d(l� t(x)� �t(x)2)� ; t(x) + �t(x)2=2 < l� t(x) + �t(x)2=2 + rt�(x);t(x) + t�(x) + I  �l � t(x)� �t(x)2=2 � rt�(x)�; otherwise.(2.18)Straightforward but tedious analysis yields the following lemma.Lemma 2.2. The transmission time �(x; l) de�ned in (2.17) and (2.18) is for �xed l continuousin x.Proof. The result follows from the continuity of I(�); t(�); t�(�) and t0(�).
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Figure 1. Simulated bu�er contents with 300 on/o� periods at each case. The chosen pa-rameters are � = 0:1,  = 1, d = 0:8 (top) and 20 (bottom) as well as r = 0:2 (left) and 0:8(right). Transmission loads are Pareto(2)-distributed and o�-periods have Pareto distributionswith index � = 2. The maximal increasing stepsizes are �(0:1) = 0:72 and � = 0:60 (left,top),�(0:1) = 0:06 and � = 0:03 (right,top), �(0:1) = 0:04 and � = 0:02 (left,bottom) respectively�(0:1) = 0:005 and � = 0:001 (right,bottom).The embedded Markov chain fXng. Let fLng and fYng be the sequences of on and o� periodsas de�ned in the introduction. Given fLn; Yng and the transmission duration function �(x; l),we may de�ne a Markov chain fXn; n � 0g by the stochastic recurrence equationXn = (Xn�1 + Ln � r�(Xn�1; Ln)� rYn)+ ; n = 1; 2; ::: ;(2.19)whereX0 = x � 0 is arbitrary. We will write Px(�),Ex(�) to denote probabilities and expectationscomputed under the assumption that X0 = x. We will also denote the Markov kernel byPx[X1 2 dy] =: p(x; dy):



8 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYMoreover, Pn[x; �] denotes the n-step transition probability of fXng, i.e. Pn[x; �] = P [Xn 2� jX0 = x] for every x � 0 and n 2 N. The stochastic recurrence equation de�nes the new stateas a function of the old state and independent quantities and hence de�nes a Markov chainfXng that represents bu�er content when new transmissions commence. By Lemma 2.2 and therecurrence relation (2.19) it is readily seen that fXng is weak Feller (i.e. the operator p(x; �)maps bounded continuous functions into bounded continuous functions). This property will behelpful in section 3 for showing the existence of a stationary distribution. In particular, we willsee that under appropriate conditions on L and Y the process fXng is (geometrically) ergodic.This implies that the transmission times (�(Xn�1; Ln)) converge uniformly to a well-speci�ed,non-degenerate random variable �(X;L).A time scale for the Markov chain. Given the Markov chain fXng, we de�ne a continuoustime bu�er content process fX(t); t � 0g. We will do this by de�ning a natural time scale. SetS0 = 0 and recursively de�neSn = Sn�1 + �(Xn�1; Ln) + Yn ; n = 1; 2; : : : :(2.20)Sn is the time when the transmission labeled "n" begins. The cycle [Sn; Sn+1) consists of an onperiod of length �(Xn�1; Ln) and an o� period of duration Yn.The continuous time bu�er content process fX(t); t � 0g. The bu�er content process of thegeneralized on/o� model with control can be now de�ned by interpolating between the pointsfSng. If Sn�1 � t � Sn�1 + �(Xn�1; Ln) for some n = 1; 2; : : : ;X(t) = Xn�1 + IXn�1(t� Sn�1)� r(t� Sn�1)(2.21)
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Figure 2. Simulated bu�er contents with 300 on/o� periods at each case. The chosen pa-rameters are � = 0:1,  = 1, d = 0:8 (top) and 20 (bottom) as well as r = 0:2 (left) and 0:8(right). Transmission loads are Expo(4)-distributed and o�-periods have Pareto distributionswith index � = 2. The maximal increasing step sizes are the same as in Figure 1.



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 9and if Sn�1 + �(Xn�1; Ln) < t < Sn thenX(t) = (X(Sn�1 + �(Xn�1; Ln))� r(t� Sn�1 � �(Xn�1; Ln)))+ :(2.22)Figure 1 and 2 present several simulations of the bu�er content process for di�erent parameters.The present model is a generalization of the standard on/o� model. The standard model isrecovered by setting  = 1 and � = 0. Note that if we retain  < 1 but set � = 0 then weget the model which has transmissions proceeding with constant rate inputs when initial bu�ercontent is x < . In this case, for x � Ix(t) = 8><>:d�1(1� e�dt); 0 � t < t0(x); � x+ rt0(x) + nrt0() t0(x) + nt0() � t+d�1(1� e�d(t�nt0()�t0(x)); < t0(x) + (n+ 1)t0();(2.23)and �(x; l) = (� log(1� dL)=d; l �  � x+ rt0(x);t0(x) + I  (l �  + x� rt0(x))g; otherwise,(2.24)while for x < Ix(t) = 8><>:t; 0 � t < ( � x)=(1� r);( � x)=(1� r) + nrt0() ( � x)=(1� r) + nt0() � t+d�1(1� e�d(t�nt0()�(�x)=(1�r)); < ( � x)=(1� r) + (n+ 1)t0()(2.25)and �(x; l) = (l; l � ( � x)=(1� r);( � x)=(1� r) + I  (L� ( � x)=(1� r)); otherwise.(2.26)One of our objectives is to study the transmission durations f�n = �(Xn�1; Ln); n � 1g. Sincethe underlying philosophy behind TCP is to force congestion to the end users, it is of interestto see to what extent the control responsible for keeping bu�er content stable also prolongstransmission times for the sender. In what follows we show that there exists a limit distributionfor �n as n tends to in�nity and we discuss how this distribution depends on L. Such discussionis framed in terms of tail behavior and expectation. We study thus the Markov chain fXng inmore detail.Note that while the Markov chain fXng may increase with positive probability, it does soonly in a very controlled way. Because of the construction of fXng, if Xn � , thenXn+1 �Xn � supt>0 �Z t0 e�dwdw � rt� = supt>0 �1� e�dtd � rt� =: � = 1� r + r log rd :Moreover, wheneverXn�1 <  thenXn � +supt>0 �(1 + �t(0))d�1(1� e�dt)� rt� =: +�(�).Straightforward calculations show that�(�) := (1 + �t(0))(1� r(1 + �t(0))�1) + r log r(1 + �t(0))�1d � �(0) = �:(2.27)These simple results will be very useful and may already give an idea why the process fXngremains stable.



10 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKY3. Existence of a stationary distribution for fXngIn this section we consider the Markov structure of fXng in more detail. Subjects of interestare the existence (and uniqueness) of a stationary distribution, support and tail behavior of thestationary distribution as well as ergodicity. For an introduction to Markov chain theory we referto [18] or [30].A little reection shows that if L is always rather small and the o� period is zero, then thecontent process will always increase and there is no hope the Markov chain will be stable. Inwhat follows we assume that L must be su�ciently large with positive probability.Assumption 3.1. The distribution of L satis�esP [L > 1=d] > 0 :(3.1)Assumption 3.1 guarantees that the process fXng dips below  + � in �nite time no matterhow large was the initial state.Proposition 3.2. If (3.1) holds, then for all x � 0Px� 1\j=1[Xj >  + �]� = 0:(3.2)Proof. Condition (3.1) implies that for all x � 0 < � :=P [L1 > 1=d] � P [L1 > (1� e�dt0(x))=d]�Px[X1 �  + �] = p(x; [0;  + �]):The reason for the inequalities is that if L1 > (1�e�dt0(x))=d, then a transmission starting whencontent level is x �  lasts long enough for the control to push the content level to  and thenthe most that the content level can be by the start of the next transmission is +�. This impliesthat eventually the Markov chain is below  + � since for every x � 0Px� 1\j=1[Xj >  + �]� = limN!1Px� N\j=1[Xj >  + �]�= limN!1Z � � �Z yj>+�j=1;:::;N p(x; dy1)p(y1; dy2) : : : p(yN�1; dyN)� limN!1(1� �)N�1Px[X1 >  + �] = 0:(3.3)Theorem 3.3. Let fXng be the process de�ned in (2.19) and suppose L satis�es Assump-tion 3.1. Then, the process fXng has a stationary distribution �. Moreover, for every x � +�(�)�((x;1))� (0; P [L � r t0()] = 0;P [L � 1=d]�=�(�)�2e� logP [L�1=d]�1=2�(�)x; else :(3.4)Remark 3.4. In the standard on/o� model where  =1 and � = 0, a common condition forstability is E f(1� r)L� rY g < 0(3.5)which is called the negative drift condition. Compare this to Theorem 3.3 and we see that becauseof the e�ect of the control, a drift condition is not required for stability in the presence of theon/o� control. The control mechanism in our model ensures that fXng has negative drift abovea su�ciently high level. Moreover, the tail of the stationary distribution � of fXng is always



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 11light-tailed (even in the case when L is heavy-tailed). This is a completely di�erent result fromthe standard case where the stationary distribution becomes heavy-tailed too (see [12] and [13]).We postpone the proof of Theorem 3.3 until after the next two propositions. The consequencesof Theorem 3.3 are not needed in their proofs.We discuss �rst the support of any stationary of fXng under di�erent conditions on L and Y .Proposition 3.5. Suppose the assumptions of Theorem 3.3 hold.(a) If P [L < rt0()] = 0;(3.6)then the support of any stationary distribution lies in [0;  + �(�)].(b) If Y = 0 a.s. then the support of any stationary distribution is a subset of [;1). Ifadditionally P [L < rt0()] = 0; then the support of any stationary distribution is a subset of[;  + �(�)].(c) If for some � > 0P [Y � �=r] = 0 and P [L � t(0) + �t(0)2=2] = 0;where t(x) is de�ned in (2.2), then the support of any stationary distribution is a subset of[( � �) _ 0;1) .Remark 3.6. The simulations in Figure 1 and 2 suggest weaker conditions su�ce for anystationary distribution to concentrate on either neighborhoods of 0 or in�nity.Proof. (a) From Assumption 3.1 and Proposition 3.2, we know that for all x � 0,Px� 1[j=0[Xj �  + �(�)]� = 1:So if M := inffn � 0 : Xn �  + �(�)g;(3.7)it follows that Px[M <1] = 1; for all x � 0:We claim Px� 1\j=M[Xj �  + �(�)]� = 1; for all x � 0;(3.8)which will show that any stationary distribution is supported in [0;  + �(�)]: It su�ces to showfor j � 0 Px[XM+j �  + �(�)] = 1which we do by induction on j. The result is clearly true for j = 0. Suppose it is true for j andwe prove it for j + 1 as follows. By the strong Markov property, we have for j � 1,Px[XM+j+1 �  + �(�)] =Px[XM+j � ;XM+j+1 �  + �(�)]+ Px[XM+j 2 (;  + �(�)];XM+j+1 �  + �(�)]=Px[XM+j � ] + Zh2(0;�(�)] P+h[X1 �  + �(�)]Px[XM+j 2  + dh]:Recall t0() = inffu > 0 :  + (1� e�du)=d� ru = g= inffu > 0 :  + h+ (1� e�du)=d� ru =  + hg



12 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYfor any h � 0. Thus, starting from  + h, the control will force the contents process back to + h provided there is a su�ciently large job size requiring the transmission time to exceedt0(). Thus, the job size needs to exceed1� e�dt0()d = rt0():Since (3.6) holds, we haveP+h[X1 �  + �(�)] = 1 ; for all h 2 [0; �(�)] ;and thus Px[XM+j+1 �  + �(�)] =Px[XM+j � ] + Px[XM+j 2 (;  + �(�)]]=Px[XM+j �  + �(�)] = 1;as required.(b) If X(0) = x < , then starting at time 0, X(�) is increasing because r < 1. For this case,since there are no o� periods, the contents process must eventually hit , and then never gobelow . If X(0) = x � ; the process is already above  and therefore, the support of anystationary distribution of fXng must be in [;1).(c) If X0 = x < , then since P [L1 > t(0) + �t(0)2=2] = 1, and it takest(x) + �t(x)2=2 < t(0) + �t(0)2=2 < L1units of work for the contents process to climb past , the contents process must be within[; +�(�)] at time �(x;L1). Thus, at time �(x;L1)+Y1, the contents is at least �rY1 � ��.So for x < , we have p(x; [ � �;1)) = 1: A similar argument holds also for X0 = x � .Therefore in all cases p(x; [ � �;1)) = 1; for all x � 0:The next proposition is crucial for proving (3.4). It shows that all marginals distributions offXm;m � ng for n large enough have exponential decay.Proposition 3.7. Let fXng be the process de�ned in (2.19) and suppose L satis�es Assump-tion 3.1. Then, for every x �  + �(�), y � 0 and n > dx���(�)2�(�) e,Py[Xn > x] � (0; P [L � 1=d] = 0;P [L � 1=d]�=�(�)�2e� logP [L�1=d]�1=2�(�)x; else :(3.9)Proof. Let x �  + �(�) and y � 0 arbitrary. De�ne K := dx���(�)2�(�) e+ 1 � 1 and choose n � Karbitrary. From previous considerations we know thatfLj > 1=dg � fXj �  + �(�)g ; j = 1; 2; 3; ::: :(3.10)As a consequencefXn > xg � �[K�1j=0 fLn�j > 1=dg�c = \K�1j=0 fLn�j � 1=dg(3.11)and thus because of the independence of the events fL1 � 1=dg; fL2 � 1=dg; :::Py[Xn > x] � P [L � 1=d]K :Obviously, Py[Xn > x] = 0 if P [L � 1=d] = 0. Furthermore, for P [L � 1=d] > 0 we havePy[Xn > x] � e( x=2��(�) �2) logP [L�1=d] = P [L � 1=d]�=�(�)�2e� logP [L�1=d]�1=2�(�)x :



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 13It remains therefore to show (3.11). Assume there exists j 2 f0; 1; :::;K � 1g such that Ln�j >1=d. Clearly, by (3.10) Xn�j �  + �(�) :Since the process fXng above  increases at most � in one step we conclude that a crude upperbound for Xn is  + �(�) + j � �  + �(�) + (K � 1) �(�)�  + �(�) + x�  � �(�)2�(�) ! �(�)� x ;which implies (3.11) and the proof is complete.Proof of Theorem 3.3. The proof is an application of Theorem 2 of [32] which require drift con-ditions be checked for fXng. Recall that fXng is weak Feller since for every bounded continuousfunction g Ex fg(X1)g = Z 10 Z 10 g (max (0; x+ l� r�(x; l)� ry))FY (dy)FL(dl)is continuous in x by Lemma 2.2.Next �x N 2 N and de�ne " := P [L > 1=d]=2 > 0 and the set A := [0; a], where a >  ischosen su�ciently large so that for x 2 AcP [L > 1=d](1 + ( + �(�))N) + P [L � 1=d](1 + (x+ �(�))N)1 + xN � 1� �;(3.12)which is possible since the left side of (3.12) converges to P [L � 1=d] as x ! 1. The set A iscompact.Set g(x) = 1 + xN : Clearly for any x 2 AEx�g(X1)	 � 1 + (a+ �(�))N <1:(3.13)Moreover, because of (3.12), for any x 2 AcEx�g(X1)	 = Ex�g(X1)1fL1>1=dg	+ Ex�g(X1)1fL1�1=dg	� (1 + ( + �(�))N )P [L > 1=d] + (1 + (x+ �(�))N)P [L � 1=d]� (1� �)(1 + xN )= (1� �)g(x):(3.14)Because of (3.13), (3.14) and the weak Feller property all assumptions in Theorem 2 of [32] areful�lled and the process fXng has a stationary distribution �.The upper bounds for the tail of the stationary distribution follow immediately from Propo-sition 3.5(a), Proposition 3.7 and the fact that fL < rt0()g = �L < d�1(1� e�dt0())	 � fL �1=dg.Theorem 3.3 guarantees the existence of a stationary distribution for fXng. However, noinformation about the uniqueness of � and the convergence of the n-step transition probabilitiesis provided. The minimal Assumption 3.1 of the theorem does not su�ce to get hold of thisdeeper level of complexity. In what follows we study the notion of ergodicity and hence also�-irreducibility for some �-�nite measure �. The main result is stated in the next theorem.Theorem 3.8. Let fXng be the process de�ned in (2.19) and suppose L satis�es Assump-tion 3.1. Moreover, assume that the random variables L and Y satisfy one of the followingtwo conditions:



14 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKY(a) P [L� r��1(�1 +p1 + 2�L)� rY < 0] > 0 ,(b) P [Y � ( + �(�))=r] > 0 .Then, the process fXng has a unique stationary distribution � and 0 is an atom. fXng isgeometric ergodic, i.e. there exists a � < 1 such that for every x � 0��nkPn[x; �]� �k ! 0 ; as n!1 ;(3.15)where k � k denotes total variation of signed measures on B([0;1)). Moreover, the process isstrong mixing and, as shown in Theorem 3.3, (3.4) holds.Remark 3.9. (a) In the case � = 0 condition (a) of Theorem 3.8 simpli�es to P [(1�r)L�rY <0] > 0. A su�cient (but not necessary) condition for this case is that there exists � > 0 suchthat P [Y � �=r] > 0 and P [L < �=(1� r)] > 0(3.16)since fL < �=(1� r); Y � �=rg � f(1� r)L� rY < 0g .(b) Conditions (a) and (b) imply that Y 6= 0 a.s. . If Y = 0 a.s. then f0g can not be hit startingfrom x > 0. See also Proposition 3.5.In order to prove Theorem 3.8 we show that under the assumptions (a) or (b) of Theorem 3.8the process fXng hits zero a.s. in �nite time.Proposition 3.10. Under the assumptions of Theorem 3.8, the process fXng has an atom atf0g; that is, for every x 2 [0;1),Px[inffj � 1 : Xj = 0g <1] = 1:Proof. Suppose �rst that Condition (a) holds. Suppose a transmission of a �le of size l commenceswhen the bu�er content is x. In a bu�er with no control (i.e.  =1)� = �(x; l) = ��1(�1 +p1 + 2�l)because we solve the equation l = ��2=2 + � . Clearly, the transmission time increases when thecontrol is present since the input rate decreases above . Therefore, we conclude that� = �(x; l) � ��1(�1 +p1 + 2�l) :(3.17)Assumption (a) implies that there exists " > 0 such thatP [L� r��1(�1 +p1 + 2�L)� rY � �"] > 0:(3.18)Set K := d( + �(�))="e+ 1 and de�ne for every n � 1Un := 1[Ln>1=d]\Kj=1[Ln+j�r��1(�1+p1+2�Ln+j)�rYn+j��"]:Since fLng and fYng are independent iid sequences, fUng is strictly stationary and in factK-dependent, and because of (3.18)EfUng = P [L > 1=d]P [L� r��1(�1 +p1 + 2�L)� rY � �"]K > 0 :(3.19)Furthermore, because of the strict stationarity, for any initial xU1 + � � �+ Unn ! EfU1g; Px � a.s. as n!1 :(3.20)Combining (3:19) and (3:20) we conclude that for almost all !; there exists N = N(!) < 1such that UN (!) = 1. If XN�1 � , then as in Proposition 3.2, LN > 1=d implies XN � + �(�)while if XN�1 < , the same conclusion holds. ThusXN (!) �  + �(�)



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 15and using (3.17) and (3.18), we getXN+1(!) = (XN (!) + LN+1(!)� r�(XN(!); LN+1(!))� rYN+1(!))+�� + �(�) + LN+1(!)� r(�1 +p1 + 2�LN+1(!))=�� rYN+1(!)�+�maxf0;  + �(�) � "g =  + �(�) � "and continuing this procedureK times convinces us that XN+K(!) = 0 which �nishes the proof.Next suppose condition (b) holds. In this case the statement follows immediately from thefact that for every x 2 [0;1) and ! 2 fL > 1=d; Y � ( + �(�))=rgx+ L(!)� r(�(L(!); x) + Y (!)) �  + �(�) � rY (!) � 0 :We are now prepared to consider Harris-recurrence, irreducibility and regeneration.Corollary 3.11. Under the assumptions of Theorem 3.8, the process fXng is Harris-recurrentwith regeneration set f0g, regenerative and �f0g-irreducible.Proof. Because of Proposition 3.10, f0g is a Harris-recurrent one-point set and hence a regener-ation set (see e.g. [3], p.151). Furthermore, for every A 2 B([0;1)) with 0 2 A and all x 2 [0;1)we have 1 = Px[inffj � 1 : Xj = 0g <1] � Px[inffj � 1 : Xj 2 Ag <1]= Px( 1[n=1fXn 2 Ag] � 1Xn=1Px[Xn 2 A];and thus fXng is �f0g-irreducible.Proof of Theorem 3.8. The inequalities (3.13) and (3.14) from the proof of Theorem 3.3 areclearly still valid. Because of this, Corollary 3.11 and the weak Feller property all assumptionsin Theorem 4 of [31] are ful�lled and the statements follow.4. Transmission time �In this section we study the transmission time � when the process fXng is stationary (i.e.Xn � � for every n � 0). In what follows X is a generic random variable with distribution � andindependent of L and Y . The lemma below states that stationarity of fXng implies stationarityof the sequence of transmission times f�ng := f�(Xn�1; Ln)g. Further, the geometric ergodicproperty of fXng guarantees that the transmission times �n converges uniformly to the invariantdistribution.Lemma 4.1. Suppose L satis�es Assumption 3.1. Then with respect to P�, f�ng := f�(Xn�1; Ln)gis a stationary sequence. Moreover, if fXng satis�es the conditions in Theorem 3.8 then for everyy � 0 Py[�n 2 A]! P�[�(X;L) 2 A] uniformly in A 2 B([0;1)) as n!1 ;(4.1)where X and L are independent random variables with L d= Ln .



16 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYProof. The stationarity of f�ng follows from the fact that fXng is stationary and the sequencesfLm;m � ng and fYm;m � ng are independent of Xn�1. Further, for arbitrary y � 0supA2B([0;1)) ���Py[�n 2 A]� P�[�(X;L) 2 A]���� supA2B([0;1)) Z 10 ���Py[�(Xn�1; l) 2 A]� P�[�(X; l) 2 A]���FL(dl)� supff : kfk1�1g ��� Z 10 f(z)Pn�1(y; dz)� Z 10 f(z)�(dz)��� :Finally, by (3.15) in Theorem 3.8 the right hand side converges to zero as n!1 which �nishesthe proof.Theorem 3.3 implies in particular that the tail of the stationary distribution of � is completelyspeci�ed by a subexponential load input L and the input rate r. For de�nition, properties andexamples of subexponential distributions see for instance [5] or [10].Theorem 4.2. Let fXng be the stationary process de�ned in (2.19) with L having a subexpo-nential distribution FL (i.e. F 2�L (x) � 2FL(x), as x!1). ThenP�[� > x] � FL(rx) ; as x!1 :(4.2)Proof. Let � = �(X;L). Note that at the end of transmission X(�) = X + L � r� . ClearlyX + L� r� � 0 which yields � � X + Lr :On the other hand considering the cases of starting above  or below X + L� r� � maxfX + �;  + �(�)g � maxfX; g + �(�);which yields � � X + L�maxfX; g � �(�)r :The two inequalities written together giveL+X �maxfX; g � �(�)r � � � L+Xr :(4.3)From (4.3) we see that � is bounded above and below by random variables of the form (L=r)+Vwhere V is independent of L and the tail of its distribution is exponentially decreasing. ByProposition 2.1 (ii) in [26], the tail of V is lighter than the tail of L=r and from part (iv) of thesame proposition the asymptotic behavior of the distribution of � in (4.2) follows.Theorem 4.2 seems to be very surprising since for heavy-tailed inputs the tail of the distri-bution of � is independent of d (as a �rst order approximation). One might wonder the extentto which other characteristic quantities depend on d. Besides the tail of the distribution of � weconsider therefore the expectation of � . Assuming again that the process is stationary the nexttheorem shows bounds on the expectation of the transmission time � .



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 17Theorem 4.3. Let fXng be the stationary process de�ned in (2.19) with L satisfying Assump-tion 3.1. Then, for every 0 < c0; c1 �  we havemax���1 ��1 +Ep1 + 2�L� ; ELr � EY �� E�f�g � ELr � P �L > t( � c0) + �t( � c0)2=2� Z c0=r0 ydF (y)(4.4) � P [L > �c1 ]c1r P [Y > ( + �(�))=r] ;where �c1 = t( � c1) + �t( � c1)2=2 _ d�1 and t(x) is de�ned in (2.2).Remark 4.4. (a) For X > 0 a.s. the above statement can be sharpened. The left inequality inTheorem 4.3 becomes an equality, more preciselyE�f�g = ELr �EY :This follows immediately from the �xpoint equationX d= (X + L� r� � rY )+ = X + L� r� � rYand taking expectations on both sides.(b) For � = 0, ��1 ��1 +Ep1 + 2�L�, t( � c0) + �t( � c0)2=2 and �c1 simplify to EL,c0=(1� r) and c1=(1� r) _ d�1, respectively.(c) The right bound in (4.4) depends on the choice of c0 and c1. The optimal choice of theseconstants (in terms of minimizing the right bound) can not be speci�ed in general withoutknowledge of the underlying distributions of L and Y . However, ifs� := (2�)�1 �r2 + 1 + �d�1 � 2rp1 + �d�1� (1� r)2� � (4.5)(note s0 = d�1(1 � r)) the optimal choice of c1 is . This can be easily seen by noting thatf(c) := t( � c) + �t( � c)2=2 is strictly monotone increasing in c and s� �  is the onlypositive root of f(c) = d�1. Thus, for every c 2 (0; ]P [L > �c] cr = P [L > d�1] cr� P [L > d�1] r = P [L > �c] rand c1 = . In the case when s� is strictly smaller than  the above argument does not workanymore and we can only conclude that the optimal choice of c1 lies in between s� and .In what follows we consider in more numerical detail the dependence of the expectation of� on d for a special case which is analytically tractable. The expectation of � is estimated byMonte-Carlo simulation. The estimated value of E�f�g can be also used for checking how goodthe bounds in Theorem 4.3 are. Recall that only the right bound in Theorem 4.3 depends ond. Further, by Remark 4.4(a), the expectation of � is always independent of d whenever thesupport of the stationary distribution does not include f0g.Example 4.5. Assume � = 0 and L has the Pareto-distribution, i.e. P [L > x] = (1 + x)��,x � 0 with � > 2. Moreover, let Y be uniformly distributed in [0; y0].



18 M. BORKOVEC, A. DASGUPTA, S. RESNICK, AND G. SAMORODNITSKYBy Theorem 4.3, we conclude thatmax� 1�� 1 ; 1(�� 1)r � y02 �� E�f�g � 1(�� 1)r � (1 + c0=(1� r))�� (c0=r ^ y0)22y0� (1 + (c1=(1� r) _ d�1))�� c1 �y0 � (y0 ^ ( + �(�))=r)�ry0 :(4.6)Straightforward calculations yield for the optimal choice of c0 and c1:(a) if y0 � =r then c0 =  ^ 2(1� r)=(�� 2) ,(b) if y0 < =r then c0 = y0r ^ 2(1� r)=(�� 2) ,(c) if d�1(1� r) �  then c1 =  ,(d) if d�1(1� r) <  and d < �� 1 then c1 = d�1(1� r) ,(e) if d�1(1� r) <  and d � �� 1 then c1 =  ^ (1� r)=(�� 1) .Note that the result (c) follows from Remark 4.4(c), whereas, here, (d) and (e) are precise resultsin contrast to Remark 4.4(c).Figure 3 displays the numerically estimated expectation of � as a function of d and thecorresponding bounds for � = 2:5 and 10, respectively,  = 1 and di�erent values of y0 andr. Although the numbers of on/o� periods were chosen very large (20,000 on/o� periods) thenumerical value of E�f�g is still not always stable. Note also that for d small the estimatedvalue of E�f�g is not in all cases between our theoretical bounds. In some plots the upper andlower theoretical bounds are close to each other. However (unfortunately) this is not always thecase. One conclusion of our empirical study is that the bounds might be for some parametersquite good and in other cases not. In general one might say that the theoretical bounds convergewhen r is increasing. Another striking feature is that E�f�g stays in the most cases closer tothe lower bound. Last but not least, all pictures show that the expectation of � seems hardly todepend on d. This observation together with Theorem 4.2 and Theorem 4.3 indicates that thevalue d used for the control mechanism is only minimally relevant for the transmission time � .Proof of Theorem 4.3. Note �rst that from (3.17)E�f�g � ��1 ��1 +Ep1 + 2�L� :(4.7)To deal with max (0;X + L� r� � rY ) in a convenient way we de�neZ = Y 1fY�X+L�r�r g + (X + L� r�)r 1fY >X+L�r�r g:(4.8)Then it is seen that (0;X + L� r� � rY )+ = X+L�r��rZ. IfX has the stationary distributionthen the state at the next step, i.e. X + L � r� � rZ also has the same distribution and fromE�fXg = E�fX + L� r� � rZg we get that under the stationary distribution on XE�f�g = ELr � E�fZg:(4.9)Since Z � Y the left inequality of (4.4) follows from (4.7) and (4.9). We now work towards theright inequality.From the de�nition of Z we haveE�fZg = E�nZ X+L�r�r0 ydF (y)o+E�n (X + L� r�)r P��Y > X + L� r�r ���X;L�o:(4.10)We examine how the values of L a�ect (X + L � r�). Throughout we assume 0 < c �  andL > t( � c) + �t( � c)2=2. Under these conditions we want to show that (4.11) holds.



A SINGLE CHANNEL ON/OFF MODEL WITH TCP-LIKE CONTROL 19First consider the case X = 0. Since c �  and L > t(�c)+�t(�c)2=2 transmission continuesfor a time greater than or equal to t( � c). Thus X + L � r� is greater than or equal to thebu�er level at time t( � c) which is t( � c) + �t( � c)2=2� rt( � c) = c.Next consider the case 0 < X < . As before 0 < c �  and L > t( � c) + �t( � c)2=2.Starting from X either the bu�er level hits  before time t( � c) (which means at the end oftransmission c �  � X +L� r�) or by time t( � c) the bu�er level increases to X + c so thatagain at the end of transmission c � X + c � X +L� r� . On the other hand for X �  clearlyX + L� r� �  � c.From the above discussion, regardless of the initial X, if 0 < c �  and L > t(� c) +�t(�c)2=2, then c � X + L� r�:(4.11)Finally, note that if L > 1=d thenX + L� r� �  + �(�)(4.12)independent on the state of X.Thus (4.10), (4.11) and (4.12) imply for every 0 < c0; c1 � E�fZg � E1fL>t(�c0)+�t(�c0)2=2g Z c0=r0 ydF (y) + E1fL>�c1g c1r P [Y >  + �(�)r ]= P [L > t( � c0) + �t( � c0)2=2]Z c0=r0 ydF (y) + P [L > �c1 ]c1r P [Y >  + �(�)r ];(4.13)establishing the right inequality of (4.4).Knowing the approximative expectation of the transmission time of an input load gives a�rst idea about the e�ectiveness of the system. Another quantity which can be considered forthe same reason is the probability that the system is empty. A system which is likely to beempty is not used to capacity and hence not economically e�cient. The next result gives theasymptotic percentage of time that the bu�er is empty. The result is an immediate consequenceof Theorem 4.3 and its proof. We use the fact that fX(t)g is regenerative and thus has astationary limit distribution.Corollary 4.6. Let X(t) be the continuous time process in (2.21) and (2.22) and assume thatthe conditions in Theorem 3.8 are satis�ed. Then, for every x � 0limt!1Px[X(t) = 0] = 1� EfL=rgE�f� + Y g :(4.14)Proof. From (4.9) we have EfL=rgE�f� + Y g = E�f� + ZgE�f� + Y g :(4.15)By Theorem 3.8 and Lemma 4.1, the sequence (Zi; Yi; �i) is P�-stationary and ergodic and fromthe ergodic theorem the right hand side of (4.15) is the P�-almost sure limit ofPni=1(�i + Zi)Pni=1(�i + Yi) :(4.16)Let fNng be the successive return times to 0 by fXng and supposek = supfj : Nj � ng:
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Figure 3. Estimated mean transmission time � as a function of d for 20 000 on/o� periods withparameters r = 0:2; � = 2:5; y0 = 1;  = 1; � = 0 (top,left), r = 0:8; � = 2:5; y0 = 1;  = 1; � = 0(top, right), r = 0:2; � = 2:5; y0 = 10;  = 1; � = 0 (second line, left), r = 0:8; � = 2:5; y0 =10;  = 1; � = 0 (second line, right), r = 0:2; � = 2:5; y0 = 4;  = 1; � = 0 (third line, left),r = 0:8; � = 2:5; y0 = 4;  = 1; � = 0 (third line, right), r = 0:2; � = 10; y0 = 4;  = 1; � = 0(bottom, left) and r = 0:8; � = 10; y0 = 4;  = 1; � = 0 (bottom, right). The dotted linesrepresent the upper and lower bounds for E�f�g using the optimal constants c0 and c1 inExample 4.5.
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Figure 4. Estimated percentage of time the bu�er is empty as a function of d. The chosenparameters are the same as in Figure 3. The dotted lines represent theoretical upper and lowerbounds for the probability. The bounds can be easily derived by using Corollary 4.6 and (4.6).


